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ABSTRACT

This thesis deals with optimization using Gaussian processes and differential evolution
algorithm, and its implementation in MATLAB. The theoretical part discusses the topic
of Gaussian processes in terms of mathematical representation, choice of kernel, param-
eters, mathematical procedures for implementation, differential evolution algorithm its
mutation, crossover, and theory of circularly polarized antenna. The solution section
describes the implementation in MATLAB and deals with the testing of this algorithm
on benchmark functions. The results are then compared with other stochastic optimiza-
tion algorithms and the effectiveness of the method is discussed for different types of
problems. Based on the results, the method is extended by a Differential evolution algo-
rithm, and circularly polarized antenna is optimized by this method. Designed antenna
is fabricated and measured. The results are compared with simulations.

KEYWORDS

Gaussian process regression, squared exponential kernel, MATLAB, optimization, opti-
mization testing functions, differential evolution algorithm, mutation, crossover, circu-
larly polarized antenna, patch antenna

ABSTRAKT

Tato prace se zabyva optimalizaci pomoci Gaussovych proces, algoritmu diferencialni
evoluce a jeji implementaci v prostredi MATLAB. Teoretickd Cast se zabyva tématem
Gaussovych procesii z hlediska matematické reprezentace, volby jadra, parametrli, mate-
matickych postuptli pro implementaci, algoritmem diferencialni evoluce, mutaci, krizenim
a teorii kruhové polarizovanych antén. Praktickd Cast popisuje implementaci v prostred{
MATLAB a zabyva se testovanim tohoto algoritmu na testovacich funkcich. Vysledky
jsou pak porovnany s jinymi stochastickymi optimaliza¢nimi algoritmy a je diskutovana
efektivita metody pro riizné typy problém(. Na zakladé vysledkii je metoda rozsitena o
algoritmus diferencialni evoluce a je provedena optimalizace kruhové polarizované antény.
Navrzena anténa je vyrobena a zmérena, vysledky jsou porovnany se simulacemi.

KLICOVA SLOVA

Regresse Gausovskych procesii,kvadratické exponencialni jadro, MATLAB, optimalizace,
testovaci funkce pro optimalizaci,algoritmus diferencialni evoluce, mutace, kfizeni, kru-
hové polarizovana anténa, flickova anténa
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ROZSIRENY ABSTRAKT

Tato prace se zabyva Gausovskymi procesy GP a jejich vyuzitim pro optimalizaci
kruhové polarizované antény. GP je jedna z metod strojového uceni, které je v
dnesni dobé stale vice rozsirné. GP mohou byt pouzity nejen jako modely funkei,
kdy pfi zadani vstupnich proménnych GPR vypocita predpoklddané vystupy, ale
i jako optimaliza¢ni algoritmus. Optimaliza¢ni algoritmy obecné slouzi k nalezeni
idealni kombinace proménnych pro pozadovany vysledek. Muze se jednat o problém
s velkym mnozstvim vstupnich proménnych, jejichz kombinace neni mozné urcit ,
nebo jejichz vypocet by byl slozity, nebo nepresny. GP neni piimo optimalizacni
metoda, ale je mozné ji k optimalizaci vyuzit. V tomto pripadé je vyhodou, ze pri
optimalizaci je zaroven trénovan model problému. Tato prace se zabyva predevsim
Gausovskymi procesy v regressi GPR, kterd je pouzita pro trénovani modelu.

Teoreticka c¢ast prace popisuje princip GPR. V prvni casti teorie je popsana
zména modelu GP, v zavislosti na poctu trénovacich dat. Nasledujici ¢ast se zabyva
kovariancéni matici K, ktera udava zavislosti jednotlivych proménnych viaci sobé.
Dulezita je i volba spravné kovariancni funkce, ktera ovliviiuje chovani modelu.
Na zékladé této matice je mozné generovat nahodné funkce, které koresponduji
s trénovacimi daty. Dale je popsan zptisob vypoctu predpokladané hodnoty tréno-
vaci funkce p. V této casti prace je také popsana implementace GP, pracujicich s
nepresnostmi trénovacich dat.

V nasledujici ¢asti teorie je popsan algoritmus diferencialni evoluce DEA. Tato
cast popisuje zakladni fungovani algoritmu jako naptiklad mutace, kiiZzeni nebo se-
lekce. Tento algoritmus je pouzit pii optimalizaci pro dosazeni lepsich vysledk.

V posledni teoretické ¢asti je popsana problematika antén a to predevsim kruhové
polarizované flickové antény. Tato ¢ast se zaméruje na zaklady navrhu flicku, napa-
jeni a vysvétluje kruhovou polarizaci.

Optimalizacni algoritmus je napsany v programovacim jazyku MATLAB. Pro
spravné fungovani optimalizatoru bylo treba osSetrit zaokrouhlovani. Pri optimal-
izaci s velkym mnozstvim dat dochazelo k drobnym chybam ve vypoctu matic, coz
nevedlo k pozitivné definitni matici, ktera je vyzadovana u Choleského dekompozice.
Tato vyjmka byla oSetiena pridanim kédu, ktery nalezne nejblizsi pozitivné definitni
matici. Tento algoritmus byl testovan na c¢tyfech testovacich funkcich: Acklyho
funkce, Dixon a Pricova funkce, Rastriginova funkce a sféricka funkce. Testovani
bylo nastaveno na maximdalné 1550 trénovacich dat. Trénovaci data byla pfi op-
timalizaci ziskavana z testovacich funkci. Tyto optimalizace byly provedeny pro
dvou az péti dimensionalni problém. Pro objektivni porovnani byla kazda opti-
malizace provedena stokrat a posuzovan byl median, minimum, maximum a sméro-
datna odchylka vysledki. Toto testovani bylo provedeno i pro Algoritmus diferen-
cidlni evlouce DFE A, Geneticky algoritmus G A, Optimalizaci hejnem ¢astic PSO a



Samosorganizujici migrac¢ni algoritmus. V porovnani s témito metodami jsou opt-
mializace pomoci GPR horsi , krom optimalizace sférické funkce. Dalsi nevyhodou
GPR jsou pozadavky na vypocetni vykon a doba optimalizace. Tyto problémy
jsou zpusobeny nahodnym vybérem testovacich dat, na zakladé kterych jsou volena
data pro trénovani. Tento pristup ke generaci novych trénovacich dat je predevsim
nevyhodny pro vice dimenzionalni problémy, kde neni mozné pocitat s dostatecné
velkym vzorkem testovacich dat.

Vzhledem k $patnym vysledkim byl GPR algoritmus vylepsen pomoci DEA.
Toto rozsiteni spocivalo v hledani minima g modelu GP pomoci DEA. Aby se
zamezilo stagnovani algoritmu v lokalnim minimu, jsou poc¢itany i hodnoty variance
V pro ndhodna testovaci data. Touto tpravou bylo dosazeno vyrazného snizeni cast
jednotlivych iteraci. Tento rozsiteny algoritmus byl testovan na stejnych testovacich
funkcich jako algoritmus ptivodni. V tomto pripadé byl maximalni pocet trénovacich
dat snizen na 400. I pres toto snizeni doslo k zelpseni vysledkii Ackleyho funkce
a sférické funkce. Vysledky testovani na Rastriginové funkci byly obdobné jako
u ptuvodniho algoritmu. Vzhledem k témto vysledkim je algortimus vhodny pro
optimalizaci antény.

Pro optimalizaci antény je nejdiive nutné zvolit spravny typ antény. Vzhledem k
cené vyroby a vlastnostem je zvolena flickova obdelnikova anténa. Pri volbé napajeni
je nutné zohlednit pozadovanou sitku pasma a moznosti pro optimalizaci. Napdajeni
je provedeno pomoci koaxialni sondy, a to vzhledem k dostatecnym moznostem Sirky
pasma a k moznosti optimalizace pomoci polohy napajece. Jako substrat je zvolen
CuClad 217 s relativni permitivitou £,=2.2 o tloustce 1.524mm. Pti volbé tlustsiho
substratu by se mohly projevit parazitni vlastnosti napajece. Rozméry flicku a
poloha napajece jsou zjistény pomoci PSO v programu CST Studio Suite. Takto
navrzena anténa ma ¢initel odrazu S11=-44,6 dB a osovy pomér AR=0.314dB. Toto
navrzeni mélo za cil zjistit jaké parametry by méla mit optimalizovana anténa.

Vysledky rozméru antény, dosazené pomoci PSO, jsou pouzity pro stanoveni
oblasti, ve které bude anténa optimalizovana. Limity testovani optimalizace jsou
stanoveny jako +10% rozméru antény optimalizované pomoci PSO. Vysledky jed-
notlivych antén jsou zjednoduseny na kriteridlni funkci vypoctenou z S11 a AR. Op-
timalizace pomoci GPR zac¢inad vygenerovanim 200 ndhodnych antén. Tyto antény
jsou pouzity pro prvotni natrénovani GP. Poté je spusténa optimalizace v prubéhu
které je simulovano 500 antén, na kterych je model pribézné testovan. Strategie
vybéru trénovacich dat je stejna jako u testovani na funkcich, 4 trénovaci data jsou
vybrany na zakaldé V a 1 data na zakladé minima p. V tomto ptripadé se ukazalo
ze algoritmus nedokaze jemné dolazovat ve velkych oblastech. Nejlepsi vysledek byl
dosazen jiz pti 200 trénovacich funkcich. Toto muze byt zptisebonu zaokrouhlovanim

pri feseni linearnich rovnic, nebo velmi nizkou hodnotou V v oblasti feseni. Obdobna



optimalizace byla provedena jesté jednou a to pro limity +2% nejlepsiho feSeni pred-
chozi optimalizace. V tomto kroku jiz bylo dosazeno velmi nizké hodnoty kriteridlna
funkce. Optimalizace byla spusténa jesté jednou a to pro doladéni feseni. Opét se
jednalo zmenseni limit na +2% dosavadniho nejlepsiho feSeni. V tomto ptipadé jiz
nebyl model trénovan na zakladé V. ale pouze pro nejnizsi hodnoty p. Béhem této
optimalizace bylo provedeno 101 simulaci a bylo dosazeno relevantniho vysledku.
Celkovy pocet simulaci pro optimalizaci je 1501. Optimalizovana anténa byla témér
totozna s anténou optimalizovanou pomoci PSO. Anténa optimalizovana pomoci
GPR ma c¢initel odrazu S11=-46,0 dB a osovy pomér AR=0.160dB. Vyzarovaci
charakteristiky antény odpovidaji RHCP. Pro objektivni zhodnoceni vysledku by
bylo lepsi optimalizaci provést vicekrat, coz nebylo mozné kviili velkému vypocet-
nimu vykonu.

Anténa je realizovana vyleptanim flicku do médi pokrytém substratu Arlon Cu-
Clad217 o vysce 1.524 mm. Napdjeni je provedeno SMA konektorem pripdjenym
k flicku a zemnici plose. Méreni charakteristik bylo provedeno v bezodrazové ko-
more a S11 parametru na vektorovém obvodovém analizatoru. Vyrobend anténa ma
posunuty rezonanc¢ni kmitocet f,=5,93 GHz a AR=0,315dB. Zmérené vyzarovaci
charakteristiky odpovidaji simulacim. Vyrobena anténa je RHCP. Zisk antény je
G= 7,5 dBina fy=5,93 GHz a G=6,85 dBi na f,=5,8 GHz. Tento posun rezonancni
frekvence muze byt zptisoben mensi redlnou hodnotou &,. Toto posunuti odpovida
simulaci s £,=2,1.

Optimalizace pomoci GPR je vhodna pro optamalizace antén. Jednou z vyhod
je moznost pozdéjsiho pouziti modelu natrénovaného pii optimalizaci. GPR je

Vv,

nami parametru.
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Introduction

As performance increases, price and the size of processors decreases, machine learn-
ing problem solving and optimization are becoming more common and as a result,
many more resources are being invested in this sector. Today, machine learning and
optimization are used not only in robotics but also in translators, search engines,
statistics, and many others [1].

This thesis will mainly discuss optimization by Gaussian process regression to
design an algorithm that will be able to find the optimum based on known sam-
ples. Based on the measured samples this method predicts the function and confi-
dence interval at any point to help choose the next sample point. This optimization
method can be particularly advantageous if the sampling data is obtained by a
power-intensive simulator or if it is obtained from physically realized samples. Es-
pecially for many input variables, where more problem dimensions require many
more samples, it pays off to use the algorithm to optimally select new sampling
data.

One of the problems for which can be advisable to use an optimizer may be a
circularly polarized antenna. The characteristics of a circularly polarized antenna
include the axial ratio and the S11 parameter, which can be achieved by proper

antenna design [2].
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Aim of the Thesis

This thesis aims to theory and implementation of optimization using Gaussian pro-
cess regression to design the circularly polarized antenna optimized for operating
frequency of 5.8GHz.

As for the Gaussian process optimization, the goal is to write a code in MATLAB
using Gaussian process regression to calculate the value and confidence interval at
each point from sampling data, and automate this method so that the program will
automatically select the next sampling data based on the Gaussian process results.

The other part of this thesis is to let other optimization methods find optimums
of testing functions and compare results with the Gaussian process optimization
algorithm written in the previous assignment. Only stochastic algorithms will be
used here such as Genetic algorithm, Particle swarm optimization, Self organizing
migrating algorithm and Differential evolution algorithm.

In the last part of the thesis, the algorithm is used to optimize a circularly
polarized antenna for a frequency of 5.8GHz. After that, the thesis is focused on the
antenna realization, its measurement, and the comparison of the measured values

with the simulation.
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1 Theory

1.1 Gaussian Process Regression

1.1.1 Theoretical Background

The first section will discuss inputs and outputs of Gaussian process regression GPR
and what their practical use is.

Gaussian process calculates with two main input dataset testing data z, and
training data fi(x;) and returns mean p and variance V that will be used for the
optimization algorithm. For better understanding fi(z;) are measured data, u are
predictions, and V are predicted variances. Mean g and variance V are based on
fi(x¢) and can be calculated at any position z,. For example, let s say that there are
some measured points fi(z;) from unknown problem. Let’s consider the problem:
(62 —2)2sin(12x —4) [3]. Testing data x, are large finite dataset of points in interval
z, € [0,1] [3]. By applying GPR values p and V are calculated for every value z,

as shown in Fig. (1.1
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Fig. 1.1: GPR example for 4, 5, 6 and 8 samples

18




As shown in Fig. predicted function p and variance V can predict next x.
The biggest priority is to cover points with high V to have sufficiently precise . The
required precision depends on the character of the unknown function. Functions with
a lot of local extremes require lower V. Another approach for choosing the next x;
can be to choose points near to minimum of . Choosing the next sample based on
the position of the smallest p can refine the local minimum position, but can’t find
any new minimum located far from this point.

Another important variable is noise. Fig. shows noiseless data fi(z;) and
the noiseless GPR method. To work with data containing noise, the method has to
be modified and an input variable indicating expected noise must be added. This
thesis deals primarily with noise-less data. The goal of the thesis is to test GPR
method on noiseless training functions and work with noiseless samples obtained

from simulator.

1.1.2 Kernel Matrix

One of the essential parts of the GP is a kernel matrix. In some literature, it is
referred to as covariance matrix [4]. Kernel matrix K(z1, z5) declares the similarity
of each point from dataset x; to each point in dataset x5. For most kernels, the
similarity is usually described in the range zero to one where one is the highest
similarity and zero is the lowest. To be more specific, the structure of kernel matrix
K is described by the equation [I]:

k(x11,$21) k(3711,9322) k(iU11,ZU2j)
k($12,$21) k($12,1’22) k($12,$2')

K(z1,25) = : : ) S (1.1)
k(iUli,le) k($1i,$22) k($1i,l’2j)

where k(z1;, 29;) is the covariance function. There are different covariance functions
but most of them are based on the distance between two points d. The 7 is index
of a point in dataset x; and j is index of the point in dataset x,. This can be
also applied to multivariate x but then d must be calculated using the Euclidean

distance between the points:

d(z,y) = J > (yp — xp)? (1.2)

n=1
As already mentioned, every value in the kernel matrix is the Euclidean distance
recalculated using covariance function. There are a few covariance functions, the

differences between them are mainly in the resulting p and V. Square exponential
[4:

K(z1,22) = exp (—‘W) (1.3)
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~-exponential [4]: k .
e = - (£52) ) »

Rational quadratic [4]:

202

k(z1, 29) = (1 + M) B (1.5)

where [, 7, and « are parameters that change the character of the kernel. Often
the covariance function is multiplied by the constant [4]. This leads to an increase
in the amplitude of variance V. Fig. shows the kernel matrices with different
covariance functions. The ¢ and j axis describe the position of points in datasets
x1 and xs, respectively x; and xy are linear distributions from -1 to 1 containing
100 values. This means that at the position 1,1 Fig. [I.2] the value is 1 because the
similarity of the first point from dataset z; and the first point from dataset s is
absolute since datasets x; and xo are equal. As illustrated Fig. the covariance
function indicates how the method will behave with regard to the distance between
the points. Kernel matrices are always symmetric positive definite which is also a

condition for the Cholesky decomposition which will be discussed later in the thesis

.
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Fig. 1.2: Kernel matrices with diferent covariance functions
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The square exponential covariance function is referred to as one of the most
commonly used in open literature [4]. The thesis mainly deals with this covariance
function. Covariance functions above have a possible limitation and that is the
value of V. As the parameter [ increases, the value of V decreases significantly and
vice-versa. This can lead to calculation problems caused by rounding. The most

common method to avoid this is to multiply the function by a parameter o as follows
[5]:
k(zy,79) = o’exp —M (1.6)
212
As shown in Fig. [1.3] and Fig. [I.4] the parameter [ determines the horizontal scale
and o the vertical scale. When [ is low, p drops to zero, and in this region V is
constant. But if [ is high, V is very low so u is directed according to the directive

given by the training points. As for the shape of V, a higher value of | makes V

sharper.
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Fig. 1.3: Effect of variables [ and ¢ on GPR
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Fig. [1.4] shows the shape of V at higher [ by increasing o. As shown in Fig. (1.3
small value of parameter [=0.05 is causing faster decreasing of values further from
the diagonal. This means that points further apart from each other have much
higher variance for smaller [. If [ is high, the values decrease more slowly as they
move away from the diagonal. This means that points fi(x¢) need to be further
apart to increase the V. The o parameter increases the scale of kernel matrix which
causes the amplitude of the variance to increase while keeping its shape and no

change of pu.

Kernel matrix for 1=0.5 and o« =100 GPR for 1 = 0.5 and and ¢ =100

0 10000 20
[ 1 Varianee
15 — — — Problem 1
20 8000 Mean
10 + Training |3(Ji|l|:-i-
40 6000 |
- “ 5 f
60 4000
80 2000 5 Y
100 -10
0 50 100
i

Fig. 1.4: Effect of [ on GPR

1.1.3 Getting Random Functions from GPR

With knowledge of the kernel matrices, it is possible to make equations for mean
and variance. In the literature, the Gaussian process is described as the distribution
over function [I]. This means that it is possible to create infinitely many functions
corresponding to sampled points. The left side of Fig. shows five random func-
tions generated with mean 0. The right side of Fig. shows the random functions
generated with g and V function obtained from the Gaussian process with four

training points. Random function with acording to covariance matrix [4]:

p=10,0,0,...,0] length of u is equal to length of x

f~ N K) (1.7)

K = K(z, ) covariance matrix of x points
As shown on the right side of Fig. all random functions cross the sampled
points. That is due to the covariance matrix and mean. The covariance matrix
declares low variance at samples position, which affects these random functions to

approach the mean at the position. Mean function is created by GPR and it is
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Fig. 1.5: Random functions

crossing the samples. Therefore, if there is low variance in the sample region and
at the same time p intersects the samples, the random functions will also cross the
samples. The opposite situation occurs between the two samples. Here the variance
is high so random functions can get further from the mean. In general, the larger
the variance, the more random the function is at the area.

It can be noted that the term covariance matrix is used here. This different
designation is because the covariance matrix does not directly declare the similarity
between points as kernel matrix. The covariance matrix is the difference between the
kernel matrix of x, and kernel describing sampled points. Therefore the covariance
matrix does not describe similarity but confidence in each point as shown in Fig. [1.6]

This will be better discussed in the next section.
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Fig. 1.6: Covariance matrix
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1.1.4 Noiseless Gaussian Process Regression

As previously mentioned, the Gaussian process is declared as f from previous sub-
section. The other requirement to get random functions is to know the mean and
covariance matrix. The subsection will deal with getting mean and covariance ma-
trix for noiseless multivariate data. To express the formula of y and V from the
equation [7]:

fr~ N K (1.8)

The equation needs to be more specified. The f’ represents the points, so the f" will

be declared for testing inputs and training points as [6],[7]:

I ft(‘rt)
. [M] 19

The mean p’ is equal to:

W= [“] (1.10)
i
where p, is supposed mean and p is mean function [6],[7]. The . is the expected cen-
ter of fi(z) but it is usually considered as p, = 0 [7]. The p. = 0 is not recommanded
for functions that have fi(x) far from the zero because the p tend to approach the

ft«. The covariance matrix contains kernel matrices with all combinations of input
data [6],[7]:

K — [K(xt,xt) K(xt,x*)] (111)

K(z,, ) K(zs, )

The K(x., z,) is kernel matrix describing the similarity between x, and z, datasets,
the K(z,,r;) between z; and z, etc. The K(xz,x,) is equal to K(x,, ;)T and for

simplicity will be used in the further equations. The final equation may look like

this [6],[7]:
* K K * 9 T
fi(ze) ~ N ’ (g, 2¢) (@, ) (1.12)
f(xy) ! K(z.,xy) Kz, z,)
From that equation, it is possible to make conditions for distribution [6],[7]:

=Kz, 2) Kz, )" fizy) (1.13)

K = K(z,,2,) — Kz, 2)"K (g, 7)) ' K(z,, 24) (1.14)

With p and K’, the random functions from GPR can be obtained. The mean u
function Fig. is a function given by p and x, , where u are values of the y-axis
and z, are values of the x-axis. The variance in Fig. is u - diagonal(K') and p
+ diagonal(K') for the y-axis and z, for the x-axis.
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The prove that the equations work is when x,=x; then the first part of the K’
would be shorted, leaving:

K' = K(z.,z.) — K(z., ) (1.15)

and the variance function will equal zero. In other words, if the positions of the
samples are the same as the positions at which the mean is calculated, the mean
will be the same as the function given by the samples and variance will be sorted to

Zero.

1.1.5 GPR with Samples Containing Noise

The previous method dealt with noise-free samples and the predicted mean function
intersected all samples. However, this can be a problem if the obtained samples are
not completely accurate as shown in Fig. [.7 on the left. Therefore, it is necessary
to ensure that the mean function does not have to intersect the samples but will

still consider the position of the points as shown in Fig. on the right. The noise

GPR noise-free method GPR noise method
207 207
= = = Problem = = = Problem

Mean Mean

+ Samples + Samples | ,

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 1.7: GPR from samples containing noise

2

€ is equal to 0%] where 02 is a matrix with ones on diagonal and I is amplitude

parameter for noise. [7]:

e ~ N(0,0%I) (1.16)
Then the GPR with noise is equal to [6],[7]:

J' o~ NGLK 02 (1.17)
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fi(xy) N pe| | K(zg, 2) + 021 K(zh, 24)T
[fw] o (H | [ K(ror)  Kiro) D e
Then the final conditions are [6],[7]:

p=K(z., )T (K(zg, ) + 021) 7 fi(2) (1.19)

K' = K(z,,7,) — K(z,,2)" (K(2, 2) + 021) " K(z, ) (1.20)

Fig. demonstrates the influence of parameter I to mean function. With lower /
the mean function is getting closer to each sample. The higher value of I is making
mean function to be less responsive to the samples.
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Fig. 1.8: Effect of noise variable I
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1.2 Differential Evolution Algorithm

The Differential Evolution DFE is a commonly used and versatile optimization method
[9]. The DE is population base algorithm, which means that the algorithm is work-
ing with agents, that are stochastically renewed depending on their fitness error.
The algorithm can be multi-objective or single-objective [11]. Only single-objective
DEF is discussed in the thesis, as all outputs of a problem will be recalculated into a
single value. The DFE consists of four main parts: initialization, mutation, crossover,
and selection [8]. The initialization randomly creates a defined amount of parent
vectors in a defined interval and their fitness function is calculated. The next part is
the mutation, where trial vectors are created by stochastic recalculating from parent
vectors. In the crossover part, some of the trial vector values are swapped between
agents. The last part is selection. In this part of method, fintess errors of trial
vectors are calculated. Trial vectors are compared with parent vectors and vectors
with better fitness values will be used as a parent vectors. Entire process is repeated

until the desired result is achieved.

Initialization

Y
Mutation H Crossover J

Fig. 1.9: Flowchart of DE

1.2.1 Initialization

As mentioned in the previous subsection, the initialization part is used for generation

parent vectors. The parent vectors are generated by the following equation [g]:

x;; = rand;(0,1)(ub; — 1b;) + (b, (1.21)
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where z,; is a j-th dimension of an i-th agent, rand;(0,1) is a vector of random
numbers from zero to one, ub; and [b; are lower and upper bounds of x;; limits.
Then, a fitness error is computed for each agent. The choice of the number of
agents crossover ratio C'R and scaling factor F' can also be considered as part of the
initialization. In the thesis these parameters are user-defined, self-adaptive DE can

choose these parameters themselves during optimization [10].

1.2.2 Mutation

Once the agents are generated and the fitness error is calculated for them, the
next step is to acquire new positions. For each agent, a new mutated vector v;; is

calculated based on the equation [§]:
Vji = Troi + Flar,; — Tro4l (1.22)

where j is an index of new vector, ¢ is an index of dimension, and r0,r1 and r2 are
indexes of random parent vecor. In this case the r0 # r1 # r2 # j but 70 can also
be chosen based on another strategy [§]. The scaling vector is usually considered as
F =15 [11].

1.2.3 Crossover

The next part of the differential evolution algorithm is the crossover. Crossover
ensures the creation of a new vectoru u;; based on the combination of vectors v;;

and z,;. The following equation describes the choice of value of u;; [8]:

w s — Vji if(mndj(O,l)S CR or j = jrand) (1.23)
" xj; else

For every dimension j, the random number rand;(0,1) in range 0 to 1 is generated
and for every agent the j,..q is generated in range of dimensions quantity. With
the conditions above, the every new trial vector u;; have at least one dimension

paramterer from new vector v;; thanks to jranq¢. The other crossings are determined
by C'R.

1.2.4 Selection

The last part is selection. After calculating fitness error of trial vectors wu;; the
population z;; is updated. If the fitness error value of the vector u;; is smaller than
of vector x;;, the original vector x;; is replaced by the vector u;;. Than the process

is repeated from the mutation section until the optimization is complete.
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1.3 Circularly Polarized Antenna

Circularly polarized antennas are used in applications where it is not possible to
provide identical rotation of receiver and transmitter, often in applications where
the receiver or transmitter is moving. These applications include, for example,
aerospace, satellite, communications, navigation, or wireless sensors. One of the
advantages is that they reduce the Faraday rotation effect, which would cause a
signal loss in linearly polarized antennas [14]. As this effect is also caused by the
ionosphere, circularly polarized antennas are commonly used in satellite systems.
There are many designs of these antennas such as microstrip dipoles loops horns

and many others [2].

1.3.1 Microstrip Antenna

Microstrip antenna is one of many designs to radiate or recieve an electromagnetic
waves used in wireless communication. This type of antenna is widely used for its
low cost combined with small dimensions (especially the profile) and low weight
[12]. One of the many advantages of this antenna type is the ability to be easily
optimized due to its simple design.

The design is based on a conductive patch placed on a dielectric substrate and a
ground plane on the other side also from a conductive material. The patch can have
different shapes such as rectangular, elliptical, triangular, or more complex shape.
These shapes can be made by applying a thin layer of copper on a substrate, or by
placing a thin copper plate on a substrate. This type of antenna may also be made
of several layers of substrate stacked on each other. [2]. Dimensions of the patch are
one of the main properties determining the characteristics of the antenna. Other
things that affect the characteristics are relative permitivitty e, and thickness of a
substrate. It is common to choose a substrate between ¢, values of 2.2 and 12, but
it should be taken into consideration that with increasing permittivity the gain will
decrease and the patch will need to be larger [13].

When choosing an antenna, it is necessary to target the attributes required by
the application. These properties include dimensions, resonant frequency, radiation
patterns, polarization, reflection coefficient, and bandwidth. Generally due to the
design these antennas can be considered as low profile. Another essential parameter
is the reflection coefficient I', which is related to operating frequency and bandwidth
of the antenna. A patch antenna can have several operating frequencies on which
it is able to efficiently transmit or receive a signal. One of the other criteria is
the direction from which the antenna can receive the signal. These attributes are

described by radiation patterns and polarization type.
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Fig. 1.10: Different patch shapes [14].

1.4 Circular Polarization

The basic types of antenna polarization are linear and circular. Unlike linear an-
tennas, the plane of waves radiation rotate Fig. [[.1I}] Due to this, it is possible to
transmit the signal without a significant gain drop when the rotation of a transmitter
and a receiver are different. Circular polarization is further classified as right hand
circular polarization RHCP and left hand circular polarization LHCP depending
on the direction of rotation of the plane of wave propagation. It should be taken
into consideration that in the case of LHC P, the antenna does not receive well the
RHCP signal and vice versa.

The level of circular polarization is given as axial ratio AR. This parameter indi-
cates the difference between the largest and smallest value of the antenna radiation
depending on the rotation of the measured and measuring antennas against each
other. Since we aim for the gain to be independent of the rotation of the reciever
and transmitter, the ideal value of AR is 0dB. Polarization can also be represented

by a polarization ellipse which directly gives the rotation and radiation dependence

Fig.
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Fig. 1.11: Rotation of circularly polarized wave [13].
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Circular polarization can be achieved in several ways. One way is to have an
asymmetrical position of the feed, or an asymmetrical antenna shape. An asym-
metrical shape can be achieved by a cutout of patches corners Fig. or by a
completely asymmetrical design. Another way is by feeding the patch with multiple
feeds with a phase shift. Another way is by using a cutoff in the middle of the
antenna. Some antennas can be used as both RHCP and LHCP due to hybrid

feeding Fig. [I.13]

RHC

LHC

—90° LHC

Fig. 1.13: Hybrid feed and dual feed antenna [2].

1.5 Antenna Feeding Techniques

When designing an antenna, it is important to correctly select the type of feed
that is suitable for the application. The selected feed must be properly impedance
matched to minimize wave reflections inside antenna. Feeders are normally designed
with 50ohm impedance. The basic feeding techniques include microstrip line feed,
coaxial promp feed, aperture-coupled feed and proximity-coupled Microstrip Feed
[15]. Another thing that the feeding method affects is the polarization.
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1.5.1 Microstrip Line Feed

This feed method consists of feeding electromagnetic waves into a patch using a
microstrip line that is on a substrate connected to a patch. This type of feed have
the advantage in simplicity of manufacture. In this type of feed it is nessesary to
match the impednaces. The impedance matching of this type of feed is achieved by
increasing the width of the feed or by inserting the feed into the patch. In this case,
circular polarization can be achieved by creating asymmetries in the patch, or by
dual supply with phase shift of 90 degrees Fig. [1.13]

Rectangular patch fed by
a recessed microstrip line
p Patch and

E microstrip line .
& 4 Substrate

= N

Ground plane

SMA connector

S

Fig. 1.14: Microstrip line feed [15].

1.5.2 Coaxial Probe Feed

Antenna feed by coaxial probe is realized from the bottom side of an antenna where
the power supply is led through the substrate to a patch. This method of power
supply is the most commonly used [I5]. Advantages of this power supply include
low radiation loss and the ability to feed the patch at any location [16]. Because
of these advantages, this feeder is suitable for circularly polarized antennas, since
by eccentrically positioning the feeder, circular polarization can be achieved. Dis-
advantages of this feeder include less bandwidth or more inductive character with a
thicker substrate [16].

Circular pateh fed by
co-axial probe

\ Patch
4

Substrate

v

AN

Ground plane

v SMA connector

Fig. 1.15: Coaxial probe feed [15].
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1.5.3 Aperture-Coupled Microstrip Feed

This method of indirect feeding consists of two layers of substrate, with a microstrip
line on the bottom of the substrate and a ground plane between the substrates
with an aperture in the middle. Advantages of this method of feeding include
greater bandwidth and, compared to the microstrip line feed, limiting the radiation
directly from the feeder [I5]. Other advantages include no soldering. One of the

disadvantages is the radiation from the back side of the antenna [15].

Slot on ground Patch i Paich
plane Ground plane

\\ 7 \ / .-:7'
= = '

g \ SMA connector Microstrip line

.

X

Microstrip line

Fig. 1.16: Aperture-Coupled Microstrip Feed [15].

1.5.4 Proximity-Coupled Microstrip Feed

The design of this indirect feed method consists of two layers of a substrate on top
of each other with a microstrip feed line located between the substrates. Compared
to aperture-coupled microstrip feed, there is less back radiation of feed and wider

bandwidth compared to other mentioned feeding techniques [15].

Rectangular patch fed by a Proximity Patch

proximity cnuplu{.l microstrip line Syl o
\.. 74 \ Substrate
o ]
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Fig. 1.17: Proximity-Coupled Microstrip Feed [15].
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2 Implementation

2.1 Functions Requred for GPR

The program is completely written in MATLAB 2021b. It contains five main files
and a set of test functions.

One of the main files is the expquadkernel.m which is the function containing
the square exponential covariance function. Defining the covariance function is also
possible by using the function handle directly in the code.

Another important part of the code is the euclidean Distance BetweenTwoSets.m
[18]. This function has two input datasets whose size is equalt to nomber of points.
The output is the Euclidean distance matrix.

For proper functioning of the code, it is also necessary to take into consideration
that the matrix is inverted using Cholesky decomposition which requires the matri to
be positive definite [19]. The GPR method itself always generates a positive definite
matrix but the rounding errors in MATLAB may occure. Therefore, it is necessary
to use the nearestSPD function that ensures the matrix is positive definite [20].
This function finds the nearest positive definite matrix wich can lead to a small error
when evaluating new points, but in the vast majority of applications, it does not

cause any noticeable decrease of the method efficiency.

2.2 The GPR function

The first main function is gpregression.m. This function calculates the mean and
variance from the input variables x,, z; based on the algorithm described in the
theoretical section. As seen in Listing. instead of an inverse matrix, a Cholesky
decomposition is used here which improves the efficiency of the process [19]. The
kernel matrix of the test data is one of the input variables here. This matrix is the
largest and does not change for most of the runs of the algorithm so it is advisable
to store it in the input and not recalculate it every time the mean and variance are
calculated. The outputs are mean and variance which are heavily discussed in the

theory section.
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Listing 2.1: The gpregression.m code listing.

function [mean , variance ] = gpregression ( x_test ,
X_train, K_te , f_train ,1 , sigma , kernel )
X_train = transpose ( x_train );

X_test = transpose ( x_test );
K tr = kernel ( euclideanDistanceBetweenTwo
Sets ( x_train , x_train ) , sigma ,1 );
L = chol ( nearestSPD ( K _tr ));
K trte = kernel ( euclideanDistanceBetween
TwoSets ( x_train , x_test ) , sigma , 1 );
alpha = linsolve (L , linsolve ( transpose ( L ) ,

transpose ( f_train )));

mean = transpose ( transpose ( K_trte )* alpha );

v = linsolve ( transpose ( L ) , K_trte );
V = K_te - transpose ( v )*x v ;
variance = transpose ( diag (V ,0));

end

2.3 Automation of the GPR

The previous section discusses only a single calculation of mean and variance func-
tion. To effectively solve problems, the program must be fully automated in case of
choosing a new z;. The GaussianProcess.m and GPO.m functions take care of the
automation. The GaussianProcess.m function provides the repetition of the mean
and variance calculation for the maximum number of nMaz iterations. Another
situation to stop the program is when the minimum of fi(z;) is equal to or lower
than the parameters goal which is the user defined value that sets the optimization
goal. The function also has parameters sis, rsis and sbom. The sis is a number of
samples based on variance each iteration, the rsis is a number of random samples
every iteration, and sbom declares how often the sample based on the minimum of
the mean function will be added. The example of setting up variables is shown in
Listing. [2.2]

The input variables for the gpregression.m are defined in GPO.m. The GPO.m

contains a loop that is repeating whole optimization more times and saving results
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Listing 2.2: The gpregression.m code listing.

parameters . sigma = 1;

parameters . nMax = number_of_iterations ;
parameters . goal = -10;

parameters . covariancefunction = Qexpquadkernel ;
data . lim = x_limits ;

data . sis = number_of_samples_in_step ;

data . rsis = number_of_random_samples_in_step ;
data . sbom = sample_based_on_mean ;

of individual optimizations. This is because the gpregression.m contains random
values, so for the testing it is important to run the algorithm more times for an

objective review of the method.

2.4 Testing Functions

The method is tested on four different multivariate optimization testing functions
for two up to five variables. The functions are Ackley function, Rastrigin’s function,
Sphere function, and Dixon and Price function [21],[22].

The Ackley’s function for x;€(-32.768 32.768) with minimum f(x) = 0 at x; =
0 [21]:

f(x) =—20-exp (—0.2 - ;ixf) - (Tll Zf:l cos(27ra:z~)> +a+exp(l) (2.1)

The Rastrigin’s function for z;€(-5.12 5.12) with minimum f(z) = 0 at z; = 0 [21]:

f(x) =10n + zn:[ocf — 10cos(27z;))] (2.2)

i=1

The sphere function for x;€(-5.12 5.12) with minimum f(z) = 0 at z; = 0 [21]:

f(x) = me (2.3)

The Dixon and Price function for x;€(-10 10) with minimum f(z) =0 at x; = 25

[22]:

n

f(x) = (1 — 1>+ (227 — x;1)° (2.4)

=1
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2.5 Testing GPR Optimization

When running a real optimization algorithm, it is necessary to choose the correct
parameters with regard to the expected results. The first important parameters
that need to be chosen are o and [. For this application it is not wise to choose too
low [ as a low value combined with samples far apart could lead to a drop in p and
a constant V as shown in Fig. [[.3] The very high value can lead to problems too,
particularly with rounding. The value [ = 15 was chosen to avoid these drops of the
minimum to zero.

Another important part is the choice of the number of iterations and the number
of samples. In general, the more samples the more portable the method is. The same
applies to the size of the matrix K(z,,z,). Again, the size cannot be too large. Too
large matrix K(z,,z,) can cause a significant speed degradation. Since GPR is a
stochastic process, it should be run several times to determine the average efficiency
of the method. The number of runs was chosen as 100. Depending on the number of
test functions and the number of runs for each function, the maximum test data size
was 3000 and the number of samples was 1550 for optimal speed on the available
hardware.

The number of iteration will be 500, the number of new points based on the
variance in each iteration 2, the number of random steps in each iteration 1, and
every 10 iterations will be a new point obtained from the minimum of the u.

The Fig. is a set of boxplots created from fitness errors obtained from runs.
As previously mentioned this program is stochastic which causes the deviation of
values. Since the same setting is used for problems of different dimensions, the
fitness error increases significantly for more variables as shown in Fig. 2.1]

It is necessary to take into consideration that the program has been set up for a
hundred runs and optimization of many problems to see the behavior for different
problems. If used to optimize a single problem, more performance and time would

be invested in it and the result would be much more accurate.
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2.6 Comparison with Other Stochastic Methods

Another important part is to compare the efficiency of the algorithm with other
stochastics methods.. In this case, the Genetic algorithm G A, the Particle swarm
optimization PSO, Algorithm of differential evolution DFE A, and the Self-organizing
migration algorithm SOMA will be compared to the Gaussian process [I7]. A
MATLAB toolbox FOPS was used to test stochastic optimization methods [17]. To
ensure an objective comparison of methods, all optimization algorithms in FOPS
were simulated with a number of iterations of 100 and an agent number of 15 [I7].
This reduction in agents ensures that the number of obejctive function computations
to the algorithm is comparable to the number of Gaussian processes samples. The
resulting number of samples is 1500 for FOPS and 1550 for Gaussian processes [17].
But the difference of 50 is negligible due to the differences in methods.

Again, the same settings as mentioned in the previous section were used. The
number of runs is one hundred. The optimization algorithms were tested on the
same optimization testing functions as GP optimizer. And the mean, minimum
value, maximum value, and standard deviation were calculated from the results of
these runs.

As can be seen in Tab. , the accuracy of finding the optimum of Ackley s
function decreases as the number of dimensions increases [21]. The value of standard
deviation is lower than the GA and the SOMA. With the increasing number of
dimensions, the PSO algorithm’s standard deviation increases much faster than the
GP algorithm’s.

Tab. shows that for the Dixon-Price function the GP algorithm does not
perform very well. Although for three variables it is quite close to the GA. And
for all but the 2DI problem, it comes close to the SOMA. In this case, the main
problem is with high standard deviation.

Another test function is the Rastrigin function Tab. [21]. This is a flat
function containing many local extremes. Therefore even the GP algorithm has a
low standard deviation, it is hard to find the minimum for multiple variables.

The last testing function is Sphere [2I]. Due to the simplicity of the function,
there is no problem for GP to approach the optimum. As for the twodimensional
problem, the GA, the DEA, and the PSO all converge to 0 fairly quickly. But this
is not the case for more variables, where GP achieve better results as displayed in
Tab. 2.4
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Tab. 2.1: Results of Ackley function optimization

Algorithm | mean minimum | maximum | standard deviation
GPR 3.43 0.41 6.49 1.17
GA 4.23 3.65e-4 10.12 2.84
DEA 5.17e-7 | 2.19e-9 3.14e-6 6.12e-7
PSO 5.54e-6 | 6.74e-8 2.03e-4 2.07e-5
SOMA 1.39 4.44e-15 8.69 1.96
GPR 8.05 3.46 13.16 2.28
GA 6.30 1.31 14.69 3.28
DEA 2.63e-4 | 7.36e-06 2e-3 2.90e-04
PSO 0.418 1.49e-06 4.34 0.88
SOMA 4.049 2.79e-04 14.57 2.99
GPR 11.56 4.71 16.17 2.44
GA 6.72 0.413 13.72 3.079
DEA 22e-3 5.24e-4 1.84 0.184
PSO 1.84 1.06e-4 7.46 1.39
SOMA 5.32 0.122 13.24 2.92
GPR 13.91 8.50 17.55 2.01
GA 7.78 0.766 14.4 3.2
DEA 99.8e-3 | 4.2e-3 8.37 0.84
PSO 3.6 59e-3 12.21 2.2
SOMA 7.43 1.53 14.03 3.079
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Tab. 2.2: Results of Dixon and Price function optimization

D | Algorithm | mean minimum | maximum | standard deviation
GPR 15.33 19e-4 79.92 21.45
GA 1.88 1.81e-4 16.02 3.99

2 | DEA 1.79e-4 | 4.66e-8 4e-3 5.19e-4
PSO 7.47e-6 | 1.52e-17 17.87 7.47e-5
SOMA 0.404 3.49e-30 7.47e-4 2.016
GPR 13.65 0.42 82.32 19.57
GA 6.586 5.5e-04 88.19 15.74

3 | DEA 13.5e-3 | 2.44e-4 0.115 0.02
PSO 36.8e-3 | 8.18e-13 0.74 0.14
SOMA 9.189 2.87e-6 139.8 18.92
GPR 60.869 0.62 223.11 51.10
GA 13.48 4.4e-3 106.9 28.1

4 | DEA 0.119 7.3e-3 0.724 0.11
PSO 0.848 3.19e-8 19.42 2.28
SOMA 24.29 4.9e-3 480 60.91
GPR 352.77 13.51 1.33e+3 335.06
GA 11.72 0.271 109.24 25.8

5 | DEA 0.49 56.1 e-3 2.40 0.304
PSO 2.74 2.6e-3 26.78 5.3
SOMA 129.98 0.82 1.87e+3 316.51
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Tab. 2.3: Results of Rasrtigins function optimization

D | Algorithm | mean | minimum | maximum | standard deviation
GPR 2.24 99e-3 5.93 1.21
GA 1.65 2.4e-09 8.9 1.59
2 | DEA 0.04 0 0.995 0.196
PSO 0.49 0 1.99 0.56
SOMA 1.037 | 4.2e-12 4.98 1.075
GPR 7.51 1.99 15.19 3.02
GA 2.82 3.55e-9 10.14 2.21
3 | DEA 39e-3 | 1.82e-9 0.995 0.196
PSO 1.56 2.47e-11 6.46 1.11
SOMA 2.24 2.26e-4 6.09 1.59
GPR 17.37 | 7.18 27.01 5.09
GA 4.90 4.73e-9 12.95 2.82
4 | DEA 0.83 3.68e-5 1.07 0.258
PSO 2.88 le-3 9.7 2.016
SOMA 3.75 41.8e-3 13.00 2.30
GPR 27.03 | 12.79 40.57 6.05
GA 7.03 0.995 15.16 3.35
5 | DEA 0.586 | 3.5e-3 3.19 0.671
PSO 5.37 18.1e-3 19.10 3.62
SOMA 5.61 1.13 14.43 3.15
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Tab. 2.4: Results of Sphere function optimization

Algorithm | mean minimum | maximum | standard deviation
GPR 22.4e-3 | le-4 185e-3 27.2e-3
GA 0 0 0 0
DEA 0 0 0 0

PSO 0 0 0 0
SOMA 1.83 1.32e-8 13.99 3.082
GPR 0.3387 9.8e-3 1.69 0.280
GA 9.1e-13 | O 9.1e-11 9.1e-12
DEA 0 0 0 0

PSO 0 0 0 0
SOMA 6.62 4.4e-3 34.6 7.50
GPR 1.47 72.8e-3 3.63 0.879
GA 2.44e-4 | O 24.4e-3 2.4e-3
DEA 0.138 0 13.8 1.38
PSO 0 0 0 0
SOMA 13.8 27.2e-3 41.4323 10.44
GPR 3.41 0.553 7.16 1.448
GA 7.03 0.995 15.2 3.35
DEA 0.586 3.5e-3 3.19 0.67
PSO 5.37 18.1e-3 19.10 3.62
SOMA 5.61 1.135 14.522 3.16
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2.7 Improving GPR Performance Using DEA

2.7.1 DEA implementation

The optimization test results show that the optimizer converges too slowly to the
solution, especially near the optimum limit of the fitness error function. This could
be a problem when optimizing the antenna, due to the required accuracy of the
parameter settings. The slow convergence to the solution is due to the randomness
of the x, dataset choice. Dataset x, are generated randomly in the optimization
limit region and for the best values its real fitness error is computed. This approach
reduces the chance that dataset x, will be at the location of the minimum of the
GP model p and leads to slow convergence to the solution.

For this reason, the GP optimizer was extended with a differential evolution
algorithm that efficiently finds the minimum of g in each iteration. The datasets x,
for V are still generated randomly and the ones with the largest value are evulated.
This is primarily due to the possibility of finding solutions beyond known local
minima. The differential evolution algorithm was chosen based on previous testing
due to the best results.

Code bellow Listing [2.3| shows the function of the optimizer. Each iteration will
first generate 5 agents of maximum V for random datasets and add them to the
training values. In the next step, the trained GP model is taken and the minimum
of p is found using differential evolution algorithm. Thei found minimum is added
to the training dataset and in the next step the training dataset is simulated. These
new values are then used to train the GP, making the GP model more accurate each

iteration.
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Listing 2.3: Main optimization loop of GP including DEA.

X_train = generateRandomMatrix(x_limits ,100);

f_train = problem(x_train);

min(f _train)

1 = 20;
sigma = 2;
for i = 1:50
new_train = zeros(size(x_limits,1),1);
for n=1:5
X_test = generateRandomMatrix(x_limits ,200);
[mean,variance] = gpregression(x_test,...
x_train,f_train,l,sigma);
[~,min _mean_pos] = min(mean);
[~,max_variance_pos] = max(variance);
new_train(:,n) = x_test(:,max_variance_pos);
end

[xDEA, fDEA] = DEA(@gpregression,x_limits,...

Xx_train,f_train,l,sigma)

new _train = [new_train, xDEA];
X _train = [x_train,new_train];
f train = [f_train,problem(new_train)];

i
min(f_train)

end
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2.7.2 Comparison of GPR-DEA with GPR

The GPR improved with DEA was tested on the same test functions as the GPR.
Each optimization was run 100 times and the mean, minimum, maximum and stan-
dard deviation were calculated from these results Tab. 2.5 Since the algorithm is
not very suitable for fine optimization under large constraints, the main goal was to
reduce the required computational power by reducing required nuber of samples.

The number of samples for which a real value was computed and against which
the optimizer was tested was reduced from 1550 to 400. Despite this significant
reduction, the results are comparable, in some cases better Fig. This improve-
ment will be advantageous in antenna optimization where the number of simulations
needs to be reduced to a minimum. Due the relatively small difference between the
results for different dimensions, it suggests that the algorithm works better for multi-
dimensional problems Tab. 2.5

Another improvement is the reduction of computational power required each
iteration. This is mainly due to finding the minimum of the y of GP model using
DE. The new extended algorithm have roughly 10 times less iteration time. The
speed of each iteration can also be improved by reduction of DFE iterations or the

population size of DE.

Tab. 2.5: Results of GPR optimizer with implemented DEA.

Testing function D mean minimum maximum | standard deviation
2 0.966 1.7e-2 2.910 0.795
. 3 5.1026 1.9513 8.9450 1.4178
Ackley function
4 5.9702 2.9853 14.4845 1.6400
5 6.8240 3.3223 10.1520 1.2375
2 78.623 2.789 318.784 57.266
R . . 3 184.0865 49.5873 325.1861 60.3429
Dixon and Price function
4 285.1620 85.6652 445.5437 73.6399
5 348.0343 182.6786 598.1808 90.9853
2 1.505 15.95 4.596 0.9274
. . 3 8.4151 0.2887 19.7780 4.0790
Rastrigin function
4 25.5659 10.2964 41.2869 6.4602
5 39.1326 17.0654 55.0604 7.4437
2 | 3.3224e-08 | 8.1099e-11 | 1.6710e-07 3.4399e-08
. 3 | 1.2834e-05 | 7.1627e-07 | 4.9835e-05 9.5837e-06
Spehre function
4 | 5.5075e-04 | 6.8326e-05 0.0015 2.9355e-04
5 5.2e-3 5.5582¢-04 1.09-2 2.394e-3
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Fig. 2.2: Results of extended GPR.
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3 Antenna Design and Optimization

3.1 Prerequisite Antenna Design

The first step is to design the antenna on which the GPR optimizer will be tested.
As already mentioned in the theoretical part, the correct choice of antenna type is
essential to achieve the desired results. In this case, a rectangular patch antenna has
been chosen, due to its simple design and small number of dimensions to optimise.
The SMA connector was chosen as feed due to its availability, and the possibility
of optimization through the position of the feed. This method of feeding has lower
bandwidth than a proximity-coupled feed, but large bandwidth is not necessary for
the 5.8GHz ISM band.

When designing it is necessary to take into consideration that with a lower
permittivity the dimensions of the antenna increase. The substrate used is Arlon
CuClad 217 with relative permittivity ,=2.17-2.2 and a height h = 1.524mm. The
shape of the patch is chosen to be rectangular, without any cutouts or asymmetries.
In this case, the circular polarization is invoked by the excentric position of the feed.

The dimensions of the patch are calculated according to the equations [2]:

Cc

W= " — 20, 43mm (3.1)
204/ Lr;l
1l a1 1
Eepp = = ; + 2 — 2,036 (3.2)

h
Lo (f)

(ees +0.3) (% +0.264)
(2err — 0.258) (% +0,8)

c
" 2fo\/Eers

L —0,824h ( ) = 16.53mm (3.3)

This calculation is for a linearly polarized antenna, with feed in the axis of the
patch, so the antenna must be optimized for circular polarization. The optimization
is done by changing the length L and width W of the patch and by changing the
position of the feed in x-axis Pz and y-axis Py.

The antenna is modelled and simulated by analysis software CST Studio Suite
2019. The optimization is done using the Nelder Mead Simplex Algorithm which
is a feature of CST Studio Suite 2019 see Fig. and Fig. 3.2l Dimensions and
characetristics of optimized antenna are in Tab. and Tab. [3.2] The antenna is
RHCP so it is not necessary to mirror the position of the feed. This procedure

is to ensure that there is a suitable solution in the area where the GPR will be
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tested. This prerequisite antenna will be used to determine the solution area and

as a reference for the valid antenna parameters.

Tab. 3.1: Dimensions of optimized antenna.

W [mm] | L [mm] | Pz [mm] | Py [mm] | Substrate width [mm] | Substrate length [mm]
15,079 16,128 5,425 4,665 60 60

Tab. 3.2: Parameters of optimized antenna.

fo [GHZ] [ S11[dB] [ AR [dB] | BW[MHz] | G[dBi]
5.807 -44.6 0.314 410 7.986

Fig. 3.1: Front view of the antenna in CST Studio Suite 2019.

Fig. 3.2: Rear view of antenna in CST Studio Suite 2019.
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3.2 GPR Antenna Optimization

3.2.1 Training Data Obtainment

As already mentioned CST Studio Suite 2019 was used to model the antenna. This
program is also used to simulate the S11 and AR of the antenna to obtain train-
ing data. For this, control between CST and MATLAB needs to be implemented.
CST Studio Suit is controlled by the simulateAntenna.m function Listing [3.1] This
function initially sets the required parameters and then starts the solver. When the
simulation is complete, the function exports the results to text files. The results in
the text files are imported into a variable and the fitness error is calculated according
to Eq:

Jerit = |S1goqr — S1Lgim| - w1 + |ARgoat — ARgim| - w2 (3.4)

where w; is the weight of S11 and ws is the weight of AR. This value of the fitness

error is further used for optimization.

3.2.2 Optimization

A GPR optimizer improved with DEA was used to optimize the circular polarized
antenna. Fitness error is calculated by choosing S11,,,=50 and ARy,=0. The
weights are w;=0.1 and wy=0.5. The area of solution was +10% antenna soulution
found in prewious part. The overall antenna optimization was divided into 3 sub-
optimizations. This sub-optimization method was used due to the rounding in the
GPR code and mainly in finding the nearest SPD matrix. This rounding causes
inaccuracy, especially when fine-tuning over a large area.

The first part found the estimated location of the solution. The total number
of simulated antennas in this step was 700. In this case, the best convergence to
solve was in the first 200 samples. After the first 200 samples, the efficiency of the
method dropped significantly Fig.[3.3] The antenna fitness error of the optimization
is too high for the antenna to function properly Tab. [3.3] The limits for the next
part were selected based on the best solution from this part.

The second part of the optimization is performed in the region of +2% of the
solution found in the previous part. The number of simulations is also 700. In this
part, the best convergence to the solution is in the first 600 simulations Fig. [3.3
The achieved solution already has a very low fitness error Tab. [3.3] The resulting
antenna properties already match the desired solution.

A slightly different optimization method is used to fine tune the antenna. In this
case, the new training data are no longer chosen based on V but only based on pu.

This change is due to faster convergence to the solution at the cost of a lower chance
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Listing 3.1: The simulate Antenna.m code listing.

function simulateAntenna (mws,W,L,Px,Py)

end

invoke (mws, ’StoreParameter’,’W’, W);
invoke (mws, ’StoreParameter’,’L’, L);
invoke (mws, ’StoreParameter’,’Px’, Px);
invoke (mws, ’StoreParameter’,’Py’, Py);
invoke (mws, ’Rebuild’);

pause (0.5)

solver = invoke(mws, ’Solver’);
invoke(solver, ’start’);

pause (0.5)

invoke(mws ,’SelectTreeltem’,...
’1D,,Results\S-Parameters\S2,27);

ASCIIExport = invoke(mws,’ASCIIExport’);

invoke (ASCIIExport,’Reset’);

invoke (ASCIIExport,’SetVersion’,’20107);

invoke (ASCIIExport ,’FileName’,append (...
’C:\Users\xniede0O4\Documents\Optimize\’,...

’s117,7 .txt?));
invoke (ASCIIExport,’Execute’);

pause (0.5)

invoke (mws, ’SelectTreeltem’,’Tables\1D Results\AR 2’);

ASCIIExport = invoke (mws,’ASCIIExport’);

invoke (ASCIIExport, ’Reset’);

invoke (ASCIIExport,’SetVersion’,’20107);

invoke (ASCIIExport ,’FileName’,append (...
’C:\Users\xniede04\Documents\Optimize\’, ...

AR, . txt’));
invoke (ASCIIExport,’Execute’);
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of finding a different global minimum. This part of the optimization was performed
in the region of +2% of the best result of the previous part . The optimization took
only 101 simulations to find a sufficient solution Tab. 3.3]

A total of 1501 solver runs were needed to optimize the antenna. The optimiza-
tion is very computationally intensive, so it was not possible to run the optimization
in sufficient numbers to determine the standard deviation of the result. The nature
of the resulting optimization corresponds to testing on test functions. As on the test
functions, the GP model has difficulty modeling narrow local minimums for large

areas.

Tab. 3.3: Optimized dimensions of antenna.

A% L Px Py fitness error
first part of optimization 14.95 | 16.04 | 5.12 | 4.82 | 2.8291
second part of optimization | 15.10 | 16.12 | 5.45 | 4.76 | 0.7976
fine optimization 15.11 | 16.14 | 5.34 | 4.79 | 0.0818
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Fig. 3.3: Evolution of the minimum total fitness error during optimization.
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3.2.3 Optimized Antenna Results

In the analysis of the results, the antenna designed using GPR is compared with
the solution of the prerequisite antenna see Tab. [3.4, The antenna designed using
GPR achieves the desired results. The parameters of this antenna are comparable
to the targets determined by the prerequisite antenna. The GPR optimized an-
tenna achieves generally better parameters. These differences in S11, fy, G, and
BW are negligible, considering the errors that may occur during fabrication. The
improvement in the AR parameter from 0.314dB to 0.160dB is a significant, because
of its importance. Radiation patterns are almost same see Fig. [3.6, The designed
antenna meets the application requirements, the frequency and bandwidth are suit-
able for the 5.8GHz ISM band. The optimization results are adequate for antenna

fabrication.

Tab. 3.4: Results of optimized antennas.
Antenna fo [GHz] | S11 [dB] | AR [dB] | BW[MHz| | G[dBi]
Prerequisite antenna 5.807 -44.6 0.314 410 7.986
GPR optimized antenna 5.801 -46.0 0.160 405 7.987
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Fig. 3.4: S11 parameter of antenna prerequisite and GPR optimized antenna.
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4 Realization of the Antenna

4.1 Antenna Fabrication

The antenna is made on the PTFE substrate CuClad217 A=1.524 mm. The front
and back side is coated with copper. The front side of the substrate is etched in the
shape of a patch Fig. On the rear side, a circular shape is etched to isolate the
SMA connector feed Fig. 4.2 A 1.3 mm diameter hole is drilled for the feed. The
SMA connector is trimmed to the desired length and fixed in place by soldering to
the ground Fig. 4.4 From the front side, the feed is soldered to the patch Fig. [4.3]
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Fig. 4.1: Front view of antenna dimensions.
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Fig. 4.3: Front photo of antenna.

Fig. 4.4: Rear photo of antenna.
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4.2 Comparison of Measurement with Simulation

Measurements of S11 parameter, radiation characteristics, axial ratio, and gain were
done for the fabricated antenna. Measurement of the S11 parameter was done on a
vector circuit analyzer. The rest of the measurements were done in a fully anechoic
room. The measurements revealed a deviation in the resonant frequency of 2.34%,
resulting in an absolute shift from 5.8 GHz to 5.936 GHz Tab. [{.I The reflection
coefficient at this frequency is -19.17 dB. Additionally, there is a degradation in the
bandwidth BW = 346 MHz. The measured antenna also have a slightly higher axial
ratio AR = 0.315 dB see Fig. [4.6] Considering its value and the fact that its mini-
mum occurs at a resonant frequency of the antenna, this AR can be considered as
a good result. The radiation characteristics align with the simulations and indicate
successful achievement of right-hand circular polarization RHCP. The half-power
beam width in elevation H PBW E was measured to be 79°. The antenna gain is
7.5 dBi at 5.93 GHz and 6.85 dBi at 5.8 GHz.

Tab. 4.1: Antenna simulation and measurement results.

Antenna fo [GHz] | S11[dB] | AR [dB] | BW [MHz] | G [dBi]
simulation e,=2.2 5.801 -46.0 0.160 405 7.987
simulation e;=2.1 5.920 -46.18 0.213 424 8.088
measured antenna 5.936 -19.17 0.315 346 7.5

The difference between the simulated and measured resonant frequency may be
slightly affected to manufacturing errors. In the case of a fabrication error, the
S11 and AR would significantly degraded. The main influence may be the lower
relative permittivity of the substrate used. When simulating the antenna with lower
er, similar results to the measured values were obtained Tab. The antenna

simulated with a relative permittivity of €, = 2.1 matches the measured antenna.
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5 Conclusion

For the implementation of the optimization algorithm, a Gaussian process regres-
sion was chosen. For kernel matrix the squared exponential covariance function
was chosen due to its smoothness and wide use. This metod was implemented in
MATLAB.

Since this code was intended to be used as an optimization algorithm, it was
necessary to extend it with a function for the automatic selection of additional
points. This implementation evaluates the choice of a new training point based on
the uncertainty in the function domain and the minimum of the mean function.

The algorithm was then tested on testing functions where it became clear that the
size of the kernel matrix had to be taken into account. For large datasets and a large
number of variables, the kernel matrix took on large dimensions and slowed down
the algorithm significantly. The performance demand was many times higher than
other algorithms such as DEA, PSO, GA and SOM A. In this state, the algorithm
did not have many advantages over faster and better performing methods. One of
the advantages is the possibility of keeping the GPR modeled problem.

The GPR optimization results was compared with DEA, PSO, GA and SOM A.
The best results were achieved by the sphere function where it achieved higher
accuracy than SOM A, PSO, and GA for multiple input variables. The worst results
were achieved for the Dixon-Price function for more dimensions or more variables
the method was inefficient.

Due to the poor efficiency results of the algorithm, it was extended with DFE A.
In each iteration, the algorithm generates random test data for which V and u
are calculated. From these data, it selects the appropriate ones for training. This
approach results in a small probability that the test data will be at the point of
local minimum. In order to efficiently find the g minimum, the algorithm has been
extended with DEA. The newly modified algorithm was tested on the same test
functions. The number of samples was reduced from 1550 to 400 and despite this
the optimizer achieved comparable and in some cases better results.

For antenna optimization, the algorithm extended with DEA was used. The
designed antenna had 4 parameters and testing was done in the region of +10% of
the solution value. 1501 simulations were required to optimize the antenna. During
the optimization, it was apparent that G/PR has a fine optimization problem at
large limits. In the case of choosing a smaller range of limits, the algorithm was also
capable of fine tuning. The optimized antenna achieved the desired results Tab. [3.4]
To better analyze the results of this optimization, the optimizer would need to be
run more times. Unfortunately, this was not possible due to the computational time

of the simulations.
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The optimized antenna has been fabricated and measured. The only significant
deterioration of the antenna is the shift of fy to 5.93 GHz. Due the good AR value at
this frequency, the error can be caused by smaller ¢, value of used substrate compare
to declared. This is supported by simulations where a substrate with £,=2.1 achieves
similar results to the measurements.

In general, GPR is suitable for optimizations, mainly due to its trainability
and the possibility to use the model later. The computational performance and the
quality of the results are determined by the way the model is trained. Another factor
is the choice of the covariance function, which is choice is based on the expected
course of the problem. When using this algorithm, it is necessary to take into
account the greater demand for computing power. The speed of iterations can be
influenced by changing the algorithm parameters, but it is still slower than DEA,
PSO, SOMA, or DE.
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Symbols and abbreviations

GgP Gaussian process

GPR Gaussian process regression

N Gaussian /normal distribution

E Expectation

K Kernel matrix

k Covariance function

o Vertical scale variable of covariance function
[ Horizontal scale variable of covariance function
d Euclidean distance between two points
Ty Testing data inputs

14 Mean of the Gaussian process regression
\% Variance

Tt Training data inputs

fi(xy) Training data outputs

€ Pressumed noise

o2l Noise variable

DE Difirential evolution

CR Crossover Ratio

F Scaling factor

Er Relative permittivity

r Reflection coefficient

LHCP Left handed circular polarization
RHCP Right handed circular polarization

GA Genetic algorithm
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DEA

PSO

SOMA

AR

S11

HPBWE

Differential evolution algorithm
Particle swarm optimization algorithm
Self-organizing migrating algorithm
Length of patch

Width of patch

Position of feed in X axis

Position of feed in Y axis

Height of substrate

Axial ratio of polarization

Reflection coefficient

half-power beam width in elevation
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