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  Annotation 

 
Since the introduction of advanced molecular methods the research on insect bacterial symbioses underwent a 

major focus shift towards large scale phylogenetics and comparative genomics. These new fields provided 

answers to several fundamental questions of symbiont evolution, functional capabilities of the host-associated 

bacteria, and the role of symbionts in the host’s biology. However, the vast diversity and complexity of 

symbiotic relationships still leaves gaps in our understanding to a rich mosaic of various symbiont types, effects 

and transitions from facultative association to obligate mutualism. The presented study focuses on distribution, 

diversity, phylogenetic patterns, evolutionary transitions and genome evolution of two less known but 

ecologically diverse bacterial genera, Arsenophonus and Sodalis. The thesis also takes advantage of the 

knowledge on a well established symbiotic model between aphids and Buchnera and reveals several 

evolutionary patterns in the host and symbiont. 
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1.   BACKGROUND 
�

1.1.Insect�bacteria�associations�in�the�molecular�era��

Symbioses between bacteria and insects are considered a significant driver of insect and microbe 

evolution and have been extensively studied (Buchner, 1965; Moran and Telang, 1998; Baumann et 

al., 2000; Baumann, 2005; Moran, 2006; Dale and Moran, 2006; Moran et al., 2008; Moya et al., 

2008; McCutcheon and Moran, 2011). The most important advancements in insect-microbe 

interactions research are attributed to the introduction and application of new methods, allowing 

reasearchers to address previously unaccessible questions (electron microscopy, molecular 

phylogenetics, DNA-based visualization, etc.). Recently, modern molecular and computational 

approaches, especially large-scale sequencing and genome reconstruction, allowed for another shift in 

investigations on symbiont evolution, functional capabilities of the host-associated bacteria and their 

symbiotic role in its host’s biology. Our current knowledge on insect-bacteria symbioses has grown 

immensely during the few last years and shows a rich mosaic of various symbiont effects and roles, 

host-symbiont relationships (including parasitism, facultative association and obligate mutualism), and 

phylogenetic patterns (from strict cophylogeny to frequent horizontal switches). All of these 

characteristics represent a surprisingly wide range of symbiotic phenotypes that in turn are reflected in 

the size and structure of the corresponding genomes. While the compact genomes of strict obligate 

mutualists are highly degraded and some can even surpass organelle genome size, facultative 

associates possess rather dynamic genomes similar to those of free living bacteria, retaining extensive 

metabolic capacities and various mechanisms for gene exchange, e.g. plasmids and phages (reviewed 

in McCutcheon and Moran, 2011). However, this is a simplified view that only highlights the two 

extremities found within symbiont diversity and does not encompass the variety of intermediate 

evolutionary stages that obviously arise in many bacterial lineages. To put genomic characteristics of 

these different ecological forms into a proper evolutionary framework, a reliable knowledge is 

essential not only on the genome’s structure but also on phylogenetic relationships among the various 

lineages. Current state of the art insect-symbiont research combines advanced phylogenetic methods, 

often based on the genome-wide molecular data, with comparative genomics allowing for functional 

and ecological inferences. 

�

1.2.Methodological�issues�

An apparent versatility of bacterial lineages that can adopt fundamentally distinct life strategies 

introduces a variety of methodological problems. Even closely related bacteria can rapidly evolve 

either into highly specialized mutualists or parasites/commensals loosely associated with their hosts 

(Hansen et al., 2012). Particular sources of phylogenetic artifacts thus do not only affect investigations 

on a broad phylogenetic scale but remain relevant even for reconstructions among closely related 
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genetic lineages. Genetic changes coincident with evolutionary shifts towards an obligate mutualism 

consist of high evolutionary rates along with relaxed selection, which lead to mutation accumulation 

and biased sequence composition (Moran 1996; Heddi et al. 1998; Lambert and Moran 1998, Rocha 

and Danchin, 2002). Most typically, the genomes of specialized mutualists are AT biased, although 

GC bias has also been reported for obligate symbionts (McCutcheon et al., 2009; McCutcheon and 

Dohlen, 2011). As a result, datasets composed of orthologous gene sequences from free-living bacteria 

and various symbionts that differ in ecological lifestyles tend to suffer from artifacts due to different 

nucleotide compositions.  

 

This is a major phylogenetic obstacle and often leads to artificial 

clustering which reflects nucleotide composition (and therefore ecological characteristics) rather than 

real phylogenetic relationships. The main reason for this artifact is violation of the assumptions built in 

standard evolutionary models and methods used in phylogenetic analyses. Several approaches have 

been developed to overcome this problem. Early methods were based on modified distance measures, 

such as the paralinear (Logdet) distance method (Lake 1994; Lockhart et al. 1994) and the 

nonhomogeneous distance model (Galtier and Gouy 1995). Later, the nonhomogeneous approach was 

also implemented into the ML model (a nonhomogeneous T92 model; Tamura 1992) and used to 

readdress the persistent questions on origin of insect bacteria symbiosis. For instance, based on the 

nonhomogeneous model, Herbeck and colleagues (2005) brought the first strong evidence favouring 

P-symbionts polyphyly. The same approach was also used for inferring evolutionary relationships 

among �������	��
� symbionts in . Although an important step towards eliminating the effect 

of nucleotide bias, these methods, similar to typical ML models, work with user-defined global 

parameters. Recently, the rapidly improving sequencing/genomic techniques allowed for accumulation 

of large multigene datasets. This in turn lead to the development of new category (CAT) models that 

do not rely on global parameters but rather estimate several parameter categories from the data 

(Lartillot and Philippe, 2004). Unlike the former methods, the CAT-like models require a substantial 

amount of data and were thus only adopted in the genome-based . Furthermore, we were able to 

use amino acid recoding (Lartillot et al., 2009) which was found effective in reducing artifacts when 

analyzing symbiotic lineages within the Enterobacteriacae (Husník et. al, 2011). 

 

Compositional bias is not the only manifestation of progressive changes in symbiotic DNA. 

Mutations, expressed as insertions/deletions, disrupt open reading frames and larger deletions may 

even remove non-essential chromosomal regions (Ochman and Davalos, 2006; Toh et al., 2006; Burke 

and Moran, 2011). The genomes of symbiotic bacteria experience ongoing erosion through 

inactivation and loss of particular genes that are not essential for the symbiotic lifestyle. Under these 

conditions  for particular genes in some lineages may hamper the generation of a 

complete phylogenetic dataset. On a gene sequence level, occasional insertion/deletions pose a 
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problem for determining proper homologies and creating reliable   alignments. For this reason, 

insertion/deletion regions are often removed from final alignment matrices. Such treatment of 

unreliably aligned regions and their impact on phylogentic inference has been illustrated in . 

When deletions occur on a genome level and cause loss of whole genes, absence of the markers in 

obligate symbionts may pose additional limitation on the phylogenetic analyses. This phenomenon 

may hamper analyses of highly heterogeneous datasets composed of various free-living and symbiotic 

phenotypes, but may also appear in supposedly uniform symbiotic lineages. This has been illustrated 

by the degraded tryptophan biosynthetic pathway in �
�	���
 genomes, particularly the trpB gene that 

has been lost in several members of the group (Gosalbes et al., 2008; also ) 

 

Apart from the methodological artifacts typical of bacterial symbionts, several more 

may also influence the molecular analyses. These issues, including the major 

methodological problems of phylogenetic and coevolutionary studies in insect-bacteria associations 

are reviewed in . The primary issue is determining the suitability of the selected gene as a 

meaningful phylogentical marker. In general, this requires two main prerequisites the gene has to 

fulfill; not to possess any paralogs within the genome and not to be acquired by horizontal gene 

transfer. Paralogs, which commonly arise from duplications, may be randomly sampled from different 

lineages in the phylogenetic analysis, and thus can result in serious topological inaccuracies. 

Frequently, this issue arises in low-level phylogenetic studies based on 16S rRNA gene. Intragenomic 

heterogeneity of the 16S-23S-5S rRNA operons and its influence on phylogenetic reconstruction has 

previously been shown in free/living bacteria (e.g. Yap et al. 1999; Marchandin et al. 2003; Boucher et 

al. 2004; Lin et al. 2004; Naum et al., 2008, Pei et al, 2010) and similar conditions were also observed 

in symbiotic lineages (Laguerre et al., 1997; Thao and Baumann, 2004; Trowbridge et al., 2006; 

Sorfova et al., 2008; ).  

 

Regardless of this potential risk in generating phylogenetic artifacts, 16S rDNA is the most commonly 

used gene marker in prokaryotes. In closely related lineages of obligate mutualist symbionts, it is less 

problematic since redundant operon copies were lost or even the entire operon was fragmented to 

isolated rDNA genes throughout the degradation process (Munson et al., 1993; van Ham et al, 2003). 

In these symbionts, 16S rDNA as a single copy marker served as an effective tool for deriving clear 

coevolutionary patterns (Chen et al. 1999; Clark et al. 2000; Sauer et al. 2000; Thao et al. 2000). In 

accordance to these findings, 16S rDNA was used as one of the markers for �
�	���
 derived 

phylogenies ( ). In a few other cases rRNA genes, as the gene with the highest number of 

sequence records in public databases, have been used to describe diversity and more general 

phylogenetical patterns within polymorphic symbiotic genera, e.g., ���������
 (Perlman et al., 2006), 

����
��
 (Lamelas et al., 2008), �������	��
� (Trowbridge, 2006; Allen et al., 2007; ), and 

���
��� (Fukatsu et al., 2007, Novakova and Hypsa, 2007; ). 
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Despite the possible problems discussed above, molecular data from bacterial symbionts are in many 

ways easier to use for phylogenetic reconstructions then the data derived from their insect hosts. This 

is a natural consequence of much lower complexity of the bacterial genomes than eukaryotic genomes. 

For example,  is usually much more extensive and therefore a stronger source of 

artifacts in eukaryotes then in Bacteria (Friedman and Hughes, 2001; Abi-Rached et al., 2002; 

McLysaght et al., 2002, Cui et al., 2006, Zhou et al., 2010). The reduced genome complexity of a 

symbiont may be of a particular use in a system where we encounter difficulty reconstructing a host 

phylogeny (due to gene duplication and/or other sources of artifacts) but we have a strong indication 

for strict cospeciation process between the host and symbiont. Aphid- �
�	���
 symbiosis provides 

such example. Recently, the genome sequence of �����	����	������
� confirmed a vast amount of 

gene duplications affecting more than 2,000 gene families (The International Aphid Genomic 

Consortium, 2010). In such cases, selection of proper markers may be an extremely demanding or 

impossible task and alternative approaches for understanding the host phylogeny, i.e. using symbiont 

derived genes may be more suitable ( ).  

 

Many of the phylogenetic problems can be reduced or even overcome if complete genomes are 

available. Such data provide high amounts of phylogenetic information allowing proper use of 

advanced techniques (e.g., CAT-like models), thus making it possible to find gene duplications, losses, 

modifications, etc. Currently, genome sequencing is still a very demanding task in eukaryotes. 

However, the relatively small genomes of bacteria make the phylogenetic usage of complete genomes 

much more feasible, and this approach has been used in many studies (e.g., Eisen et al., 2000; Lerat et 

al., 2003; Comas et al., 2007; Wu et al., 2009; Williams et al., 2010). Nevertheless, investigations 

relying on ������� sequencing of symbionts introduce an entirely new set of technical considerations.  

 

Naturally, successful genome sequencing depends on the purity of the DNA template being used. In 

complex symbiotic systems, acquiring a sufficient amount of high quality DNA may represent a major 

obstacle as illustrated by several authors (e.g., Burke and Moran, 2011; also ). Furthermore, 

particular attention has to be paid to selection of a proper sequencing strategy, i.e. sequencing 

platforms and library preparation techniques that would recover data sufficient for the whole genome 

assembly. This can be particularly challenging in the case of genomes with extreme nucleotide content 

(e.g. McCutcheon and Moran, 2010), or repetitive DNA. Dynamic symbiont genomes such as 

�
�������
 species, �������
� ��
��
�
�
�	�, ����
��
� ���������
 str. Aps, �������	��
�� �
����
�, 

�������	��
�����
�����
�
� contain a high proportion of repetitive DNA, especially transposable and 

phage elements, and as a result hamper assembly efforts (Cho et al., 2007; Nakayama et al., 2008; 

Engel et al., 2010; Darby et al., 2010; Burke and Moran, 2011; ). More specifically, repetitive 

regions exceeding the read length create gaps in ��������assembly. The short length of next generation 
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sequencing (NGS) reads results in fragmented assemblies or even complex misassambled 

rearrangments (reviewed in Treangen and Salzberg, 2011). The use of other strategies (e.g., Sanger 

sequencing) with longer read lengths, or implementation of long paired-end information from fosmids 

and bacterial artifical chromosomes (BAC) may represent a possible solution to produce finished 

genomes. However, such an approach requires generating an immense amount of different data types, 

puts high demands not only on resources but also on bioinformatic processing and, for most cases, 

does not guarantee any substantial advances in the research outcomes based on the completely closed 

genome sequences. 

 

2. OBJECTIVES�AND�MODELS�

The above overview shows that current research on bacterial symbionts of insects has expanded into 

an integrated network of evolutionary, functional and taxonomical questions requiring a broad array of 

laboratory and computational techniques. During the studies summarized in the manuscripts presented 

here, I focused on a subset of problems and models. Their selection was partly based on my previous 

activities, particularly experimental work during my bachelor and master theses, and participation in 

several research projects. It was also further influenced by collaboration with two prestigious 

laboratories in this research area, where I spent a total of 14 months during my PhD (Fulbright 

fellowship with Nancy Moran, Yale University, and COST Short Term Scientific Mission with 

Gregory Hurst, University of Liverpool).  More specifically, I focused on phylogenetic issues in two 

emerging clades of symbionts, �������	��
� and ���
���, coevolutionary relationships in a model 

symbiont system, �
�	���
�
�	������
, and genomic comparisons as a tool for revealing evolutionary 

processes within the symbiotic genomes. 

 

In the first area I utilized standard phylogenetic approaches to explore evolutionary patterns in several 

symbiotic groups. I focused on two ecologically rich groups of bacterial endosymbionts that become 

popular models for investigating symbiont diversity and evolution:� ���
��� and �������	��
�. I 

screened for new lineages in several hosts, mainly blood-feeding dipterans of the family 

Hippoboscidae. Potential importance of this model rests in its close ecological and phylogenetic 

relationship to the association between the tsetse fly and its symbionts. I performed complex 

phylogenetic reconstructions to be used as a background for evolutionary interpretation and 

identification of suitable candidates for subsequent genomic comparisons. 

 

In the second area I took advantage of the previously established collaboration with laboratory of 

Nancy Moran (Yale University, USA) and access to the well-established model of host-symbiont 

cospeciation, aphids and mutualistic bacteria of the genus��
�	���
. 
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The third area of my research was based on genomic rather then phylogenetic approaches. Based on 

the results from �������	��
� phylogeny, I selected a proper model of �������	��
� for complex 

comparative study. This study was performed together with Gregory Hurst, Alistair Darby (University 

of Liverpool), and Nancy Moran (Yale University). The main aim of this study was to compare basic 

characteristics of four related symbionts (all members of the �������	��
� clade) with significantly 

different lifestyles and presumably different evolutionary stages in the symbiogenesis. 

 

Research in these three areas resulted in the seven presented studies. Five of the studies are standard 

research papers (published or in preparation). Additionally, two are invited chapters that originated as 

the result of this research. The first of these chapters summarizes our experience with phylogenetic 

tools and specifities of their use in symbiont evolutionary inferences. The second chapter puts together 

results of several groups from all over the world, on the genus �������	��
�. The chapter includes 

various aspects of the biology, diversity and phylogeny of these symbionts. In both cases, the chapters 

( and ) are invited reviews based on our previous research.   

 

3. RESEARCH�OUTCOMES�

�

3.1.Coevolution:�relationship�between��symbiont�and�host�phylogenies�

 

Depending on the nature of a given symbiosis, the relationships between the host and symbiont 

phylogenies may vary from perfect identity to complete incongruency. These varied associations raise 

different phylogenetic questions and evolutionary problems. During the molecular era, it became clear 

that most of the seemingly non-specialized symbionts are not phylogenetically isolated offshoots of 

free-living bacteria but belong to several discrete bacterial lineages capable of infecting 

phylogenetically distant hosts. In these groups, host-symbiont phylogenies display a high degree of 

incongruence; overall diversity and distribution of the symbionts among host taxa are therefore 

common topics studied by molecular phylogeny tools (e.g. Kikuchi and Fukatsu, 2003; Russell et al., 

2003; Perlman et al., 2006; Burke et al., 2009; Sirviö and Pamilo, 2010; Mouton et al. 2012).    

 

In contrast, intimate associations have been discovered that are vital for both bacteria and host (i.e. 

strictly speaking, mutualistic relationships). As an essential component of the host life strategy these 

bacteria become indispensable and reach a point where they can be treated as “organelles” rather than 

independent organisms. Origins of such associations are now understood to be the result of unique 

symbiont acquisitions by the host ancestor followed by strict coevolution between the two 

counterparts ensured by transovarial transmission. As such typical coevolutionary (in a sense 

cospeciation) studies are passe and the focus in these associations has been diverted to more general 
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questions, including genomic evolution of the symbionts or possible genetic exchange with the host. 

Among obligate endosymbionts, the genera �����������	�
, �

�
���
, and �
�	���
 are 

intensively studied (e.g., Baumann et al., 1995; Aksoy, 1995; Shigenobu et al. 2000; Akman et al. 

2002, van Ham et al., 2003, Wu et al. 2006, Hansen and Moran, 2011), and promote adaptation to a 

new life strategy adopted by the hosts, typically blood or plant sap feeders, by supplementing their 

unbalanced diet (Buchner 1965, Nogge 1981).  

 

Among these obligatory mutualistic associations, Buchnera-aphid symbiosis has for long been the 

most extensively studied since the host group includes major worldwide pests. The symbiosis is 

thought to have originated via a single acquisition event around 150-200 MYA, followed by strict 

cospeciation between �
�	���
 and aphid hosts (Moran et al., 1995; Martinez-Torres et al., 2001). 

The significance of the symbiotic association has been corroborated by analysis of genomic and 

transcriptomic data from both �
�	���
 and the host, ��� ���
�, (Shigenobu et al. 2000, The 

International Aphid Genomics Consortium, 2010; Nakabachi et al. 2005, Hansen and Moran, 2011). 

These analyses have brought a deeper understanding on particular functionalities of the entire system 

which thus became the best-known and extensive studied symbiotic model. It is therefore paradox that 

the most interesting features of the host biology (e.g., structure and complexity of aphid life cycle, 

alteration of sexual and asexual reproduction, host plant alternations) still remain uncoupled with 

aphid evolutionary history since a robust phylogeny has not yet been proposed for the aphids. Even 

though recent phylogentic studies on aphids implemented multi-gene analyses, combining the data 

from nuclear and mitochondrial genes (e.g., Ortiz-Rivas and Martínez-Torres, 2010), a pronounced 

lack of sufficient phylogenetic signal still prevents conclusive evolutionary interpretation. A common 

approach of broadening the analysis by additional genes with better informative capacity is extremly 

demanding as a vast majority of the gene families in the aphid genome underwent duplications (The 

International Aphid Genomics Consortium, 2010).  

 

In the , we proposed and evaluated an alternative approach for generating an aphid phylogeny, 

using �
�	���
 derived markers (see the methodological issues). In order to reconstruct phylogenetic 

relationships within the family Aphididae we based our analyses on more than 300 sequences derived 

from five genes of �
�	���
 symbionts associated with a taxonomically broad set of aphid species. 

We focused on questions of the monophyly of individual subfamiles/tribes, their relationships, 

evolutionary rates and rooting of the Aphididae tree.  Our results showed that symbiotic DNA yields 

an informative phylogenetic signal and is a useful source of data. In comparison to the aphid-based 

analyses, �
�	���
 derived data brought stronger support for several topological patterns and did not 

reveal any major discrepancies. Both data sources contradicted only in weakly supported and unstable 

relationships. Similar to aphid genes, analyses of �
�	���
-derived genes did not bring a conclusive 

view for deeper phylogenetical nodes, which most probably reflects the initial rapid diversification in 
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some lineages previously proposed by several authors (von Dohlen and Moran, 2000; Martínez-Torres 

et al., 2001).   

 

In addition to the obligatory mutualistic associations, there is a broad array of bacterial lineages in 

different stages of symbiogenesis. Our knowledge on these symbionts is much more fragmented. This 

is mostly due to their “random” and virtually unknown host distribution and diversity. The spread of 

these bacteria through host populations does not rely exclusively on vertical transmisson from mothers 

to progeny but also involves horizontal transfers causing incongruences between the host and 

symbiont phylogenies. Probably the most famous example is alphaproteobacterial genus ����
�	�
, 

one of the most diverse and widespread bacteria among insects (e.g. Lo et al., 2002; Bordenstein et al., 

2008; Augustinos et al., 2012). Within Gammaproteobacteria, similar pictures of rich and diverse 

symbiotic groups are provided particularly by two genera, �������	��
� and ���
���.  

 

For the bacterial genus �������	��
� there are only few valid described species: �������	��
��

�
����
�, the type species known as a son-killer parasite of pteromalid wasp, �
����
� ����������� 

(Werren et al., 1986; Gherna et al., 1991);  
����
�
�� Arsenophonus triatominarum, a bacterial 

associate of triatomine bugs (Hypša and Dale, 1997),  
����
�
� Arsenophonus arthropodicus 

described from a hippoboscid fly !��
������	�
� �
�
������� (Dale et al., 2006), and  
����
�
� 

Arsenophonus phytopathogenicus identified from the planthopper !���
�������
���������
� (Bressan et 

al., 2011). The genus currently includes two other members originally designated as distinct genera: an 

obligate mutualist of human body louse,  
����
�
� Riesia pediculicola, and plant pathogenic bacteria 

transmitted by planthopper species,  
����
�
� Phlomobacter fragariae (Zreik et al., 1998; Allen et 

al., 2007; Salar et al., 2009).  In addition to this modest number of formally described species, a high 

number of symbiotic bacteria identified exclusivelly by 16S rRNA sequences have been reported to 

fall into the  �������	��
� clade. Their host spectrum spans diverse insect groups, several non-insect 

taxa as well as a few plant species, and their associations constitute highly different phenotypes (e.g., 

Gherna et al., 1991, Dale et al., 2006; Trowbridge et al., 2006;  Allen et al., 2007; Semetey et al., 

2007; Duron et al., 2008;  Hosokawa et al., 2012). These characteristics implicate the genus 

�������	��
� as an important and widespread lineage of symbiotic bacteria and potentially valuable 

model for examining the evolution of insect symbiosis. In , we summarized the picture of 

�������	��
� evolution and provide a unified phylogenetic framework for the further evolutionary 

and genomic investigations. The  analysis, comprising more than hundred 16S rDNA sequences 

available at the time for the �������	��
�� clade, revealed at least two transitions from faculatitive 

symbiosis to obligate mutualism. We also showed that different life strategies proposed for particular 

lineages were clearly correlated to sequence properties, i.e. the GC content and a branch length. While 

short branched taxa represented bacterial associates with neutral or slightly negative effects on the 

host, e.g., ����
�����, that apparently undergo horizontal transfers, long branches were associated with 
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obligate mutualists showing a strict pattern of maternal transmission. Furthermore, the study explored 

molecular characteristics and informative value of the 16S rRNA gene as the most frequently used 

phylogenetic marker (discussed in methodological issues). 

 

Similarly to �������	��
� bacteria, the genus ���
��� adopts several different types of symbiosis with 

a broad range of insect hosts, including tsetse flies, weevils, chewing lice, hippoboscid louse flies, 

ants, scale insects, aphids, stinkbugs, and cerambycid beetles (Dale and Maudlin, 1999; Sameshima et 

al., 1999;  Fukatsu et al. 2007; Nováková and Hypša, 2007; Burke et al., 2009; Gruwell et al., 2010; 

Grünwald et al., 2010; Kaiwa et al., 2010; Toju et al., 2010, Toju and Fukatsu, 2011). Despite this 

considerable diversity, the knowledge of ���
��� as a bacterial genus is seriously limited. The most 

attention has been paid to the tse-tse fly symbiont, ���
���� ����������
�� (Dale and Maudlin, 1999), 

which constitutes only a part of its host’s symbiotic community. In addition to �������������
�, tse-tse 

harbours a strict mutualist, �����������	�
� ����������
 (Aksoy, 1995), and more loosely associated 

bacteria of the genus ����
�	�
 (Cheng et al., 2000). Genomic studies focused on processes of 

metabolic complementation within the community and reveal an interaction between ���
��� and 

�����������	�
 via thiamine biosynthesis (Belda et al., 2010). Furthermore, the genome sequence of 

��� ����������
� supported the hypothesis that these bacteria represent an intermediate stage of 

symbiosis and ������������
� became a general model for investigation on evolutionary changes in 

symbiogenesis. Our research has been focused on exploring ���
��� diversity within blood feeding 

hosts. To date we have described two members of the genus ���
���, both phylogenetically distinct 

from the tsetse symbiont (Nováková and Hypša, 2007; ). In the current manuscript, we present 

basic molecular and morphological characterization of  
����
�
� Sodalis melophagi isolated from a 

complex bacterial community of the sheep ked, "����	
�
������
�. Based on draft genomic data, we 

further characterized the type threee secretion system (T3SS) which mediates establishment of close 

relationships between the bacterium and and the eukaryotic hosts (Coombes, 2009) and thus plays a 

major role in pathogenesis and symbiosis. We also propose "����	
�
� and�#������
 hosts to serve as 

suitable models for compartaive genomics focused on symbiosis in blood feeding organisms. Analyses 

comparing possible adaptive changes bound to evolutionary replacement of the obligate symbiont in 

closely related hosts with similar but unique biology will provide important insight into the 

symbiogenetic processes. 

 

������Comparative�genomic�of�symbiotic�bac�eria � 

�

Current understanding of the genomic evolutionary processes shaping symbiogenesis is mainly based 

on comparisons between phylogenetically unrelated symbiotic forms and/or comparisons of symbiotic 

lineages to free-living bacteria. This naturally leaves gaps in our insight into the transitional processes 

and various intermediate steps of symbiosis. On the other hand, comparisons between related 
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symbiotic lineages, which could potentially bring important data on the gradual genomic 

modifications, have so far been done only on the symbionts of few genera, e.g., �
�	���
� and�

����	�
���
 (Tamas et al., 2002; Degnan et al., 2005), with highly reduced genomes that do not 

allow for assessing the changes along all stages of the symbiosigenesis. Such dramatic reduction of 

symbiotic genomes due to massive gene loss is typical for these mutualistic relationships. Since the 

main role of the symbionts is to provide host with particular nutrients, these processes have always 

provoked a question how intimate is the genetic integration between the symbiont and the host. The 

highly reduced genomes of symbionts could be considered analogous to organelles. Therefore 

attention was paid to potential transfer of symbiont genes to the host genome as gene transfer has been 

found to occur between both mitochondria and plant chloroplasts and their hosts. So far, this issue was 

addressed in two symbiotic systems for which the host genomes became recently available, the aphid 

�����	����	��� ���
� with symbiont �
�	���
� 
�	������
, and the human body louse !����
�
��

	
�
�
� with  
� Riesia pediculicola (Kirkness et al., 2010; The International Aphid Genomics 

Consortium, 2010)� In the pea aphid genome, bacterial origin was identified for 12 genes or gene 

fragments. While the majority was ����
�	�
-derived, there were only two pseudogenes of �
�	���
 

origin (Nihoh et al., 2010). The louse genome completely lacked any evidence of bacterial gene 

acquisition (Kirkness et al., 2010). Although, these results suggest that gene transfer from the bacterial 

to the host chromosome is not common in insect symbiosis, they do not rule out possibility of such 

events in systems in which the symbiont has undergone greater levels of genome erosion than those 

observed in ���
�	������
�or ��������
�����
�(e.g.,  
��Sulcia muelleri,  
��Zinderia insecticola,  
��

Carsonella ruddii,  
��Hodgkinia cicadicola, or  
��Tremblaya princeps with the smallest genomes 

sequenced so far). Furthermore, the investigations of �����
� genome pointed out the importance of 

gene transfer for aphid biology. The genome does not only carries intact and highly expressed 

����
�	�
-derived genes with supposedly important roles in its symbiosis, it also gained fungal genes 

for carotenoid biosynthesis (Moran and Jarvik, 2010). 

 

In , we focused on this unique trait and explored the evolution of carotene desaturase gene 

family within aphids. Analyses of more than 30 species spanning a wide taxonomic range of aphids 

and adelgids suggested that the gene transfer predated split of these two families. In contrast to the 

donor fungal species that carry a single copy of carotene desaturase, we showed that transferred genes 

underwent an extensive duplication that lead to accumulation of up to seven copies in the aphid 

genomes. The copies include paralogs of ancient as well as recent origin for which patterns of 

pseudogenizations, recombination and occasional positive selection were identified. We also showed a 

possible relation of carotene desaturase copy numbers and color polymorphisms that often occurs 

among aphids from the Macrosiphini subfamily. Altogether, our results indicate the aphid evolutionary 

history to be accompanied by ongoing evolution of carotenogenic genes that yield a wide variety of 

carotenoid profiles in different aphid species.  
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Recently, several studies with broader sampling brought an extended knowledge on the symbiont’s 

phylogeny sufficient for selection of proper comparative models. In particular, bacterial genera 

����
�	�
, ���
���, ����
��
 and �������	��
� are prime examples of heterogenous lineages, which 

can provide a common framework for tracking various evolutionary changes behind the shifts in 

symbiotic lifestyle. (Nováková and Hypša, 2007; Bordenstein et al., 2009; Burke et al., 2009; also 

, , ). 

 

Based on our previous research, we focused our genomic investigations on the selected �������	��
� 

symbionts. In the , we present a comparative study on the evolution of symbiosis based on four 

genomes covering such different forms as parasites, loosely associated facultative bacteria, and 

obligate mutualists in different stages of adaptation. We sequenced the genomes of �������	��
��

���
�����
�
�� (has been done by our collaborators from the University of Liverpool) and  
� 

Arsenophonus melophagi (our own data), and verified the position of  
� Riesia pediculicola within 

the genus �������	��
�. The previously published genome of ����
����
� (Darby et al., 2010) was 

used as a fourth lineage in this comparative study. Our results revealed several interesting patterns for 

the shifts within the hypothetical parasite-mutualist continuum. Among them, the most interesting 

finding is a significant shift in the nucleotide composition towards high AT content at the first codon 

position along with a biased codon usage, and exceptionally strong selection pressure in the obligate 

mutualist,  
� Riesia pediculicola. Particularly the latter phenomenon is unexpected since the most 

derived mutualistic symbionts generally possess degraded genomes due to relaxed selection. Our 

tentative explanation involves effect of both, the repair mechanisms and selection strength.  The 

process of genome modification along the spectrum from free-living bacterium to obligatory 

mutualists is thus likely to be more complex then believed so far. In this study, we also confirmed and 

summarized some general changes that often occur in bacteria with a host-restricted lifestyle (e.g., 

changes in the coding capacity, reduction of the genome size due to the gene losses of particular 

functional categories in different symbiotic stages, advanced elimination of mobile elements, 

limitations on metabolic, secretion and sensing capacity, erosion of reparation and recombination 

machinery).  

 

4. CoNCLUSION�AND FUTURE�PROSPECTS �

Two main conlcusions can be drawn from the presented studies: 1) Bacterial symbiont lineages 

display a perplexing versatility of their life strategies. A single cluster of closely related lineages can 

produce a broad variety of ecological forms. In our studies we demonstrated this particularly on the 

diverse symbiotic cluster of �������	��
�����. Individual members of this group are associated with a 

broad range of hosts and even closely related members can adopt dramatically different lifestyles.  2) 
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Genomic comparisons show that the evolutionary changes accompanying the lifestyle shifts are 

complex and cannot be explained by a consistent set of simple rules. For example, the patterns we 

observed indicate that the typical manifestations of genome degradation, that is, elevated mutation 

rate, nucleotide bias and relaxed selection, do not work in concert across the different ecological 

forms, but each follows its own evolutionary trajectory.            

 

These conclusions point in the same direction: rapidly growing information on the symbionts 

phylogeny and genomics reveal new unexpected phenomena and stress the complexity of the 

symbiogenetic process. The investigations on evolution and genomics in insect-bacteria symbioses are 

clearly in an analytical phase and will require many additional models with firmly established 

phylogenies, complete knowledge on their biology and rigorous comparisons of their genomes, before 

any meaningful synthesis can be reached. 

 

In addition, limited attention has been paid to the fact, that the insect-bacteria symbiosis often involves 

more than one symbiont. In many cases, the host harbors a community of phylogenetically and 

ecologically distinct symbionts. So, the proper comparative study should take in the account not only 

the interactions between individual symbionts and the host, but also between the symbionts 

themselves. We have started this kind of research by selecting the "����	
�
������
� model which 

contains four different bacterial symbionts, the obligate mutualist of the genus �������	��
� and three 

more loosely associated commensals/parasites of the genera ���
���, �
�������
 and ����
�	�
.  

 

In my future research I plan to further focus on �������	��
� as a model organism. First, I would like 

to extend the knowledge on �������	��
� diversity and establish a firm phylogenetic framework 

uncovering additional newly described lineages. Based on this background, I will be able to establish 

proper models to pursue further genomic research, tackling two different areas of my main interest.  

The first one involves investigations on various stages in symbiogenesis and the second addresses 

questions on molecular mechanisms underlying the origin of linear genomes in bacteria. To achieve 

this, genome sequencing will be performed on several lineages of distinct symbiotic forms evolving 

under different environmental conditions (preferably members of more complex symbiotic 

communities), as well as those closely related to  
� Riesia pediculicola, a bacterium with a highly 

degenerated linear chromosome. Although genomic sequences provide insight into genetic and 

evolutionary changes, and prediction on regulation mechanism and metabolic capacity, it does not 

allow for detection of gene functionality.  Thus, in order to further shift my research into functional 

genomics, I will integrate transcriptomic approaches into my future investigations.
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Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution 
 
Nováková E., Hypša V., Moran N.A. 
 
BMC Microbiology (2009) 9:143 
 

Background: The genus Arsenophonus is a group of symbiotic, mainly insect-associated bacteria with 
rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic 
relationships varying from parasitic son-killers to coevolving mutualists. The present study extends the 
currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: 
Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic 
relationships within the genus. 
 
Results: The analysis of 110 Arsenophonus sequences (incl. Riesia and Phlomobacter), provides a 
robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, 
unstable inner topology indicates that complete understanding of Arsenophonus evolution cannot be 
achieved with 16S rDNA. Moreover, taxonomically restricted Sampling matrices prove sensitivity of 
the phylogenetic signal to sampling; in some cases, Arsenophonus monophyly is disrupted by other 
symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-
symbiont evolution and the haphazard association of the symbionts with distant hosts. A further 
conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated 
with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this 
incongruence could be caused by methodological artifacts, such as intragenomic variability. 
 
Conclusion: The sample of currently available molecular data presents the genus Arsenophonus as 
one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its 
phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches 
between entirely different life styles. Due to these properties, the genus should play an important role 
in the studies of evolutionary trends in insect intracellular symbionts. However, under the current 
practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to 
various methodological artifacts that may even lead to description of new Arsenophonus lineages as 
independent genera (e.g. Riesia and Phlomobacter). The resolution of the evolutionary questions 
encountered within the Arsenophonus clade will thus require identification of new molecular markers 
suitable for the low-level phylogenetics. 
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Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from 
a fungus. 
 
Nováková, E. and Moran, N.A.  
 
Molecular Biology and Evolution (2012) 29:313-323 
 
The pea aphid genome was recently found to harbor genes for carotenoid biosynthesis, reflecting an 
ancestral transfer from a fungus.  To explore the evolution of the carotene desaturase gene family 
within aphids, sequences were retrieved from a set of 34 aphid species representing numerous deeply 
diverging lineages of aphids, and analyzed together with fungal sequences retrieved from databases. 
All aphids have at least one copy of this gene, and some aphid species have up to 7, whereas fungal 
genomes consistently have a single copy. The closest relatives of aphids, adelgids, also have carotene 
desaturase; these sequences are most closely related to those from aphids, supporting a shared origin 
from a fungal to insect transfer predating the divergence of adelgids and aphids. Likewise, all aphids, 
and adelgids, have carotenoid profiles that are consistent with their biosynthesis using the acquired 
genes of fungal origin, rather than derivation from food plants. The carotene desaturase was acquired 
from a fungal species outside of Ascomycota or Basidiomycota, and closest to Mucoromycotina 
among sequences available in databases. In aphids, an ongoing pattern of gene duplication is indicated 
by the presence of both anciently and recently diverged paralogs within genomes, and by the presence 
of a high frequency of pseudogenes that appear to be recently inactivated. Recombination among 
paralogs is evident, making analyses of patterns of selection difficult, but tests of selection for a non-
recombining region indicates that duplications tend to be followed by bouts of positive selection. 
Species of Macrosiphini, which often show color polymorphisms, typically have a larger number of 
desaturase copies relative to other species sampled in the study.  These results indicate that aphid 
evolution has been accompanied by ongoing evolution of carotenogenic genes, which have undergone 
duplication, recombination, and occasional positive selection to yield a wide variety of carotenoid 
profiles in different aphid species.  
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Candidatus Sodalis melophagi sp. nov.: phylogenetically  independent comparative model to the 
tsetse fly symbiont Sodalis glossinidius.  
 
Chrudimský T., Husník F., Nováková E., Hypša V. 

Plos One (resubmitted) 

Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known 
member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the 
most important models in investigating establishment and evolution of insect-bacteria symbiosis. It 
represents a bacterium in the early/intermediate state of the transition towards symbiosis, which allows 
for exploring such interesting topics as: usage of secretory systems for entering the host cell, tempo of 
the genome modification, and metabolic interaction with a coexisting primary symbiont. In this study, 
we describe a new Sodalis species which provides a useful comparative model to the tsetse symbiont. 
It lives in association with Melophagus ovinus, an insect related to tsetse flies, and resembles 
S. glossinidius in several important traits. Similar to S. glossinidius, it cohabits the host with another 
symbiotic bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a 
typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, including 
bacteriome. Here, we provide basic morphological and molecular characteristics of the symbiont and 
show that these traits also correspond to the early/intermediate state of the evolution towards 
symbiosis. Particularly, we demonstrate the ability of the bacterium to live in insect cell culture as well 
as in cell-free medium. We also provide basic characteristics of type three secretion system and using 
three reference sequences (16S rDNA, groEL and spaPQR region) we show that the bacterium 
branched within the genus Sodalis, but originated independently of the two previously described 
symbionts of hippoboscoids We propose the name Candidatus Sodalis melophagi for this new 
bacterium.  
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Evolutionary history of aphids (Hemiptera: Aphididae): suitability of the P-symbiont  Buchnera 
aphidicola  DNA for reconstruction of the host phylogeny.  
 
Nováková, E., Hypša, V., Klein, J., Foottit, R.G., von Dohlen, C.D. and Moran, N.A 
 
MS prepared for publication. 
 
Reliable phylogenetic reconstruction, as a background for evolutionary inference, may be difficult to 
achieve in some groups of organisms. Particularly, for the diverse taxa that experienced rapid 
diversification, lack of sufficient information may lead to inconsistent and unstable results and a low 
degree of resolution. Coincidentally, such rapidly diversifying taxa are often among the biologically most 
interesting groups. Aphids provide such a typical example. Due to rapid adaptive diversification, they 
feature variability in many interesting biological traits, but they are also difficult group from the 
phylogenetic point of view. Particularly within the family Aphididae, many interesting evolutionary 
questions remain unanswered due to the phylogenetic uncertainties. In this study, we show that molecular 
data derived from the symbiotic bacteria of the genus Buchnera can provide a more powerful tool then the 
aphid-derived sequences. We analyze 255 Buchnera gene sequences and compare the resulting trees to the 
phylogenies previously retrieved from the aphid sequences. We show that the host and symbiont data do 
not contradict in any major phylogenetic elements. Also, we demonstrate that the symbiont-derived 
phylogenies support some previously questionable relationships and even reveal new aspects of the aphid 
phylogeny and evolution. 
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A symbiotic process: The evolution of inherited symbiont genomes. MS in preparation. 
 
Nováková, E., Hypša, V., Moran, N.A., Hurst, G.D.D., Lehane M. and Darby, A.C. 
 
MS in preparation. 
 

Background. Arthropods commonly have symbiotic relationship with maternally inherited bacteria. These 
relationships are diverse, and include obligate mutualism, facultative benefit to the host, and reproductive 
parasitism. Our understanding of patterns of genomic evolution under different forms of symbiosis has 
generally relied on contrast to either free living relatives or distantly related symbionts. The genus 
Arsenophonus is unusual in containing symbionts whose interactions with their hosts are diverse in 
themselves, and therefore allows comparison of genome form between closely related symbionts that 
share a recent common ancestor but display very different interactions with their host.  

Results. We here report properties of draft genome sequences of the secondary symbiont Arsenophonus 
triatominarum and the obligate Arsenophonus symbiont from the bloodfeeding diptera Melophagus 
ovinus. We compare these genomes to those previously reported for A. nasoniae, a male-killing bacterium 
that retains infectious transfer ability, and R. pediculicola, a louse symbiont that is obligately required by 
its host. We observed that the genome of A. nasoniae was largest, had the most complex metabolism, and 
largely intact secretion system. A. triatominarum had degenerated compared to the reproductive parasite, 
but encoded substantially greater number of pathways than the obligate symbionts. It is clear that in this 
clade there is a pattern of degeneration on evolution towards mutualism. 

Conclusions.We demonstrate that Arsenophonus lineages adapted to different lifestyles also show 
substantial differences in important genomic traits. Summarized, these differences reveal general 
tendencies along the hypothetical evolutionary continuum from almost “standard” bacterial genomes in 
parasites and facultative symbionts to highly modified and degenerated genomes in obligate mutualists. 
The most typical manifestation of these tendencies are massive gene loss, compositional bias and 
economization of the genome with decreasing frequency of horizontal gene transfer. In contrast to these 
parallel processes, some traits are not clearly coupled with the transition towards symbiosis (i.e. the 
mutation rates together with selection) and their investigation will require data sets extended with 
additional lineages of Arsenophonus. 
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