


To Vítězslav Moudrý

My exceptional supervisor, mentor and more importantly
friend.

This dissertation entitled ”Beyond Assumptions: Unraveling Data Lim-
itations in Predictive Ecology” is submitted to the Department of Spa-
tial Sciences, Faculty of Environmental Sciences, Czech University of
Life Sciences in Prague in July 2024 for the degree of Doctor of Philos-
ophy. All sources of information, including text, illustrations, tables,
and images, have been duly acknowledged and cited.



Essentially, all models are wrong, but some are useful.
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AbstRact
Context

Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of
species occurrences. However, despite their broad applicability, SDMs exhibit critical short-
comings due to limitations in species occurrence data and in environmetal variables. Typical
example of such limitation in species records is spatial uncertainty in their location, ranging
from a few meters to tens of kilometers (e.g., positional uncertainty in the GBIF database
can exceed 300 kilometers). Similarly, environmental variables may be limited by how much
detailed information about the environment they provide. For example, land cover types
typically indicate the amount of habitat within a spatial unit. However, it is possible that a
simple binary presence/absence of suitable habitat may be the only information available or
even more important aspect than area, determining species distribution.

Objectives

This dissertation had three main objectives. Firstly, I explored the potential of an alternative
approach to incorporate environmental variables into models (i.e., binary versus continu-
ous habitat information). Secondly, I investigated the influence of positional uncertainty in
species records on the ecological interpretability of models. Thirdly, I evaluated whether the
appropriateness of using binary or proportional (continuous) type of variables, and the influ-
ence of positional error, is affected by the scale of the analyses. Specifically, I addressed the
following research questions: a) Can binary land cover predictors provide models of higher
accuracy than traditionally used proportional variables? b) If so, what is the role of spatial
grain in determining the usability of binary land cover predictors? c) To what extent does
positional uncertainty in species occurrence data affect model parameter estimation and the
ecological interpretability of species distributionmodels? d)What are the trade-offs between
analysis grain and positional uncertainty in modeling species distributions?.

Results

Results indicated that models’ performances were not affected by the type of the adopted
habitat variable (proportional or binary but the usability of binary variables decreased with
coarsening the resolution (i.e., binary representation of habitat is useful at finer grain sizes
of approx. 1km2. Results confirmed that model performance decrease with increasing po-
sitional error in species records, as demonstrated in prior studies. However, I have shown
that coarsening the analysis grain to compensate for positional error did not improve model
performance as was widely assumed. This, however, doesn’t meanwe should exclude species
recordswith high positional uncertainty fromour studies, because the negative consequences
of positional uncertainty on model performance did not extend as strongly to the ecological
interpretability of the models.

Conclusions

These findings are encouraging for practitioners using SDMs to reveal relationships between
species occurrences and its environmental drivers as such relationship can be to some degree
estimated using positionally uncertain data and simple environmental variables describing
presence or absence of a habitat. On the other hand, my findings show that positional un-
certainty in species data can cause inaccurate spatial predictions leading to inaccurate maps
of species distributions, especially in heterogeneous environments and when using fine res-
olution environmental data. Therefore, such models are not suitable for tasks like setting up
protected areas or prioritizing conservation efforts.



AbstRact in CzecH
Souvislosti

Modely druhové distribuce (SDMs) jsou důležitým nástrojem při doplňování mezer v našich
znalostech o výskytech druhů. Navzdory tomu, že se tytomodely často používají v ekologick-
ých studiích, mají zásadní nedostatky kvůli nepřesnostem v datech o výskytech druhů a envi-
ronmentálních prediktorech. Typickým příkladem takového omezení je polohová nejistota v
záznamech druhů, kterámůže být od několikametrů až po desítky kilometrů (např. polohová
nejistota v databázi GBIF může přesáhnout 300 kilometrů). Environmentální prediktory pak
mohou být omezeny tím, jak přesnou informaci o prostředí, ve kterém se druh nalézá, posky-
tují. Například proměnné krajinného pokryvu obvykle udávají rozlohu nebo podíl habitatu
v rámci určité oblasti. Avšak co když, jednoduchá binární informace (přítomnost/absence) o
vhodném habitatu může být jedinou dostupnou informací nebo dokonce důležitějším aspek-
tem při určení druhové distribuce než informace o celkové rozloze habitatu?

Cíle

Tato disertační práce měla tři hlavní cíle. Za prvé jsem zkoumal možnosti použití nového
typu environmentálních prediktorů (binárních dat), které obsahují pouze informaci o pří-
tomnosti nebo absenci vhodného habitatu. Za druhé jsem zkoumal vliv polohové nejis-
toty v druhových záznamech na ekologickou interpretovatelnost modelů. Třetím cílem pak
bylo posouzení role prostorového měřítka na modely, které používali binární prediktory a
druhová data s různou polohovou nejistotou. Konkrétní výzkumné otázky byly: a) Mohou
binární environmentální prediktory krajinného pokryvu zvýšit přesnost modelů? b) Pokud
ano, jaká je role použitého prostorového měřítka? c) Do jaké míry ovlivňuje polohová ne-
jistota v druhových datech ekologickou interpretovatelnost modelů? d) Jak spolu souvisí a
polohová chyba druhových dat?

Výsledky

Výsledky ukázaly, že přesnost modelů nebyla významně ovlivněna typem použitých envi-
ronmentální prediktorů (proporcionální nebo binární infomrace o vhodném habitatu). Je
nicméně důležité říct, že ale použitelnost binárních prediktorů klesala s hrubším prostorovým
rozlišením. To znamená, že binární reprezentace habitatu je užitečná především při použití
prediktorů s vyšším prostorovým rozlišením (cca od 1km2). Výsledky kromě toho potvrdily,
že přesnost modelů klesá se zvyšující se polohovou nejistotou v záznamech druhů, tak jak
bylo prokázáno v předchozích studiích. Důležitým závěrem práce je fakt, že zhoršení pros-
torového měřítka nekompenzuje negativní vliv polohové nejistoty, jak se všeobecně před-
pokládalo. To však neznamená, že bychom neměli při modelování záznamy druhů s vysokou
polohovou nejistotou používat.

Závěry

Jak ukázaly výsledky, polohově neurčitá data a binární informaci o přítomnosti habitatu lze
za určitých podmínek využít pro studium vztahů mezi organismy a prostředím. Na druhou
stranu mapy druhové distribuce vycházející z modelů založených na datech s vysokou polo-
hovu nejistotou, jsou nepřesné (zejména v heterogenním prostředí a při použití environmen-
tálních prediktorů s vysokým prostorovým rozlišením) a nevhodné pro aplikace v ochraně
přírody.
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PReface
1.1. FoRewoRd
I am filled with a profound sense of accomplishment and gratitude upon completing this dis-
sertation. The journey leading up to this moment has been filled with rigorous exploration,
tireless research, and unwavering dedication. This work represents the culmination of years
of academic pursuit and a deep passion for understanding the intricacies of ecological pre-
dictive modeling.

The driving force behind this dissertation stems from my enduring fascination with data
and its potential to unravel the complex tapestry of ecological systems across various spa-
tial scales. From the earliest stages of my academic pursuits, I recognized the importance of
spatial data quality and the influence it wields over the outcomes of predicting species distri-
bution. It became evident that while a wealth of studies focused on modeling methodologies
and theoretical frameworks, the critical aspects of spatial data quality and the range of spatial
data types applicable in predicting species distribution deserved deeper exploration.

Embracing this challenge, I embarked on a meticulous investigation to bridge the gap be-
tween theory and practical application. The research contained within these pages attempts
to shed light on the impact of spatial data quality and their types and the validity of com-
monly held assumptions, offering insights that can enhance the accuracy, reliability, and
robustness of predictive models.

As we find ourselves in an age where data is increasingly accessible in unprecedented quality
and volume, these findings take on heightened significance. The ever-expanding availability
of data holds great promise for advancing our understanding of ecological systems and in-
forming effective conservation andmanagement strategies. I sincerely hope that the research
presented herein will contribute to this collective pursuit and inspire further investigations
into the realm of predicting species distribution.

With great pride and a sense of anticipation, I offer this dissertation to the academic com-
munity, hoping that it will contribute to the knowledge and serve as a catalyst for future
research endeavors. May the ideas presented within these pages ignite curiosity, inspire col-
laboration, and foster a deeper appreciation for the intricate wonders of predictive modeling
in ecology.

1.2. Scientific motivation
Frommy early years at high school, I became captivated by how data quality and availability
can shape our lives and influence the world around us. Therefore, many years after, when
the time came to select a topic for my dissertation, I deliberately chose to explore the realm
of spatial data quality and types in predictive ecology. This area of investigation carries
substantial importance, given that while numerous studies have concentrated on modeling
methodologies and theoretical frameworks, only a limited number have delved into the crit-
ical aspects of data quality and data types applicable in predictive modeling. More impor-
tantly, such research takes on heightened significance in the contemporary era, where there
is an exponentially growing wealth of spatial data accessible to us.

In addition, during an extensive literature review, I observed a recurring recommendation
to downscale the resolution of environmental predictors to match the highest positional
uncertainty of species records. However, there appeared to be a notable lack of empirical
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testing to validate this assumption. This sparked my curiosity, prompting me to investigate
the validity of this prevalent and customary practice. I was eager to determine the extent to
which this assumption held true and whether it could influence the accuracy and reliability
of modeling outcomes.

I firmly believe that investigating spatial data quality and diverse types within ecological
predictive modeling is of utmost significance. By addressing these crucial aspects, we can
enhance predictive models’ accuracy, reliability, and robustness, ultimately contributing to a
more comprehensive understanding of ecological systems and facilitating informed decision-
making for environmental conservation and management.

1.3. DisseRtation stRuctuRe
The dissertation comprises of four published papers, which collectively contribute to the
body of knowledge in predicting species distribution. It is divided into two distinct parts.
The first part of the dissertation beginning with a preface and a comprehensive general
introduction to predicting species distribution. These chapters provide a foundational un-
derstanding of the subject matter and set the stage for subsequent studies wherein specific
research challenges and questions will be examined in greater detail.

The second part of the thesis consists of four chapters, which delve into individual studies
conducted within the realm of species predictive modeling. These chapters present the spe-
cific research endeavors undertaken, each contributing to the broader understanding of the
field and offering unique insights and findings.

Chapter 3.1: Habitats as predictors in species distribution models: Shall we use continuous
or binary data?

Chapter 3.2: Assessing the applicability of binary land-cover variables to species distribu-
tion models across multiple grains.

Chapter 3.3: Species distribution models affected by positional uncertainty in species oc-
currences can still be ecologically interpretable.

Chapter 3.4: Positional errors in species distribution modeling are not overcome by the
coarser grains of analysis.

Together, these parts form a cohesive body of work that reflects the culmination of exten-
sive research and analysis, ultimately contributing to advancing the knowledge in predicting
species distribution.

1.4. DisseRtation objectives
The objectives of my dissertation were threefold. Firstly, I explored the potential of a novel
environmental data type to improve the accuracy of species distribution predictions. Sec-
ondly, I investigated the influence of positional uncertainty in species records on the model’s
ecological interpretability and assessed our abilities to compensate for these data shortcom-
ings. Thirdly, I assessed the role of spatial grain for the usability of binary variables, and for
the effect of positional uncertainty. Specifically, I aimed to address the following research
questions:

a) Can binary land cover predictors (i.e., information about the presence or absence of a
habitat) enhance the precision of species distribution models?
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b) If so, what is the role of spatial scale in determining the effectiveness of binary land cover
predictors?

c) To what extent does positional uncertainty affect model parameter estimation? Specif-
ically, what is the influence of positional uncertainty on the ecological interpretability of
species distribution models?

d) What trade-offs exist between analysis grain and positional uncertainty when modeling
species distributions? Is it advisable to coarsen the analysis grain to mitigate the impact of
positional error, or should the analysis grain align as closely as possible with the assumed
response grain, irrespective of positional error?
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THeoRetical bacKgRound
Predictive modeling in ecology has become an indispensable tool in studying various eco-
logical phenomena, including species-environment relationships, species interactions, and
population dynamics; it is also crucial in facilitating nature conservation efforts and in in-
forming decision-making processes (Guisan and Zimmermann 2000, Anderson et al. 2003,
Tan et al. 2006, Drew and Perera 2010). Its significance has become even more pronounced
considering climate changes, as it provides valuable insights and predictions to guide proac-
tive measures for the protection and sustainable management of our natural environment
(Alitzer et al. 2013, Urban et al. 2016, Nogués-Bravo et al. 2018, Schleuning 2020). Species
distribution models (SDMs) are widely recognized as powerful tools in predictive ecologi-
cal modeling. The primary objective of SDMs is to establish relationships between species
records and environmental variables which allow for describing these relationships and pre-
dicting species distribution in an environmental or geographical space (Elith and Leathwick
2009, Miller 2010, Ferrier et al. 2017, Franklin 2023). While SDMs have become a routine part
of ecological research, it is important to acknowledge their inherent limitations, particularly
those associated with input data (Araújo et al. 2019).

To achieve accurate SDMs, it is crucial to ensure the accuracy of both species’ records and
environmental predictors (Robinson et al. 2011, Aubry et al. 2017, Ahmad Suhaimi et al.
2021, Arenas‐Castro et al. 2022). However, attaining such high accuracy is often challenging
in real-world scenarios. Additionally, the choice of data type also plays a significant role.
When constructing SDMs, one must make decisions regarding utilizing species records from
museum databases, species atlases, or global databases (e.g., eBird or GBIF). Furthermore,
selecting appropriate environmental predictors presents additional complexities. For one
thing, determining the optimal grain size (i.e., resolution of environmental predictors) is
essential (Pearson and Dawson 2003, Guisan et al. 2007, Kaliontzopoulou et al. 2008, Seo
et al. 2009, Miguet et al. 2016, Mertes and Jetz 2018). In addition, it is equally important
to choose what predictors should be used (e.g., climate, topography, soil, land cover, canopy
height, elevation; Elith and Leathwick 2009, Miller 2010, Franklin 2010). Moreover, the source
of these data (e.g., LiDAR, satellite images) needs to be considered (Austin and Van Niel
2011, Bucklin et al. 2015, Moudrý et al. 2023a), as well as the potential incorporation of
environmental predictors exhibiting high correlation (Franklin 2010, Dormann et al. 2013,
De Marco and Nóbrega 2018, Sillero and Barbosa 2021). In my dissertation thesis, I strived to
transcend common assumptions in predicting species distribution by offering an innovative
approach and challenging established practices.

2.1. Species distRibution models
Species distribution models (SDMs) have diverse applications in ecology and conservation.
By establishing the relationship between species records and environmental conditions, SDMs
can generate spatial predictions of species distributions (Ferrier et al. 2017; see Figure 2.1).
This information is valuable for understanding species’ habitat requirements, elucidating
niche dynamics, and uncovering the underlying mechanisms that drive species distributions.
In addition, these models have significant implications for conservation planning. They can
provide insights into species vulnerability and help identify areas with high conservation
value (Araújo and Guisan 2006, Austin 2007, Pearman et al. 2008, Elith and Leathwick 2009,
Franklin 2010, Miller 2010, Merow et al. 2014, D’Amen and Azzurro 2020, Liu et al. 2022,
Lo Parrino et al. 2023). Furthermore, by combining SDMs’ predictions with information on
protected areas, land use patterns, and other conservation priorities, decision-makers can ef-
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fectively prioritize conservation interventions, establish wildlife corridors for species move-
ment, and guide land-use planning to minimize detrimental impacts on biodiversity from a
local to global scale (Johnson and Gillingham 2005, Domisch et al. 2019, Sutton et al. 2023,
Van Moorter 2023). More importantly, SDMs can project the potential impacts of climate
change on species distributions and habitats. By integrating future climate scenarios into
the models, SDMs can predict how species distributions might shift in response to changing
environmental conditions (Synes and Osborne 2011, Stanton et al. 2012, Gotelli 2015, Booth
2018, Briscoe et al. 2023, Festa et al. 2023). This information is valuable for assessing species’
vulnerability to climate change, identifying areas where conservation efforts may need to be
intensified, and informing adaptation strategies.

Figure 2.1: The general process of species distribution modeling. SDMs combine environmental predictors and
species records to quantify species-environment relationships. Once the model is fitted, we can predict species
distribution in environmental and geographical spaces or explore species–environment relationship inferences.

Species distributionmodeling encompasses various modeling techniques. Themost common
techniques used in SDMs include Boosted Regression Trees (BRT), GeneralizedAdditiveMod-
els (GAM), Generalized Linear Models (GLMs), Random Forests (RF), and Maximum Entropy
Models (MaxEnt). These techniques can be divided into linear models (GAM, GLM) and ma-
chine learning models (MaxEnt, RF, BRT). GLMs provide a flexible framework for modeling
the relationship between species occurrence or abundance and environmental variables, en-
abling the incorporation of various functional forms and link functions (Nelder and Baker
1972, Oksanen and Minchin 2002). GAM, a flexible regression technique, extends GLMs by
incorporating non-linear relationships through smoothing functions. GAMs allow for more
flexible and nuanced modeling of species-environment relationships, capturing complex re-
sponse patterns that linear relationships may not adequately represent (Yee and Mitchell
1991).

MaxEnt, a widely used machine learning approach in SDMs, predicts species distributions by
maximizing the entropy of the model while adhering to constraints imposed by environmen-
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tal predictors. This technique is particularly suitable for handling presence-only data and
capturing complex interactions among environmental predictors (Phillips et al. 2006). RF, a
machine learning technique, is extensively employed in SDMs due to its ability to combine
multiple decision trees, considering the importance of different environmental variables and
their interactions (Breiman 2001). BRT, another machine learning technique, sequentially
builds decision trees and iteratively adjusts their weights to enhance model predictions. This
technique is known for effectively capturing complex interactions and non-linear relation-
ships in species distributions (Friedman et al. 2000). The choice of modeling technique de-
pends on the specific research question, available data, and characteristics of the species
under investigation (Elith and Elith and Leathwick 2009, Norberg et al. 2019, Valavi et al.
2021).

In addition to employing separate modeling techniques, researchers can utilize an ensem-
ble modeling approach. Ensemble modeling, also referred to as model stacking or model
averaging, entails integrating multiple modeling techniques to enhance the accuracy and
robustness of SDMs. This approach offers two main benefits. First, it reduces the risk of rely-
ing solely on the strengths and limitations of a single modeling technique. Second, ensemble
modeling can improve predictive accuracy by capitalizing on the complementary strengths
of the previously mentioned models. By combining the outputs of different techniques, en-
semble modeling can capture a broader range of ecological processes, handle different data
types effectively, and produce more robust and reliable predictions (Bates and Granger 1969,
Makridakis and Winkler 1983, Araújo and New 2007, Mateo et al. 2012, Parker 2013). While
writing about ensemble modeling, I am intrigued by the possibility of utilizing this approach
to mitigate the negative influence of positional uncertainty in species records. Consider-
ing the challenges posed by inaccuracies in species occurrences, exploring the potential of
ensemble modeling to address positional uncertainty is an avenue worth investigating, par-
ticularly as it could contribute to advancing SDMs methodologies. Whether pursued by
myself or other researchers, exploring the application of ensemble modeling to mitigate the
effects of positional uncertainty holds great potential for further refining the accuracy and
applicability of SDMs in ecological studies.

2.2. Input data
Elementary input data for SDMs consist of two main components: environmental predictors
and species records. Environmental predictors encompass a wide range of, for example, bio-
physical and climatic variables that characterize the environmental conditions of the study
area. Integrating species records and environmental predictors allows for exploring the rela-
tionships between species occurrences and environmental conditions, forming the basis for
predicting species distributions (Elith and Graham 2009, Elith and Leathwick 2009, Franklin
2010). Species records, also known as occurrence data, provide information on the presence
or absence of a species in specific locations.

The accuracy of environmental predictors and species records is essential in determining
the reliability and robustness of models’ outcomes. Any inaccuracies or uncertainties in the
input data can introduce noise and distort the relationships between species records and
environmental conditions, leading to less accurate model results (Araújo et al. 2019). Envi-
ronmental predictors should be accurately measured, derived, calculated, and appropriately
scaled to the spatial extent of the study (Osborne and Leitao 2009, Moudrý et al. 2018, Moudrý
et al. 2019). In terms of species records, it is crucial to ensure that the recorded species are
correctly identified, the record’s coordinates are properly georeferenced, and that species are
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evenly gathered across a study area (Kamino et al. 2011, Syfert et al. 2013, Costa et al. 2015,
Mitchell et al. 2017, Oleas et al. 2019, Gábor et al. 2020a, Rocchini et al. 2023).

In addition to species and environmental data, several other data types can be incorporated
into SDMs to enhance their predictive accuracy and ecological insights (for example abun-
dance data, genetic data, landscape connectivity data, or species interactions) Abundance
data quantifies a species’ relative abundance or density at different locations. This data type
provides additional information beyond presence or absence, allowing for a more nuanced
understanding of species distributions and population dynamics (Howard et al. 2014, Yu
et al. 2020, Waldock et al. 2021). Genetic information, such as DNA sequences or mark-
ers, can provide valuable insights into population structure, gene flow, and adaptive genetic
variation. Incorporating genetic data into SDMs can help identify genetic factors influenc-
ing species distributions (Termansen et al. 2006, Gotelli and Stanton-Geddes 2015, Marcer
et al. 2016). Measures of landscape connectivity, such as habitat corridors or landscape re-
sistance, can be incorporated into SDMs to account for the influence of landscape structure
on species dispersal and connectivity (Maiorano et al. 2019, Shipley et al. 2021, Curd et al.
2022). Species interactions, such as predator-prey relationships, competition, or mutualistic
interactions, can significantly impact species distributions. Incorporating data on ecological
interactions into SDMs can improve the understanding of species-environment relationships
and enhance the predictive power of the models (Wisz et al. 2013, Trainor et al. 2014, Dor-
mann et al. 2018, Windsor et al. 2022).

The scope of my dissertation requires a specific focus on utilizing species records and envi-
ronmental predictors. While other introduced data types can certainly contribute valuable
insights to species distribution, their inclusion fell outside the purview ofmy dissertation. As
such, those data types will not be further examined within this context, and the subsequent
sections will remain focused on species records and environmental predictors.

2.2.1. EnviRonmental pRedictoRs
Various environmental predictors can be incorporated into SDMs, each capturing different
aspects of the species-environment relationship. Thus, selecting appropriate predictors is
a major methodological challenge (Dormann et al. 2007, Williams et al. 2012, Misiuk et al.
2018, Smith and Santos 2020, Zurell et al. 2020).

Climate data, such as temperature, precipitation, and seasonality, are frequently used to
model the broad-scale distribution of species, as climate exerts a significant influence on
species’ physiological and ecological tolerances (Fick and Hijmans 2017). Such data are of-
ten acquired frommeteorological stations or interpolated from global climate databases, such
as WorldClim.

Soil data, encompassing properties like soil type, pH, and nutrient content, contribute to
understanding the edaphic conditions that shape species distributions and can be acquired
from soil surveys, remote sensing techniques, or global soil databases like the SoilGrids sys-
tem (Schröder 2008, Walthert and Meier 2017).

Topographic data, including elevation, slope, and aspect, provide information about the ter-
rain and microclimate (Miller 2010, Carlson et al. 2022). Topographic data can be obtained
from satellite (e.g., Tandem-X, Copernicus Digital Elevation Model) or airborne remote sens-
ing platforms (e.g., National Center for Geographic Information). Vegetation data, such as
vegetation indices (e.g., canopy height) or land cover classifications, offer insights into the
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structure and composition of habitats, reflecting the resources available to the species (Davies
and Asner 2014, Moudrý et al. 2023a). Vegetation data can be derived from satellite imagery,
such as those provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) or
from land cover datasets like the CORINE Land Cover.

The remarkable progress in remote sensing technology allows us to derive environmental
data at increasingly finer scales, enabling the integration of fine-resolution information in
predicting species distribution, with resolutions as fine as a couple ofmeters. Remote sensing
techniques, such as satellite imagery and airborne sensors (e.g., LiDAR), provide information
about the Earth’s surface and its characteristics, encompassing land cover, vegetation indices,
topography data, and even climatic predictors. This advancement is of utmost importance, as
it has been demonstrated that fine-grain data are essential for comprehending the impacts of
climate change on biodiversity, spanning from local to global scales (Lembrechts et al. 2019a,
Lembrechts et al. 2019b, Zellweger et al. 2019, Stark and Fridley 2022).

Land Cover: Continuous or Binary Predictor?

In SDMs, land cover predictors or habitat types are typically incorporated by representing
the proportion of specific land cover types within individual sites, such as grid cells or atlas
mapping squares (Chauvier et al. 2020, Randin et al. 2020, Cánibe et al. 2022, Yang et al.
2023, Venter et al. 2023). But what if, for some species, the total habitat area is less relevant
than the simple fact that a particular habitat is present or absent? We can hypothesize that
the presence of a species may be influenced by the binary occurrence of a habitat, whereby
the quantity of habitat within a given spatial unit becomes irrelevant, and the mere presence
of the habitat becomes more crucial (Figure 2.2). However, to establish this hypothesis, it is
necessary to determine the minimum or maximum percentage of habitat required to sustain
a viable species population. This hypothesis assumes the existence of a threshold amount of
habitat, belowwhich the species is unlikely to occur, and above which the species is expected
to persist.

Furthermore, we might assume that an increase in habitat area beyond the threshold size
will not further enhance species presence (noting that habitat data resolution influences the
habitat amount threshold). Such a threshold has been theorized (Andrén 1994, Fahrig 2001)
and empirically observed in bird species (Melo et al. 2018). In the field of conservation
biology, this concept is closely related to the notion of critical habitat area (Fahrig 2001,
Melo et al. 2018), which proposes that there is a specific threshold of habitat amount below
which a species cannot survive, resulting in a step-like, rather than continuous, response of
species occurrence probability to habitat area. To the best of my knowledge, this possibility
has not been theoretically or empirically explored within SDMs. Therefore, based on those
assumptions, I investigated this possibility in my dissertation. For further details and in-
depth analysis, I invite readers to refer to Chapters 3.1 and 3.2 of my dissertation.

At the end of this chapter, it is important to highlight one additional aspect. Despite the wide
range of environmental predictor sources available, using these sources in predicting species
distribution is not immune to uncertainties. These uncertainties can stem from various fac-
tors, such as measurement errors, limitations in spatial and temporal resolution, interpo-
lation methods employed, or the inherent intricacies of environmental processes (Osborne
and Leitao 2009, Moudrý et al. 2018, Moudrý et al. 2019, Marešová et al. 2021). Conse-
quently, when incorporating such data into modeling frameworks, these uncertainties have
the potential to propagate through the model, affecting the accuracy and precision of species
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distribution projections. It is, therefore, imperative to acknowledge and quantify these un-
certainties to ensure the robustness and reliability of SDMs.

Figure 2.2: Graphical representation of the hypothesis. Land cover predictors are typically incorpo-
rated by representing the amount of specific land cover types within individual sites. But what if, for
some species, the total habitat area is less relevant than the simple fact that a particular habitat is present
or absent?

2.2.2. Species RecoRds
In SDMs, species records are typically represented as presence-only or presence-absence
data. Presence-only data include records that only indicate the presence of a species at a
particular location without information on its absence. On the other hand, presence-absence
data provide information on the presence and absence of a species at specific sites. While
presence-absence data are considered more informative for modeling species distributions,
they are often scarcer and require careful sampling design to ensure adequate representation
of absence locations (Franklin 2010, Guillera‐Arroita et al. 2015). Species records can be
obtained from various sources, including field surveys, citizen science initiatives, museum
collections, and literature reviews, or generated based on expert knowledge.

Field surveys involve systematic sampling or observations researchers conduct to record
species’ presence or absence at specific locations. These surveys often employ various sam-
pling techniques, such as transect surveys, point counts, quadrat sampling, or trapping meth-
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ods to gather species data. Field surveys provide direct and reliable data collected specif-
ically for the study. They allow for standardized data collection protocols and controlled
sampling efforts, enabling researchers to gather accurate and comparable information. Ad-
ditionally, field surveys offer the advantage of collecting additional ecological information,
such as habitat characteristics or species behavior, which can provide valuable insights into
species-environment relationships (Legendre 2002). However, there are some disadvantages
associated with field surveys. They can be time-consuming and resource-draining (expen-
sive), particularly when conducting large-scale studies requiring extensive data collection.
Additionally, field surveys have limited spatial coverage, as they are often undertaken in
specific study areas or sampling sites, which may not capture the full extent of species distri-
butions. This can result in an incomplete representation of species occurrences, particularly
for rare or elusive species that may be missed during surveys (Monk 2014, Wheater et al.
2020).

Citizen science initiatives engage the public in scientific data collection, allowing partici-
pants, often with limited scientific training, to contribute observations of species records
through dedicated platforms or mobile apps designed for citizen science projects (e.g., eBird).
They offer valuable advantages, including public involvement and education in scientific
research and the ability to cover extensive geographic areas and gather data on common
species (Kosmala 2016). Nonetheless, there are certain considerations associated with citizen
science initiatives engage. One important factor is the potential variation in data quality due
to observer skills and expertise differences. Participants may have varying levels of knowl-
edge and experience, which can impact the accuracy and reliability of their observations.
Additionally, there is a potential for biased sampling, as participants may be more likely to
report charismatic, easily recognizable species or species in easily accessible locations. It is
also worth noting that citizen science data may lack detailed ecological information or stan-
dardized data collection protocols, which can challenge data consistency and comparability
(Fraisl 2022).

Naturalmuseums have extensive collections of specimens collected overmany decades. These
collections include species occurrence information and preserved specimens, such as skins,
bones, or DNA samples, which can provide valuable insight into extinctic or living species.
Such data can be digitized and used as valuable input for SDMs. One advantage of utilizing
museum collections is their inclusion of extinctic or living specimens, providing access to
long-term data that can shed light on species distributions over time. These collections also
offer taxonomically verified species records, ensuring the accuracy and reliability of the data.
By incorporating museum specimens into SDMs, researchers can gain insights into the his-
torical distribution patterns and understand how they have evolved over time (Brooke 2000,
Graham et al. 2004). On the other hand, it is important to acknowledge certain limitations
associated with museum collections. These collections are limited to the species represented
within the museum holdings, which may not encompass the full range of species present
in a study region. Additionally, the spatial and temporal coverage of museum collections
can be patchy or biased towards specific regions or time periods, potentially impacting the
representation of certain species or timeframes. Furthermore, the precise geolocation and
comprehensive ecological information associated with museum specimens may be lacking,
which can present challenges in accurately capturing the environmental context of species
occurrences (Lister 2011).

Scientific publications, including research articles, reports, and species atlases, often report
species occurrence data collected through various studies or monitoring programs. One
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advantage of utilizing scientific publications is accessing data from multiple studies and re-
ports, providing awide range of species occurrence information. These publications can offer
historical or regional perspectives on species distributions, allowing researchers to examine
changes over time or variations across specific geographic areas. Furthermore, scientific pub-
lications may provide detailed ecological context and supporting information, enriching the
understanding of species occurrences (Hampton et al. 2015, Michener 2015). Nevertheless,
it is essential to consider certain limitations when utilizing data from scientific publications.
Data availability and quality may vary across different publications, as some studies may
provide more comprehensive and reliable data than others. Additionally, the scope and fo-
cus of the reviewed literature may limit the breadth and depth of available species records.
It is crucial to acknowledge the potential for publication bias, as negative or non-significant
results may not be published (Culina et al. 2018).

Understanding Challenges in Species Data

Each source of species data has its strengths and limitations, and the selection of data sources
should be carefully considered based on the research objectives, spatial scale, and data avail-
ability. Combining multiple data sources can help mitigate the limitations and enhance the
overall robustness of SDMs.

Species records obtained from the aforementioned sources are frequently consolidated and
aggregated in online, public, global databases such as GBIF, eBird, or iNaturalist. These
databases play a critical role in enhancing species records’ spatial and taxonomic coverage.
They serve as centralized and accessible repositories, providing researchers with a valuable
resource for studying species distributions. One of the key advantages of these databases is
their ability to aggregate data from multiple sources, thereby increasing the overall compre-
hensiveness and representativeness of the species records. By bringing together data from
various contributors and organizations, these databases facilitate data sharing and collabo-
ration among researchers, promoting a broader understanding of species distributions on
a global scale. However, it is important to acknowledge that data quality can vary across
sources and contributors. Including duplicate records is not uncommon, necessitating care-
ful data cleaning and validation procedures (Zizka et al. 2020).

Furthermore, spatial bias can arise due to uneven sampling efforts or data gaps in certain
regions (Rocchini et al. 2023). In addition, many occurrences may exhibit inherent posi-
tional uncertainties (Moudrý and Devillers 2020). Positional uncertainty can introduce bias
in model predictions, as inaccurate or imprecise occurrence locations can lead to incorrect
estimations of species-environment relationships.

The detrimental impact of positional uncertainty in geographical coordinates on spatial mod-
eling is well-established. As spatial modeling tools have become increasingly utilized in
ecological studies, the question of the utility of species occurrences with positional uncer-
tainty has emerged. This has sparked a longstanding debate among ecologists regarding
the value and reliability of such data. Fascinatingly, previous studies investigating the in-
fluence of positional uncertainty on species distribution predictions concluded conflicting
findings, thereby adding to the issue’s complexity. While some studies have reported that
positional uncertainty leads to a decrease in model performance (Johnson and Gillingham
2008, Osborne and Leitao 2009, Lash et al. 2012, Tulowiecki et al. 2015, Mitchell et al. 2017,
Soultan and Safi 2017, Zhang et al. 2018, Fernandes et al. 2019), others have reached con-
trasting conclusions (Graham et al. 2008, Fernandez et al. 2009). These opposing results can
be explained using environmental predictors with different heterogeneity (Naimi et al. 2011,
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2014, Gábor et al. 2023) or species with varying niche widths (Gábor et al. 2020a, Gábor
2023). Although previous studies thoroughly assessed the effect of positional uncertainty
on the model predictive performance, the question of how positional uncertainty in species
records affects models’ parameter estimation (species–environment relationships inference)
remains largely unexplored. Therefore, in my dissertation, I explored the extent to which
parameter estimation is affected by positional uncertainty. Specifically, collaborating with
my esteemed co-authors, we explored the impact of positional uncertainty on key aspects
such as variable importance and the shape of response curves (see Chapter 3.3).

Researchers commonly try to mitigate or minimize the negative impact of positional uncer-
tainty in species records. One approach involves georeferencing species records based on
the adopted analysis grain, ensuring that the occurrence locations align with the desired spa-
tial scale of analysis (Ballesteros-Mejia et al. 2017). Another strategy might be integrating
imprecise species and high-accuracy records (Reside et al. 2011; Figure 2.3). Alternatively,
when working with already georeferenced records, researchers may opt to remove impre-
cise occurrences, such as records with lower latitude and longitude precision (e.g., less than
three decimal places) or those known to have high positional uncertainty (Gueta and Carmel
2016, Watcharamongkol et al. 2018, Ellis-Soto et al. 2021; Figure 2.3). However, removing
positionally inaccurate records can result in a reduced sample size and potentially diminish
the model’s explanatory power (Smith et al. 2023). Another strategy employed to mitigate
the negative influence of positional uncertainty is to coarsen the analysis grain (Moudrý and
Šímová 2012, Keil et al. 2014, Sillero and Barbosa 2021; Figure 2.3).

Nevertheless, it is important to note that this approach also reduces the sample size. In
addition, species’ response to the environment might be better captured at a finer grain
(Guisan et al. 2006, Merow et al. 2014). Both factors can have undesirable effects on the
performance of SDMs. It is worth noting that while this approach has a theoretical basis, it
has not been extensively tested in practical applications. Therefore, I decided to investigate
this approach to bridge a gap in our understanding of SDMs (for more details, see Chapter
3.4).

2.3. Spatial scale
Scale is a fundamental concept in species distribution modeling, influencing model out-
comes’ accuracy and ecological interpretation. Understanding and addressing scale-related
issues in SDMs is crucial for obtaining reliable predictions and gaining insights into species-
environment relationships (Pearson and Dawson 2003, Elith and Leathwick 2009, Seo et al.
2009, Bradter 2012, Conor et al. 2018, Moudrý et al. 2023b). In modeling species distribution,
three specific types of spatial scale are important. Firstly, the response grain refers to the
scale at which patterns or processes occur. Secondly, the observational scale, which relates
to the characteristics of the data, is usually defined by the spatial resolution and extent of
the data. Lastly, the analysis scale relates to the methods for analyzing environmental data,
including factors such as the neighborhood size used in focal statistics or geomorphometry
(Dungan et al. 2002).

There is an ongoing debate revolving the spatial scales (grains) at which ecological processes
underlying species distribution patterns operate (Miguet et al. 2016, Mertes and Jetz 2018).
SDMs can be developed across a broad range of grains, from a few meters up to thousands
of kilometers. Prior studies have documented the influence of analysis grain on the perfor-
mance of SDMs (Guisan et al. 2007, Kaliontzopoulou et al. 2008). Besides this, it has been
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demonstrated that species exhibit stronger responses to environmental factors at certain spa-
tial scales than at others (Holland et al. 2004, McGarigal et al. 2016). This phenomenon is
often called ecological scale or response grain (Holland et al. 2004, Mertes and Jetz 2018,
Moudrý et al. 2023b).

Ideally, the analysis grain should align with the species’ ecology and the study’s objectives,
ensuring compatibility with the response grain (Mertes and Jetz 2018). However, this may be
influenced by the sampling processes of species occurrences (Hurlbert and Jetz 2007, Chase
and Knight 2013), as well as the spatial extent of the study area. The spatial extent and resolu-
tion of the response variable play a crucial role in determining which explanatory variables
are expected to contribute to species distribution (Pearson and Dawson 2003). Typically, cli-
mate is assumed to define species distribution at broad spatial scales, such as the extent of
an entire continent. As the resolution becomes finer and at regional extents, topography or
biotic interactions may emerge as the primary factors influencing species occurrence. Fur-
ther, at even finer resolutions, factors such as vegetation structure or the presence of specific
land cover categories (e.g., water bodies) may come into play. Generally, the significance of
environmental factors varies with the chosen resolution and extent of the study, and factors
that are important at one resolution and extent may lose their significance at others (Corsi
et al. 2000).

The choice of the analysis grain in species distribution modeling typically falls into two sce-
narios: (a) when the response grain is known and fine-scale data is available, and (b) when the
response grain is unknown, and the analysis grain is determined based on data availability
rather than species ecology (Martin and Fahrig 2012, Stuber and Fontaine 2019, Mertes et al.
2020). As the choice of analysis grain directly affects our ability to detect species’ responses
to environmental variables, various factors need to be taken into consideration, including
positional errors of species occurrences, resolution of available environmental data, and the
expected response grain at which species are anticipated to respond to the environment
(Lechner et al. 2012, Lecours et al. 2015).

Because, in theory, species distribution is driven by environmental variables at a range of
scales (Levin 1992), and there is no correct spatial grain at which to characterize species-
environment associations (Wiens 1989), some studies suggest developing SDMs using multi-
grain environmental predictors (Mertes et al. 2020, Riva et al. 2023, Silveira et al. 2023). By
conducting multi-grain analyses, researchers can better understand the scale dependence of
species-environment relationships and identify the most appropriate spatial grains for mod-
eling a particular species as such approach allows the selection of the best scale separately
for each predictor variable significantly affecting species occupancy (Meyer 2007, Mazziotta
et al. 2024).

Although I support the suggested approach, it is important to acknowledge that previous re-
search has yielded varied conclusions regarding the utility ofmulti-grain analysis approaches.
While some researchers have reported improved performance of models utilizing multiple
environmental predictor grains compared to single-grain models (Mertes et al. 2020), others
have not reached similar conclusions (Martin and Fahrig 2012). It is important to recognize
that the observed improvements in multi-grain models are often relatively modest (Graf et
al. 2005, Mateo Sánchez et al. 2014, Moudrý et al. 2023).
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Figure 2.3: Graphical representation of common techniques to mitigate the
negative effect of positional uncertainty. Previous studies have proposed sev-
eral strategies to reduce the negative impact of positional uncertainty in species
records. These strategies include, for example, removing imprecise occurrences,
increasing the number of occurrences by combining highly accurate records
with imprecise ones and coarsening the analysis grain to account for maximal
positional uncertainty in the species dataset.

The scale at which species data uncertainties, for instance, positional uncertainty or uneven
sampling, are examined plays a crucial role in understanding their negative effects in SDMs.
For example, the impact of uneven sampling, where species occurrences are not evenly dis-
tributed across the study area, can vary depending on the scale of analysis. At larger scales,
uneven sampling may have less impact on model results, as the aggregated species data can
still provide meaningful insights into species-environment relationships. However, uneven
sampling can lead to biased model outcomes at smaller scales, as the limited representation
of certain habitats or regions may skew the results (Fithian et al. 2014, Dubos et al. 2022).
Similarly, positional uncertainty can have different implications at different scales. At broad
spatial scales, positional uncertainty may have limited effects on the overall model outcomes,
as the coarse resolution of the analysis grain might overshadow the impact of positional
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uncertainties. However, at fine spatial scales, positional uncertainties can significantly in-
fluence model predictions, especially in areas with complex or heterogeneous landscapes
(Naimi et al. 2011, Moudrý and Šímová 2012, Naimi et al. 2014, Gábor et al. 2022b, Gábor et
al. 2023).

Therefore, it is crucial to consider the scale at which species data uncertainties are examined
and to investigate interactions of species data uncertainties with various scales. By studying
these interactions, we can better understand the relative importance of species data uncer-
tainties and their scale-dependent effects on SDMs.

2.4. A bRief advocacy foR tHe viRtual species appRoacH
In this chapter, I aim to briefly introduce the virtual species approach and express my strong
support for its use. I firmly believe it offers the best possible means to investigate the ef-
fects of data inaccuracies on SDM outcomes comprehensively. By creating virtual species
with predetermined traits, such as preferred habitat requirements, dispersal abilities, or sen-
sitivity to environmental factors, researchers can gain a better understanding of how these
traits influence species responses to changing environmental conditions and, in addition,
how they affect models’ performance (Meynard and Kaplan 2013, Zurell et al. 2010, Miller
2014, Moudrý 2015, Leroy et al. 2016, Meynard et al. 2019, Gábor et al. 2020b).

Additionally, the virtual species approach has emerged as a useful tool for investigating the
impact of input data inaccuracies on SDMs. Input data inaccuracies encompass a range of
errors, uncertainties, and limitations associated with species records and environmental pre-
dictors. These inaccuracies can be designed to simulate real-world scenarios as errors in
species occurrence records, such as species misidentifications, incomplete or biased sam-
pling, or imprecise geolocation (Mitchell et al. 2017, Gábor et al. 2020a, Gábor et al. 2020b,
Inman et al. 2021, Collart and Guisan 2023, Gábor et al. 2023, Marsh et al. 2023). By con-
structing SDMs using artificial data that incorporates these inaccuracies, researchers can
evaluate the propagation of such imperfections throughout the modeling process and assess
their influence on model accuracy and ecological interpretations of the results.

In this dissertation, I employed the virtual species approach to simulate positional uncer-
tainty in species records, enabling a comprehensive examination of the implications of species
data positional inaccuracies on the ecological interpretability of SDMs. Additionally, a key
focus of this research was to investigate how coarsening the resolution of environmental
predictors could mitigate the negative effects of positional uncertainty in species records.
By integrating the virtual species approach and exploring this specific aspect, a deeper un-
derstanding was gained regarding the interplay between input data uncertainties, environ-
mental predictors, and the resulting accuracy and reliability of SDMs (see Chapters 3.3, 3.4).

It is important to note that while the virtual species approach presents a valuable tool, it
is not intended to replace using real species. For example, in Chapter 3.3, virtual species
simulations showed a rapid decrease in model performance with increasing positional error.
In contrast, the real species models only slightly reduced model performance. Therefore, I
strongly recommend that future studies follow a growing trend and combine simulations
and real species data when studying methodological questions (Fithian et al. 2015, Guélat
and Kéry 2018, Mertes and Jetz 2018, Renner et al. 2019, Rocchini et al. 2023).
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ReseaRcH studies
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3.1.1. AbstRact
The representation of a land cover type (i.e., habitat) within an area is often used as an ex-
planatory variable in species distributionmodels. However, it is possible that a simple binary
presence/absence of the suitable habitat might be themost important determinant of the pres-
ence/absence of some species and, thus, be a better predictor of species occurrence than the
continuous parameter (area). We hypothesize that the binary predictor is more suitable for
relatively rare habitats (e.g., wetlands) while for common habitats (e.g., forests) the amount
of the focal habitat is a better predictor. We used the Third Atlas of Breeding Birds in the
Czech Republic as the source of species distribution data and CORINE Land Cover inventory
as the source of the landcover information. To test our hypothesis, we fitted generalized lin-
ear models of 32 water and 32 forest bird species. Our results show that for water bird species,
models using binary predictors (presence/absence of the habitat) performed better than mod-
els with continuous predictors (i.e., the amount of the habitat); for forest species, however,
we observed the opposite. Thus, future studies using habitats as predictors of species occur-
rences should consider the prevalence of the habitat in the landscape, and the biological role
of the habitat type in the particular species’ life history. In addition, performing a prelimi-
nary comparison of the performance of the binary and continuous versions of habitat pre-
dictors (e.g., using information criteria) prior to modelling, during variable selection, can be
beneficial. These are simple steps that will improve explanatory and predictive performance
of models of species distributions in biogeography, community ecology, macroecology, and
ecological conservation.

Keywords: Binary data, Continuous data, Land cover, Niche models, Variable selection
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3.1.2. IntRoduction
Species distribution models (SDMs) are an important tool in macroecology, biogeography,
and wildlife management. The goal of SDMs is to map species distributions or to estimate
species niches, and there is an ongoing effort to improve their reliability (Araújo et al. 2019,
Zurell et al. 2020, Merow et al. 2022). Selecting appropriate environmental predictors is a
major methodological challenge of species distributionmodeling (Dorman et al. 2007, Austin
and Van Niel 2011, Williams et al. 2012, Mod et al. 2016, Misiuk et al. 2018, Smith and Santos
2020, Zurell et al. 2020). These environmental predictors, such as landcover or habitat type,
are most often included in SDMs as the area or percentage of a particular land cover type
within the individual sites (e.g., grid cells or atlas mapping squares; see for example Milanesi
et al. 2017, Halstead et al. 2019, Lecours et al. 2020, Tessarolo et al. 2021).

But what if, for some species, the total area of habitat is less relevant than the simple fact
that a particular habitat is present or absent? To our knowledge, this possibility has been
considered neither theoretically, nor empirically. In conservation biology, this is somehow
related to the concept of critical habitat area (Fahrig 2001, Melo et al. 2018), i.e., to the
idea that there is a certain habitat amount (threshold) below which a species cannot survive,
leading to a step-like, rather than continuous, response of species probability of occurrence to
habitat area. To our knowledge this has not been explored in the context of SDMs. Further, a
guideline on whether habitat predictors should be included in SDMs as continuous, or binary
variables would be directly applicable in many subfields of biogeography and community
ecology.

In this study, we evaluate the effect of using forest andwater habitats as binary or continuous
predictors in species distribution modelling of 64 forest and water specialist bird species.
Specifically, we propose two alternative hypotheses linking the probability of occurrence (P)
of a species to either (a) the amount or (b) the presence/absence of a particular habitat within
a spatial unit (e.g., grid cell).

The first hypothesis (H1) assumes that P is driven by continuous areas (see Figure 3.1a), i.e.,
that P increases continuously with the increase in the habitat area within a spatial unit. Rea-
soning supporting H1 is as follows: (i) Larger habitat areas support larger populations due
to their carrying capacity and food and shelter availability, so that populations are less sus-
ceptible to stochastic extinctions, competition, predation, and inbreeding depression (Hanski
1999, Lande et al. 2003), and (ii) larger habitat areas are bigger targets for colonizing indi-
viduals from the surrounding habitat matrix (Buckley and Knedlhans 1986), increasing the
probability of rescue effects after extinction events (Brown and Kodric-Brown 1977). We
propose that these mechanisms will operate in the most common habitat types. H1 will also
apply to species specializing in these common habitats. In Central Europe, forests can be con-
sidered an example of such habitats, with forest specialist species such as the Long-tailed tit
(Aegithalos caudatus), the Goldcrest (Regulus regulus) or the Crested tit (Parus cristatus).

An alternative hypothesis (H2) is that P is driven by binary presence or absence of a habitat
(Figures 3.1b, 3.2b). In other words, the amount of habitat within a spatial unit is irrelevant,
and what matters for the species is that the habitat is simply there.

However, we first need to know how small, or large such habitat needs to be to be able to
support a viable population of the species. Therefore, H2 assumes that there is a threshold
of habitat amount, (e.g., 20 % as in Figures 3.1b, 3.2b), below which the species is unlikely to
occur, and above the threshold the species will persist. We assume that an increase of the



ChapteR 3 – ReseaRch studies Page 26 of 120

habitat area beyond the threshold size will not increase P (note that the threshold of habitat
amount is affected by resolution of the habitat data). The presence of such threshold has
been predicted both theoretically (Andrén 1994, Fahrig 2001) and documented empirically
for birds (Melo et al. 2018).

Figure 3.1: Two alternative hypotheses for the effect of the habitat area on the species’ probability of occurrence (P),
illustrating the theoretical possibility that habitat area be an accurate or inaccurate predictor of species distributions
depending on if it is fitted as a continuous or binary variable and the process that generated the data. In the left
panel we modelled P as a sigmoidal curve (generative model, black line) to generate 100 presences/absences of a
species, drawn from a Bernoulli distribution with parameter P (jittered points). In right panel we used a binary
habitat classification and a step function to generate the data. We then fitted binomial GLM with either continuous
area, or binary area, as predictor (red and blue lines).

We propose that H2 applies particularly to species specializing in rare (i.e., less prevalent)
habitats, and species with good dispersal abilities and ability to readily identify the habitats
in the landscape. Consequently, if a fragment of suitable habitat (irrespectively of its area)
appears in the landscape, it will quickly attract a population of the species, thus causing high
P. In Central Europe, water bodies can be considered an example of such habitat for water
specialist species such as the Common teal (Anas crecca), the Great-crested grebe (Podiceps
cristatus), or the Black tern (Chlidonias niger).

3.1.3. MateRial and MetHods
Study area and bird distribution data

The study area was the territory of the Czech Republic, a central European country covering
almost 79,000 km2 (see Figure 3.2a). Data on bird species were obtained from the Third Atlas
of Breeding Bird Distribution in the Czech Republic (Šťastný et al. 2006). The study area
is divided into 628 grid squares of approx. 134 km2 (10’ east longitude × 6’ north latitude;
hereafter referred to as mapping squares) to which bird
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Figure 3.2: A) The study region covers the territory of the Czech Republic, Europe. The grid consists of cells of 10’
east longitude × 6’ north latitude (approximately 12 × 11.2 km, n = 628), as used in the breeding birds atlases of the
Czech Republic (Št’astný et al. 2006). Water bodies shown on the left side have a 500 m buffer for better visibility.
B) Representation of binary variables based on different threshold of habitat amount. We considered any amount
of the water habitat in a cell as presence (i.e., the proportion of the cell occupied by one hectare set to > 0 %). In
addition, we tested several thresholds (e.g., 20 % and 40 %,) to derive the binary predictor for forest variables.



ChapteR 3 – ReseaRch studies Page 28 of 120

occurrences and environmental predictors are referred. The fieldwork for the atlas was con-
ducted by volunteers between 2001 and 2003 where the breeding status of all species was
recorded in each mapping square. Field observations of the bird species occurring in each
mapping square were recorded using 17 numerical breeding codes (Hagemeijer and Blair
1997). Breeding occurrence of each bird species within a given mapping square was classi-
fied into one of the following categories: 0 – Non-breeding (where no observations of the
species were made, or where the species was observed but no breeding evidence was found),
A – Possible breeding, B – Probable breeding or C – Confirmed breeding. For the purpose
of our study, all breeding categories (A, B and C) were used as presences whereas category
0 was used as absences. We prepared data for 85 bird species, 36 of them nesting in wet-
lands and surrounding habitats (e.g., standing water, littoral zones of ponds, swamps), and
49 species nesting in forests, following classification of Reif et al. (2006). Nevertheless, we
had to remove 21 species with relatively small (less than 30 presence cells out of 628 cells),
and relatively high occupancy (more than 598 presence cells out of 628 cells). Therefore,
32 water and 32 forest bird species were included in the study (see Supplementary material
Table A1).

Habitat variables

We derived four habitat predictors from the CORINE Land Cover database at 100 m reso-
lution (Feranec et al., 2010). Specifically, within mapping squares, we derived the area of
agricultural areas (CORINE class 2), artificial surfaces divided into four classes (0, 0–20, 20–
40, > 40 km2; CORINE class 1), continuous area of water bodies (CORINE class 5.1.2) and area
of forest (CORINE class 3.1). In addition, binary factors representing presence or absence of
water bodies and forests, respectively, were calculated. In order to generate binary habitat
maps, it is necessary to determine an area threshold that defines the presence-absence of the
habitat. An appropriate threshold should consider the prevalence of the habitat across the
region of interest, the grain size at which the variable is being considered (i.e., the size of
the grid cells at which the species are recorded) and the original grain size that the habitat
variable is being aggregated from (i.e., the size of the grid cells of the original land-cover data,
which is then aggregated to the larger modelling grain size). Due to the uncommonness of
water habitats as well as due to the coarse resolution of CORINE Land Cover, we considered
any amount of the water habitat in a cell as presence (i.e., the proportion of the cell occupied
by one hectare set to > 0 %). Forest pixels are, on the other hand, present in all mapping
squares across the study region and, for this reason, we tested several thresholds (10 %, 20 %,
30 %, 40 %, and 50 %) to derive the binary predictor.

Other environmental variables

Although the habitat predictors were our main focus, other predictors, such as climate, may
also be important in determining the distributions of species. As climatic predictors, we used
current climatic data from WorldClim (Hijmans et al., 2005). Following previous studies, we
used two predictors: mean temperature and mean precipitation during the breeding season,
i.e. in April–June (e.g., Moudrý and Šímová 2013, Venne and Currie 2021). We downloaded
these at a resolution of 30 arc seconds (approximately 1 km2) and averaged them inside each
mapping square to match the grid resolution of the species distribution data (approximately
100 km2). We also considered usage of elevation predictors such as maximum, minimum, and
range of elevation derived from Shuttle radar topography mission (SRTM, Farr et al. 2007;
Moudrý et al. 2018) as they might be ecologically important to birds (e.g., Kosicky 2017).
However, as these variables were highly correlated with the mean temperature in April–
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June, we eventually decided not to include them. The data were processed in ARCGIS 10.7.1
(ESRI, CA, USA) and R (R Development Core Team) software.

Species distribution models

We fitted SDMs for each species using the climate variables and the water (or forest cover)
variable for water (or forest) species; modelling was always performed separately for the con-
tinuous as well as binary water (or forest) variable. We did not use the information about
forest areas for wetland species and vice versa (see Supplementary material Table A2 for
used formulas). In addition, we also considered using forest and wetland area transformed
with arcsine, log, or square root, all of which are often adopted in ecological studies for areal
predictors (for more details, see Roberts 1986 and Palmer 1993). However, these transforma-
tions did not improve the models and were not further considered in this study. We used
generalized linear models (GLMs; McCullagh and Nelder, 1989), with binomial error distribu-
tion and a logit link function implemented in the R function glm. Environmental predictors
were used as monotonic sigmoidal functions on the probability scale of the response (i.e.,
linear in logit space).

Model calibration and evaluation

We assessed the performance of the models using calibration and discrimination metrics
where calibration refers to the accuracy of description of the environmental relationships,
and discrimination refers to the ability to separate presences from absences (Lawson et al.
2014). We used five-fold cross-validation where the data were randomly divided into fifths to
evaluate the models. Four fifths of the data were used to train the model and the remaining
one fifthwas used to assess the performance. To assess model calibration, we used likelihood-
based McFadden’s pseudo R2 (Smith and McKenna 2013), which indicates the proportion of
the deviance in the dependent variable that is explained by the model (Agresti 2003). To
assess the model discrimination ability, we used the area under the curve of the receiver
operating characteristic plot (AUC). The AUC is a threshold independent measure of model
performance that ranges from 0 to 1, where a score of 1 indicates perfect discrimination, and
a score of 0.5 indicates random performance (Fielding and Bell 1997).

3.1.4. Results
The occurrence of water birds was better modelled using the binary variable (prevalence of
water habitat = 0.4; see Figures 3.3, 3.4, Supplementary material Table A3), suggesting that
their distribution is driven simply by presence rather than the area of water habitat. In con-
trast, the models with continuous environmental variables outperformed those using binary
predictors in modelling forest birds (Figures 3.3, 3.4). This result was observed independently
of the forest amount threshold for most of the species (Supplementary material Table A4);
however, to maintain clarity, we present results of models fitted with a 40 % threshold (preva-
lence of forest habitat = 0.29; see Figures A1 – A4 in the Supplementary material for results
using remaining tested thresholds).

For forest species, models fitted using the area of forest (i.e., a continuous habitat variable)
achieved poor to excellent model calibration (R2: min = 3.34 %, max = 42 %, mean = 16.2
%) and discrimination performances (AUC: min = 0.60, max = 0.91, mean = 0.74; see Table
A4 in the Supplementary material for the performance of individual models). Both model
calibration (R2: min = 2.69 %, max = 38.42 %, mean = 14.3 %) and discrimination (AUC: min
= 0.6, max = 0.89, mean = 0.72) were lower in models using the forest presence (i.e., a binary
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habitat variable) in 28 out of 32 species, although differences in model performances were
relatively small. The differences in model calibration between models fitted using the area
of forest and forest presence were negligible, except for six species where R2 increased by
up to 7 % (Figure 3.4). Similarly, the difference in AUC was <0.02 for 22 out of 32 species.
The highest AUC differences ( 0.07) were recorded for Long-tailed tit (Aegithalos caudatus),
Black redstart (Phoenicurus ochruros), and Spotted flycatcher (Muscicapa striata).

Figure 3.3: Differences in AUC between models fitted with binary habitat presence/absence vs. continuous area
as predictors. Positive values indicate that models with binary habitat predictors performed better than those with
continuous predictors and vice versa.

Models fitted for water species using the water presence performed better in both calibration
(R2: min = 9.62 %, max = 38.62 %, mean = 22.1 %) and discrimination (AUC: min = 0.69, max
= 0.91, mean = 0.79; see Supplementary material Table A3 for the performance of individual
models) compared to those using area of water (R2: min = 5.05 %, max = 37.29 %, mean =
16.96 %; AUC: min = 0.63, max = 0.89, mean = 0.75) in nearly all cases. R2 was on average 5
%, and up to almost 15 %, higher when using the water presence (Figure 4.3). For 13 out of 32
water bird species, model discriminations (AUC) were increased by >0.05 when considering
the water presence compared to the area of water. In three cases (Black tern, Chlidonias
niger ; Common goldeneye, Bucephala clangula; and Great-crested grebe, Podiceps cristatus)
the improvement in AUC was close to or even greater than 0.1. The model using the area of
water was superior to that using the water presence only for a single species (Sedge warbler,
Acrocephalus schoenobaenus).
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Figure 3.4: Differences in R2 (%) between models fitted with binary habitat presence/absence vs. continuous area
as predictors. Positive values indicate that models with binary habitat predictors performed better than models
with continuous predictors and vice versa.

3.1.5. Discussion
Our results are in line with the hypotheses presented in the introduction. As expected, for
species for which a widespread habitat (e.g., forest) is sufficient, models discriminated pres-
ences from absences better and explained more variability when a continuous, not binary,
measure of the forest (habitat) area was used. On the other hand, the opposite was found
for species specializing in a relatively rare habitat—water. In this case, models using wa-
ter as a binary predictor outperformed those with water as a continuous area. As we have
suggested, there are biological reasons for this: The relationship between species biology
and specific habitat (and its rarity) determines how a binary habitat predictor stands out
against continuous one. For instance, in waterbirds, the presence or absence of wetland or
water habitats, which worked well in binary models, is directly related to food and shelter
availability (Wiens 1989, Weller 1999, Gatto et al. 2008). Moreover, highly mobile waterbird
species such as Common redshank (Tringa totanus), Common tern (Sterna hirundo), or Gad-
wall (Anas strepera) are able to spot such habitat and colonize it, even if the habitat is rare
and isolated in an otherwise dry landscape matrix. Thus, a patch of isolated wetland within
a grid cell is almost guaranteed to host the species, despite the habitat being rare. We argue
that such biological reasoning should precede any decisions about the specific form (binary
or continuous) of predictors in SDMs. However, future studies are needed to show if this
explanation based on habitat rarity applies to other environments, habitats, and taxa.

In addition, we propose that the relative merit of continuous vs binary predictors depends on
the interplay between spatial resolution of the habitat data (Domisch et al. 2015, Friedrichs-
Manthey et al. 2019), spatial grain at which habitats are aggregated for modelling (response
grain; see for example Seoane et al. 2004, Venier et al. 2004, Convertino et al. 2011, Tuanmu
and Jetz 2014, Šímová et al. 2019), as well as the home range size of the species, and its



ChapteR 3 – ReseaRch studies Page 32 of 120

degree of specialisation to the habitat (Jedlikowski et al. 2016, Mertes et al. 2020). For
highly specialised species, the ratio between the home range size and the grain size of the
response variable may be particularly important (Jedlikowski et al. 2016), as it determines
whether the species can gather resources from multiple grid cells, or whether it is confined
to a single cell. For example, if the area of a single cell classified as water is larger than the
home range of a highly specialised species, the binary predictor (water presence) should be
used. However, if that area is smaller than the species home range, considering the habitat
area is preferable, as the higher is the representation of water within a grid cell, the higher
is the probability that the cell contains the habitat area necessary for species persistence. In
addition, our habitat predictors were derived from the CORINE database (Feranec et al. 2010),
with a minimum mapping unit of 25 ha, and it may be that forest species require habitats
larger than that. Indeed, SDM studies using common land use categories as predictors, such
as the proportion of forests, reported low improvement using finer resolution data (Seoane et
al. 2004; Venier et al. 2004). In contrast, atlas squares with binary presence of water almost
always contain a substantial area of water bodies, possibly enough to support a persistent
breeding population of a waterbird species, leading to the good performance of the binary
water predictor. In line with this, Šímová et al. (2019) showed that the area of water bodies
derived from high-resolution (30 m) datasets explain distributions of waterbirds better than
predictors derived from coarser water datasets (including CORINE Land Cover). This may
be a reason why Tuanmu and Jetz (2014) found the Global Consensus Land cover (1 km
resolution) performedworse for water species than for species that from other environments.
In addition, Seoane et al. (2004) found considerable improvement of models for riparian
species when finer-resolution data were used. However, this should be further validated,
especially using finer resolutions than ours. Moreover, our results suggest that a hectare of
wetland may be enough to be used by many water bird species and thus in future studies
water habitats with equal or larger area then one hectare can be used as presence of habitat.

Other reason for the better performance of binary wetland predictor is that the threshold for
absence was 0 %, whereas for forest predictors 40 % of habitat cover. In the threshold chosen
in the results, the binary predictor is higher or lower than 40 % cover of forest, which could
be expected to have lower discrimination capacity than absolute absence of forest versus
presence of forest. Note, however, that with the resolution of response variable approx. 12
x 11 km (used in our study), the absolute absence of forest in most of the Europe is unlikely.

It is fair to point out that only few species show considerable difference between models fit-
ted using binary and continuous variables (i.e., the differences are relatively small for most of
the species). Thus, models adopting traditional continuous variables will likely produce use-
ful predictions. Nevertheless, in terms of practical recommendations, we advocate for testing
both types of such variables during variable selection; this could be done using model selec-
tion criteria (e.g., AIC, BIC, DIC), cross-validation, or measures of model fit (R2, AUC). In
addition, some of the biological mechanisms outlined in the introduction can also help with
the decision on the preferable form of the predictor, and the importance of selecting biologi-
cally meaningful habitat predictors prior to modelling cannot be overstated. To summarize,
categorical predictors would be preferred for (i) highly mobile species where even a small
fragment of habitat is sufficient, (ii) species for which one can expect a threshold response
to the environment (e.g., at least a 20 % coverage of the habitat within a mapping square
is needed for the occurrence); and (iii) highly mobile species specializing in less prevalent
habitats, which could be quickly identified in the landscape and colonized.

The fact that habitat variables can, depending on the commonness of the habitat, perform
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best either as a binary or a continuous predictor, has relevance beyond simple species dis-
tribution models. After all, the information on the probability of species presence is sought
after in many fields, from epidemiology to metacommunity ecology. Particularly in the lat-
ter, estimation of species responses to environmental conditions (including habitats) is at
the core of the assessment of the relative role of niche vs. spatial processes structuring eco-
logical communities (Cottenie 2005, Leibold and Chase 2018). Our results suggest that if an
inappropriate response of species to habitat amount (threshold vs. continuous) is used, it
can lead to underestimation of the importance of the niche processes. Furthermore, our re-
sults are relevant for conservation. Specifically, it is encouraging that, for many species, the
presence of a (rare) habitat above a certain threshold (Radford et al. 2005, Melo et al. 2018)
is important irrespectively of its area. If the critical threshold is low, even the protection of
small areas is meaningful.
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3.2.1. AbstRact
Context
Species distribution models are widely used in ecology. The selection of environmental vari-
ables is a critical step in SDMs, nowadays compounded by the increasing availability of en-
vironmental data.

Objectives
To evaluate the interaction between the grain size and the binary (presence or absence of
water) or proportional (proportion of water within the cell) representation of the water cover
variable when modeling water bird species distribution.

Methods
eBird occurrence data with an average number of records of 880,270 per species across the
North American continent were used for analysis. Models (via Random Forest) were fitted
for 57 water bird species, for two seasons (breeding vs. non-breeding), at four grains (1 km2

to 2,500 km2) and using water cover as a proportional or binary variable.

Results
The models’ performances were not affected by the type of the adopted water cover variable
(proportional or binary) but a significant decrease was observed in the importance of the
water cover variable when used in a binary form. This was especially pronounced at coarser
grains and during the breeding season. Binary representation of water cover is useful at finer
grain sizes (i.e., 1km2).

Conclusions
At more detailed grains (i.e., 1km2), the simple presence or absence of a certain land-cover
type can be a realistic descriptor of species occurrence. This is particularly advantageous
when collecting habitat data in the field as simply recording the presence of a habitat is
significantly less time-consuming than recording its total area. For models using coarser
grains, we recommend using proportional land-cover variables.

Keywords: eBird,land-cover, scale, SDM, variable selection
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3.2.2. IntRoduction
The relationship between species occurrence and their environment is fundamental to ecol-
ogy (Cadotte et al. 2011, Wisz et al. 2013, Schmeller et al. 2018, Young et al. 2023) and
its importance is growing in the face of the ongoing global change (Butchart et al. 2010,
Barnosky et al. 2011, Carlson et al. 2022). Understanding species’ responses to the environ-
ment is intrinsically linked to the possibility of predicting species distribution patterns and,
hence, is useful for their conservation and management. Species distribution models (SDMs)
are widely used for such purposes (e.g. Václavík et al. 2012, Cohen et al. 2016, Ellis‐Soto et
al. 2021, Lindegren et al. 2022, Mohammadi et al. 2022, Cogliati et al. 2023).

Even though SDMs are now commonly adopted, ecologists still face challenges. These are in
particular related to the quality of the input data, which can significantly impact the fitted
models (Araújo et al. 2019, Gábor et al. 2020, Bazzichetto et al. 2023, Smith et al. 2023;
Wang and Jackson 2023). Such challenges include, among other issues, the selection of the
appropriate scale/grain (Miguet et al. 2016, Wunderlich, et al. 2022, Zarzo‐Arias et al. 2022)
and environmental variables (Williams et al. 2012, Moudrý et al. 2019, Smith and Santos
2020).

The selection of environmental variables is a critical step in SDMs, nowadays compounded
by the increasing availability of environmental data (e.g., Cord et al. 2013, 2014, Šímová et
al. 2019, Howard et al. 2020; Moudrý et al. 2023a). This is especially true for land-cover
data, the availability and quality of which increases with the number of remote sensing data
(e.g. Prošek et al. 2020; Karra et al. 2021; Zhang et al. 2021; Hopkins et al. 2022). Land
cover types are among the most common predictors that enter the SDMs, especially in the
context of land-cover changes (Coppée et al. 2022, Peng et al. 2022). Land cover type, which
typically describes the habitat availability within a spatial unit, is commonly included as a
continuous variable – for example, as the area or proportion of a specific land-cover type
within the study area (e.g., Moudrý and Šímová 2013, Rose et al. 2020, Koma et al. 2022). The
underlying rationale is based on an assumption that the probability of occurrence of a species
increases continuously with the increase in land cover (or habitat) area within a given spatial
unit. This could be attributed to the fact that larger habitat areas sustain larger populations
due to their higher carrying capacity and shelter and food availability, so that populations are
less susceptible to stochastic extinctions, competition, predation and inbreeding depression
(Hanski 1999, Lande et al. 2003). In addition, larger habitat areas are bigger targets for
colonizing individuals from the surrounding habitat matrix (Buckley and Knedlhans 1986),
thereby increasing the probability of rescue effects following extinction events (Brown and
Kodric-Brown 1977). However, in some cases, the mere presence or absence of a habitat
may be more important than the total habitat area. In a recent study, Gábor et al. (2022a)
demonstrated that for species specializing in rare habitats, such as water bodies in Central
Europe, the amount of habitat within a spatial unit is sometimes less important than its
simple presence or absence. This is related to the concept of critical habitat area (Andrén
1994, Fahrig 2001, Melo et al. 2018), which hypothesizes that there is a threshold in habitat
amount below which a species cannot survive; for example, loons (order Gaviiformes) are
physiologically constrained from foraging on land and require water habitat for survival (see
Figure 3.5). While there are limited examples of such an approach in SDMs (e.g., Pearson
et al. 2004, Romero et al. 2013, Zhang and Vincent 2018), in a recent study, Gábor et al.
(2022a) demonstrated that for species specializing in rare habitats, such as water bodies in
Central Europe, the amount of habitat within a spatial unit is sometimes less important than
its simple presence or absence. This could be particularly advantageous when collecting
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habitat data in the field as simply recording the presence of a habitat is significantly less
time-consuming than recording its total area.

Figure 3.5: Graphical rationale for the hypothesis on binary variables. We modelled species occurrence probability
as a step function (generative model, black dashed line) to generate 100 presences/absences of a species that needs at
least 20% of land-cover within a spatial unit, drawn from a Bernoulli distribution with species occurrence probability
as a parameter. Then, we fitted species distribution models (GLM) with either proportional (incorrect model, red
line) and binary coverage (correct model, blue line), as a variable.

It is well-recognized that SDMs are grain-dependent (Elith and Leathwick 2009) and em-
pirical evidence has shown that species exhibit stronger responses to their environment at
certain grains than others (see reviews by Miguet et al. 2016 and Moudrý et al. 2023b).
Therefore, the choice of the grain constitutes an important part of the modeling process as
it can affect the ability to detect the response (Mertes and Jetz 2018, Luebert et al. 2022,
Wunderlich, et al. 2022, Lu and Jetz 2023). In addition, the choice of the grain is often deter-
mined by data availability rather than study goals. This results in large variability of grains
adopted in existing studies, from a few meters (e.g., Bazzichetto et al. 2018, Lecours et al.
2020, Casanelles-Abella et al. 2022, Stark and Fridley 2022) to many kilometers (e.g., Kleis-
ner et al. 2017, Norberg et al. 2019, Zarzo-Arias et al. 2022). The grain size is also essential
when selecting environmental variables (Pearson and Dawson 2003; Moudrý et al. 2023b),
and it is likely to be critical when deciding whether to use land-cover as a binary or continu-
ous variable when modelling species occurrence. However, this has never been thoroughly
tested.
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We hypothesize that at finer grains, binary variables are sufficient to fit a useful model, as a
single habitat type is more likely to be dominant or completely absent. However, at coarse
grains, the presence of habitat alone cannot be enough to sustain a viable population that
requires a certain percentage of habitat in a given area, and the variables representing the
habitat proportion may play a greater role. Further, habitat specialists may only require the
presence of a given habitat type during winter or migration but, require that habitat to be the
dominant type on the landscape during breeding season (Zuckeberg et al. 2016), emphasizing
the importance of understanding seasonal moderators on the selection of environmental
variables.

Therefore, in this study, we examined the interaction between the grain size and the repre-
sentation of a land-cover variable (binary or continuous) whenmodeling species distribution.
We used citizen science data downloaded from eBird to fit species distribution models for 57
water bird species in North America. The eBird dataset consists of extensive and often spa-
tially detailed occurrence data (an average number of records per species in this study is
880,270 records), making it ideal to model species distributions down to fine spatial grains
and across large spatial extents. For each species, we fit models with water cover represented
as a proportional or binary variable and using multiple grains (1 x 1 km, 5 x 5 km, 10 x 10
km, and 50 x 50 km). In addition, we fit models for both breeding and non-breeding sea-
sons because many of these species occupy highly distinct ranges between these seasons,
with specialization to landcover type often greatest during breeding season (Zuckerberg et
al. 2016). Specifically, we address the following questions: (1) Do models built with binary
land-cover variables perform equally well or even better than those built with proportional
variables? (2) Is the model performance affected by the adopted gain? (3) Does breeding and
non-breeding season affect model performance? (4) Do grain and season affect the usability
of the binary water cover variable?

3.2.3. MateRial and MetHods
Modeling region and species selection

We modeled species distributions across the North American continent, in a box between
179.99°W, 42.68°W, 10.53°N, and 87.11°N that included Canada, the United States, and the ma-
jority of Central America. Although we only modeled species native to the United States and
Canada and only present the biodiversity estimates for this region, modeling each species’
entire continental range was required to ensure accurate predictions.

Based on the American Birding Association birding codes (2008) updated to the Clements
bird taxonomy as of 2021, we compiled a list of 197 water-associated native bird species
that breed or overwinter in the United States and Canada each year (Clements, 2007). These
codes are widely used to distinguish regularly occurring species (code 1 or 2 species, which
we use) from vagrants occurring irregularly (code 3+). We excluded species with almost
entirely marine ranges or with insufficient data points and those for which records are only
available for part of the season (i.e., breeding, non-breeding). We also avoided modeling
Hawaiian endemics because these species were restricted to islands that were smaller than
some of our spatial grain sizes.

Species data acquisition and filtering

We gathered data from eBird, a global citizen science initiative in which users submit check-
lists containing bird observations, widely used for understanding species distributions (Sul-
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livan et al., 2014). eBird provides vast amounts of avian biodiversity data and the number
of records used in this study is literally unique, ranging from tens of thousands to units of
millions, with an average of 880,270 records per species (see Table A1 in Supplementary
material). Users can indicate whether or not all observed species were recorded in the check-
list (”complete” checklists), allowing for absence inference and presence-absence modeling.
Users also indicate the level of effort involved in each observation by providing the distance
traveled, time spent birding, and the number of observers (hereafter, effort indicators).

We compiled all eBird data for all species separately during the breeding season (June-August;
June-July for shorebirds or Charadriiformes, which migrate early) and non-breeding season
(December-February). We removed subspecies information from all checklists and summa-
rized all data at the species level. Following established eBird data modeling protocols, we
initially applied several filters to the data to reduce bias and improve data quality (Johnston
et al., 2019; Kelling et al., 2018). First, we eliminated checklists with extremely long dura-
tions (> 3 hours), large numbers of observers (>5), or protocols other than ”stationary” or
”traveling,” as these are incomparable with the majority of eBird’s data. Second, to reduce
observational positional error, we eliminated checklists covering more than 1 km because
they are likely to result in greater spatial uncertainty (Gábor et al. 2022b, 2023). Third, data
prior to 2004 (< 0.1% of points) were removed because there is insufficient data from earlier
years to adequately control for long-term temporal trends in regional bird abundances, as
recommended by eBird (Fink et al. 2010, 2020). Finally, data from users with fewer than
five contributions were removed to reduce bias (e.g., false absence) caused by inexperienced
birders.

Before modeling, the data was further filtered at the species level. Checklists were limited
to those falling within a 200 km buffer of the species’ seasonal expert range boundary to
limit overprediction outside of the species’ range extent (via Cornell’s spatial boundaries -
https://ebird.org/science/status-and-trends/download-data, accessed July 2021). When mod-
eling shorebirds (order Charadriiformes), we excluded August data because many species
are already migrating long distances by this time. We limited checklists to one per 5 km
grid cell per week to reduce site selection and temporal bias in data collection. To reduce
the imbalance between presence and absence points, we utilized “case-control sampling” re-
peating this filtering for populations of checklists where the species is present and absent as
recommended by eBird’s best practices (Fink et al. 2019). We ended up modeling 57 species
(see Table A1 in Supplementary material). R 4.1.0 was used to complete all data compilation,
analyses, and visualizations (R Core Team, 2021). Coordinates, polygons, and grids used
in the study operated under a conical equal area projection. For spatial geoprocessing, the
raster (Hijmans et al., 2015), rgdal (Bivand et al., 2015), and sf (Pebesma, 2018) packages were
used.

Environmental data

In total, we considered 12 land-cover variables, 4 topographic/habitat variables, and 4 cli-
matic variables (Table 1). We obtained land-cover data from the European Space Agency
(Climate Change Initiative; ”ESA. Land Cover CCI Product User Guide Version 2. Technical
Report.,” 2017) at a 300m resolution. This product provides proportional land-cover variables
(i.e. they provide the proportion of the area covered by a particular land-cover type) and in-
cludes the following land-cover types: mixed forest, mosaic, shrubland, grassland, lichens/-
mosses, sparse, flooded/freshwater, flooded/saltwater, flooded/shrub, urban, barren, and ice.
We coarsened land-cover variables to a grain of 1 km by mean-aggregating the percentages
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of individual land-cover types.

Table 3.1: Environmental covariates included in species distribution models.

Predictor Definition Source

Bio1 Annual mean temperature CHELSA v2.1
Bio12 Annual precipitation CHELSA v2.1
Bio15 Precipitation seasonality CHELSA v2.1

Cloudsd Intra-annual variation in cloud cover EarthEnv
Evisum Mean enhanced vegetation index hydroSHEDS
TWI Topographic wetness index hydroSHEDS
TRI Terrain roughness index EarthEnv
elev Elevation EarthEnv

Mixed_forest Percent land cover ESA CCI
Mosaic_herbacious Percent land cover ESA CCI

Shrubland Percent land cover ESA CCI
Grassland Percent land cover ESA CCI

Lichens/Mosses Percent land cover ESA CCI
Sparse Percent land cover ESA CCI

Flooded (freshwater) Percent land cover ESA CCI
Flooded (saltwater) Percent land cover ESA CCI
Flooded (shrub) Percent land cover ESA CCI

Urban Percent land cover ESA CCI
Barren Percent land cover ESA CCI
Ice Percent land cover ESA CCI

To examine how water cover (flooded/freshwater category) influences model performance,
we summarized this variable in five ways: as a proportional representation and as a binary
variable classified using thresholds of 1%, 10%, 20%, or 50%. For example, when using the
1% threshold, any cell with water cover of 1% or more is considered to contain water in the
binary representation and any cell with less than 1% is not.

While our primary focus in this study was on the influence of water cover on model perfor-
mance and output, each SDM included several classes of covariates to account for numerous
other factors that influence species distributions. Our topographic/habitat suite of variables
included the mean elevation (from EarthEnv; Robinson et al., 2014), mean enhanced vegeta-
tion index (EVI; MODIS; https://lpdaac.usgs.gov/products/mod11a1v006/), topographic wet-
ness index (TWI; hydroSHEDS; Marthews et al., 2015), and terrain roughness index (TRI;
EarthEnv). Climatic covariates included the mean annual temperature (bio1), mean annual
precipitation (bio12), precipitation seasonality (bio15; all bio variables from CHELSA v2.1;
Karger et al., 2021), and intra-annual variation in cloud cover (EarthEnv). We selected envi-
ronmental variables to reduce collinearity, although collinearity is less of a concern within
random forest (Farrell et la. 2019). All variables (topographic, climatic, and land-cover) that
were available at finer resolution were spatially aggregated to 1 km using the mean value
of all cells falling within the 1x1km cell. We also used temporal covariates in our models,
such as year, date, and time of day, to account for temporal variability in bird activity and
long-term population trends. Finally, as covariates, we included all effort indicators (distance
travelled, duration of checklist, and number of observers).
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Coarsening the spatial grain

To test the role of representing the water cover variable as binary or proportional in different
spatial grains, we coarsened the spatial grain of our analyses by aggregating all land-cover,
topographic, and climatic variables. We aggregated from 1 x 1 km to 5 x 5 km, 10 x 10 km,
and 50 x 50 km (hereafter ‘test grains’) using the means of all 1 km cells within the larger cell.
The test grains were chosen based on their frequent use in published SDM studies (see review
by Moudrý et al. 2023b). The species observation data were subsequently associated to the
each coarser resolution grids. This approach leads to the fact that multiple species records
may occur in any cell of the coarser grid. Following Guisan et al. (2007), we decided to keep
the sample size constant. If any coarse cell contained more than one species record, all these
records were retained rather than reducing these to single record per cell. This allowed us
to keep the sample size (i.e. presence: absence ratio) consistent between all grains and avoid
mistaking the effects of change in resolution for those caused by the change in sample size
and prevalence (Leroy et al. 2018). Temporal and effort covariates were not scaled because
they were assigned at the checklist (point) level.

Model fitting and evaluation

Weused Random Forest tomodel the breeding and non-breeding distributions of each species
separately. Random Forest is a machine learning method designed to analyse large datasets
with many covariates and is frequently found to produce the most accurate SDMs (e.g., Mi et
al., 2017, Valavi et al. 2023). Random forests are adaptable, automatically adjusting to com-
plex, nonlinear relationships, and consider high-order interactions between environmental
variables (Evans et al., 2011). Random Forest models were conducted in R version 4.1.0 using
the ranger package (Wright et al., 2018).

We randomly divided the data into training and testing. The testing set was used for model
validation. Models were parameterized to 100 trees and 7 threads. We compiled metrics
of predictive model performance including the area under the ROC curve (AUC), true skill
statistic (TSS), sensitivity, and specificity. We masked portions of the predictions that fell
outside of the buffered range extent when estimating the predictive performance. To diag-
nose overfitting, we examined test-set calibration plots for each model. To compare the ef-
fect of binary and proportional water cover variables, we assessed their relative importance.
Overall, we fit models for each of the 57 analyzed species during each season (breeding vs.
non-breeding) at four test grains (1 x 1 km to 5 x 5 km, 10 x 10 km, and 50 x 50 km) and five
types of water cover representation (proportional, and binary using four thresholds), result-
ing in 2,280 separate models. The computational time for our models was approximately a
month using high-performance computing tools, which vividly demonstrates the volume of
scenarios we ran to test our hypothesis.

3.2.4. Results
All performance metrics followed similar patterns, hence we focused on TSS for simplicity.
In general, SDMs fitted at the finest grain (1 x 1 km) performed very well (breeding TSS =
0.8; non-breeding TSS = 0.79; Figure 3.6). The decrease in model performance was observed
between original models at 1 x 1 km grain and models at 5 x 5 km grain. Further coars-
ening of grain resulted in minimal additional decrease in models performance (Figure 3.6).
The comparison of model performance (TSS) between models fitted with water cover as a
proportional variable and as a binary variable revealed minimal differences in model per-
formance at all grains (Figure 3.7). At 1 x 1 km grain, the performance decreased with the
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increasing threshold used to derive the binary water cover variable. At coarser grains, the
threshold had no effect on model performance. The results showed that the choice of water
cover representation mattered most in species with fewer observations, which are generally
less common (Figure 3.7B). The drop in model performance was more pronounced for non-
breeding season models (Figure 3.7B), while TSS dropped on average by 0.12 from 0.82 (1
x 1 km) to 0.7 (50 x 50 kilometres) for breeding season models; the drop for non-breeding
season models was about 0.2. In the models fitted using binary water cover representation,
the importance of the water cover variable significantly decreased compared to the models
using its proportional representation (Figure 3.8). The importance of the water cover vari-
able decreased with coarsening the grain and increasing the threshold. For example, when
models were fitted using a 1x1 km grain and a 1% threshold, the mean drop in water cover im-
portance was approx. 20% compared to the proportional representation, whereas for models
fitted using the 50 x 50 km grain and 50% threshold, the drop was over 80% (Figure 3.8).
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Figure 3.6: Predictive performance represented by TSS. Columns show results for different
grain sizes, sorted by the thresholds (%) used to generate a binary land-cover variable. Rows
show results for different seasons. Boxplot central lines represent median for each scenario,
points represent individual species.
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Figure 3.7: Variation of predictive performance across summarization method, sample size, and spatial grain. A:
difference in TSS between models fitted with binary land-cover variable compared to a reference model using the
proportional land-cover. Boxplot central lines represent the median for each scenario, points represent individual
species. B: variation in TSS across different sample sizes (green and purple colour represent 1% and 50% thresholds,
respectively). Columns show results for different grain sizes. Rows show results for different seasons. Positive
values indicate that models with binary habitat predictors performed better than those with proportional predictors
and vice versa.
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Figure 3.8: Differences in the importance of the water cover variable in models fitted bi-
nary land-cover (with four thresholds) compared to the importance resulting from the cor-
responding model using the proportional representation of this variable. Boxplot central
lines represent the median for each scenario, points represent individual species. Negative
values indicate that models with binary water cover predictors had lower water variable
importance than models with proportional predictors and vice versa.

3.2.5. Discussion
To fully utilize the potential of the fact that the availability of data suitable for SDM keeps
increasing, we must understand how to process and use these data effectively. This includes
determining the optimal grain size and appropriate selection of environmental variables. In
this study, we evaluated the usefulness of binary land-cover variables for SDMs at multiple
grains. We computed species distribution models for 57 water bird species in North America
across several grain sizes (i.e., from 1 km2 up to 2500 km2) for breeding and non-breeding sea-
sons. We used the proportional and binary representations of land-cover variables derived
with various thresholds (1%, 10%, 20%, 50%).
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Our results show that the use of binary land-cover variables should be approached with
caution. Models created with binary variables performed equally well as those with pro-
portional variables (Figure 3.6), but there was a significant decrease in the importance of the
water cover variable (Figure 3.8). The use of binary water cover variable often led to the situa-
tionwhen this variablewas not identified as themost important land-cover variable for water
bird species which is, to say the least, unexpected. In addition, we observed that with coarser
grain and greater thresholds used to derive the binary water cover variable, the water cover
became less important, with a drop of up to 90% at the coarsest grain used compared to the
model using the proportional water cover variable (Figure 3.8). This contrasts with the study
by Gábor et al. (2022a) who showed that for water bird species, models at approximately 10
x 10 km grain using binary predictors performed better than models with proportional pre-
dictors. The contrasting results may be attributed to the fact that in our study, the modeling
algorithms were allowed to choose the best combination of environmental variables, i.e., the
lower predictive power of the binary form of the water cover variable is compensated for
by another variable. For example, flooded tree or shrubland habitats often occur near water
cover and may become predictive of a species occurrence. In contrast, Gábor et al. (2022a)
used only water cover variables for model fitting and, hence, their models did not have the
option to select variables that would provide a closer fit.

Our results show that as the grain size becomes coarser, the model performance decreases,
which is consistent with prior studies (Guisan et al. 2007, Seo et al. 2009, Chauvier et al.
2022, Zarzo-Arias et al. 2022) and supports the common recommendation to first try the
most detailed grain that the data allows (Moudrý et al. 2023b). However, it’s important to
note that a finer grain may not always be better, as organisms respond to their environment
more strongly at some grains than at others. These grains have been referred to as ‘response
grains’ or ‘ecological scales’ and depend on the species ecology (e.g., its home-range; Mertes
and Jetz 2018). Consequently, the choice of grain in models can strongly influence our ability
to detect and measure species’ response to the environment. The grain at which a species is
expected to respond to the environment should be always considered (Manzoor et al. 2020,
Wunderlich, et al. 2022, Moudrý et al. 2023b).

Importantly, our results suggest that the grain size can impact the applicability of binary
land-cover variables. The large decline in the importance of the binary water cover vari-
able relative to its proportional representation observed at 25km2 resolution and coarser
suggests that at grains coarser than 1km2, the binary representation of water cover is not
applicable. Therefore, the proportion or total perimeter of water bodies (e.g., Virkkala et al.
2005, Moudrý and Šímová 2013) should be preferred at coarser grains. However, at a 1km2

grain, the decrease in the importance of the water cover variable was relatively small and
models using binary predictors (presence/absence of the habitat) might be useful.

The threshold for deriving the binary water cover variable is another important aspect to
consider. For example, a 1% threshold used in this study requires a water area equivalent to
2 American football fields at a 1 x 1 km resolution, 185at a 10 x 10 km resolution, and 4,638
at a 50 x 50 km resolution. For comparison, the area of the lake of the Great Salt Lake (Utah,
USA) is 456 football fields. Thus, it is apparent that especially at coarser grains, the use of
an inappropriate threshold can lead to a substantial drop in the number of cells identified
as containing water cover, even though many of them provide enough carrying capacity for
smaller water bird species populations (Hanski 1999, Melo et al. 2018). Indeed, our results
show that using higher than 1% threshold leads to a decline in the importance of the binary
water cover variable compared to its proportional representation, making it unusable.
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Despite our expectations, we did not find any significant difference in model performance
or in importance of the water cover variable between breeding and non-breeding seasons.
We expected that models would perform better during the breeding season as water is more
critical to the biology of many birds during this season. This expectation was based on the
fact that birds have offspring that often cannot leave the water or fly, and many species
remain stationary at a specific nesting site.

3.2.6. Conclusions
The appropriate selection of environmental variables and grain size in species distribution
modeling is of considerable importance. In this study, we demonstrated that (1) the perfor-
mance of the models was not significantly affected by the type of the adopted water cover
variable (proportional or binary) but a significant decrease was observed in the importance
of the water cover variable when used in a binary form, (2) the performance of the models
was affected by the adopted grain, with models at a 1 km2 grain performing considerably
better than models at coarser grains, (3) models for the breeding and non-breading season
performed equally well, and (4) the importance of the binary water cover variable declined
relative to its proportional representation with coarser grains and during the breeding sea-
son. We highlight that the use of binary land-cover variables should be approached with
caution. Binary representation of water cover might be useful at finer grain sizes (i.e., 1km2),
which is a promising result as at more detailed grains, the simple presence or absence of a
certain land-cover type can be a realistic descriptor and can save time in fieldwork. However,
binary representation of water cover is unsuitable for models at grains coarser than 1km2.
For such grains, the use of proportional land-cover variables produces more reliable models.
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3.3.1. AbstRact
Species distributionmodels (SDMs) have become a common tool in studies of species-environment
relationships but can be negatively affected by positional uncertainty of underlying species
occurrence data. Previous work has documented the effect of positional uncertainty on
model predictive performance, but its consequences for inference about species-environment
relationships remain largely unknown. Here we use over 12,000 combinations of virtual and
real environmental variables and virtual species, as well as a real case-study, to investigate
how accurately SDMs can recover species-environment relationships after applying known
positional errors to species occurrence data. We explored a range of environmental predic-
tors with various spatial heterogeneity, species’ niche widths, sample sizes and magnitudes
of positional error. Positional uncertainty decreased predictive model performance for all
modeled scenarios. The absolute and relative importance of environmental predictors and
the shape of species-environmental relationships co-varied with a level of positional uncer-
tainty. These differences were much weaker than those observed for overall model perfor-
mance especially for homogenous predictor variables. This suggests that, at least for the ex-
ample species and conditions analyzed, the negative consequences of positional uncertainty
on model performance did not extend as strongly to the ecological interpretability of the
models. Although the findings are encouraging for practitioners using SDMs to reveal gen-
erative mechanisms based on spatially uncertain data, they suggest greater consequences for
applications utilizing distributions predicted from SDMs using positionally uncertain data,
such as conservation prioritization and biodiversity monitoring.

Keywords: Birds, Ecological modeling, Location error, Niche models, Species-environment
relationship
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3.3.2. IntRoduction
Species occurrences are increasingly being recorded in online, public, global databases such
as GBIF (www.gbif.org), eBird (www.ebird.org), or iNaturalist (www.inatura-list.org), where
scientists and the general public worldwide share field observations. However, whereas the
number of records in these databases is constantly growing, many observations are charac-
terized by substantial uncertainty in the occurrence location (Moudrý and Devillers 2020).
Such uncertainty poses problems for analyses aimed at revealing species-environment rela-
tionships because the environmental conditions at recorded sites could differ from those at
true locations.

SDMs are a widely used class of ecological models that use occurrence data to estimate
species-environment relationships (Ferrier et al. 2017) and allow researchers to predict the
relative probability of occurrence across unsampled areas of a study region. SDMs have
broad utility in ecology (Elith and Leathwick 2009, Franklin 2010, Guisan et al. 2013, Zurell
et al. 2019) and have been successfully used to identify critical habitats (Volis et al. 2021),
delineate suitable locations for relocations (Segal et al. 2021), or assess the potential impacts
of climate change (Santini et al. 2021). SDMs are also frequently used to infer the importance
of environmental variables defining the species niche (e.g., Moudrý and Šímová 2013, Bradie
and Leung 2017, Lecours et al. 2020, Li and Kou 2021, Smith and Santos 2020) and to deter-
mine the shapes of species responses to the environment (Austin et al. 2006, Hargreaves et
al. 2014, Lee-Yaw et al. 2016, Dvorský et al. 2017, Bazzichetto et al. 2018). However, despite
methodological advances improving the performance of SDMs over the last two decades
(e.g., Phillips et al. 2006, Varela et al. 2014, Graham et al. 2019, Tessarolo et al. 2021), they
remain sensitive to the spatial accuracy of occurrence data used in model fitting (Visscher
2006, Moudrý and Šímová et al. 2012, Moudrý et al. 2017, Araújo et al. 2019, Byaraktarov et
al. 2020, Isaac et al. 2020, Etherington et al. 2021, Gábor et al. 2022b).

Maximum Entropy-based SDMs estimate a response curve in environmental space which
discriminates between observed occurrences and ”background” samples that do not contain
occurrence information (Figure 3.9). Positional uncertainty describes the magnitude of er-
ror in the locations of occurrence records. In some cases, it quantifies the likelihood of a
mismatch between the true environmental variables’ values and the assigned value. Even if
a spatial error does not lead to directional bias in environmental space, increased sampling
error can decrease predictive model performance and even bias the slope of the response
curves; or the estimations of variable importance (Figure 3.9; e.g., Johnson and Gillingham
2008, Fernandez et al. 2009, Osborne and Leitão 2009, Hefley et al. 2014, Fernandes et al.
2019). The magnitude of positional error in environmental variables measurements may be
amplified in highly heterogeneous or structured landscapes where spatial autocorrelation in
environmental variables is relatively low (Naimi et al. 2011, Naimi et al. 2014). Moreover,
even uniform spatial error can create persistent bias in measurements of environmental vari-
ables depending on the spatial structure of the relevant variable. For example, uniformly-
distributed spatial error for occurrences of a mountaintop-dwelling species would always
lead to estimates of elevation that are biased to lower elevations than reality. Such a bias
in even one environmental variable could reduce overall model predictive performance and
bias the estimated response curve and variable importance (Figure 3.9).
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Figure 3.9: Heuristic illustration of the effect of positional error (depicted in environmental
space) on response curve estimation. Panel (A) shows the area of species occurrences (orange)
relative to area of the sampled background points (blue) without positional uncertainty. The
‘true’ response curve that would be estimated from these data would result in an approximate
discrimination threshold which is represented by the dashed line. The response curve would
differ from the ‘true’ response curve when spatial error leads to (B) persistent bias in environ-
mental space, (C) persistent bias and unbiased sampling error in environmental space, and even
(D) random sampling error in environmental space (i.e. without directional bias). Arrows in the
upper-right of each panel indicate the directions of shift for the presences (green point).

Even more troubling, common strategies for mitigating the effects of positional uncertainty
on SDMs have recently been shown to be ineffective. For example, Gábor et al. (2020)
demonstrated that increased sample sizes do not reduce the negative effects of positional
uncertainty. Similarly, Smith et al. (2022) showed that discarding data with high positional
uncertainty limits our ability to determine species’ distribution and climatic niche tolerances
properly. Particularly, they demonstrated that using only accurate data dramatically reduces
range size estimates and overestimates exposure to climate change. Recently, Gábor et al.
(2022) concluded that coarsening the analysis grain to compensate for positional error did
not improve model performance and recommended to develop models with the finest possi-
ble analysis grain and as close to the response grain as possible even when available species
occurrences suffer from positional errors.
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Although previous studies confirmed the effect of positional error on the model predictive
performance (e.g., Graham et al. 2008, Johnson and Gillingham 2008, Fernandez et al. 2009,
Osborne and Leitão 2009, Naimi et al. 2011, 2014, Hefley et al. 2014, Tulowiecki et al. 2015,
Gueta and Carmel 2016, Mitchell et al. 2017, Soultan and Safi 2017, Fernandes et al. 2019,
Gábor et al. 2022b), especially when specialist species are modeled (Visscher 2006, Gábor
et al. 2020a), the question about how positional uncertainty in species occurrences affects
models’ parameter estimation (species-environment relationships inference) remain largely
unexplored. Therefore, in this study, we explored the extent to which parameter estimation
is affected by positional uncertainty. Specifically, we investigated the influence of positional
error on variable importance and the shape of the response curves. We hypothesized that
increasing positional uncertainty would lead to decreased model predictive performance and
imprecise variable importance and response curves with more pronounced effects for species
with narrow niche and heterogeneous variables.

3.3.3. MetHods
We used a virtual species approach across two workflows (Figure 3.10), which allowed us
to know the true underlying occurrence location and thus enabled us to characterize rela-
tive bias in parameter estimates (Zurell et al. 2010, Moudrý 2015, Meynard et al. 2019), as
well as specify various spatial autocorrelation levels (SAC; Naimi et al. 2011, 2014) in the
environmental variables.

We have simulated 12 560 combinations of virtual and real environmental data and virtual
species to investigate our assumptions and have fitted over 628 000models. Simulations were
divided into two workflows and a third workflow investigated a real species. In Workflow
1, we combined virtual variables with different levels of spatial autocorrelation (SAC) and
virtual species with varyingwidths of niches and number of occurrences. For these scenarios,
models were fittedwith only one variable (see Figure 3.10). Thanks to this, we got a simplified
yet detailed insight into how various levels of positional uncertainty affects model’s ability
to properly detect species response to the environment across various SAC, niche width, and
sample size.

Additionally, to mimic real SDMs situation, we have combined real environmental variables
with virtual species with different niche widths and sample sizes and fitted models with
multiple environmental variables (Workflow 2; Figure 3.10). This allowed us to explore our
assumptions with more model complexity. Moreover, using numerous environmental vari-
ables to fit the models, we tested how positional uncertainty affects models’ ability to prop-
erly detect the most influential variables (i.e., those used to generate virtual species).

Finally, we tested our assumptions using real environmental variables and real species (Band-
tailed pigeon; Workflow 3; Figure 3.10). Our simulations showed that the model parameter
estimation is negatively affected across various species niches (note, however, that the mag-
nitude varies). Therefore, we hypothesized, considering the number of occurrences (n =
111) and the fact that the species is widely spread across the western part of the USA that
positional uncertainty will bias model response curves and variable importance.
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Figure 3.10: General modeling process for all three workflows. Each experiment was repeated 50 times
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In Workflow 1, the artificial study area was given by the extent of the virtual landscape (200
x 200 cells; see details below). Virtual species in Workflow 2 used Spain (except islands) as
a study area, whereas the band-tailed pigeon was modeled for the United States of America
(Figure 3.10; Workflow 3).

Occurrence data

Workflow 1

We generated artificial occurrences using the ’virtualspecies’ package (Leroy et al. 2016, ver.
1.5) in the statistical software R (ver. 4.1.0, R Development Core Team 2021) with three steps:
(i) define (virtual) species-environment relationships, (ii) project range into geographic space,
and (iii) sample occurrence data from simulated range. We used a normal distribution to de-
fine the response of virtual species to the virtual environmental variable. To simulate species
with different niche widths, we used the same mean (0.005) and varied standard deviation
from 0.005 up to 0.2 using a logarithmically spaced sequence. In total, we generated 25
species with various niche widths. We then projected habitat suitability across our study
area to define the probability distribution of occurrences. In the final step, we used a prob-
abilistic simulation approach and logistic function with α = −0.05 (controls the slope of the
logistic curve) and β = 0.3 (the point of inflection of the logistic curve, i.e., the value of
the environmental gradient at which the probability of occurrence is 50%), as recommended
in prior studies, to convert the habitat suitability raster to a randomized binary presence-
absence raster (see Meynard and Kaplan 2012, 2013, Meynard et al. 2019 for more details).
This allowed us to generate virtual species with gradual responses to the environment that
mimic the real species, as demonstrated by Meynard and Kaplan (2012, 2013). Subsequently,
we sampled 20, 100, 300, and 1000 species occurrences.

Workflow 2

To generate virtual species occurrences for workflow 2, we used two environmental variables
with various SAC (elevation - high SAC, aspect - low SAC). To simulate species with different
niche widths, we used normal distributions with mean of 1000m and standard deviation of
100-500m for elevation, and a mean of 100° and standard deviation of 10-100° for aspect. This
allowed us to generate three species with various niche widths (narrow, medium, wide). We
then projected habitat suitability across our study area to define the probability distribution
of occurrences. We used a logistic function with α =−0.05 and β = 0.3 to convert the habitat
suitability raster to a randomized binary presence-absence raster. We sampled 20, 100, 300,
and 1000 species occurrences.

Workflow 3

Occurrences for the band-tailed pigeon, a species with high detection probability (Keppie and
Braun 2000), were extracted from theNorthAmerican Breeding Bird Survey (BBS, Sauer et al.,
2015), a long-term collection of over 4,800 survey routes distributed across North America.
Each survey route consists of 50 points count locations distributed 0.8 kilometers apart
and sampled for 3 minutes. We considered only routes from the study region (the USA, see
Figure 3.10) and retained only those routes where we assumed there was high certainty that
the species was present. First, we discarded data sampled before the year 2000 and then kept
only those routes with at least ten years of samples post-2000. We considered occurrences
from a minimum of 5 years of samples as presences. Routes where the species was detected
but on fewer occasions, and therefore presence status was unsure, were removed from the



ChapteR 3 – ReseaRch studies Page 55 of 120

analysis. The final dataset contained 111 presences.

Environmental variables

Naimi et al. (2011, 2014) showed that spatial autocorrelation in environmental variables
affects the degree to which positional uncertainty creates mismatches between true and
measured environmental variables values. Therefore, we generated artificial environmental
variables and selected real environmental variables that spanned different degrees of spatial
autocorrelation.

Workflow 1

We generated artificial environmental variables using the R ’gstat’ package (ver. 2.0-9) and
unconditional simulation over a regular grid of 200 x 200 cells. Unconditional simulation al-
lows for a generation of environmental variables with different SAC, where the level of SAC
is defined by a variogram (Dungan 1999, Naimi et al. 2011). We used an exponential vari-
ogram with the same sill parameter of 0.025 for all simulations. To simulate variables across
different SAC levels, we scaled the range parameters from 1 (low SAC, high heterogeneity)
to 49 (high SAC, low heterogeneity) by increments of 2 to total 25 virtual environmental
variables. Only one variable was used to generate virtual species and subsequently model
the species distribution (Figure 6.10).

Workflow 2

We chose five environmental variables to construct models for Workflow 2 (Supplementary
materials Table A1). Two of the variables were related to habitat characteristics: grassland
coverage and forest coverage (http://centrodedescargas.cnig.es/; Spain national geographic
center); and three were related to topography: topography wetness index, aspect and eleva-
tion (http://centrodedescargas.cnig.es/; Spain national geographic center). We used elevation
and aspect that serve as a proxy for temperature (see for example Müller and Brandl 2009,
Coops et la. 2010, Vierling et al. 2011, Work et al. 2011, Vogeler et al. 2014), and topography
wetness index that is a proxy for water availability (e.g., Petroselli et al. 2013, Reif et al. 2018,
Title and Bemmels 2018). Topography wetness index was derived from the elevation model
(SAGA-GIS v. 2.1.4; Conrad et al. 2015). All environmental variables were resampled from
an original resolution of 25 x 25 m (elevation) or 20 x 20 m (all other variables) to 50 x 50 m
cell resolution using the mean values of the original data (Moudrý et al. 2019) for modeling
purposes (see Supplementary materials Table A1). Only elevation and aspect were used to
generate virtual species, while all variables were used to fit models.

Workflow 3

For the band-tailed pigeon, we selected nine variables that reflect fine to coarse-scales of
spatial and temporal variation. Four variables were related to climate: mean annual temper-
ature, seasonality of precipitation, growing season precipitation (CHELSA v1.2; Karger et al.,
2017), and the inter-annual variation of cloud cover (EarthEnv; Wilson and Jetz 2016). Two
variables were related to vegetation productivity: spatial heterogeneity of EVI (EarthEnv;
Tuanmu and Jetz 2015) and the mean enhanced vegetation index (EVI) for winter, derived
from MODIS (Didan 2015). Two variables were related to soil characteristics: proportion of
soil silt content and soil clay content (SoilGrids v2; Poggio et al., 2021). The final variable, the
terrain ruggedness index (EarthEnv; Amatulli et al., 2018), represented topographical varia-
tion. All variables were resampled to a 1 x 1 km cell size from their native projections (see
Supplementary materials Table A1 for further details and provenance).
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We used variance inflation factor analysis (VIF; ’usdm’ package, ver. 1.1-18) to identify poten-
tial multicollinearity issues between our environmental variables. Multicollinearity between
predictors can negatively affect SDMs by causing unstable parameter estimates and biased
test statistics (Belsley 1991, Chatfield 1995, Dormann et al. 2013). All VIF values indicated
low multicollinearity (<3). Thus we did not exclude any variables on this basis (Zuur et al.
2010).

Simulating positional uncertainty in occurrence data

Positional error in species occurrences may vary depending on the data source and original
collection method (e.g., geographic coordinates or written description). Whereas for occur-
rences gathered with GNSS (Global Navigation Satellite System), the positional uncertainty
may range from a couple up to tens of meters, occurrences gathered with older technolo-
gies or those georeferenced from museum databases may have positional uncertainty of up
to tens of kilometers (see for example Moudrý and Devillers 2020). Therefore, to mimic the
range of positional uncertainty in real datasets, we shifted occurrences in a (uniform) random
direction according to four different scenarios. As the resolution of environmental variables
used in SDMs was different for both virtual species (1 x 1 pixel respectively 50 x 50 m) and
for Band-tailed pigeon (1 x 1 km), we shifted occurrences in a random direction by drawing
a shift distance from a uniform distribution from the following distances: S1: 1 – 2 pixels, S2:
2 – 5 pixels, S3: 5 – 10 pixels, S4: 10 – 30 pixels (Workflow1); S1: 50 – 100 m, S2: 100 – 250 m,
S3: 250 – 500 m, S4: 500 – 1500 m (Workflow2); S1: 1 – 2 km, S2: 2 – 5 km, S3: 5 – 10 km, S4:
10 – 30 km (Workflow3; see Supplementary materials Table A2). If the original data points
were shifted outside of the study area, the shift was recalculated until the new coordinates
were located within the boundaries of the study area.

Model fitting and evaluation

We built species distribution models in the statistical software R (package ’sdm’ ver. 1.0-98;
Naimi and Araújo 2016) using the MaxEnt modeling method (Phillips et al. 2006), a presence-
background method often adopted in ecological studies (Linda et al. 2016, Rodríguez et al.
2019, Santamarina et al. 2019, Ancillotto et al. 2020, El-Gabbas et al. 2020, Boral and Mok-
tan 2021, Ellis-Soto et al. 2021, Venne and Curie 2021, Gábor et al. 2022b). We used 10,000
randomly sampled background points and default model settings (Phillips and Dudík 2008),
except we set the beta parameter to 0.5 and restricted used features. Only hinge features
were allowed for virtual species (Workflow 1 and 2). Although hinge features might lead
to model overfitting, we used them as our virtual species response to the environment was
defined using a normal distribution (Elith et al. 2010). For band-tailed pigeon, we sampled
background points only in the extent of species occurrences (western coast of USA; VanDer-
Wal et al. 2009, Barve et al. 2011, Merow et al. 2013) and used quadratic features to avoid
overfitting (Austin 2007).

We used a variety of discrimination metrics to evaluate predictive model performance. We
used the Sorensen index (SI), recommended for SDMs evaluation using presence-only oc-
currences (Li and Guo 2013, Leroy et al. 2018). SI ranges from 0 to 1, where 0 means that
none of the predictions matched any observation, and 1 means that predictions perfectly
fit observations without any false positive or false negative (Leroy et al. 2018). In addi-
tion, we also calculated overprediction (OPR, Barbosa et al. 2013) and underprediction (UPR,
Fielding and Bell 1997) rates to explore whether positional uncertainty led to a consistent
over-/underprediction bias. The OPR measures the percentage of predicted presences corre-
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sponding to false presences, whereas UPR measures the percentage of actual presences not
predicted by the model (Fielding and Bell 1997, Barbosa et al. 2013, Leroy et al. 2018). In
addition, we also computed the true skill statistic (TSS, Allouche et al. 2006), despite recent
criticisms about its use due to prevalence dependency (Lobo et al. 2008, Jiménez Valverde
2012, Leroy et al. 2018). We explored TSS in addition to SI as it is still widely applied in
ecological studies (e.g., Fern et al. 2020, Holder et al. 2021, Eduardo et al. 2022, Sanguet et al.
2022). TSS ranges from −1 to +1, where +1 indicates perfect agreement and values of zero
or less indicate random performance (Allouche et al. 2006).

We ran SDMs using five-fold cross-validation (Merow et al. 2013), where species occurrences
and background points were divided randomly into five-folds, and each fold was retained
for model testing while the other four folds were used for model training. We repeated each
experiment 50 times, and evaluations represent averages of the 50 repetitions.

We evaluated each predictor variable’s importance and visualized predicted responses to the
environmental variables to explore the effect on inference about generative mechanisms. To
estimate variable importance, we used a leave-one-out sensitivity analysis method which
calculates the improvement in the model performance with the inclusion of each variable
compared to when the variable is excluded (AUCtest; Murray and Conner 2009). Response
curves were automatically generated by the ’sdm’ package (Naimi and Araújo 2016) using
the ”evaluation strip” approach. This approach visualizes species responses for used environ-
mental variables by including data frames that show the distribution of observed presence
point locations within the environmental range investigated by the evaluation strips (Kindt
2018; detailed in Elith et al. 2005).

3.3.4. Results
Model predictive performance

Note that here we present only results for the Sorensen index to simplify the presentation of
the results, but results for the true skill statistic (TSS) qualitatively followed the same pattern.

In general, inWorkflow 1where pointswere not shifted (hereafter unaltered), models achieved
excellent model performances for species with narrow niche widths (SI > 0.9, OPR and UPR
< 0.03; see Figure 3.11 and Supplementary material Figure A3). However, predictive perfor-
mance generally decreased with increasing species niche width (SI decreased on average by
0.53, while OPR and UPR increased on average by 0.57, respectively by 0.5). Predictive per-
formance generally decreased with increasing positional error in occurrence data. Where
the level of SAC was low and the sample size small, the more pronounced was the negative
effect of positional error in species occurrences (Figure 3.11 and Supplementary material
Figure A3). In Workflow 2, unaltered models achieved very good model performances (SI
> 0.86, OPR < 0.04, UPR < 0.19, Figure 3.11 and Supplementary material Figure A3). Again,
performance decreased with increasing niche width and with introducing positional error
(Figure 3.11 and Supplementary material Figure A3).

Unaltered models for band-tailed pigeon (Workflow 3) achieved very good model perfor-
mance (SI achieved on average 0.86, OPR 0.13, and UPR 0.15), and once more, positional un-
certainty led to decreases in model performance (Figure 3.12). Compared to virtual species
data, the decrease in model performance was, however, lower (SI for Workflow 2 virtual
species decreased on average over 0.3, vs. an average of 0.03 for the real species; Figures
3.11, 3.12 and Supplementary material Figure A3).
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Figure 3.11: Change in model performance, measured through the Sorensen index, overprediction rate and under-
prediction rates for workflow 1 and 2. Resulting changes for all scenarios are plotted in Supplementary materials
Figures A3. Values represent averages of the 50 repetitions.
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Figure 3.12: Resulting performance metrics (A), response curves (B) and variables’ importance (C) of unaltered and
altered models for all scenarios with real species and real environmental data. Values represent averages of the 50
repetitions.

Thegeneral increase in over and underprediction rates across all workflows implies that mod-
els fit to data with positional error tended to overpredict and, at the same time, underpredict
species habitat suitability. Therefore, using positionally uncertain data might be highly risky
for some ecological applications (e.g., nature conservation).

Variable importance

For Workflow 2 models correctly, across all modeled scenarios, detected the aspect and ele-
vation, which were used to generate virtual species, as the most influential variables. (only
these variables were used to generate virtual species; Figure 3.13 and Figure A4 in supple-
mentary material). Increasing sample size increased the estimated importance of aspect and
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elevation. On the other hand, as niche width increased, models estimated greater importance
of other variables.

For band-tailed pigeon (Workflow 3), the most influential variables were mean winter EVI
(16.5%) and seasonality of precipitation (17%), followed by mean annual temperature (10.1%),
with other variables below 10% (terrain ruggedness, soil clay content, growing season pre-
cipitation, EVI spatial heterogeneity, soil silt content, cloud cover; Figure 3.12).

Figure 3.13: Comparison of the change in variables’ importance between models generated with positionally ac-
curate presences (Unaltered) and models built with various positional error in the data across various sample sizes.
Values represent averages of the 50 repetitions. Variables’ importance for all scenarios are plotted in Supplementary
material Figure A4.

Positional errors led to changes in variable importance. Workflow 2models correctly inferred
the most influential variables regardless of the degree of positional error, although in the
high-error scenario, the absolute importance of aspect decreased in importance by 41,2%
while the importance of elevation increased by almost 32% (Figure 3.13 and Figure A4 in
supplementary material). For variables with minor importance, we generally observed only
small changes (i.e., < 4.4% change) to their importance.

In workflow 3, models correctly inferred the seasonality of precipitation as the most influen-
tial variable independently of positional error. As error increased, we observed a decrease in
the importance of mean winter EVI and mean annual temperature (by 13.6% and 6.1% respec-
tively), and an increase in the importance of seasonality of precipitation (by 13.1%), as well
as growing season precipitation (by 10.8%), becoming the second most influential variable
(Figure 3.12).

Response curves

In Workflow 1, unaltered models accurately recovered the true mean response except for
species with wide niches and 20 occurrences., where models failed to recover the response
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mean (see Figure 3.14 and Supplementary material Figure A5). The estimated standard devia-
tion, however. Varied considerably across different scenarios. Where sample size was lowest
(20 occurrences), models overestimated the standard deviation and thus tended to overpre-
dict the probability of suitable habitat. The standard deviation estimation was significantly
improved with increasing sample size and was, on average better for scenarios with higher
levels of SAC (homogenous variables). This pattern was independent of species niche width
(Figure 3.14 and Supplementary material Figure A5).

Therefore, where there was positional error and small sample sizes (20 occurrences), models
were unable to accurately estimate either the response mean or standard deviation across
all SAC types. This ability was improved with increasing sample size and level of SAC (Fig-
ure 3.14 and Supplementary material Figure A5). Across all species niche widths, where
positional error was pronounced, models were better able to estimate response means and
standard deviations when sample sizes were large and SAC levels high. However, even with
the largest sample size (1000 occurrences) and the highest level of SAC, the models overesti-
mated the standard deviation (Figure 3.14 and Supplementary material Figure A5).

For workflow 2, the unaltered models were able to recover responses to both aspect and
elevation, which were used to generate virtual species. This was independent of modeled
scenario (Figure 3.14 and Supplementary material Figure A5). When introducing positional
error, models could still capture the approximate response to the elevation with a relatively
high SAC level. However, although models recovered the correct shape of the response
curve, standard deviation increased. In contrast, for aspect (low SAC level), the models de-
veloped with positional uncertainty failed to recover the correct response curve, even when
larger sample sizes were used (Figure 3.14 and Supplementary material Figure A5). Note that
Workflow 2 models could estimate the response even with the smallest sample size. This is in
contrast to Workflow 1, potentially due to greater model complexity. These results support
our assumptions that models developed with data containing positional uncertainty might
be able to detect species responses for variables with high SAC levels, but fail to detect mean-
ingful responses for variables with low SAC levels.

The positional error also affected response curves for the band-tailed pigeon. The largest
changes to response curves and over- and underprediction tended to occur with the most
heterogeneous variables, for example, the terrain ruggedness index (see Figure 3.12).
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Figure 3.14: Variation of selected environmental response curves across models with unaltered and altered data,
and various sample sizes for workflow 1 and 2. Resulting response curves for all scenarios are plotted in Supple-
mentary materials 2. Response curves represent averages of the 50 repetitions.

3.3.5. Discussion
In our study, we used combinations of virtual and real environmental variables with differ-
ent SAC levels, sets of virtual species with a variety of niche widths, and one real species to
explore how positional error in species occurrence data can affect model performance and
its ecological interpretability. Specifically, we investigated the ability of SDMs to appropri-
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ately detect species’ responses to the environment and variable importance using various
scenarios with artificially applied positional error.

Our results show that positional uncertainty in species occurrences leads to a decrease in
model predictive performance across all combinations of species niche widths, sample sizes,
and SAC levels of the environmental variables, but that the magnitude of the negative impact
of positional uncertainty varied for different combinations and depending on the distance
that points were shifted. The negative influence was most pronounced for species with a nar-
row niche and scenarios with more heterogenous environmental variables. This is consistent
with previous studies, which concluded that more accurate occurrence data generally yielded
better-performing SDMs (Visscher 2006, Johnson and Gillingham 2008, Osbourne and Leitao
2009, Tulowiecki et al. 2015, Mitchell et al. 2017, Soultan and Safi 2017, Fernandes et al.
2019). It is important to highlight, that the magnitude of the negative effect of positional
uncertainty varied across prior studies. This can be explained by using environmental vari-
ables with different heterogeneity (Naimi et al. 2011, 2014) or by using species with varying
niche width (Gábor et al. 2020a).

Our models for real species were less affected by positional uncertainty than models for
virtual species. This could possibly be explained by the spatial error already embedded in
the real species data; meaning the ”unaltered” scenario actually presents some minimal, but
unknown, level of error, as well as errors in the environmental layers. Additionally, ob-
servations of transient individuals merely passing through unsuitable habitats could also
contribute to this finding, although we attempted to filter out such cases. There may also be
spatial and/or environmental biases in the data, such as disproportionate sampling efforts in
locations where specific behaviors take place (e.g., water sources), where species detectabil-
ity is increased (e.g., open areas), or areas with greater accessibility (e.g., near roads, walking
trails; Kramer-Schadt et al. 2013, Fourcade et al. 2014).

On the other hand, our results showed that models built with even positionally inaccurate
data may still be ecologically interpretable. The absolute and relative importance of environ-
mental predictors and the shape of species-environmental relationships co-varied with the
level of positional uncertainty. But these differences were much weaker than those observed
for overall model performance. This indicates that low model performance doesn’t necessar-
ily lead to low capacity to infer which variables drive species distributions and the strength
of those drivers. It is important to note that sample size and the SAC level of environmental
variables play an important role here. In general, the higher the sample size and the lower
the level of SAC in environmental variables the better were models able to recover response
curves and detect the importance of the environmental variables (Figures 3.12, 3.13, 3.14).

On the other hand, in the case of environmental variables with low SAC level (high hetero-
geneity), positional error obscured the main patterns (e.g., aspect in Workflow 2 or terrain
ruggedness index in Workflow 3; see Figures 3.12, 3.14). Our results suggest that, at least
for the example species, positionally inaccurate records may still prove useful for assessing
the relative importance of environmental variables in generating species distributions and
for determination of the shapes of species responses. Thus, for some purposes positionally
inaccurate records need not be discarded (as is common practice; e.g., Watcharamongkol et
al. 2016, Gueta and Carmel 2016). This finding is particularly fortuitous because discard-
ing positionally uncertain occurrence data can limit our ability to estimate range sizes and
overestimates exposure to climate change (Smith et al. 2022).

Drawing methodological conclusions based on real data is difficult since the true underlying
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population distribution is unknown, as are data deficiencies that could potentially affect
results (Winner et al. 2018, Meynard et al. 2019, Šímová et al. 2019, Vollering et al. 2019,
Mendes et al. 2020, Somveille et al. 2020, Yanco et al. 2020, Grimmett et al. 2021, Inman et al.
2021, Jiménez‐Valverde 2021). On the other hand, simulated datasets simplify the real world,
and their results should be interpreted cautiously (e.g., Wunder et al. 2008, Zurell et al. 2010,
Meynard et al. 2019). Indeed, our results show that a virtual species approach may show
different results than those using a real species. For example, our virtual species simulations
showed a rapid decrease in model performance with increasing positional error, whereas
the band-tailed pigeon showed only a slight decrease in model performance. We strongly
recommend that future studies should follow a growing trend and combine simulations and
real species data when studying methodological questions (see, for example, Fithian et al.
2015, Guélat and Kéry 2018, Mertes and Jetz 2018, Renner et al. 2019).

Although this study provides extensive insights that are optimistic about the potential utility
of SDMs, caution is warranted in generalizing these results, and further research is needed.
For example, future studies could explore whether our findings are robust to different Max-
Ent settings, various modeling techniques, response, and analysis grain and different types
of data uncertainty (e.g., spatial bias rather than a random error). In addition, within global
aggregation databases, spatial uncertainty may not be uniformly distributed. Analyses that
characterize the patterns of spatial uncertaintywithin these databaseswould allow researchers
to identify situations wherein models are likely to fail.
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3.4.1. AbstRact
1. The performance of species distribution models (SDMs) is known to be affected by anal-
ysis grain and positional error of species occurrences. Coarsening of the analysis grain has
been suggested to compensate for positional errors. Nevertheless, this way of dealing with
positional errors has never been thoroughly tested. With increasing use of fine-scale envi-
ronmental data in SDMs, it is important to test this assumption. Models using fine-scale envi-
ronmental data are more likely to be negatively affected by positional error as the inaccurate
occurrences might easier end up in unsuitable environment. This can result in inappropriate
conservation actions.

2. Here, we examined the trade-offs between positional error and analysis grain and provide
recommendations for best practice. We generated narrow niche virtual species using envi-
ronmental variables derived from LiDAR point clouds at 5 x 5 m fine-scale. We simulated the
positional error in the range of 5 m to 99 m and evaluated the effects of several spatial grains
in the range of 5 m to 500 m. In total, we assessed 49 combinations of positional accuracy and
analysis grain. We used three modelling techniques (MaxEnt, BRT and GLM) and evaluated
their discrimination ability, niche overlap with virtual species and change in realized niche.

3. We found that model performance decreased with increasing positional error in species
occurrences and coarsening of the analysis grain. Most importantly, we showed that coarsen-
ing the analysis grain to compensate for positional error did not improve model performance.
Our results reject coarsening of the analysis grain as a solution to address the negative effects
of positional error on model performance.

4. We recommend fitting models with the finest possible analysis grain and as close to the
response grain as possible even when available species occurrences suffer from positional
errors. If there are significant positional errors in species occurrences, users are unlikely
to benefit from making additional efforts to obtain higher resolution environmental data
unless they also minimize the positional errors of species occurrences. Our findings are also
applicable to coarse analysis grain, especially for fragmented habitats, and for species with
narrow niche breadth.

Keywords: Georeferencing, Grain size, Resolution, Scale, SDM, Virtual species
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3.4.2. IntRoduction
Species distribution models (SDMs) use species occurrence data and environmental explana-
tory variables to infer species-environment relationships and predict species distribution
ranges (Ferrier et al. 2017). Despite their routine use and relatively well-established practices
(Simões et al. 2020) and standards (Araújo et al. 2019, Merow et al. 2019), some method-
ological considerations still require further investigation. With the increasing availability
of heterogeneous data from a multitude of sources of varying quality, careful assessment
of uncertainties and purpose-built methodologies are becoming more important (Wüest et
al. 2019). Indeed, recent recommendations and methodological improvements are particu-
larly relevant to data quality issues such as positional error, sampling bias, sample size and
scale. Specialised tools have been developed for the identification of positionally inaccurate
records (e.g., Robertson et al. 2016, Zizka et al. 2019). Similarly, development and testing of
sampling bias correction methods continue (Gábor et al. 2020b, Inman et al. 2021) as well as
the research into the effects of sample size (McPherson et al. 2004, McPherson and Jetz 2007,
Hallman and Robinson 2020, Jiménez-Valverde 2020) and of changing the grain of response
and explanatory variables (Mertes and Jetz 2018, Šímová et al. 2019).

Additionally, a key question, namely at which spatial scales (grains) the ecological processes
underlying species distribution patterns operate, continues to be debated (Pearson and Daw-
son 2003, Miguet et al. 2016, Mertes and Jetz 2018). SDMs can be developed on a very wide
range of grains (e.g. from 1 m2 to 10,000 km2 or more), and several studies (e.g. Guisan et
al. 2007; Kaliontzopoulou et al. 2008; Seo et al. 2009) reported effects of the analysis grain
on the performance of SDMs. At some spatial scales, species respond more strongly to their
environment than at others (Holland et al. 2004, Mayor et al. 2009, McGarigal et al. 2016).
This is often referred to as ecological scale, scale of effect, response grain or response scale
(Holland et al. 2004, Wu and Li 2006, Mertes and Jetz 2018). Here, we follow Mertes and Jetz
(2018) and use the term ”response grain” to indicate the theoretical scale at which individu-
als of a species respond to environmental factors and ”analysis grain” to describe the spatial
unit (grain) at which the species occurrence is modelled. As the chosen analysis grain affects
our ability to detect the species’ response to environmental factors (variables), factors such
as positional errors of species occurrences, resolution of available environmental data, and
the response grain on which species are expected to respond to the environment need to be
considered (Schneider 2001, Dungan et al. 2002, Lechner et al. 2012, Lecours et al. 2015).

It is increasingly recognized that positional uncertainty (associated with the location of
species observations) is an important factor to consider during the modelling process. Po-
sitional errors cause problems in modelling, as environmental conditions at the recorded
locations might differ from those at actual locations, which (as was demonstrated) can have
a significant impact on SDM results. For example, Visscher (2006) showed that positional
error can bias inferences about species-environment relationships. Similarly, Johnson and
Gillingham (2008) concluded that positional errors have a significant effect on model quality,
and Osbourne and Leitao (2009) recommended minimising positional errors through careful
study design and data processing. More recently, Hefley et al. (2014) pointed out that posi-
tional errors can lead to biased estimates of regression coefficient. Indeed, the Darwin Core
Standard (https://dwc.tdwg.org/) has proven to be useful for recording positional uncertainty
of species occurrences (Wieczorek et al. 2012), and the importance of georeferencing accu-
racy has been highlighted by many studies (e.g., Moudrý and Devillers 2020), including a
report on the suitability of Global Biodiversity Information Facility (GBIF) data for use in
SDMs (Anderson et al. 2016).
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Notably, with the increasing use of fine-scale resolution data in SDM, such as variables de-
rived from LiDAR with a resolution of a few meters (e.g. Pradervand et al. 2014, Simonson
et al. 2014, Sillero and Gonçalves-Seco 2014, Lecours et al. 2020, Wüest et al. 2020, Moudrý
et al. 2021), the negative effects of positional error in species occurrence data are no longer
associated only with relatively old datasets (e.g. from herbarium or museum collections) but
it is also necessary to consider positional errors inherent to data georeferenced using global
navigation satellite systems. Indeed, Gábor et al. (2020b) used a 5 x 5 m analysis grain and
reported that the largest drop in model performance was observed at the smallest simulated
positional error of 5-10 m (they simulated errors up to 500 m).

Both positional error and adopted analysis grain have been intensively studied; however, de-
spite their interconnectedness, their interactions and trade-offs are rarely systematically ad-
dressed (but see Engler et al. 2004, Montgomery et al. 2011, Cheng et al. 2021). Particularly,
the trade-off between the adopted analysis grain and positional error of species occurrence
data is poorly acknowledged. Typically, studies try to balance these interconnected issues
based on available data and metadata (i.e., users might know the positional error of occur-
rences but do not know the optimal grain and vice versa). For example, researchers aim to
georeference species occurrences with respect to adopted analysis grain (Ballesteros-Mejia
et al. 2017) or, when using already georeferenced data, they remove imprecise occurrences
(e.g., records with latitude and longitude precision lower than three decimal places or with
known high positional uncertainty; Gueta and Carmel 2016, Watcharamongkol et al. 2018,
Ellis-Soto et al. 2021). Alternatively, coarsening the analysis grain can be used for correcting
georeferencing errors (Engler et al. 2004, Moudrý and Šímová 2012, Keil et al. 2014, Vollering
et al. 2016, Sillero and Barbosa 2021). These techniques, however, have a drawback: remov-
ing positionally inaccurate records or coarsening the analysis grain reduce the sample size.
Moreover, the latter approach can lead to the loss of explanatory power of the model (as the
grain at which species respond to the environment might be better represented by a finer
grain). This may indeed limit our ability to observe how species respond to the environment
(Mertes and Jetz 2018).

All in all, it is evident that both analysis grain and positional accuracy are important and
interacting factors affecting SDM results (i.e., environmental niches and spatial distributions
of modelled species). However, the knowledge of how they interact and the implications for
modelling practice is lacking. It is crucial to have this knowledge, especially with increasing
availability of fine-scale environmental data (e.g., Haesen et al. 2021, Li at al. 2021), and
their use in predictive models developed for conservation and climate change studies (see
for example Lembrechts et al. 2019a, 2019b, Zellweger et al. 2019, Stark and Fridley 2022).
Therefore, we here address the following questions: (i) What are the trade-offs between
analysis grain and positional error when modelling species distributions? (ii) Is it advisable
to coarsen the analysis grain to minimize the effect of the positional error, or should the
analysis grain be kept as close as possible to the assumed response grain, regardless of the
positional error?

3.4.3. MateRials and MetHods
LiDAR data and derived environmental variables

We used a point cloud from airborne laser scanning of Krkonose Mountains National Park,
Czech Republic, that covers over 370 square kilometres (approximately 30 km in west/east
direction and 13 km in south/north direction), to derive three fine-scale environmental vari-
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ables. It has been shown that the negative effect of positional error varies according to the
degree of spatial autocorrelation in environmental variables. The lower is the spatial autocor-
relation in environmental variables the more pronounced is the negative effect of positional
error in species occurrences (Naimi et al. 2011, 2014). Therefore, we chose environmental
variables with various levels of spatial autocorrelation to mimic a real modeling situation
(Supplementary materials Figure A1). Note, that spatial autocorrelation is a function of reso-
lution andmay change as the analysis grain is coarsened (seeMertes and Jetz 2018). However,
this is not our case, as the environmental variables maintained similar spatial autocorrela-
tion across all used response grains (see Supplementary materials Figure A1). Specifically,
we used the canopy height model (CHM) representing structural variability of the canopy,
topographic wetness index (TWI) as a surrogate for soil moisture, thus affecting vegetation
composition, and altitude in the form of a digital terrain model (DTM) as a sur¬rogate for
microclimatic conditions. All these variables have been used in other studies for modelling
species distributions, e.g. of birds (e.g. Vogeler et al. 2014, Reif et al. 2018, Bakx et al. 2019).
Hence, our virtual species might represent a bird with certain habitat requirements in terms
of vegetation structure, climate and terrain characteristics. To derive the three environmen-
tal variables at a resolution of 5 x 5 m, first the point cloud was classified into vegetation,
building, and ground classes in the ENVI and LAStools software (Klápště et al. 2020). Second,
following Khosravipour et al. (2016), we used points classified as vegetation to produce the
CHM; points representing ground were used to create the DTM, which was subsequently
used to derive the TWI.

Generating virtual species

We adopted the virtual species approach, which is increasingly used to answer methodolog-
ical questions related to SDMs (Zurell et el. 2010). This popularity is due in particular to
the fact that it is difficult to draw clear methodological conclusions with real data, since the
actual distribution as well as data deficiencies that might influence the results are unknown
(Moudrý 2015, Meynard et al. 2019, Grimmett et al. 2021, Inman et al. 2021). We used the
virtualspecies package (ver. 1.5.1) in the statistical software R (R Core Team 2021) to gener-
ate virtual species (Leroy et al. 2016). To begin, we defined the response of virtual species
to the environmental gradient at a resolution of 5 x 5 m (i.e., the finest resolution at which
environmental variables were available). We used a normal distribution with the following
parameters: (i) mean canopy height of 9 m and standard deviation of 4 m; (ii) mean altitude
of 846 m and standard deviation of 100 m; and (iii) mean topographic wetness index of 8 and
standard deviation of 0.4 m. These parameters allowed us to simulate virtual species with
a narrow niche breadth as it has been suggested that SDMs of such species are more prone
to positional error (Visscher 2006; Gábor et al 2020). We then multiplied the responses to
obtain an environmental suitability raster. We applied the probabilistic approach (logistic
function with α = −0.05 and β = 0.3) to convert the environmental suitability raster into
probabilities of occurrences that were subsequently used to sample binary presence-absence
rasters. We developed both presence-only and presence-absence models (see below), using
99 presence sites and 200 absence sites (i.e., sample prevalence of 0.33), and a uniform ran-
dom distribution for sampling species presences and absences. The virtual species could be
recreated using the ‘vs‘ object and R script that is available via the Dryad repository (please
see the link provided at the beginning of this chapter).
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Simulating positional error and coarsening the analysis grain

Positional error in species occurrence data may range from a few metres up to hundreds
of metres, depending on the data gathering technique and the source of the error. Here,
we simulated the positional error in the range of 5 m to 99 m. We shifted each occurrence
point in a random direction by a specified distance according to 6 scenarios. Each scenario
is associated with a different shift, as follows: S1: 5 – 9 m, S2: 10 – 19 m, S3: 20 – 29 m,
S4: 30 – 39 m, S5: 40 – 49 m and S6: 90 – 99 m. The scenario with the original, i.e., not
shifted, data is referred to as “unaltered” hereafter. The R functions we used to simulate
positional error in species occurrences are available in the R script via the Dryad repository.
To test the effect of coarsening the analysis grain and, in particular, to assess whether the
coarsening of the analysis grain can compensate for the negative effect of the positional error,
we ran models at seven analysis grains representing two distinct situations, namely: (i) the
response grain is known and relatively fine-scale data are available (5 x 5 m, 20 x 20 m, 40
x 40 m, 60 x 60 m, 80 x 80 m, and 100 x 100 m) and (ii) the analysis grain is selected on the
basis of data availability (500 x 500 m). In the first situation, we used small steps (changes)
and multiple scales to capture any minor changes, while in the second situation, the analysis
was conducted with a grain considerably coarser than the response grain (a hundred times
coarsened grain), which is undoubtedly a situation prevalent in current modelling practice.
Thus, a total of 49 combinations of positional accuracy of species occurrences and analysis
grains were evaluated. All environmental variables were resampled to coarser grains using
the mean values of the original data (Moudrý et al. 2019). Note that coarsening the analysis
grain results in multiple sampling sites ending up in the same cell (e.g., Engler et al. 2004,
Guisan et al. 2007). When absences and presences occurred in the coarser grain cell after
aggregation, the cell was considered a ”presence” cell, resulting in a small decrease in the
number of absences.

We did not observe multiple presences aggregated into a single cell (note that the largest
analysis grain also limited themaximum number of background points for MaxEnt; see Table
A1;). It is intuitive that the quality of the models is related to sample size. Indeed, prior
studies showed that sample size play an important role in SDMs. In particular, they mostly
concentrated on the effects of available presences on the development of accurate presence-
only models (e.g., Wisz et al. 2008; van Proosdij et al. 2016). Recently, Liu et al. (2019)
used virtual species approach and recommended that hundreds of presences are needed to
reach the plateau where increasing the sample size adds little to the model performance.
Therefore, we keep constant number of 99 presences for all scenarios. McPherson et al. (2004)
evaluated the effects of sample size on the development of presence-absence models and
shown that models trained with sample size of 300 (presences and absences) perform better
than those trained with 100. In addition, Jiménez-Valverde et al. (2009) found that the effect
of the sample size becomes apparent for models trained with less than 70 samples. Therefore,
for presence-absence models we keep the constant number of 99 presences, and we let the
absences to slightly vary between 150 and 200 (Table A1). Such minimal changes in number
of absences certainly did not affect our results.

Model fitting

Three common modeling methods were used to fit species occurrence to environmental pre-
dictors: generalized linear model (GLM), boosted regression tree (BRT) and the maximum
entropy model (MaxEnt). GLM, implemented in the R package glm2 (ver. 1.2.1, Nelder and
Baker 1972, Oksanen and Minchin 2002), and boosted regression trees (BRT), implemented
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in the gbm package (ver. 2.1.5, Friedman et al. 2000), represented presence-absence meth-
ods, and MaxEnt, implemented in the dismo package (ver. 1.1-4, Phillips et al. 2006; ver.
3.4.3 of maxent.jar file, Phillips et al. 2020), a presence-background method. Using both
presence-absence and presence-background methods allowed us to assess whether they are
equally affected by positional errors and by coarsening of the analysis grain. The GLM was
run with a logit link function and a binomial distribution. The quadratic terms of the envi-
ronmental variables were included based on the known normal distribution curves of the
response function. For BRT, we used Bernoulli distribution, shrinkage (learning rate) of 0.01,
tree complexity of 1 (i.e., without interaction terms), bag fraction (the proportion of data
used when selecting optimal tree number) of 0.5, and the maximum number of trees of 5,000.
MaxEnt was used with default settings (i.e., auto features, logistic output format) and 10,000
backgrounds points. The only exception was for models with an analysis grain of 500 x 500
m, where the number of grids / cells was not sufficient to sample 10,000 background points,
so we ended up with a smaller number of background points (see Tab. A1). The same three
environmental variables (CHM, DTM and TWI) that were used in the process of generating
virtual species were also used to fit the models in seven analysis grains (see the previous
section).

Model evaluation

We used several discrimination metrics to evaluate the performance of the models. First,
we used the Sørensen index (SI), which has been recommended for the evaluation of ex-
periments testing SDM methodologies using virtual species (Li and Guo 2013, Leroy et al.
2018). We also aimed to determine whether predictions using erroneous/altered data tend
to over- or underpredict species occurrences. Thus, we calculated the overprediction and
underprediction rates. Overprediction refers to the proportion of observed absences in the
predicted presence area, and underprediction measures the proportion of actual presences
that were not predicted by the model (Barbosa et al. 2013, Leroy et al. 2018). However, these
metrics use only three components (true positives, false positives and false negatives) of the
confusion matrix and neglect the prediction of true negatives (Leroy et al. 2018). Because
we manipulated the input data (i.e., introduced the positional error and changed the analysis
grain), we were concerned that this might also affect the true negatives. Therefore, we added
the area under the receiver operating characteristic curve (AUC; Fielding and Bell 1997; de-
spite recent criticisms of this metric, see for example Lobo et al. 2008, Jiménez Valverde 2012)
and the true skill statistics (TSS; Allouche et al. 2006), which are commonly used to assess
the discriminatory power of models.

In addition, we took advantage of the virtual species approach and compared differences
between the predicted distribution inferred from the models and the true probability of oc-
currence of virtual species in geographical space. However, it has been stressed that metrics
used for niche comparison are seriously affected by the inclusion of large number of cells
where the species are absent (i.e., with low occurrence probabilities) and it has been rec-
ommended to remove such cell from the evaluation (Rödder and Engler 2011). Therefore,
for this evaluation, we extract occurrence probability only for occurrence data, which were
used in the models. We used Spearman’s rank correlation to quantify the differences. See
Supplementary materials Figure A2 for visual comparison between virtual species true dis-
tribution and predicted probability of all modelled scenarios. Note that this comparison was
performed using the same resolution for all models’ predictions (i.e., 500m).
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The model performance was evaluated at the analysis grain at which the individual models
were fitted, which is a common practise in studies evaluating effect of analysis grain on
the performance of SDM (e.g., Guisan et al. 2007, Kaliontzopoulou et al. 2008, Seo et al.
2009, Mertes and Jetz 2018, Lembrechts et al. 2019a, Zellweger et al. 2019, Stark and Fridley
2022). Performance metrics for each model were calculated using five-fold cross-validation
forwhich the datawere randomly divided into fifths. Four-fifths of the datawere used to train
themodel and the remaining one-fifthwas used to assess the performance. We performed the
entire process from species generation to model evaluation 50 times and calculated average
values and confidence intervals (MacKinnon and White 1985) of validation metrics from
all replications. See Figure 3.15 for an overview of the general modelling process. Besides
comparison of models’ performance, we used linear regression to quantify how introducing
positional error and coarsening of environmental variables affects species realized niche.

3.4.4. Results
Effects of positional error and analysis grain on species realized niche

Figure 3.16 shows linear regression line plots of species realized niche for unaltered and al-
tered occurrence data across various analysis grains and all combinations of environmental
data. It is obvious, that both introducing positional error and coarsening the analysis grain
led to changes in species realized niche. More notably, the coarsening of analysis grain did
not help to reconstruct the original niche. The change in realized niche is more pronounced
for combination of environmental variables with lower spatial autocorrelation (i.e., TWI ver-
sus CHM; see Supplementary material Figure A1).

Overall model performance

All metrics largely followed the same pattern. Therefore, we focus only on SI and Spear-
man’s rank correlation (for AUC TSS, overprediction rate and underprediction rate values,
see supporting information Figures A3, A4). BRT and MaxEnt performed very well while
GLM performed slightly worse using unaltered data and resolution of environmental vari-
ables (5 x 5 m). The SIs of the unaltered models were 0.76 for MaxEnt, 0.74 for BRT and 0.67
for GLM (Figure 3.17). Spearman’s rank correlation indicates that MaxEnt and BRT models
using unaltered data have high niche overlap with virtual species. They reached Spearman’s
rank correlation of 0.95 and 0.9, respectively. In contrast GLM achieved lower niche overlap
and Spearman’s rank correlation of 0.6 (Figure 3.17).
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Figure 3.15: Overview of the modelling process. We first acquired and processed LiDAR
data and selected three fine-scale environmental predictors (canopy height model, topo-
graphic wetness index, digital terrain model; Section 2.1). Further, we generated virtual
species (2.2), simulated positional error in species occurrences, and coarsened analysis grain
(2.3). We modelled species distribution with unaltered data as well as with shifted occur-
rences at various analysis grain sizes (2.4). In the last step, we evaluated models and com-
pared their performance (2.5).
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Figure 3.16: Comparison of changes in realized niche as a result of positional error in species occurrences and
coarsening the analysis grain. Different colours show various levels of positional uncertainty while columns show
different analysis grain. The line is obtained by linear regression and grey colour shows 95% confidence interval.
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Effects of positional error and analysis grain

The performance of all modeling methods was negatively affected by the positional error
in species occurrences. Results show a clear trend of decreasing model performance and
increasing overprediction and underprediction rate with increasing positional error (Figure
3.17 and Supplementary material Figure A3), with the largest drop in performance occurring
once positional error was introduced (i.e., between the no-error and 5 - 9 m error categories).
For example, SI dropped from 0.76 to 0.72 and from 0.74 to 0.67 for MaxEnt and BRT, respec-
tively (Figure 3.17). As the position error continued to increase, a slow but gradual decline in
model performance was observed. The exception from this pattern is GLMmodeling method
where the negative effect of positional error is noticeable only for scenarios with more pro-
nounced positional error (i.e., 40 metres and higher). The SI dropped from 0.67 (unaltered
models) to 0.64 (90 – 99 m error). Regardless of modeling technique introducing positional
error led to decrease in niche overlap between true and predicted species distribution prob-
ability. For example, Spearman’s rank correlation dropped from 0.96 to 0.76 for MaxEnt
respectively from to 0.6 to 0.34 for GLM (Figure 3.17).

The results also show a clear trend of decreasing model performance as the analysis grain
is coarsened compared to the response grain (i.e., from the original resolution at which the
virtual species were generated; 5 x 5 m). The largest decrease was observed between the
unaltered models (5 m) and the models with the smallest change in the analysis grain (20
m). For example, SI decreased from 0.76 to 0.72 and from 0.74 to 0.67 for MaxEnt and BRT,
respectively (Figure 3.17). Further coarsening of the analysis grain resulted in an additional
decrease in models’ performance; however, the overall decrease in performance between
20 m and 500 m was less than the decrease caused by the initial change in analysis grain
(Figure 3.17). The same pattern shows also niche comparison assessed by Spearman’s rank
correlation (Figure 3.17). Note that the observed trends were independent of the validation
metric.

Trade-off between positional error and analysis grain

Finally, and most importantly, our results clearly showed that coarsening the analysis grain
cannot compensate for the effect of positional error (Figure 3.18). For each scenario posi-
tional error (S1-S6), we can observe that models with an analysis grain coarser than the
initial grain (5 m) performed, at best, equally well, but never better than those with initial
grain (i.e. response grain). In addition, models with a positional error of 20 - 29 m (S3)
and higher perform almost equally well regardless of the analysis grain. This applies to all
used performance metrics and Spearman’s rank correlation used to assess the species niche
overlap (Figure 3.18, Supplementary material Figure A4).

3.4.5. Discussion
In this study, we focused on the trade-off between the analysis grain and positional error in
fine-scale SDMs. We simulated virtual species at 5 m resolution, coarsened the analysis grain
(5 – 500 m) and introduced positional error (5 – 99 m) to evaluate their individual effects and
potential trade-offs between them. Our results showed a negative effect of coarsening the
analysis grain on SDMs performance. All modelling techniques were sensitive to the change
in analysis grain (see also Guisan et al. 2007 for an analysis of the sensitivity of ten modelling
techniques to the change in grain size). Although this could be perceived as a negative, we
believe that this is actually a positive characteristic, as it means that these models are sensi-
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tive to the use of an (in)appropriate resolution of the analysis grain. Similarly, introducing
positional error led to a decrease in the discriminative ability of all modelling methods; yet,
and importantly, coarsening the analysis grain did not offset for the effects of positional
error.

Figure 3.17: Sørensen index and Spearman’s rank correlation scores of the different models.
The first row shows results for models fitted with different analysis grains. The second row
shows results for models fitted with an analysis grain of 5 m, but with positionally shifted
species occurrences.
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Figure 3.18: Sørensen index and Spearman’s rank correlation scores according to different analysis grains and
positional error scenarios (unaltered and S1-S6).

The correct choice of the analysis grain is an important part of the overall modelling process
and is affected by several othermodelling choices. Ideally, the analysis grain is dictated by the
species ecology and the objectives of the study, i.e., it must match the response grain (Mertes
and Jetz 2018) but it could be also affected by sampling processes of species occurrences
(Rahbek 2005, Hurlbert and Jetz 2007, Chase and Knight 2013) and by the spatial extent
of the study area. The spatial extent and resolution of the response variable govern what
explanatory variables can be expected to act in determining species distribution (Pearson
and Dawson 2003). Typically, it is assumed that climate defines the distribution of species
at very broad spatial scales (e.g., an extent of a whole continent and resolution of 100 km2).
At successively finer resolutions and at regional extents, topography or biotic interactions
may become the most important factors controlling species occurrence, whereas at even
finer resolutions, vegetation structure or presence of individual land cover categories (e.g.,
water bodies) can play a role (Gábor et al. 2022a). However, some studies suggest that
biotic interactions may shape species distribution across all spatial extents (Wisz et al. 2013;
Alexander et al. 2015). Generally speaking, the importance of environmental factors varies
with the adopted resolution and extent of the study, and factors that are important at one
resolution and extent can lose their importance at others (Corsi et al. 2000).

There are two typical situations regarding the choice of the analysis grain in species distri-
bution modelling: (i) we know the response grain and have fine-scale data available, or (ii)
we do not know the response grain and/or the analysis grain is chosen based on data avail-
ability rather than species ecology (Holland et al. 2004, Graf et al. 2005, Lechner et al. 2012,
Martin and Fahrig 2012, Stuberand Fontaine 2019, Mertes et al. 2020). The first situation is
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represented in this study by the range of analysis grains from 5 m to 100 m, and the second
by the 500 m grain. It should be noted that models are regularly built using an even coarser
analysis grain than those tested in this study (e.g., 5 km or 10 km when using atlas data;
Jetz et al. 2012). However, several studies have already tested the general effect of changing
the grain of the response variable on modelling the species distribution in situations where
the spatial resolution of the response variable was considerably coarser than the assumed
response grain. For example, Seo et al. (2009) examined SDMs dynamics across a 64-fold (1
km to 64 km) change in the grain of the response variable and found that model performance
decreased with increasing resolution. Similarly, Kaliontzopoulou et al. (2008) reported de-
creasing model performance at the 10 km response variable resolution compared to 1 km
resolution.

Our results show that compensating position errors by coarsening the analysis grain does
not lead to an improvement of the model performance in any of the scenarios investigated
(Figure 3.17, A4). This is true even for very coarse analysis, i.e., an analysis grain several or-
ders of magnitude larger than the expected response grain. Therefore, based on our results
and the results of the above-mentioned studies, we recommend using an analysis grain as
fine as possible (or, in other words, as close to the response grain as possible), even if the
available species occurrences suffer from positional error. This is consistent with recent find-
ings byMertes and Jetz (2018), who showed that coarsening the analysis grain can negatively
affect intrinsic fine-scale heterogeneity in environmental variables (i.e., the pattern of spatial
autocorrelation inherent in an environmental variable) and lead to variables that strongly in-
fluence distribution patterns being discarded simply because of their low explanatory power
at such coarsened resolution. On the other hand, this contradicts the widely held assumption
that coarsening the analysis grain can compensate for the negative effect of positional errors
on model performance (Engler et al. 2004, Moudrý and Šímová 2012, Keil et al. 2014, Vol-
lering et al. 2016, Sillero and Barbosa 2021), but this has never been thoroughly tested. Our
results show that above a certain level of positional error (approximately five times higher
than the response grain), models perform almost the same regardless of the analysis grain.
Therefore, if there is considerable positional error in species occurrence data, users are un-
likely to gain anything from making additional efforts to obtain higher resolution data (but
see Šímová et al. 2019) unless they also minimize the positional error.

Our findings and recommendations, however, do not mean that negative effects of the posi-
tional error can be ignored. On the contrary, the inability to compensate for the positional
error by coarsening the analysis grain underscores the importance of careful georeferencing
of species occurrence data. Our results show that the largest decrease in model performance
occurs in the smallest simulated positional error (i.e., as soon as an error is introduced). This
is consistent with previous studies and their conclusions that more accurate georeferencing
approaches generally produce better performing SDMs (Lash et al. 2012, Tulowiecki et al.
2015, Zhang et al. 2018, Gábor et al. 2020b). For example, Lash et al. (2012) have shown that
using less accurate automated georeferencing methods is problematic in mapping the occur-
rence of monkeypox andmodelling its transmission risk in Africa. The same limitations have
been reported by Tulowiecki et al. (2015) for pre-settlement land survey records in North
America that are useful for modelling the past distribution of tree species (e.g., Tulowiecki
2020). On the other hand, it is fair to point out that Graham et al. (2008) concluded that SDMs
are generally robust to positional errors. Similarly, Fernandez et al. (2009) concluded that
while the models are somewhat sensitive to positional error, this sensitivity is considerably
less than the sensitivity to the modelling method.
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However, accurate georeferencing is an extremely time-consuming and labour-intensive pro-
cess. In particular, georeferencing historical records can be challenging because in some
parts of the world it is difficult to find suitable reference data with which to match place
names. Guidelines for georeferencing exists (Wieczorek et al. 2004), and some heuristic
approaches have been proposed to improve models created with poorly georeferenced data.
These methods are applicable depending on the source of positional error and the available
auxiliary data. For example, Hefley et al. (2014) used regression calibration to reduce the bias
in coefficient estimates caused by the positional error. However, this approach requires that
at least part of the data has locations recorded without error. Recently, Zhang et al. (2018)
proposed a different approach to mitigate positional error in fine analysis grains (e.g., errors
of tens of meters caused, for example, by the difference in position of the species and the ob-
server). They narrowed down possible locations of species occurrences using auxiliary data
such as the presence of habitat preferred by the species (e.g., forest), the assumed minimum
and maximum distance (i.e., minimum distance the species keeps from the observer and the
maximum distance at which the observer can see the species), and the observer’s field of
view (i.e., visibility analysis using a digital terrain model; Lagner et al. 2018).

We intentionally developed our models with fine-scale environmental data that are increas-
ingly adopted for SDMs (e.g., Mitchell et al. 2017, de Vries et al. 2021, Guillaume et al.
2021). Although so far, such data are typically used in models developed to assess species-
environment relationships at a landscape scale, it has been highlighted that they can be
crucial for understanding species distributions at global scales (Lembrechts et al. 2019a, Lem-
brechts et al. 2019b, Zellweger et al. 2019, Stark and Fridley 2022). Moreover, such fine-scale
environmental data tend to be more heterogeneous, and hence species occurrences might
easier end up in unsuitable environment, which can negatively affect SDMs (see Naimi et al.
2011, 2014). Therefore, understanding the interaction of analysis grain and positional error
at fine-grain is crucial for future development of SDMs for conservation and climate change
studies.

It is important to note that the effect of analysis grain and positional error is dependent on
the magnitude of the potential change of the analysis grain (not the grain itself) and similarly
the effect of positional error depends on the ratio between the magnitude of the positional
error and the analysis grain. In addition, the magnitude of the effect will be affected by other
characteristics. For example, it has been shown that the magnitude of the negative effect of
positional error is related to species characteristics, such as niche (Visscher 2006; Tulowiecki
et al. 2015; Gabor et al. 2020b) and heterogeneity in environmental variables (i.e., spatial
autocorrelation; Naimi et al. 2011, 2014). For instance, models for species with relatively
wide niche breadth and a region dominated by highly autocorrelated environmental variables
or a single habitat will be relatively unaffected by positional error. On the contrary, the
models for a region with abrupt changes (e.g., fragmented habitats) and for species with
narrow niche breadth will be negatively affected with positional error in species data (see
Visscher 2006 Naimi et al. 2011, 2014). Therefore, our conclusions are also applicable into
analysis using relatively coarse analysis grain, especially for SDMs developed for a region
with abrupt changes in environment (e.g., fragmented habitats) and for species with narrow
niche breadth (see Naimi et al. 2011, 2014, Gábor et al. 2020a,b).

In this study, we examined how, in a species distribution modelling context, analysis grain
and positional error in species occurrences interact. Our particular objective was to answer
the question of whether the analysis grain is best kept close to the response grain or whether
it should instead be coarsened to minimize the negative effects of positional errors in species
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occurrences on model performance, as suggested by several authors. We showed that a
coarsened analysis grain is not able to compensate for the effects of positional errors. Thus,
for data with unknown positional accuracy, we recommend keeping the analysis grain as
close as possible to the response grain (i.e., usually as fine as possible) rather than coarsening
the variables. We highlight that positional error in species occurrence cannot be overlooked
and that great attention needs to be paid to the measurement and georeferencing techniques
used to minimize positional error.
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Key Findings
Since a comprehensive discussion and conclusions have already been provided in the preced-
ing Chapter 3, they will not be reiterated here. Instead, this section connects the individual
studies presented, emphasizes key findings, offers suggestions for future research, and pro-
vides a closing statement.

This dissertation addressed the challenges associated with predicting species distribution,
particularly regarding the input data quality (species records and environmental predictors).
The research focused on three main objectives. Firstly, my co-authors and I introduced a
novel method for incorporating landcover data into species SDMs, expanding the range of
variables considered and enhancing the models’ predictive accuracy (Chapters 3.1, 3.2). Sec-
ondly, we investigated the influence of positional uncertainty in species data on the ecologi-
cal interpretability of models (Chapter 3.3) and assessed our ability to compensate for these
data limitations (i.e., by coarsening the resolution of environmental predictors to maximum
positional inaccuracy in species data; Chapter 3.4). Finally we, together with my amazing
colleagues, assessed the role of spatial grain for the usability of binary variables, and for the
effect of positional uncertainty. There is no standalone chapter for this topic because it has
been thoroughly covered throughout the various chapters.

In Chapter 3.1, our collaborative study aimed to examine if the binary information of pres-
ence or absence of a habitat can drive species distribution. We suggested that the amount of
habitat (continuous land cover predictors) within a spatial unit might be irrelevant, and what
matters for some species at some scales is that the habitat is simply there. We demonstrated
that there might be a threshold of habitat percentage below which the species is unlikely to
occur, and above which the species will persist. This threshold concept has been both theo-
retically predicted (Andrén 1994, Fahrig 2001) and empirically documented for bird species
(Melo et al. 2018). Our results suggested that models using binary land cover predictors
performed better for specialist species and fine-grained environmental variables. However,
as we pointed out, further research is needed to validate our conclusions.

Thus, in Chapter 3.2, we investigated if the above-introduced hypothesis could be applied to
species that rely on prevalent habitats. Beyond this, we determined which method of sum-
marizing environmental features produces the best-performing models and examined how
treatment of features influences range size estimates. More importantly, we tested how the
effect of landcover summarization (continuous or binary) is moderated by spatial grain size,
long known to influence model performance and estimate range size. Although the results
indicated that the model performance was not significantly affected by the type of land cover
predictors, using binary variables greatly impacted the models’ ability to detect water bodies
as the most important land cover predictor. For example, flooded tree cover or shrubland
flooded tree cover often occurs near water cover and may predict a species occurrence when
the species is also observed from these habitats. More importantly, our results suggest that
grain size can impact the applicability of binary land cover variables for species’ models
specializing in prevalent habitats. The subtle difference in the importance of water bodies
between models fitted with continual and binary variables, derived using a 1% threshold, in-
dicates that the hypothesis proposed in Chapter 3.2 may be particularly useful at finer grain
sizes. The fact that habitat variables can, depending on the commonness of the habitat or
the used grain size, perform best as a binary or a continuous predictor has relevance beyond
simple SDMs. After all, information on the probability of species’ presence is sought in many
fields, from epidemiology to metacommunity ecology. Our findings indicate that using an
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inappropriate representation of the species-habitat relationship can lead to underestimating
the importance of niche processes. This highlights the broader implications of our research
in illuminating the complexities of ecological dynamics and the need to carefully consider
habitat variables in diverse fields of study.

During the literature review conducted for Chapter 3.3, it became evident that previous stud-
ies addressing positional uncertainty in species occurrences consistently highlighted the in-
fluence of positional error on the predictive performance of SDMs (e.g., Graham et al. 2008,
Johnson and Gillingham 2008, Fernandez et al. 2009, Naimi et al. 2014, Hefley et al. 2014,
Tulowiecki et al. 2015, Mitchell et al. 2017, Soultan and Safi 2017, Fernandes et al. 2019).
However, there remained a significant gap in understanding the effects of positional uncer-
tainty on parameter estimation in species-environment relationship inference. Therefore,
with my amazing co-authors, I aimed to investigate the influence of positional uncertainty
on the model’s parameter estimation. Specifically, we examined how positional error affects
variable importance and the shape of response curves. We hypothesized that increasing po-
sitional uncertainty would decrease the models’ predictive performance, imprecise variable
importance estimation, and distorted response curves. We anticipated these effects would be
more pronounced for species with narrow niches and heterogeneous variables. Surprisingly,
our findings demonstrated that positionally inaccurate species records can still provide valu-
able insights into the relative importance of environmental variables and the shape of species
responses. Therefore, removing positionally inaccurate records from the dataset may not al-
ways be necessary. This finding is particularly significant because discarding occurrences
with positional uncertainty can limit our ability to estimate species range sizes and result in
overestimations of exposure to climate change (Smith et al. 2023).

Furthermore, such conclusions hold promise for integrating species data from citizen science
initiatives into SDMs, as these datasets often exhibit higher levels of positional uncertainty.
This enables local communities to participate in monitoring and conserving species and their
habitats. These practical implications can potentially enhance the performance of SDMs
and advance their application in diverse fields such as biogeography, community ecology,
macroecology, and ecological conservation. However, it is crucial to emphasize the signifi-
cance of not overlooking positional uncertainty in species records. Attention also must be
given to measurement and georeferencing techniques to minimize positional uncertainty.

Another significant outcome from conventional wisdom in the presented research is reject-
ing the prevailing assumption that environmental predictors should be coarsened to accom-
modate the maximum positional uncertainty of species records (Chapter 3.4). Positional
uncertainty is related to almost all species records and can range from a couple of meters up
to tens of kilometers, and prior studies concluded that it has a negative effect on SDMs’ per-
formance (see, for example, Lash et al. 2012, Tulowiecki et al. 2015, Zhang et al. 2018, Gábor
et al. 2020a). Coarsening of the analysis grain has been suggested to compensate for posi-
tional uncertainty (see Moudrý and Šímová 2012). However, this widely accepted approach
has never been thoroughly tested, and I wondered for a long time if this approach was flawed
in some way. I had two main concerns related to prior studies. It is a well-known fact that
coarsening the analysis grain can negatively affect the performance of SDMs (e.g., Guisan et
al. 2007, Kaliontzopoulou et al. 2008, Seo et al. 2009). Besides, Mertes and Jetz (2018) showed
that coarsening the analysis grain can negatively affect intrinsic fine-scale heterogeneity in
environmental variables. With the increasing use of fine-grain environmental predictors, it
became increasingly imperative to test this assumption. Our results showed that the perfor-
mance of all models was negatively affected by the positional uncertainty in species records
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and by coarsening the analysis grain.

Additionally, results showed that coarsening the analysis grain cannot compensate for the
effect of positional uncertainty. Therefore, we recommend using an analysis grain as fine as
possible (i.e., as close to the response grain as possible), even if the available species records
suffer from positional uncertainty. By recognizing the potential value of incorporating fine-
grain environmental data and questioning the need for coarsening, we can refine our model-
ing approaches, enhance accuracy, and ultimately contribute to more effective conservation
strategies and management decisions (see, for example, Lembrechts et al. 2019a, Lembrechts
et al. 2019b, Stark and Fridley 2022).
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FutuRe ReseaRcH
I firmly believe that future studies can explore more thrilling questions directly related to the
research presented. Firstly, there is a compelling need to investigate the use of binary vari-
ables in predicting species distribution. Additionally, it is crucial to address the challenge
of mitigating the negative influence of positional uncertainty in species records on SDMs’
performance. A complex interplay of various factors determines the magnitude of the nega-
tive influence of positional uncertainty in species records. Chapters 3.3 and 3.4 of this study
have shed light on the importance of spatial scale and spatial autocorrelation in environmen-
tal predictors. Other factors like sample size or species traits also play a role (Mitchell et al.
2017; Gábor et al. 2020b; Figure 5.1). However, previous research has primarily focused on
combining one or two factors. This limits our comprehensive understanding of the impact of
positional uncertainty on SDMs. To achieve a more thorough understanding, future studies
should explore the effects of multiple factors simultaneously.

Figure 5.1: A complex interplay of various factors determines the magnitude of the negative
influence of positional uncertainty in species records, specifically by spatial scale and spatial
autocorrelation in environmental predictors. Factors like sample size or species traits can
also play an important role. To achieve amore thorough understanding, future studies should
explore the effects of multiple factors simultaneously.

Furthermore, there is still a lack of an established tool to effectively overcome the negative in-
fluence of positional uncertainty in species records. While methods for mitigating positional
error do exist, their utilization is often constrained. Typically, they necessitate awareness of
the error’s magnitude, and a portion of the dataset must be recorded without positional er-
ror (Hefley et al., 2014; Velásquez‐Tibatá et al., 2016; Zhang et al., 2018). In addition, its
limited adoption and usage within the modeling community is evident, as reflected by the
low number of citations since their publication (only ninety-one references since the pub-
lication of those papers!). Therefore, future studies must focus on developing a robust and
accessible tool that effectively tackles the challenge of positional uncertainty while remain-
ing user-friendly and widely applicable. A possible and relatively straightforward solution
could involve calculating an average of environmental variables considering positional un-
certainty (e.g., generate a buffer around known positional uncertainty of species occurrences
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and derive an average value within that buffer). While this approach may be direct and user-
friendly, its applicability could be constrained. For instance, species inhabiting mountain
peaks would consistently yield lower altitude values. Therefore, if such an approach is de-
veloped, one must be mindful of these limitations.

Besides this, further important questions arise as we contemplate the future of predictive
modeling in ecology. How can we navigate the delicate balance between embracing uncer-
tainty and striving for accuracy in our models? Given the increasing availability of big data
and advancements in remote sensing technologies, how can we harness these resources to
improve the accuracy and resolution of our predictive models, particularly in data-sparse
regions and for poorly sampled species? How can we address the potential biases and limita-
tions in species occurrence data, especially in the context of citizen science and crowdsourced
data collection, to ensure the robustness and reliability of our models? What are the ethical
implications of using predictive models in decision-making processes, such as conservation
prioritization? How can we ensure that SDMs are transparent and inclusive and contribute
to equitable and sustainable outcomes? How can we effectively communicate the uncertain-
ties associated with SDMs to stakeholders, policymakers, and the general public to foster
informed decision-making and public engagement in conservation efforts?

By addressing these questions and embracing the interdisciplinary nature of ecological mod-
eling, we can strive towards more accurate, reliable, and actionable predictions, ultimately
contributing to the conservation and sustainable management of our planet’s rich biodiver-
sity.
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AfteRwoRd
As I reflect upon the future of research and the intriguing questions that lie ahead, I am filled
with both optimism and a tinge of sadness. I have no doubts that the collective brilliance of
exceptional minds will eventually unravel the mysteries we seek to solve. In academia, there
are remarkable individuals whose intellectual prowess and ingenuity will undoubtedly lead
to groundbreaking discoveries. However, as I write these words, I find myself stepping away
from academia for a while.

Over a decade immersed in the academic world has left me yearning for a respite, a chance
to take a breath and explore different paths. Although my passion for scientific inquiry
burns brightly, I recognized the need to pause and recharge. Though marked with a touch
of melancholy, this decision is not a permanent farewell but rather a temporary divergence
from the academic journey.

I eagerly anticipate the day when I can return to the vibrant halls of academia, where ideas
flourish, collaborations thrive, and pursuing knowledge is an exhilarating adventure. I en-
vision a future where I can once again contribute to the collective quest for understanding
and make meaningful contributions to the field that has captivated me for so long.

So, it is not goodbye, but rather a ”see you soon” on this ever-evolving journey. I am grate-
ful for the experiences, the lessons learned, and the connections forged during my time in
academia. I am thankful for the opportunity to embark on this research journey, supported
by mentors, colleagues, and the invaluable contributions of fellow researchers in the field.
With a renewed spirit and a fresh perspective, I eagerly await the day when I can resume
my scientific endeavors and again be part of the extraordinary community of researchers
shaping the future of ecological modeling and conservation.

Until then, I embarked on a new chapter, fueled by curiosity, open to new experiences, and
eager to explore diverse realms outside academia. I carry with me the knowledge that the
future holds remarkable possibilities, and perhaps, one day, our paths will cross again in the
pursuit of knowledge and the noble endeavor of safeguarding our planet’s precious ecosys-
tems.
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