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ABSTRACT

Context

Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of
species occurrences. However, despite their broad applicability, SDMs exhibit critical short-
comings due to limitations in species occurrence data and in environmetal variables. Typical
example of such limitation in species records is spatial uncertainty in their location, ranging
from a few meters to tens of kilometers (e.g., positional uncertainty in the GBIF database
can exceed 300 kilometers). Similarly, environmental variables may be limited by how much
detailed information about the environment they provide. For example, land cover types
typically indicate the amount of habitat within a spatial unit. However, it is possible that a
simple binary presence/absence of suitable habitat may be the only information available or
even more important aspect than area, determining species distribution.

Objectives

This dissertation had three main objectives. Firstly, I explored the potential of an alternative
approach to incorporate environmental variables into models (i.e., binary versus continu-
ous habitat information). Secondly, I investigated the influence of positional uncertainty in
species records on the ecological interpretability of models. Thirdly, I evaluated whether the
appropriateness of using binary or proportional (continuous) type of variables, and the influ-
ence of positional error, is affected by the scale of the analyses. Specifically, I addressed the
following research questions: a) Can binary land cover predictors provide models of higher
accuracy than traditionally used proportional variables? b) If so, what is the role of spatial
grain in determining the usability of binary land cover predictors? c) To what extent does
positional uncertainty in species occurrence data affect model parameter estimation and the
ecological interpretability of species distribution models? d) What are the trade-offs between
analysis grain and positional uncertainty in modeling species distributions?.

Results

Results indicated that models’ performances were not affected by the type of the adopted
habitat variable (proportional or binary but the usability of binary variables decreased with
coarsening the resolution (i.e., binary representation of habitat is useful at finer grain sizes
of approx. 1km?. Results confirmed that model performance decrease with increasing po-
sitional error in species records, as demonstrated in prior studies. However, I have shown
that coarsening the analysis grain to compensate for positional error did not improve model
performance as was widely assumed. This, however, doesn’t mean we should exclude species
records with high positional uncertainty from our studies, because the negative consequences
of positional uncertainty on model performance did not extend as strongly to the ecological
interpretability of the models.

Conclusions

These findings are encouraging for practitioners using SDMs to reveal relationships between
species occurrences and its environmental drivers as such relationship can be to some degree
estimated using positionally uncertain data and simple environmental variables describing
presence or absence of a habitat. On the other hand, my findings show that positional un-
certainty in species data can cause inaccurate spatial predictions leading to inaccurate maps
of species distributions, especially in heterogeneous environments and when using fine res-
olution environmental data. Therefore, such models are not suitable for tasks like setting up
protected areas or prioritizing conservation efforts.



ABSTRACT IN CZECH

Souvislosti

Modely druhové distribuce (SDMs) jsou dulezitym nastrojem pfi dopliiovani mezer v nasich
znalostech o vyskytech druhii. Navzdory tomu, Ze se tyto modely ¢asto pouzivaji v ekologick-
ych studiich, maji zasadni nedostatky kviili nepfesnostem v datech o vyskytech druhii a envi-
ronmentalnich prediktorech. Typickym ptikladem takového omezeni je polohova nejistota v
zaznamech druht, ktera maze byt od nékolika metrti az po desitky kilometra (napf. polohova
nejistota v databazi GBIF mize pfesahnout 300 kilometrtr). Environmentalni prediktory pak
mohou byt omezeny tim, jak pfesnou informaci o prostfedi, ve kterém se druh naléza, posky-
tuji. Napiiklad proménné krajinného pokryvu obvykle udavaji rozlohu nebo podil habitatu
v ramci urdité oblasti. AvSak co kdyZ, jednoducha binarni informace (pfitomnost/absence) o
vhodném habitatu mtze byt jedinou dostupnou informaci nebo dokonce dulezitéjsim aspek-
tem pii urceni druhové distribuce nez informace o celkové rozloze habitatu?

Cile

Tato disertacni prace méla tfi hlavni cile. Za prvé jsem zkoumal moZznosti pouziti nového
typu environmentalnich prediktori (binarnich dat), které obsahuji pouze informaci o pii-
tomnosti nebo absenci vhodného habitatu. Za druhé jsem zkoumal vliv polohové nejis-
toty v druhovych zaznamech na ekologickou interpretovatelnost modelii. Tietim cilem pak
bylo posouzeni role prostorového méfitka na modely, které pouzivali binarni prediktory a
druhova data s raznou polohovou nejistotou. Konkrétni vyzkumné otazky byly: a) Mohou
binarni environmentalni prediktory krajinného pokryvu zvysit pfesnost modela? b) Pokud
ano, jaka je role pouzitého prostorového méfitka? c) Do jaké miry ovliviiuje polohova ne-
jistota v druhovych datech ekologickou interpretovatelnost modelti? d) Jak spolu souvisi a
polohova chyba druhovych dat?

Vysledky

Vysledky ukazaly, Ze pfesnost modeltl nebyla vyznamné ovlivnéna typem pouzitych envi-
ronmentalni prediktortl (proporcionalni nebo binarni infomrace o vhodném habitatu). Je
nicméné dulezité rict, Ze ale pouzitelnost binarnich prediktori klesala s hrub$im prostorovym
rozliSenim. To znamena, Ze binarni reprezentace habitatu je uzitetna predevsim pfi pouziti
prediktorti s vy$3im prostorovym rozliS§enim (cca od 1km?). Vysledky kromé toho potvrdily,
Ze presnost modelt klesa se zvysujici se polohovou nejistotou v zdznamech druht, tak jak
bylo prokazano v pfedchozich studiich. Dulezitym zavérem prace je fakt, Zze zhorseni pros-
torového méfitka nekompenzuje negativni vliv polohové nejistoty, jak se vseobecné pred-
pokladalo. To vSak neznamena, Ze bychom neméli pfi modelovani zaznamy druhi s vysokou
polohovou nejistotou pouzivat.

Zaveéry

Jak ukazaly vysledky, polohové neuréita data a binarni informaci o pfitomnosti habitatu Ize
za ur€itych podminek vyuzit pro studium vztahti mezi organismy a prosttedim. Na druhou
stranu mapy druhové distribuce vychazejici z modela zalozenych na datech s vysokou polo-
hovu nejistotou, jsou nepfesné (zejména v heterogennim prostiedi a pfi pouziti environmen-

talnich prediktort s vysokym prostorovym rozlisenim) a nevhodné pro aplikace v ochrané
pfirody.
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PREFACE

1.1. FOREWORD

I am filled with a profound sense of accomplishment and gratitude upon completing this dis-
sertation. The journey leading up to this moment has been filled with rigorous exploration,
tireless research, and unwavering dedication. This work represents the culmination of years
of academic pursuit and a deep passion for understanding the intricacies of ecological pre-
dictive modeling.

The driving force behind this dissertation stems from my enduring fascination with data
and its potential to unravel the complex tapestry of ecological systems across various spa-
tial scales. From the earliest stages of my academic pursuits, I recognized the importance of
spatial data quality and the influence it wields over the outcomes of predicting species distri-
bution. It became evident that while a wealth of studies focused on modeling methodologies
and theoretical frameworks, the critical aspects of spatial data quality and the range of spatial
data types applicable in predicting species distribution deserved deeper exploration.

Embracing this challenge, I embarked on a meticulous investigation to bridge the gap be-
tween theory and practical application. The research contained within these pages attempts
to shed light on the impact of spatial data quality and their types and the validity of com-
monly held assumptions, offering insights that can enhance the accuracy, reliability, and
robustness of predictive models.

As we find ourselves in an age where data is increasingly accessible in unprecedented quality
and volume, these findings take on heightened significance. The ever-expanding availability
of data holds great promise for advancing our understanding of ecological systems and in-
forming effective conservation and management strategies. I sincerely hope that the research
presented herein will contribute to this collective pursuit and inspire further investigations
into the realm of predicting species distribution.

With great pride and a sense of anticipation, I offer this dissertation to the academic com-
munity, hoping that it will contribute to the knowledge and serve as a catalyst for future
research endeavors. May the ideas presented within these pages ignite curiosity, inspire col-
laboration, and foster a deeper appreciation for the intricate wonders of predictive modeling
in ecology.

1.2. SCIENTIFIC MOTIVATION

From my early years at high school, I became captivated by how data quality and availability
can shape our lives and influence the world around us. Therefore, many years after, when
the time came to select a topic for my dissertation, I deliberately chose to explore the realm
of spatial data quality and types in predictive ecology. This area of investigation carries
substantial importance, given that while numerous studies have concentrated on modeling
methodologies and theoretical frameworks, only a limited number have delved into the crit-
ical aspects of data quality and data types applicable in predictive modeling. More impor-
tantly, such research takes on heightened significance in the contemporary era, where there
is an exponentially growing wealth of spatial data accessible to us.

In addition, during an extensive literature review, I observed a recurring recommendation
to downscale the resolution of environmental predictors to match the highest positional
uncertainty of species records. However, there appeared to be a notable lack of empirical
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testing to validate this assumption. This sparked my curiosity, prompting me to investigate
the validity of this prevalent and customary practice. I was eager to determine the extent to
which this assumption held true and whether it could influence the accuracy and reliability
of modeling outcomes.

I firmly believe that investigating spatial data quality and diverse types within ecological
predictive modeling is of utmost significance. By addressing these crucial aspects, we can
enhance predictive models’ accuracy, reliability, and robustness, ultimately contributing to a
more comprehensive understanding of ecological systems and facilitating informed decision-
making for environmental conservation and management.

1.3. DISSERTATION STRUCTURE

The dissertation comprises of four published papers, which collectively contribute to the
body of knowledge in predicting species distribution. It is divided into two distinct parts.
The first part of the dissertation beginning with a preface and a comprehensive general
introduction to predicting species distribution. These chapters provide a foundational un-
derstanding of the subject matter and set the stage for subsequent studies wherein specific
research challenges and questions will be examined in greater detail.

The second part of the thesis consists of four chapters, which delve into individual studies
conducted within the realm of species predictive modeling. These chapters present the spe-
cific research endeavors undertaken, each contributing to the broader understanding of the
field and offering unique insights and findings.

Chapter 3.1: Habitats as predictors in species distribution models: Shall we use continuous
or binary data?

Chapter 3.2: Assessing the applicability of binary land-cover variables to species distribu-
tion models across multiple grains.

Chapter 3.3: Species distribution models affected by positional uncertainty in species oc-
currences can still be ecologically interpretable.

Chapter 3.4: Positional errors in species distribution modeling are not overcome by the
coarser grains of analysis.

Together, these parts form a cohesive body of work that reflects the culmination of exten-
sive research and analysis, ultimately contributing to advancing the knowledge in predicting
species distribution.

1.4. DISSERTATION OBJECTIVES

The objectives of my dissertation were threefold. Firstly, I explored the potential of a novel
environmental data type to improve the accuracy of species distribution predictions. Sec-
ondly, I investigated the influence of positional uncertainty in species records on the model’s
ecological interpretability and assessed our abilities to compensate for these data shortcom-
ings. Thirdly, I assessed the role of spatial grain for the usability of binary variables, and for
the effect of positional uncertainty. Specifically, I aimed to address the following research
questions:

a) Can binary land cover predictors (i.e., information about the presence or absence of a
habitat) enhance the precision of species distribution models?
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b) If so, what is the role of spatial scale in determining the effectiveness of binary land cover
predictors?

c¢) To what extent does positional uncertainty affect model parameter estimation? Specif-
ically, what is the influence of positional uncertainty on the ecological interpretability of
species distribution models?

d) What trade-offs exist between analysis grain and positional uncertainty when modeling
species distributions? Is it advisable to coarsen the analysis grain to mitigate the impact of
positional error, or should the analysis grain align as closely as possible with the assumed
response grain, irrespective of positional error?
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THEORETICAL BACKGROUND

Predictive modeling in ecology has become an indispensable tool in studying various eco-
logical phenomena, including species-environment relationships, species interactions, and
population dynamics; it is also crucial in facilitating nature conservation efforts and in in-
forming decision-making processes (Guisan and Zimmermann 2000, Anderson et al. 2003,
Tan et al. 2006, Drew and Perera 2010). Its significance has become even more pronounced
considering climate changes, as it provides valuable insights and predictions to guide proac-
tive measures for the protection and sustainable management of our natural environment
(Alitzer et al. 2013, Urban et al. 2016, Nogués-Bravo et al. 2018, Schleuning 2020). Species
distribution models (SDMs) are widely recognized as powerful tools in predictive ecologi-
cal modeling. The primary objective of SDMs is to establish relationships between species
records and environmental variables which allow for describing these relationships and pre-
dicting species distribution in an environmental or geographical space (Elith and Leathwick
2009, Miller 2010, Ferrier et al. 2017, Franklin 2023). While SDMs have become a routine part
of ecological research, it is important to acknowledge their inherent limitations, particularly
those associated with input data (Aragjo et al. 2019).

To achieve accurate SDMs, it is crucial to ensure the accuracy of both species’ records and
environmental predictors (Robinson et al. 2011, Aubry et al. 2017, Ahmad Suhaimi et al.
2021, Arenas-Castro et al. 2022). However, attaining such high accuracy is often challenging
in real-world scenarios. Additionally, the choice of data type also plays a significant role.
When constructing SDMs, one must make decisions regarding utilizing species records from
museum databases, species atlases, or global databases (e.g., eBird or GBIF). Furthermore,
selecting appropriate environmental predictors presents additional complexities. For one
thing, determining the optimal grain size (i.e., resolution of environmental predictors) is
essential (Pearson and Dawson 2003, Guisan et al. 2007, Kaliontzopoulou et al. 2008, Seo
et al. 2009, Miguet et al. 2016, Mertes and Jetz 2018). In addition, it is equally important
to choose what predictors should be used (e.g., climate, topography, soil, land cover, canopy
height, elevation; Elith and Leathwick 2009, Miller 2010, Franklin 2010). Moreover, the source
of these data (e.g., LIDAR, satellite images) needs to be considered (Austin and Van Niel
2011, Bucklin et al. 2015, Moudry et al. 2023a), as well as the potential incorporation of
environmental predictors exhibiting high correlation (Franklin 2010, Dormann et al. 2013,
De Marco and Nobrega 2018, Sillero and Barbosa 2021). In my dissertation thesis, I strived to
transcend common assumptions in predicting species distribution by offering an innovative
approach and challenging established practices.

2.1. SPECIES DISTRIBUTION MODELS

Species distribution models (SDMs) have diverse applications in ecology and conservation.
By establishing the relationship between species records and environmental conditions, SDMs
can generate spatial predictions of species distributions (Ferrier et al. 2017; see Figure 2.1).
This information is valuable for understanding species’ habitat requirements, elucidating
niche dynamics, and uncovering the underlying mechanisms that drive species distributions.
In addition, these models have significant implications for conservation planning. They can
provide insights into species vulnerability and help identify areas with high conservation
value (Aradjo and Guisan 2006, Austin 2007, Pearman et al. 2008, Elith and Leathwick 2009,
Franklin 2010, Miller 2010, Merow et al. 2014, D’Amen and Azzurro 2020, Liu et al. 2022,
Lo Parrino et al. 2023). Furthermore, by combining SDMs’ predictions with information on
protected areas, land use patterns, and other conservation priorities, decision-makers can ef-
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fectively prioritize conservation interventions, establish wildlife corridors for species move-
ment, and guide land-use planning to minimize detrimental impacts on biodiversity from a
local to global scale (Johnson and Gillingham 2005, Domisch et al. 2019, Sutton et al. 2023,
Van Moorter 2023). More importantly, SDMs can project the potential impacts of climate
change on species distributions and habitats. By integrating future climate scenarios into
the models, SDMs can predict how species distributions might shift in response to changing
environmental conditions (Synes and Osborne 2011, Stanton et al. 2012, Gotelli 2015, Booth
2018, Briscoe et al. 2023, Festa et al. 2023). This information is valuable for assessing species’
vulnerability to climate change, identifying areas where conservation efforts may need to be
intensified, and informing adaptation strategies.

Environmental predictors Species records

|
b g m
é_ d ) ~
““‘ Il\

mm) [ SDMs Algorithm | <
. &)
KEe:
L l

SDMs

Figure 2.1: The general process of species distribution modeling. SDMs combine environmental predictors and
species records to quantify species-environment relationships. Once the model is fitted, we can predict species
distribution in environmental and geographical spaces or explore species—environment relationship inferences.

Species distribution modeling encompasses various modeling techniques. The most common
techniques used in SDMs include Boosted Regression Trees (BRT), Generalized Additive Mod-
els (GAM), Generalized Linear Models (GLMs), Random Forests (RF), and Maximum Entropy
Models (MaxEnt). These techniques can be divided into linear models (GAM, GLM) and ma-
chine learning models (MaxEnt, RF, BRT). GLMs provide a flexible framework for modeling
the relationship between species occurrence or abundance and environmental variables, en-
abling the incorporation of various functional forms and link functions (Nelder and Baker
1972, Oksanen and Minchin 2002). GAM, a flexible regression technique, extends GLMs by
incorporating non-linear relationships through smoothing functions. GAMs allow for more
flexible and nuanced modeling of species-environment relationships, capturing complex re-
sponse patterns that linear relationships may not adequately represent (Yee and Mitchell
1991).

MaxEnt, a widely used machine learning approach in SDMs, predicts species distributions by
maximizing the entropy of the model while adhering to constraints imposed by environmen-
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tal predictors. This technique is particularly suitable for handling presence-only data and
capturing complex interactions among environmental predictors (Phillips et al. 2006). RF, a
machine learning technique, is extensively employed in SDMs due to its ability to combine
multiple decision trees, considering the importance of different environmental variables and
their interactions (Breiman 2001). BRT, another machine learning technique, sequentially
builds decision trees and iteratively adjusts their weights to enhance model predictions. This
technique is known for effectively capturing complex interactions and non-linear relation-
ships in species distributions (Friedman et al. 2000). The choice of modeling technique de-
pends on the specific research question, available data, and characteristics of the species
under investigation (Elith and Elith and Leathwick 2009, Norberg et al. 2019, Valavi et al.
2021).

In addition to employing separate modeling techniques, researchers can utilize an ensem-
ble modeling approach. Ensemble modeling, also referred to as model stacking or model
averaging, entails integrating multiple modeling techniques to enhance the accuracy and
robustness of SDMs. This approach offers two main benefits. First, it reduces the risk of rely-
ing solely on the strengths and limitations of a single modeling technique. Second, ensemble
modeling can improve predictive accuracy by capitalizing on the complementary strengths
of the previously mentioned models. By combining the outputs of different techniques, en-
semble modeling can capture a broader range of ecological processes, handle different data
types effectively, and produce more robust and reliable predictions (Bates and Granger 1969,
Makridakis and Winkler 1983, Aratijo and New 2007, Mateo et al. 2012, Parker 2013). While
writing about ensemble modeling, I am intrigued by the possibility of utilizing this approach
to mitigate the negative influence of positional uncertainty in species records. Consider-
ing the challenges posed by inaccuracies in species occurrences, exploring the potential of
ensemble modeling to address positional uncertainty is an avenue worth investigating, par-
ticularly as it could contribute to advancing SDMs methodologies. Whether pursued by
myself or other researchers, exploring the application of ensemble modeling to mitigate the
effects of positional uncertainty holds great potential for further refining the accuracy and
applicability of SDMs in ecological studies.

2.2. INPUT DATA

Elementary input data for SDMs consist of two main components: environmental predictors
and species records. Environmental predictors encompass a wide range of, for example, bio-
physical and climatic variables that characterize the environmental conditions of the study
area. Integrating species records and environmental predictors allows for exploring the rela-
tionships between species occurrences and environmental conditions, forming the basis for
predicting species distributions (Elith and Graham 2009, Elith and Leathwick 2009, Franklin
2010). Species records, also known as occurrence data, provide information on the presence
or absence of a species in specific locations.

The accuracy of environmental predictors and species records is essential in determining
the reliability and robustness of models’ outcomes. Any inaccuracies or uncertainties in the
input data can introduce noise and distort the relationships between species records and
environmental conditions, leading to less accurate model results (Aragjo et al. 2019). Envi-
ronmental predictors should be accurately measured, derived, calculated, and appropriately
scaled to the spatial extent of the study (Osborne and Leitao 2009, Moudry et al. 2018, Moudry
et al. 2019). In terms of species records, it is crucial to ensure that the recorded species are
correctly identified, the record’s coordinates are properly georeferenced, and that species are
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evenly gathered across a study area (Kamino et al. 2011, Syfert et al. 2013, Costa et al. 2015,
Mitchell et al. 2017, Oleas et al. 2019, Gabor et al. 2020a, Rocchini et al. 2023).

In addition to species and environmental data, several other data types can be incorporated
into SDMs to enhance their predictive accuracy and ecological insights (for example abun-
dance data, genetic data, landscape connectivity data, or species interactions) Abundance
data quantifies a species’ relative abundance or density at different locations. This data type
provides additional information beyond presence or absence, allowing for a more nuanced
understanding of species distributions and population dynamics (Howard et al. 2014, Yu
et al. 2020, Waldock et al. 2021). Genetic information, such as DNA sequences or mark-
ers, can provide valuable insights into population structure, gene flow, and adaptive genetic
variation. Incorporating genetic data into SDMs can help identify genetic factors influenc-
ing species distributions (Termansen et al. 2006, Gotelli and Stanton-Geddes 2015, Marcer
et al. 2016). Measures of landscape connectivity, such as habitat corridors or landscape re-
sistance, can be incorporated into SDMs to account for the influence of landscape structure
on species dispersal and connectivity (Maiorano et al. 2019, Shipley et al. 2021, Curd et al.
2022). Species interactions, such as predator-prey relationships, competition, or mutualistic
interactions, can significantly impact species distributions. Incorporating data on ecological
interactions into SDMs can improve the understanding of species-environment relationships
and enhance the predictive power of the models (Wisz et al. 2013, Trainor et al. 2014, Dor-
mann et al. 2018, Windsor et al. 2022).

The scope of my dissertation requires a specific focus on utilizing species records and envi-
ronmental predictors. While other introduced data types can certainly contribute valuable
insights to species distribution, their inclusion fell outside the purview of my dissertation. As
such, those data types will not be further examined within this context, and the subsequent
sections will remain focused on species records and environmental predictors.

2.2.1. ENVIRONMENTAL PREDICTORS

Various environmental predictors can be incorporated into SDMs, each capturing different
aspects of the species-environment relationship. Thus, selecting appropriate predictors is
a major methodological challenge (Dormann et al. 2007, Williams et al. 2012, Misiuk et al.
2018, Smith and Santos 2020, Zurell et al. 2020).

Climate data, such as temperature, precipitation, and seasonality, are frequently used to
model the broad-scale distribution of species, as climate exerts a significant influence on
species’ physiological and ecological tolerances (Fick and Hijmans 2017). Such data are of-
ten acquired from meteorological stations or interpolated from global climate databases, such
as WorldClim.

Soil data, encompassing properties like soil type, pH, and nutrient content, contribute to
understanding the edaphic conditions that shape species distributions and can be acquired
from soil surveys, remote sensing techniques, or global soil databases like the SoilGrids sys-
tem (Schroder 2008, Walthert and Meier 2017).

Topographic data, including elevation, slope, and aspect, provide information about the ter-
rain and microclimate (Miller 2010, Carlson et al. 2022). Topographic data can be obtained
from satellite (e.g., Tandem-X, Copernicus Digital Elevation Model) or airborne remote sens-
ing platforms (e.g., National Center for Geographic Information). Vegetation data, such as
vegetation indices (e.g., canopy height) or land cover classifications, offer insights into the
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structure and composition of habitats, reflecting the resources available to the species (Davies
and Asner 2014, Moudry et al. 2023a). Vegetation data can be derived from satellite imagery,
such as those provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) or
from land cover datasets like the CORINE Land Cover.

The remarkable progress in remote sensing technology allows us to derive environmental
data at increasingly finer scales, enabling the integration of fine-resolution information in
predicting species distribution, with resolutions as fine as a couple of meters. Remote sensing
techniques, such as satellite imagery and airborne sensors (e.g., LIDAR), provide information
about the Earth’s surface and its characteristics, encompassing land cover, vegetation indices,
topography data, and even climatic predictors. This advancement is of utmost importance, as
it has been demonstrated that fine-grain data are essential for comprehending the impacts of
climate change on biodiversity, spanning from local to global scales (Lembrechts et al. 2019a,
Lembrechts et al. 2019b, Zellweger et al. 2019, Stark and Fridley 2022).

Land Cover: Continuous or Binary Predictor?

In SDMs, land cover predictors or habitat types are typically incorporated by representing
the proportion of specific land cover types within individual sites, such as grid cells or atlas
mapping squares (Chauvier et al. 2020, Randin et al. 2020, Canibe et al. 2022, Yang et al.
2023, Venter et al. 2023). But what if, for some species, the total habitat area is less relevant
than the simple fact that a particular habitat is present or absent? We can hypothesize that
the presence of a species may be influenced by the binary occurrence of a habitat, whereby
the quantity of habitat within a given spatial unit becomes irrelevant, and the mere presence
of the habitat becomes more crucial (Figure 2.2). However, to establish this hypothesis, it is
necessary to determine the minimum or maximum percentage of habitat required to sustain
a viable species population. This hypothesis assumes the existence of a threshold amount of
habitat, below which the species is unlikely to occur, and above which the species is expected
to persist.

Furthermore, we might assume that an increase in habitat area beyond the threshold size
will not further enhance species presence (noting that habitat data resolution influences the
habitat amount threshold). Such a threshold has been theorized (Andrén 1994, Fahrig 2001)
and empirically observed in bird species (Melo et al. 2018). In the field of conservation
biology, this concept is closely related to the notion of critical habitat area (Fahrig 2001,
Melo et al. 2018), which proposes that there is a specific threshold of habitat amount below
which a species cannot survive, resulting in a step-like, rather than continuous, response of
species occurrence probability to habitat area. To the best of my knowledge, this possibility
has not been theoretically or empirically explored within SDMs. Therefore, based on those
assumptions, I investigated this possibility in my dissertation. For further details and in-
depth analysis, I invite readers to refer to Chapters 3.1 and 3.2 of my dissertation.

At the end of this chapter, it is important to highlight one additional aspect. Despite the wide
range of environmental predictor sources available, using these sources in predicting species
distribution is not immune to uncertainties. These uncertainties can stem from various fac-
tors, such as measurement errors, limitations in spatial and temporal resolution, interpo-
lation methods employed, or the inhere