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Abstract 

The aeroelasticity is an essential discipline involved in the aircraft design, aiming to predict phenomena 
occurring due to interaction of aerodynamic, elastic and inertial forces. Those phenomena might often 
lead to catastrophic consequences, thus it must be proven that they do not occur between the speeds 
bounding the airplane flight envelope. 

Current aircraft design leads to increased flexibility of the airframe as a result of modern materials 
application or aerodynamically efficient slender wings. The airframe flexibility influences the aerody­
namic performance and it might significantly impact the aeroelastic effects, which can be more easily 
excited by rigid body motions than in case of stiffer structures. The potential aeroelastic phenomena 
can occur in large range of speeds involving transonic regime, where the non-linear flow effects signi­
ficantly influence the flutter speed. Common aeroelastic analysis tools are mostly based on the linear 
theories for aerodynamic predictions, thus they fails to predict mentioned non-linear effect. 

The objective of the thesis is, therefore, to design, implement and test an aeroelastic computational 
tool employing the aerodynamic prediction solver which is able to predict non-linear flow. In the thesis, 
the main focus is directed to the static aeroelastic simulations. 

The methods involved in numerical static aeroelastic simulation are presented in the thesis. The 
implementation of the computational aeroelastic tool was described and the convergence of the coupled 
solver was investigated. The tool functionality was validated in the test cases involving different ty­
pes of the aerodynamic and structural models. The tool was applied also in the aerodynamic shape 
optimization of an elastic wing. The results and computational cost were compared to the rigid wing 
optimization. 

Last chapter presents the author's contribution to the research oriented on the assessment of time 
synchronization scheme for the C F D - C S M coupled problem. The test case used here is a transonic 
flow around the Benchmark Super-Critical Wing at flutter condition. Results were compared to the 
experimental data provided by N A S A . 
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aeroelasticity, computational, static, equivalent structure, aerodynamics, optimization, elastic, 
wing, flutter, transonic 
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Abstrakt 

Aeroelasticita je nezbytná vědní disciplína zahrnuta do návrhu letounů. Zaměřuje se na předpovídání 
jevů, které vznikají vlivem interakce aerodynamických, elastických a setrvačných sil. Tyto jevy často 
vedou ke katastrofickým následkům, proto musí být prokázáno, že nevzniknou v rozsahu rychlostí 
ohraničujících letovou obálku. 

Aplikace moderních materiálů při konstrukci draku, spolu se snahou navrhnout aerodynamicky 
efektivní tvar křídel, vede ke zvyšování poddajnosti letounů. To má za následek změnu aerodyna­
mických vlastností a také k výraznějšímu vliv na aeroelastické jevy, které mohou být vyvolány snadněji 
vlivem pohybů tuhého tělesa než v případě tužších konstrukcí. Aeroelastické jevy mohou vznikat v 
širokém rozsahu rychlostí zahrnujícím i transsonickou oblast. V této oblasti je ovlivněna zejména rych­
lost, při níž dochází k třepetání, a to vlivem nelineárních jevů v proudu. Běžné nástroje, které jsou 
založeny na lineárních teoriích, nejsou schopny tyto nelineární jevy popsat. 

Cílem práce je proto navrhnout, implementovat a otestovat nástroj pro výpočetní (numerickou) 
simulaci aeroelasticity. Nástroj má využívat řešič proudového pole, který je schopen předpovědět 
nelineární jevy. V práci je kladen důraz na simulaci statické aeroelasticity. 

V práci jsou popsány metody, které je nutno zahrnout do numerické simulace statické aeroelasti­
city. Dále je popsán vlastní nástroj a je provedeno zhodnocení konvergence statických aeroelastických 
výpočtů. Funkčnost nástroje byla ověřena na příkladech, kdy byly použity různé aerodynamické a 
strukturální modely. Nástroj byl také aplikován při aerodynamické tvarové optimalizaci poddajného 
křídla. Výsledky optimalizace a její výpočetní náročnost byly porovnány s případem optimalizace 
tuhého křídla. 

Na závěr je v práci prezentován příspěvek autora do výzkumu zaměřeného na zhodnocení vlivu 
časové synchronizace mezi C F D a C S M řešiči. Použitý testovací případ je transsonické obtékání křídla 
na začátku třepetání (nutteru). Výsledky byly srovnány s experimentálními daty poskytnutými N A S A . 

Klíčová slova 

aeroelasticita, výpočetní, statický, podobná konstrukce, aerodynamika, optimalizace, elastický, 
křídlo, třepetní, flutter, transonický 
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Chapter 1 

Introduction 

1.1 Overview 

The aeroelasticity is a discipline studying interaction of fluid, elastic and inertial forces, thus connect­
ing together the fields of aerodynamics, elasticity and dynamics. The phenomena occurring due to 
interaction of the mentioned forces result in the performance changing or structural damaging effects. 
Therefore, the aeroelasticity concerns the aircraft designers since the earliest years of the aviation. 
The experimental research in this field started during development of the first airplane. That time the 
Wright brothers investigated the effect of the wing warping, applied to their Flyer biplane to provide 
the roll control, and also adverse effect of a propeller blade torsional deformation on the trust. Perhaps 
the first experience with the engined aircraft failure due to aeroelastic phenomenon was the flight of 
Samuel P. Langley's monoplane. His attempt of the first flight failed due to the wing twist off caused 
by insufficient wing torsional stiffness. The phenomenon is known as the torsional divergence. During 
following years, the airplane designers encountered other aeroelastic phenomena such as the elevator 
flutter caused by insufficient torsional stiffness of the fuselage and the tail combined with unsuitable 
design of the control surfaces drive. The return to the monoplane design and increased speed of air-
crafts brought the need to solve other aeroelastic issues - aileron effectiveness loss or reversal, wing 
flutter or wing lift redistribution. With reaching the supersonic and hypersonic speed new aeroelastic 
phenomena connected with a shock wave oscillation occurred, such as control surface buzz or panel 
flutter [1]. 

In the early years of the aviation the solution of aeroelastic problems was sought by a trial and 
error. Thus, problems were solved in late stage of the design process and often led to accidents during 
flight tests. In the course of the aeronautical engineering development, the theoretical investigations 
and research were conducted to understand the aeroelastic phenomena. The theories solving unsteady 
aerodynamics were established by Wagner [2] and Kiissner [3]. The developments in the unsteady 
aerodynamics allowed to create theories predicting the wing flutter in subsonic speeds by Kiissner 
[4] and later by Theodorsen [5]. The Theodorsen's work created a basis for the strip theory, which 
has been further developed [6]. Nowadays, commonly applied method for aerodynamic prediction in 
aeroelastic computations is based on the doublet-lattice method, [7, 8]. This essentially linear method 
is capable of relatively accurate prediction in the subsonic conditions with no flow separation but 
fails in transonic flow or flow with extensive separation. Therefore, it has been common practice to 
correct results of the linear aerodynamic methods by the wind tunnel measurements. The advances in 
the development of computational methods based on the finite volumes started an extensive research 
of the aeroelastic solvers employing C F D simulations potentially reducing the number of tunnel or 
flight tests. The research in this field probably started by Bendiksen [9], who has been followed 
by Lee-Rausch [10], Alonso [11], Thomson [12], Feng [13] and many others, focusing on both static 
and dynamic aeroelastic simulations. The recently established activity in N A S A [14, 15] focusing on 
validation of tools for high-fidelity flutter predictions in transonic speeds highlights the effort given to 
the research in this field. 
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1.2 The Objective of the Thesis 

The trend in aircraft design is focused on the increase of aircraft overall efficiency. One of the aspects 
is the fuel consumption decrease, aiming to reduce the operational costs and emission of greenhouse 
gases. This can be obviously realized by the optimization of a propulsion system or by design of a 
lighter airframes and aerodynamically more efficient shapes, e.g. long slender wing. The combination 
of last two mentioned leads to increased flexibility of the airframe and consequently to the change of 
the aerodynamic characteristics, stability margin or control surface efficiency. In addition, compared 
to stiffer wing, the aeroelastic effect can become stronger and more easily excited by rigid body motions 
or an input of a flight control system. The potential aeroelastic phenomena can occur in large range of 
speeds involving transonic regime, where the non-linear flow effects significantly influence the flutter 
speed. Moreover, the complex flow around the wing, due to its shape and interaction with other 
components, such as nacelles, pylons, an engine flow and a fuselage, makes the aerodynamic design 
and analysis the challenging task. 

A l l mentioned aspects ask for a simulation tool which is able to: 
• cover full range of the flight envelope - increasing the design efficiency [16], 
• include the aeroelastic effects in early design stage - minimizing the need for often costly redesign 

in later stages, 
• resolve the non-linear aerodynamics - allowing the design optimization of the complex geometries. 
The mentioned requirements disqualify common aeroelastic tools employing unsteady aerodynamic 

solvers based on linear methods such as a strip theory or a doublet-lattice method. The progress in 
Computational Fluid Dynamic (CFD) in the areas of numerical scheme stability, code effectiveness 
and turbulence modeling, created a reliable tool for unsteady non-linear aerodynamic predictions. 
Therefore, the C F D is the convenient method for application in high-fidelity aeroelastic simulation 
tool covering all mentioned requirements. 

The thesis objective is to create a tool for simulation and design optimization of static aeroelastic 
models of the aircraft. The tool will be applicable in: 

• computation of aerodynamic characteristics of an elastic airplane, 
• aerodynamic design optimization of elastic wing (aircraft) giving the result closer to reality, 
• conceptual design based on aero-structural optimization - design of aircraft shape together with 

airframe structure aiming for improvement of both aerodynamic and structural efficiencies. 

1.3 The Novelty of the Thesis 

The research in the field of aeroelastic simulation and design is important and concerns large variety of 
computational tools ranging from C F D capable to accept large deformation of boundaries, employing 
techniques such as mesh deformation [17, 18, 19, 20], chimera grids [21], immersed or embedded 
boundary conditions [22, 23, 24], through efficient and accurate time integration schemes of coupled 
fluid-structure equations [25, 26, 27], spatial coupling [28, 29] or recently the adjoint of coupled fluid-
structure equations of high-fidelity solvers in multidisciplinary optimization [30, 31]. 

The thesis is developing the activity at Institute of Aerospace Engineering focused on aeroelastic 
simulation and design using modern techniques like the fluid-structure interaction and adjoint method 
[32]. 
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Chapter 2 

Static Aeroelastic Computations 

2.1 Introduction 

The research in field of high fidelity aeroelastic computation has been conducted since past few years. 
The advances in Computational Fluid Dynamics, creating the standard tool for non-linear aerodynamic 
predictions, commenced the interest in coupling high fidelity flow solvers with the already matured 
Finite Element Method. The research focuses on wide range of computational methods involved in the 
aeroelastic simulations, as it was mentioned previously in the thesis, ranging from mesh deformation 
methods [17, 18, 19, 20] through effective spatial and temporal coupling of the essentially different 
domains [28, 29, 25, 26, 27]. 

In this chapter, methods involved in static aeroelastic computation are described. The emphasis 
is given to fluid-structure interaction methods with focus on the description of the basic principles 
and methods involved. The summary of the aerodynamic and structural modeling follows and is 
complemented by the information about the solvers applied in the thesis. The end of the chapter is 
dedicated to the implementation of the static aeroelastic simulation tool applicable for the analysis 
and design optimization. 

2.2 Fluid-Structure Interaction 

Two main approaches for fluid-structure interaction are distinguishable - monolithic and partitioned. 
The monolithic approach, often referred as the strongly coupled, combines the fluid and the structural 
state equations together and treats them as a single system of equations governing both problems 
guaranteeing a conservation of properties at the fluid-structure interface. The interaction between 
domains is treated synchronously. The advantage is the robustness of the approach. The implemen­
tation requires the special solver, thus the existing well-established fluid and structure solver cannot 
be used. 

The partitioned formulation approach allows to combine the complex domains described by differ­
ent approaches and can differ in size by order of magnitude. The difference in size of the systems is 
common in the real applications when usually a flow domain is much larger than a structural domain. 
The necessary information obtained by arbitrary flow and structural solvers is exchanged on the de­
fined interface according to chosen coupling scheme which should satisfy several criteria - conservation 
of energy and loads, accuracy and efficiency. 

2.2.1 Principle of coupling 

The principle of the fluid-structure coupling is based on the conservation of the virtual work satisfying 
the conservation of energy. The virtual work performed by the aerodynamic load must be equal to 
the virtual work of the structural forces: 

SW = F^5us = Fj5uf (2.1) 
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where F s is vector of forces acting on structural nodes, Ff is vector of forces at fluid nodes, u s and 
Uf are structural and fluid nodes displacement vectors, respectively. 

The fluid-structure coupling is often expressed by introduction of a coupling matrix H giving a 
relation between the displacement vectors of the fluid and the structure meshes: 

uf = H u s (2.2) 

The combination of equations 2.1 and 2.2 gives a relation: 

Fa = HTFf (2.3) 

Thus, if matrix H satisfies the mentioned conservation criteria, it can be used for the transformation 
of the structural displacements to the fluid mesh and once it is transposed for the transformation of 
the aerodynamic load to the forces acting on the structural nodes. 

2.2.2 Transformation methods 

During the research on fluid-structure interaction, relatively large number of coupling methods has 
been defined and applied. Reviews of methods were published, among others, by Hounjet and Meijer 
[33], Smith et. al. [34] and Boer [35]. Many articles focusing on the particular coupling method were 
also published by Cerbral and Lohner [36], Beckert [37], Zwaan and Prananta [38], Wendland [29], 
Rendall and Allen [28, 39] and others. 

The nearest neighbor interpolation 

The nearest neighbor interpolation is a simple method of the information transfer from mesh S (struc­
ture) to mesh F (fluid). For the given point xp in mesh F the closest point xs in mesh S is found. 
Consequently, the value of variable in XF is taken as the same as in point xs- Thus, the coupling 
matrix H is a Boolean matrix. 

Weighted residual methods 

The initial assumption for the method is the conservation of displacements on the interface, which is 
given in continuous form: 

us(x) = uf(x) on T (2.4) 

A weighted residual method is used for approximate solution of this equation. Thus, both sides of 
the equation are multiplied by a set of weighting functions 4>k and integrated over the interface. The 
quantities us(x) and Uf (x) are approximated by: 

us(x) = J2Ni(x)"si (2.5) 
i=l 
nf 

uf(x) = J2Nj(x)"fJ (2-6) 
i=i 

where vectors u sj and Ufj contain the values of the us and Uf at the interface (ns and n / are the 
number of structure and flow unknowns at the interface), Ns and Nf are the basis functions for the 
structure and the flow. 

The mentioned operations lead to equation: 

Mx)y2K(x)usidx= / <j>k{x) V M ( i ) u / 3 ( i x . (2.7) 
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The equation can be solved using the Galerkin method. There are two possible values of the 
weighting function (f>: the basis function of the structure Ns or the flow Nf. So, the equation 2.7 
becomes: 

where a G {/, s} and the integral on the left-hand side is denoted as A^s while the one on the 
right-hand side is A^. This equation can be written in the matrix form as 

A „ s u s = AafUf, (2.9) 

Then the displacements in fluid are defined as 

uf = A~JAfsus (2.10) 

Consequently, the transformation matrix is 

H = A " /

1 A / S (2.11) 

The last step is the selection of the interface for integration of integrals in Eq. 2.8. For the matrix 
Aff it is the best to integrate over fluid domain Tf, because the iVJ? and Nj are known. Also for 
integration in matrix A^ s the is chosen, in order to satisfy the global conservation of the forces 
(details are in [35]). Because Ns is defined only on the discretized structure interface, a projection 
method must be employed, e.g. Gauss interpolation [36] or Intersection method [35]. 

Fluid mesh 

x Gauss point 

Figure 2.1: Issue in projection - Gauss interpolation (left) and Intersection method (source [35]) 

Essentially, Gauss interpolation uses Gauss integration for computation of integrals in Afs with 
choice of integration points in fluid mesh cells and projection to the structure mesh. In certain cases, 
some structural points are not taken into account by projection and therefore they do not receive 
force information from fluid mesh, see Figure 2.1. To fix this, more Gauss points in the fluid cell 
must be used. The Gauss points are projected onto structural mesh employing search algorithm and 
orthogonal projection with minimum distance criterion. 

The intersection method uses projection of elements from one mesh to element of other mesh. The 
relative area of projection gives proportion of the values in certain element which is taken into account. 
In order to satisfy the conservation of loads the integral is taken over flow interface. Thus, the structure 
elements are projected on the flow mesh. In certain situation, i.e. when convex/concave surfaces are 
present (see Fig. 2.1), some parts of fluid cells may not be covered by projection. Consequently, the 
pressure force of the flow interface is not completely taken into account and the global conservation 
of forces is not fulfilled. The method requires same projection algorithm as the previous one. 

Method of finite interpolation element 

The finite interpolation elements are special type of finite elements with no stiffness, mass or any 
material properties. They relate displacements (rotation) of the element node with those in any 
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rigid region 

interpolation element 

projection point 

finite element node 

finite element / 

Figure 2.2: Principle of coupling by finite interpolation elements (source [37]) 

element point employing the shape functions. Usually, this kind of elements is used as a connection 
of compatible substructures in finite element analysis. 

The principle of the coupling is illustrated in Figure 2.2. A node on the fluid grid is projected on 
the finite interpolation element. The space between the element and the fluid node is rigid, therefore 
the aerodynamic load is transformed in terms of the equilibrium of forces and moments. Those 
forces and moments can be interpolated to the structure nodes by using of shape function of the 
finite interpolation element. Vice versa, the displacements and rotation of the structure nodes are 
interpolated back to the projected points by the same shape functions. 

The relation between the displacement vector of the projected point Ug and the displacement vector 
of the structural node u s can be formulated as 

u.; H s u s , (2.12) 

the matrix H s contains ns diagonal matrices H S i (the size is 6x6 in case of six degrees of freedom), 
which are composed of values resulting from the evaluation of the shape functions of the finite inter­
polation element. The relation between displacements of fluid node and its projection point is 

u (2.13) 

the matrix Dg provides the rigid transformation of the displacements and rotations. 
In order to formulate the transformation matrix H , the equations 2.12 and 2.13 are combined 

together. Then 
H = D S H S (2.14) 

The projection of the fluid nodes onto interpolation element can be solved by the orthogonal 
projection. 

Radial basis functions 

Radial basis functions [40], [19] are flexible and well-established tool for multivariate interpolation. 
The displacements at the fluid and the structure are approximated by an interpolant which has the 
form: 

N 

S ( x ) = ^ 7 ^ ( l | x - x J | | ) + /i(x) (2.15) 
i=i 

where 0 is a given basis function, coefficients jj £ M, the Xj are centers with known values (structural 
points), h(x) are first degree polynomials and || • || denotes Euclidean norm. In many cases it is 
convenient to scale the basis function with a shape parameter e, then the basic function is replaced 
by 4>e{r) = 4>{er). Common radial basis function are given in Table 2.1. 

6 



Table 2.1: Common radial basis functions 

Radial basis function (f>{r) 
Spline type 
Thin plate spline 
Multiquadric 
Inverse multiquadric 
Inverse quadric 
Gaussian 
Multi-quadric biharmonic splines 

In [[40]], it is shown that the coupling matrix H is: 

H = A ^ C " 1 (2.16) 

Both matrices at the right-hand side come from R B F approach. The square interpolation matrix 
C s s of size Ns x Ns (Ns is a number of structural nodes) consists, among others, of values </>( ||xSi — xSj. ||), 
while the radial basis function is evaluated only on structural nodes. The matrix Afs (of size Nf x Ns) 
depends on both fluid and structural nodes. 

The interpolation by radial basis function is dependent on the radius of the support r, which can 
be varied by the shape parameter e. A large support radius gives good approximation, but if the 
radius is too large it leads to singular matrices. On the other hand, a small support radius yields less 
accurate interpolation. In many cases, it would be useful to vary the radius from structure node to 
structure node but according to the theory it is not possible. In practice, the support radius should 
guarantee enough points are covered, on the other hand, points far away should have no influence. 
Therefore, the support radius for fluid-structure interaction should be chosen as large as the maximum 
distance of all centers from their nearest neighbors in both meshes. 

Other important choice is a choice of the radial basis function itself. According to [35], the most 
robust, cost effective and accurate are: 

• Multi-quadric biharmonic splines 

0( r ) = y V 2 + a2 (2.17) 

• Thin-plate spline 

4>{r) = \r\nlog |r|, neven (2.18) 

The parameter a controls the shape of the basis function. 
The unique solution of the interpolation can be guaranteed only when at least four structural 

points are not in plane [29]. This is not often fulfilled, e.g. if the simple beam structural model is 
used. In this case, it is possible to solve the linear system but the solution is not unique. 

2.2.3 Chosen coupling method 

The comparison done by Boer [35] implies all methods fulfill the conservation of the virtual work and 
pressure forces over the interface, except of special case of concave/convex surfaces combined with 
large difference between size of the fluid and the structure grids. In this case, the intersection method 
does not conserve pressure forces. The nearest neighbor interpolation method is burdened by the error 
due to interpolation step which is larger than the discretization error. 

For further application in the thesis, the radial basis function method was chosen. The reasons 
are the accuracy and no need of complicated and computationally expensive search and projection 
algorithm as in case of the weighted residual or the finite interpolation elements methods. 

| r | n , n odd 
\r\n log |r|, n even 
Vl + r2 

( y T T r 2 ) " 1 

(1 + r 2 ) " 1 

- r 2 

e 
y V 2 + a2 
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2.3 Aerodynamics Modeling 

The thesis objective is to create tool for high fidelity aeroelastic simulations and multidisciplinary 
design optimization. The tool should be applicable for flight speeds ranging over full flight envelope, 
potentially involving transonic regime or conditions with strong flow separation. Moreover, the aircraft 
design involves flow solution around complex geometries, such as wing-fuselage configuration with 
nacelles or pylons. Those requirements disqualify the linear aerodynamic prediction tools such as 
doublet-lattice method. Since the Computational Fluid Dynamic (CFD) solvers fulfill mentioned 
requirements for the flow solution, the C F D solver will be used for aerodynamic prediction in the 
aeroelastic computational tool. 

2.3.1 Governing equations 

Viscous flow 

The flow of compressible viscous fluid is described by equations expressing the conservation laws -
conservation of the fluid mass, conservation of the momentum and conservation of the energy. The 
derivation of the particular equations can be found in numerous textbooks of the fluid mechanics. 
Versteeg [41], focused on finite volume method, gave the Navier-Stokes equations governing the time-
dependent three-dimensional fluid flow and heat transfer of the compressible viscous fluid in form: 

• Mass 
dp — + div(pu) = 0 
at 

• x-momentum 

• y-momentum 

• z-momentum 

• Internal energy 

• State equation 

dpu 
~df 

dpv 

dpw 

+ div(puu) 

+ div(pvu) 

+ div(pwu) 

+ div(pVu) + SMI 
dp 
Ox 

Op 
• — + div(pVv) + SMy 
dy 

dp 
-— + dw(pVw) + SMz 

dpi 
~dt 

+ div(piu) = -pdivu + div(fcVT) + $ + Si 

p = p(p, T) and i = i(p, T) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

where p is density of fluid, t is time, u is fluid velocity vector with components u, v, w, p is dynamic 
viscosity, SMÍ is momentum source (i denotes x,y and z directions), $ is dissipation function, T is 
temperature, p is pressure and i is internal energy. 

Equations in this form fully describe laminar flow. In common engineering practice the solution 
of high Reynolds flow, involving the boundary layer transition from laminar to turbulent, is required. 
The usual practice is to solve Reynolds averaged Navier-Stokes equations with additional equations 
modeling either only turbulent boundary layer or a transition of laminar to turbulent boundary layer. 

Inviscid flow 

In certain cases, the viscous effect can be neglected. It is typical for aeroelastic applications when 
the flow is assumed fully attached with small perturbations [42]. Therefore, the viscous and thermal 
conductivity terms in Navier-Stokes equations are dropped and the system of equations reduces to the 
Euler equations governing the inviscid flow: 

• Mass 

^ + d i v ( p u ) = 0 (2.25) 
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x-momentum 

y-momentum 

• z-momentum 

State equation 

2.3.2 Flow solver 

d pu dp 
— +div(puu) = - - + SMx 

Opv 
~öT 

Opw 
"Of 

+ div(/wu) = - — + SMy 

+ div(pwu) 

dp 
Oy 

Op 
Oz + SMZ 

V = P(P, T) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

The flow solver used in the thesis is C F D code Edge [43]. It is finite volume solver for unstructured 
grids which can solve 2D and 3D Euler and R A N S equations, as well as the adjoint of the Euler and 
NS (frozen viscosity) equations [32]. The time integration uses the fourth order Runge-Kutta scheme. 
It employs local-time-stepping, local low-speed preconditioning, multi-grid and dual-time-stepping for 
steady-state and time-dependent problems. For the unsteady cases, the employed numerical scheme 
is a dual-time-stepping scheme[44]. The data structure of the code is edge-based. The solver can be 
run in parallel on a number of processors to efficiently solve large flow cases. 

2.4 Structural Modeling 

The simulation and prediction of aeroelastic effects require an appropriate structural model. The 
model should be able to describe behaviour of loaded structure in sufficient extent appropriate to its 
application. Slender structures, which are typical for airplane wings, can be represented by a beam 
stick model. The application of this model is also allowed by high chord-wise rigidity of the wing due 
to ribs. Usually, the beam is placed to the position of a wing elastic axis, which is a line of points 
where a bending loading does not produce torsional deformation and vice versa. Therefore, decoupling 
of bending and twisting is allowed and Euler-Bernoulli beam elements can be applied. 

2.4.1 Matlab based finite element solver 

In the frame of the thesis, the finite element solver was programmed in Matlab environment. It is 
linear elasticity solver working in two modes: 

• Mode 1: Beam finite elements mode 
• Mode 2: Prescribed stiffness and mass matrices mode 

The purpose of this solver is to overcome cumbersome communication with commercial F E M packages 
via input files and to allow future development focused on direct communication between solvers. The 
important parts of finite element preprocessor and solver code in Matlab are given in Appendix A . 

The first mode can solve static deformation and modal analysis of the model consisting of beam 
elements (either Euler-Bernoulli or Timoshenko). Its advantage is capability of direct input of a model 
which is applicable for model parameterization purposes. Input for this mode is: 

• nodes - identification number and coordinations 
• beam elements - connections, relevant structural characteristics 
• rigid elements - connecting node of the beam element with free node - useful for visualization of 

torsion and for fluid-structure coupling 
• material properties - isotropic material for entire model 
• constraints definition 
• loading definition - external point forces and inertial loading 
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The second mode is capable of solving model consisting of arbitrary structural finite elements but 
model size is limited by size of memory Matlab can allocate. The required input is: 

• stiffness and mass matrices 
• order of degrees of freedoms in matrices 
• constraints definition 

• loading definition - external point forces and inertial loading 

Solution of linear static elasticity by finite elements 

Solution of a linear static elastic problem using finite element formulation leads to system of linear 
algebraic equations in the form: 

K u = F, (2.30) 

where K is a stiffness matrix, u is a vector of nodal displacements and rotations and F is vector 
of corresponding nodal forces and moments. The stiffness matrix consists of components representing 
a stiffness of applied finite elements. 

Implementation of the Prescribed stiffness and mass matrices mode 

A n arbitrary finite element model can be solved in this mode. The stiffness and mass matrices 
must be preprocessed in an external finite element preprocessor (in frame of the thesis, the MSG 
Patran/Nastran was used). Then matrices together with definition of degree of freedom order are 
loaded to the solver. According to definition of constrained degrees of freedom, corresponding rows 
and column in the stiffness matrix and components of the load vector are removed. Finally, the system 
of equations is solved which gives vector of displacements and rotations of unconstrained nodal degrees 
of freedom. 

Implementation of the Beam finite elements mode 

This mode serves as preprocessor and solver for a finite element model consisting of beam elements 
with 6 degrees of freedom, namely: axial displacement, traverse displacements in and ZL directions 
and rotations about XL, UL and ZL axes, see Figure 2.3. The implementation is based on theory 
presented in [45]. In preprocessing step local stiffness and mass matrices of beam elements are created 
in a local coordinate system and transformed to a global coordinate system. Consequently, the global 
assembly stiffness and mass matrices are created according to element connections in the model. Then 
constrained degrees of freedom are removed from stiffness matrix and forces vector and the system of 
equations, Equation 2.30, is solved. 

Figure 2.3: Beam element located in global coordinates with defined local coordinates and corresponding 
local displacements (blue), forces and moments (green) 

The linear beam theory applies for small (or even infinitesimal) deflections and as result of a 
bending loading it gives transverse displacements only. Therefore, large deflection due to bending 
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causes a change of the beam length. In fluid-structure interaction procedure, it would lead to change 
of corresponding aerodynamic surface (e.g. wing surface). This property could be fixed by introduction 
of fictitious displacement in direction of beam element x axis (see Figure 2.4). For not too large angles 
of element rotation 9 due to transverse displacement v the fictitious displacement is: 

U f ^ - j i { v 1 - v 2 ) \ [45] (2.31) 

Figure 2.4: Fictitious displacement due to bending transverse displacement 

Implementation of inertial forces loading 

In both solver modes, the loading by inertial forces is implemented. Inertial forces are calculated 
according to Newton's second law of motion with an assumption that only inertial forces act on a 
structure. Thus, the inertial forces can be calculated from the equation: 

F i = Mii , (2.32) 

where M , F i and ii are mass matrix, vector of nodal inertial forces and vector of nodal accelerations, 
respectively. 

Validation of the solver by M S C Patran/Nastran 

Figure 2.5: Validation of solver - beam loading by gravity forces 

The solver was validated by comparison with results given by Patran/Nastran. Two models were 
created and loaded by gravity loading. The first one was cantilevered beam with constant cross-
sectional characteristics discretized by two beam elements, see Figure 2.5. The beam cross-sectional 
and material characteristics are listed in the Table 2.2. 

The second model is wing-box model described in Section 4.2.2. 
The resultant deformations closely agree with Nastran results in all cases - deformation of beam 

model solved by both modes of Matlab based solver (Figure 2.6 and Table 2.3) and wing-box model 
deformation solved by Mode 2 (Figure 2.7 and Table 2.4). Differences in deformations are of the order 
of hundredths of percent. 
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Parameter Value 
Length, L 2000 m 
Area, A 0.0312 m2 

Second moment of area about x-axis, Ix 0.002 m 4 

Second moment of area about z-axis,/ z 0.002 m 4 

Torsional constant, J 0.00036 m 4 

Young's modulus, E 7.31el0 Pa 
Poisson constant, v 0.33 
Material density, p 2850 kg.m~3 

Table 2.2: Flow conditions 

'0 0.5 1 1.5 2 
Y[m] 

Figure 2.6: Deformation of the beam finite element model, gravity loading, comparison of Nastran and 
Matlab solvers 

Node Nastran Solver - Mode 2 Solver - Mode 1 
1 0.0 0.0 0.0 
2 -0.0423 -0.0423 -0.0423 
3 -0.1193 -0.1193 -0.1193 

Table 2.3: Vertical displacements of the beam model loaded by gravity forces, comparison of Nastran and 
Matlab solvers 

Nastran Solver - Mode 2 Difference 
x-displ 0.0080809 0.0080807 0.00% 
y-displ 0.0366014 0.0365988 0.01% 
z-displ 0.3145667 0.3145469 0.01% 

Table 2.4: Absolute values of wing-box model tip displacement due to gravity loading, comparison of 
Nastran and Matlab solvers. 
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Undeformed 
* Deformed - solver, mode 2 

Deformed - Nastran 

Undeformed 
» Deformed - solver, mode 2 

Deformed - Nastran 

Figure 2.7: Deformation of the wing-box finite element model, gravity loading, comparison of Nastran 
and Matlab solvers (points represent nodes of structural model, deformation is 5x magnified) 
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2.5 Mesh Deformation 

The motion of deformable surface of an aeroelastic model must be captured by a fluid computational 
grid prior to calculation of new flow solution. Two methods of moving geometry treatment exist, 
remeshing and grid deformation. The first mentioned allows to capture arbitrarily large geometry 
deformation, but at high computational cost connected with recalculation of entire volume mesh. 
Moreover, risk of physical conservation loss exists due to possibility of large changes in the grid which 
may lead to reduced local computational accuracy. 

Therefore, development of mesh deformation techniques, such as spring analogy, Laplace smoothing 
and radial basis functions interpolation, has began in recent years. Their advantage is conservation 
of mesh topology, i.e. number of elements, nodal connectivity and generally lower computational cost 
compared to the remeshing. Commonly, mesh deformation methods suffer by high risk of inverted 
elements occurrence as result of large geometry deformation. 

2.5.1 Spring analogy method 

Figure 2.8: Fictitious springs connecting nodes of a 2D element 

The method, originally proposed by Batina [46], is based on treatment of computational mesh as 
a network of springs connecting mesh nodes as it is illustrated for one two-dimensional element in 
Figure 2.8. Deformation of the boundary is propagated to the volume mesh on the basis of static 
equilibrium between fictitious forces which are proportional to nodal displacements. 

Since, the method treats only element edges, not element as the whole, there is high possibility of 
element inversion. Thus, several attempts were made in order to improve the technique by introduction 
of additional fictitious springs, e.g. torsional spring controlling angles between two connected edges 
[47] or springs connecting tetrahedron node with other point on the element [48]. 

2.5.2 Laplace smoothing method 

The mesh deformation method originate in Laplace smoothing which was originally employed for 
improvement of the computational grids [49]. Essentially, the propagation of boundary deformation 
into the interior is based on iterative movement of the mesh nodes towards the center of the polygon 
(2D) or polyhedron (3D) created by adjacent nodes. The method is prone to produce inverted cells, 
therefore it often fails to propagate large boundary movement. The effort was spent in order to 
overcome this issue [50, 51]. 

2.5.3 Radial basis functions interpolation method 

This method proposed in [52, 19] applies the similar idea to the one used in the fluid-structure inter­
action where the movement of the control points defined on the structure grid is interpolated on the 
C F D surface mesh. In application for C F D grid deformation, the control points are defined on the 
movable boundary of the fluid mesh. The boundary movement is interpolated into the fluid volume 
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mesh. Compared to the spring analogy and Laplace methods, the computational cost is low, once the 
interpolation matrix is created. Method can handle large deformations and is applicable for struc­
tured, unstructured and hybrid meshes, because it is independent of the mesh connectivity. From 
the method nature, the boundary nodes movement is not exactly recovered in the resulting deformed 
volume mesh. The method performance depends on the R B F type and on the choice of the support 
radius. 

2.6 Design of Computational Aeroelasticity Tool 

The implementation of the computational aeroelasticity tool is based on the partitioned (coupled-field) 
formulation of the fluid-structure interaction. Therefore, it is possible to couple arbitrary separate flow 
and structure solvers independently of each other. Thus, the best suiting solver for particular domain 
and application can be employed. Moreover, the solvers can be separately improved and maintained 
to comply the state-of-the-art level in the specific field. 

The basic task of the tool is sharing appropriate information between solvers on defined interface. 
The formulation of the interface employing Radial Basis Functions (RBF) ensures ability to couple 
independently discretized domains differing in size by several orders of magnitude. At the same time, 
the formulation satisfies the conservation of energy and loads and it is accurate and efficient [35]. 

Basic principle 

The principle of the computational aeroelasticity process is depicted in Figure 2.9. The initial step 
is definition of the C F D and C S M models and an appropriate interface connecting the models. In 
both domains, the surface nodes are picked to define the interface. It is an obvious choice because 
aerodynamic loading acts through surface pressure. The interface is described by a coupling matrix 
H which is constant during the aeroelastic computation. The main computational loop consists of 
sequential calls of the fluid and structure solvers and the relevant information transfer. In each 
iteration, the flow solution is calculated on the actual deformed shape and the forces on fluid surface 
mesh Ff are transformed to the forces on structural nodes F s according the equation: 

F S = H T F / (2.33) 

The force vector of the i-th surface node in the fluid mesh is calculated according to: 

¥ h = P l S l U n i , (2.34) 

where the pi is the pressure in the i-th node, the Si is the area of the control surface associated to the 
i-th boundary node and the n n i is the control surface normal vector. 

Consequently, the forces are sent to the C S M solver and are applied on the initial structural model 
giving the vector of structural deformation u s due to actual aerodynamic loading. The displacements 
of boundary nodes in the fluid domain are given by: 

uf = H u s (2.35) 

The C F D surface mesh deformation is propagated to the volume mesh employing appropriate 
algorithm capable to solve rather large surface mesh deformation. In the extreme case, if mesh 
deformation fails, a remeshing technique can be employed. At the end of the iteration, residual values 
are calculated and compared with convergence criteria. If the criteria are satisfied, the loop will end 
and a static equilibrium state of the aeroelastic model will be obtained. Otherwise, the loop will be 
repeated. 
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Figure 2.9: Description of fluid-structure interaction procedure 

Implementation 

From the perspective of implementation the acquisition of information and data transfer should be 
as fast as possible. There are two choices of data transfer, a file based using storage of data files 
on hard drive and online data exchange utilizing direct communication via random-access memory. 
Practical application of the first mentioned approach might be considered for the static aeroelasticity 
computation. In the case of dynamic aeroelasticity it would be very impractical due to time consuming 
I /O operations and large number of the data transfer during the solution of an unsteady problem. 

The tool was implemented in the Matlab environment. Essentially, the tool is built on simpler 
principle employing data transfer using I /O operations via hard-copied files. The diagram describing 
the implementation is shown in Figure 2.10. The tool was designed to use arbitrary flow and structural 
solvers called by separate routines (cfd.m and fem.m in the diagram) whose function handles are fed 
to the main routine "run_fsi.m". The routine "cfd.m" returns the C F D forces for the input consisting 
of displacements of the C F D deformable surface. Thus, the routine must provide the C F D volume 
mesh deformation, solution of the flow field and calculation of the C F D surface forces. The routine 
"fem.m" provides structural nodes displacements for the input forces at the outer structural nodes. 

The loop depicted in Figure 2.10 is repeated until the convergence criteria are met, i.e. when 
change between two consecutive normalized root mean square (RMS) values of C F D surface mesh 
nodes displacements is less than a prescribed value. The criterion must be satisfied for displacements 
in all directions: Ufx, Ufy and Ufz and for one dimension is defined as (notation is without subscript 
defining direction): 

ufj - ufj_1 < ts (2.36) 

where Ufj in current j- th iteration is defined as: 

_ UfRMS,j  
Ufj ~ lit 

The ufRMS • and ufRMS 1 are R M S of fluid surface mesh displacements 
and the first coupling iteration, respectively, defined as follows: 

1 N 

i=l 

(2.37) 

in given direction in j- th 

UfRMS,j 

\ 
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run f s i . m 
I n p u t : X c f d - c o o r d i n a t e s o f CFD s u r f a c e n o d e s 

X f e m - c o o r d i n a t e s o f FEM n o d e s f o r c o u p l i n g 

h n d _ c f d - f u n c t i o n h a n d l e - c a l l i n g CFD mesh 

d e f o r m a t i o n a n d CFD s o l u t i o n ( c f d . m ) 

h n d _ f e m - f u n c t i o n h a n d l e - c a l l i n g FEM s o l u t i o n 

(fem.m) 

f s i r b f . m 

c a l c u l a t e s c o u p l i n g m a t r i x H 

L o o p : 

CFD n o d e s d i s p l a c e m e n t s - U c f d 

( i n i t i a l l y z e r o s ) 

F f e m ( : , i ) = H T * F c f d ( , i ) 
i = 1 , 2 , 3 

f o r c e s a t CFD n o d e s - F c f d 

cfd.m 

CFD mesh d e f o r m a t i o n 

CFD s o l u t i o n 

f o r c e s a t FEM n o d e s - F f e m 

U c f d ( : , i ) = H * U f e m ( : , i ) 

i = 1 , 2 , 3 

FEM n o d e s d i s p l . - Ufem 

R e s i d u a l s c h a n g e c a l c u l a t i o n 

fem.m 

CSM s o l u t i o n 

Figure 2.10: Diagram of the tool implementation in Matlab 

Coupled problem convergence study 

The influence of involved solvers settings on the convergence of the static aeroelastic solution was 
studied. The involved Matlab based linear C S M solver (described in Section 2.4.1) gives exact solution 
of the structural equations system for nearly no computational cost. Thus, the study was focused on 
the aerodynamic analysis (employing Edge C F D solver) which involves solution of non-linear equations 
with significantly larger number of unknowns than in case of the structural solver. In the Table 2.5 
the considered settings of the C F D solver are listed. In general, well-converged C F D solution was 
required at the end of the coupled solution, thus the target residual reduction of the flow variables 
about 7 orders of magnitude was prescribed. Then, the influence of the flow residuals reduction in 
each coupling iteration on the coupled solution was observed in terms of computational cost and the 
resultant aerodynamic forces. The residual reduction was limited by prescribed total number of C F D 
iterations (referred as inner iterations) in each coupling iteration. The scheme designated as "01" 
requires complete converged C F D solution before the data exchange on the aeroelastic interface. In 
other cases the C F D solution is limited by prescribed number of inner iterations. Therefore, partially 
converged flow solution can be expected mainly during first coupling iteration. After the coupled 
solution convergence criteria were satisfied, the reduction of the flow residuals was checked whether 
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the prescribed value was reached. If not, the C F D solution was restarted to obtain the well-converged 
flow solution as it was required. 

Scheme 01 02 03 04 05 06 
Number of grids in multi-grid solution 0 3 3 1 1 1 1 
Max. number of full multi-grid cycles 500 500 - - - -
Max. number of C F D iterations at each coupling iteration 5000 500 500 250 125 65 
Order of residual decrease for converged solution -7 -7 -7 -7 -7 -7 

if > 1 then full multi-grid solution was performed 

Table 2.5: Flow solver settings 

Coupling iterations Set-up 

Figure 2.11: Computational cost of the aeroelastic solution - influence of the Edge CFD solver settings, 
Euler simulation at M = 0.85, a = 0° 

Scheme 01 02 03 04 05 06 
CL 

0.273312 0.273304 0.273304 0.273306 0.273300 0.273281 
CD 0.004957 0.004957 0.004957 0.004956 0.004957 0.004956 
Cm -0.092672 -0.092664 -0.092664 -0.092660 -0.092662 -0.092657 
Total C F D iterations" 40702 7338 7415 4196 2114 2124 
Total coupling iterations 19 19 19 16 16 16 

in cases "01" and "02" the less expensive iteration on coarser C F D grids are included. The 
rigid C F D solution converged after 1249 iterations (including full multi-grid solution on coarser 
grids). 

Table 2.6: Results of convergence study at M = 0.85 and a = 0° 

The reduction of the inner iterations number has consequence of the computational cost saving in 
terms of the total number of C F D iterations. (It should be noted that the really comparable are only 
cases from "03" to "06". The first and the second case employed full multi-grid solution using two 
coarser C F D grids, thus one iteration is cheaper on those grids than on the finest grid). The number 
of coupling iterations was reduced as well, this is beneficial from the perspective of time saving for the 
communication and the mesh deformation. In the this case, the lowest cost is suggested by the scheme 
"05" and is about three time higher than the cost of pure flow solution (see Figure 2.11). Figure 2.12 
shows the convergence of the coupled solution. The plots on the right side of the figure show that the 
solution converged to the same result in terms of aerodynamic forces coefficients (the same shows the 
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Figure 2.12: Convergence of the aeroelastic solution - influence of the Edge CFD solver settings, Euler 
simulation at M = 0.85, a = 0° 

Table 2.6). 
The convergence was tested for other two flow conditions - at M = 0.6, a = 5° and at M = 0.88, 

a = 0°. The results given in the Table 2.7 suggest that in this case the most efficient is scheme 
"06" from perspective of the needed C F D time. But the lowest number of the coupling iterations was 
achieved by scheme "03" (see the Table 2.7). 

For the flow conditions at M = 0.88, a = 0°, the same scheme was the most efficient from both 
perspectives (Table 2.8). The convergence plots for both flow conditions are given in the Appendix B. 
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Scheme 03 04 05 06 
CL 0.689944 0.689946 0.689879 0.689918 
CD 0.019790 0.019790 0.019787 0.019788 
Cm -0.119453 -0.119454 -0.119445 -0.119450 
Total C F D iterations" 2653 1989 1813 1737 
Total coupling iterations 7 8 9 19 

a The rigid C F D solution converged after 1512 iterations (including full 
multi-grid solution on coarser grids). 

Table 2.7: Results of convergence study at M = 0.6 and a = 5° 

Scheme 03 04 05 06 
CL 0.276955 0.276956 0.276956 0.276795 
CD 0.006963 0.006963 0.006963 0.006976 
Cm -0.099328 -0.099325 -0.099327 -0.099266 
Total C F D iterations" 5411 7280 6227 5567 
Total coupling iterations 11 26 37 45 

a The rigid C F D solution converged after 1236 iterations (including full 
multi-grid solution on coarser grids). 

Table 2.8: Results of convergence study at M = 0.88 and a = 0° 

2.7 Summary 

Methods of definition of the fluid-structure interface, such as the nearest neighbour, weighted residuals, 
method of the finite interpolation elements and radial basis function, were presented in this chapter. 
The radial basis functions method has been chosen for the implementation in the computational 
aeroelasticity tool. The reasons for the choice of this method are accuracy, independence on the mesh 
connectivity and no need for computationally expensive search and projection algorithms. 

The computational fluid dynamic method was applied for the aerodynamic predictions, because it 
can resolve non-linear features of the flow such as transonic shocks and the flow separation. Therefore, 
the tool is applicable for full range of a flight envelope of designed aircraft, which might improve the 
design efficiency 

The linear elastic solver was implemented in the Matlab environment. It is capable to predict 
deformation of the structure modelled by beam finite elements with direct input of beam stiffness 
parameters. The second option is to provide stiffness and mass matrices to the solver, thus matrices 
must be assembled using an external finite element preprocessor. Additionally, the influence of the 
inertial forces can be modelled by the solver. Inertial forces are calculated from the mass matrix 
according to Newton's second law of motion. The reason for the implementation of own structural 
solver was to overcome complicated communication with commercial solvers. Moreover, the solver 
might be implemented in the computational aeroelasticity tool using direct communication via the 
random-access memory, in potential further development. 

The computational aeroelasticity tool was designed to employ arbitrary flow, structural and mesh 
deformation solvers. It is based on the simpler principle of communication using I /O operations 
via hard-copied files. The influence of various settings of the flow solver on the convergence of an 
aeroelastic solution was tested. The results suggest that optimal settings are case dependent. 
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Chapter 3 

Equivalent Beam Model 

3.1 Introduction 

Simplified structural model still possesses its place in common aerospace engineering practice. It is 
widely used in both static and dynamic aeroelastic analyses and during the design of load control 
system [42]. It can be also applied in multidisciplinary design optimization aiming for estimation of 
favorable aerodynamic shape and structural characteristics combination during an aircraft conceptual 
design [53]. 

Different approaches for design of an equivalent structural model, either to real structure or to 
higher fidelity finite element, were studied. The Dunn [54] performed a study focused on matching of 
natural frequencies and mode shape given by ground vibration tests. He employed genetic algorithm in 
order to determine optimal wing stiffness and mass distribution of the model to match the experimental 
data. Algorithm updated physical parameters such as bending stiffness and mass. The problem of 
the solution uniqueness was addressed in the work. Resulting process was based on model complexity 
variation (number of parameters), and at the end, the model giving a good representation of experiment 
with minimum number of parameters was taken as unique solution. Similar approach was adopted 
by Trivailo et al. [55]. They studied different approaches, i.e. matching either dynamic or static 
response, or both of them. Genetic algorithm and artificial neural network methods were compared 
and uncertainty of solution was evaluated. 

Other study focused on design of accurate beam finite element model is presented by Elsayed et al. 
[56]. In their work, method of stiffness estimation to match static deflection of more complex model 
(wing-box) was described and compared with other common approaches, such as analytical approach 
or empirical estimation of stiffness distribution. Presented method is based on sequential application 
of unit load on given segment of complex model. Subsequently, the resultant segment deformation 
gives the stiffness of segment. 

Relatively lot of effort was given to the development of model simplification methods based on 
Guyan reduction [57]. The method works with stiffness and mass matrices directly - it does not give 
physical properties of reduced model. Thus, the model would not be applicable in the multidisciplinary 
design optimization. 

In this chapter, method of equivalent beam derivation is presented. The goal is to create a simplified 
structural model giving similar static aeroelastic deformation as more complex structure. The model 
will be applied in the aerodynamic shape optimization of the elastic wing. 

3.2 Inverse Design 

The method purpose is to find simplified structural model, in this case a beam stick model, equivalent 
to higher fidelity model. Equivalence meant here is similarity in the static aeroelastic response of 
the coupled fluid-structure model. Therefore, deformation of given aerodynamic surface (e.g. a wing) 
under certain aerodynamic load must be, in the best case, same regardless of applied structural model. 
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The problem can be formulated as fitting of the beam model stiffness parameters in order to get known 
deformation. 

Figure 3.1: The equivalent beam derivation method 

The inverse method is described in Figure 3.1. Initial step is a definition of aeroelastic models. The 
first model is a aerodynamic model coupled to a higher fidelity structural model M l - a wing-box model 
or a full finite element model of the wing structure. The model M2 is the same aerodynamic model 
coupled to a simplified structural model - a beam stick model. The model geometry is defined at the 
beginning and remains unchanged during the process. Initial guess of structural stiffness distribution 
along beam must be provided (e.g. analytically obtained rough estimation or educated guess). 

In the next step the same loading is defined for both aeroelastic models. The loading of the 
aeroelastic model M l gives deformed wing shape, the target shape XT. Finally, the fitting of aeroelastic 
model M2 begins by adjusting its stiffness until the loaded shape of the model XA matches XT. The 
adjustment is done through a gradient-based optimization method minimizing an objective function 
in form: 

3 m N 
I • 

min F N ^ 
k=l \ 

where iV is number of loading cases, m is total number of surface nodes in the aerodynamic model 
and 1 < j < 3 represents x, y and z directions. 

The N L P Q L P package [58] was employed for the problem solution. The package was developed 
for the solution of the optimization problems with non-linear constraints. It is based on the sequential 
quadratic programming (SQP) algorithm, which is one of the most effective methods for such problems. 
More details can be found in the work of Boggs and Tolle [59]. The optimization algorithm belongs 
among the gradient-based methods searching for the local optima. Therefore, the global uniqueness of 
the result cannot be guaranteed. Nevertheless, desirable solution of the inverse method can be ensured 
by the proper definition of a feasible space and the initial guess. The feasible space was defined by 
constraint functions and bounds on variables. 
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3.3 Cases Descriptions 

Models 

Two types of coupled fluid-structure (aeroelastic) models were defined. In both models, the wing of 
the Common Research Model was used as an aerodynamic model (for more details about model origin 
see section 4.2.1). The employed Euler C F D grid is presented in the Figure 3.2. 

Figure 3.2: CFD model - overview (left) and detail (right) 

The aeroelastic model employing the higher fidelity wing-box representation of the structure was 
considered as a target model. Specifically, the wing-box model labeled as v l4 described in the sec­
tion 4.2.2 was considered. In the other aeroelastic model, the structural model consisted of beam 
elements. Both structural models are shown in Figure 3.3. 

Figure 3.3: Wing box (left) and beam stick (right) finite element models 

In all cases, the coupling between C F D and C S M model was done by Thin Plate Spline type of 
radial basis function, when the wing surface nodes were coupled to outside nodes of wing-box model 
or to all beam nodes. 

Loading 

The goal is, in both aeroelastic models, to obtain the same static wing deformation due to aerodynamic 
load, thus the aerodynamic forces acting on the rigid wing surface at given flight condition (Mach 
number, altitude, angle of attack, ...) might be chosen as the loading (labeled as Qa). This loading 
results mostly in the displacement of the wing surface in vertical (z) direction due to bending, which 
is influenced by the bending stiffness parameter IZb. Thus, the loading might be insufficient to fit 
other parameters such as bending stiffness parameter Iyb and torsional constant IXb. Therefore, other 
loading cases were considered: 

• loading Qz - positive unit forces in z direction in each wing surface node 
• loading Qx - positive unit forces in x direction in each wing surface node 
• loading Qt - positive unit forces in z direction in wing surface nodes ahead of considered elastic 

axis and negative unit forces in z direction in wing surface nodes aft of the elastic axis 
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0.604 212 425 637 850 

Figure 3.4: Considered loading cases - aerodynamic loading QA (upper left), unit forces loading QZ (upper 
right), unit forces loading QX (lower left) and unit forces loading QT (lower right) 

The loading cases are visualized in the Figure 3.4. 
The considered coordinate system is shown in Figure 3.5. 

Parameterization 

The optimization based method requires suitable parameterization in order to find characteristics of 
equivalent structural model. Two types of parameterizations were tested. The first parameterization 
uses structural characteristics directly as parameters. Thus number of optimization variables grows 
with increasing number of beam elements. Physical feasibility of structural characteristic was imposed 
by bounds on parameters. 

The second one uses constants of n-th degree polynomial as parameters, therefore number of 
variables depends on polynomial degree. Constraint functions and bounds on parameters were imposed 
in order to define space of feasible structural characteristic, which is close to reality such as: 

1. negative gradients of polynomial functions - decreasing stiffness from root to tip 
2. continuity of given characteristic at kink position 
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3. positive values of polynomial functions - strictly positive stiffness 

Additionally, influence of beam stick model discretization was also tested. The test cases descrip­
tions are given in Table 3.1. Analytically calculated stiffness distribution along beam was the initial 
guess for minimization problem. In cases C - H the linear polynomial constants were fitted to initial 
beam stiffness. 

The beam stick model and the wing surface mesh were placed into coordinates xyz. Each beam 
element is placed into local coordinate system x^ybZb, thus its cross-sectional characteristics are related 
to this coordinate system. 

Figure 3.5: The coordinates system 

Case A êlem Na 

1" sec 
A p a r Parameterized values b Polynomial degree Loading 

A 21 - 84 A&, Iyb, IZb, Ixb - Qa 
B 21 - 63 Iyhi Izhi Ixb 

- Qa 
CI 21 1 4 Izhi Ixb 

1st Qa 
C2 21 1 4 Izhi Ixb 

1st Qz,Qt 
D l 21 2 8 Izhi Ixb 

1st Qa 
D2 21 2 8 Izhi Ixb 

1st Qz,Qt 
E l 21 2 12 Iyhi Izhi Ixb 

1st Qa 
E2 21 2 12 Iyhi Izhi Ixb 

1st Qx iQziQt 
F l 41 2 12 Iyhi Izhi Ixb 

1st Qa 
F2 41 2 12 Iybi Izhi Ixb 

1st Qx iQziQt 
G 21 2 18 Iybi Izhi Ixb 

2nd Qa 
H 41 2 18 Iybi Izhi Ixb 

2nd Qa 

y is in interval for the case of - one section: yr < y < yt ; two sections: yr < y < yt 
and yk > U < yt, Ur, Uk and yt is y-coordinate of the root, kink and tip section, 
respectively 
parameters are: cases A - B - structural characteristic; cases C - H - polynomial con­
stants, index k is section number 

Table 3.1: Cases descriptions 

Stopping criteria for optimization algorithm are given in Table 3.2. 

Stopping tolerance No. of iterations No. of function calls in line search 
W1 1000 20 

Table 3.2: Optimization stopping criteria 
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3.4 Results 

3.4.1 Single loading cases 

Figure 3.6: Solution history - direct parameterization cases (left), polynomial parameterization cases 
(right) 

The solution history of the inverse design method is plotted in Figure 3.6. The Table 3.3 presents 
the objective function value at the end of minimization together with computational cost. The number 
of iterations, until the convergence is satisfied, is generally higher in cases of direct parameterization. 
The reason might be larger design space as the number of parameters is about 4 times higher. The 
inclusion of the bending stiffness in other plane has significant influence on the decrease of the objective 
function. The increase of the polynomial degree from the liner to the quadratic polynomial did not 
significantly improve the result but the cost of computation in terms of total objective function calls 
was roughly doubled. Finer beam model discretization resulted in minor improvement of the result in 
the cases of the linear polynomial parameters (cases E l and F l ) , in the quadratic polynomial cases 
the result was worse. 

Case F • 
mm 

NF , 
A eval 

y eval. Total NF , b 

A eval 
A 4.7711 869 280 24389 
B 3.9447 1106 378 24920 
C I 46.2494 135 34 271 
D l 25.8930 122 55 562 
E l 4.9786 263 107 1547 
F l 4.1913 147 90 1227 
G 5.0418 734 85 2264 
H 8.2777 1003 136 3451 

gradients were calculated by finite differences, cal­
culation cost in terms of C P U time is proportional 
to the number of optimization variables 
total number of objective function evaluation calls 
- objective values + gradients calculation 

Table 3.3: Results of single loading cases - the objective function and the computational cost 

Better insight on results is provided by plots of initial and resultant stiffness parameters given in 
Figures 3.7 and 3.8. The plots suggest that resultant bending stiffness about beam Z axis is relatively 
independent on the parameterization type and choice of additional parameters. In the cases A and B, 
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Figure 3.7: Structural characteristics of resultant beam stick models - direct parameterization cases 

which employs direct parameterization, the resultant distribution of the bending stiffness parameter 
IZb is relatively smooth. The values of the parameter along span are comparable with the resultant 
values of the cases using polynomial parameterization. The values of the other parameters Iyb and IXb 

are highly irregular (in cases A and B) and indeterminate, which is alos suggested by results of the 
cases C - H . The reason might be that the largest proportion of deformation is produced by the bending 
about beam Z axis. The torsion and other bending stiffnesses do not influence the deformation so 
significantly. Therefore, related parameters have less influence on the cost function minimization as it 
is illustrated in Figure 3.9. The gradients of cost function with respect to variables related to stiffness 
parameter IZb are about three order of magnitude larger than others. As results, less significant 
stiffness parameters are more scattered. 

The Figure 3.10 compares the deformed elastic wing shapes as results of loading by given aero­
dynamic forces. The comparison is done for the wing-box structural model, initial beam stick model 
and beam stick models obtained by different setting of the inverse design method. The plots suggest 
that in all cases the beam model was updated in the way that after loading the wing deformation is 
more comparable to target wing deformation. The worst solution, among all cases, is given by Case 
C in which bending stiffness and torsional parameters, IZb and IXb, were parameterized along span 
by single linear polynomial for each parameter. The incorporation of abrupt stiffness change in the 
kink position produced improvement of results. Significant improvement of the results was achieved 
by inclusion of the bending stiffness parameter in other bending plane (cases E-G), as it is suggested 
by plots of the wing twist and span-wise sections. 
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Figure 3.8: Structural characteristics of resultant beam stick models - single loading, polynomial param­
eterization cases 

Figure 3.9: Gradients of cost function w.r.t. various design parameters at first iteration 
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Figure 3.10: Comparison of target loaded wing shape with loaded wing shape using beam stick models -
single loading direct (left) and polynomial (right) parameterization cases 
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3.4.2 Mult iple loading cases 

The inclusion of the three different load cases aims to solve the indeterminacy of the resultant values 
of the stiffness parameters Iyb and IXb. Only the cases employing linear polynomial parameterization 
were considered. Direct parameterization and quadratic polynomial parameterization cases were not 
tested. The reason is that the first mentioned, besides their tremendous computational cost, provide 
essentially unrealistic results. The second parameterization cases did not provided any considerable 
improvement of the results and the cost was higher compared to cases employing linear polynomial 
parameterization. 

Additionally, the effect of different initial guess of the design parameters was tested. The case F2 
was taken as a reference. In that cases (labeled as F3 and F4), the initial stiffness parameters were 
constant along span and the values were equal to the ones of the initial beam at the kink position. 

Figure 3.11: Solution history - multiple loading, polynomial parameterization cases 

The solution history plotted in the Figure 3.11 suggests that the inclusion of the different load 
cases improved the results. Moreover, the objective function converged to lower values as the design 
space was loosened by incorporation of the abrupt change of the stiffness (at the wing kink position) 
and by consideration of the other bending stiffness parameter. The Table 3.4 shows the values of the 
objective function and the computational cost. The comparison of the cases with their counterparts, 
among the single loading cases, shows the overall improvement of the results for similar computational 
cost. 

The resultant objective function values in the cases F3 and F4 with different initial guess are nearly 
the same as in the reference case F2. The computational cost is comparable as well. 

The resultant design parameters values are plotted in Figure 3.12. The plots suggest that the final 
bending stiffness parameter IZb is independent on the setting of the inverse design method. Although 
the certain improvement is observable, the other two parameters are not still clearly defined. 

The different initial guess of the design parameters led to same resulting values of IZb and IXb but 
results of Iyb were slightly different. 

The shapes of the loaded wing models, shown in Figure 3.13, are in good agreement with the 
reference wing shape in the cases E2 and F2. The different initial guess has negligible influence on the 
resulting shape which is indistinguishable from reference shape (case F2). 
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Case F • 
mm 

NF , 
± eval 

NQr , a 

y eval 

Total NF , b 

A eval 
C2 6.8967 31 22 119 
D2 4.8647 80 59 552 
E2 1.6803 189 95 1329 
F2 1.6831 400 72 1264 
F3 1.6729 176 53 812 
F4 1.7228 182 65 962 

gradients were calculated by finite differences, 
calculation cost in terms of C P U time is propor­
tional to number of optimization variables 
total number of objective function evaluation 
calls - objective values + gradients calculation 

Table 3.4: Results of multiple loading cases - the objective function and the computational cost 

CD 
g 0.06 

0 

Initial 
case C2 : 
case D2 
case E2 I 
case F2 : 
case F3 ; 
case F4 • 

0 0.2 0.4 0.6 0.8 1 
Spanwise position - y/b 

Figure 3.12: Structural characteristics of resultant beam stick models - multiple loading polynomial 
parameterization cases 
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Figure 3.13: Comparison of target loaded wing with loaded wing using beam stick models - multiple 
loading polynomial parameterization cases 
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3.5 Summary 

The method for design of simplified structural model was presented. The reference structural model 
was a wing-box model of a complex transonic wing with a kink and high sweep angle. The method is 
based on the minimization of an objective function which compares loaded wing shapes, the reference 
one with the wing shape of aeroelastic model employing current design of the beam structural model. 

Different parameterization approaches were tested. The first one, used directly the stiffness pa­
rameters at each finite element as design parameters. Results show that the resulting distribution 
of the stiffness is irregular and does not agree with the distribution expected in reality. Moreover, 
the computational cost is tremendous. Therefore, the parameterization using polynomials in order 
to define the design values of the stiffness parameters was employed. The results suggest that linear 
polynomials might be sufficient to define the beam stiffness characteristics. The initial guess of the 
stiffness parameters was rough analytical estimation of the relevant characteristic. 

Initial test employed single loading by aerodynamic forces but it was shown that it is not enough 
in order to clearly define all stiffness characteristics. Thus, other cases were tested employing three 
loads by unit forces in different directions. The results of the method were improved. 

Further, the influence of different initial guess was tested. The case, which gave the best results in 
terms of the objective value, the computational cost and the resulting shape of the loaded wing, was 
taken as a reference. The results of all observed characteristics agreed with reference ones, except the 
parameter defining the wing in-plane bending stiffness. 

The results suggest that the proposed inverse method might be applicable for design of simpli­
fied structural model of a complex wing geometry. There is still space for further development of 
the method, such as extension for design of beam stick model dynamically equivalent to higher fi­
delity structural model. In that case, an objective could be to minimize differences between natural 
frequencies of structures and mode shapes interpolated to a wing surface. 
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Chapter 4 

Static Aeroelasticity: Validation of the 
Computational Aeroelasticity Tool 

4.1 Introduction 

The application of the Computational aeroelasticity tool is presented in the chapter. Several cases 
have been performed differing in applied structural and aerodynamic models. The main focus of the 
chapter is the validation of the tool functionality. 

Two different structural models were applied - wing-box and beam stick models. The beam model 
is equivalent to the wing-box model in the sense of static deformation. The model was designed 
according to the inverse design method described in Chapter 3. The cases employing the beam stick 
model were focused on validation of the inverse design method. Other aim was the evaluation of 
the simplified structural model applicability for static aeroelastic simulation and aerodynamic design 
optimization of the flexible wing. In the cases employing the wing-box model, the airframe weight 
was considered. The comparison of the wing-box and beam structural cases was done without weight 
consideration. 

The applied aerodynamic models are transonic wing-only and wing-fuselage geometries. In the first 
case the flexible wing is considered. The other case, using a rigid fuselage combined with a flexible 
wing, evaluates the tool ability to handle more complex conditions. The considered flow models 
were compressible inviscid and viscous solved by Euler and Reynold averaged Navier-Stokes (RANS) 
equations, respectively. In attached flow conditions, the less expensive Euler flow solution can give 
reliable estimation of the pressure distribution needed for the aeroelastic simulations. Therefore, the 
aeroelastic solutions employing the Euler flow and R A N S flow were compared in order to evaluate the 
differences. 

4.2 Test Cases 

4.2.1 Geometry 

The model of a common transonic transport aircraft, namely the N A S A Common Research Model 
(CRM), has been applied in the tests. The model was originally intended for C F D validation studies 
[60], but it became standard model for other applications including aerodynamic shape optimization 
[61, 62], aero-structural optimization [63, 64, 65] and aeroelastic tailoring [66]. 

The model corresponds to the Boeing 777 airliner, the relevant specification of the C R M are listed 
in the Table 4.1. Since only symmetric flow conditions without a sideslip were considered, only half of 
airplane has been used in the test cases as it is shown in the model schematic drawing in Figure 4.1. 
The wing-only configuration was created by cut in the position about 3 meters from symmetry plane 
removing the fuselage. New symmetry plane was created in the wing root location. 
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Parameter Value 
Cruise Mach number 0.85 
Cruise lift coefficient 0.5 
Cruise altitude 11000 m 
Wing span 59.1 m 
Reference wing area 383.7 m 2 

Reference wing area - wing-only geometry 332 m 2 

Table 4.1: C R M specification 

10 20 30 40 50 60 70 

X[rn| 

Figure 4.1: C R M wing-fuselage geometry 

4.2.2 Structural models 

Wing-box model 

The finite element models of C R M wing structure are provided on the website [67]. The available 
structural models differ in the mesh density and element topology, see Figure 4.2. The highest fidelity 
model labeled as v l2 is high detailed model of the wing structure consisting of explicit shell based 
geometry. It is three spars wing-box structure with multiple ribs and a skin reinforced by stringers. 
In other models called v l4 and v l5 the mid-chord spar was replaced by chord-spaced shear webs 
(in figurative sense, the mid-chord spar was eliminated in favor of multiple spars along chord wise 
direction). A l l the models are provided in coarse and refined versions. The models have been validated 
according the FAR25 regulations by static sizing check including gust (-2 to 3.75g), maneuver (2.5g) 
and taxi bump (-2.0g) loads and by flutter analysis for nominal cruise conditions. 

The coarse model v l4 was chosen for the evaluation of the computational aeroelasticity tool. It 
consists of 4622 nodes connected to 8502 quad or tri shell elements (see Figure 4.3). The wing main 
structure mass distribution was calculated from the finite element model. The masses of the engines, 
nacelles, control surfaces, flaps and the fuel were not taken into account. 
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(a) Model - vl2 (b) Model - vl4 

(c) Model - vl5 

Figure 4.2: Available finite element models of C R M wing structure - colored by element thickness 

Figure 4.3: Wing-box finite element model of C R M wing structure applied in test cases, overview (left) 
and detail with partly hidden skin (right) 

Beam stick model 

A beam stick model of wing structure was designed according to method presented in the Chapter 3. 
The model is equivalent to the wing-box model meaning the static aeroelastic deformation of the wing 
is comparable in given operating conditions. The wing structure weight is neglected. 

The beam stick model (Figure 4.4) consists of 22 nodes connected together by beam elements. Each 
node of the beam element is connected to two additional nodes by rigid elements. Those nodes are 
beneficial for coupling with aerodynamic surface, meaning the nodes allow reconstruction of rotations 
only by translational degrees of freedom. In the wing root, more additional rigid elements are required 
due to applied fluid-structure coupling interface, which is defined by radial basis functions method. 
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Figure 4.4: Beam stick finite element model of C R M wing structure applied in test cases 

4.2.3 Aerodynamic model 

C F D computational grid was created from a geometry provided on C R M website which is a wing-
fuselage configuration of a common transport aircraft. The model was originally designed for evalua­
tion of computational tools abilities in prediction of a drag, thus the shape of the wing is twisted and 
bended as it would be during the design cruise conditions. It was assumed the deformed shape of the 
wing is not in conflict with intended use of the model for verification of the aeroelastic tool. 

The wing-only unstructured Euler mesh consists of 842837 nodes and about 4.5 millions tetrahedral 
elements, whereas hybrid unstructured R A N S grid consist of 2644786 nodes and about 7.6 millions 
tetrahedral and prismatic elements. In case of the wing-fuselage geometry, the Euler and R A N S 
meshes consist of 865982 nodes (4.7 millions elements) and 2831524 nodes (8.5 millions elements), 
respectively. 

4.2.4 Aeroelastic interface 

The fluid-structure interface was defined using radial basis function (RBF), particularly by Thin Plate 
Spline (TPS) function. The TPS is one of the most robust, cost effective and accurate R B F s for the 
fluid structure interaction (see section 2.2.2). The interface was defined between the wing surface 
nodes in aerodynamic grid and either the surface nodes of the wing-box structural model or all nodes 
in the beam finite element model. 

4.2.5 Mesh deformation 

The method applied for deformation of aerodynamic computational grid in test of the aeroelastic tool 
was R B F mesh deformation which is part of the C F D code Edge. The advantage of this method is 
ability to handle relatively large boundary deformations with low computational cost, but the surface 
deformation are not recovered exactly. However, the proper settings of the tool can ensure that 
the error in the surface shape is low (Figure 4.6). Thus, the influence of the deformation error on 
aeroelastic results was assumed negligible. 
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Figure 4.5: Surface aerodynamic meshes of wing-only and wing-fuselage geometries; Detailed views of 
Euler meshes (middle row) and RANS meshes (bottom row) 
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4.2.6 Flow conditions 

The transonic flow condition listed in Table 4.2 were considered in majority of the test cases. The 
corresponding Reynolds number in case of R A N S flow simulation is approximately Re = 5184000 m _ 1 . 

Parameter Value 
Cruise Mach number 0.85 
Cruise altitude 11000 m 
Static pressure 22632 Pa 
Temperature 216.65 K 
Dynamic pressure 11450 Pa 
Air density 0.364 kg .m" 3 

Table 4.2: Flow conditions 

4.2.7 Test cases summary 

The summary of the considered test cases is given in the Table 4.3. In the cases A and B , the lift 
coefficient required for the steady level flight at given operating conditions was prescribed, thus the 
angle of attack was depended on the particular flow simulation (Euler or RANS) and it is not given in 
the table. In the same cases, the weight of the wing main structure was included in the static aeroelastic 
simulations. The masses of other components, such as engine, nacelles, control surfaces, flaps and fuel, 
were neglected, although it is obvious they might significantly influence the wing deformation and the 
aerodynamic load distribution at the static aeroelastic equilibrium. It was assumed that it is sufficient 
to include the wing primary structure masses in order to evaluate a capability of the static aeroelastic 
simulation tool to handle the weight loads. The inclusion of other masses is just a matter of a finite 
element model preparation, as long as other masses are modeled using finite elements or point masses, 
the tool is able to handle them. 

Case Geometry Structural model Airframe weight M CL 
a 

A wing wing-box yes 0.85 0.5 -
B l a wing wing-box no 0.85 0.5 -
B i b wing beam stick no 0.85 0.5 -
B2a wing wing-box no 0.6 - 5 
B2b wing beam stick no 0.6 - 5 
C wing-fuselage wing-box yes 0.85 0.5 -

Table 4.3: Test cases summary 

The intention of cases B was an evaluation of the tool capability to apply a beam finite element 
model in the aeroelastic simulation and compare the result with cases using the wing-box model. 
Since the applied beam model is equivalent to the wing-box model by the stiffness not the masses 
distribution, the weight was not included in the simulation. 

In all cases, the both Euler and R A N S flow simulations were considered and their influence on the 
static aeroelastic solution was evaluated. 
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Figure 4.7: Convergence of aeroelastic solution using Euler (left) and RANS (right) flow simulation 

4.3 Results 

4.3.1 Case A : Wing-only geometry, wing-box structural model, M = 0.85 

The convergence of the aeroelastic solution with respect to the coupling iterations is plotted in the 
Figure 4.7. In both Euler and R A N S cases, the calculation was stopped when the decrease of the 
residuals felt bellow the tolerance e = 1.10 - 4, what was considered as reasonable value. The Euler 
aeroelastic simulation required 19 coupling iterations, while the R A N S simulation converged after 13 
coupling iterations. The aerodynamic forces convergence is shown in the Figure 4.8. 

The computational cost in terms of C F D iterations is presented in the Table 4.4. The Euler 
aeroelastic solution required approximately four times more iterations compared to Euler flow solution. 
The cost of aeroelastic R A N S solution is comparable with the R A N S flow solution. In both aeroelastic 
simulation cases the scheme 02 was applied. The convergence evaluation given in the Section 2.6 have 
shown that it might not be the most effective scheme, thus the computational cost in the Euler 
aeroelastic simulation could be comparable with pure flow simulation. 

Euler R A N S 
Rigid Elastic Rigid Elastic 

No. of coupling iterations - 19 - 13 
Total no. of C F D iterations 1790 8086 1495 1725 
a [deg] 0.72 2.15 1.85 2.91 
CL 

0.5003 0.5007 0.4990 0.4980 
CD 0.0122 0.0125 0.0177 0.0189 

-0.1754 -0.1170 -0.1128 -0.0683 

pitch moment is related to the quarter point of the wing mean 
aerodynamic chord 

Table 4.4: Computational cost and resultant aerodynamic forces coefficients - wing-only geometry, M = 
0.85, required CL = 0.5 

The values of the wing forces coefficient are presented in the Table 4.4. The angle of attack required 
to achieve lift coefficient needed for steady horizontal flight in cruise conditions is higher in the elastic 
cases than in the rigid cases. This is related to the wing deformation due to aerodynamic loading. 
The wing deformation caused the wing drag increase and the negative pitch moment decrease. The 
pitch moment of the elastic wing is nearly 2/3 compared to the rigid wing in both Euler and R A N S 
simulation cases. Comparing the Euler and R A N S aeroelastic simulations, the required angle of attack 
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is higher in the R A N S case. This is caused by the influence of the diffusive phenomena in the viscous 
flow. 

-Euler 
-RANS 

7 9 11 13 15 17 19 21 
Coupling iterations 
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Figure 4.8: Convergence of elastic solution - aerodynamic forces coefficients 

The Figure 4.9 presents the pressure contours over the upper wing surface. The Figures 4.10 gives 
more clear presentation of the pressure coefficient distributions at chosen wing sections. Comparing 
the R A N S aeroelastic simulation to the Euler one, the suction in the inboard part of the wing is higher 
resulting in the stronger shock wave, which is shifted in the fore direction. In the outboard part, the 
suction is higher in the Euler simulation case. The mentioned differences in the pressure distribution 
arise mainly from different angle of attack of the wing combined with negative twist of the wing due 
to aerodynamic loading. The wing twist is shown in the left part of the Figure 4.11. The right part 
of the figure shows aerodynamic load distribution over the wing. In both Euler and R A N S cases, the 
loading is higher in the inboard part and lower in the outboard part compared to the load distribution 
over the rigid wing. The figure shows also the influence of the wing weight on the wing twist and the 
aerodynamic load distribution. The loading was decreased in the inboard part and slightly increased 
in outboard part in both simulation cases. The aerodynamic loading, with gravity forces influence, 
causes the wing deformation presented in the Figure 4.12. The maximum wing tip displacement is 
1.54 meters and 1.35 meters in Euler and R A N S cases, respectively. 
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Figure 4.9: Comparison of Euler (left half) and RANS (right half) aeroelastic solution - surface pressure 
coefficient distribution at static aeroelastic equilibrium state 

Section at 0% 
-1 r 

5 , . — i , 
0 0.2 0.4 0.6 0.8 1 

x/c 

Section at 43.5% 
-1 

0.5 

1 

0 0.2 0.4 0.6 0.8 1 
x/c 

Figure 4.10: Comparison of surface pressure coefficient distribution at chosen sections of C R M wing 
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Figure 4.11: Comparison of rigid and aeroelastic solutions - the wing twist angle and the wing loadin 
distribution 

Disp lacements Z (m) 

Figure 4.12: Comparison of Euler (left half) and RANS (right half) aeroelastic solution - the win 
deformation at static aeroelastic equilibrium state 
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4.3.2 Cases B: Wing-only geometry, beam stick and wing-box structural models 

The intention of the test cases was to validate an ability of the computational aeroelastic tool to 
handle a simplified structural model. The beam stick model was designed according to inverse design 
procedure described in the Chapter 3. Evaluation was done for both Euler and R A N S simulations 
at two free stream conditions: M = 0.85, CL = 0.5 and M = 0.6, a = 5°. The results of the static 
aeroelastic calculation were compared with the case using the wing-box model. 

Wing-box 
Euler 

Beam stick Difference Wing-box 
R A N S 

Beam stick Difference 
No. of coupling iter. 19 20 - 15 16 -
No. of C F D iter. 8183 8875 - 4931 4830 -

CL 
0.4996 0.4929 1.3% 0.5008 0.4898 2.2% 

CD 
0.0126 0.0126 0.0% 0.0179 0.0175 2.2% 

(~H1 -0.1080 -0.1125 4.2% -0.0614 -0.0615 0.2% 
a pitch moment is related to the quarter point of the wing mean aerodynamic chord 

Table 4.5: Comparison of aeroelastic simulation results using wing-box and beam stick structural models 
- Euler and RANS flow at M = 0.85 and required CL = 0.5 

The computational cost and the resultant values of aerodynamic forces are given in the Tables 4.5 
and 4.6. The results, in terms of the aerodynamic forces, of the static aeroelastic computation using 
the simplified structural model are in good agreement with results given by the simulation applying 
the wing-box model. The largest difference is in pitching moment given by the aeroelastic simulation 
using Euler flow solution at M = 0.85. In that case, the negative moment is larger about 4% in case 
of applied beam stick structural model. Other forces differences are up to 2.5%. 

Wing-box 
Euler 

Beam stick Difference Wing-box 
R A N S 

Beam stick Difference 
No. of coupling iter. 7 8 - 7 7 -
No. of C F D iter. 3191 2802 - 1631 1220 -
CL 0.6721 0.6687 0.5% 0.5972 0.5936 0.6% 
CD 0.0188 0.0188 0.0% 0.0214 0.0214 0.0% 
(~H1 -0.1115 -0.1122 0.6% -0.0722 -0.0725 0.4% 

pitch moment is related to the quarter point of the wing mean aerodynamic chord 

Table 4.6: Comparison of aeroelastic simulation results using wing-box and beam stick structural models 
- Euler and RANS flow at M = 0.6 and a = 5° 

The Figure 4.13 shows plots of the chord wise pressure distribution at selected wing sections. The 
pressure distribution given by the aeroelastic simulation using the beam structural model agrees well 
with the reference results in all cases. The pressure coefficient contours on the upper wing surface for 
the Euler flow simulation case at M = 0.85 are presented in the Figure 4.14. The figure shows good 
agreement with the reference simulation. 

The plot of maximum span wise wing thickness distribution in Figure 4.15 illustrates that appli­
cation of essentially two dimensional structural model does not produce any unrealistic geometrical 
changes of the deformed wing. However, this kind of structural model in combination with R B F 
transformation method requires use of additional rigid elements in the location of the wing root, as 
it is described in the section 4.2.2. If additional elements are not applied, significant change in wing 
thickness will occur as the result of the non-unique solution of the aero-structural coupling matrix. 
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Figure 4.13: Comparison of aeroelastic simulation results using wing-box and beam stick structural 
models - pressure distribution at different sections of C R M wing, Euler (left) and RANS (right) simulation 
at M = 0.85, CL = 0.5 (condition 1) and M = 0.6, a = 5° (condition 2) 
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Figure 4.14: Comparison of aeroelastic simulation results using wing-box (left half) and beam stick 
(right half) structural model - surface pressure distribution; Euler flow simulation at M = 0.85, CL = 0.5 
(condition 1) 

Figure 4.15: Comparison of aeroelastic simulation results using wing-box and beam stick structural 
models - maximum wing thickness, Euler (left) and RANS (right) simulation at M = 0.85, CL = 0.5 
(condition 1) and M = 0.6, a = 5° (condition 2) 
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4.3.3 Case C : Wing-fuselage geometry, wing-box structural model, M = 0.85 
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Figure 4.16: Convergence of elastic solution - aerodynamic forces, the wing-fuselage geometry with the 
wing-box structural model, RANS simulation 

Convergence of the aerodynamic forces during the aeroelastic solution is shown in Figure 4.16. The 
simulation solving Euler flow converged after 20 coupling iterations. In the case of the R A N S flow 9 
coupling iterations were enough to get the residual reduction below prescribed tolerance. The Table 4.7 
presents the computational cost and the resultant forces coefficients. The cost of the aeroelastic 
simulation is about 4 and 2 times higher compared to the aerodynamic solution in the Euler and 
R A N S cases, respectively. 

The drag coefficient in the R A N S aeroelasic simulation, in the cruise operating conditions, is about 
5.1% higher compared to the aerodynamic solution of the rigid wing. The negative pitching moment, 
thus the balancing force of the horizontal tail unit, is about 22% higher comparing the same cases. 

Euler R A N S 
Rigid Elastic Rigid Elastic 

No. of coupling iterations - 20 - 9 
Total no. of C F D iterations 1790 8683 1495 3358 
«[°] 0.72 2.03 1.58 3.12 
CL 

0.5003 0.5009 0.4998 0.5001 
CD 

0.0117 0.0114 0.0232 0 .0247 
-0.1683 -0.1628 -0.0511 -0.0729 

Table 4.7: Computational cost and resultant aerodynamic forces coefficients - wing-fuselage geometry, 
required CL = 0.5 

Figure 4.17 presents contours of the pressure coefficient on upper surface of the wing-fuselage 
configuration. Clearer insight on results is given in the Figure 4.18, where the pressure distribution 
is plotted over the chosen wing sections. The position of the sections is defined in the percents of 
the half-span counting from the airplane symmetry plane. The result examination suggests that in 
both Euler and R A N S aeroelastic simulations the wing torsional deformation together with higher 
required angle of incidence resulted in redistribution of pressure over wing surfaces. The effect of 
the wing torsional deformation is more obvious in the sections near the wing tip, where the suction 
was decreased as a result of the sectional angles of attack decrease (see left part of the Figure 4.19) 
compared to rigid cases. 

Plot of the loading distribution over the wing span in the right part of the Figure 4.19 shows that 
in both cases, Euler and R A N S simulations, the wing deformation led to increased loading of the wing 
inboard part, while the outboard part was alleviated. 
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Figure 4.18: Comparison of surface pressure coefficient distribution at chosen sections of the wing - C R M 
wing-fuselage geometry 

Figure 4.19: Comparison of rigid and aeroelastic solutions - the wing twist angle and the wing loading 
distribution 
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4.4 Summary 

The first focus of the presented test cases was a validation of the computational tool functionality. 
Different aerodynamic and structural models were used in order to test the tool at various conditions. 
The considered aerodynamic models were wing-only and wing-fuselage configurations, the fuselage 
was assumed as rigid. In both cases, the wing-box structural models represented the wing structure. 
The effect of gravity forces was included considering wing structure mass only. The masses of other 
components were neglected, although it is obvious that they might influence the static aeroelastic 
results. 

The performed analyses have shown the effect of the wing flexibility on the aerodynamic charac­
teristics and load distribution over the wing. The primary cause of the load redistribution is the wing 
twist due to aerodynamic forces. The effect of wing weight was an alleviation of the load, as it was 
expected. 

The beam stick structural model was employed in order to evaluate the ability of the computational 
aeroelasticity tool to handle simplified model of a wing structure. The results show that the simplified 
model can be employed but adjustment of the model is required. The need for adjustment arises from 
the properties of fluid-structure interface definition applied in the tool, which is based on the radial 
basis functions method. There must be some structural nodes which are not in the plane of the model. 
This requirement was fulfilled by additional nodes, placed in the wing root section, connected to beam 
node by rigid elements. The cases, employing the beam stick model, also validated proposed method for 
design of a simplified structure model. The aeroelastic solution using the reference wing-box model 
was compared with the one employing the beam model. The aeroelastic solutions were compared 
considering several flow conditions and flow models. The results are comparable in respective cases. 

The effect of flow model employed in aerodynamic prediction on aeroelastic solution was evaluated. 
The aerodynamics was predicted by solving either Euler or R A N S equations. In both cases, the 
aerodynamic forces are calculated from the pressure acting on the wing surface and subsequently 
interpolated to the structural model. Thus, the main source of dissimilarity between considered cases 
originates in different pressure distribution, which is caused by the diffusive effects in the viscous flow. 
In the presented cases, the Euler aeroelastic solution resulted in the higher wing tip deflection than in 
the R A N S solution. Therefore, assuming that the flow predicted by the R A N S simulation is closer to 
the reality, the Euler aeroelastic prediction over-predicts the wing loading in these particular cases. 
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Chapter 5 

Aerodynamic Shape Optimization of 
Elastic Wing 

5.1 Introduction 

A n aerodynamic shape optimization using high fidelity flow solvers has been employed for improvement 
of aircraft aerodynamic design over the last decades. The growing interest in this field was enabled 
by developments of the Computational Fluid Dynamics (CFD) solvers. C F D solvers became the 
accepted analysis tools in the aerospace industry reducing the number of tunnel measurements and 
flight tests during an aircraft development. Due to large number of design variables usually needed 
for aerodynamic shape design of aircraft, the gradient-based algorithms combined with adjoint solvers 
are the only meaningful methods for practical application. Locality of those algorithms is a drawback 
if applied in design space where multiple local optima are likely to occur, the wing shape design 
is probably such a case. This restricts the process to find only a local optimum near an initial 
starting point. The solution might be the hybrid optimization algorithms combining non-deterministic 
(gradient-free) and gradient-based approaches. 

The practical application of the gradient-based methods has been probably started by introduction 
of adjoint sensitivity analysis for Navier-Stokes equation by Pironneau in 1973 [68] and later for 
incompressible Euler equations [69]. The application in transonic flow regime was enabled by adjoint 
derivation for compressible Euler equation by Jameson in 1988 [70]. Later he extended the adjoint for 
Navier-Stokes equations [71]. But the stability and reliability was problematic for long period of time. 
Nowadays, there are only few adjoint Navier-Stockes solvers applying linearized turbulence models, 
others rely on approximation by frozen eddy viscosity. 

Obviously, the aircraft design is a multi-disciplinary problem. Increased flexibility of aircraft 
primary structure, as result of modern material application, requirement for lightweight structure and 
aerodynamically efficient shapes, even emphasizes the multi-disciplinary nature. The wing deformation 
due to aerodynamic load results, among others effects, in aerodynamic characteristics change. Thus, 
the performance gain, as result of rigid model optimization, might be decreased or neglected, if applied 
to real aircraft. The solution might be inclusion of an airframe elasticity to aircraft shape optimization. 

In the section, the aerodynamic shape optimization of a common airliner elastic wing is presented 
and compared with optimization of the same wing assuming rigid structure. The aim is an evaluation 
of possible benefit and the computational cost of the aerodynamic shape optimization of the elastic 
wing. A gradient-based optimization approach is applied in connection with adjoint method used for 
calculation of aerodynamic forces gradients. The computational aeroelasticity tool is employed for 
estimation of the elastic wing aerodynamic characteristics. 
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5.2 Principle of Aerodynamic Shape Optimization 

The scheme of applied aerodynamic shape optimization loop is given in Figure 5.1. A n optimization 
algorithm directs a decision making in shape design process in order to improve desired aerodynamic 
characteristics (drag, glide ration, ...) by minimizing relevant objective function. A parameterization 
method is employed to describe a given geometry by set of parameters creating a design space. Since 
the parameterization deforms the surface mesh of the geometry, a mesh deformation tool must be 
incorporated to propagate the shape deformations into a C F D volume mesh. In the next step, the 
flow field is solved using either C F D solver, in case of a rigid model optimization, or coupled C F D 
with Computational Structural Mechanics (CSM) solver, in case of an elastic model. The flow solution 
provides the values of flow field variables and integral aerodynamic characteristics of the current design. 

Gradients of desired variables (drag, lift, moment coefficients), with respect to all surface mesh 
nodes displacements, are calculated on current shape using adjoint of flow equations solver. In the 
elastic optimization case, the gradients are calculated on current aeroelastic deformed shape. The 
gradients with respect to design parameters are obtained by multiplication of the surface gradient 
vector by parameterization Jacobian matrix. The function and gradient values are fed to the optimizer 
and the loop is repeated until convergence criteria are met. 

Values of optimization 
variables 

Optimization 
algorithm 

Shape parameterization 

=> Surface mesh deformation 

CFD mesh deformation 

CFD or CFD/CSM solution 

Gradients of objective function 
w.r.t. optimization variables 

Adjoint of f low equations 
+ 

adjoint mesh deformation 

Figure 5.1: The aerodynamic shape optimization 

5.3 Tools 

Flow and adjoint solvers 

The employed flow and adjoint solver was Edge described in section 2.3.2. 
The flow was solved as compressible inviscid. Assuming steady and fully turbulent flow for all 

designs and the constrained minimum wing wetted area, only lift-induced and wave drag can be 
minimized. Both flow features can be resolved by Euler flow simulation. Therefore, the optimization 
using the Euler flow simulation can give reliable and computationally less expensive estimation of the 
drag reduction which would be achieved by R A N S flow simulations. 

Aeroelastic solver 

The computational aeroelasticity tool (see Section 2.6), coupling the C F D solver Edge with the beam 
finite element solver introduced in Section 2.4.1, was employed for the static aeroelastic calculation. 
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Geometry parameterization 

A Free Form Deformation (FFD) parameterization based on N U R B S was employed for a geometry 
parameterization. This implementation uses R B F coordinates transformation in order to better control 
deformations and geometric constraints. Description of the method and a study of numerical properties 
can be found in [72]. The main idea of this particular F F D method is to fill an orthogonal control 
points lattice by the geometry using the R B F coordinate transformation. Thus, the parameterization 
behaves as the lattice would be fitted to a geometry. The Figure 5.2 shows a geometry surrounded by 
a control points lattice, the geometry after transformation is shown in the Figure 5.3. 

The study given in [72] suggests that the highest possible N U R B S degree is beneficial from the 
perspective of the computational cost and the obtained optimization result. Therefore, the highest 
allowed N U R B S degree will be imposed in all test cases. 

Figure 5.2: FFD parameterization lattice of control points 

Figure 5.3: Wing geometry fitted to orthogonal FFD lattice of control points 

Optimization algorithm 

The optimizations were performed by gradient-based optimization algorithm - Sequential Quadratic 
Programming (SQP) in N L P Q L P [58]. 
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Mesh generation and deformation 

The initial C F D grid was created in Ansys I C E M C F D . The spring analogy mesh deformation tool 
was employed to propagate surface shape changes, resulting from the optimization process, into the 
C F D volume mesh. For large deformations, such as the wing deformation due to the aerodynamic 
loading, the R B F mesh deformation combined with the spring analogy method was incorporated. 
The advantage of the R B F based mesh deformation is a capability to handle large deformations but 
the surface deformation is not exactly recovered. The error depends on the settings of the mesh 
deformation solver. Therefore, the inexact surface shape was corrected by the spring analogy mesh 
deformation, in order to avoid introduction of an error into the optimization process by incorrect mesh 
deformation. 

5.4 Test Cases 

5.4.1 Common description 

The aerodynamic shape optimization test cases, based on cases proposed in [73], concern drag mini­
mization of the transonic wing of the airliner model (so called Common Research Model [60]) at Mach 
number M = 0.85 and altitude h = 11000m. The lift coefficient required for steady horizontal flight 
in such conditions is CL = 0.5. The formulation of the optimization was: 

minimize F{X) — CD 

subject to C l = 0.5 

Cm > -0.1754 

V > yCRM 

tf > J.CRM 

tr > tCRM 

fixed trailing edge 

wing planform shape fixed 

The goal is to decrease the drag while the lift remains constant. The geometrical constraint on 
the internal volume is meant to ensure minimal space for the fuel. Other constraints on the wing 
thicknesses at front and rear spar positions, tf and tr respectively, are meant to guarantee the same 
minimal structural height, thus the minimal structural stiffness is ensured. Therefore, the structural 
stiffness can remain frozen in the elastic wing optimization case. 

Figure 5.4: The FFD lattice around C R M wing, blue points are free to move in Z direction, red points 
are fixed 
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Table 5.1: Aerodynamic characteristics of the initial C R M wing 

Rigid Aeroelastic 
Lift coefficient, CL 0.5000 0.5000 
Drag coefficient, CD 0.0120 0.0120 
Pitch moment coefficient, CM -0.1750 -0.1717 
Angle of attack, a 0.721 0.816 

The constraints on fixed wing planform shape and fixed trailing edge are not explicitly prescribed 
but they are fulfilled by the choice of optimization variables. The Figure 5.4 shows the F F D lattice 
fitted on real geometry (in fact, the lattice is orthogonal and the geometry is transformed to fill 
it). The blue points in the figure are optimization parameters allowed to move in vertical direction, 
therefore the airfoil shapes together with twist angle are able to change, while the planform shape is 
kept constant. The fixation of trailing edge is achieved by fixed F F D lattice points along the trailing 
edge, represented by red color in the figure. 

5.4.2 Initial design 

Rigid wing optimization 

The initial geometry for the rigid wing optimization cases was the C R M wing, as it was given in [60]. 
The C R M geometry was designed to provide common representative model of an airliner operating in 
transonic conditions for validation of the state-of-the-art C F D solvers. Thus, the geometry of the C R M 
wing corresponds to the flight shape (1-g shape, bended and twisted due to aerodynamic loading) at 
nominal cruise conditions at Mach M = 0.85 and CL = 0.5 at altitude 12 000 m. Therefore, the 
subject of the optimization is a rigid wing flight shape at its nominal cruise conditions. 

Elastic wing optimization 

For the elastic wing optimization, it is desirable to use an undeformed wing geometry, as the static 
aeroelastic analysis determines correct flight shape for given operating condition. Therefore, so called 
jig shape was designed from the flight shape giving the undeformed wing surface and structural models. 
The jig shape C F D mesh was created from the mesh of the rigid wing flight shape. Applied structural 
model is a beam stick finite element model created by 41 beam elements. Each node of the beam 
element is connected to two additional nodes by rigid elements, which are beneficial for coupling with 
aerodynamic surface. 
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Figure 5.6: Computational models - the CFD mesh with 933502 nodes (left) and the beam finite element 
model with 41 beam elements (right) 

5.5 Results 

5.5.1 Rigid wing optimization 

The single point optimization of the rigid wing was performed in order to evaluate influence of the 
parameterization set-up on the optimization results and convergence. Three sets of F F D parameters 
were considered with 18, 60 and 216 optimization variables. In all cases the maximum N U R B S degree 
was used. 

N CDopt Vopt Cost 6 % of C d decrease 
Baseline 0.0120 0.5000 -0.1750 84.4453 - -

18 0.0115 0.5001 -0.1700 85.6504 48 4.16 
60 0.0114 0.5001 -0.1755 84.8349 56 5.38 

216 0.0112 0.5000 -0.1754 84.4451 84 6.72 
a N is number of optimization parameters 
b Total cost of optimization in terms of number of flow and adjoint of flow solutions 

Table 5.2: Optimized C R M wing design - influence of number of variables on the local optimum 

The results, introduced in Table 5.2 and the cost function convergence history in Figure 5.7, show 
that increasing number of parameters allows optimization to converge to better solution, because 
higher number of parameters gives more control over the geometry shape. The optimization objective 
- the drag coefficient - was reduced by 6.72% compared to the baseline, from 0.0120 to 0.0112 in 
the finest parameterization case. The coarsest parameterization allowed the objective to decrease 
by 4.16%. The cost in terms of flow and adjoint solution numbers grows with increasing number of 
parameters, as the optimization process requires more function evaluations in order to satisfy given 
convergence tolerance. 

In all cases, the target wing lift coefficient as well as the maximum allowed negative pitching 
moment were reached at the optimum. The tuning of airfoil shapes and twist angle resulted in 
redistribution of the lift along wing span closer to ideal elliptical distribution of the C^c, as it is 
illustrated in Figure 5.8. Moreover, the lift resultant was shifted towards wing root, what may result 
in lower bending loading of the wing structure. The same figure shows the sectional twist along the 
wing span suggesting the negative twist was increased at optimum in all cases. 

The Figure 5.9 compares the baseline geometry and pressure distribution with the optima of 
all considered cases. It is clear that coarser parameterization does not allow such a fine geometry 
modification, thus the shock is not completely removed, e.g. at locations near the root and in case of 
the coarsest parameterization near the tip as well. The finest parameterization optimization resulted 
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Figure 5.7: History of the single point optimization of the rigid wing for various number of optimization 
parameters 

10r 6 
Baseline 

Figure 5.8: Single point optimization of the rigid wing - comparison of the wing twist and C^c distribution 
for various number of optimization parameters (grey line shows the elliptical distribution of CLC) 

in nearly shock free solution at the nominal cruise condition. The pressure change is more gradual 
towards the trailing edge of the optimized wing contrary to the baseline wing with steep increase of 
the pressure due to shock. 
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Figure 5.9: Single point optimization of the rigid wing - comparison of section geometry and pressure 
distribution for various number of optimization parameters 
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5.5.2 Elastic wing optimization 

The comparison of the results of the rigid and elastic wing optimization cases is presented in Table 5.3. 
The constraint imposed on the value of the lift and the pitch moment coefficients was fulfilled, in both 
cases. The wing internal volume constraint was satisfied in the rigid wing case. In the other case, 
the violation was about 0.19%, what might be considered as constraint satisfaction. The optimization 
objective - the drag coefficient - was reduced by 6.72% and 6.17% in the rigid and elastic wing 
optimization, respectively. The computational cost in the case of the elastic wing, in terms of number 
of the flow and the adjoint solutions, is nearly twice as high as in the rigid wing case. 

Table 5.3: Comparison of the rigid and elastic wing optimization results 

CDopt Vopt Cost a CD decrease 
Baseline 0.0120 0.5000 -0.1750 84.46 — — 

Rigid wing 0.0112 0.5000 -0.1754 84.46 84 6.72% 
Elastic wing 0.0113 0.4998 -0.1755 84.28 149 6.1739% 

Total cost of optimization in terms of number of flow and adjoint of flow solutions 

The plots in Figure 5.10 suggest that constraints on the wing thickness were fulfilled in both cases. 
The thickness at rear spar position remained nearly unchanged in both cases, while the thickness at 
the front spar was slightly increased near the wing root. 

Figure 5.10: Comparison of the wing thickness, at position of the front (left) and rear (right) wing spar 

The tuning of the wing shape and the twist angle of the wing sections resulted in redistribution 
of the lift along wing span. The resultant distribution is closer to ideal elliptical Cpc distribution, as 
it is illustrated in Figure 5.11. Moreover, the lift force resultant was shifted towards wing root, what 
might result in lower bending loading of the wing structure. The same figure shows that the wing 
twist was changed towards higher negative values in both cases. 

Figure 5.11: Comparison of span-wise wing twist and lift distributions (grey line shows the elliptical 
distribution of CLC) 

The Figure 5.13 presents the pressure coefficient distribution over the upper surface and at chosen 
wing sections. The plots suggest that in both cases the optimization resulted in nearly shock free 
solution at the nominal cruise condition. The pressure change is more gradual towards the trailing 
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edge of the optimized wing contrary to the baseline wing with steep increase of the pressure due to 
shock. 

Figure 5.12: History of the optimization 

The optimization history plots shown in Figure 5.12 suggest that the objective function decrease 
was smooth and the optimization criteria were met after 21 iterations in rigid wing case. The peaks 
in the plot of the objective function history in case of the elastic wing together with abrupt changes of 
the optimality imply that there was some source of an error in the optimization chain. The probable 
source is the neglect of the structural deformation influence on the gradient of the aerodynamic forces 
and moments. Thus, the implementation of the coupled fluid-structure adjoint equation solver is 
required. 
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5.6 Summary 

The chapter presents the optimization of the elastic wing compared to the rigid wing optimization. 
Different initial designs were applied in respective cases for the reasonable comparison. The rigid wing 
was optimized starting from the flight shape at the design operating conditions. Whereas in case of 
the elastic wing the initial design was the jig shape, which under loading by aerodynamic forces at 
the design flight conditions deforms to the same flight shape as in rigid case. 

The resultant drag reduction is nearly same in both cases but the computational cost in the elastic 
wing case is almost doubled. Moreover, the objective function decrease was not as smooth as it 
might be expected. The several increases of the objective value during the optimization were probably 
result of inexact gradient calculation. Although the gradients were calculated on the aeroelastic 
deformed shape, the error in gradient calculation applying pure flow adjoint equation, thus neglecting 
the influence of the wing structure deformation on the aerodynamic forces gradients, is significant. 

Thus, the derivation and implementation of the coupled fluid-structure adjoint equations is a 
necessity for the further work on the elastic wing optimization. The real benefit of this approach is 
expected in the multi-point optimization considering more operation conditions. 
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Chapter 6 

Numerical Study of Benchmark 
Supercritical Wing at Flutter 
Condition 

6.1 Introduction 

Transonic nutter and L C O are two dynamically non-linear phenomena whose prediction is largely 
dependent on wind tunnel and flight testing. On the computational side, the most used method 
for aerodynamic predictions in aeroleastic computations is the doublet lattice method [7, 8]. It is 
essentially a linear method and as such fails predicting non-linear aeroelastic phenomena. Despite the 
progress in the Computational Fluid Dynamics over the past decades the predictions of the transonic 
flutter, and L C O and in general, of the non-linear aeroelasticity, remains still a challenge [74, 75, 76]. 
The computational predictions of the non-linear phenomena are facing several challenges: the fluid-
structure coupling, code validation and time synchronization [77]. In his presentation, Bendiksen 
points out the time synchronization as the most important issue, because a loosely coupled aeroelastic 
code can give incorrect aeroelastic solution. Similar observations were made in [78, 79, 80, 81] and 
resulted in the extension of the loosely coupled schemes to a second order accuracy in order to mitigate 
the time synchronization problem. Apart from the time synchronization problem, other challenges may 
include the prediction of the flow separation and the flow transition on fluid side and the structural 
damping on structural side. 

This chapter presents the author's contribution to the research oriented on the assessment of time 
synchronization for the C F D - C S M coupled problem which was performed by comparing time converged 
solution of the test case using loosely and strongly coupled fluid-structure interaction. The test case 
used here is a transonic flow around the Benchmark Super-Critical Wing (BSCW) at flutter condition. 
It is a rectangular wing and at the chosen flow condition the flow is without separation. Results were 
compared to the experimental data provided by N A S A [82]. A flutter boundary for different Mach 
numbers was calculated using the proposed method. The results were published online as the journal 
paper " Computational Fluid Dynamics Study of Benchmark Supercritical Wing at Flutter Condition" 
[83]. 

6.2 C F D - C S M Solver 

6.2.1 C F D code Edge 

The C F D flow solver used in the study is the Edge solver described in the subsection 2.3.2. 
The convergence within each time step is controlled by setting a number of minimum and maximum 

subiterations or by the level of residual reduction. In this study a fixed number of subiterations 

63 



was specified to get a minimal reduction of the residuals below certain value, usually 2.5 orders of 
magnitude. 

6.2.2 Structural solver 

The employed structural solver is part of the Edge solver. It solves differential linear equations valid 
for a dynamic system with small displacements 

Mx + Cx + Kx = f (6.1) 

where x is the vector of structural coordinates, and f(t) is the corresponding vector of forces. The 
M , C and K are the mass, damping and stiffness matrix, respectively. The equation of motion is 
reduced to the form, 

akqk + 2(kakuikqk + aku?kqk = Qk, k £ [1, Nm] (6.2) 

where £ is the damping ratio for mode k and 

Qk = Vfc / (6-3) 

is the corresponding generalized force. The structural damping matrix, C , is a linear combination of 
the mass and stiffness matrices M and K, i.e. considered as a proportional or Rayleigh damping. In 
this study the damping was set to C = 0, because a flutter case was solved. 

6.2.3 Coupling scheme 

The coupling scheme is a partitioned coupling scheme. The data between solvers were exchanged on 
subiteration level. The Figure 6.1 shows a comparison of this scheme with the usual Conventional 
Staggered Schene (CSS) [78, 79]. 
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Figure 6.1: Coupling schemes - coupling on subiteration level (left) and Conventional Serial Staggered 
Scheme (right) 

6.2.4 Mesh deformation 

Since the selected test case has just plunge and pitch modes, the rigid motion (translation and ro­
tation) of the C F D mesh was applied instead of the mesh deformation. The rigid mesh motion is 
prescribed using transformation of the modal coordinates to the physical displacement and rotation. 
This approach replaced the surface deformation, defined as a linear combination of the mode shapes 
and modal coordinates, and its the propagation to the volume mesh using mesh deformation tech­
niques. The other attribute of the approach is the constant shape of whe wing at any displacement 
as it is illustrated in the Figure 6.2. The figure shows a pitching airfoil in the original and rotated 
positions obtained using either linear mode shapes or by rotating a mesh around pivotal point. 
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Figure 6.2: Rotation of the airfoil prescribed through linear mode shapes (left) and through rotational 
matrix (right) 

6.3 Test Case 

6.3.1 Experimental setup 

The test case is the Benchmark Super Critical Wing (BSCW), which was experimentally tested at 
N A S A T D T facility [82]. This test case was chosen as one of the cases used in the Aeroelastic Prediction 
Workshop I and II [14, 15, 84]. The test data include measurements for the rigid, forced oscillations 
and aeroelastic problem. Although the wing itself is rigid, the elastic behavior in aeroelastic tests is 
allowed by using the Pitch and Plunge Apparatus, which allows simultaneous plunge and pitch of the 
wing [82]. Figure 6.3 shows the B S C W model in N A S A T D T wind tunnel section. 

Figure 6.3: BSCW wing at NASA TDT wind tunnel section, Courtesy of NASA 

The test case considered in this study is a case of flow around the B S C W wing at Mach number 
M = 0.74, angle of incidence a = 0°, Reynolds number Re = 4.45 million and dynamic pressure 
p = 8082Pa (168psf) which is an experimentally measured flutter onset for this wing. The test 
medium is R-12 coolant gas. The case involves a transonic flow with shock wave on the upper side of 
the wing. The flow at the angle of attack a = 0 degrees is fully attached. 

The structural model has two modes: the plunging mode with frequency / = 3.3Hz and pitching 
mode with frequency / = 5.2Hz ([84]). The pivotal point location is at 50% of the airfoil chord - see 
Figure 6.4. 

6.3.2 Computational setup 

The C F D mesh shown in the Figure 6.5 consists of 13 millions points and is composed of tetra, prism 
and penta elements. 
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Figure 6.4: Finite element model [84] diagram (left) and modes diagram (right) 

Figure 6.5: Computational mesh (left) and detail of the mesh around wing (right) 

The analysis was ran in the unsteady Raynold-Averaged Navier-Stokes (URANS) mode using 
the Spalart Allmaras model [85]. Each solution started with a steady R A N S analysis which was 
subsequently used as an initial guess for U R A N S analysis of a steady wing. The U R A N S analysis 
was ran for about 1000 time steps to get the well-converged U R A N S solution. This solution was then 
used as an initial guess for U R A N S coupled aeroelastic analysis. The coupled aeroelastic calculations 
modeled 5s, in one case 10s, of the physical time. 

6.4 Results 

6.4.1 Time step convergence study 

Three time steps were used, A t = O.OOlsecs, A t = 0.002secs and A t = 0.004seas. The time step 
study was done using the strong coupling scheme, which means that the coupling is performed at each 
subiteration of the numerical scheme. The different number of subiterations was set for particular time 
steps - for A t = O.OOlsecs it was set to 20, A t = 0.002secs set to 30 and A t = 0.004secs set to 40 - so 
that the total reduction of residuals within each time step was approximately the same. The optimal 
number of subiteration was found for the case A t = 0.002secs by running the coupled simulation for 
different settings of subiteration number. The convergence of the scheme vs. number of subiterations 
was measured by the critical damping ratio. The results starts to be independent of the number of 
subiterations once it is larger than 20. To allow for some margins, the number of subiterations equal 
to 30 was chosen. 

The similar study was done for the CSS scheme which is an example of the weak coupled scheme. 
The time steps were identical to those used in the previous tests and the number of subiteration for 
the weak coupled scheme was the same as for the strong coupled scheme. 

Figure 6.6 shows the critical damping ratio for the weak coupled scheme compared to the strongly 
coupled scheme. For the clarity of the graphs, values of the damping and frequency for the pitching 
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mode are shown. 
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Figure 6.6: Time step study for weak coupled scheme compared to strong coupled scheme - damping 
coefficient (left) and frequency (right) of pitching mode 

In the case of the strong coupled scheme the damping ratio is slightly changing with the time step, 
the frequency is almost unchanged. The loose coupled scheme converges to a different aeroelastic 
solution as the time-step is reduced; this corresponds to finding of Bendiksen [77]. The value of the 
damping ration for the smallest time steps is more than twice as large as the value of the damping 
for the largest time step and there is no sign that the smaller time step would tend to produce 
asymptotically converged solution. The dependency of the frequency on time step is not as strong as 
for the damping coefficient. There is some effect of the coupling scheme on the frequency, the weak 
coupled scheme predicts lower frequency than the strong coupling scheme. Both schemes predict lower 
than experimentally measured frequency / = 4.3Hz but the difference is small. Thus, the result is in 
good agreement with the experiment. 

6.4.2 Influence of number of exchanges during each time step on flutter solution 

From the previous analysis it is clear that the strong coupled scheme leads to reasonably time converged 
result. However, the scheme has several drawbacks, the major one is the scheme time consumption 
compared to weak coupled scheme. The main reason is time burden incurred by the mesh deformation 
which has to be used after each exchange between C F D and C S M solvers. One of the potential savings 
can be gained by reducing the frequency of exchanges within each time step. 

Figure 6.7 shows the results where the exchange is done in every subiteration and then 2, 3, 5 and 
7 times during each time step. For completeness the loosely coupled scheme result was added. 

, x10"' 

- Pitch mode 
- Plunge mode 

0 5 10 15 20 25 30 
number of exchanges in each time step 
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Figure 6.7: Weak vs strong coupling - damping coefficient (left) and frequency (right) 

The result start to be reasonably converged when the number of exchanges during each time step 
is five. 
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6.4.3 Estimate of flutter dynamic pressure 

The B S C W wing analysis at the dynamic pressure, which was determined experimentally as a flut­
ter onset dynamic pressure, led to predictions indicating that the wing model is already in flutter. 
Therefore, the two other lower dynamic pressures were calculated and the final values for the damping 
ratios and frequency were interpolated and used to estimate the values of the " C F D determined" 
flutter onset. The Mach number was kept at M = 0.74. 

Figure 6.8 shows the values of the damping ratio and frequency vs. dynamic pressure. 
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Figure 6.8: Damping coefficient (left) and frequency (right) vs dynamic pressure 

From the interpolation curves the value of the flutter onset dynamic pressure was estimated to be 
at q = 7700Pa, which is point where the damping ratio for the pitching motion is zero. The case was 
then simulated at this value of the dynamic pressure modeling total of 10s sequence. The final values 
of the damping ratio and frequency are shown in the Table 6.1. 

Pitch Plun ge 
Damping Frequency Damping Frequency 

Hz Hz 
C F D , q = 8082Pa -0.0034382 4.212 -0.0034382 4.212 
C F D , q = 7700Pa -0.0000052 4.261 -0.0000352 4.262 
W T , q = 8082Pa 0.0 4.3 0.0 4.3 

Table 6.1: Results of CFD flutter analysis for pitch and plunge modes compared to the wind tunnel data 

Figure 6.9 shows the 10 seconds sequence of the displacement and pitch angle of the airfoil. 
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Figure 6.9: Pitch and plunge coordinate for the flutter dynamic pressure 

Figures 6.10 and 6.11 show magnitude and phase of the pressure frequency response function 
(FRF) at 60% and 95% of span compared to experimental data. 
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Figure 6.10: Magnitude in 60% and 95% 

The comparisons of the magnitude of F R F show fairly good agreement with the slight difference 
around the leading edge on the lower side of the wing at 60% of span and region of trailing edge at 
95% of span. As of now, there is not any explanation what is the cause to the first difference. The 
second one is most probably caused by the trailing edge separation, which was not accurately modeled 
by C F D method. 

The comparison of the F R F phase shows good agreement of the numerical analysis with the 
experimental results. The differences observable at the upper sides of the 60% and 95% are just the 
360 degree shifts, thus the results are comparable with the experiment. The most significant difference, 
on the lower side at 95%, might be caused by the problems of the C F D to predict the trailing edge 
separation. 
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(a) Phase lower side - 60% 

(c) Phase lower side - 95% 
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Figure 6.11: Phase in 60% and 95% 

6.4.4 Estimate of the flutter boundary 

The similar procedure as used in subsection 6.4.3 was used to calculate the flutter boundary for the 
B S C W wing at angle of attack a = Odegs and range of Mach numbers from M = 0.6 to M = 0.9. 
Figure 6.12 shows the comparison of the measured dynamic flutter pressure and flutter freuquency vs. 
Mach number with the values obtained numerically. 

Figure 6.12: Flutter boundary - comparison between CFD and wind tunnel data 

The wind tunnel data are available at range of Mach number up to M = 0.82 for two gases - air 
and R-12 gas. The C F D solution is available for R-12 gas only. The figures show strong non-linear 
dependency of the flutter dynamic pressure on Mach number for Mach numbers larger than M = 0.82 
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which can not be predicted by linear computational methods. 

6.5 Summary 

This chapter presents numerical study of the Benchmark Super-Critical Wing at a condition where the 
wind tunnel data indicated a flutter onset. The wing is considered rigid, the aeroelasticity is brought 
to the system by P A P A apparatus which allows model to rotate around pivotal point and to plunge 
in the vertical direction. The flow around the wing is transonic without any large areas of the flow 
separation, which makes the case an ideal test case for validation of the coupled numerical analysis. 

The analysis shows that the most important factor influencing the validity of the result is the 
coupling scheme. The second factor influencing the accuracy of the flutter predictions is the ability 
of the C F D code to predict various features of the transonic flow including flow separation and the 
transition of the laminar boundary layer to turbulent boundary layer. 

The strong coupled scheme gives result which is changing marginally with different time step. 
As long as the other factors, which potentially require using very short time steps (such as the flow 
separation), are not present, the scheme can use of relatively large time step during time integration, as 
long the sufficient convergence to the pseudo steady state solution within each time step is guaranteed. 
The loosely coupled scheme, such as the Serial Staggered Scheme, converged to the different result as 
the time step of the simulation was refined and there is no indication that with refined time step the 
results would show asymptotic convergence to the "correct" result. 

The subsequent tests with "loosening" the strong coupling scheme by using only several subit-
eration levels to time synchronization rather then every subiteration showed that such an approach 
can produce similar results to the strongly coupled scheme as long as there are five or more time 
synchronization steps during each time step. 
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Chapter 7 

Conclusions 

7.1 Outcome of the Thesis 

Computational aeroelasticity tool 

A tool for simulation and design optimization of the static aeroelastic models has been implemented 
and tested. It allows to include effect of the static structural deformation of the airframe in the 
aerodynamic analysis. The implementation is based on the communication between C F D and C S M 
solvers using I /O operations via hard-copied files. The influence of various settings of the flow solver 
on the convergence of an aeroelastic solution was tested. The results suggest that optimal settings are 
case dependent. 

Additionally, a numerical structural solver has been designed and implemented and subsequently 
applied in the computational aeroelasticity tool. It is linear elastic preprocessor and solver for struc­
tural models using the beam finite elements. Moreover, it is able to solve static deformation of the 
finite element model consisting of arbitrary elements. In this case, the stiffness and mass matrices 
must be provided by an external preprocessor. 

Inverse design method for equivalent beam model 

The method of inverse design of the beam model properties has been proposed and tested. The method 
finds the beam properties to get equivalent static deformation of the wing to the reference one under 
the same loading. The results suggest that the proposed inverse method might be applicable for design 
of simplified structural model of a complex wing geometry. 

Numerical study of wing at flutter condition 

The time synchronization scheme for the coupled C F D - C S M problem was evaluated on the wing flutter 
test case. The research was conducted within the Aeroelastic Prediction Workshop II in cooperation 
with colleagues from Swedish Defense Research Agency, FOI. The results were compared with the 
test case performed at the N A S A Transonic Dynamic Tunnel and they are in close agreement with 
experimental results. 

7.2 Conclusion 

The objective of the thesis was to design and implement a tool for aeroelastic simulations. The tool 
should be applicable for the aerodynamic design and analysis of an elastic airplane. 

The aeroelastic simulation tool, programmed in the Matlab environment, was designed in the way 
that it allows to employ arbitrary flow and structural solvers. The fluid-structure transformation 
interface was defined using the radial basis functions. 
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The practical applicability of the computational aeroelasticity tool in the aerodynamic analysis 
was tested on the cases employing different types of the aerodynamic and structural models. The test 
cases have shown that tool is able to handle complex geometries, such as a wing-fuselage model of 
transport aircraft with the swept wing. 

The application of the designed simulation tool in the aerodynamic shape optimization of the 
elastic model was evaluated. The optimization problem was defined aiming for a drag reduction of the 
transonic wing with aerodynamic and geometric constraints. The aerodynamic design optimization 
was performed for the single operating condition. The results suggest that further development must 
be performed as the employed gradient calculation neglected influence of the wing deformation due to 
aerodynamic loading, on the gradients of aerodynamic forces. 

7.3 Perspectives 

Computational aeroelasticity tool 

The obvious continuation of the presented work would be the application of the computational aeroe­
lasticity tool for solving time-dependent dynamic aeroelastic problems. In order to do this, the tool 
must be implemented in the way that the communication between solvers is based on the direct ap­
proach via random-access memory. Therefore, the tool as well as the linear elasticity solver must be 
programmed in the language such as Fortran or C and implemented into the applied C F D solver Edge. 

Inverse design method for equivalent beam model 

There is still space for further development of the method, such as extension for design of beam stick 
model dynamically equivalent to higher fidelity structural model. It could also solve the suggested 
problem of indeterminacy of some resultant stiffness characteristics. 

Aero-structural optimization 

The result of aerodynamic shape optimization of elastic wing have shown the need for coupled fluid-
structure equations adjoint solver. The solver should extend existing flow equation adjoint solver 
implemented in the C F D package Edge. This extension will allow to perform aero-structural op­
timization which would increase design efficiency of aircraft from both aerodynamic and structural 
perspectives. 
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List of Symbols 

c structural damping matrix 
CD 

drag coefficient 
cL lift coefficient 
Cm pitch moment coefficient 
F vector of nodal forces 
/ frequency 
F/ vector of forces at fluid nodes 
F s vector of forces at structural nodes 
H fluid-structure coupling matrix 
i internal energy 
Ix torsional constant 

cross-section moment of inertia about y axis 
h cross-section moment of inertia about z axis 
K stiffness matrix 
M mass matrix 
M Mach number 
Nf basis function for the fluid 
nm control surface normal vector 
Ns basis function for the structure 
P pressure 
Re Reynolds number 
S area of surface 
SMI momentum source (i denotes x,y and z directions) 
t time 
T temperature 
u vector of nodal displacements 
u / fluid nodes displacement vector 
u, structural nodes displacement vector 
W virtual work 
a angle of attack 
/" 
f̂c 

dynamic viscosity 
weighting function 

$ dissipation function 
P density of fluid 
6 element rotation 
c damping ratio 
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List of Acronyms 

BSCW Benchmark Super Critical Wing 
CFD Computational Fluid Dynamics 
CRM Common Research Model 
CSM Computational Structural Mechanics 
DOF degree of freedom 
FRF frequency response function 
NASA National Aeronautics and Space Administration 
NS Navier-Stokes 
RANS Reynolds Averaged Navier-Stokes 
RBF radial basis function 
RMS root mean square 
SA Spalart-Almaras 
SQP Sequantial Quadratic Programming 
TDT Transonic Dynamic Tunnel 
URANS Unsteady Reynolds Averaged Navier-Stokes 
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Appendix A 

Matlab Code of Structural Solver 

f u n c t i o n [ U n o d , e x t r a s ] = f e m _ s o l v e r ( m o d e l , p r o p e r t i e s , m o d e ) 
% f u n c t i o n [ U n o d , e x t r a s ] = beam_fem3d(model,properties,mode) 

% o u t p u t : Unod i s m a t r i x o f n o d a l d i s p a l c e m e n t s i n g l o b a l c o o r d i n a t e system 
% [ u _ i v _ i w_i t h e t a x . i t h e t a y _ i t h e t a z _ i ] 
% e x t r a s — s t r u c t u r e w i t h a d d i t i o n a l v a l u e s , i t i s : 
% .K — u n c o n s t r a i n e d g l o b a l s t i f f n e s s m a t r i x 
% .M — u n c o n s t r a i n e d g l o b a l mass m a t r i x 
% .Kp — c o n s t r a i n e d g l o b a l s t i f f n e s s m a t r i x 
% .Mp — c o n s t r a i n e d g l o b a l mass m a t r i x 
% .v — d i s p l a c e m e n t v e c t o r ( c o n s t r a i n e d d o f s not i n c l u d e d ) 

% i n p u t : model, p r o p e r t i e s — f o r r e q u i r e d f i e l d s r e f e r t o h e l p f o r 
% mode 1: beam.fem3d 
% mode 2: fem3d_nastran 
o o 

% mode — 1: beam p r e p r o c e s s o r and s o l v e r 
% mode — 2: s t i f f n e s s m a t r i x p r o v i d e d 

Unod = [ ] ; 
e x t r a s = [ ] ; 

s w i t c h mode 
case 1 

[Unod,extras] = b e a m _ f e m 3 d ( m o d e l , p r o p e r t i e s ) ; 
case 2 

[Unod,extras] = f e m 3 d _ n a s t r a n ( m o d e l , p r o p e r t i e s ) ; 
end 

f u n c t i o n [ U n o d , e x t r a s ] = b e a m . f e m 3 d ( m o d e l , p r o p e r t i e s ) 

% f u n c t i o n [ U n o d , e x t r a s ] = bea m . f e m 3 d ( m o d e l , p r o p e r t i e s ) 

% o u t p u t : Unod i s m a t r i x o f n o d a l d i s p a l c e m e n t s i n g l o b a l c o o r d i n a t e system 
% [ u _ i v _ i w_i t h e t a x . i t h e t a y _ i t h e t a z _ i ] 
% e x t r a s — s t r u c t u r e w i t h a d d i t i o n a l v a l u e s , i t i s : 
% .K — u n c o n s t r a i n e d g l o b a l s t i f f n e s s m a t r i x 
% .M — u n c o n s t r a i n e d g l o b a l mass m a t r i x 
% .Kp — c o n s t r a i n e d g l o b a l s t i f f n e s s m a t r i x 
% .Mp — c o n s t r a i n e d g l o b a l mass m a t r i x 

% .v — d i s p l a c e m e n t v e c t o r ( c o n s t r a i n e d d o f s not i n c l u d e d ) 

% i n p u t : model — s t r u c t u r e w i t h f o l l o w i n g d a t a 
% .nodes — i s m a t r i x o f node c o o r d i n a t e s and t h e i r ID [ID x y z ] , 
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each row i s one element 
. f o r c e s — m a t r i x o f node l o a d i n g [ F x i F y i F z i M x i M y i M z i ] 

each row i s one element 
. c o n s t r a i n t s — i s two column m a t r i x , f i r s t column i s node number, 

2nd i s number o f DOF, 
i f some DOF i s c o n s t r a i n e d = 1, o t h e r w i s e 0 
DOF a r e [u v w t h e t a x t h e t a y t h e t a z ] 

.mass — i f 1 w i t h _ i n e r t i a 1 —> i n e r t i a a r e i n c l u d e d t o mass matr. 
— i f ' n o - i n e r t i a 1 —> i n e r t i a a r e i n c l u d e d t o mass matr. 
— ( i n e r t i a = I y , I z , J ) 

.elements — beam e l e m e n t s d e f i n i t i o n [ID PID N l N2] 

. v i r t u a l - e l e m e n t s — beam e l e m e n t s d e f i n i t i o n [ID N l N2] 
!!!!! N l must be on r e a l beam !!!!!! 

. g r a v i t y _ a c c e l e r — v a l u e o f g r a v i t y a c c l e r a t i o n . I f b l a n k 
g r a v i t y i s not t a k e n i n t o a c c o u n t 

p r o p e r t i e s — s t r u c t u r e w i t h m a t e r i a l and s e c t i o n p r o p e r t i e s 
.E — Young's modulus 
.nu — P o i s s o n ' s r a t i o 
.rho — m a t e r i a l d e n s i t y 
.A — i s t h e c r o s s — s e c t i o n a l a r e a 
.Asy,.Asz — t h e y — d i r e c t i o n , t h e z — d i r e c t i o n e f f e c t i v e s h e a r a r e a 

i f z e r o i s g i v e n , t h e n s h e a r e f f e c t i s not i n c l u d e d 
. I y , . I z — i s t h e c r o s s — s e c t i o n moment o f i n e r t i a about t h e y, z a* 
. J — t h e p o l a r moment o f i n e r t i a 
NOTE: f o r A, A s y i , A s z i , I y i , I z i , J i : 

i f a s c a l a r i s g i v e n => c h a r a c t . i s u n i f o r m a l o n g beam 
i f a v e c t o r i s g i v e n => c h a r a c t . i s e l e m e n t w i s e d i s t r i b u t e d 
i t i s d r i v e n by A i i n t h i s code!! 

. o r i e n t — d e f i n e s o r i e n t a t i o n o f ye a x i s ( c r o s s s e c t i o n 
o r i e n t a t i o n ) i n g l o b a l c.s 

.nmod = number o f e i g e n modes t o e x t r a c t 

% ======== PREPROCESSOR 
c o n s t r = m o d e l . c o n s t r a i n t s ; 

ndof = 6 ; % number o f node degree o f freedom 
n e l e = s i z e ( m o d e l . e l e m e n t s , 1 ) ; % number o f el e m e n t s 
nnod = n e l e + 1 ; % number o f nodes / f o r 2 node element 

% c o n s t r a i n d e f i n i t i o n 
B = z e r o s ( n n o d , n d o f ) ; 

% c o n s t r => two column m a t r i x , f i r s t column i s node number, 2nd i s number 
% o f DOF 

f o r i = l : s i z e ( c o n s t r , 1 ) 
i B = f i n d ( m o d e l . n o d e s ( : , 1 ) == c o n s t r ( i , 1 ) ) ; 
jB = c o n s t r ( i , 2 ) ; 
B ( i B , j B ) = 1; 

end 

B = r e s h a p e ( B 1 , n d o f * n n o d , 1 ) ; 

% ===== SOLVER 

[K,M,Nid] = g l o b a l - m a t r i c e s ( m o d e l , p r o p e r t i e s ) ; 

% e x t e r n a l f o r c e s 

Fex = n o d e - f o r c e s ( m o d e l , p r o p e r t i e s , N i d ) ; 

% I n e r t i a l f o r c e s — g r a v i t y 
F i = n o d e _ i n e r t _ f o r c e s ( m o d e l , s i z e ( F e x ) , n n o d , n d o f , M ) ; 
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% sum o f f o r c e s F 
F = Fex + F i ; 

% a p p l i c a t i o n o f c o n s t r a i n t s t o K and F => Kp and Fp 
Kp = K; 
Fp = F; 

i n d = f i n d ( B == 1 ) ; 
K p ( i n d , :) = [ ] ; 
K p ( : , i n d ) = [ ] ; 
F p ( i n d ) = [] ; 

i f e x i s t ( ' M ' , ' v a r 1 ) 
Mp = M; 
M p ( i n d , : ) = [ ] ; 
Mp(:,ind) = [] ; 

end 

w = Kp\Fp; 

% i n c l u d i n g o f c o n s t r a i n e d DOF i n t o d i s p l a c e m e n t v e c t o r 
v = z e r o s ( s i z e ( B ) ) ; 
ind= B==0; 
v ( i n d , 1)=w; 

Unod = r e s h a p e ( v , n d o f , n n o d ) 1 ; 

% " a x i a l " d i s p l a c e m e n t s due t o b e n d i n g : i n p l a n e XY ( d i s . UV), 
% beam i s a l o n g X —> b e n d i n g : i n Unod I have V, I need U 
% a p p r o x i m a t i o n i s b a s e d on r o t a t i o n s 

Unod = b e n d i n g . t r i c k ( m o d e l , p r o p e r t i e s . o r i e n t , U n o d ) ; 

% t r a n s f o r m a t i o n o f d i s p l a c e m e n t s t o " v i r t u a l nodes" 

Unod = v i r t _ n o d e _ d i s p l ( m o d e l , U n o d ) ; 

e x t r a s . K = K; 
e x t r a s . M = M; 
e x t r a s . K p = Kp; 
e x t r a s . M p = Mp; 
e x t r a s . d i s p v e c = v; 

end 

f u n c t i o n [ U n o d , e x t r a s ] = f e m 3 d _ n a s t r a n ( m o d e l , p r o p e r t i e s ) 

% f u n c t i o n [ U n o d , e i g e n d a t a , m o d a l , e x t r a s ] = be a m _ f e m 3 d ( m o d e l , p r o p e r t i e s ) 

% o u t p u t : Unod i s m a t r i x o f n o d a l d i s p a l c e m e n t s i n g l o b a l c o o r d i n a t e system 
% [ u _ i v _ i w_i t h e t a x . i t h e t a y _ i t h e t a z _ i ] 

% i n p u t : model — s t r u c t u r e w i t h f o l l o w i n g d a t a 
% .nodes — i s m a t r i x o f node c o o r d i n a t e s and t h e i r ID [ID x y z] , 
% each row i s one element 
% . f o r c e s — m a t r i x o f node l o a d i n g [ F x i F y i F z i M x i M y i M z i ] 
% each row i s one element 
% . c o n s t r a i n t s — i s m a t r i x o f c o n s t r a i n t e d DOF, each row i s one 
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node, i f some DOF i s c o n s t r a i n e d = 1, 
DOF a r e [u v w t h e t a x t h e t a y t h e t a z ] 

o t h e r w i s e 0 

p r o p e r t i e s — s t r u c t u r e w i t h f o l l o w i n g f i e l d s : 
.K — s t i f f n e s s m a t r i x 
.M — mass m a t r i x 
. d o f _ o r d — o r d e r o f d e g r e e s o f freedom i n m a t r i c e s 

— f i r s t column = node number, second column 
— DOFs: 1,2,3 —> x — d i s p l , y — d i s p l , z — d i s p l 

4,5,6 —> r o t a t i o n s about x, y, z 

DOF 

c o n s t r = m o d e l . c o n s t r a i n t s ; 
d o f - o r d = p r o p e r t i e s . d o f _ o r d ; 

PREPROCESSING 
nnod = s i z e ( m o d e l . n o d e s , 1 ) ; 

% c o n s t r a i n d e f i n i t i o n 
B = z e r o s ( s i z e ( d o f _ o r d , 1 ) , 1 ) ; 

f o r i = l : s i z e ( c o n s t r , 1 ) 
i n d = f i n d ( ( c o n s t r ( i , 1 ) == d o f _ o r d ( : , 1 ) ) & c o n s t r ( i , 2 ) == d o f _ o r d ( : , 2 ) ) ; 
B ( i n d ) = 1; 

end 

% g l o b a l a s s e m b l e d s t i f f n e s s and mass m a t r i x K and M from NASTRAN 

K = p r o p e r t i e s . K ; 
M = p r o p e r t i e s . M ; 

% F o r c e s — e x t e r n a l 
Fex = n o d e . f o r c e s _ n a s t r a n ( m o d e l , p r o p e r t i e s ) ; 

% I n e r t i a l — g r a v i t y 
G = z e r o s ( s i z e ( F e x ) ) ; 
i f i s f i e l d ( m o d e l , ' g r a v i t y . a c c e l e r 1 ) 

ag = m o d e l . g r a v i t y _ a c c e l e r ; 
vec_ag = z e r o s ( s i z e ( d o f . o r d , 1 ) , 1 ) ; 
f o r i = l : 3 

i n d = f i n d ( d o f _ o r d ( : , 2)==i) ; 
v e c _ a g ( i n d ) = a g ( i ) ; 

end 
G = Mtvec.ag; 

end 

% a l l f o r c e s F 
F = Fex + G; 

Kp = K; 
Fp = F; 
Mp = M; 

% a p p l i c a t i o n o f c o n s t r a i n t s t o Kp and Fp 
i n d = f i n d ( B == 1 ) ; 
K p ( i n d , :) = [ ] ; 
K p ( : , i n d ) = [ ] ; 
F p ( i n d ) = [] ; 
i f e x i s t ( ' M ' , ' v a r 1 ) 

Mp = M; 

PROCESSING 
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M p ( i n d , : ) = [ ] ; 
Mp(:,ind) = [] ; 

end 
w = Kp\Fp; 

% i n c l u d i n g o f c o n s t r a i n e d DOF i n t o d i s p l a c e m e n t v e c t o r 
v = z e r o s ( s i z e ( B ) ) ; 
i n d = f i n d ( B==0 ); 
v(ind)=w; 
Unod = z e r o s ( n n o d , 6 ) ; 

f o r i = l : n n o d 
N i d = m o d e l . n o d e s ( i , 1 ) ; 

i n d = f i n d ( d o f _ o r d ( : , 1 ) == N i d ) ; 
d o f s = d o f _ o r d ( i n d , 2 ) ; 

U n o d ( i , d o f s ) = v ( i n d ) ' ; 
end 

e x t r a s . K = K; 
e x t r a s . M = M; 
e x t r a s . K p = Kp; 
e x t r a s . M p = Mp; 
e x t r a s . d i s p v e c = v; 

end 

f u n c t i o n [K,lam] = beam3d(A,Asy,Asz,E,nu,Iy,Iz,J,PI,P2,Coy,Coz) 
% BEAM3D 

% The r o u t i n e p r o v i d e s t h e 12 x 12 s t i f f n e s s m a t r i x f o r a t h r e e 
% d i m e n s i o n a l beam element i n g l o b a l c o o r d i n a t e s . Shear e f f e c t s 
% a r e i n c l u d e d i f t h e u s e r s p e c i f i e s s h e a r a r e a s d i f f e r e n t from 
% z e r o . The f o r m u l a t i o n b e i n g u s e d h e r e i s d e s c r i b e d i n d e t a i l on 
% P r z e m i e n i e c k i , J.S., "Theory o f M a t r i x S t r u c t u r a l A n a l y s i s " , 
% M c G r a w - H i l l , 1968. The s y n t a x i s : 
% K = be a m 3 d ( A , A s y , A s z , E , n u , I y , I z , J , P I , P 2 , Coy, Coz) 
% where: A i s t h e c r o s s — s e c t i o n a l a r e a ; 
% Asy i s t h e y — d i r e c t i o n e f f e c t i v e s h e a r a r e a ; 
% Asz i s t h e z — d i r e c t i o n e f f e c t i v e s h e a r a r e a ; 
% E i s t h e Young's modulus; 
% nu i s t h e P o i s s o n ' s r a t i o , and i t i s assumed: 
% G=E/ (2* (1+nu)); 
% I y i s t h e c r o s s — s e c t i o n moment o f i n e r t i a about t h e 
% y a x i s ; 
% I z i s t h e c r o s s — s e c t i o n moment o f i n e r t i a about t h e 
% z a x i s ; 
% J i s t h e p o l a r moment o f i n e r t i a ; 
% P I and P2 a r e v e c t o r s o f t h e {x,y,z} c o o r d i n a t e s o f t h e 
% nodes; 
% Coy i s t h e v e c t o r o f d i r e c t i o n c o s i n e s o f t h e l o c a l 
% y d i r e c t i o n w i t h r e s p e c t t o t h e g l o b a l s ystem o f 
% c o o r d i n a t e s , i . e . , {loy,moy,noy}; 
% Coz i s t h e c o r r e s p o n d i n g v e c t o r f o r t h e l o c a l 
% z d i r e c t i o n , i . e . , { l o z , m o z , n o z } ; 

L = n o r m ( P 2 - P l ) ; 

l o x = ( P 2 ( 1 ) - P 1 ( 1 ) ) / L 
mox = ( P 2 ( 2 ) - P I ( 2 ) ) / L 
nox = ( P 2 ( 3 ) - P I ( 3 ) ) / L 

% F i n d l e n g t h o f beam. 

% F i n d d i r e c t i o n c o s i n e s and lambda m a t r i x . 
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lam = [lox mox nox; Coy'; Coz']; 
zerom = zeros(3); 
lambda = [lam zerom zerom zerom 

zerom lam zerom zerom 
zerom zerom lam zerom 
zerom zerom zerom lam]; 

i f Asy == 0, % Fi n d shear—deformation parameters. 
phiy = 0; 

else 
phiy = 24*(1+nu)*Iz/(Asy*(L"2)); 

end 
i f Asz == 0, 

phiz = 0; 
else 

phiz = 24*(1+nu)*Iy/(Asz*(L"2)); 
end 

G = E/(2* (1+nu)); % Create matrix i n l o c a l coordinates, 
k l = zeros(12); 
k l (1,1) = E*A/L; 
kl(2,2) = 12*E*Iz/( (L~3)* (1+phiy)); 
kl(3,3) = 12*E*Iy/((L~3)* (1+phiz)); 
k l (4,4) = G*J/L; 
kl(5,3) = -6*E*Iy/((L~2)*(1+phiz)); 
kl(5,5) = (4+phiz)*E*Iy/(L*(1+phiz)); 
kl(6,2) = 6*E*Iz/((L~2)* (1+phiy)); 
kl(6,6) = (4+phiy)*E*Iz/(L*(1+phiy)); 
k l ( 7 , l ) = - k l ( l , l ) ; 
kl(7,7) = k l ( l , l ) ; 
k l (8,2) = - k l ( 2 , 2 ) ; 
k l (8,6) = - k l ( 6 , 2 ) ; 
kl(8,8) = k l ( 2 , 2 ) ; 
k l (9,3) = - k l ( 3 , 3 ) ; 
kl(9,5) = - k l ( 5 , 3 ) ; 
k l (9,9) = k l (3,3); 
k l (10,4) = - k l ( 4 , 4 ) ; 
kl(10,10) = k l (4,4) ; 
kl(11,3) = k l ( 5 , 3 ) ; 
k l ( l l , 5 ) = (2-phiz)*E*Iy/(L*(1+phiz) ) ; 
k l (11,9) = - k l ( 5 , 3 ) ; 
k l (11,11) = k l (5,5); 
kl(12,2) = kl(6,2) ; 
kl(12,6) = (2-phiy)*E*Iz/(L*(1+phiy) ) ; 
kl(12,8) = - k l (6,2); 
kl(12,12) = kl(6,6) ; 
f o r i = 1:11 

fo r j = i+l:12 
k l ( i , j ) = k l ( j , i ) ; 

end 
end 

K = lambda'*kl*lambda; % Create matrix i n g l o b a l coordinates. 

f u n c t i o n M = mbeam3d(rho,A,Iy,Iz,Jx,PI,P2, Coy, Coz) 
% f u n c t i o n M = mbeam3d(rho,A,Iy,Iz,Jx,PI,P2,Coy,Coz) 
% MBEAM3D 

% This r o u t i n e provides the 12 x 12 mass matrix f o r a three 
% dimensional beam element i n g l o b a l coordinates. The e f f e c t s of 
% shear deformations on the beam element are not in c l u d e d i n the 
% present formulation. On the other hand, e f f e c t s of r o t a r y 
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i n e r t i a a r e i n c l u d e d t h r o u g h t h e terms t h a t have t h e moments o f 
i n e r t i a I y and I z , as w e l l as t o r s i o n a l i n e r t i a e f f e c t s a r e 
i n c l u d e d t h r o u g h t h e terms w i t h t h e p o l a r moment o f i n e r t i a 
J x . I f t h e u s e r does not d e s i r e t o i n c l u d e such e f f e c t s , he 
can s i m p l y s p e c i f y t h e s e p r o p e r t i e s as b e i n g z e r o . The 
f o r m u l a t i o n b e i n g u s e d h e r e i s d e s c r i b e d i n d e t a i l on 
P r z e m i e n i e c k i , J.S., "Theory o f M a t r i x S t r u c t u r a l A n a l y s i s " , 
M c G r a w - H i l l , 1968 ( S e c t i o n 11.5, pp. 292-297). 
The s y n t a x i s : 

M = mbeam3d(rho,A,Iy,Iz,Jx,PI,P2,Coy,Coz) 
where: rho i s t h e m a t e r i a l d e n s i t y ; 

A i s t h e c r o s s — s e c t i o n a l a r e a ; 
Jx i s t h e p o l a r moment o f i n e r t i a ; 
I y i s t h e c r o s s — s e c t i o n moment o f i n e r t i a about t h e 

y a x i s ; 
I z i s t h e c r o s s — s e c t i o n moment o f i n e r t i a about t h e 

z a x i s ; 
PI and P2 a r e v e c t o r s o f t h e {x,y,z} c o o r d i n a t e s o f t h e 

e n d p o i n t s ; 
Coy i s t h e v e c t o r o f d i r e c t i o n c o s i n e s o f t h e l o c a l 

y d i r e c t i o n w i t h r e s p e c t t o t h e g l o b a l s ystem o f 
c o o r d i n a t e s , i . e . , {loy,moy,noy}; 

Coz i s t h e c o r r e s p o n d i n g v e c t o r f o r t h e l o c a l 
z d i r e c t i o n , i . e . , { l o z , m o z , n o z } ; 

norm(P2-P1); % F i n d l e n g t h o f beam. 

l o x = ( P 2 ( 1 ) - P 1 ( 1 ) ) / L 
mox = ( P 2 ( 2 ) - P I ( 2 ) ) / L 
nox = ( P 2 ( 3 ) - P I ( 3 ) ) / L 
lam = [ l o x mox nox; Coy'; C o z ' ] ; 
zerom = z e r o s ( 3 ) ; 
lambda = [lam zerom zerom zerom 

zerom lam zerom zerom 
zerom zerom lam zerom 
zerom zerom zerom l a m ] ; 

F i n d d i r e c t i o n c o s i n e s and lambda m a t r i x . 

ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 
ml 

z e r o s ( 1 2 ) ; % C r e a t e m a t r i x i n l o c a l c o o r d i n a t e s . 
1/3; 
13/35 + 6 * I z / ( 5 * A * L ~ 2 ) ; 
13/35 + 6 * I y / ( 5 * A * L " 2 ) ; 
J x / ( 3 * A ) ; 
-11*L/210 - I y / ( 1 0 * A * L ) , 
(L"2)/105 + 2 * I y / ( 1 5 * A ) , 
11*L/210 + I z / ( 1 0 * A * L ) ; 
(L"2)/105 + 2*Iz/(15*A) , 
1/6; 
1/3; 
9/70 - 6 * I z / ( 5 * A * L " 2 ) ; 
13*L/420 - I z / ( 1 0 * A * L ) ; 
ml ( 2 , 2 ) ; 
9/70 - 6 * I y / ( 5 * A * L " 2 ) ; 
-13*L/420 + I y / ( 1 0 * A * L ) , 

1) 
2) 
3) 
4) 
3) 
5) 
2) 
6) 
1) 
7) 
2) 
6) 
8) 
3) 
5) 
9) = m l ( 3 , 3 ) ; 
,4) = Jx/(6* A ) 
,10) = ml(4,4) 
, 3 ) = - m l ( 9 , 5 ) 
, 5 ) = - ( L " 2 ) / 1 4 0 
,9) = -ml ( 5 , 3) 
,11) = m l ( 5 , 5 ) 
,2) = - m l ( 8 , 6 ) 
, 6) = - ( L " 2 ) /140 

Iy/(30*A) 

I z / ( 3 0 * A ) 
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ml (12,8) = - m l ( 6 , 2 ) ; 
ml(12,12) = m l ( 6 , 6 ) ; 
f o r i = 1:11 

f o r j = i + l : 1 2 
m l ( i , j ) = m l ( j , i ) ; 

end 
end 
m l o c a l = rho*A*L*ml; 

M = l a m b d a 1 * m l o c a l * l a m b d a ; % C r e a t e m a t r i x i n g l o b a l c o o r d i n a t e s . 
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Appendix B 

Computational Aeroelasticity Tool -
Convergence Tests 

Coupling iterations Set-up 

Figure B . l : Computational cost of the aeroelastic solution - influence of the Edge CFD solver settings, 
Euler simulation at M = 0.6, a = 5° 

Coupling iterations Set-up 

Figure B.2: Computational cost of the aeroelastic solution - influence of the Edge CFD solver settings, 
Euler simulation at M = 0.88, a = 0° 
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Coupling iterations Coupling iterations 

Figure B.3: Convergence of the aeroelastic solution - influence of the Edge CFD solver settings, Euler 
simulation at M = 0.6, a = 5° 
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Figure B.4: Convergence of the aeroelastic solution - influence of the EDGE CFD solver settings, Euler 
simulation at M = 0.88, a = 0° 
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