
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FORMAL MODELS FOR DATA LANGUAGES
FORMÁLNÍ MODELY PRO PRÁCI S DATOVÝMI JAZYKY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAN VAŠÁK
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Vašák Jan

Programme: Information Technology

Category: Theoretical Computer Science

Academic year: 2023/24

Assignment:

1. Study the theory of formal models for data languages, such as variants of register automata or
logics. Focus on models that are suitable for an implementation of matching regular expressions
with back-references or modeling programs with lists and sets.

2. Based on a discussion with the supervisor, choose at least one of the following options:
1. Study the theoretical properties of the considered models, e.g. decidability and complexity of

problems such as emptiness, language inclusion, or functional equivalence.
2. Develop efficient algorithms for working with a chosen model, focusing on efficient handling of

operations such as inclusion testing, reduction, etc.
3. Execute the option chosen in item (2).
4. In the case the second option of (2) was chosen, implement the developed algorithms and compare

them experimentally with algorithms that work on finite automata (for instance over an alphabet such
as ASCII or Unicode).

5. Discuss the obtained results and possible further extensions.

Literature:
• Michael Kaminski, Nissim Francez: Finite-Memory Automata. Theor. Comput. Sci. 134(2): 329-363

(1994)
• Stéphane Demri, Ranko Lazic: LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Log. 10(3): 16:1-16:30 (2009)
• Diego Figueira: Alternating register automata on finite words and trees. Log. Methods Comput. Sci.

8(1) (2012)
• Gulčíková, S. and Lengál, O., 2022. Register Set Automata (Technical Report). arXiv preprint

arXiv:2205.12114.
• N. Tzevelekos and R. Grigore, “History-Register Automata,” in Foundations of Software Science and

Computation Structures, F. Pfenning, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2013, pp. 17–33. doi: 10.1007/978-3-642-37075-5_2.

Requirements for the semestral defence:
Item 1.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Lengál Ondřej, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 6.11.2023

Bachelor's Thesis Assignment
154542

Formal Models for Data LanguagesTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
Data words are a common way to formally work with words over infinite alphabets. In
practice, an infinite alphabet can represent an actually infinite set, such as the integers
or a set of strings, or a large finite set, such as the Unicode symbols. We explore some
theoretical properties of register set automata, a data word model that, crucially, can be
used as a means to determinise a large class of register automata (this allows, e.g., for
a deterministic automata representation of a class of regexes with back-references). We
also extend streaming data string transducers, a model designed to represent a class of
list-processing programs, with set-registers. This extension can, for example, represent
a program that removes duplicates from a list, which is not representable using the base
model. We then show that this extension’s functional equivalence problem is decidable.
Lastly, a prototype regex matcher based on register set automata was implemented, and we
experimentally show that it performs well under regular expression denial of service attacks
that can cripple other matchers used in practice.

Abstrakt
Datová slova jsou běžně používaná pro formální práci se slovy nad nekonečnými abecedami.
V praxi může nekonečná abeceda modelovat skutečně nekonečnou množinu, např. celá čísla
nebo množinu řeťezců, nebo velkou konečnou množinu, jako např. znaky sady Unicode.
Tato práce se nejprve věnuje teoretickým vlastnostem registrově množinových automatů.
Registrově množinové automaty jsou modelem nad datovými slovy, který lze použít pro
determinizaci velké třídy registrových automatů (toto např. umožňuje deterministickou au-
tomatovou reprezentaci třídy regulárních výrazů se zpětnými odkazy). Dále jsme rozšířili
streaming data string převaděče, model určený pro modelování třídy programů pro zpra-
cování lineárních seznamů, o množinové registry. Toto rozšíření umožňuje např. modelovat
program, který odstraní duplicitní hodnoty z lineárního seznamu, což není možné modelovat
základními streaming data string převaděči. Ukážeme, že problém funkční ekvivalence je
pro toto rozšíření rozhodnutelný. Také byl naimplementován prototyp regex matcheru za-
ložený na registrově množinových automatech. Ukážeme, že prototyp si vede dobře pod Re-
DoS (regular expression denial of service) útoky, které jsou efektivní vůči regex matcherům
používaným v praxi.

Keywords
data words, register set automata, streaming data string transducers, regular expressions
with back-references

Klíčová slova
datová slova, registrově množinové automaty, streaming data string převodníky, regulární
výrazy se zpětnými odkazy

Reference
VAŠÁK, Jan. Formal Models for Data Languages. Brno, 2024. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Ondřej
Lengál, Ph.D.

Rozšířený abstrakt
Datová slova jsou běžným formalismem používaným při práci se slovy nad nekonečnými
abecedami. Nekonečná abeceda může v praxi reprezentovat nekonečnou množinu (např.
celá čísla) nebo velkou konečnou množinu (např. symboly sady Unicode). Datové slovo
je sekvence dvojic skládajících se ze symbolu konečné abecedy Σ a datové hodnoty ze
spočetně nekonečné datové domény D. Například (𝑎, 1)(𝑏, 2)(𝑎, 42) je datové slovo nad
Σ = {𝑎, 𝑏} a D = N.

Registrové automaty (RA) jsou modelem pro práci s datovými slovy. Rozšiřují konečné
automaty o konečnou množinu registrů. Každý registr může obsahovat maximálně jednu
datovou hodnotu a hodnoty registrů lze porovnávat na přechodech automatu se vstupní
datovou hodnotou (značenou in). RA lze využít např. při modelování regulárních výrazů
se zpětnými odkazy, nebo verifikaci programů. RA ovšem nelze obecně determinizo-
vat, což omezuje jejich praktické využití například právě pro efektivní porovnávání reg-
ulárních výrazů.

Registrově množinové automaty (RsA) jsou model podobný RA, ovšem registry v RsA
mohou obsahovat neomezeně velkou množinu hodnot. Na přechodech lze testovat přís-
lušnost in do těchto množinových registrů. Klíčová vlastnost RsA je, že je lze použít pro
determinizaci určité třídy RA.

Streaming data string převaděče (SDST) jsou model využívající registry jako v reg-
istrovém automatu. Navíc jsou vybaveny řetězcovými proměnnými, které jsou využity
pro generování výstupu. SDST byly navrženy pro modelování programů zpracovávajících
lineární seznamy jedním průchodem.

V této práci jsou zkoumány některé teoretické vlastnosti RsA. Konktrétně se jedná
o parametrizaci jejich problému prázdnosti na počtu registrů a porovnání jejich vyjadřovací
síly s history registrovými automaty (HRA), modelem podobným RsA, který manipuluje
se svými množinovými registry jiným způsobem. Bylo zjištěno, že problém prázdnosti RsA
je NL-úplný při omezení na jeden registr a je v F2𝑛+1 pro 𝑛 registrů. Dále bylo dokázáno,
že deterministické RsA mají větší vyjadřovací sílu než deterministické HRA a že HRA lze
vždy převést na RsA. Není ovšem jasné, zda je to možné i naopak.

Dále je v této práci představeno rozšíření SDST o typ množinových registrů. Toto
rozšíření umožňuje např. modelování programu, co odstraní duplicitní hodnoty v lineárním
seznamu (takový program nelze reprezentovat SDST bez rozšíření). Poté bylo ukázáno, že
funkční ekvivalence tohoto rozšíření je rozhodnutelná (což je důležitý výsledek pro použití
modelu pro verifikaci a analýzu programů).

V existujícím algoritmu pro determinizaci RA do deterministických RsA byly nalezeny
omezení, kdy algoritmus nevygeneruje RsA pro RA, které lze pomocí RsA determinizo-
vat. Pro vyřešení nalezených omezení byly představeny dva doplňující algoritmy. První
předzpracovávající RA před determinizací, a druhý upravující detekování nadaproximace
původního RA po determinizaci.

Nakonec byl naimplementován prototyp regex matcheru založený na RsA. Prototyp
funguje tak, že z regulárního výrazu se zpětnými odkazy vytvoří RA (pokud to je možné)
a následně RA determinizuje. Pokud se determinizace podaří, pak lze pomocí vytvořeného
RsA přímo porovnávat vstupní řetězce s regulárním výrazem. Tento prototyp byl pak exper-
imentálně porovnán s jinými matchery používanými v praxi pod vygenerovanými ReDoS
(regular expression denial of service) útoky. Tyto útoky byly cíleny na regulární výrazy
se zpětnými odkazy, které byly použité v praxi. Úspěšně byla determinizována více než
třetina regulárních výrazů na které bylo útočeno. Prototyp útočné vstupy porovnával s

determinizovanými regulárními výrazy efektivně, narozdíl od některých matcherů použí-
vaných v praxi.

V budoucnu je cílem zjistit, zda SDST rozšíření lze dále rozšířit při zachování rozhod-
nutelnosti funkční ekvivalence. Dalším plánem je pokusit se rozšířit třídu determinizovatel-
ných RA do RsA. Nakonec je cílem začít pracovat na ReDoS generátoru, který by cílil
přímo na regulární výrazy se zpětnými odkazy.

Formal Models for Data Languages

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Ondřej Lengál, Ph.D. I have listed all the literary sources,
publications and other sources that were used during the preparation of this thesis.

. .
Jan Vašák

May 7, 2024

Acknowledgements
I would like to thank my supervisor Ing. Ondřej Lengál, Ph.D. for his guidance, patience,
and help while working on this thesis. I would also like to thank to all my family and
friends who have supported me throughout the writing of this thesis.

Contents

1 Introduction 2

2 Automata Models 4
2.1 Register Automata . 4
2.2 Register Set Automata . 6
2.3 RsAs with Removal . 8
2.4 History Register Automata . 10
2.5 Streaming Data String Transducers . 12

3 Vector Addition Systems with States 14
3.1 Extensions . 15
3.2 Grzegorczyk Hierarchy . 15
3.3 Well Quasi Orderings . 16

4 Relating RsAs and HRAs 17
4.1 Relating DRsAs and DHRAs . 18

5 Parametrization of RsA Emptiness Complexity 19
5.1 Emptiness of RsA1 . 19
5.2 Emptiness of RsA𝑟𝑚

1 . 20
5.3 Emptiness of RsA𝑟𝑚

𝑛 . 21

6 Extending Streaming Data String Transducers 24
6.1 Deciding Functional Equivalence . 25

7 Improvements to RA Determinisation 28
7.1 NRA Pre-processing . 29
7.2 DRsA Post-processing . 31

8 RsA-based Regex Matching 34
8.1 Implementation . 34
8.2 Experiments . 34

9 Conclusion and Future Work 38

Bibliography 40

A Contents of the Included Storage Media 43

1

Chapter 1

Introduction

Finite automata are a staple formal model for simple computations. They consist of a finite
number of states and transitions. The input of a finite automaton is a word: a sequence of
symbols (characters) from a finite set called the alphabet. The automaton reads one input
symbol at a time and decides on a new state based on the transitions available to it in
its current state as well as the read symbol (transitions have an origin state, a symbol,
and a destination state). Automata have a wide range of applications, common examples
include text processing and compiler design. Famously, finite automata are equivalent to
regular expressions (regexes), a formal system for describing regular languages (sets of words
accepted by some finite automaton).

Finite automata are only equipped to work with words over finite alphabets, as they only
have a finite number of transitions, each with just one symbol on it. However, sometimes
one might want to model an infinite alphabet (e.g. when modelling integers), or a finite
alphabet so large that it is better to treat it as infinite (e.g., Unicode symbols). Data
languages are a common way to formally work with words over infinite alphabets.

Data languages are sets of data words, finite sequences made up of pairs consisting of
a symbol from a finite alphabet and a data value from a countably infinite data domain.
Formal models that work over data words commonly utilize a finite number of some form
of registers — a place to store a data value in order to refer to it later. In this work,
we will focus on models suitable for pattern matching with back-references and modelling
list-processing programs.

Register automata, first proposed in [16], extend finite automata with registers, each
storing a single data value. They are useful in, e.g., modelling regular expressions with
back-references, program verification [9], or malware specification [26]. Register automata,
however, are not determinisable in general, which makes them less useful in some imple-
mentations (e.g. regex matching).

Register set automata, proposed in [11], are an extension of register automata. Unlike
register automata, they allow for a set of values to be stored in each register. This allows
for an algorithm to be able to determinise a large class of non-deterministic register au-
tomata into deterministic register set automata, using a similar principle to the classical
subset construction algorithm for determinising finite automata [21]. Due to this property,
register set automata are an interesting model when it comes to automata-based match-
ing of patterns with back-references. We will also examine the relationship of register set
automata and history register automata, a similar model proposed earlier in [10].

Streaming data string transducers, proposed in [1], are a transducer model (a trans-
ducer is essentially an automaton with an output). They are equipped with a set of data

2

variables and data string variables. Data variables are equivalent to the registers of a regis-
ter automaton, and data string variables store data words in order to generate the output.
Streaming data string transducers are designed to model a class of list-processing programs.

In Chapter 2, we will introduce the above-mentioned models in more detail. Examples
of models for words over infinite alphabets that are not discussed further in this work
include pebble automata [20], data automata [4], class memory automata [3], fresh register
automata [27], and set augmented finite automata [2].

We will then present some theoretical results for the examined models, and a prototype
of a regex matcher based on register set automata. The regex matcher is based on the
fact that register set automata can determinise a class of register automata. This allows
our prototype to match inputs with amortized constant per-symbol complexity. As back-
references are not expressible by finite automata, regex matchers must sometimes resort to
back-tracking to match them. Back-tracking can, however, lead to the so-called catastrophic
backtracking, which can cause massive slowdowns in matching the regex. Catastrophic
back-tracking can be targeted by a ReDoS (regular expression denial of service) attack [28],
where an attacker inputs a malicious text intended to cause serious slowdown in a regex
matcher, making the targeted system unresponsive.

3

Chapter 2

Automata Models

This chapter will provide definitions and other useful information for the examined models.
We will sometimes use · to denote an ellipsis (a value that can be ignored).

Alphabet and Data Domain. An alphabet Σ is a non-empty finite set whose elements
are called symbols (sometimes called ‘labels’, ‘tags’, or similar in the context of data words).
A data domain D is a countably infinite set of data values such that ⊥ /∈ D. Further in
the text, we will often just use Σ and D, assuming that they are an alphabet and a data
domain, respectively, without explicitly stating it.

Data Words and Languages. Given a finite alphabet Σ and an infinite data domain
D, a data word 𝑤 of length 𝑛 over Σ×D is a finite sequence (𝑎1, 𝑑1) . . . (𝑎𝑛, 𝑑𝑛) where each
(𝑎𝑖, 𝑑𝑖) ∈ Σ× D. The empty word of length 0 is denoted as 𝜀. A data language over Σ× D
is a set of words over Σ×D. For the sake of simplicity, data words and data languages will
often be referred to as just words and languages throughout this work.

2.1 Register Automata
Register automata are an automata variant equipped with a set of registers, each storing
a data value. The automaton can check the (non-)equality of the values stored in each
register to the currently processed data value. We explore them mostly due to the fact that
they are capable of representing a certain class of regular expressions with back-references.

A (non-deterministic) register automaton (NRA) over Σ × D is a tuple 𝒜 =
(𝑄,R,Δ, 𝐼, 𝐹), where 𝑄 is a finite set of states, R is a finite set of registers, such that
⊥, in /∈ R, 𝐼 ⊆ 𝑄 is the set of initial states, 𝐹 ⊆ 𝑄 is the set of final states, and
Δ ⊆ 𝑄 × Σ × 2R × 2R × (R → (R ∪ {in,⊥})) × 𝑄 is a transition relation, such that
if 𝑡 = (𝑞, 𝑎, 𝑔=, 𝑔 ̸=, up, 𝑠) ∈ Δ, then 𝑔= ∩ 𝑔 ̸= = ∅. Semantically, this means that 𝒜 can use
transition 𝑡 to move from 𝑞 to 𝑠 if the currently processed Σ-symbol is 𝑎 and the currently
processed D-value (denoted in) is equal to the value stored in all registers in 𝑔= and no reg-
isters in 𝑔 ̸=. The registers are then updated such that 𝑟 ← up(𝑟) For better clarity, we will
denote 𝑡 as 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 and treat update mappings of the form 𝑟 ← 𝑟 as implicit.

A configuration of 𝒜 is a pair 𝑐 = (𝑞, 𝑓) ∈ 𝑄 × (𝑅 → D ∪ {⊥}), where 𝑞 is the current
state of 𝒜 and 𝑓 is the current register assignment. An initial configuration of 𝒜 is a pair
𝑐init = (𝑞init, 𝑓init), where 𝑞init ∈ 𝐼 and 𝑓init = {𝑟 ↦→ ⊥ | 𝑟 ∈ R}. Let 𝑐1 = (𝑞1, 𝑓1) and

4

𝑞 𝑠 𝑡

𝑎

𝑎

𝑟 ← in

𝑎

𝑎 in = 𝑟

Figure 2.1: A non-deterministic RA, accepting the language of words whose last data value
is in the word more that once.

𝑐2 = (𝑞2, 𝑓2) be two configurations of 𝒜. We say that 𝒜 can make a step from 𝑐1 to 𝑐2 over
(𝑎, 𝑑) using transition 𝑡 = 𝑞1 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑞2 ∈ Δ, denoted as 𝑐1 ⊢(𝑎,𝑑)𝑡 𝑐2, iff

1. ∀𝑟 ∈ 𝑔= : 𝑑 = 𝑓1(𝑟),

2. ∀𝑟 ∈ 𝑔 ̸= : 𝑑 ̸= 𝑓1(𝑟), and

3. ∀𝑟 ∈ R : 𝑓2(𝑟) =

⎧⎪⎨⎪⎩
𝑓1(𝑟

′) if up(𝑟) = 𝑟′ ∈ 𝑅,

𝑑 if up(𝑟) = in, and
⊥ if up(𝑟) = ⊥.

A run 𝜌 of 𝒜 over the word 𝑤 = (𝑎1, 𝑑1) . . . (𝑎𝑛, 𝑑𝑛) from a configuration 𝑐0 is a sequence
of configurations (𝑐𝑖) and transitions (𝑡𝑖) 𝜌 = 𝑐0𝑡1𝑐1𝑡2 . . . 𝑡𝑛𝑐𝑛, where for every 1 ≤ 𝑖 ≤ 𝑛 it
holds that 𝑐𝑖−1 ⊢(𝑎𝑖,𝑑𝑖)𝑡𝑖

𝑐𝑖. We call 𝜌 an accepting run if 𝑐0 is an initial configuration and
𝑐𝑛 = (𝑞, 𝑓), where 𝑞 ∈ 𝐹 . The language 𝐿(𝒜) accepted by 𝒜 is the set of all words over
which there exists an accepting run of 𝒜.

We say that 𝒜 is deterministic if |𝐼| ≤ 1 and if for every 𝑞 ∈ 𝑄 and every a ∈ Σ it
holds that for any two distinct transitions 𝑞 𝑎 | 𝑔=1 , 𝑔

̸=
1 , up1 𝑠1, 𝑞 𝑎 | 𝑔=2 , 𝑔

̸=
2 , up2 𝑠2 ∈ Δ

we have 𝑔=1 ∩ 𝑔 ̸=2 ̸= ∅ or 𝑔 ̸=1 ∩ 𝑔=2 ̸= ∅. We will call deterministic register automata DRAs
for short.

Example 1. Consider the language of words over Σ = {𝑎}, whose last data value has
appeared earlier in the word. An NRA accepting this language can be seen in Figure 2.1.
Intuitively, the NRA waits in 𝑞, where it non-deterministically selects a value to store in 𝑟.
It then waits in 𝑠 for the last data symbol of the word, which it then compares to the one
stored in 𝑟. It should be noted that this language is not expressible by a deterministic RA,
and that its complement, a language of words whose last data value is unique in the word,
is not expressible by any NRA.

Properties of RAs

We use 𝐶 to describe both a class of automata and the class of languages accepted by the
said class (e.g., RA for the register automata and the class of languages accepted by them).
As mentioned above, RAs are capable of representing a certain class of regular expressions
with back-references. The problem with doing so in a practical application (e.g., an efficient
automata-based regex matcher) is that they are not determinisable in general.

Fact 1. [16, Remark 2] DRA (NRA.

5

Proof idea. Because NRA is not closed under complement and DRA is (see Fact 3 and
Fact 4), there must be languages in NRA that are not in DRA (specifically the languages in
NRA whose complement is not in NRA). See the language considered in Example 1, whose
complement is not in NRA and thus the language itself cannot be in DRA. Trivially, all
languages in DRA are also in NRA.

Next, we take a look at the emptiness problem (the emptiness problem of an automaton
is to determine whether the automaton’s language is empty). We will mostly be concerned
about the emptiness problems of the more complex automata models, but for the sake of
completeness, we show the result for RA.

Fact 2. [7, Theorem 4.3 and Theorem 5.1] The emptiness problem for NRA is
PSPACE-complete.

We follow with closure properties of RA under Boolean operations. One of the original
ideas behind RA was to preserve closure properties on infinite alphabets. Except for closure
under complement, this was successful.

Fact 3. [16, Theorem 3 and Remark 2] NRA is closed under union and intersection. NRA
is not closed under complement.

Proof idea. Consider the language of words whose last data value has appeared earlier in the
word from Example 1. The complement of this language, the language of words whose last
data value is unique in the word, is inexpressible by NRA as it would require an unbounded
number of registers to remember all the encountered data values. For union and intersection
of two NRAs we can use the standard construction of an automaton that runs both NRAs
in parallel and accepts if at least one of them accepts (for union) or accepts if both of them
accept (for intersection).

Fact 4. [16, Chapter 4] DRA is closed under union, intersection, and complement.

Proof idea. For union and intersection we can use the same standard construction as we
did for NRAs. For complement we can simply change all final states to non-final and all
non-final states to final states (note that the DRA needs to be complete).

Closure under complement is a major point separating NRA from DRA. We will see
a similar pattern in the more complex models.

2.2 Register Set Automata
Register set automata generalize register automata by allowing each register to hold a set
of data values and checking the (non-)membership of the currently processed data value in
them. The registers in RsAs will sometimes be called set-registers, in order to differentiate
them from registers of RAs.

A register set automaton (RsA) over Σ × D is a tuple 𝒜𝑆 = (𝑄,R,Δ, 𝐼, 𝐹), where
𝑄,R, 𝐼, 𝐹 are the same as in an RA, and Δ ⊆ 𝑄 × Σ × 2R × 2R × (R → 2R∪{in}) × 𝑄 is
a transition relation, such that if 𝑡 = (𝑞1, 𝑎, 𝑔

∈, 𝑔 /∈, up, 𝑞2) ∈ Δ (like in RAs, we will denote
𝑡 as 𝑞1 𝑎 | 𝑔∈, 𝑔/∈, up 𝑞2), then 𝑔∈ ∩ 𝑔 /∈ = ∅. The semantics of 𝑡 is that 𝒜𝑆 can move from
state 𝑞1 to state 𝑞2 using 𝑡 if the current Σ-symbol is 𝑎 and the current D-value (denoted
as in) is in all the registers in 𝑔∈ and in none of the registers in 𝑔 /∈. The registers are then
updated so that 𝑟 ←

⋃︀
{𝑦 | 𝑦 ∈ up(𝑟)}.

6

𝑞 𝑠

𝑎 in /∈ 𝑟

𝑟 ← 𝑟 ∪ {in}
𝑎 in ∈ 𝑟

𝑎 in ∈ 𝑟

𝑎 in /∈ 𝑟

𝑟 ← 𝑟 ∪ {in}

Figure 2.2: A deterministic RsA, accepting the language of words whose last data value is
in the word more that once.

A configuration of 𝒜𝑆 is a pair 𝑐 = (𝑞, 𝑓) ∈ 𝑄× (R→ 2D), where 𝑞 is the current state
of 𝒜𝑆 and 𝑓 is the current register assignment. An initial configuration of 𝒜𝑆 is a pair
𝑐init = (𝑞init, 𝑓init), where 𝑞init ∈ 𝐼 and 𝑓init = {𝑟 ↦→ ∅ | 𝑟 ∈ R}. Let 𝑐1 = (𝑞1, 𝑓1) and
𝑐2 = (𝑞2, 𝑓2) be two configurations of 𝒜𝑆 . We say that 𝒜𝑆 can make a step from 𝑐1 to 𝑐2

over (𝑎, 𝑑) using transition 𝑡 = 𝑞1 𝑎 | 𝑔∈, 𝑔/∈, up 𝑞2 ∈ Δ, denoted as 𝑐1 ⊢(𝑎,𝑑)𝑡 𝑐2, iff

1. ∀𝑟 ∈ 𝑔∈ : 𝑑 ∈ 𝑓1(𝑟),

2. ∀𝑟 ∈ 𝑔 /∈ : 𝑑 /∈ 𝑓1(𝑟), and

3. ∀𝑟 ∈ R : 𝑓2(𝑟) =
⋃︀
{𝑓1(𝑟′) | 𝑟′ ∈ up(𝑟), 𝑟′ ∈ R} ∪

{︃
{𝑑} if in ∈ up(𝑟), and
∅ otherwise.

The run of 𝒜𝑆 and the language accepted by 𝒜𝑆 have the same definitions as for RAs.
We say that 𝒜𝑆 is deterministic if |𝐼| ≤ 1 and if for all 𝑞 ∈ 𝑄 and all 𝑎 ∈ Σ it holds

that for any two distinct transitions 𝑞 𝑎 | 𝑔∈1 , 𝑔/∈
1 , up1 𝑠1, 𝑞 𝑎 | 𝑔∈2 , 𝑔/∈

2 , up2 𝑠2 ∈ Δ we have
𝑔∈1 ∩ 𝑔 /∈

2 ̸= ∅ or 𝑔 /∈
1 ∩ 𝑔∈2 ̸= ∅.

Example 2. In this example, we recall the language from Example 1 (the language of all
words whose last data symbol has appeared previously in the word). A deterministic RsA
accepting this language is shown in Figure 2.2.

Properties of RsAs

We will look at some key properties of RsAs. First is the fact that RsAs generalize RAs.

Fact 5. [11, Fact 6] For every 𝑛 ∈ N and NRA𝑛, there exists an RsA𝑛 accepting the
same language.

Next, we turn to the emptiness problem for RsA. Although decidable, it is of stagger-
ing complexity.

Fact 6. [11, Theorem 7] The emptiness problem for RsAs is Ackermann-complete.

We follow with closure properties of RsAs. Observe that they are the same as the closure
properties of RA. The proofs for the closure properties of RsA use the same ideas as those
for RA.

Fact 7. [11, Theorem 9] RsA is closed under union and intersection. RsA is not closed
under complement.

7

The deterministic variant also has the same closure properties as its deterministic
RA counterpart.

Fact 8. [11, Theorem 11] DRsA is closed under union, intersection, and complement.

This gives rise to the fact that, as with RAs, the deterministic variant is strictly weaker
in terms of expressive power.

Fact 9. [11, Theorem 13] DRsA (RsA.

The last fact is one of the most interesting properties of register set automata.

Fact 10. [11, Chapter 5] A large class of NRAs can be determinised into DRsAs.

This can be done using Algorithm 1 from [11]. The algorithm, at its core, is an extended
version of the classical subset construction algorithm for determinising finite automata [21].
Each register of the RA has its copies created for each state it is active in, then the set
registers of the DRsA track the sets of possible values that could be stored in the register.
The algorithm will be described in more detail in Section 7.

2.3 RsAs with Removal
RsAs with Removal are an extension of the register set automata model, allowing the
automaton to remove the currently processed value from a register, in addition to the
capabilities of a normal RsA.

An RsA with removal (RsA𝑟𝑚) over Σ × D is a tuple 𝒜𝑅 = (𝑄,R,Δ, 𝐼, 𝐹), where
𝑄,R, 𝐼, 𝐹 are the same as for RsAs and Δ ⊆ 𝑄×Σ× 2R × 2R × (R→ 2R∪{in})× 2R ×𝑄
is a transition relation such that if 𝑡 = (𝑞1, 𝑎, 𝑔

∈, 𝑔 /∈, up, rm, 𝑞2) ∈ Δ (we will denote 𝑡 as
𝑞1 𝑎 | 𝑔∈, 𝑔/∈, up, rm 𝑞2), then 𝑔∈ ∩ 𝑔 /∈ = ∅. The conditions under which a transition may
be used are the same as in RsAs. The contents of registers are updated such that if 𝑟 ∈ rm,
then 𝑟 ←

⋃︀
{𝑥 | 𝑥 ∈ up(𝑟)} ∖ {in}, else 𝑟 ←

⋃︀
{𝑥 | 𝑥 ∈ up(𝑟)}.

Definitions for a configuration and an initial configuration are the same as for an RsA.
Let 𝑐1 = (𝑞1, 𝑓1) and 𝑐2 = (𝑞2, 𝑓2) be two configurations of 𝒜𝑅. We say that 𝒜𝑅 can make
a step from 𝑐1 to 𝑐2 over (𝑎, 𝑑) using transition 𝑡 = 𝑞1 𝑎 | 𝑔∈, 𝑔/∈, up, rm 𝑞2 ∈ Δ, denoted
as 𝑐1 ⊢(𝑎,𝑑)𝑡 𝑐2, iff

1. ∀𝑟 ∈ 𝑔∈ : 𝑑 ∈ 𝑓1(𝑟),

2. ∀𝑟 ∈ 𝑔 /∈ : 𝑑 /∈ 𝑓1(𝑟), and

3. ∀𝑟 ∈ R : 𝑓2(𝑟) =
⋃︀
{𝑓1(𝑟′) | 𝑟′ ∈ up(𝑟), 𝑟′ ∈ R}∪𝑥1 ∖𝑥2, where 𝑥1 = {𝑑}, if in ∈ up(𝑟)

and 𝑥1 = ∅ otherwise, and 𝑥2 = {𝑑}, if 𝑟 ∈ rm and 𝑥2 = ∅ otherwise.

The run on 𝒜𝑅, the language accepted by 𝒜𝑅, and determinism of 𝒜𝑅 have the same
definitions as for RsAs.

Example 3. We look at a language of words whose last two data values have appeared
earlier in the string, but are different from one another. An RsA𝑟𝑚 accepting this language
is shown in Figure 2.3. Intuitively, in the initial state 𝑞, the automaton collects all the
values appearing in the first part of the string in 𝑟, then guesses when the second last
symbol is read and removes the associated data value from 𝑟 (after checking that the value
has indeed appeared before), while moving to state 𝑠. Lastly, it checks that the last data
value also appeared previously.

8

𝑞 𝑠 𝑡

𝑎

𝑟 ← 𝑟 ∪ {in}

𝑎 in ∈ 𝑟

𝑟 ← 𝑟 ∖ {in} 𝑎 in ∈ 𝑟

Figure 2.3: An RsA𝑟𝑚 accepting the language of words whose last two data values have
appeared earlier in the string, but are different from one another

Properties of RsAs with Removal

RsA𝑟𝑚 have very similar properties to regular RsA. First, we note that they are a general-
ization of RsA.

Fact 11. For every 𝑛 ∈ N and RsA𝑛, there exists an RsA𝑟𝑚
𝑛 accepting the same language.

Proof. Any RsA𝑛 can be converted to a RsA𝑟𝑚
𝑛 by simply adding an empty rm set to

each transition.

Although a generalization, they keep the same result for their emptiness problem.

Fact 12. [11, Theorem 37] The emptiness problem for RsA𝑟𝑚s is Ackermann-complete.

The same is true for their closure properties.

Fact 13. RsA𝑟𝑚 is closed under union and intersection. RsA𝑟𝑚 is not closed un-
der complement.

Proof idea. For union and intersection we can use the standard construction of running two
RsA𝑟𝑚s in parallel and either accepting if at least one of them accepts to get their union
or accepting if both of them accept to get their intersection.

For non-closure under complement, we use the proof of Theorem 9 in [11] (closure
properties of RsA, see Fact 7). The proof shows that if the language of words whose data
values all have more than one occurrence were expressible by an RsA (the complement
of this language, the language of words with at least one unique data value is expressible
by RsA), then RsA could be used to encode the accepting runs of a Minsky machine.
Because RsA emptiness is decidable, and Minsky machine emptiness is not [19], this is
a contradiction.

The same argument also applies to RsA𝑟𝑚, as their emptiness is also decidable and
every language expressible by RsA is expressible by RsA𝑟𝑚.

Following the pattern started by RAs, the deterministic variant of RsAs with removal
is also strictly weaker and also closed under complement.

Fact 14. DRsA𝑟𝑚 is closed under union, intersection, and complement.

Proof idea. For union and intersection, we can use the same construction as we used for the
non-deterministic variant. For complement, we can simply swap final and non-final states
(note that the DRsA𝑟𝑚 needs to be complete).

Fact 15. DRsA𝑟𝑚 (RsA𝑟𝑚.

9

Proof idea. We know that DRsA𝑟𝑚 are closed under complement and RsA𝑟𝑚 are not and
that every DRsA𝑟𝑚 is also an RsA𝑟𝑚. From this we can conclude that there must be
languages that are expressible by a RsA𝑟𝑚 and not expressible a DRsA𝑟𝑚 as there would
be a contradiction otherwise.

2.4 History Register Automata
History register automata, presented in [10], are similar to the RsA𝑟𝑚 model in the fact that
they also allow sets of values to be stored in registers. The key difference is the assignment
of values to registers. In a history register automaton, one can only change the contents of
registers by adding or removing the currently processed data value. Note that the under
the original definition, history register automata are slightly different from how they are
presented here. Originally, they do not run on data words (and thus don’t have Σ-labels on
transitions), they have initial register assignments, and they have a set of RA-like registers
(simply referred to as ‘registers’ in the original work) along with the set-registers (referred
to as ‘histories’). This change was made to align them better with RsA𝑟𝑚s (one could
just as easily modify RsA𝑟𝑚s to match them up better with the original history register
automata definition).

A history register automaton (HRA) over D×Σ is a tuple 𝒜𝐻 = (𝑄,R,Δ, 𝐼, 𝐹), where
𝑄,R, 𝐼, 𝐹 is the same as in RsAs, and Δ ⊆ 𝑄×Σ× ((2R × 2R) ∪ 2R)×𝑄. In this model,
there are two types of transitions:

1. Updating transitions 𝑡𝑢𝑝 = 𝑞 𝑎 | 𝑅𝑔, 𝑅𝑢𝑝 𝑞′. 𝒜𝐻 can use such a 𝑡𝑢𝑝 if the current
state is 𝑞, the current Σ-symbol is 𝑎 and in is in all the registers in 𝑅𝑔 and in none
of the registers in R ∖ 𝑅𝑔. The contents of the registers are then updated so that in
is in all the registers in 𝑅𝑢𝑝 and in none of the registers in R ∖𝑅𝑢𝑝.

2. Resetting transitions, 𝑡𝑟𝑒𝑠 = 𝑞 𝑅𝑐𝑙𝑟 𝑞′. 𝒜𝐻 can use such a 𝑡𝑟𝑒𝑠 if the 𝑞 is the current
state. They do not consume any input symbols (they are 𝜀-transitions). The register
contents are then updated so that all the registers in 𝑅𝑐𝑙𝑟 are emptied (the other
registers are left as they are).

Definitions for a configuration and an initial configuration are the same as for an RsA. Let
𝑐1 = (𝑞1, 𝑓1), 𝑐2 = (𝑞2, 𝑓2) be two configurations of 𝒜𝐻 . We say that 𝒜𝐻 can make a step
from 𝑐1 to 𝑐2 over (𝑎, 𝑑) using an update transition 𝑡𝑢𝑝 = 𝑞1 𝑎 | 𝑅𝑔, 𝑅𝑢𝑝 𝑞2, denoted as
𝑐1 ⊢(𝑎,𝑑)𝑡𝑢𝑝 𝑐2, iff

1. ∀𝑟 ∈ 𝑅𝑔 : 𝑑 ∈ 𝑓1(𝑟),

2. ∀𝑟 ∈ R ∖𝑅𝑔 : 𝑑 /∈ 𝑓1(𝑟),

3. ∀𝑟 ∈ 𝑅𝑢𝑝 : 𝑓2(𝑟) = 𝑓1(𝑟) ∪ {𝑑}, and

4. ∀𝑟 ∈ R ∖𝑅𝑢𝑝 : 𝑓2(𝑟) = 𝑓1(𝑟) ∖ {𝑑}.

𝒜𝐻 can also make a step from 𝑐1 to 𝑐2 using a reset transition 𝑡𝑟𝑒𝑠 = 𝑞1 𝑅𝑐𝑙𝑟 𝑞2, con-
suming no input, denoted as 𝑐1 ⊢𝜀𝑡𝑟𝑒𝑠 𝑐2, iff

1. ∀𝑟 ∈ 𝑅𝑐𝑙𝑟 : 𝑓2(𝑟) = ∅, and

2. ∀𝑟 ∈ R ∖𝑅𝑐𝑙𝑟 : 𝑓2(𝑟) = 𝑓1(𝑟).

10

𝑞 𝑠

𝑎 ∅
{𝑟} 𝑎 {𝑟}

{𝑟}

𝑎 {𝑟}
{𝑟}

𝑎 ∅
{𝑟}

Figure 2.4: A deterministic HRA, accepting the language of words whose last data value is
in the word more that once.

The run on 𝒜𝐻 and the language accepted by 𝒜𝐻 have the same definitions as for RsAs.
We say that 𝒜𝐻 is deterministic if for all states 𝑞1 ∈ 𝑄 it holds that either

1. there is only one transition originating in 𝑞1, or

2. there are no reset transitions originating in 𝑞1, and for all 𝑎 ∈ Σ, 𝑞2 ∈ 𝑄 it holds that
there are no distinct transitions 𝑞1 𝑎 | 𝑅1

𝑔, 𝑅
1
𝑢𝑝 𝑞2, 𝑞1 𝑎 | 𝑅2

𝑔, 𝑅
2
𝑢𝑝 𝑞2 ∈ Δ such that

𝑅1
𝑔 = 𝑅2

𝑔.

Example 4. We look to the language (of words whose last data value was present earlier
in the word) from Example 1 and Example 2 one more time. See the DHRA accepting it in
Figure 2.4. Observe that the automaton is the same as the DRsA in Example 2, except that
the transition labels use different notation. The set at the top of the label is the guard set,
specifying which registers contain in, and the set at the bottom of the label is the update
set, specifying in which registers should in be after the transition.

Properties of HRAs

Although defined differently and created for different purposes, HRAs have very similar
properties to RsAs (and we will directly compare them later). First we note that HRAs
also generalize RAs.

Fact 16. [10, Definition 2.4 and Proposition 4.1] For every 𝑛 ∈ N and NRA𝑛, there exists
an HRA𝑛 accepting the same language.

HRA emptiness problem has the same result as its RsA counterpart.

Fact 17. [10, Proposition 5.4] The emptiness problem for HRAs is Ackermann-complete.

HRAs also have the same closure properties as RsAs.

Fact 18. [10, Proposition 3.2 and Lemma 3.3] HRA is closed under union and intersection.
HRA is not closed under complement.

And as with all previous models, their deterministic variant is also strictly weaker and
closed under complement.

Fact 19. DHRA is closed under union, intersection, and complement.

11

Proof idea. For union and intersection we can use the standard construction of running two
DHRAs in parallel and either accepting if at least of them accepts to get their union or
accepting if both of them accept to get their intersection. For complement we can simply
swap final and non-final states (note that the DHRA needs to be complete).

Fact 20. DHRA (HRA.

Proof idea. DHRA is closed under complement, while HRA is not and every DHRA is also
a HRA. From this we can conclude that there must be languages in HRA that are not in
DHRA, because otherwise we would have a contradiction.

2.5 Streaming Data String Transducers
Streaming data string transducers, proposed in [1], are a transducer model designed as
a model for analyzing programs that access and modify lists of data items in a single
pass. They are equipped with data variables, which are essentially registers from RAs, each
storing a data value that can be compared to the input on transition guards, and data
string variables, storing data strings for the purpose of generating the output. Data string
variables can be updated by a concatenation of data string variables and the data values
stored in data variables paired with symbols of the output alphabet, with the restriction
that each data string variable can only appear once in a right-hand-side expression on
a transition.

Because streaming data string transducers use an ordering on the data domain, we define
D< as a countably infinite set of data values with a strict total order < over it. A (deter-
ministic) data transduction over D< from an input alphabet Σ to an output alphabet Γ is
a partial function 𝐹 from (Σ× D<)* to (Γ× D<)*.

A (deterministic) streaming string transducer (SDST) 𝒮 over D< from an input alphabet
Σ to an output alphabet Γ is a tuple (𝑄, 𝑞𝑖, 𝑉,𝑋,𝑂,Δ), where 𝑄 is a finite set of states,
𝑞𝑖 ∈ 𝑄 is an initial state, 𝑉 is a finite set of data variables including in ∈ 𝑉 , a special
variable referring to the data value of the current input symbol, 𝑋 is a finite set of data
string variables, 𝑂 is a partial output function from 𝑄 to ((Γ× 𝑉) ∪𝑋)* and Δ is a finite set
of transitions of the form 𝑞 𝑎 | 𝜙, up 𝑞′, where 𝑞 ∈ 𝑄 is a source state, 𝑎 ∈ Σ is the input
Σ-symbol, 𝜙 is a Boolean formula over atomic constraints of the form 𝑣 < in and in < 𝑣 with
𝑣 ∈ 𝑉 , 𝑞′ is a target state and up is an update mapping 𝑉 to 𝑉 and 𝑋 to ((Γ× 𝑉) ∪𝑋)*.
Furthermore, it is required that (i) for all 𝑞 ∈ 𝑄, 𝑥 ∈ 𝑋 there is at most one occurrence of
𝑥 in 𝑂(𝑞), (ii) for each 𝑞 𝑎 | 𝜙, up 𝑞′ ∈ Δ, 𝑥 ∈ 𝑋 there is at most one occurrence of 𝑥 in
the set of strings {up(𝑦) | 𝑦 ∈ 𝑋}, and (iii) for each 𝑞 𝑎 | 𝜙, up 𝑞′, 𝑞 𝑎 | 𝜙′, up′ 𝑞′′ ∈ Δ
the guards 𝜙 and 𝜙′ are mutually exclusive (𝜙 ∧ 𝜙′ is unsatisfiable).

A configuration of 𝒮 is a pair 𝑐 = (𝑞, 𝑓) ⊆ 𝑄× ((𝑉 → (D< ∪{⊥}))∪ (𝑋 → (Γ× D<)*)),
where 𝑞 is the current state of 𝒮 and 𝑓 is the current variable assignment. The initial
configuration of 𝒮 is a pair 𝑐init = (𝑞𝑖, 𝑓𝑖), where 𝑓𝑖 = {𝑣 ↦→ ⊥ | 𝑣 ∈ 𝑉 } ∪ {𝑥 ↦→ 𝜀 | 𝑥 ∈ 𝑋}.
For any variable assignment 𝑓 we also define 𝑓eval : ((Γ× 𝑉)×𝑋)* → (Γ× D<)*, which
evaluates a right-hand side of a data string variable update. It is defined for a word
𝑦 = 𝑦1 . . . 𝑦𝑛 as 𝑓eval (𝑦) = eval(𝑦1) . . . eval(𝑦𝑛), where eval(𝑦𝑖) = (𝑎, 𝑓(𝑣)) if 𝑦𝑖 = (𝑎, 𝑣), 𝑎 ∈
Γ, 𝑣 ∈ 𝑉 and eval(𝑦𝑖) = 𝑓(𝑦𝑖), if 𝑦𝑖 ∈ 𝑋.

Let 𝑐1 = (𝑞1, 𝑓1) and 𝑐2 = (𝑞2, 𝑓2) be two configurations of 𝒮. We say that 𝒮 can make
a step from 𝑐1 to 𝑐2 over (𝑎, 𝑑) using transition 𝑡 = 𝑞1 𝑎 | 𝜙, up 𝑞2, denoted as 𝑐1 ⊢(𝑎,𝑑)𝑡 𝑐2 iff
𝑓 ′
1 = 𝑓1[in ↦→ 𝑑] satisfies 𝜙, ∀𝑣 ∈ 𝑉 : 𝑓2(𝑣) = 𝑓 ′

1(up(𝑣)), and ∀𝑥 ∈ 𝑋 : 𝑓2(𝑥) = 𝑓 ′eval
1 (up(𝑥)).

12

𝑞

𝑎

𝑥← (𝑎, in)𝑥

Figure 2.5: A SDST performing the transduction 𝐹reverse , reversing any input data word

A run 𝜌 of 𝒮 over the word 𝑤 = (𝑎1, 𝑑1) . . . (𝑎𝑛, 𝑑𝑛) from a configuration 𝑐0 is a sequence
of configurations and transitions 𝜌 = 𝑐0𝑡0𝑐1𝑡1 . . . 𝑡𝑛𝑐𝑛, where for all 1 ≤ 𝑖 ≤ 𝑛 it holds that
𝑐𝑖−1 ⊢(𝑎𝑖,𝑑𝑖)𝑡𝑖

𝑐𝑖. We can denote 𝜌 as 𝑐0 ⊢𝑤 𝑐𝑛. The transduction J𝒮K of 𝒮 is defined for
an input word 𝑤 as J𝒮K(𝑤) = 𝑓eval (𝑂(𝑞)), if there exists a run 𝑐init ⊢𝑤 (𝑞, 𝑓) and 𝑂(𝑞) is
defined, otherwise J𝒮K(𝑤) is undefined. The functional equivalence problem for SDSTs is,
given two SDSTs 𝒮1 and 𝒮2, whether J𝒮1K = J𝒮2K.

Example 5. Consider the transduction 𝐹reverse over D< from Σ = {𝑎} to Γ = {𝑎} that
reverses any input data word. See the SDST performing 𝐹reverse in Figure 2.5. The trans-
ducer has one state 𝑞 and one data string variable 𝑥. At each step it puts the current
symbol at the beginning of 𝑥. The output function is defined in 𝑞 to be 𝑥.

Properties of SDSTs

For the purposes of program verification, a class of single-pass list-processing imperative
programs and a class of single-pass list-processing functional programs were defined in [1].
These programs can be represented by SDSTs.

Fact 21. [1, Proposition 6] Given a single-pass list-processing program 𝑃 , one can effectively
construct an SDST 𝒮 such that J𝑃 K = J𝒮K.

Fact 22. [1, Proposition 8] Given a single-pass list-processing function 𝑓 , one can effectively
construct an SDST 𝒮 such that J𝑓K = J𝒮K.

In fact, the reverse is also true and it is possible to construct list-processing imperative
and functional programs from a given SDST.

Fact 23. [1, Proposition 7] Given an SDST 𝒮, one can effectively construct a single-pass
list-processing program 𝑃 such that J𝒮K = J𝑃 K.

Fact 24. [1, Proposition 9] Given an SDST 𝒮, one can effectively construct a single-pass
list-processing function 𝑓 such that J𝒮K = J𝑓K.

Next we move on to one of the main results of [1], which is that functional equivalence
of SDSTs is decidable. This allows, e.g., to to check whether a functional list-processing
program is semantically equivalent to an imperative list-processing program.

Fact 25. [1, Theorem 12] The SDTS functional equivalence problem is in PSPACE.

13

Chapter 3

Vector Addition Systems
with States

Vector addition systems with states are a model used (not only) for description of distributed
systems. We will use them to reason about some decidability problems of the studied
automata models. Vector addition systems with states have a finite number of counters
over natural numbers, which are updated by integer vectors on the transitions. A transition
can only be taken if no counter is lowered below zero by adding the transition’s vector.

We use N and Z to denote the sets of natural numbers and integers, respectively. We
use 0⃗𝑑 to denote the zero vector of dimension 𝑑, 𝑣[𝑖] to denote the value of 𝑖-th dimension
of the vector, 𝑣[𝑖 ↦→ 𝑛] to denote the vector 𝑣 with the 𝑖-th dimension set to 𝑛, and 𝑣1 ≤ 𝑣2
to denote that 𝑣1[𝑖] ≤ 𝑣2[𝑖] for all 𝑖.

A vector addition system with states (VASS) of dimension 𝑑 is a tuple 𝒱 = (𝑄,Δ, 𝑞𝑖),
where 𝑄 is a finite set of control states, 𝑞𝑖 ∈ 𝑄 is the initial control state and Δ ⊆ 𝑄×Z𝑑×𝑄
is a transition relation. The semantics of a transition 𝑡 = 𝑞1 (𝑎1, . . . , 𝑎𝑑) 𝑞2 ∈ Δ is that 𝒱
can move from 𝑞1 to 𝑞2, if adding each 𝑎𝑖 to the 𝑖-th counter does not lower the counter’s
value below 0. Each 𝑖-th counter is the updated by adding the value of 𝑎𝑖 to it.

A configuration of 𝒱 is a pair 𝑐 = (𝑞, 𝑣) ∈ 𝑄× (N𝑑), where 𝑞 is the current control state
and 𝑣 is a vector (of dimension 𝑑) of the current counter values. The initial configuration
of 𝒱 is 𝑐init = (𝑞𝑖, 0⃗𝑑). Let 𝑐1 = (𝑞1, 𝑣1), 𝑐2 = (𝑞2, 𝑣2) be two configurations of 𝒱. We say
that 𝒱 can move from 𝑐1 to 𝑐2 using 𝑡, denoted 𝑐1 ⊢𝑡 𝑐2 iff 0⃗ ≤ 𝑣1 + 𝑣 = 𝑣2.

The reachability problem for a VASS is defined as whether a configuration 𝑐dst is
reachable from another configuration 𝑐src . More precisely, 𝑐dst is reachable from 𝑐src if
there exists some sequence of configurations and transitions 𝑐0𝑡1𝑐1𝑡2 . . . 𝑡𝑛𝑐𝑛, such that
𝑐src = 𝑐0, 𝑐dst = 𝑐𝑛, and for all 1 ≤ 𝑖 ≤ 𝑛 it holds that 𝑐𝑖−1 ⊢𝑡𝑖 𝑐𝑖

The coverability problem for a VASS is defined as whether a configuration 𝑐dst =
(𝑞dst , 𝑣dst) is coverable from another configuration 𝑐src , that is, whether some configura-
tion 𝑐′ = (𝑞dst , 𝑣

′), where 𝑣dst ≤ 𝑣′, is reachable from 𝑐src .
We can use the coverability problem to define the control state reachability problem,

the problem asking whether a control state 𝑞 is reachable from a configuration 𝑐src . This is
equivalent to asking whether the configuration (𝑞, 0⃗𝑑) is coverable from 𝑐src .

14

𝑞 𝑠

(3,−1)
(0, 1)

{1 ↦→ 2, 2 ↦→ 1}

Figure 3.1: An example T-VASS

3.1 Extensions
VASSes have many different extensions, but here we will only look at adding reset or
transfer transitions to our existing definition of a VASS. We will be calling VASSes
equipped with reset and transfer transition reset-VASSes (R-VASS) and transfer-VASSes
(T-VASS), respectively.

A reset transition is a transition of the form 𝑡𝑟 = 𝑞1 rst 𝑞2, where rst ⊆ {1, . . . , 𝑑}
is a set, specifying which counters should be reset. Let 𝑐1 = (𝑞1, 𝑣1), 𝑐2 = (𝑞2, 𝑣2) be two
configurations of a R-VASS 𝒱 = (𝑄,Δ, 𝑞𝑖). 𝒱 can use 𝑡𝑟 (provided 𝑡𝑟 ∈ Δ) to move from
𝑐1 to 𝑐2, denoted 𝑐1 ⊢𝑡𝑟 𝑐2 iff for all 𝑖 ∈ {1, . . . , 𝑑} it holds that if 𝑖 ∈ rst then 𝑣2[𝑖] = 0 and
𝑣1[𝑖] = 𝑣2[𝑖] otherwise.

A transfer transition a transition of the form 𝑡𝑡 = 𝑞1 tr 𝑞2, where tr is a total transfer
function from {1, . . . , 𝑑} to {1, . . . , 𝑑}. Let 𝑐1 = (𝑞1, 𝑣1), 𝑐2 = (𝑞2, 𝑣2) be two configurations
of a T-VASS 𝒱 = (𝑄,Δ, 𝑞𝑖). 𝒱 can use 𝑡𝑡 (provided 𝑡𝑡 ∈ Δ) to move from 𝑐1 to 𝑐2, denoted
𝑐1 ⊢𝑡𝑡 𝑐2 iff for all 𝑖 ∈ {1, . . . , 𝑑} it holds that 𝑣2[𝑖] =

∑︀
𝑗∈{𝑥|tr(𝑥)=𝑖} 𝑣1[𝑗].

The reachability, coverability and control state reachability problems are defined the
same way for T-VASSes and R-VASSes as for regular VASSes.

Example 6. Figure 3.1 shows an example of a 2-dimensional T-VASS. The transition from
𝑞 to 𝑞 increases the value of the first counter by 3, while decreasing the value of the second
counter by 1 (and thus the transition cannot be taken if the value of the second counter is
zero). The transition from 𝑞 to 𝑠 increases the value of the second counter by one, and the
transition from 𝑠 to 𝑞 is a transfer transition that swaps the values of the two counters.

3.2 Grzegorczyk Hierarchy
The Grzegorczyk hierarchy (F𝑘)𝑘<𝜔 is a hierarchy of classes of primitive-recursive functions
𝑓 : N→ N. We will briefly introduce it here, as we use it to express some complexity results
(the definitions used here are as specified in [23, Section 2.1.3]). Each class F𝑘 is defined
using its fast-growing function 𝐹𝑘 : N→ N as F𝑘 = {𝑓 | ∃𝑖 : 𝑓 is computed in time/space ≤
𝐹 𝑖
𝑘} (the difference between time and space complexity is irrelevant as 𝐹2 is already of

exponential growth). The fast-growing functions are defined inductively as 𝐹0 = 𝑥+ 1 and
𝐹𝑘+1 = 𝐹 𝑥+1

𝑘 , with 𝑓 𝑖 defined as the function obtained by composing 𝑓 with itself 𝑖 times.
For example, F0 = F1 is the class of linear functions, F2 already corresponds to ex-

ponential complexity, F3 to exponent tower complexity and so on. An important thing to
note is that for 𝑘 ≥ 1 the hierarchy is strict: F𝑘 (F𝑘+1. The union of all F𝑘 (for finite 𝑘) is
equal to the set of primitive-recursive functions. The hierarchy can be extended to ordinals,
with F𝜔 corresponding to Ackermannian complexity (defined by the fast-growing function
𝐹𝜔(𝑥) = 𝐹𝑥(𝑥)).

15

3.3 Well Quasi Orderings
A quasi ordering is a reflexive and transitive relation ⪯ over a set 𝐴. A well quasi ordering
(wqo) ⪯ over a set 𝐴 is a quasi ordering such that in every infinite sequence 𝑥1, 𝑥2, . . . over
𝐴 there exists 𝑖, 𝑗 such that 𝑖 < 𝑗 and 𝑥𝑖 ⪯ 𝑥𝑗 (i.e., there is an increasing pair).

A bad sequence over a wqo (𝐴,⪯) is a sequence 𝑥1, 𝑥2, . . . that contains no increasing
pairs, i.e., ∀𝑖 < 𝑗 : 𝑥𝑖 ̸⪯ 𝑥𝑗 . By the definition of a wqo, all bad sequences are necessarily
finite. Sequences that do contain an increasing pair are called good sequences.

Bad sequences can, in general, be of arbitrary length [23]. In order to bound bad
sequences 𝑠 = 𝑥1, 𝑥2, . . . over a wqo (𝐴,⪯), one needs a norm and a control function.
A norm is some function |·|𝐴 : 𝐴 → N representing the size of elements of 𝐴. A control
function is a function 𝑔 : N→ N that bounds the growth of the sequence from one element
to the next. Thus 𝑠 is controlled by 𝑔 if for all 𝑖 it holds that |𝑥𝑖+1|𝐴 ≤ 𝑔(|𝑥𝑖|𝐴).

Lemma 1 (Length Function Theorem). [23, Theorem 2.8] Let 𝑑 ≥ 0 and 𝑔 be a control
function bounded by some function in F𝛾 for some 𝛾 ≥ 1. Then the length of 𝑔-controlled
bad sequences of a 𝑑-dimensional VASS’s configurations is bounded by a function in F𝛾+𝑑.

16

Chapter 4

Relating RsAs and HRAs

In this chapter, we will examine the relationship of the RsA𝑟𝑚 and HRA models. Namely,
we will compare their respective expressive powers (for both their non-deterministic and
deterministic variants). The first observation one can make is that HRAs are convertible
to RsA𝑟𝑚s.

Proposition 1. HRA ⊆ RsA𝑟𝑚

Proof. We show that any HRA 𝒜𝐻 = (𝑄𝐻 ,R𝐻 ,Δ𝐻 , 𝐼𝐻 , 𝐹𝐻) can be converted to an RsA𝑟𝑚

𝒜𝑅 = (𝑄𝑅,R𝑅,Δ𝑅, 𝐼𝑅, 𝐹𝑅) such that 𝐿(𝒜𝐻) = 𝐿(𝒜𝑅). We keep the states, the initial
states, and registers the same, i.e., 𝑄𝐻 = 𝑄𝑅, 𝐼𝐻 = 𝐼𝑅,R𝐻 = R𝑅. We convert all update
transitions of 𝒜𝐻 𝑞1 𝑎 | 𝑅𝑔, 𝑅𝑢𝑝 𝑞2 ∈ Δ𝐻 to 𝑞1 𝑎 | 𝑔∈, 𝑔/∈, up, rm 𝑞2 ∈ Δ𝑅, where 𝑔∈ =

𝑅𝑔, 𝑔
/∈ = R𝐻 ∖ 𝑅𝑔, rm = 𝑅𝑔 ∖ 𝑅𝑢𝑝, and for all 𝑟 ∈ R𝐻 if 𝑟 ∈ 𝑅𝑢𝑝, then up(𝑟) = {𝑟, in},

otherwise up(𝑟) = {𝑟}.
To deal with reset transitions, we find will sequences of transitions in 𝒜𝐻 , such that the

last transition is an update transition, and all the previous transitions are reset transitions.
We also make sure the transitions form a path in 𝒜𝐻 , and that no transition is in the
sequence more than once. We then create a transition in 𝒜𝑅 that executes the transition
sequence in one step.

We do so by first finding all sequences of transitions 𝑡1 = 𝑞1 𝑅1
𝑐𝑙𝑟 𝑞2, 𝑡2 =

𝑞2 𝑅2
𝑐𝑙𝑟 𝑞3, . . . , 𝑡𝑛 = 𝑞𝑛 𝑎 | 𝑅𝑔, 𝑅𝑢𝑝 𝑞𝑛+1, where ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑡𝑖 ∈ Δ𝐻 , and ∀1 ≤ 𝑖 <

𝑗 ≤ 𝑛 : 𝑡𝑖 ̸= 𝑡𝑗 . For each such sequence, where 𝑅𝑔 ∩
⋃︀𝑛−1

𝑖=1 𝑅𝑖
𝑐𝑙𝑟 = ∅, we add a transition

𝑡 = 𝑞1 𝑎 | 𝑔∈, 𝑔/∈, up, rm 𝑞𝑛 to Δ𝑅, where 𝑔∈ = 𝑅𝑔, 𝑔
/∈ = R ∖ 𝑅𝑔, rm = 𝑅𝑔 ∖ 𝑅𝑢𝑝, and for

all 𝑟 ∈ R𝐻 if 𝑟 ∈
⋃︀𝑛−1

𝑖=1 𝑅𝑖
𝑐𝑙𝑟, then up(𝑟) = 𝑦, otherwise up(𝑟) = {𝑟} ∪ 𝑦, where 𝑦 = {in} if

𝑟 ∈ 𝑅𝑢𝑝 and 𝑦 = ∅ otherwise.
The final states 𝐹𝑅 of 𝒜𝑅 will then be the states 𝐹𝐻 along with states that can reach

any state 𝑞𝑓 ∈ 𝐹𝐻 by a sequence of reset transitions.

Notice that the same can be done for deterministic HRAs without introducing any
non-determinism, which will be useful when relating the models’ deterministic variants.

Corollary 1. DHRA ⊆ DRsA𝑟𝑚

The other direction of Proposition 1 was left as an open problem.

17

𝑞 𝑓

𝑎

𝑟2 ← 𝑟2 ∪ {in}

𝑐𝑜

𝑟1 ← 𝑟1 ∪ 𝑟2
𝑟2 ← ∅

𝑟𝑏

𝑟2 ← ∅

in ∈ 𝑟1

Figure 4.1: A DRsA𝑟𝑚 𝒜 accepting the language 𝐿transact

4.1 Relating DRsAs and DHRAs
To compare the expressive power of DRsA𝑟𝑚s and DHRAs we will use the language 𝐿transact
of the DRsA𝑟𝑚 𝒜 shown in Figure 4.1. 𝐿transact is a language over the alphabet Σ =
{𝑎, 𝑐𝑜, 𝑟𝑏,#} and the data domain D. The semantics of 𝐿transact is as follows — data values
of the symbol 𝑎 are committed if the next non-𝑎 symbol is 𝑐𝑜 or rolled back if the next non-𝑎
symbol is 𝑟𝑏. Words are only part of 𝐿transact if their last symbol is # and its data value
was committed earlier in the word (# may only appear as the last symbol of a word).

Lemma 2. DRsA𝑟𝑚 ̸⊆ DHRA

Proof. Let us take the language 𝐿transact as defined above and assume there is a de-
terministic HRA 𝒜𝐻 with 𝑛 registers accepting it. Now let us look at the word
𝑤 = (𝑎, 𝑑1)(𝑐𝑜, ·)(𝑎, 𝑑2)(𝑐𝑜, ·) . . . (𝑎, 𝑑𝑛)(𝑐𝑜, ·)(𝑎, 𝑑𝑛+1)(𝑐𝑜, ·)(#, 𝑑), where ∀𝑖, 𝑗 : 𝑖 ̸= 𝑗 =⇒
𝑑𝑖 ̸= 𝑑𝑗 . The word 𝑤 belongs in 𝐿transact iff ∃𝑖 ∈ {1, . . . , 𝑛+ 1} : 𝑑 = 𝑑𝑖.

Because 𝒜𝐻 is deterministic (therefore there is only one possible configuration at any
given point in the input word), 𝒜𝐻 must store every data value of 𝑎 in 𝑤 until a # appears.
If the data value of the 𝑘-th 𝑎 in 𝑤 were not stored in some register of 𝒜𝐻 (or the register
was emptied before # was reached), there is no way for 𝒜𝐻 to distinguish between 𝑤 where
𝑑 = 𝑑𝑘, which belongs in 𝐿transact, and 𝑤 where 𝑑 is a value not equal to any other data
value in 𝑤, which does not belong in 𝐿transact.

Using the pigeonhole principle we can then deduce that at least two data values of 𝑎 in
𝑤 must be stored in the same register. Let 𝑙,𝑚 ∈ N, such that 𝑙 < 𝑚 and 𝑑𝑙 and 𝑑𝑚 are
the first two data values of 𝑎 stored in one register. We then look at the word 𝑤′ that is
the same as 𝑤, except the pair (𝑐𝑜, ·) following the 𝑚-th 𝑎 has been replaced with the pair
(𝑟𝑏, ·). As 𝒜𝐻 is deterministic and words 𝑤 and 𝑤′ are the same until after (𝑎, 𝑑𝑚) appears,
we know that when reading 𝑤′, 𝑑𝑙 and 𝑑𝑚 will be stored in the same register, but 𝑑𝑙 was
committed, whereas 𝑑𝑚 was rolled back. This means that 𝒜𝐻 loses the distinction between
𝑑𝑙 and 𝑑𝑚 and would either accept 𝑤′ where 𝑑 = 𝑑𝑚 or reject 𝑤′ where 𝑑 = 𝑑𝑙. This is
a contradiction with the assumption that 𝒜𝐻 accepts 𝐿transact and we can conclude that
no DHRA can accept 𝐿transact.

Thus, we have shown that the deterministic variant of RsA𝑟𝑚 is strictly more expressive
than the deterministic variant of HRA.

Proposition 2. DHRA (DRsA𝑟𝑚

Proof. Follows from Corollary 1 and Lemma 2.

18

Chapter 5

Parametrization of RsA
Emptiness Complexity

Although the emptiness of RsA is known to be Ackermann-complete, in this chapter, we
will parametrize the complexity of the problem based on the number of registers. We will
do so for both standard RsAs and RsAs with removal. We start with RsAs with only
one register.

5.1 Emptiness of RsA1

We will obtain the complexity of RsA1 emptiness by reducing it to and from non-
deterministic finite automata (NFA) emptiness. We start with the upper bound.

Lemma 3. The emptiness problem for RsA1 is in NL.

Proof. We reduce RsA1 emptiness to NFA emptiness, which is NL-complete [15]. Given
an RsA1 𝒜 = (𝑄, {𝑟},Δ, 𝐼, 𝐹) we construct an NFA 𝒜′ = (𝑄′,Δ′, 𝐼 ′, 𝐹 ′) whose language
is empty iff the language of 𝒜 is empty. Intuitively, we do this by tracking whether the
register in 𝒜 is empty in each state, and only including transitions that we can traverse
using that information. Formally:

𝑄′ =𝑄× {0, 𝜔}
𝐼 ′ ={(𝑞, 0) | 𝑞 ∈ 𝐼}
𝐹 ′ =𝐹 × {0, 𝜔}
Δ′ ={(𝑞, 0) 𝑎 (𝑠, 0) | 𝑞 𝑎 | ∅, 𝑔/∈, {𝑟 ← 𝑦} 𝑠 ∈ Δ, where in /∈ 𝑦}

∪ {(𝑞, 0) 𝑎 (𝑠, 𝜔) | 𝑞 𝑎 | ∅, 𝑔/∈, {𝑟 ← 𝑦} 𝑠 ∈ Δ, where in ∈ 𝑦}
∪ {(𝑞, 𝜔) 𝑎 (𝑠, 0) | 𝑞 𝑎 | 𝑔∈, 𝑔/∈, {𝑟 ← ∅} 𝑠 ∈ Δ}
∪ {(𝑞, 𝜔) 𝑎 (𝑠, 𝜔) | 𝑞 𝑎 | 𝑔∈, 𝑔/∈, {𝑟 ← 𝑦} 𝑠 ∈ Δ, where 𝑦 ̸= ∅}.

This is a log space reduction as the transitions are processed one at a time.

Lemma 4. The emptiness problem for RsA1 is NL-hard.

Proof. NFA emptiness, which is NL-complete, is a special case of RsA1 emptiness (if the
register is never assigned or tested, the RsA1 can be treated as an NFA).

19

Proposition 3. The emptiness problem for RsA1 is NL-complete.

Proof. Follows from Lemma 3 and Lemma 4.

5.2 Emptiness of RsA𝑟𝑚
1

We obtain the upper bound for RsA𝑟𝑚
1 emptiness by reducing it to control state reachability

of a a one-dimensional VASS.

Lemma 5. [10, Lemma 6.7] Control state reachability for one dimensional R-VASSs is in
NL, provided that non-reset transitions increase and decrease the counter by at most one.

Lemma 6. The emptiness problem for RsA𝑟𝑚
1 is in NL.

Proof. We perform a log space reduction of RsA𝑟𝑚
1 emptiness to one dimensional R-VASS

control state reachability. The idea is to use the counter to keep track of the number
of values stored in the register. First we create the R-VASS 𝒱 = (𝑄𝒱 , 𝑇, 𝑖) from the
RsA𝑟𝑚

1 𝒜 = (𝑄𝒜, {𝑟},Δ, 𝐼, 𝐹). 𝑄𝒱 is defined such that 𝑄𝒜 ⊆ 𝑄𝒱 . For each transition
𝑡 = 𝑞 𝑎 | 𝑔∈, 𝑔/∈, up, 𝑟𝑚 𝑠 in 𝒜 there are four transitions 𝑡1, 𝑡2, 𝑡3, 𝑡4 (in this order) in the
R-VASS forming a path between 𝑞 and 𝑠. If 𝑟 is in neither 𝑔∈ nor 𝑔 /∈, we consider 𝑡 as
two transitions covering both cases. Transitions 𝑡1 and 𝑡2 respectively check if the guards
hold and fix the counter’s value if needed. Transition 𝑡3 resets the counter if 𝑟 /∈ up(𝑖𝑛),
otherwise it adds or subtracts one from the counter based on whether in is added or removed.
Transition 𝑡4 then adds one to the counter if 𝑡3 was a reset transition and in is added to 𝑟.
The transitions 𝑡1, 𝑡2, 𝑡3, 𝑡4 are computed in the following way:

• 𝑡1 :

{︃
𝑞 −1 𝑞𝑡1 if 𝑟 ∈ 𝑔∈ and
𝑞 0 𝑞𝑡1 otherwise,

• 𝑡2 :

{︃
𝑞𝑡1 +1 𝑞𝑡2 if 𝑟 ∈ 𝑔∈ and
𝑞𝑡1 0 𝑞𝑡2 otherwise,

• 𝑡3 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞𝑡2 reset(𝑟) 𝑞𝑡3 if 𝑟 /∈ up(𝑟),

𝑞𝑡2 +1 𝑞𝑡3 if 𝑟 ∈ up(𝑟) ∧ 𝑟 ∈ 𝑔 /∈ ∧ in ∈ up(𝑟),

𝑞𝑡2 −1 𝑞𝑡3 if 𝑟 ∈ up(𝑟) ∧ 𝑟 ∈ 𝑔∈ ∧ 𝑟 ∈ 𝑟𝑚, and
𝑞𝑡2 0 𝑞𝑡3 otherwise,

• 𝑡4 :

{︃
𝑞𝑡3 +1 𝑠 if 𝑟 /∈ up(𝑟) ∧ in ∈ up(𝑟) and
𝑞𝑡3 0 𝑠 otherwise,

where 𝑞𝑡1, 𝑞
𝑡
2, 𝑞

𝑡
3 /∈ 𝑄𝒜 are unique to each transition 𝑡 being processed. Then we add the

states init, end to 𝒱, where init only has transitions into every initial state od 𝒜 and end
only has transitions from every final state in 𝒜. All of these transitions are of the form
· 0 ·. We check whether end is reachable from init in 𝒱.

This is a log space reduction as there are at most 2 transitions being processed at any
given time (and the space complexity required to represent a transition is logarithmic in
the space representing 𝒜).

Claim 1. For every 𝑞, 𝑠 ∈ 𝑄 it holds that 𝑠 is reachable from 𝑞 in 𝒜 iff 𝑠 is reachable from
𝑞 in 𝒱.

20

Proof. Because we consider infinitely many data values, given any transition
𝑞 𝑎 | 𝑔∈, 𝑔/∈, up, 𝑟𝑚 𝑠, where 𝑟 (the register of 𝒜) is in 𝑔 /∈, 𝑠 is always reachable from
𝑞 as there exists a data value 𝑑 s.t. 𝑑 /∈ 𝑟. On the other hand, if 𝑟 ∈ 𝑔∈ then 𝑠 is reachable
from 𝑞 iff there exists a 𝑑 s.t. 𝑑 ∈ 𝑟, i.e. |𝑟| ≥ 1. Therefore by first subtracting one
when simulating such transitions in 𝒱 we make sure that 𝑠 is reachable from 𝑞 in 𝒱 iff it is
reachable from 𝑞 in 𝒜, assuming the counter is equal to |𝑟| in every state 𝑞 ∈ 𝑄.

Next, we obtain the lower bound by reducing NFA emptiness to RsA𝑟𝑚
1 emptiness.

Lemma 7. The emptiness problem for RsA𝑟𝑚
1 is NL-hard.

Proof. NFA emptiness, which is NL-complete, is a special case of RsA𝑟𝑚
1 emptiness (if the

register is never assigned or tested, the RsA𝑟𝑚
1 can be treated as an NFA).

Proposition 4. The emptiness problem for RsA𝑟𝑚
1 is NL-complete.

Proof. Follows from Lemma 6 and Lemma 7.

5.3 Emptiness of RsA𝑟𝑚
𝑛

We will parametrize the upper bound of the emptiness problem for RsA𝑟𝑚
𝑛 on 𝑛 (the number

of registers). This upper bound is also applicable to RsA𝑛, as RsA𝑟𝑚
𝑛 generalizes RsA𝑛.

Lemma 8. The non-emptiness problem for RsA𝑟𝑚
𝑛 is reducible to control state reachability

of a 2𝑛-dimensional T-VASS.

Proof. We can use the reduction used in Lemma 23 of [11], which reduces the emptiness
problem for an RsA𝑛 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹) to coverability in a Transfer Petri Net 𝒫 (TPN).
This is done by having some places correspond to each state of 𝒜 and others to each subset
of R. Tokens on a place corresponding to 𝑋 ⊆ R represent the number of distinct data
values stored in the registers in 𝑋 and in none of the registers of R∖𝑋. Because 𝒫 represents
registers this way, it has up to 2𝑛 transitions representing one transition of 𝒜. The reason
being that 𝒫 takes a token from one of the places representing a subset of R, and if the
transition of 𝒜 does not specify all registers in its guards, then 𝒫 must have a transition for
each possible placement of the input value in registers that is allowed by the guards. 𝒫 also
has two new places: init which non-deterministically selects one of the places representing
the initial states of 𝒜, and fin, which can be reached from all places representing the final
states of 𝒜. The same construction can be done for RsA𝑟𝑚

𝑛 , with a small modification to
the way transitions are constructed [11, Theorem 37].

The resulting TPN coverability problem can be viewed as a control state reachability
problem of a 2𝑛-dimensional T-VASS 𝒱 with the 2𝑛 places in 𝒫 representing subsets of
R being the counters of 𝒱 and the places representing the states of 𝒜, along with the places
init and fin being the control states of 𝒱. We use a bijection cnt : 2R → {1, . . . , 2𝑛} to
denote the counter cnt(𝑋) that represents 𝑋 ⊆ R.

Transitions in a TPN are of the form (In,Out ,Transfer), where In specifies the number
of tokens taken from each place when activating a transition, Out specifies the number
of tokens put into each place after the transition is activated, and Transfer is a transfer
function same as on a transfer transition of a T-VASS. In transitions of 𝒫 in particular, In
has (except for some exceptions mentioned later) one token for a place representing a state
of 𝒜, which we will denote state(In), and one token for a place representing a subset of R,
which we will denote reg(In). The same is true for Out .

21

When simulating a transition 𝑡𝒫 = (In𝑡𝒫 ,Out 𝑡𝒫 ,Transfer 𝑡𝒫), where state(In) =
𝑞, state(Out) = 𝑞′, reg(In) = 𝑋, reg(Out) = 𝑋 ′, 𝒱 will go through a chain of three transi-
tions, starting in the control state 𝑞 and ending in the state 𝑞′ with auxiliary control states
in between, in the following order:

1. In transition: 𝑞 0⃗𝑑[cnt(𝑋) ↦→ −1] aux 𝑡𝒫
1 ,

2. Transfer transition: aux 𝑡𝒫
1 tr aux 𝑡𝒫

2 s.t. ∀𝑌 ⊆ R : tr(cnt(𝑌))=cnt(Transfer 𝑡𝒫 (𝑌)),
and

3. Out transition: aux 𝑡𝒫
1 0⃗𝑑[cnt(𝑋

′) ↦→ 1] 𝑞′.

𝒫 has some transitions that do not have one state and one register set as their In
and Out . Firstly, transitions that connect init to places representing initial states of 𝒜,
and transitions that connect places representing final states of 𝒜 to fin. None of these
access registers and can thus just be transitions between states and with no effect on the
counters. Secondly, the transition that ensures there are always tokens available in the
place representing ∅ (i.e., values not stored in any registers). We can add the following
transition to do the same in 𝒱: init 0⃗𝑑[cnt(∅) ↦→ 1] init .

Proposition 5. The emptiness problems for both RsA𝑛 and RsA𝑟𝑚
𝑛 are in F2𝑛+1 for 𝑛 ≥ 2.

Proof. Given an RsA𝑟𝑚 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹) and a 2|R| = 𝑑 dimensional T-VASS 𝒱, con-
structed from 𝒜 using Lemma 8, we will ask whether the control state fin is reachable from
the control state init in 𝒱.

We do so by using the backward coverability algorithm [23], exploring bad sequences of
configurations (𝑞0, 𝑣0) . . . (𝑞𝐿, 𝑣𝐿), where (𝑞0, 𝑣0) is a minimal final configuration and each
(𝑞𝑖, 𝑣𝑖) is a minimal configuration that can reach (𝑞𝑖−1, 𝑣𝑖−1). In our case, 𝑞0 = fin and
𝑣0 = 0⃗𝑑. In order for this algorithm to work we need to be able to find all the possible
configurations that can appear as the next element of the sequence (𝑞𝑖+1, 𝑣𝑖+1) given the
current element (𝑞𝑖, 𝑣𝑖). We do so as follows for transitions of three different forms (special
transitions either also fall in one of the categories or do not manipulate counters and are
thus trivial).

1. 𝑞𝑖 0⃗𝑑[𝑘 ↦→ −1] 𝑠 (In transitions): 𝑞𝑖+1 = 𝑠 and 𝑣𝑖+1 = 𝑣𝑖 + 0⃗𝑑[𝑘 ↦→ 1],

2. 𝑞𝑖 0⃗𝑑[𝑘 ↦→ 1] 𝑠 (Out transitions): 𝑞𝑖+1 = 𝑠 and 𝑣𝑖+1 = 𝑣𝑖 + 0⃗𝑑[𝑘 ↦→ −1] if 𝑣𝑖[𝑘] > 0,
otherwise 𝑣𝑖+1 = 𝑣𝑖, and

3. 𝑞𝑖 tr 𝑠 (Transfer transitions): we can take any configuration where 𝑞𝑖+1 = 𝑠 and
∀1 ≤ 𝑗 ≤ 𝑑 : 𝑣𝑖+1[𝑗] =

∑︀
𝑘∈𝑡𝑟(𝑖) 𝑣𝑖[𝑘].

Note that we only add elements to the sequence such that the sequence stays bad. To
find a bound on the length of these sequences, we need a norm and a control function. As
a norm we can use the sum of all the vector’s elements |(𝑞, 𝑣)|𝒱 ,

∑︀𝑑
𝑖=1 𝑣[𝑖]. Given that, we

can use a control function 𝑔 : 𝑔(𝑥) = 𝑥+ 1, as the norm of a configuration in the sequence
can increase by at most one from the previous configuration.

As the function 𝑔 is in F1, we can use Lemma 1 (the length function theorem) to deter-
mine that the maximum length of such a sequence is F2|R|+1. A non-deterministic algorithm
is able to correctly guess the next element of the sequence and if it finds a configuration

22

(init , 0⃗𝑑) then the language of 𝒜 is not empty. Thus the emptiness problem for RsA𝑟𝑚
𝑛

is in F2𝑛+1. Note that for 𝑛 ≥ 2, this is already in F5, and thus the exponential (F2)
construction in Lemma 8 has no bearing on the resulting complexity.

23

Chapter 6

Extending Streaming Data
String Transducers

In this chapter, we present a variant of SDSTs equipped with set-registers and show that its
functional equivalence problem is decidable. This variant does not operate on an ordered
data domain and can therefore only check for variable equality. The set-registers are used
to guard transitions as usual, but can only be updated by adding in, removing in, or being
left as they were.

A streaming data string transducer with set-registers (SDSTset) 𝒮set over D from an
input alphabet Σ to an output alphabet Γ is a tuple (𝑄, 𝑞𝑖, 𝑉,𝑋,R, 𝑂,Δ), where 𝑄, 𝑞𝑖, 𝑋,𝑂
are the same as in normal SDSTs (cf. Section 2.5), 𝑉 is also the same as in SDSTs, except it
does not include in, R is a finite set of set-registers and Δ is a set of transitions of the form
𝑞 𝑎 | 𝑔=, 𝑔 ̸=, 𝑔∈, 𝑔/∈, up 𝑞′, where 𝑞, 𝑎, 𝑞′ are the source state, Σ-symbol, and target state
respectively, same as in SDSTs, 𝑔=, 𝑔 ̸= ⊆ 𝑉 , where 𝑔=∩𝑔 ̸= = ∅ are the positive and negative
variable guards respectively, 𝑔∈, 𝑔 /∈ ⊆ R, where 𝑔∈ ∩ 𝑔 /∈ = ∅ are the positive and negative
set-register guards respectively, and up is an update mapping of 𝑉 to 𝑉 in = 𝑉 ∪ {in},
𝑋 to ((Γ× 𝑉 in) ∪𝑋)

*, and R to {−1, 0,+1}. Furthermore, it is required that (i) for all
𝑞 ∈ 𝑄, 𝑥 ∈ 𝑋 there is at most one occurrence of 𝑥 in 𝑂(𝑞), (ii) for each 𝑞 𝑎 | 𝜙, up 𝑞′ ∈
Δ, 𝑥 ∈ 𝑋 there is at most one occurrence of 𝑥 in the set of strings {up(𝑦) | 𝑦 ∈ 𝑋},
and (iii) for each 𝑞 𝑎 | 𝑔=1 , 𝑔

̸=
1 , 𝑔

∈
1 , 𝑔

/∈
1 , up1 𝑞′, 𝑞 𝑎 | 𝑔=2 , 𝑔

̸=
2 , 𝑔

∈
2 , 𝑔

/∈
2 , up2 𝑞′′ ∈ Δ it holds that

𝑔=1 ∩ 𝑔 ̸=2 ̸= ∅ or 𝑔=2 ∩ 𝑔 ̸=1 ̸= ∅ or 𝑔∈1 ∩ 𝑔 /∈
2 ̸= ∅ or 𝑔∈2 ∩ 𝑔 /∈

1 ̸= ∅.
A configuration of 𝒮set is a pair (𝑞, 𝑓), where 𝑞 ∈ 𝑄 is the current state and 𝑓 ∈

((𝑉 → (D ∪ {⊥})) ∪ (𝑋 → (Γ× D)*) ∪ (R → 2D)) is the current variable and set-register
assignment. The initial configuration of 𝒮set is the pair 𝑐init = (𝑞𝑖, 𝑓𝑖), where 𝑓𝑖 = {𝑣 ↦→ ⊥ |
𝑣 ∈ 𝑉 } ∪ {𝑥 ↦→ 𝜖 | 𝑥 ∈ 𝑋} ∪ {𝑟 ↦→ ∅ | 𝑟 ∈ R}. For any variable assignment 𝑓 we also define
𝑓eval : ((Γ× 𝑉 in)×𝑋)

* → (Γ× D)*, which evaluates a right-hand side of a data string
variable update. It is defined for a word 𝑦 = 𝑦1 . . . 𝑦𝑛 as 𝑓eval (𝑦) = eval(𝑦1) . . . eval(𝑦𝑛),
where eval(𝑦𝑖) = (𝑎, 𝑓(𝑣)) if 𝑦𝑖 = (𝑎, 𝑣), 𝑎 ∈ Γ, 𝑣 ∈ 𝑉 , eval(𝑦𝑖) = 𝑓(𝑦𝑖), if 𝑦𝑖 ∈ 𝑋, and
eval(𝑦𝑖) = (𝑎, in), if 𝑦𝑖 = (𝑎, in) for 𝑎 ∈ Γ.

Let 𝑐1 = (𝑞1, 𝑓1), 𝑐2 = (𝑞2, 𝑓2) be two configurations of 𝒮set . We say that 𝒮set can make
a step from 𝑐1 to 𝑐2 over (𝑎, 𝑑) using transition 𝑡 = 𝑞1 𝑎 | 𝑔=, 𝑔 ̸=, 𝑔∈, 𝑔/∈, up 𝑞2, denoted as
𝑐1 ⊢(𝑎,𝑑)𝑡 𝑐2 iff

1. ∀𝑟= ∈ 𝑔= : 𝑑 = 𝑓1(𝑟
=) and ∀𝑟 ̸= ∈ 𝑔 ̸= : 𝑑 ̸= 𝑓1(𝑟

̸=) and ∀𝑟∈ ∈ 𝑔∈ : 𝑑 ∈ 𝑓1(𝑟
∈) and

∀𝑟/∈ ∈ 𝑔 /∈ : 𝑑 /∈ 𝑓1(𝑟
/∈),

24

𝑞

𝑎 in /∈ 𝑟

𝑥← 𝑥(𝑎, in)
𝑟 : + 1

𝑎 in ∈ 𝑟

𝑟 : 0

Figure 6.1: A SDSTset performing the transduction 𝐹unique , removing duplicate data values
from the input data word

2. ∀𝑣 ∈ 𝑉 : 𝑓2(𝑣) = 𝑓 ′
1(up(𝑣)), and ∀𝑥 ∈ 𝑋 : 𝑓2(𝑥) = 𝑓 ′eval

1 (up(𝑥)), where 𝑓 ′
1 = 𝑓1[in ↦→

𝑑], and

3. ∀𝑟 ∈ R : 𝑓2(𝑟) =

⎧⎪⎨⎪⎩
𝑓1(𝑟) ∖ {𝑑} if up(𝑟) = −1,
𝑓1(𝑟) if up(𝑟) = 0, and
𝑓1(𝑟) ∪ {𝑑} if up(𝑟) = +1.

The definitions for a run of 𝒮set , a transduction of 𝒮set and the functional equivalence
problem for SDSTsets are the same as for SDSTs.

Example 7. Consider the transduction 𝐹unique over D from Σ = {𝑎} to Γ = {𝑎}, that
removes any data values that appeared previously in the input data word. See an SDSTset

it in Figure 6.1. It has one state 𝑞, one data string variable 𝑥, and one set-register 𝑟.
Intuitively, if in is not in 𝑟, it adds it to the end of 𝑥 and adds it to 𝑟. If in is already in 𝑟,
it ignores it.

6.1 Deciding Functional Equivalence
The decidability of functional equivalence of SDSTsets opens up possibilities for analysis
and verification of single-pass list-processing programs that use a set type data structure.
We will show that the functional equivalence problem is decidable for SDSTsets by reducing
it to VASS reachability. We start with the fact that VASS reachability is decidable.

Lemma 9. [5, Corollary 2] The VASS reachability problem is Ackermann-complete.

Next, we show that we can construct a VASS from an SDSTset that preserves reacha-
bility. The idea is similar to the one in Lemma 8 (RsA emptiness is reducible to T-VASS
control state reachability), where we track how many values are stored exactly in each
subset of set-registers.

Lemma 10. Given a SDSTset 𝒮 = (𝑄𝒮 , 𝑞𝒮𝑖 , 𝑉,𝑋,R, 𝑂,Δ𝒮), we can construct a (2|R|− 1)-
dimensional VASS 𝒱 = (𝑄𝒱 ,Δ𝒱 , 𝑞𝒱𝑖), such that for all 𝑞 ∈ 𝑄𝒮 it holds that 𝑞 is reachable
from 𝑞𝒮𝑖 in 𝒮 iff some (𝑞, 𝑃, 𝑓) ∈ 𝑄𝒱 is reachable from 𝑞𝒱𝑖 in 𝒱.

Proof. First, we modify 𝒮 so that all of its transitions are fully specified, i.e.,
∀𝑞 𝑎 | 𝑔=, 𝑔 ̸=, 𝑔∈, 𝑔/∈, up 𝑞′ ∈ Δ𝒮 , 𝑣 ∈ 𝑉, 𝑟 ∈ R : 𝑣 ∈ 𝑔= ∪ 𝑔 ̸= ∧ 𝑟 ∈ 𝑔∈ ∪ 𝑔 /∈.

The states of 𝒱 are 𝑄𝒱 ⊆ (𝑄𝒮 ×𝐴𝑃 ×𝐴𝑓) ∪𝐴aux, where

25

• 𝐴𝑃 = {𝑃 |
⋃︀

𝐶∈𝑃 𝐶 ⊆ 𝑉 ∧ ∅ /∈ 𝑃 ∧ ∀𝐶1, 𝐶2 ∈ 𝑃 : 𝐶1 ∩ 𝐶2 = ∅},

• 𝐴𝑓 = {𝑃 → 2R | 𝑃 ∈ 𝐴𝑃 }, and

• 𝐴aux = {aux(𝑞,𝑃,𝑓)𝑡 | 𝑡 ∈ Δ𝒮 , 𝑞 ∈ 𝑄𝒮 , 𝑃 ∈ 𝐴𝑃 , 𝑓 ∈ 𝐴𝑓}.

For all (𝑞, 𝑃, 𝑓) ∈ 𝑄𝒱 it holds that 𝑓 ∈ (𝑃 → ·). Given a (𝑞, 𝑃, 𝑓) ∈ 𝑄𝒱 , 𝑞 is a state of
𝒮, 𝑃 is a partition of the defined variables of 𝒮 based on the equality of the stored data
values, and 𝑓 is a function describing exactly which set-registers is the data value of each
equivalence class stored in. The initial control state of 𝒱 is 𝑞𝒱𝑖 = (𝑞𝒮𝑖 , ∅, ∅).
𝒱 has counters each corresponding to a non-empty subset of set-registers, we will use

an arbitrary bijection cnt : (2R ∖ ∅) → {1, . . . , 2|R| − 1} to relate each set to its counter.
Each counter will be used to store the number of unique data values stored exactly in a set
of set-registers excluding the data values also stored in variables (those are tracked in the
state control of 𝒱).

To construct Δ𝒱 , we will take each combination of macrostate (𝑞, 𝑃, 𝑓), and tran-
sition 𝑞1 𝑎 | 𝑔=, 𝑔 ̸=, 𝑔∈, 𝑔/∈, up 𝑞2, where 𝑞 = 𝑞1 and simulate the transition from the
macrostate. To simulate 𝑡 = 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, 𝑔∈, 𝑔/∈, up 𝑞′ from (𝑞, 𝑃, 𝑓), we generate a se-
quence of two transitions in 𝒱 ending in the target macrostate (𝑞′, 𝑃 ′, 𝑓 ′) with an auxiliary
state in between. First, however, we need to compute 𝑃 ′ and 𝑓 ′. We start by computing
𝐶in = {𝑣 | up(𝑣) = in ∨ up(𝑣) ∈ 𝑔=, 𝑣 ∈ 𝑉 }, the equivalence class of variables equal to in,
𝑅in = {𝑟 | up(𝑟) = +1∨ (𝑟 ∈ 𝑔∈ ∧ up(𝑟) = 0)}, the set of registers storing the value in, and
𝑃aux = {𝐶 ↦→ {𝑣 | up(𝑣) ∈ 𝐶, 𝑣 ∈ 𝑉 } | 𝐶 ∈ 𝑃 ∖{𝑔=}}, mapping each old equivalence class to
the new equivalence class with the same data value (except for the class of variables storing
in). We can then calculate 𝑃 ′ = {𝑃aux (𝐶) | 𝑃aux (𝐶) ̸= ∅, 𝐶 ∈ 𝑃}∪𝑌𝐶in , where 𝑌𝐶in = {𝐶in}
if 𝐶in ̸= ∅ and 𝑌𝐶in = ∅ otherwise. And 𝑓 ′ = {𝐶 ′ ↦→ 𝑓(𝐶) | (𝐶 ↦→ 𝐶 ′) ∈ 𝑃aux} ∪ 𝑌𝐶in ↦→𝑅in ,
where 𝑌𝐶in ↦→𝑅in = {𝐶in ↦→ 𝑅in}, if 𝐶in ̸= ∅ and 𝑌𝐶in ↦→𝑅in = ∅ otherwise. The transition
sequence is then as follows:

1. guard:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑞, 𝑃, 𝑓) 0⃗ aux(𝑞,𝑃,𝑓)𝑡 if

{︃
𝑔= ̸= ∅ ∧ 𝑔= ∈ 𝑃 ∧ 𝑓(𝑔=) = 𝑔∈ or
𝑔= = 𝑔∈ = ∅,

(𝑞, 𝑃, 𝑓) 0⃗[cnt(𝑔∈) ↦→ −1] aux(𝑞,𝑃,𝑓)𝑡 if 𝑔= = ∅ ≠ 𝑔∈, and
no transition otherwise.

2. update: aux(𝑞,𝑃,𝑓)𝑡 �⃗� (𝑞′, 𝑃 ′, 𝑓 ′), where for all 𝑅𝑖 ∈ 2R ∖ {∅} it holds that
�⃗�[cnt(𝑅𝑖)] = |{𝐶 | 𝑓(𝐶) = 𝑅𝑖, 𝐶 ∈ 𝑃}|−|{𝐶 ′ | 𝑓 ′(𝐶 ′) = 𝑅𝑖, 𝐶

′ ∈ 𝑃 ′}|+𝑦, where 𝑦 = 1
if 𝐶in = ∅ ∧𝑅𝑖 = 𝑅in , otherwise 𝑦 = 0.

Theorem 1. The functional equivalence problem for SDSTset is decidable.

Proof. Two SDSTsets 𝒮set1 ,𝒮set2 are not equivalent if there exists some string 𝑤 such that
either only of J𝒮set1 K(𝑤), J𝒮set2 K(𝑤) is defined, or J𝒮set1 K(𝑤), J𝒮set2 K(𝑤) are both defined, but
have different lengths, or J𝒮set1 K(𝑤), J𝒮set2 K(𝑤) are defined, are of the same length, but there
exists a position at which they differ.

We only show how to find a position 𝑝 at which the outputs differ (the other two
constructions are simpler). The construction is based on the proof of Theorem 12 in [1]
(SDST functional equivalence decidability), where a 1-counter machine ℳ is constructed
in such a way that it simulates two SDSTs 𝒮1,𝒮2 from Σ to Γ running in parallel, guesses

26

a position at which the outputs of the two SDSTs differ during the simulation and uses the
counter to check that the guess is the same for both SDSTs.
ℳ stores the states of 𝒮1,𝒮2 in its state control directly. For data string variables, ℳ

stores where it thinks each one will appear in the output in relation to the position 𝑝: (i) left
of 𝑝 (class L), (ii) 𝑝 is in this data string (class C), (iii) right of 𝑝 (class R), and (iv) does
not contribute to the output (class N). ℳ then non-deterministically updates its guess of
which data string variable is in which class at each step, while maintaining consistency of
the guesses from one step to another. When performing these guesses, ℳ keeps track of
the number of symbols to the left of 𝑝 using the counter. One of the SDSTs adds one to
the counter for each symbol left of 𝑝, while the other one subtracts, meaning that the guess
of position 𝑝 is the same for both SDSTs if the counter is 0.

For data variables, an order on equality classes is stored in the state control ofℳ, which
is enough to decide reachability. Additionally, when ℳ guesses that the position 𝑝 of the
output of 𝒮1 appears on a right-hand side of a data string variable assignment (this data
variable would thus be added to class C), it adds a new variable vp1 to the appropriate
equivalence class of variables stored in the state control. It must also store the Γ-symbol
that appears in the output at position 𝑝 in its state control. The same is done for vp2
for 𝒮2.

The final states of ℳ are those where vp1 and vp2 are defined, but are in different
equivalence classes or the Γ-symbols output at 𝑝 differ.

Because the set-registers do not contribute to the output, we can keep most of the
construction the same, except that we need a new way to determine which transitions are
reachable during the simulation. We do so by constructing a VASS from the product of the
two SDSTsets, as described in Lemma 10, instead of a 1-counter machine and adding the
counter from the original construction to the VASS. We will call it the position counter.

As the position counter needs to be allowed to go below 0, which is not allowed in
a VASS, we add the supervisor counter. The supervisor and position counters are incre-
mented together arbitrarily many times in the initial state of the VASS. We then add a new
final state 𝑓 accessible (without modifying the counter values) from the states marked as
final in the original construction. In 𝑓 , we add a self-loop decrementing the supervisor
and position counters together and self-loops decrementing each of the other counters on
their own. We then check whether the configuration (𝑓, 0⃗) is reachable, thus reducing the
problem to VASS reachability, which is decidable by Lemma 9.

SDSTsets could be generalized by allowing the values of data variables to be stored
in and removed from set-registers (as opposed to just in). Because the construction in
Lemma 10 already keeps track of which values of data variables are also stored in which
set-registers, it should be easily extensible to also function for this generalization (therefore
functional equivalence decidability would also hold). Because the models are deterministic,
the generalization would also be more expressive than SDSTset. As an example, consider
a transducer that verifies that all data values that immediately precede the symbol # (which
may appear arbitrarily many times in the input) are distinct. SDSTsets are unable to check
this, as they would have to guess whether or not the next symbol would be # to decide
whether or not the current data value should be unique.

27

Chapter 7

Improvements to RA
Determinisation

As RAs are non-determinisable in general (see Fact 1), DRsAs have been suggested in [11]
as a means to determinise a class of NRAs. In this chapter we will first show the determin-
isation algorithm, and then present supplementary algorithms to enlarge the class of NRAs
that it can determinise. First, let us introduce some notation and terminology.

Let 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹) be an NRA. The set R[𝑞] of registers 𝑎𝑐𝑡𝑖𝑣𝑒 in
a given state 𝑞 ∈ 𝑄 is the set of registers for which there exists a transition
𝑞1 𝑎 | 𝑔=, 𝑔 ̸=, 𝑢𝑝 𝑞2 ∈ Δ, where (i) 𝑞2 = 𝑞 and 𝑢𝑝(𝑟) ̸= ⊥ or (ii) 𝑞1 = 𝑞 and 𝑟 ∈ 𝑔= ∪ 𝑔 ̸=.
Given a set of states 𝑆, R[𝑆] denotes the set of registers active in any of the states in 𝑆.
Formally, R[𝑆] =

⋃︀
𝑞∈𝑆 R[𝑞]. 𝒜 is register-local, if for any two distinct states 𝑞, 𝑞′, it holds

that R[𝑞]∩R[𝑞′] = ∅, i.e., no register is active in more than one state. 𝒜 is single-valued, if
for any reachable configuration (𝑞, 𝑓), for any two distinct registers 𝑟, 𝑟′ ∈ R it holds that
𝑓(𝑟) ̸= 𝑓(𝑟′), i.e., every data value is stored in at most one register.

Any NRA can be modified to be register-local while preserving its language by creating
copies of a register for every state it is active in (and modifying the updates of transitions
accordingly). All NRAs can also be modified to be single-valued while preserving their
language by creating copies of each state for each possible partition of R, denoting which
registers hold the same value, actually storing it in only one of them, and adjusting the
transition relation to reflect this.

Algorithm 1 shows the latest version [17] of the original determinisation algorithm [11,
Algorithm 1] determinising an NRA 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹). It works on a similar principle
as the traditional subset construction algorithm for determinising finite automata [21], by
creating macrostates of the form (𝑆, 𝑐) ∈ 2𝑄 × (R → {0, 1, 𝜔}), where 𝑆 is a set of states
𝒜 could be in at a given point and 𝑐 is a mapping of registers to the number of values
stored in them, with 𝜔 representing all sizes > 1. The algorithm starts from the macrostate
(𝐼, {𝑟 ↦→ 0 | 𝑟 ∈ R}). For each combination of a Σ-symbol 𝑎 and a subset of non-empty
registers 𝑔 (Line 5) it then collects transitions of 𝒜 that can be taken using (𝑎, 𝑑), assuming
𝑑 is stored in the registers in 𝑞 (Line 6). The collected transitions are then processed
(Lines 9 to 15), and a transition of the DRsA is generated (Line 24) to simulate them.

Lines 16 to 19 check that the generated DRsA does not overapproximate 𝒜 by checking
that each register update combination is also in the original NRA. Line 8 checks that there
are no non-membership tests being performed on registers with more than one value stored
in them, as it is semantically different from the non-equality test, because we are collecting

28

Algorithm 1: Determinisation of an NRA into a DRsA
Input : Single-valued, register-local NRA 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹)
Output: DRsA 𝒜′ = (𝒬′,R,Δ′, 𝐼 ′, 𝐹 ′) with 𝐿(𝒜′) = 𝐿(𝒜) or ⊥

1 𝒬′ ← worklist← 𝐼 ′ ← {(𝐼, 𝑐0 = {𝑟 ↦→ 0 | 𝑟 ∈ R})};
2 Δ′ ← ∅;
3 while worklist ̸= ∅ do
4 (𝑆, 𝑐)← worklist.pop();
5 foreach 𝑎 ∈ Σ, 𝑔 ⊆ {𝑟 ∈ R[𝑆] | 𝑐(𝑟) ̸= 0} do
6 𝑇 ←

{︀
𝑞 𝑎 | 𝑔=, 𝑔 ̸=, · 𝑞′ ∈ Δ | 𝑞 ∈ 𝑆, 𝑔= ⊆ 𝑔, 𝑔 ̸= ∩ 𝑔 = ∅

}︀
;

7 𝑆′ ←
{︀
𝑞′ | · · | ·, ·, · 𝑞′ ∈ 𝑇

}︀
;

8 if ∃𝑞 · | ·, 𝑔 ̸=, · 𝑞′ ∈ 𝑇, ∃𝑟 ∈ 𝑔 ̸= : 𝑐(𝑟) > 1 then return ⊥ ;
9 𝑇 ∙ = {𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up[𝑔=/in] 𝑞′ | 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑞′ ∈ 𝑇};

10 foreach 𝑟𝑖 ∈ R do
11 tmp ← ∅;
12 foreach · · | 𝑔=, ·, up · ∈ 𝑇 ∙ do
13 if up(𝑟𝑖) = 𝑦 ̸= ⊥ ∧ 𝑐(𝑦) ̸= 0 then tmp ← tmp ∪ {𝑦} ;

14 op𝑟𝑖 ←

{︃
tmp ∖ {in} if tmp ∩ 𝑔 ̸= ∅ and
tmp otherwise

;

15 𝑐′(𝑟𝑖)←
>1 𝜔∑︀
𝑥∈op𝑟𝑖

𝑐(𝑥) ;

16 foreach 𝑞′ ∈ 𝑆′ do
17 𝑃 ← op𝑟1 × · · · × op𝑟𝑛 for {𝑟1, . . . , 𝑟𝑛} = R[𝑞′];
18 foreach (𝑥1, . . . , 𝑥𝑛) ∈ P do
19 if @(· · | ·, ·, up 𝑞′) ∈ 𝑇 ∙ s.t.

⋀︀
1≤𝑖≤𝑛

up(𝑟𝑖) = 𝑥𝑖 then return ⊥ ;
20 up′ ← {𝑟𝑖 ↦→ op𝑟𝑖 | 𝑟𝑖 ∈ R};
21 if (𝑆′, 𝑐′) /∈ 𝒬′ then
22 worklist.push((𝑆′, 𝑐′));
23 𝒬′ ← 𝒬′ ∪ {(𝑆′, 𝑐′)};
24 Δ′ ← Δ′ ∪

{︀
(𝑆, 𝑐) 𝑎 | 𝑔,R ∖ 𝑔, up′ (𝑆′, 𝑐′)

}︀
;

25 return 𝒜′ = (𝒬′,R,Δ′, 𝐼 ′, {(𝑆, 𝑐) ∈ 𝒬′ | 𝑆 ∩ 𝐹 ̸= ∅});

the possible values of the register. We also point out Line 9, which collapses the data
values stored in a register to just in, after positively testing for membership (that simulates
testing for equality in the original NRA). This collapse of registers is why single-valuedness
is required. Having a register copy its value into another one could create a situation, where
one of the registers is tested for membership and collapsed, while the other remains as it
was (and could thus be later tested for membership of a different data value, which would
be inconsistent with the original NRA)

7.1 NRA Pre-processing
The requirement of the NRA to be single-valued has been identified as limiting. Converting
an NRA to an equivalent single-valued NRA can introduce non-equality guards on registers
whose value is chosen non-deterministically (i.e., in two runs over the same string, the

29

𝑞 𝑠 𝑡

𝑎

𝑎

𝑟1 ← in

𝑎

𝑟2 ← in

(a) Non-single-valued form.

𝑞 𝑠

𝑡𝑟1 ̸=𝑟2

𝑡𝑟1=𝑟2

𝑎

𝑎

𝑟1 ← in

𝑎 𝑖𝑛 ̸= 𝑟1
𝑟2 ← in

𝑎 𝑖𝑛 = 𝑟1

(b) Single-valued form.

Figure 7.1: Single valued conversion for an NRA that stores data values in two registers.

registers can have different values at the same position in the string). This will cause
Algorithm 1 to return ⊥ on Line 8.

Example 8. Consider the NRA over Σ = {𝑎} shown in Figure 7.1a. It non-
deterministically selects a data value to store in 𝑟1 and then stores the following data
value in 𝑟2. When converting it to the single-valued form, we obtain the NRA shown in
Figure 7.1b, which also non-deterministically selects the data value for 𝑟1, but before stor-
ing the next data value in 𝑟2, it must check that the data value is not already stored in
𝑟1. If the data value is already stored in 𝑟1, then it marks that 𝑟1 = 𝑟2 in its state control
and does not actually store anything in 𝑟2. With this construction, however, we necessarily
introduce a non-equality guard on 𝑟1, which would cause Algorithm 1 to return ⊥ on Line 8.

The single-valued requirement is also stricter than necessary. To avoid a situation
where we would have to collapse multiple registers, we only need to ensure that there is no
transition where multiple registers are assigned the same value regardless of the input. In
other words, registers can hold the same value as long as it is not guaranteed that they hold
the same value. To achieve that on a transition, each register must appear on a right-hand
side of an update at most once, and at most one register can be updated by in or a register
in the equality guard.

In Algorithm 2, we show an algorithm that converts any NRA so that it satisfies the con-
ditions specified above. Intuitively, the algorithm works by tracking a partition of registers
in each state, with all registers that certainly store the same value being in the same class.
Registers are distributed into classes on Line 11, or on Line 13, if the register is not a part
of an already existing class. Empty registers are not members of any class (a set of empty
registers in generated separately on Line 5). In the converted automaton, the partition
classes act as registers instead of the original registers (Line 17) and new updates (in the
loop on Line 21) and guards (Lines 18 and 19) are generated accordingly. Because we are
generating registers at the same time as transitions, we treat 𝑟 ← ⊥ updates as implicit in
the constructed NRA (otherwise transitions generated early on would be missing updates
for registers created later). While Algorithm 2 can potentially create more registers than
were in the original NRA, the number of registers can always be reduced to at most the

30

𝑞 𝑠 𝑡 𝑢

𝑎

𝑟𝑠1 ← in

𝑏

𝑟𝑡1 ← 𝑟𝑠1

𝑎

𝑟𝑡1 ← 𝑟𝑡1
𝑎

𝑟𝑢1 ← 𝑟𝑡1
𝑟𝑢2 ← in

𝑎

𝑟𝑢1 ← 𝑟𝑢1
𝑟𝑢2 ← 𝑟𝑢2

Figure 7.2: A register-local NRA that falsely triggers the overapproximation detection of
Algorithm 1.

original number of registers, by using one of the registers in a class to store a value for all
of them instead of having a register for each class.

7.2 DRsA Post-processing
Another limiting factor that was identified was the overapproximation detection of the
original algorithm. It works by aborting the determinisation if it creates a register update
combination that does not appear in the original automaton. However, in some cases where
it detects an overapproximation, the automaton still accepts the same language. This
happens when multiple registers in the DRsA hold the same value, and in the detected
update combination that does not occur, the equal registers can be swapped around to
create an update combination that does occur in the original NRA.

Example 9. Consider the NRA shown in Figure 7.2. It is in the register-local form,
having multiple copies for registers 𝑟1, 𝑟2 (updates of the type 𝑟 ← ⊥ are implicit here).
During determinisation of this NRA, when generating transitions from the macrostate 𝜎 =
({𝑡, 𝑢}, {𝑟𝑠1 : 0, 𝑟𝑡1 : 1, 𝑟𝑢1 : 1, 𝑟𝑢2 : 1}), registers 𝑟𝑢1 , 𝑟

𝑢
2 get the updates 𝑟𝑢1 ← 𝑟𝑡1 ∪ 𝑟𝑢1 and 𝑟𝑢2 ←

𝑟𝑢2 ∪ {in}. This would cause Algorithm 1 to return ⊥ on Line 19 when attepting to find
one of the update combinations (i) 𝑟𝑢1 ← 𝑟𝑡1, 𝑟

𝑢
2 ← 𝑟𝑢2 , (ii) 𝑟𝑢1 ← 𝑟𝑢1 , 𝑟

𝑢
2 ← in, neither of

which exists in the original NRA. However, in the macrostate 𝜎, registers 𝑟𝑡1 and 𝑟𝑢1 hold
the same value, and update combination (i) is thus equivalent to 𝑟𝑢1 ← 𝑟𝑢1 , 𝑟

𝑢
2 ← 𝑟𝑢2 , and

update combination (ii) is equivalent to 𝑟𝑢1 ← 𝑟𝑡1, 𝑟
𝑢
2 ← in. Both of these combinations

can be found in the original NRA and, therefore, the detected overapproximation was a
false positive.

We propose Algorithm 3 to replace the overapproximation checking of the original au-
tomaton. The algorithm is run on the created DRsA, detects which registers hold the
same values, and then checks for update combinations that are not compatible with the
original NRA. It works in a similar way as the pre-processing algorithm, in that it also
tracks partitions of registers for each state, with registers in the same class storing equal
sets of values.

For each register, upaux is created, mapping it to those classes of registers from the
previous state with which it is updated (Lines 9 to 15). Then the registers that are mapped
to the same set in upaux are grouped together to create new classes (Lines 16 to 19). A new
transition is then created with the registers renamed accordingly. Then, on Lines 28 to 33,
the overapproximation test is performed using the same principle as in Algorithm 1, except
the registers in the same class are interchangeable when on the right side of an update (this
is reflected in the membership operator replacing the equality operator on Line 32).

31

Algorithm 2: Pre-processing of an NRA
Input : NRA 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹)
Output: Pre-processed NRA 𝒜′ = (𝑄′,R′,Δ′, 𝐼 ′, 𝐹 ′) with 𝐿(𝒜′) = 𝐿(𝒜)

1 𝐼 ′ ← 𝑄′ ← worklist← {(𝑞, ∅) | 𝑞 ∈ 𝐼};
2 R′ ← ∅;
3 while worklist ̸= ∅ do
4 (𝑞, 𝑃)← worklist.pop();
5 𝐶⊥ ← {𝑟 ∈ R | @𝐶 ∈ 𝑃 : 𝑟 ∈ 𝐶};
6 foreach 𝑞 𝑎 | 𝑔=, 𝑔 ̸=, up 𝑠 ∈ Δ, where 𝑔= ∩ 𝐶⊥ = ∅ do
7 𝑃 ′ = ∅;
8 foreach 𝑟 ∈ R, where up(𝑟) = in ∨ ∃𝐶 ∈ 𝑃 : up(𝑟) ∈ 𝐶 do
9 foreach 𝐶 ′ ∈ 𝑃 ′ do

10 if ∃𝑟′ ∈ 𝐶 ′ :

⎧⎪⎨⎪⎩
up(𝑟) = up(𝑟′), or
∃𝐶 ∈ 𝑃 : up(𝑟), up(𝑟′) ∈ 𝐶, or
up(𝑟), up(𝑟′) ∈ 𝑔= ∪ {in}

then

11 𝐶 ′ ← 𝐶 ′ ∪ {𝑟};
12 if @𝐶 ′ : 𝐶 ′ ∈ 𝑃 ′ ∧ 𝑟 ∈ 𝐶 ′ then
13 𝑃 ′ ← 𝑃 ′ ∪ {{𝑟}};
14 if (𝑠, 𝑃 ′) /∈ 𝑄′ then
15 𝑄′ ← 𝑄′ ∪ {(𝑠, 𝑃 ′)};
16 worklist.push((𝑠, 𝑃 ′));
17 R′ ← R′ ∪ {𝑟𝐶′ | 𝐶 ′ ∈ 𝑃 ′};
18 𝑔=𝑛𝑒𝑤 ← {𝑟𝐶 | 𝐶 ∈ 𝑃 ∧ ∃𝑟 ∈ 𝐶 : 𝑟 ∈ 𝑔=};
19 𝑔 ̸=𝑛𝑒𝑤 ← {𝑟𝐶 | 𝐶 ∈ 𝑃 ∧ ∃𝑟 ∈ 𝐶 : 𝑟 ∈ 𝑔 ̸=};
20 up𝑛𝑒𝑤 ← ∅;
21 foreach 𝐶 ′ ∈ 𝑃 ′ do

22 𝑡𝑚𝑝←

{︃
in if ∃𝑟 ∈ 𝐶 ′ : up(𝑟) = in, and
𝑟𝐶 if ∃𝐶 ∈ 𝑃 : ∀𝑟 ∈ 𝐶 ′ : up(𝑟) ∈ 𝐶

;

23 up𝑛𝑒𝑤 ← up𝑛𝑒𝑤 ∪ {𝑟𝐶′ ↦→ 𝑡𝑚𝑝};
24 Δ′ ← Δ′ ∪ {(𝑞, 𝑃) 𝑎 | 𝑔=𝑛𝑒𝑤, 𝑔 ̸=𝑛𝑒𝑤, up𝑛𝑒𝑤 (𝑠, 𝑃 ′)};
25 𝐹 ′ ← {(𝑞, 𝑃) | (𝑞, 𝑃) ∈ 𝑄′ ∧ 𝑞 ∈ 𝐹};
26 return 𝒜′;

32

Algorithm 3: DRsA postprocessing
Input : DRsA 𝒜′ = (𝒬′,R,Δ′, 𝐼 ′, 𝐹 ′) potentially overapproximating the language of

the NRA 𝒜 = (𝑄,R,Δ, 𝐼, 𝐹)
Output: DRsA 𝒜′′ = (𝒬′′,R′′,Δ′′, 𝐼 ′′, 𝐹 ′′) with 𝐿(𝒜′′) = 𝐿(𝒜) or ⊥

1 𝐼 ′′ ← 𝒬′′ ← worklist← {(𝜎′, ∅) | 𝜎′ ∈ 𝐼 ′};
2 R′′ ← ∅;
3 while worklist ̸= ∅ do
4 (𝜎, 𝑃)← worklist.pop();
5 foreach 𝜎 𝑎 | 𝑔=, 𝑔 ̸=, up 𝜎′ ∈ Δ′ do
6 𝑃 ′ ← ∅;
7 up𝑎𝑢𝑥 ← ∅;
8 up𝑛𝑒𝑤 ← ∅;
9 foreach 𝑟 ∈ R do

10 𝑌 ← ∅;
11 foreach 𝑦 ∈ up(𝑟) do
12 if 𝑦 ̸= in then
13 𝑦 ← 𝑟𝐶 , s.t. 𝐶 ∈ 𝑃 ∧ 𝑦 ∈ 𝐶;
14 𝑌 ← 𝑌 ∪ {𝑦};
15 up𝑎𝑢𝑥 ← up𝑎𝑢𝑥 ∪ {𝑟 ↦→ 𝑌 };
16 foreach 𝑌 ∈ up𝑎𝑢𝑥.values() do
17 𝐶 ′ ← {𝑟 ∈ R | up𝑎𝑢𝑥(𝑟) = 𝑌 };
18 𝑃 ′ ← 𝑃 ′ ∪ {𝐶 ′};
19 up𝑛𝑒𝑤 ← up𝑛𝑒𝑤 ∪ {𝑟𝐶′ ↦→ 𝑌 };
20 𝑔=𝑛𝑒𝑤 ← {𝑟𝐶 | 𝐶 ∈ 𝑃 ∧ ∃𝑟 ∈ 𝐶 : 𝑟 ∈ 𝑔=};
21 𝑔 ̸=𝑛𝑒𝑤 ← {𝑟𝐶 | 𝐶 ∈ 𝑃 ∧ ∃𝑟 ∈ 𝐶 : 𝑟 ∈ 𝑔 ̸=};
22 R′′ ← R′′ ∪ {𝑟𝐶′ | 𝐶 ′ ∈ 𝑃 ′};
23 if (𝜎′, 𝑃 ′) /∈ 𝒬′′ then
24 𝒬′′ ← 𝒬′′ ∪ (𝜎′, 𝑃 ′);
25 worklist.push((𝜎′, 𝑃 ′));
26 Δ′′ ← Δ′′ ∪ {(𝜎, 𝑃) 𝑎 | 𝑔=𝑛𝑒𝑤, 𝑔 ̸=𝑛𝑒𝑤, up𝑛𝑒𝑤 (𝜎′, 𝑃 ′)};
27 (𝑆, 𝑐)← 𝜎′;
28 foreach 𝑞′ ∈ 𝑆 do
29 𝑈 ← up𝑎𝑢𝑥(𝑟1)× · · · × up𝑎𝑢𝑥(𝑟𝑛) for {𝑟1, . . . , 𝑟𝑛} = R[𝑞′];
30 foreach (𝑥1, . . . , 𝑥𝑛) ∈ U do
31 (𝑦1, . . . , 𝑦𝑛)← (𝑥1, . . . , 𝑥𝑛)[in/{in}, 𝑟𝐶/𝐶];
32 if @(· · | ·, ·, up 𝑞′) ∈ Δ s.t.

⋀︀
1≤𝑖≤𝑛

up(𝑟𝑖) ∈ 𝑦𝑖 then

33 return ⊥
34 𝐹 ′′ ← {(𝜎, 𝑃) | (𝜎, 𝑃) ∈ 𝒬′′ ∧ 𝜎 ∈ 𝐹 ′};
35 return 𝒜′′;

33

Chapter 8

RsA-based Regex Matching

We present a prototype RsA-based regex matcher as a way to match a class of regexes with
back-references without back-tracking. The matcher works by constructing an NRA from
a regex (if possible) and determinising it into a DRsA using Algorithm 1. Input words are
then run on the DRsA to decide whether or not they match the regex.

8.1 Implementation
The prototype is implemented in Python. In the implementation, RAs and RsAs are a bit
different from their formal definitions in Chapter 2. They do not run on data words (reg-
isters store Σ-symbols), and have sets of symbols on transitions instead of single symbols.
The sets of symbols on transitions are paired with either a positive or a negative mark,
with the positive mark meaning that the transition can be taken using any input symbol in
the set, and the negative mark meaning that the transition can be taken using any input
symbol except the ones specified in the set.

The matcher uses the regex parser of Python’s RE module [18]. The result of the
parser is a syntax tree, from which an NRA is created in the same way as is standard
for finite automata [25] with special handling of back-references. Specifically, for the 𝑛-th
(back-referenced) capture group, a transition is created with the assignment 𝑟𝑛 ← in, and
for a back-reference of the 𝑛-th capture group, a transition with 𝑟𝑛 in its equality guard
is created. The length of all back-referenced capture groups is checked to be one, as other
capture groups are not generally representable by RAs (and the ones that are representable
are typically not determinisable into DRsAs).

This automaton is then converted to its register-local form (the pre-processing in Al-
gorithm 2 is not necessary, as no copying of values occurs in the constructed NRAs), and
determinised. The determinisation is only slightly modified to accommodate the sets of
values on transitions. The postprocessing algorithm (Algorithm 3) is only run if the deter-
minisation algorithm detects overapproximation at some point. Input words are run on the
resulting DRsA and if the DRsA accepts them, then the word matches the regex, otherwise
it does not match the regex.

8.2 Experiments
We compared the performance of our RsA-based regex matcher against other commonly
used regex matchers under simulated ReDoS attacks. For that, we extracted regexes with

34

Table 8.1: Numbers of RsA-compiled regexes for each ReDoS tool, and the numbers of
timeouts (10 s) on the RsA-compiled regexes for each measured matcher.

RXXR2 Rescue
Total regexes 97 60
RsA-compiled 47 22
RsA-compilation TO 1 1
RsA TO (of RsA-compiled) 0 0
RE TO (of RsA-compiled) 43 21
PCRE2 TO (of RsA-compiled) 36 18
GREP TO (of RsA-compiled) 0 0

back-references from the production regexes collected in [6]. Out of the 537,806 unique
regexes, we have found 3,091 regexes with back-references. We then used the ReDoS gener-
ator tools Rescue [24] and RXXR2 [22] to generate attack strings for the found regexes.
Rescue uses a genetic algorithm combined with NFA analysis to generate attack strings
(the length of attack strings is limited to 128). RXXR2 generates attack strings using
static analysis of the NFA of a given regex. It generates a prefix 𝑝, a suffix 𝑠, and a pump
𝑤, which corresponds to attack strings of the form 𝑝𝑤*𝑠.

Rescue has generated attack strings for 60, while RXXR2 generated attack strings for
97 of the found regexes with back-references. The RsA-based implementation’s performance
under the simulated ReDoS attacks was then compared with Python’s RE module [18],
the PCRE2 library [13], and the command line tool GNU GREP [12] (with the -E flag,
enabling regex extensions). Note that we did not measure RE2 [8] and Hyperscan [14]
as they do not support back-references. We measured the time it took each matcher to
match the attack string to the corresponding regex. As RXXR2 generates attack strings of
variable length depending on the number of pumps in the string, we measured each regex
with 6 different strings, each with a different number of pumps. The pump numbers used
were 5, 10, 20, 40, 80, and 160.

The timeout limit was set to 10 seconds. Note that PCRE2 has an internal match
limit used to limit the amount of time and memory matching can use. The limit was raised
such that it would not stop matching before reaching the timeout. The experiments were
conducted on an Ubuntu 22.04 system with an AMD Ryzen 5 5600G @ 3.89 GHz processor
and 8 GB of RAM.

Table 8.1 shows the numbers of RsA-compiled regexes (i.e., regexes for which a DRsA
representing them was successfully constructed), and the numbers of timeouts each matcher
had on the RsA-compiled regexes. (timeouts are counted at most once per regex for RXXR2
generated attacks). It also shows that the RsA matcher timed out during compilation of
one regex for both sets of regexes (this was caused by the determinisation of the NRA
representing the regex). One can see that our implementation could compile over a third of
the attacked regexes for both ReDoS generators. On the RsA-compiled regexes, PCRE2
and RE time out in the majority of cases. However, GREP performs very well under
attacks from both tools as it only timed out on one regex in total, across both generators,
and on none of the RsA-compiled regexes.

35

10 5 10 4 10 3 10 2 10 1 100 101

RsA time (s)
10 5

10 4

10 3

10 2

10 1

100

101
re

 ti
m

e
(s

)

(a) RsA matcher against RE

10 5 10 4 10 3 10 2 10 1 100 101

RsA time (s)
10 5

10 4

10 3

10 2

10 1

100

101

pc
re

2
tim

e
(s

)

(b) RsA matcher against PCRE2

10 5 10 4 10 3 10 2 10 1 100 101

RsA time (s)
10 5

10 4

10 3

10 2

10 1

100

101

gr
ep

 ti
m

e
(s

)

(c) RsA matcher against GREP

Figure 8.1: Scatter plots comparing the RsA matcher to other matchers on RsA-compiled
regexes (all scatter plots show attacks by both Rescue and RXXR2)

Figure 8.1 shows scatter plots of matching times for RsA-compiled regexes of both the
Rescue and RXXR2 sets. It also includes regexes where RsA compilation timed out. Out
of the RXXR2 attacks, we only include the ones with 160 pumps in the attack string.
Although out matcher is generally slower unless the other matcher times out, that is to be
expected given that it is still a prototype and the determinisation process is not optimized.

Figure 8.2 shows the average performance of each regex matcher for each number of
pumps in the attack strings generated by RXXR2 (on RsA-compiled regexes only). Again,
GREP outperforms the other matchers across the board. But the graph nicely shows that
RsA-based matching scales linearly with the length of input.

Both tools, Rescue and RXXR2, mostly try to target back-tracking algorithms by
having the input not match the regex, but in such a way that the algorithm needs to
explore a lot of possibilities before deciding that the input does not match. And even though
both tools support back-references, they do not exploit them when creating attack strings.

36

0 20 40 60 80 100 120 140 160
Number of Pumps

10 5

10 4

10 3

10 2

10 1

100

101

Av
er

ag
e

Ti
m

e
to

 M
at

ch
 (s

ec
on

ds
)

Average Total RsA Time
Average grep Time
Average python Time
Average pcre2 Time

Figure 8.2: Graph showing average performance of each matcher based on the number of
pumps in the RXXR2 generated attack string

We suspect the reason why GREP performs well is that it avoids back-tracking altogether
and decides that the inputs do not match some other way. However, we know that it is
possible to cause GREP to back-track catastrophically from a previous experiment, where
we matched up the RsA matcher against GREP for regex and input that were hand-crafted
to be difficult to match.

The chosen regex was /ˆ.*(.).*\1.*;.*;.*\1$/, and the measured input was the
string a;a;a;a with the first semicolon pumped up to the string a;994a;a;a. This experi-
ment was conducted on a Debian11/bullseye system, with 2 Intel Xeon X5650 @ 2.67 GHz
CPUs, and 32 GB of RAM. The results are shown in Figure 8.3. One can see that on this
regex and input, the RsA-based matcher drastically outperforms GREP for longer inputs.
The time to match for the 1,000 character long string was just over 30 minutes for GREP,
while being at about 0.16 seconds fot the RsA-based matcher.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
 (

s)

Input length

RsA implementation
grep

Figure 8.3: Graph of the times to match of GREP and the RsA matcher for a difficult
regex and input combination

37

Chapter 9

Conclusion and Future Work

In this thesis, we have presented some theoretical results pertaining to extensions of register
automata with set structures. Specifically, we have related the expressivity of HRAs to
RsA𝑟𝑚s, showing that every HRA can be converted to an RsA𝑟𝑚, although it remains
unclear whether the same is true in the opposite direction. We have, however, shown that
DRsA𝑟𝑚s are strictly more expressive than DHRAs.

We parametrized the emptiness problem of RsAs and RsA𝑟𝑚s on the number of registers.
Both variants have their emptiness problems NL-complete when restricted to one register.
We also gave an upper bound of F2𝑛+1 for the emptiness problem of both variants with
𝑛 registers.

Next, we have presented an extension of SDSTs, equipping them with a type of set-
registers. This extension, SDSTset, is able to represent single-pass list-processing programs
that use a set type data structure (such as a program that removes duplicates from a list,
which cannot be represented by standard SDSTs), but it is restricted to only equality testing
of data variables (as opposed to SDSTs, which can test inequality of data variables).

We have examined the existing algorithm for determinisation of NRAs into DRsAs,
and found instances of NRAs that it does not determinise, even though they do have
equivalent DRsAs. We have presented two algorithms to remedy the identified issues, one
pre-processing the NRA before determinisation, and the other post-processing the DRsA
after determinisation for a better overapproximation test.

We have also shown a practical application of RsAs in the form of a regex matcher
prototype. As the regex matcher uses DRsAs to match inputs, it scales linearly in the
lengths of inputs, and works for a class of regexes with back-references. It does, however,
have quite a big initial overhead, as it needs to run the determinisation algorithm before
matching. We have experimentally compared the prototype regex matcher to regex match-
ers used in practice (Python’s RE module, the PCRE2 library, and GNU GREP), by
subjecting them to simulated ReDoS attacks on regexes used in practice. The prototype
was able to compile more than a third of the attacked regexes, and it heavily outperformed
back-tracking matchers (RE and PCRE2) on these. However, the attacks were almost
completely inefficient against the heavily optimized GREP, which performed better than
the other matchers in all cases. We did show that even GREP can perform poorly on
regexes with back-references in an experiment with a difficult hand-picked regex and input,
which the RsA matcher was able to handle smoothly.

In the future, we would like to further examine extensions of SDSTs, similar to the one
presented here. Specifically, we plan to examine the functional equivalence decidability of
SDSTsets that keep inequality tests of variables, and to determine with what other set-

38

register variants we could equip SDSTs while keeping their functional equivalence problem
decidable. We also aim to further extend the class of regexes with back-references that
can be determinised. Furthermore, we would like to start work on a ReDoS generator
specifically targeting regexes with back-references.

39

Bibliography

[1] Alur, R. and Cerný, P. Streaming transducers for algorithmic verification of
single-pass list-processing programs. In: Ball, T. and Sagiv, M., ed. Proceedings of
the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. ACM, 2011,
p. 599–610. DOI: 10.1145/1926385.1926454. Available at:
https://doi.org/10.1145/1926385.1926454.

[2] Banerjee, A., Chatterjee, K. and Guha, S. Set Augmented Finite Automata over
Infinite Alphabets. CoRR. 2023, abs/2311.06514. DOI: 10.48550/ARXIV.2311.06514.
Available at: https://doi.org/10.48550/arXiv.2311.06514.

[3] Björklund, H. and Schwentick, T. On notions of regularity for data languages.
Theor. Comput. Sci. 2010, vol. 411, 4-5, p. 702–715. DOI:
10.1016/J.TCS.2009.10.009. Available at: https://doi.org/10.1016/j.tcs.2009.10.009.

[4] Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L. and David, C.
Two-Variable Logic on Words with Data. In: 21th IEEE Symposium on Logic in
Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings.
IEEE Computer Society, 2006, p. 7–16. DOI: 10.1109/LICS.2006.51. Available at:
https://doi.org/10.1109/LICS.2006.51.

[5] Czerwinski, W. and Orlikowski, L. Reachability in Vector Addition Systems is
Ackermann-complete. CoRR. 2021, abs/2104.13866. Available at:
https://arxiv.org/abs/2104.13866.

[6] Davis, J. C., IV, L. G. M., Coghlan, C. A., Servant, F. and Lee, D. Why Aren’t
Regular Expressions a Lingua Franca? An Empirical Study on the Re-use and
Portability of Regular Expressions. CoRR. 2021, abs/2105.04397. Available at:
https://arxiv.org/abs/2105.04397.

[7] Demri, S. and Lazic, R. LTL with the Freeze Quantifier and Register Automata.
In: 21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings. IEEE Computer Society, 2006, p. 17–26. DOI:
10.1109/LICS.2006.31. Available at: https://doi.org/10.1109/LICS.2006.31.

[8] Google. RE2 [online]. 2010 [cit. 2024-04-30]. Available at:
https://github.com/google/re2.

[9] Grigore, R., Distefano, D., Petersen, R. L. and Tzevelekos, N. Runtime
Verification Based on Register Automata. In: Piterman, N. and Smolka, S. A.,
ed. Tools and Algorithms for the Construction and Analysis of Systems - 19th

40

https://doi.org/10.1145/1926385.1926454
https://doi.org/10.48550/arXiv.2311.06514
https://doi.org/10.1016/j.tcs.2009.10.009
https://doi.org/10.1109/LICS.2006.51
https://arxiv.org/abs/2104.13866
https://arxiv.org/abs/2105.04397
https://doi.org/10.1109/LICS.2006.31
https://github.com/google/re2

International Conference, TACAS 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Springer, 2013, vol. 7795, p. 260–276. Lecture Notes in
Computer Science. DOI: 10.1007/978-3-642-36742-7_19. Available at:
https://doi.org/10.1007/978-3-642-36742-7_19.

[10] Grigore, R. and Tzevelekos, N. History-Register Automata. Log. Methods
Comput. Sci. 2016, vol. 12, no. 1. DOI: 10.2168/LMCS-12(1:7)2016. Available at:
https://doi.org/10.2168/LMCS-12(1:7)2016.

[11] Gulčíková, S. and Lengál, O. Register Set Automata (Technical Report). arXiv.
2022. DOI: 10.48550/ARXIV.2205.12114. Available at:
https://arxiv.org/abs/2205.12114.

[12] Haertel, M. et al. GNU grep [online]. Version 3.6. September 2022 [cit. 2024-04-30].
Available at: https://www.gnu.org/software/grep/.

[13] Hazel, P. Perl-compatible Regular Expressions [online]. Version 10.42. December
2022 [cit. 2024-04-30]. Available at: https://www.pcre.org/.

[14] Intel. Hyperscan [online]. 2015 [cit. 2024-04-30]. Available at:
https://github.com/intel/hyperscan.

[15] Jones, N. D. Space-Bounded Reducibility among Combinatorial Problems. J.
Comput. Syst. Sci. 1975, vol. 11, no. 1, p. 68–85. DOI:
10.1016/S0022-0000(75)80050-X. Available at:
https://doi.org/10.1016/S0022-0000(75)80050-X.

[16] Kaminski, M. and Francez, N. Finite-Memory Automata. Theor. Comput. Sci.
1994, vol. 134, no. 2, p. 329–363. DOI: 10.1016/0304-3975(94)90242-9. Available at:
https://doi.org/10.1016/0304-3975(94)90242-9.

[17] Lengál, O. Personal communication. January 2023.

[18] Lundh, F. and Kuchling, A. M. Python Standard Library: re module [online].
Version 3.10.12. June 2023 [cit. 2024-04-30]. Available at:
https://docs.python.org/3/library/re.html.

[19] Minsky, M. L. Recursive Unsolvability of Post’s Problem of ”Tag“ and other Topics
in Theory of Turing Machines. Annals of Mathematics. Annals of Mathematics.
1961, vol. 74, no. 3, p. 437–455. ISSN 0003486X. Available at:
http://www.jstor.org/stable/1970290.

[20] Neven, F., Schwentick, T. and Vianu, V. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log. 2004, vol. 5, no. 3, p. 403–435. DOI:
10.1145/1013560.1013562. Available at: https://doi.org/10.1145/1013560.1013562.

[21] Rabin, M. O. and Scott, D. S. Finite Automata and Their Decision Problems.
IBM J. Res. Dev. 1959, vol. 3, no. 2, p. 114–125. DOI: 10.1147/RD.32.0114.
Available at: https://doi.org/10.1147/rd.32.0114.

41

https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.2168/LMCS-12(1:7)2016
https://arxiv.org/abs/2205.12114
https://www.gnu.org/software/grep/
https://www.pcre.org/
https://github.com/intel/hyperscan
https://doi.org/10.1016/S0022-0000(75)80050-X
https://doi.org/10.1016/0304-3975(94)90242-9
https://docs.python.org/3/library/re.html
http://www.jstor.org/stable/1970290
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1147/rd.32.0114

[22] Rathnayake, A. and Thielecke, H. Static Analysis for Regular Expression
Exponential Runtime via Substructural Logics. CoRR. 2014, abs/1405.7058.
Available at: http://arxiv.org/abs/1405.7058.

[23] Schmitz, S. and Schnoebelen, P. Algorithmic Aspects of WQO Theory. Master.
France, 2012. Lecture. Available at: https://cel.hal.science/cel-00727025.

[24] Shen, Y., Jiang, Y., Xu, C., Yu, P., Ma, X. et al. ReScue: crafting regular
expression DoS attacks. In: Huchard, M., Kästner, C. and Fraser, G.,
ed. Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018. ACM,
2018, p. 225–235. DOI: 10.1145/3238147.3238159. Available at:
https://doi.org/10.1145/3238147.3238159.

[25] Sipser, M. Introduction to the Theory of Computation. 2nd ed. Thomson Course
Technology, 2006. ISBN 0-534-95097-3.

[26] Touili, T. Register Automata for Malware Specification. In: ARES 2022: The 17th
International Conference on Availability, Reliability and Security, Vienna,Austria,
August 23 - 26, 2022. ACM, 2022, p. 147:1–147:7. DOI: 10.1145/3538969.3544442.
Available at: https://doi.org/10.1145/3538969.3544442.

[27] Tzevelekos, N. Fresh-register automata. In: Ball, T. and Sagiv, M.,
ed. Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011.
ACM, 2011, p. 295–306. DOI: 10.1145/1926385.1926420. Available at:
https://doi.org/10.1145/1926385.1926420.

[28] Weidman, A. et al. Regular expression Denial of Service - ReDoS. OWASP
Foundation [online]. 2024 [cit. 2024-04-30]. Available at: https://owasp.org/www-
community/attacks/Regular_expression_Denial_of_Service_-_ReDoS.

42

http://arxiv.org/abs/1405.7058
https://cel.hal.science/cel-00727025
https://doi.org/10.1145/3238147.3238159
https://doi.org/10.1145/3538969.3544442
https://doi.org/10.1145/1926385.1926420
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS

Appendix A

Contents of the Included Storage
Media

/
src/...Implementation source files

rsaregex/............Python module implementing RsA-based regex matching
README.md .. Usage guide
rsa-matcher.py........Implementation of a grep-like program using rsaregex

tex-src/...LATEX source files of this thesis
thesis.pdf..This thesis in pdf version

43

	Introduction
	Automata Models
	Register Automata
	Register Set Automata
	RsAs with Removal
	History Register Automata
	Streaming Data String Transducers

	Vector Addition Systems with States
	Extensions
	Grzegorczyk Hierarchy
	Well Quasi Orderings

	Relating RsAs and HRAs
	Relating DRsAs and DHRAs

	Parametrization of RsA Emptiness Complexity
	Emptiness of RsA1
	Emptiness of RsArm1
	Emptiness of RsArmn

	Extending Streaming Data String Transducers
	Deciding Functional Equivalence

	Improvements to RA Determinisation
	NRA Pre-processing
	DRsA Post-processing

	RsA-based Regex Matching
	Implementation
	Experiments

	Conclusion and Future Work
	Bibliography
	Contents of the Included Storage Media

