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Chapter 1

Introduction

The concept of the quantum nature of light first came in 1900, when Planck in order to solve

the problem of the spectral distribution of the black body arrived to the idea that the energy of

harmonic oscillator is quantized. Later, in 1905, Einstein studying the photoelectric effect came

to the conclusion that it could be explained by the assumption that the energy of a light beam

was distributed in discrete bundles later named photons [1]. Despite the early achievements

of quantum theory, for a long time there had been no experimental evidence of quantumness

of light, since all experimental results could be explained from the point of view of classical

physics.

In 1963 Glauber and independently Sudarshan developed the quantum theory of coherence [2,

3], where a qualitative theoretical description of the nonclassicality of light was given. Namely,

they introduced the P function which serves as a quasiprobability function of the quantum

light.

The first evidence of nonclassical nature of light was observed in 1976 in an experiment by

Kimble, Dagenais and Mandel [4] and launched a new era in quantum optics. In that experiment

the antibunching statistics was observed by the light generated by resonance fluorescence from

a two-level atom. A classical theory of light would require negative probabilities in order to

give photon antibunching.

1



2 Chapter 1. Introduction

Later, the new sources of nonclassical light were found, such as squeezed light. In a squeezed

state one phase quadrature may reduce quantum fluctuations at the expense of increased quan-

tum fluctuations in the other phase quadrature such that the product of the fluctuations still

obeys Heisenberg’s uncertainty relation. Squeezed states offer the possibility of beating the

quantum limit in optical measurements by making phase-sensitive measurements which utilize

only the quadrature with reduced quantum fluctuations. The first observation of squeezed

states was achieved by Slusher in 1985 in four-wave mixing in atomic sodium [5]. This was

soon followed by demonstrations of squeezing in an optical parametric oscillator by Kimble [6]

and by four-wave mixing in optical fibres by Levenson [7]. The squeezing effect was then also

found in parametric frequency down-conversion process. The intensity difference fluctuations

in the twin beams produced in such a process have been shown to be considerably below the

shot-noise level.

One of the most intriguing manifistations of the nonclassicality of quantum light is entangle-

ment. The notion of the entanglement refers to the quantum correlations between different

parts of the system, which cannot be described by the classical physics. Historically, the term

of entanglement first appeared in the literature in 1935. The entangled states treated in the

paper by Einstein, Podolsky, and Rosen [8] were two-particle states quantum-mechanically cor-

related with respect to their positions and momenta. Ironically, the considered quantum state

in that article was intended to show incompleteness of quantum theory, because of apparent

violation of causality, and thus leading to nonlocality of the quantum physics. The same year,

in the journal Naturwissenschaften, Schrödinger coins the term Verschränkung, meaning “en-

tanglement,” and develops his famous thought experiment of a cat that exists simultaneously

in a state of being alive and dead [9].

Experimental proposal to test the nonlocality and thus the entanglement was first made by

Bell in 1964. Bell introduced the inequality which, if violated, would indicate the properties of

nonlocality of a quantum system. Such an experiment was implemented first by Freedman in

1972 [10] and later with considerable improvements in 1982 by Aspect [11]. Those and other

experiments have confirmed that entanglement and therefore nonlocal effects do indeed exist.
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Later, in 1993, Bennett with colleagues proposed a scheme, where it was shown how the entan-

glement can be utilized to realize a quantum teleportation of the state of the photon [12]. In

the same decade the experiment proving the possibility of the state teleportation was carried

out by the team lead by Zeilinger from Vienna University in 1997 [13].

The entanglement has proved to be indispensible in quantum information theory and is consid-

ered as the main source in the implementation of quantum telecommunications and quantum

computations [14].

So far, the most convenient and practical source of the entanglement have been the twin beams

generated in a spontaneous parametric frequency down-conversion process. Twin beams are

Gaussian states, i.e., their characteristic function is a Gaussian function. Although the twin

beam is a bipartite system, by making use of various passive optical elements, such as beam

splitters, phase shifters etc., one is able to produce multipartite nonclassical, entangled, and

even hyperentangled Gaussian states [15, 16].

At present, the twin beam is a workhorse in the study of the both nonclassicality and entan-

glement of quantum light. It can be used as a source for discrete variable domain systems as

qubits (for very low intensities) as well as for continuous variable domain as quadratures of the

field.

Despite the great attention the twin beams have drawn, still the following questions need to be

answered, namely

• What is the exact relationship between nonclassicality and entanglement of twin beams?

And does entanglement of twin beams completely constitute the nonclassicality of their

state?

Another interesting question regarding a twin beam is:

• What kind of nonclassical states can be generated from the twin beam? And how the

initial nonclassicality of the twin beam can be transfered among the newly obtained

states?
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One of the most convenient ways to generate new states from the initial given state, especially

for a two-mode state, is by means of a beam splitter. Here, one can also ask:

• Is there any nonclassicality invariant for a twin beam which would include single-mode

nonclassicality and two-mode entanglement when a twin beam is subjected to unitary

transformations, e.g., it is transformed by the beam splitter?

The last question has a fundamental importance, because the question about unification of the

nonclassicality measures for single-mode and entanglement measure between modes for a state

subjected to unitary transformations is still open.

In this Thesis we attempt to give answers to those questions.

The Thesis is organized as follows. In Chapter 2 we give a quick review of the basics of quantum

optics, namely a quantization of optical fields and notions of the Fock and Gaussian states. We

also give a brief introduction to the concepts of nonclassicality and entanglement and consider

the appropriate measures for their quantification. Additionally, we shortly discuss the nature

of the spontaneous parametric frequency down-conversion process.

Chapter 3 is devoted to the comparative study of nonclassicality, entanglement and dimen-

sionality of multimode twin beams. In this chapter we derive the relation which unifies the

entanglement measure such as negativity and nonclassicality measure - nonclassicality depth,

and thus we prove that the only source of the nonclassicality for the twin beams is their entan-

glement. Moreover, we also show that that relation holds true also when noise is included.

In Chapter 4 we investigate the behaviour of the twin beams, single-mode squeezed light and

their combinations at the beam splitter. We introduce a new integral of nonclassicality, which

incorporates the entanglement between two modes and nonclassicality of one-mode states, and

we prove that that integral is invariant under any unitary photon-number-preserving operations.

In Chapter 5 we study the nonclassicality of the state which is generated from the twin beam by

postselection based on detecting a given number of photocounts in one arm. The nonclassicality
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is derived from the high order intensity moments based on the majorization theory for single-

mode states. We experimentally show the presence of the nonclassicality up to the fifth order

of the intensity moments, and thus experimentally confirm that the nonclassicality for such a

state resides in the intensity domain.

In Chapter 6 we investigate a four-mode state generated in spontaneous parametric frequency

down-conversion and frequency up-conversion processes. We show, that the main source of the

nonclassicality of the considered state is given by the twin beams and how that nonclassicality

expressed by means of entanglement can “flow” from the twin beams into up-converted beams

and vice versa by changing the strength of the pump fields.

Chapter 7 is dedicated to the potential application of twin beams to the problem of the re-

construction of Gaussian states. The reconstruction scheme is applied to the Gaussian fields

generated from vacuum by utilizing the nonclassical properties of the twin beam. We also

demonstrate, that the proposed reconstruction method enables one to avoid a homodyne de-

tection, and it relies exlusively on photon-counting detectors.

Chapters 3 - 7 are based on published papers with considerable contribution of the author of

this Thesis.

Conclusions are drawn in Chapter 8.



Chapter 2

Background Theory

2.1 Quantization of the electromagnetic field

From classical theory of electromagnetism for a plane electromagnetic wave of frequency ωk

propagating in the direction ~k the electric ~E and magnetic ~B fields are given by

~E(~r, t) = ~εE0ei~k~r−iωkt + c.c, ~B(~r, t) =
~k × ~ε
k

E0ei~k~r−iωkt + c.c, (2.1)

k = |~k| = ωk/c, where c is the speed of light, ~ε accounts for the polarization vector of the

electromagnetic wave, and thus it is perpendicular to the propogation direction z of the wave

and can attain two possible projections onto the plane xy. The symbol c.c denotes a complex

conjugate.

The energy of the electromagnetic field contained in the volume V is given by

U ≡ 1

8π

∫
V

(
| ~E|2(~r, t) + | ~B|2(~r, t)

)
d3r. (2.2)

Important role in electromagnetic theory is played by a vector potential ~A(~r, t), which is related

6



2.1. Quantization of the electromagnetic field 7

to the electric and magnetic fields as

~E = −1

c

∂ ~A

∂t
, ~B = ~∇× ~A. (2.3)

The Coulomb gauge is used, i.e., the scalar potential is set to zero and therefore div ~A(~r, t) = 0.

By applying Coulomb gauge one makes electric and magnetic vectors completely dependent on

vector potential only.

Thus, for the case of plane waves one can write

~A(~r, t) = ~εA0ei~k~r−iωkt + c.c., E0 =
iωk
c
A0. (2.4)

Now by considering the electromagnetic field expanded into a set of plane waves confined in

the cube with linear size equal to L, and by applying the boundary periodic conditions, one

obtaines the following allowed values for the components of the wave vector ~k

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, nx, ny, nz = 0,±1,±2, . . . (2.5)

The vector potential for such a field thus can be written in the form

~A(~r, t) =
∑
~k,s

A~ks√
V
~ε~kse

i~k~r−iωkt + c.c. (2.6)

Combining Eqs. (2.2), (2.6) and utilizing the orthogonality property of the plain waves, i.e.,

1

V

∫
V

ei~k~r−i~k′~rd3r = δnxn′xδnyn′yδnzn′z , (2.7)

one arrives at the expression for the energy

U =
1

2π

∑
~k,s

(
ω2
k

c2

)
| ~A~ks|

2. (2.8)

From quantum theory we know, that the energy of the electromagnetic oscillators should be
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quantized by the number of modes n~ks, i.e.,

U =
∑
~k,s

~ω~kn~ks. (2.9)

Now, comparing Eq. (2.8) and Eq. (2.9) we can find a correspondence

n~ks ↔
ωk

2π~c2
| ~A~ks|

2. (2.10)

In quantum optics electric, magnetic and potential vectors become operators. And as such the

energy becomes a Hermitian operator, with the mode number operator

n̂~ks = â†~ksâ~ks, (2.11)

where the non-Hermitian operator â†~ks (â~ks) is called creation (annihilation) operator. Those

operators also satisfy the following commutation relations

[
â~ks, a

†
~k′s′

]
= δ~k~k′δss′ ,

[
â~ks, a~k′s′

]
= 0. (2.12)

By inspecting Eqs. (2.10), (2.11) we find that the relation between the operator of vector

potential and non-Hermitian annihilation operator has a simple form Â~ks =
√

2π~c2
ωk

â~ks. The

exact form for the field’s vector operators is as following

Â(~r, t) =
∑
~k,s

√
2π~c2

ωkV
~ε~ksâ~kse

i~k~r−iωkt +H.c.,

Ê(~r, t) = i
∑
~k,s

√
2π~ωk
V

~ε~ksâ~kse
i~k~r−iωkt +H.c.,

B̂(~r, t) = i
∑
~k,s

√
2π~ωk
V

~k × ~ε~ks
k

â~kse
i~k~r−iωkt +H.c., (2.13)

where H.c. means Hermitian conjugate. The Hamiltonian of the electromagnetic field which
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corresponds to the energy operator given Eq. (2.2) and Eq. (2.13) can be expressed as

Ĥ =
∑
~k,s

~ωk
(
â†~ksâ~ks +

1

2

)
. (2.14)

Therefore, in contrast to the classical physics, the quantum mechanics predicts a non-zero

energy for the vacuum even in the absence of the electromagnetic field, which equals
∑
~k,s

~ωk/2.

2.2 Quantum states of light

Since in the following chapters we will deal with Fock and Gaussian states, here we present a

brief introduction in the theory of such states.

2.2.1 Fock states

The Fock states are photon number states and can be written as a ket vector |n〉 in the Dirac

representation, where n denotes the number of light quanta.

The action of the annihilation (creation) operator on the Fock state decreases (increases) a

number of photons on one in the state, i.e.,

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (2.15)

And for a photon number operator one has

n̂|n〉 = â†â|n〉 = n|n〉. (2.16)

The state |0〉 is called the vacuum state, thus it does not contain any photons in the radiation

field.

Making use of the expressions given in Eq. (2.15) one can generate n-photon state from the
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vacuum by applying n times the creation operator â†, namely

|n〉 =
(â†)n√
n!
|0〉. (2.17)

2.2.2 Gaussian states

For a system consisting ofM modes, the phase space is determined by coordinate- and momentum-

like operators x̂, p̂ (which are also called as amplitude and phase quadrature, respectively)

expressed via boson operators as follows

x̂k =
1√
2

(
âk + â†k

)
, p̂k =

1√
2i

(
âk − â†k

)
, k = 1 . . .M, (2.18)

and which obey a commutation rule

[x̂k, p̂l] = iδkl. (2.19)

An M -mode state described by the density matrix ρ̂ is a Gaussian state if its symmetrically-

ordered characteristic function is Gaussian:

CS(B) = Tr
[
ρ̂ exp

{
−iBTΣR̂

}]
, (2.20)

where Tr stands for a trace operation, B = (β1x, β1y, . . . , βMx, βMy)
T ∈ R2M , Σ is the symplectic

matrix, i.e., ΣT = −Σ = Σ−1, which is defined as

Σ =
M⊕
i=1

ωi, ωi =

 0 1

−1 0

 , (2.21)

and R̂ = (x̂1, p̂1, . . . , x̂M , p̂M)T is a vector of operators.

CS(B) = exp

{
−1

2
BTΣσSΣ

TB − iBTΣ〈R̂〉
}

(2.22)
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where we defined the covariance matrix of symmetrical ordering

σSkl ≡ [σS ]kl =
1

2
〈R̂kR̂l + R̂lR̂k〉 − 〈R̂k〉〈R̂l〉. (2.23)

Note that because of the noncommutativity of the boson operators â, â†, one deals with different

ordering of operators. For example, for normal ordering of boson operators, which we denote

by ::, all the creation operators are put to the left, and annihilation operators to the right,

respectively, when acting on a certain state, i.e., : ââ† := â†â, thus : ââ† : 6= â†â+ 1. The opposite

rule applies to the antinormal ordering.

It is worth noting, that Gaussian states can be completely determined by their covariance

matrix, since by applying the approapriate displacement operator to the state ρ̂, one can

dispose of the first-moment vector R̂.

The uncertainty relations among canonical operators impose a constraint on the covariance

matrix, corresponding to the inequality

σS +
i

2
Σ ≥ 0, (2.24)

that expresses the positivity of the density matrix ρ̂.

In analogy with symmetrically ordered characteristic function in Eq. (2.22) we can define

normally-ordered characteristic function, which also plays a crucial role in our later analysis,

namely

CN (β) = exp

{
−1

2
β†ΣσNΣTβ − β†Σ〈Â〉

}
, (2.25)

with β = (β1, β
∗
1 , . . . , βMβ

∗
M)T ∈ C2M and normally-ordered covariance matrix

σNkl ≡ [σN ]kl = 〈: Â†kÂl :〉 − 〈Â
†
k〉〈Âl〉, (2.26)

where Â =
(
â1, â

†
1, . . . , âM , â

†
M

)T
is a column vector of boson operators.

By Fourier transforming the characteristic function in Eq. (2.22), we obtain the so-called Wigner
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function of ρ̂

W (X) =
1

(2π2)M

∫
R2M

d2MB exp
{

iBTΣX
}
CS(B) (2.27)

Substituting Eq. (2.22) into Eq. (2.27) one obtains

W (X) =
1

πM
√

det[σS ]
exp

{
−1

2

(
X − 〈R̂〉

)T
σ−1
S

(
X − 〈R̂〉

)}
. (2.28)

Therefore, the Wigner function is Gaussian whenever CS(B) is Gaussian. This is in contrast

with normally-ordered characteristic function, which, under certain circumstances, can lack the

Gaussian behaviour because of the nonpositivity of the covariance matrix in Eq. (2.25). Since

CN (β) determines the Glauber-Sudarshan P function [17, 18] via Fourier transform, this can

lead to highly nonregular behaviour of P function. The latter case indicates the nonclassicality

of the quantum state, and we proceed to its discussion in the next section.

2.3 Nonclassicality of quantum light

For optical fields, a commonly accepted criterion for distinguishing nonclassical states from the

classical ones is expressed as follows: a quantum state is nonclassical if its Glauber-Sudarshan

P function fails to have all the properties of a probability density. The Glauber-Sudarshan P

function for a bosonic state ρ̂ can be defined as

ρ̂ =

∫
P (α, α∗)|α〉〈α|d2α, (2.29)

It is worth noting that the negativity of the P function is the necessary and sufficient condition

for nonclassicality, while the irregularity of the P function is only a sufficient condition. There-

fore, if the P function is more singular or more irregular than Dirac’s δ-function for a given

state, then it is also nonpositive (semidefinite). As an example of such an irregular function

is the P function for an n-photon Fock state (with n = 1, 2, ...), which is given by the nth

derivative of δ(α).
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Based on this definition of nonclassicality, various operational criteria have been proposed for

testing the nonclassicality. In what follows, for the sake of simplicity, we consider nonclassi-

cality measures defined for a single-mode state, the generalization to the multimode case is

straightforward.

One of the first measures of the nonclassicality of light was introduced by Mandel in 1979 [19].

He introduced the following parameter

QM =
〈: n̂2 :〉 − 〈n̂〉2

〈n̂〉
. (2.30)

In terms of the P function the parameter QM can be expressed as

QM =
〈(α∗α− 〈α∗α〉)2〉P

〈α∗α〉P
, (2.31)

where 〈〉P stands for the avarage over P (α), namely

〈α∗mαn〉P =

∫
P (α)α∗mαnd2α. (2.32)

The quantity in Eq. (2.31) is positive if Glauber-Sudarshan P function is a positive function.

Therefore, if QM < 0 then the state should be nonclassical, since P function fails to be a

probability function. For coherent states one hasQM = 0, i.e., the state exhibits pure Poissonian

statistics, for Fock states QM = −1 and thus, the state is nonclassical. As it is seen from the

definition of QM in Eq. (2.30), the Mandel parameter can detect nonclassicality only in the

intensity domain, and cannot answer if the state is nonclassical in the phase space.

The extension of the Mandel parameter, which is based on the second-order intensity moments

of the light field, to the higher-order intensity moments was done by Lee [20] with an introduced

normalized nonclassicality parameter derived from the majorization theory:

Rk(l,m) ≡ 〈: n̂
l+k :〉〈: n̂m−k :〉
〈: n̂l :〉〈: n̂m :〉

− 1, l ≥ m ≥ k. (2.33)

In the same way the nonclassicality of a state is revealed by the condition Rk(l,m) < 0.
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To detect the nonclassicality expressed in the phase space, the following parameter can be

utilized [21]:

Sθ = 〈: (X̂θ)
2 :〉P − 〈X̂θ〉2P , (2.34)

where X̂θ is the generalized quadrature of the field

X̂θ =
âe−iθ + â†eiθ

√
2

. (2.35)

For θ = 0 (π/2), the X̂θ reduces to well-known coordinate- (momentum-) like operator x̂ (p̂).

Therefore, whenever Sθ < 0 it is said that the corresponding quantum state is nonclassical. The

nonclassical measure Sθ is often used to detetect a squeezed light, i.e., light, where the variance

of one of its quadratures (x̂ or p̂) is squeezed compared to the deviation of the vacuum, namely

〈∆X̂2
θ 〉 <

1

2
. (2.36)

Based on the definition of the nonclassicality measures derived from the nonclassicality of the

P function mentioned above, in general, one can construct any such a f̂ operator decomposed

into a series of m photon number (quadrature) operators f̂ =
∑

k ckn̂
k
(
f̂ =

∑
k ckX̂

k
θ

)
. The

quadratic normally-ordered form of f̂ would then lead to the nonclassicality measure

〈: f̂ †f̂ :〉P < 0. (2.37)

The latter condition leads to the negativity of the matrix M with elements Mjk = 〈: n̂j+k :〉(
Mjk = 〈:X̂j+k

θ :〉
)

, which implies the negativity of the principal minors of the matrix M ,

namely

detM (k) < 0, 1 ≤ k ≤ m. (2.38)

The condition given in Eq. (2.38) is called the nonclassicality condition in terms of higher-order

moments of the number or quadrature operators.

Another suggestion how to measure nonclassicality came from Lee in 1991 [22]. He introduced
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the following general distribution function

R(α, τ) =
1

πτ

∫
d2β exp

(
−1

τ
|α− β|2

)
P (β) (2.39)

where parameter τ serves as nonclassical measure of a state and 0 ≤ τ ≤ 1. P is the Glauber-

Sudarshan function.

The idea behind the introduction of the convolution function R in Eq. (2.39) is to find such a

minimal value of τ at which the function R(α, τ), if being a nonpositive and a more nonregular

than Dirac delta function, becomes a positive function, i.e., it satisfies the requirements imposed

on a classical probability function. When τ = 0, 1
2
, 1 the R function is transformed into the

Glauber-Sudarshan function P , the Wigner function W and Hashimi function Q, respectively.

Whenever τ > 0 the state is considered to be nonclassical, and the larger the τ the larger the

nonclassicality of the state.

2.4 Entanglement

Quantum entanglement is a remarkable phenomenon and it is at the heart of the current

development of quantum information processing. It emerges from the quantum superposition

principle lying at the heart of quantum mechanics.

So far, the most well known systems displaying entanglement are bipartite states, i.e. states

consisting of two subsystems. The theory regarding multiparitite entanglement still needs

further investigation and development, since it can be studied only for a limited number of

states [23]. There are two types of systems which are at the center of the entanglement theory,

namely discrete variable and continuous variable systems. The former deals with the finite

Hilbert space, e.g., qubits of photons, whereas the latter considers the systems in the infinite

Hilbert space like coordinate and momentum quadratures of the optical field.

For any entangled pure bipartite state with orthonormal bases of each subsystem {|un〉} and
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{|vn〉}, the total state vector can be written in the Schmidt decomposition as

|ψ〉 =
∑
n

cn |un〉 |vn〉 . (2.40)

The form of Eq. (2.40) implies that the state vector |ψ〉 can not be presented as a product of

two parties, and thus it is entangled.

The definition of pure-state entanglement via the non-factorizability of the total state vector

is generalized to mixed states through nonseparability of the total density operator. A general

quantum state of a two-party system is separable if its total density operator is a mixture of

product states

ρ̂12 =
∑
i

ηiρ̂i,1 ⊗ ρ̂i,2 (2.41)

Otherwise, it is inseparable. In general, it is a difficult question whether a given density operator

is separable or inseparable. One of the methods to test the state for inseparability is Peres’

partial transpose criterion [24]. For a separable state as in Eq. (2.41), transposition of either

density matrix gives again a non-negative density operator

ρ̂Γ
12 =

∑
i

ηiρ̂
T
i,1 ⊗ ρ̂i,2. (2.42)

The operation T in Eq. (2.42), called a partial transpose, corresponds to transposition of indices

corresponding to the first subsystem and has an interpretation as a partial time reversal [23].

The Eq. (2.42) gives a necessary condition for a separable state, and therefore if one of the

eigenvalues of the density matrix ρ̂Γ
12 is negative it is, in general, a sufficient condition for

inseparability (entanglement). But there are cases, when violation of equality given in Eq. (2.42)

is both sufficient and necessary condition for the entanglement, namely for 2 × 2 and 2 × 3-

dimensional systems, as well as for 1×N -mode Gaussian and m×n-mode bisymmetric Gaussian

states [25].

For Gaussian states the time reversal operation mentioned earlier corresponds to the change of
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the sign of the momentum operator. Such a transformation in the phase space is described as

R̂→ ΓR̂ = (x̂1,−p̂1, . . . , x̂M ,−p̂M)T . (2.43)

The covariance matrix of the M -mode Gaussian state reduces then to σS → ΓσSΓ.

The condition, that the partially transposed Gaussian state is physical can be written as follows:

ΓaσSΓa ≥
i

4
Σ, (2.44)

where operator Γa = Γ⊗ I, i.e., it changes signs of the momenta in the first subsystem a.

The violation of the condition given in Eq. (2.44) is sufficient for entanglement between Gaussian

subsytems a and b, and as was mentioned earlier is also necessary for 1 × N -mode Gaussian

and m× n-mode bisymmetric Gaussian states.

There are several measures of entanglement, which apply either to discrete or continuous vari-

able domain. Since in our present work we deal with Gaussian states, i.e., continuous variable

states, below we consider the most used quantitative entanglement measures.

One such a measure is called negativity N . Since the inseparable state exhibits the negativity of

the partial transpose density matrix, in that way one can utilize such a non-positivity property

as a measure for the entanglement. Based on that, negativity N can be defined as an absolute

sum of negative eigenvalues of the density matrix ρ̂Γ
12. And it can be written as

N =
||ρ̂Γ||1 − 1

2
, (2.45)

where || · ||1 is the trace norm, i.e., the sum of absolute values of eigenvalues.

For Gaussian states the negativity N can also be obtained directly from its partially transposed

covariance matrix ΓaσSΓa. Any two-mode covariance matrix σS can be written as

σS =

 A C

CT B

 (2.46)
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where A, B, and C are 2 × 2 matrices. Then we can define four local symplectic invariants,

i.e., quantities that are left unchanged by local symplectic transformations:

IS1 = det [A] , IS2 = det [B] , IS3 = det [C] , IS4 = det [σS ] . (2.47)

Another important symplectic invariant is defined as follows

∆(σS) = IS1 + IS2 + 2IS3. (2.48)

For partial transpose covariance matrix those invariants become

ĨS1 = IS1, ĨS2 = IS2, ĨS3 = −IS3, ĨS4 = IS4, ∆̃(σS) = IS1 + IS2 − 2IS3. (2.49)

The symplectic eigenvalues of ΓaσSΓa are defined then as follows

d̃± =

√√√√∆̃(σS)±
√

∆̃(σS)2 − 4IS4

2
. (2.50)

The condition for separability in Eq. (2.44) can be rewritten as

d̃− ≥
1

2
. (2.51)

The relation between negativity N and symplectic eignevalue d̃− takes the form

N =
1

4d̃−
− 1

2
. (2.52)

Very often instead of negativity the logarithm of the trace norm of partially transposed density

matrix is used, and is called logarithmic negativity

EN = log ||ρ̂Γ||1. (2.53)
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Or equivalently for Gaussian states in terms of symplectic eigenvalues

EN = − log 2d̃−. (2.54)

Apart from negativity N , logarithmic negativity EN has an operational meaning, namely it is

a special type of entanglement cost under positive partial transpose preserving operations [26].

2.5 Spontaneous Parametric Frequency Down-Conversion

Process

Spontaneous parametric frequency down-conversion (SPDC) is a nonlinear optical process oc-

curing as a result of the interaction of an intense laser beam and a medium with the second

order nonlinear susceptability χ(2) leading to the generation of entangled photon pairs.

From both the theoretical and the experimental points of view, the nonlinear process of para-

metric down-conversion, in which photon pairs are generated, has been playing an important

role in quantum optics [27, 28, 29, 30]. Its individual photon pairs have been exploited in many

fundamental experiments testing nonclassical behavior predicted by quantum physics [31, 32].

It has also allowed the generation of more intense fields having their electric-field amplitude

quadratures squeezed below the vacuum level [33, 34, 35], exhibiting sub-shot-noise correla-

tions [36, 37] or having sub-Poissonian photon-number statistics [38, 39, 40].

The schematical description of the process is shown in Fig. 2.1.

Here, the pump photon with the frequency ωp is converted into two photons traditionally called

signal and idler with corresponding frequences ωs and ωi. These two photons are generated from

the vacuum of the modes âs and âi. Moreover, the conservation law of energy and momentum

gives

ωp = ωs + ωi, ~kp = ~ks + ~ki, (2.55)

where ~k is a wave vector.
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Figure 2.1: Spontaneous parametric frequency down-conversion process. The intense laser field
with the wave vector ~kp and frequency ωp impinges on the nonlinear crystal with dielectric
susceptability χ(2) producing at the output of the crystal both a signal and idler beam with
wave vectors ~ks, ~ki and frequencies ωs, ωi, respectively.

Due to Eq. (2.55) the bandwidths of the frequency and momentum of the generated down-

converted photons can be large. In general, the normalized quantum state of the signal and

idler photons can be written as follows:

|Ψ〉 =

∫
Φ(ω)

∣∣∣ωp
2

+ ω;
ωp
2
− ω

〉
dω, (2.56)

where Φ(ω) is the biphoton amplitude function, the exact form of which depends on phase-

matching conditions, and the properties of the pumping beam and the nonlinear medium.

There are two types of SPDC. The process is called type I (II) if the signal and idler photons have

identical (orthogonal) polarizations. Additionally, the process is called collinear (noncollinear)

if signal and idler photons travel in the same (different) directions.

Here below, we consider key features of the theoretical model of the frequency down-conversion

process of type I, since it is of utmost importance for the present work. We also stress the

importance of the phase-matching condition. The more detailed approach to describe the

properties of the system based on Heisenberg equations and covariance matrix of the SPDC

will be considered in the following chapters.

The interaction Hamiltonian in the interaction picture for SPDC process can be written as

HI = χ(2)

∫
V

d3rÊ(+)
p (~r)Ê(−)

s (~r)Ê
(−)
i (~r) +H.c., (2.57)
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where Ê
(+)
j (Ê

(+)
j ) is the positive (negative) frequency part of the operator of the electric field.

H.c. stands for Hermitian conjugation. The integration is performed over the volume V of the

crystal. For simplicity we also assumed that nonlinear susceptability χ(2) is constant in the

whole volume. In turn Ê
(+)
j has the form

Ê
(+)
j =

∑
k

i

√
2π~ωjk
n2
jkV

âjke
i~k~r−iωjkt, Ê

(−)
j = −

∑
k

i

√
2π~ωjk
n2
jkV

â†jke
−i~k~r+iωjkt, j = s, i. (2.58)

Here njk is the refractive index of the medium at the frequency ωjk, and â (â†) is annihilation

(creation) operator. The quantum state expressed by the Fock state can be written in the

manner |ψ〉 ∼ |n〉, where n is the number of the photons in the field. In the quantum mechanics

a quantum state evolves in time in the interaction picture according to the formula

|Ψ(t)〉 = exp

(
− i

~

∫
HIdt

)
|Ψ(0)〉 . (2.59)

Now, combining Eqs. (2.57)-(2.59) with the assumption that the pump field is very intense

and thus can be treated classically
(
Ê

(+)
p = εpe

i~kp~r+iωpt
)

, and taking the vaccum state as the

initial state |Ψ(0)〉 = |0, 0〉, the first-order correction of the wave function of the spontaneous

down-conversion then can read as

∣∣Ψ(1)
〉
'
∑
~k,~k′

â†
s~k
â†
i~k′
F~k~k′ |0, 0〉 , (2.60)

where

F~k~k′ = εpχ
(2)i

∫
V

d3rei~kp~r−i~k~r−i~k′~r

∫
dte−iωpt+iωskt+iωik′ t

2π
√
ωskωik′

V nsknik′
. (2.61)

For simplicity, let us consider the case of the collinear propagation. Further, we assume that

the pump field is propagating along the z direction, i.e., ~kp = ~zkz, and we also assume that

the transverse area of the crystal (T denotes transverse components) is much larger that the

transverse profile of the pump and therefore we can span the space integral in T domain to

infinity. As a result, the integration over x and y axis in Eq. (2.61) would give the delta function

δ~kT +~k′T
. The time integration in the limit of t → ∞ would also give 2πδ(ωp − ωsk − ωik′). In
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turn, the integral over z in the crystal with the length L becomes the phase-matching integral,

namely

h(u) =
eiu − 1

iu
, u = (kp − ksz − kiz)L (2.62)

Thus, the function F~k~k′ attains the form

F~k~k′ =
4π2iχ(2)εp

√
ωskωik′

nsknik′
δ~kT +~k′T

δ(ωp − ωsk − ωik′)h [(kp − ksz − kiz)L] . (2.63)

The inspection of the form of the F function in Eq. (2.63) leads to the conslusion, that the signal

and idler photons emmited from the crystal are entangled in the frequency and momentum

domains. Moreover, the ideal phase-matching conditions are obtained if

ωp = ωsk + ωik′ , kp = ksz + k′iz. (2.64)

Given Eqs. (2.63), (2.64), the quantum state |Ψ〉 up to the first-order correction corresponding

to the spontaneous parametric frequency down-conversion can be written as follows:

|Ψ〉 ' |0, 0〉+ F~k~k′ |1, 1〉+ . . . (2.65)

The Eq. (2.65) represents the two-mode quantum state of light entangled in photon numbers.



Chapter 3

Comparative study of nonclassicality,

entanglement and dimensionality of

multimode noisy twin beams

Text adopted from I. I. Arkhipov, J. Peřina Jr., J. Peřina and A. Miranowicz, Phys. Rev. A

91, 033837 (2015) [A1].

3.1 Introduction

In this chapter, we study nonclassicality by applying the Lee nonclassical depth [22] as well as

entanglement via the negativity [41, 42] for (in general) noisy twin beams of different intensities.

Such fields occur under real experimental conditions in which a nonlinear crystal generates both

photon pairs and individual single photons (noise). Nevertheless, the signal and idler fields

together form a bipartite quantum system. We note that entanglement and nonclassicality

of twin beams generated by down-conversion seeded by thermal light have been analyzed in

Refs. [43, 44, 45]. In this case, noise present in the incident thermal fields participates in

the nonlinear process and generation of photon pairs. This weakens its detrimental effect on

entanglement and nonclassicality of twin beams and allows us to have entangled twin beams

23
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with a larger amount of noise.

Here we also study the problem of entanglement dimension via the negativity N for general

twin beams and the Schmidt number K for noiseless twin beams in a pure state. Namely,

we estimate how many degrees of freedom of two fields comprising a twin beam are entangled

based on the results of Ref. [46] for axisymmetric states. On the other hand, the participation

ratio Rs [47] determined from the reduced statistical operator ρ̂s of the signal (or idler) field

gives the number of degrees of freedom in this field serving to describe both entanglement and

noise. It varies from Rs = 1 (for a pure state ρ̂s) to Rs = d = dim(ρ̂s) for the completely mixed

state ρ̂s = I/d. We note that the participation ratio Rs gives an effective number of states in

the mixture ρ̂s implied by the property that it is a lower bound for the rank of ρ̂s. Moreover,

the logarithm of R is the von Neumann–Renyi entropy of second order [47]. The inverse of

the participation ratio is referred to as the purity (or linear entropy). Various methods for

direct measuring the Schmidt number K (even without recourse to quantum tomography) were

proposed for noiseless twin beams (see, e.g., Refs. [48, 49, 50, 51, 52]). The method of Ref. [50]

was recently realized experimentally [53]. We note that the negativity can also be measured

without applying quantum tomography as described, e.g., for two polarization qubits using

linear optical setups [54, 55].

The chapter is organized as follows. In Sec. 2.2, the model of parametric down-conversion

providing an appropriate statistical operator of a twin beam is presented. Entanglement of the

twin beam is addressed in Sec. 2.3 using the negativity. The nonclassical depth is introduced

in Sec. 2.4 to quantify nonclassicality. The relation between the negativity and the nonclassical

depth is also discussed in Sec. 2.4 The dimensionality of a twin beam described by the par-

ticipation ratio together with the entanglement dimensionality described by the negativity is

analyzed in Sec. 2.5. Properties of M -mode twin beams are discussed in Sec. 2.6. Section 2.7 is

devoted to experimental multimode twin beams containing also noise embedded in independent

spatiotemporal modes. Conclusions are drawn in Sec. 2.8.
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3.2 Quantum model of a twin beam

To describe the generation of a single-mode twin beam by parametric down-conversion, we

adopt the approach based on the Heisenberg equations derived from the appropriate nonlinear

Hamiltonian Ĥint [28],

Ĥint = −~gÂ1Â2 exp(iωt− iφ) + H.c., (3.1)

where Â1 (Â†1) and Â2 (Â†2) represent the annihilation (creation) operators of the signal and

idler field, respectively, and g is a real coupling constant that is linearly proportional both to

the quadratic susceptibility of a nonlinear medium and to the real pump-field amplitude. The

interaction time is denoted t, ω (φ) is the pump-field frequency (phase), and ω1 and ω2 stand

for the signal- and idler-field frequencies, respectively. The law of energy conservation provides

the relation ω = ω1 + ω2. H.c. is the Hermitian conjugated term. In a real nonlinear process,

also noise occurs. It can be described by the Langevin forces L̂ belonging to a reservoir of

chaotic oscillators with mean number of noise photons 〈nd〉.

The Heisenberg-Langevin equations corresponding to the Hamiltonian Ĥint are written as

dÂ1

dt
= −(iω1 + γ1)Â1 + igÂ†2 exp(−iωt+ iφ) + L̂1,

dÂ2

dt
= −(iω2 + γ2)Â2 + igÂ†1 exp(−iωt+ iφ) + L̂2,

(3.2)

where the constant γ1 (γ2) describes damping in the signal (idler) field. The Langevin operators

L̂i (for i = 1, 2) have the properties

〈L̂i〉 = 〈L̂†i〉 = 0, 〈L̂†i L̂j〉 = 2γj〈nd〉δij,

〈L̂iL̂†j〉 = 2γj (〈nd〉+ 1) δij, (3.3)

where δij stands for the Kronecker symbol.

Using the interaction representation [Âj(t) = aj(t) exp(−iωjt)] and neglecting damping together
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with the Langevin forces, the solution of Eq. (3.2) attains the form

â1(t) = â1(0)u(t) + iâ†2(0)v(t) exp(iφ),

â2(t) = â2(0)u(t) + iâ†1(0)v(t) exp(iφ), (3.4)

in which u(t) = cosh(gt) and v(t) = sinh(gt).

Statistical properties of the twin beam are then described by the normal characteristic function

CN defined as

CN (β1, β2) = Tr
[
ρ̂ exp(β1â

†
1 + β2â

†
2) exp(−β∗1 â1 − β∗2 â2)

]
, (3.5)

where Tr denotes the trace. Using the solution given in Eq. (3.4), the normal characteristic

function CN attains the Gaussian form [56],

CN (β1, β2) = exp
[
−(|β1|2B1 + |β2|2B2) +D12β

∗
1β
∗
2 +D∗12β1β2

]
, (3.6)

in which β1 and β2 denote independent complex variables. For the undamped and noiseless

case, we have D12 = 〈4â1 4 â2〉. Also the mean number Bp of the generated photon pairs is

determined as Bp = 〈4â†14â1〉 = 〈4â†24â2〉. When damping and noise are also considered [56],

the parameters Ba (for a = 1, 2) contain additional noise contributions characterized by the

parameters Bs and Bi, i.e., B1 = Bp +Bs and B2 = Bp +Bi. Whereas the parameter Bp gives

the mean number of photon pairs, the parameters Bs and Bi correspond to the mean number

of noise photons coming from the signal- and idler-field reservoirs, respectively. On the other

hand, the parameter D12 describing mutual correlations between the signal and idler fields is

not influenced by the noise since |D12|2 = Bp(Bp + 1).

The statistical operator ρ̂ of the twin beam then acquires the form [28]

ρ̂ =
1

π2

∫
d2β1d

2β2CA(β1, β2) : exp

(
2∑
j=1

âjβ
∗
j − â

†
jβj

)
: . (3.7)
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In Eq. (3.7), CA(β1, β2) = CN (β1, β2) exp(−|β1|2 − |β2|2) denotes an anti-normal characteristic

function and symbol : : means normal ordering of field operators.

Performing integration in Eq. (3.7) we express the statistical operator ρ̂ in the form

ρ̂ =
1

K̃
: exp

[
−B̃2

K̃
â†1â1 −

B̃1

K̃
â†2â2 +

|D12|
K̃

(
â1â2 + â†1â

†
2

)]
:, (3.8)

where K̃ = B̃1B̃2 − |D12|2. The parameters B̃a introduced in Eq. (3.8) are related to anti-

normal ordering of field operators and are given as B̃a = Ba + 1 with a = 1, 2. Decomposing

the statistical operator ρ̂ in the Fock-state basis we finally arrive at the formula

ρij,kl =
∞∑
n=0

n∑
p=0

p∑
r=0

r∑
t=0

(−1)n−r
B̃n−p

2 B̃p−r
1 K̃−n−1

(n− p)!(p− r)!
|D12|r

(r − t)! t!
〈ij|â†n−p+t1 â†p−r+t2 ân−p+r−t1 âp−t2 |kl〉.

(3.9)

Direct inspection of Eq. (3.9) for the matrix elements of the statistical operator ρ̂ written in

Eq. (3.9) reveals that all nonzero elements can be parameterized by only three indices,

ρi,j,i+d,j+d =
1

K̃

√
(i+ d)!

i!

(j + d)!

j!

max(i,j)∑
m=0

Ci
mC

j
m

m!

(m+ d)!
Xj−m

1 X i−m
2

(
|D12|
K̃

)d+2m

,(3.10)

assuming d ≥ 0. Moreover, ρij,i+d,j+d = ρi+d,j+d,i,j, Xa = 1− B̃a/K̃ with a = 1, 2, and Ci
m and

Cj
m denote the binomial coefficients.

3.3 Negativity of the twin beam

The negativity N of a mixed bipartite system defined on the basis of the Peres-Horodecki

criterion for a partially transposed statistical operator [24, 57, 42] is useful for quantifying the

entanglement of the twin beam. It can be expressed as

N(ρ̂) =
||ρ̂Γ||1 − 1

2
(3.11)
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using the trace norm ||ρΓ||1 of the partially transposed statistical operator ρΓ. The negativity

essentially measures the degree at which ρΓ fails to be positive. As such it can be regarded

as a quantitative version of the Peres-Horodecki criterion for separability [24, 57]. According

to Eq. (3.11), the negativity N is given as the absolute value of the sum of the negative

eigenvalues of ρΓ. It vanishes for separable states. It is worth noting that the negativity N is an

entanglement monotone and so it can be used to quantify the degree of entanglement in bipartite

systems. Moreover, the negativity does not reveal bound entanglement (i.e., nondistillable

entanglement) in systems more complicated than two qubits or qubit-qutrit [58].

To determine the negativity N we consider the eigenvalue problem for the partially transposed

statistical operator ρ̂Γ. The statistical operator ρ̂Γ expressed in the Fock-state basis attains a

characteristic block structure. The smallest block has dimension 2 and each successive block

has dimension larger by 1. For a given M one has a block of dimension M + 1. Such a block

represents a matrix of M + 1 isolated states; the sum of indices of their statistical operators

equals 2M ,

ρ̂Γ
M =



ρ0M,0M ρ0M−1,1M . . . ρ0 0,M M

ρ1M,0M−1 ρ1M−1,1M−1 . . . . . .

. . . . . . . . . . . .

ρMM,0 0 . . . . . . ρM 0,M 0


. (3.12)

It can be shown that eigenvalues of a block of dimension M + 1 can be expressed as νM+ ,

νM−1
+ ν−,. . . , ν+ν

M−1
− ,νM− using the eigenvalues ν+ and ν− of a block with dimension 2:

ν± = 1− 1

2K̃

(
B̃1 + B̃2 ∓

√(
B̃2 − B̃1

)2

+ 4|D12|2
)
. (3.13)

The negative eigenvalues can only be those containing odd powers of ν−. They form a geometric

progression whose elements can be summed to arrive at the formula for the negativity N :

N =
1

2

3(B̃1 + B̃2) +
√

(B̃1 − B̃2)2 + 4|D12|2 − 4K̃ − 2

4K̃ − 2(B̃1 + B̃2) + 1
. (3.14)

Expressing parameters B̃1, B̃2, and |D12|2 in Eq. (3.14) in terms of parameters Bp, Bs, and Bi,
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Figure 3.1: Negativity N as a function of the mean photon-pair number Bp for noiseless twin
beams (i.e., Bs = Bi = 0)) according to Eq. (3.16).

we arrive at the formula

N =
2Bp − (Bs +Bi)(4Bp + 1)− 4BsBi +

√
(Bs −Bi)2 + 4Bp(Bp + 1)

4(Bs +Bi)(2Bp + 1) + 8BsBi + 2
. (3.15)

Equation (3.15) simplifies considerably for noiseless twin beams:

N = Bp +
√
Bp(Bp + 1). (3.16)

According to Eq. (3.16), all noiseless twin beams are entangled. The more intense the noiseless

twin beams are, the more entangled the signal and idler fields are (see Fig. 3.1). The presence

of noise in a twin beam can even completely destroy entanglement, as the analysis of Eq. (3.15)

shows. Indeed, the condition N > 0 for entanglement can be rewritten using Eq. (3.15) as

follows:

Bp[1− (Bs +Bi)] > BsBi. (3.17)

Condition (3.17) cannot be fulfilled for any value of Bp provided that Bs + Bi ≥ 1. Thus, the

twin beam can be entangled only when

Bs +Bi < 1 and Bp >
BsBi

1− (Bs +Bi)
. (3.18)
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Figure 3.2: Negativity N , given in Eq. (3.15), as a function of the mean noise photon numbers
Bs and Bi in the signal and idler modes, respectively, assuming the mean photon-pair number
Bp equal to 0.5 [bottom light-gray (yellow) area], 1 [gray (green) area], 2 [dark-gray (blue) area]
and 4 [top, black area]. The larger Bp, the larger the negativity N .

The behavior of the negativity N of noisy twin beams dependent on the noise parameters Bs

and Bi is illustrated in Fig. 3.2 for several values of the mean photon-pair number Bp. It holds

in general that the greater the value of the mean photon-pair number Bp, the greater the value

of the negativity N . This can be explained as follows. The more intense twin beams, with their

thermal statistics, are effectively spread over a larger number of the Fock states. This naturally

results in the larger effectively populated Hilbert spaces used to describe the entanglement.

The greater value of the negativity N means a greater effective number of the paired modes

building the entanglement, i.e., a greater value of the entanglement dimensionality, as defined

in Sec. 2.5. Also, the greater the value of the mean photon-pair number Bp, the larger the

amount of overall noise Bs + Bi acceptable in an entangled twin beam (see Fig. 3.3). The

curves plotted in Fig. 3.3 indicate that entanglement is more resistent to noise when the noise

is distributed in the signal and idler fields asymmetrically. We note that separable states (i.e.,

with N = 0) contain, in general, paired, signal, and idler noisy contributions. However, the

noisy contributions are sufficiently strong to suppress the “entangling power” of the photon-pair

contribution and so the state effectively behaves as a classical statistical mixture of the signal

and idler fields.
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Figure 3.3: Curves giving the boundaries between entangled and separable twin beams and
determined according to Eq. (3.18) plotted in the plane spanned by the mean noise photon
numbers Bs and Bi assuming the mean photon-pair number Bp equal to 0.01 [dotted (red)
curve], 0.1 [dash-dotted (yellow) curve], 0.5 [dashed (green) curve], 2 [long-dashed (blue) curve],
and Bp = 100 [solid black curve]. Entangled states are localized in the lower-left corner of the
plane. The larger Bp, the larger the area containing entangled states.

The decomposition of the partially transposed statistical operator ρ̂Γ into blocks in its matrix

representation and the fact that a block (subspace) with dimension M + 1 describes only states

with up to M photons in the signal (and also idler) field can be used to define the distribution

dN of the negativity N fulfilling the normalization condition

∞∑
M=1

dN(M) = N. (3.19)

For a given M , the element dN(M) of this distribution is given as the sum of the absolute values

of the negative eigenvalues belonging to the block of dimension M + 1. The distribution dN

of the negativity provides insight into the internal structure of entanglement. It tells us how

entanglement is distributed in the Liouville space of statistical operators. Typical distributions

dN of the negativity for noiseless as well as noisy twin beams are plotted in Fig. 3.4. A teeth-like

structure occurs for smaller numbers M in noiseless twin beams. Noise tends to suppress this

structure, as is evident from the comparison of the distributions dN plotted in Figs. 3.4(a) and

3.4(b). We note that the densities of the negativity have already been introduced for bipartite

entangled states composed of a qubit and continuum of states [59, 60] as well as two continua

of states.
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Figure 3.4: Distribution dN of negativity N given in Eq. (3.19) assuming Bp = 2 and (a)
Bs = Bi = 0 and (b) Bs = Bi = 0.1. Note that −dN(M) corresponds to the sum of all the
negative eigenvalues for the (M + 1)–dimensional block of the partially transposed statistical
operator ρ̂Γ. Thus, dN(M) shows the internal structure of entanglement in the Liouville space.

3.4 Nonclassical depth of the twin beam

To quantify nonclassicality of the twin beam we apply the nonclassical depth τ [22] derived from

the threshold value sth of the ordering parameter at which the joint signal-idler quasidistribution

of integrated intensities becomes nonnegative [56, 61]. We adopt the definition τ = (1− sth)/2.

We note that the joint signal-idler quasidistribution of integrated intensities attains negative

values for 1 ≥ s > sth for which τ > 0. The threshold value sth can easily be obtained

from the condition 〈[∆(Ws −Wi)]
2〉 = 0, which determines the point of the transition between

quantum and classical single-mode twin beams [61]. This results in the following formula for

the nonclassical depth τ :

τ =
1

2

[√
(Bs −Bi)2 + 4Bp(Bp + 1)− 2Bp −Bs −Bi)

]
. (3.20)

Assuming noiseless twin beams, Eq. (3.20) simplifies to

τ =
√
Bp(Bp + 1)−Bp. (3.21)

According to Eq. (3.21), all noiseless twin beams are nonclassical. The greater the mean photon-

pair number Bp, the greater the value of the nonclassical depth τ (see Fig. 3.5). This depth τ
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Figure 3.5: Nonclassical depth τ given in Eq. (3.21) as it depends on the mean photon-pair
number Bp for noiseless twin beams, i.e., Bs = Bi = 0.

reaches its greatest value, 1/2, in the limit of an infinitely intense twin beam (Bp → ∞). We

note that τ = 1/2 corresponds to symmetrical ordering of the field operators.

On the other hand, and according to Eq. (3.20), noise only degrades nonclassical behavior of a

twin beam, as documented in Fig. 3.6. If the noise is equally distributed in the signal and idler

fields (Bs = Bi), the nonclassical depth τ determined along Eq. (3.20) gives the mean number

Bs + Bi of noise photons needed for suppressing the nonclassicality of the twin beam. So, the

larger the value of the nonclassical depth τ is, the more nonclassical the field is. On the other

hand, formal application of Eq. (3.20) to classical noisy twin beams results in negative values

of the nonclassical depth τ . Their absolute value |τ | can be considered a measure of classicality

of noisy twin beams in the sense that it quantifies the mean number of photon pairs needed to

transform a classical twin beam into the classical-quantum boundary τ = 0.

Condition τ = 0 for the transition from quantum to classical twin beams applied to Eq. (3.20)

results in the same relation among parameters Bp, Bs, and Bi as derived in Eq. (3.17) for

the boundary between entangled and separable twin beams. Thus, entangled twin beams are

nonclassical, whereas separable twin beams are classical. This means that nonclassical twin

beams may contain on average only less than one noise photon (Bs + Bi < 1). We note that

inequality (3.17) represents the Simon criterion for nonclassicality of Gaussian states as shown

in Ref. [61].
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Figure 3.6: Nonclassical depth τ given in Eq. (3.20) as a function of the mean noise photon
numbers Bs and Bi for the mean photon-pair number Bp equal to 0.1 [bottom, light-gray
(yellow) area], 0.5 [gray (green) area], 4 [top, dark-gray (blue) area]. The greater the value of
Bp, the greater the value of τ .

Comparison of Eqs. (3.16) and (3.21) made for noiseless twin beams reveals a simple relation

between the negativity N and the nonclassical depth τ :

N =
τ

1− 2τ
. (3.22)

Direct calculation based on Eqs. (3.15) and (3.20) then confirms that relation (3.22) holds even

for a general noisy twin beam. We thus have a one-to-one correspondence between the value of

the negativity N and the value of the nonclassical depth τ . Moreover, according to Eq. (3.22)

the negativity N is an increasing function of the nonclassical depth τ , and vice versa (see

Fig. 3.7). There exists a deep physical reason for this correspondence. The nonlinear process

emits photons in pairs into the signal and idler fields, which creates entanglement between these

fields. It is this entanglement that gives rise to nonclassical properties of twin beams, as the

classical statistical optics is unable to describe pairing of photons appropriately.
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Figure 3.7: Negativity N as a function of the nonclassical depth τ , according to Eq. (3.22).

3.5 Dimensionality of the twin beam

Three different numbers are needed to determine the dimensionality of a general noisy twin

beam. The dimensionality Kent of entanglement gives the number of degrees of freedom con-

stituting the entangled (paired) part of the twin beam. We also need additional degrees of

freedom to characterize the noisy parts of the twin beam. As the amount of noise is, in gen-

eral, different in the signal and idler fields, we have independent participation ratios Rs and Ri

for both fields. The entanglement dimensionality Kent for bipartite states with axisymmetric

statistical operators can be given in terms of the negativity N by a simple formula [46]:

Kent(ρ̂) = 2N(ρ̂) + 1 = ||ρ̂Γ||1. (3.23)

Strictly speaking, it is the least integer ≥ Kent that gives a lower bound to the number of

entangled dimensions between entangled subsystems (paired modes) of ρ̂ [46]. According to

Eq. (3.23), the entanglement dimensionality Kent equals 1 for separable states (N = 0). It

linearly increases with the negativity N . As the noise described by the mean noise photon

numbers Bs and Bi decreases the values of the negativity N , it also decreases the values of the

entanglement dimensionality Kent. We note that, for pure states, the Schmidt number is also

a good quantifier of the entanglement dimension Kent [62, 63, 64]. The Schmidt decomposition

of pure states accompanied by convex optimization can even be applied for quantifying the
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entanglement dimension of mixed entangled states [58].

On the other hand, the noise present in the signal and idler fields requires additional degrees

of freedom for its description. These degrees of freedom are, together with those reserved for

describing entanglement, determined by the participation ratios Rs and Ri derived from the

signal- and idler-field reduced statistical operators ρ̂s and ρ̂i, respectively [63, 65]:

Ra =
1

Tra[ρ̂2
a]
, a = s, i. (3.24)

Equation (3.10), giving the matrix elements of the statistical operator ρ̂, guarantees a diagonal

form of the reduced statistical operators ρ̂s and ρ̂i of the signal and idler fields, respectively. In

this case, Eq. (3.24) can be rewritten in the form

Rs =
1∑
j ρ

2
s,jj

. (3.25)

Using Eq. (3.10) the matrix elements ρs,jj can be written as

ρs,jj =
1

B̃s

[(
1− B̃i

K̃

)
+
|D12|2

K̃B̃s

]j
. (3.26)

Substituting Eq. (3.26) into Eq. (3.25) we obtain a simple formula for the participation ratio

Rs:

Rs = 2(Bp +Bs) + 1. (3.27)

The same considerations made for the signal field apply also to the idler field.

To find the relation between the entanglement dimensionality Kent and the participation ratios

Rs and Ri we consider for a while the noiseless twin beams in pure states. In this case, the

elements ρ̂s,jj of the reduced statistical operator ρ̂s, written in Eq. (3.26), immediately give the

squared Schmidt coefficients [51]. Combining Eqs. (3.16), (3.23), and (3.27) we arrive at the

formula

Kent = Rs +
√
R2

s − 1. (3.28)
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Equation (3.28) shows that, excluding weak noiseless twin beams, Kent ≈ 2Rs. This means that

the definitions of the entanglement dimensionality and participation ratio set different bound-

aries for the Schmidt coefficients cj included in the approximative description of a noiseless

twin beam with the wave function

|ψ〉 =

jmax∑
j=0

cj|j〉s|j〉i. (3.29)

Using Eq. (3.10), the coefficients cj in Eq. (3.29) are obtained in the form

cj =

√
Bp

j

(Bp + 1)j+1
, (3.30)

which is in agreement with the thermal photon-number statistics of the signal (or idler) field.

We note that the ratio cKent−1/cRs−1 of boundary coefficients is given by the expression [Bp/(1+

Bp)]Bp+1. When Bp →∞ cKent−1/cRs−1 → 1/e.

To compare the values of entanglement dimensionality and the participation ratio for general

twin beams we have to eliminate the effect of different boundaries set by different definitions,

as revealed by considering the pure states. Using the formulas derived for noiseless twin beams,

we introduce the modified entanglement dimensionality K̃ent as follows:

K̃ent =
2Bp + 1

2Bp + 1 + 2
√
B2

p +Bp

Kent. (3.31)

Definition (3.31) of the modified entanglement dimensionality K̃ent guarantees that the values

of modified entanglement dimensionality K̃ent and participation ratios Rs and Ri of noiseless

twin beams are equal.

The values of the modified dimensionality K̃ent of entanglement and the signal-field participation

ratio Rs are compared in Fig. 3.8 for the mean photon-pair number Bp = 1. Whereas the values

of the modified entanglement dimensionality K̃ent decrease with increasing values of the mean

noise photon numbers Bs and Bi, the values of the signal-field participation ratio Rs increase

with increasing values of the mean signal-field noise photon number Bs. We note that the values
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Figure 3.8: Modified entanglement dimensionality K̃ent given in Eq. (3.31) [lower, dark-gray
(blue) area] and signal-field participation ratio Rs given in Eq. (3.27) [upper, gray (red) area]
as they depend on the mean noise photon numbers Bs and Bi assuming the mean photon-pair
number Bp = 1.

of the signal-field participation ratio Rs are greater than those of the modified entanglement

dimensionality K̃ent even for Bs = 0, as the presence of noise in the idler field (Bi > 0) degrades

entanglement.

The relative contribution of the degrees of freedom used for describing entanglement in a twin

beam is an important characteristic. This contribution can be quantified via the coefficient rent

defined as follows:

rent =
2K̃ent

Rs +Ri

. (3.32)

As shown in Fig. 3.9, the greater the values of the mean noise photon numbers Bs and Bi, the

smaller the values of the coefficient rent. The comparison of surfaces of the coefficient rent drawn

for the mean photon-pair numbers Bp = 1 and Bp = 10 in Fig. 3.9 reveals seemingly paradoxical

behavior. The values of the coefficient rent decrease with increasing values of the mean photon-

pair number Bp. This behavior, however, naturally originates in fragility of entanglement with

respect to the noise. More intense twin beams (with greater values of Bp) are less resistant

to a given amount of noise compared to low-intensity twin beams. This is explained by the

larger dimensions of the effectively populated Hilbert spaces of more intense twin beams and,

thus, the more complex structures of their entanglement. As a consequence, relatively higher

numbers of degrees of freedom serving to describe entanglement in more intense noiseless twin
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Figure 3.9: Coefficient rent given in Eq. (3.32) versus the mean noise photon numbers Bs and Bi

for the mean photon-pair number Bp equal to 1 [upper, dark-gray (blue) area], and 10 [lower,
gray (red) area].

beams are “released” by the noise and enlarge the noise parts of twin beams.

Alternatively to the participation ratio R, we may apply the von Neumann entropy S of a

reduced statistical operator. Taking into account the diagonal form of the signal-field reduced

statistical operator ρ̂s with the elements written in Eq. (3.26), the signal-field entropy Ss is in

general determined along the formula

Ss = −Tr(ρ̂s ln ρ̂s) = −
∑
j

ρs,jj ln(ρs,jj). (3.33)

Considering the specific form of matrix elements ρs,jj given in Eq. (3.26), the formula for entropy

Ss attains the form

Ss = (1 +Bp +Bs) ln(1 +Bp +Bs)

− (Bp +Bs) ln(Bp +Bs); (3.34)

ln stands for natural logarithm. Combining Eqs. (3.25) and (3.34), the entropy Ss is revealed
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as an increasing function of the participation ratio Rs:

Ss =
1

2
[(Rs + 1) ln(Rs + 1)− (Rs − 1) ln(Rs − 1)]− 1. (3.35)

Analogous formulas for the idler-field entropy Si can easily be derived. The general dependence

of entropy Ss on the participation ratio Rs is plotted in Fig. 3.10. We would like to note that

the entropy S serves as a good measure of the entanglement for pure states.

3.6 Twin beam composed of M modes

In real experiments, twin beams are rarely composed of only one paired spatiotemporal mode [61,

66]. We note that a twin beam composed of one paired mode represents an ideal field from

the experimental point of view [67]. For this reason, we consider a multimode twin beam con-

taining M independent identical single-mode twin beams. Its statistical operator ρ̂M is given

as ρ̂M = ⊗M ρ̂ using the statistical operator ρ̂ written in Eq. (3.8). There are four parame-

ters characterizing the twin beam: number M of modes, mean photon-pair number Bp, mean

signal-field noise photon number Bs, and mean idler-field noise photon number Bi. We note

that such an M -mode twin beam represents a good approximation of a real twin beam when

all spatiotemporal modes participating in the nonlinear interaction are detected.
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Figure 3.10: von Neumann entropy Ss as a function of the participation ratio Rs according to
Eq. (3.35).
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The considered physical quantities behave differently with respect to the number M of modes.

It has been shown in Refs. [56] and [61] that the nonclassical depth τ does not depend on the

number M of modes. On the other hand, the multimode negativity NM , NM = (1 + 2N)M ,

as well as the participation ratios RM,a, RM,a = RM
a for a = s, i, are multiplicative. We note

that the form of the multimode negativity originates in the multiplicative property of the trace

norm and its relation to the negativity expressed in Eq. (3.11) [42]. In fact, the multimode

negativity NM coincides with the entanglement dimensionality Kent defined in Eq. (3.23) for a

single-mode twin beam. The multimode entropies SM,a, a = s, i, are then additive. To reveal

similar relations among the studied quantities as has been done for single-mode twin beams, we

have to define suitable quantities derived from those considered above. Defining the logarithmic

negativity N log
M ≡ ln(NM) and the logarithmic participation ratios Rlog

M,a ≡ ln(RM,a), a = s, i,

we replace the multiplicative quantities with the additive ones. Introducing the logarithmic

negativity N , logarithmic participation ratios Rlog
a , and entropies Sa related per one mode,

N =
N log
M

M
= ln(1 + 2N),

Ra =
Rlog
M,a

M
= ln(Ra),

Sa =
SM,a

M
= Sa, (3.36)

with a = s, i, we reveal the suitable quantities. The quantities defined in Eq. (3.36) together

with the nonclassical depth τ behave qualitatively in the same way as those defined for single-

mode twin beams discussed above. Especially, the logarithmic negativity N per mode is an

increasing function of the nonclassical depth τ . Also, the entropy Sa per mode is an increasing

function of the logarithmic participation ratio Ra per mode, a = s, i.

3.7 Experimental multimode twin beams

Real experimental multimode twin beams have a more complex structure than that discussed

in Sec. 2.6 [68, 61, 66]. The reason is that the spatiotemporal modes of twin beams are shared

by the signal and idler fields and so they can be broken before or during the detection owing to
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spectral and/or spatial filtering. As a consequence, real multimode twin beams are composed of

three components [61, 69]. A paired component describes photons embedded in spatiospectral

modes detected by both signal- and idler-field detectors. A noise signal (idler) component then

describes photons occurring in signal (idler) spatiotemporal modes that originate in filtering

of the idler (signal) field. If we assume for simplicity that the paired component is ideal,

i.e., without noise, we need six parameters to describe a real twin beam. Each component is

characterized by the number M of modes and mean photon-pair (or noise photon) number B.

The statistical operator ρ̂E of the experimental twin beam can be expressed as

ρ̂E =
⊗
Mp

ρ̂p

⊗
Ms

ρ̂n,s
⊗
Mi

ρ̂n,i (3.37)

using single-mode statistical operators ρ̂p, ρ̂n,s, and ρ̂n,i of the photon-pair, noise signal, and

noise idler components. In Eq. (3.37), Mp, Ms, and Mi give the numbers of equally populated

modes with the mean numbers Bp, Bs, and Bi of photon pairs per mode, respectively.

Entanglement in the experimental twin beam is created only by its paired component and

as such it can be quantified by the logarithmic negativity N log
Mp

introduced in Sec. 2.6. The

noise components do not contribute to entanglement on one side, and they do not degrade

entanglement on the other side. This is qualitatively different from the case of multimode twin

beams discussed in Sec. 2.6 and containing noise in paired spatiotemporal modes.

Nonclassicality can be quantified by a multimode generalization of nonclassical depth τE intro-

duced in Ref. [22] for a single-mode field. In a multimode twin beam, we may first determine

the standard nonclassical depths τn for each single-mode field, included either in the paired

part of the twin beam or in the noisy signal and idler parts of the twin beam. Then we can take

either maxn(τn) or
∑

n τn to quantify the multimode nonclassical depth τE. In the first case,

the nonclassical depth τE of the experimental multimode twin beam is just given by the non-

classical depth τ of a paired mode. The second case is physically more interesting, as the value

of τE is linearly proportional to the minimum amount of additional noise needed to conceal

nonclassicality of the multimode state. In this case, we have, for the experimental multimode
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twin beams,

τE = Mpτ. (3.38)

Using the logarithmic negativity N log
Mp

defined in Sec. 2.6 and the nonclassical depth τE, one-

to-one correspondence between the entanglement and the nonclassicality is obtained also for

M -mode twin beams.

On the other hand, the concept of weak nonclassicality [70, 71, 72] is also useful for the experi-

mental multimode twin beams considered to be composed of one effective paired (macro)mode.

The joint quasidistribution PW of the integrated intensities Ws and Wi of the signal and idler

fields, respectively, describes the properties of this effective paired mode [28]. As no information

about the phase is encoded in this simplified effective description, we may only determine the

nonclassical intensity depth τW quantifying nonclassicality, which demonstrates itself by neg-

ative values of the marginal quasidistribution of integrated intensities. We have to emphasize

that the nonclassical intensity depth τW is only a nonclassicality witness or parameter, which

reveals nonclassicality solely in photon-number statistics. Contrary to this, the nonclassical

depth τ is a genuine and commonly used nonclassicality measure. We note that te standard

nonclassicality quantified by τ reveals both strongly and weakly nonclassical states [70, 71].

From this point of view τ is a strong tool or criterion. On the other hand, τW detects only

strongly nonclassical states; i.e., it is a weak tool.

The nonclassical intensity depth τW has been determined for the experimental multimode twin

beams in Ref. [61],

τW =
√
β2 − γ − β, (3.39)

where

β =
MsBs +MiBi + 2MpBp

Ms +Mi + 2Mp

,

γ =
MsB

2
s +MiB

2
i − 2MpBp

Ms +Mi + 2Mp

. (3.40)
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Figure 3.11: Nonclassical intensity depth τW as a function of the mean noise photon numbers
Bs and Bi for the mean photon-pair number Bp equal to 2 [bottom, light-gray (yellow) area],
4 [gray (green) area], and 8 [top, dark-gray (blue) area], assuming Mp = Ms = Mi = 1. The
greater the value of Bp, the greater the value of τW .

The analysis of Eq. (3.39) shows that the experimental multimode twin beam is strongly non-

classical (τW > 0) provided that

MsB
2
s +MiB

2
i < 2MpBp. (3.41)

Inequality (3.41) means that the multimode strong nonclassicality of the twin beam is lost if the

noise is sufficiently strong. For example, if Mp = Ms = Mi, strongly nonclassical multimode

twin beams are observed for B2
s + B2

i < 2Bp (see Fig. 3.11). This behavior is similar to

that discussed in Sec. 2.4, though the boundary given by τW = 0 is quantitatively different

(compare Figs. 3.6 and 3.11). We also have here that the greater the value of the mean photon-

pair number Bp, the greater the value of the nonclassical intensity depth τW . Also, the greater

the values of mean noise photon numbers Bs and Bi, the smaller the value of the nonclassical

intensity depth τW .

Similarly as in Sec. 2.6, the logarithmic participation ratio Rlog can be defined for each com-

ponent of the twin beam to quantify its dimensionality. The logarithmic participation ratio

Rlog of the whole twin beam is then naturally given as the sum of the logarithmic participation

ratio Rlog
Mp,p

of the paired component and the logarithmic participation ratio Rlog
Ms,s

+ Rlog
Mi,i

of

the noise signal and idler components. We note that Eq. (3.25) is appropriate for determining
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the participation ratio of both the single-mode noise signal (or idler) field and the single-mode

paired field. Alternatively we may consider entropies of the components instead of participation

ratios. Entropies of the single-mode noise fields are given by Eq. (3.33). Equation (3.33) is

applicable also for determination of the entropy of entanglement of a single-mode paired field

in a pure state for which ρ̂s,jj ← c2
j . As a consequence, the entropies SMa,a for a = p, s, i, of

each component are increasing functions of the corresponding participation ratios RMa,a. In

single-mode cases, these functions are determined by Eq. (3.35), plotted in Fig. 3.10. Similarly

to the overall logarithmic participation ratio Rlog, the overall entropy S can be naturally split

into its entangled part SMp,p and noisy part SMs,s + SMi,i, originating in the noise signal and

idler components.

Finally, we briefly address the issue of the experimental determination of the quantities dis-

cussed above. As these quantities characterize the “internal” structure of a twin beam, only

their indirect determination is possible. It is based upon the measurement of the joint signal-

idler photocount histogram using photon-number-resolving detectors. Knowing these detector

parameters [73], reconstruction of the joint signal-idler photon-number distribution [69, 61] pro-

vides the applied mean photon(-pair) numbers B and numbers M of modes. The above-derived

formulas then give the discussed quantities.

3.8 Conclusions

The entanglement and nonclassicality of a single-mode noisy twin beam have been quantified

using the negativity and the nonclassical depth, respectively. Universal mapping between the

nonclassical depth and the negativity has been revealed for noisy twin beams. The mapping

reflects the fact that nonclassicality of a twin beam is caused by the entanglement of its two

parts originating in pairing of photons. Limitations to the amount of noise have been found

to preserve entanglement together with nonclassicality. the degrees of freedom of a twin beam

quantified by the signal- and idler-field participation numbers have been divided into those

needed to describe entanglement and the remaining ones forming the noisy signal and idler
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parts of the twin beam. The entanglement dimensionality derived from the negativity has

been applied here. Entropy as an increasing function of the participation number has been

discussed. Properties of multimode twin beams have been analyzed using appropriate quantities

related per one mode. Also, experimental multimode twin beams containing additional noise

in independent spatiotemporal modes have been investigated from the point of view of their

entanglement and multimode nonclassicality including weak nonclassicality and dimensionality.



Chapter 4

Interplay of nonclassicality and

entanglement of two-mode Gaussian

fields generated in optical parametric

processes

Text adopted from I. I. Arkhipov, J. Peřina Jr., J. Peřina and A. Miranowicz, Phys. Rev. A.

94, 013807 (2016) [A3].

4.1 Introduction

Entanglement between two optical fields is one of the most frequently studied forms of nonclas-

sical light. Such light emerges in various two-mode or multimode nonlinear optical processes,

e.g., in spontaneous parametric down-conversion. In this process, pairs of photons composed

of the signal and idler modes are created at the expense of the annihilated pump photons.

This pairwise character of emitted light lies in the heart of entanglement here. The process of

spontaneous parametric down-conversion has its degenerate variant called second-subharmonic

generation, where both photons in a pair are emitted into the same optical mode. This gives

47
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raise to phase squeezing of the second-subharmonic field composed of, in general, many photon

pairs. The squeezed light is also considered nonclassical as it has its phase fluctuations sup-

pressed below the classical limit. The nonclassicality in both cases has the same origin which is

pairing of photons. On the other side, the emitted photon pairs can be manipulated by linear

optics. In detail, two photons from one pair present in the same mode of a squeezed state of

light can be split (on a beam splitter) and contribute to the entanglement of the output fields.

Also, two photons from a pair incident on different input ports of a beam splitter can “stick

together” (bunch) and leave the beam splitter in the same output port (as testified in the Hong-

Ou-Mandel interferometer [74]). The interconnection of these two types of fields by the means

of linear optics has already been shown by Braunstein [75] and later elaborated by Adesso [76]

for arbitrarily strong Gaussian states. This behavior poses a natural question whether it is pos-

sible to introduce a physical quantity that quantifies “a nonclassicality resource” present during

the creation of both types of fields and later conserved during linear-optical transformations.

The answer to this question is intimately related to the quantifiers of entanglement and local

nonclassicality. Several measures were proposed to quantify the entanglement in both discrete

and continuous domains [42, 77, 58, 24, 57, 78]. The negativity (or its logarithmic variant) is

considered, probably, as the most useful at present. On the other hand, the Lee nonclassicality

depth [20] is conventionally used to quantify the nonclassicality of optical fields. Alternatively,

the nonclassicality of an optical field can be transcribed to entanglement using a beam splitter

and quantified via an entanglement measure [79, 80]. For a comparative study of these two

nonclassicality measures see, e.g., recent Refs. [81, 82].

We note that, apart from the local nonclassicalities of two parts of a bipartite state, also

global nonclassicality can naturally be defined. All these three quantities have been analyzed in

Ref. [A1] for intense multi-mode twin beams with the following result: whenever a twin beam

is entangled it is globally nonclassical. On the other hand, its signal and idler constituents are

multi-thermal and so locally classical. A general approach for describing the relation between

the entanglement and global nonclassicality of two-mode states has been proposed in Ref. [83].

Returning back to our question, we look for an invariant with respect to linear-unitary trans-
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Figure 4.1: Diagram showing the main goal of this chapter: The local (I
(1)
ncl and I

(2)
ncl ) and global

(Incl) nonclassicality invariants are analyzed in relation with the entanglement, described by the
invariant Ient, for the light generated by the optical parametric process (described by the second-
order susceptibility χ(2)) and then combined at a beam splitter BS with varying transmissivity
T . Here, α is the amplitude of a classical pump field, â1 and â2 are the annihilation operators
of the generated light, and M denotes a mirror.

formations (conserving the overall number of photons) that comprises both the entanglement

and local nonclassicalities. This question has recently been addressed in Ref. [84] considering

beam-splitter transformations and a quantity composed of the logarithmic negativity and the

logarithm of nonclassicality depth. However, the introduced quantity has been found useful

only under very specific conditions [A2].

In this chapter we construct such an invariant for general two-mode Gaussian states arising in

nonlinear processes described by the second order susceptibility χ(2). The processes of spon-

taneous parametric down-conversion and second-subharmonic generation represent their most

important examples. As schematically shown in Fig. 4.1, the found invariant is decomposable

into three parts characterizing in turn entanglement and two local nonclassicalities. The en-

tanglement indicator is shown to be a monotone of the logarithmic negativity similarly to the

newly defined nonclassicality measure that is a monotone of the Lee nonclassicality depth under

any linear unitary transformation.

The obtained results are potentially interesting for manipulations with nonclassicality in quan-

tum engineering that have become substantial ingredients of a growing number of applications

of quantum technologies [14, 58, 85, 86, 87].

The chapter is organized as follows. In Sec. 4.2, a model comprising parametric down-conversion
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and second-subharmonic generation is developed. A suitable nonclassicality invariant is sug-

gested using local and global invariants of two-mode Gaussian fields. Its decomposition into an

entanglement quantifier and local nonclassicality quantifiers is also discussed. Twin beams as

they behave on a beam splitter are discussed in Sec. 4.3. In Sec. 4.4, a single-mode squeezed

state on a beam splitter is analyzed. Section 4.5 is devoted to the behavior of two single-mode

squeezed states interfering on a beam splitter. States having both ‘twin-beam’ and squeezed

components are investigated in Sec. 4.6. Conclusions are drawn in Sec. 4.7.

4.2 Gaussian states generated in χ(2) interactions and

their invariants

We consider a nonlinear interaction Hamiltonian Ĥint describing both parametric down-conversion

and second-subharmonic generation that provide photon pairs [28] (for the scheme, see Fig. 4.2):

Ĥint = −~g∗12â1â2 − ~g∗11â
2
1 − ~g∗22â

2
2 + h.c. (4.1)

In Eq. (4.1), the symbols â1 (â†1) and â2 (â†2) represent the annihilation (creation) operators

of the fields 1 and 2, g12 is a nonlinear coupling constant characterizing parametric down-

conversion and gii stands for a nonlinear coupling constant of the second-subharmonic gener-

ation in the ith mode described by the second-order susceptibility χ(2) of a medium. Symbol

h.c. represents the Hermitian conjugated terms. Due to the presence of noise in real nonlinear

processes we also consider the Langevin forces L̂j arising in the interaction with the reservoir

chaotic oscillators characterized by means of noise photon numbers 〈nd〉. This leads to damping

processes described by the damping constants γj.

The Heisenberg-Langevin operator equations corresponding to the Hamiltonian Ĥint are derived

in the following matrix form:

dâ

dt
= Mâ + L̂ (4.2)
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Figure 4.2: Diagram of the optical parametric process described by Eq. (4.1): the classical
pump field, with complex amplitude α, generates the signal and idler modes described by the
annihilation operators âj and affected by the noise stochastic operators F̂j, j = 1, 2. For
simplicity, the pump-field amplitude α is incorporated into the coupling constants gij. The
mean photon number in the signal (idler) mode influenced by the noise is denoted by B1 (B2).
In Sec. 3.3, B1 = Bp + Bs and B2 = Bp + Bi, where Bp = sinh2(g12t) is the mean number of

generated photon pairs and Bs = 〈F̂ †1 F̂1〉 (Bi = 〈F̂ †2 F̂2〉) is the mean number of signal (idler)
noise photons. In Secs. 3.4 and 3.5, B1 = B̃s

p + Bs and B2 = B̃i
p + Bi, where B̃s

p (B̃i
p) is the

mean number of squeezed photons in the signal (idler) mode.

using the vectors â =
(
â1, â

†
1, â2, â

†
2

)T
and L̂ =

(
L̂1, L̂

†
1, L̂2, L̂

†
2

)T
, and the matrix

M =



−γ1/2 2ig11 0 ig12

−2ig11 −γ1/2 −ig12 0

0 ig12 −γ2/2 2ig22

−ig12 0 −2ig22 −γ2/2


. (4.3)

The Langevin operators L̂1 and L̂2 introduced in Eq. (4.2) obey the following relations:

〈L̂i(t)〉 = 〈L̂†i (t)〉 = 0,

〈L̂†i (t)L̂j(t′)〉 = δij〈nd〉δ(t− t′),

〈L̂i(t)L̂†j(t′)〉 = δij
(
〈nd〉+ 1

)
δ(t− t′), (4.4)

where δij stands for the Kronecker symbol and δ denotes the Dirac delta function.

The solution of Eq. (4.2) for the operators â1 and â2 is conveniently written in the following

matrix form using suitable evolution matrices U and V and a stochastic operator vector F̂ (for
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details, see, e.g. [88]):

 â1(t)

â2(t)

 = U(t)

 â1(0)

â2(0)

+ V(t)

 â†1(0)

â†2(0)

+ F̂(t). (4.5)

Specific forms of the general evolution matrices U and V are discussed in the sections below.

The elements of the stochastic operator vector F̂ ≡ (F̂1, F̂2) are derived as linear combinations

of the Langevin forces L̂j and L̂†j that reflect the ‘deterministic’ solution described by the

matrices U and V [88].

Statistical properties of the emitted fields, in a given state ρ̂, are described by the Glauber-

Sudarshan P function, or, equivalently, by the normal quantum characteristic function CN

defined as

CN (β1, β2) =
〈

exp(β1â
†
1 + β2â

†
2) exp(−β∗1 â1 − β∗2 â2)

〉
, (4.6)

where symbol 〈. . . 〉 denotes quantum averaging including both system and reservoir. Using the

solution given in Eq. (4.5) and the initial vacuum states in both fields, the normal characteristic

function CN attains the following form:

CN (β1, β2) = exp

[
−B1|β1|2 −B2|β2|2 +

(
C1

2
β∗21

+
C2

2
β∗22 +D12β

∗
1β
∗
2 + D̄12β1β

∗
2 + c.c.

)]
, (4.7)

where the auxiliary functions are defined as follows:

Bj = 〈∆â†j∆âj〉 =
∑
k=1,2

|Vjk|2 + 〈F̂ †j F̂j〉,

Cj = 〈(∆âj)2〉 =
∑
k=1,2

UjkVjk + 〈F̂ 2
j 〉,

D12 = 〈∆â1∆â2〉 =
∑
k=1,2

U1kV2k + 〈F̂1F̂2〉,

D̄12 = −〈∆â†1∆â2〉 = −
∑
k=1,2

V ∗1kV2k − 〈F̂ †1 F̂2〉. (4.8)
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Ordering Quasidistribution Characteristic Covariance matrix
function of a Gaussian state

Normal P (α1, α2) ≡ W (s=1)(α1, α2) ⇐⇒ CN (β1, β2) ←→ AN
⇓↑ ⇓⇑ ⇓⇑

Symmetric W (α1, α2) ≡ W (s=0)(α1, α2) ⇐⇒ CS(β1, β2) ←→ AS

Table 4.1: Schematic diagram for the relations between (a) two quasiprobability distributions
(quasidistributions), i.e., the Glauber-Sudarshan P and Wigner W functions for a given two-
mode state ρ̂, (b) characteristic functions CN and CS , and (c) covariance matrices AN and
AS assuming here that ρ̂ is a Gaussian state for normal and symmetric orderings, respectively.
Their interrelations (as marked by left-right arrows) are given in Appendix A. The single arrow
indicates that the calculation of the P function from the Wigner function is more complicated
(it can be done via the relation between CS and CN ) than the trivial calculation of the Wigner
function from the P function (as marked by double arrow).

The normal characteristic function given in Eq. (4.7) can conveniently be rewritten into its

matrix form CN (β) = exp(β†ANβ/2) using the covariance matrix AN related to the normal

ordering [89] (for different possibilities in describing the generated fields, see Table 4.1):

AN =



−B1 C1 D̄∗12 D12

C∗1 −B1 D∗12 D̄12

D̄12 D12 −B2 C2

D∗12 D̄∗12 C∗2 −B2


, (4.9)

and the column vector β = (β1, β
∗
1 , β2, β

∗
2)T .

The covariance matrix AN related to the normal ordering determines the global nonclassicality

of a two-mode Gaussian state via the Lee nonclassicality depth τ . The nonclassicality depth

τ is defined with the help of the maximal positive eigenvalue λ+(AN ) of the matrix AN as

follows:

τ = max[0, λ+(AN )]. (4.10)

We note that the nonclassicality depth τ , according to its definition [20], gives the amount of

noise photons present equally in both modes and needed to conceal the nonclassical character

of the state.
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The covariance matrix AN of the two-mode field can be written in the following block form:

AN =

 B1 D12

D21 B2

 , Bj =

 −Bj Cj

C∗j −Bj

 , j = 1, 2,

D12 =

 D̄∗12 D12

D∗12 D̄12

 , D21 =

 D̄12 D12

D∗12 D̄∗12

 . (4.11)

This form points out at the existence of three local invariants Ij, j = 1, 2, 3, that do not change

under any local linear unitary transformation applied in mode 1 or 2. The local invariants Ij

are expressed as:

I1 = det(B1), I2 = det(B2), I3 = det(D12). (4.12)

Moreover, there exist two global invariants I and ∆ preserved under arbitrary linear unitary

transformations and applied to both modes:

I = det(AN ), ∆ = I1 + I2 + 2I3. (4.13)

Whereas the global invariant I encompasses the whole complex structure of the matrix AN and,

as such, is not useful in our considerations, the global invariant ∆ reflects the block structure

of the matrix AN and lies in the center of our attention.

Moreover, the global invariant ∆ includes the additive local invariants I1 and I2 that indicate

the nonclassical behavior of the reduced states of modes 1 and 2, respectively. Indeed, the de-

terminants defining these invariants occur in the Fourier transform of the normal characteristic

functions of the reduced states directly related to their local Glauber-Sudarshan P functions. If

a determinant fails to be positive then the corresponding Glauber-Sudarshan P function does

not exist as a nonnegative function. Thus, the value of determinant Ij can be used to quantify

the local nonclassicality of the reduced state in mode j as it is a monotone of the local Lee

nonclassicality depth τj. The local Lee nonclassicality depth τj is defined along the formula
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(4.10) that provides the relation:

τj = max(0, |Cj| −Bj), j = 1, 2. (4.14)

Using Eq. (4.14) we arrive at the monotonic relation between the local nonclassicality depth τj

and local nonclassicality invariant (NI) Ij if we assume τj to be continuous:

Ij = −τj (τj + 2Bj) . (4.15)

We can redefine the local symplectic invariant in Eq. (4.15) as I
(j)
ncl = −Ij in order to deal with

positive values when quantifying the local nonclassicality. We note that not only the positive

values of this local NI I
(1)
ncl are useful for quantifying the local nonclassicality, also the negative

values of this invariant are important as they quantify the “robustness” of the classicality of a

local state.

Returning back to the last term I3 in the global invariant ∆, this term describes solely the

mutual quantum correlations between the fields 1 and 2. As such, it has to play a crucial

role in the description of the entanglement between two fields. To reveal and quantify this

entanglement and the role of local invariant I3 here, we apply for a while the phase space (x, p)

approach for describing the fields in the symmetric ordering of field operators corresponding

to the Wigner formalism (see Table 1 and then the Appendix). The reason is technical and

is given by the fact that we know how to derive the covariance matrix of a Gaussian state

obtained by the partial transposition of the original state. According to Simon [90], the partial

transposition means to replace p by −p. The covariance matrix of the partially transposed

state then provides us the logarithmic negativity EN that is a commonly used measure for the

entanglement. Moreover, it provides as an entanglement measure useful in our considerations.

In detail, the covariance matrix AS expressed in the symmetric ordering is obtained in its block
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structure as follows:

AS =

 BS1 DS

DT
S BS2

 , (4.16)

BSj =

 Bj + Re(Cj) + 1/2 Im(Cj)

Im(Cj) Bj − Re(Cj) + 1/2

 ,
j = 1, 2,

DS =

 Re(D12 − D̄12) Im(D12 + D̄12)

Im(D12 − D̄12) −Re(D12 + D̄12)

 .
The covariance matrix AS , similarly as its normally-ordered counterpart, has three local in-

variants ISj, j = 1, 2, 3, and two global ones denoted as IS and ∆S :

IS1 = det(BS1), IS2 = det(BS2), IS3 = det(DS),

IS = det(AS), ∆S = IS1 + IS2 + 2IS3. (4.17)

Moreover, the comparison of the formulas for the invariants I3 and IS3 shows that I3 = IS3.

Following Refs. [91, 90, 78], the entanglement criterion can be expressed through the positivity

of the entanglement indicator (EI) Ient defined in terms of the invariants in Eq. (4.17) as follows:

Ient =
1

4
(IS1 + IS2 − 2IS3)− IS −

1

16
. (4.18)

As we show below the EI Ient is a monotonous function of logarithmic negativity EN , which

can be derived from the symplectic eigenvalue d̃− of the partially transposed (PT) matrix APT
S

along the formula [92] (see Fig. 4.3)

EN = max[0,− ln(2d̃−)]. (4.19)

According to Eq. (4.19), a state is entangled if d̃− < 1/2. In turn, the symplectic eigenvalue
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d̃− is found as:

d̃− =
1√
2

√
∆̃S −

√
∆̃2
S − 4IS , (4.20)

where ∆̃S = IS1 + IS2 − 2IS3. Combining Eqs. (4.18) and (4.20) we arrive at the relation

between the symplectic eigenvalue d̃− and entanglement indicator Ient:

d̃− =
1√
2

√
I ′ −

√
I ′2 − 4IS , (4.21)

where I ′ = 4IS + 4Ient + 1
4
.

Assuming the global invariant IS is fixed, the relation (4.21) shows that the larger is the entan-

glement indicator Ient, the smaller is the symplectic eigenvalue d̃− and, according to formula

(4.19), also the larger is the logarithmic negativity EN . As a consequence, the entanglement

indicator Ient represents an alternative to the logarithmic negativity EN in quantifying entan-

glement. We illustrate the monotonous dependence of the logarithmic negativity EN on the

entanglement indicator Ient in Fig. 4.2. We note that a simple analytical formula between the

logarithmic negativity EN and entanglement indicator Ient is derived for pure states (IS = 1/16)

assuming Ient > 0:

EN = ln(2
√
Ient +

√
1 + 4Ient). (4.22)

As we look for a relation among the local invariants I
(1)
ncl and I

(2)
ncl and the entanglement indicator

Ient (see Fig. 4.1), we eliminate the invariants I3 = IS3 from Eqs. (4.13) and (4.18) by their

comparing. This leaves us with the relation:

I
(1)
ncl + I

(2)
ncl + 2Ient =

1

2
∆S −∆− 2IS −

1

8
. (4.23)

As only the global invariants occur at the r.h.s. of Eq. (4.23), the relation I
(1)
ncl + I

(2)
ncl + 2Ient is

invariant under any global linear unitary transformation.

Equation (4.23) can be transformed into the central result of this chapter, if we define a new
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Figure 4.3: Logarithmic negativity EN as a function of entanglement indicator Ient, given by
Eq. (4.18), and global nonclassicality invariant IS , given by Eq. (4.17).

quantity Incl, which is a global nonclassicality invariant:

Incl = I
(1)
ncl + I

(2)
ncl + 2Ient, (4.24)

In the derivation of this equation, it is useful to recall the property that the local determinants

for the normally-ordered CF, I3, and the symmetrically-ordered CF, IS3, are equal I3 = IS3,

and given by Eqs. (4.13) and (4.17). Thus, we have

Incl = I
(1)
ncl + I

(2)
ncl + 2Ient

= −I1 − I2 +
1

2
(IS1 + IS2 − 2IS3)− 2IS −

1

8

= −I1 − I2 − 2IS3 +
1

2
(IS1 + IS2 + 2IS3)− 2IS −

1

8

= −∆ +
1

2
∆S − 2IS −

1

8
. (4.25)

Equation (4.24) means that the local nonclassicality invariants I
(1)
ncl and I

(2)
ncl together with the

entanglement indicator Ient form the global NI Incl. Any linear unitary transformation in general

modifies both the local NIs I
(1)
ncl and I

(2)
ncl and the entanglement invariant Ient only in such a way

that it preserves the value of the global NI Incl. Whenever Incl is positive, the analyzed state

is nonclassical due to the local nonclassicality of the reduced states or its entanglement. The
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Table 4.2: Regions of different entanglement and local nonclassicalities observed in the figures
of Secs. 3.3—3.6.
case/region Entanglement Nonclassicality of one mode Nonclassicality of another mode Figures

I Yes Yes Yes 6, 10
II Yes Yes No 6(b)
III Yes No No 6, 10
IV No Yes Yes 6, 10
V No Yes No 6(b)
VI No No No 6, 10

negative values of the global NI Incl do not necessarily mean that a given state is classical, as

we will see below.

In the next sections, we analyze the nonclassicality and entanglement of several kinds of im-

portant quantum states from the point of view of their transformation by a beam splitter. The

division of the global NI into the EI and the local NIs is in the center of our attention. In

general, six regions differing in the occurrence of entanglement and local nonclassicalities can

be defined (see Table 4.2). All these regions are found in the examples analyzed in the next

sections, as indicated in Table 4.2.

We note that an invariant based on the second-order intensity moments and, as such, describing

intensity auto- and cross-correlations has been suggested in Ref. [93] for two-mode fields with

specific mode correlations and unitary transformations. Later, this invariant was experimentally

analyzed in Ref. [94]. Here, we describe the propagation of fields through the beam splitter

(see Fig. 4.1) described by the real transmissivity T and the phase φ through the unitary

transformation characterized by the matrix U,

U =



√
T 0 −

√
Reiφ 0

0
√
T 0 −

√
Re−iφ

√
Re−iφ 0

√
T 0

0
√
Reiφ 0

√
T


; (4.26)

R = 1− T is the reflectivity of the beam splitter. The covariance matrix Aout at the output of

the beam splitter is obtained as Aout = U†AU.
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4.3 Twin beam

These beams are generated by parametric down-conversion from the vacuum into which photon

pairs are ideally emitted. For this reason, only the terms B1, B2, and D12 in the normal

characteristic function CN are nonzero. The evolution matrices U and V in Eq. (4.5) have the

following nonzero elements:

U11(t) = U22(t) = cosh(gt),

V12(t) = V21(t) = i exp(iθ) sinh(gt). (4.27)

The coefficients B1 and B2 can be expressed as B1 = Bp + Bs and B2 = Bp + Bi, where Bp =

sinh2(g12t) gives the mean number of generated photon pairs and Bs = 〈F̂ †1 F̂1〉 (Bi = 〈F̂ †2 F̂2〉)

denotes the mean number of signal (idler) noise photons coming from the reservoir (see Fig. 4.2).

On the other hand, the parameter D12 characterizing mutual correlations depends only on the

mean number Bp of photon pairs as D12 = i
√
Bp(Bp + 1) (θ = 0 is assumed without the loss

of generality).

The general formulas for the local NIs I
(j)
ncl , entanglement invariant Ient, and the global NI Incl

attain the following forms for twin beams:

I
(1)
ncl = 4TR(B2

p +Bp)−
[
Bp + TBs +RBi

]2
,

I
(2)
ncl = 4TR(B2

p +Bp)−
[
Bp + TBi +RBs

]2
,

Ient = −
[
(Bs +Bi)

2 − (T −R)2
]
(B2

p +Bp)− 2BpBsBi(Bs +Bi)− (B2
s +Bs)(B

2
i +Bi)

− TR(Bs +Bi)
2, (4.28)

Incl = 2Bp − (Bs +Bi)
2[2(B2

p +Bp) + 1]− 2Bp(1 + 2BsBi)(Bs +Bi)− 2BsBi(Bs +Bi +BsBi).

(4.29)

We first discuss the behavior of noiseless twin beams for which Bs = Bi = 0. In this case, the
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global NI Incl equals 2Bp and

I
(j)
ncl = 4TR(B2

p +Bp)−B2
p, j = 1, 2,

Ient = (T −R)2(B2
p +Bp). (4.30)

As suggested by the formula in Eq. (4.30), the local NIs I
(j)
ncl can be decomposed into two terms.

The negative term reflects classical thermal statistics of photon pairs in a twin beam with its

photon bunching effect and as such suppresses the nonclassical behavior of the twin beam.

On the other hand, the positive term refers to squeezing appearing at the individual output

ports of the beam splitter. The squeezing effect originates in pairing of photons in individual

output ports caused by “sticking of two photons from a pair together” (photon bunching) at

the beam splitter [27]. Photon pairs with both photons in one output port contribute to the

local nonclassicality of the field in this port. On the other hand, when two photons from one

photon-pair occur in different output ports, they contribute to the entanglement. “A given

individual photon pair” is, thus, responsible either for the local nonclassicality in one of the

output ports or for their entanglement. Never for both. Propagation through the beam splitter

can, thus, be viewed as the process of breaking photon pairs (antibunching) arriving at the

same input port and gluing (bunching) of photons from a given pair coming from different

input ports. Whereas the first process disturbs local squeezing and supports entanglement, the

second process strengthens squeezing at the expense of entanglement. The global NI Incl is

equal twice the number Bp of photon pairs and, as such, indicates an appropriate choice of this

nonclassicality resource quantifier.

Detailed analysis of the formulas in Eq. (4.30) shows that the local marginal states are non-

classical only if the transmissivity T lies in certain interval around 1
2
:

T ∈

(
1

2
− 1

2
√
Bp + 1

,
1

2
+

1

2
√
Bp + 1

)
. (4.31)

It holds that the larger is the mean photon-pair number Bp, the narrower is the interval. The

optimal transmissivity T maximizing the local NIs I
(j)
ncl equals 1

2
. In this case, the entanglement
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Figure 4.4: (a) Local nonclassicality invariant I
(1)
ncl and (b) continuous Lee nonclassicality depth

τ1 (including negative values) at the output port 1 of the beam splitter as a function of the mean
photon-pair number Bp and the beam-splitter transmissivity T for pure twin beam states. In

panel (a) and (b), the blue dark grey plain surface at I
(1)
ncl = 0 and τ1 = 0 shows the boundary

between the classical and nonclassical domains.

of the incident twin beam is completely and equally transferred into the local nonclassicalities

of the two output modes. On the other hand, the twin beam loses its entanglement only when

T = 1
2
. In this case, all the incident photon pairs stick together (bunch) at the beam splitter

suppressing completely their entanglement. Hand in hand, the local NIs I
(1)
ncl = I

(2)
ncl attain

their maximal values. This can be interpreted such that the initial entanglement is transferred

into the squeezing of the marginal output fields [95]. These effects are shown in Figs. 4.4(a)

and 4.5(a) for the dependencies of the local NI I
(1)
ncl and EI Ient on the transmissivity T and

mean photon-pair number Bp. The commonly used the Lee nonclassicality depth τ1 and the

logarithmic negativity EN are shown for comparison in Figs. 4.4(b) and 4.5(b). We note, that

whereas the values of the Lee nonclassicality depth τ1 cannot exceed 1
2
, the values of the local

NI I
(1)
ncl can be arbitrarily large depending on the intensity of the twin beam.

Now we consider general noisy twin beams. It has been shown in Ref. [A1] that whenever the

overall noise Bs + Bi exceeds one, the twin beam is unentangled and, thus, it cannot generate

any nonclassical feature. Even if Bs + Bi < 1, the mean photon-pair number Bp has to be
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Figure 4.5: (a) Entanglement invariant EI and (b) logarithmic negativity EN after the beam
splitter transformation considered as functions of the mean photon-pair number Bp and the
beam-splitter transmissivity T for pure twin beams states.

sufficiently large, as given by

Bp >
BsBi

1− (Bs +Bi)
. (4.32)

Then, the incident noisy twin beam is entangled and is capable to provide its entanglement

and local nonclassicality after the beam splitter. However, the general analysis of Eqs. (4.28)

and (4.29) leads to the conclusion that the noise only degrades the non-classical behavior

independently whether it is manifested by local nonclassicality or entanglement. The stronger

the noise, the weaker the non-classical features.

To provide a deeper insight into the role of noise, we analyze two special cases: in the first one,

the noise is equally divided into both modes of the incident twin beam; while noise occurs only

in one mode of the incident twin beam in the second case.

When noise occurs in both modes of the incident twin beam (Bn ≡ Bs = Bi), the globally

nonclassical output states can be divided into three groups. They are displayed in the “phase

diagram” in Fig. 4.6. In this diagram, the surfaces I
(1)
ncl (Bn, Bp, T ) = 0 and Ient(Bn, Bp, T ) = 0

are shown. They identify four different regions belonging to different groups of states (see

Table 4.2 for details). The states exhibiting both entanglement and local nonclassicality occur
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Figure 4.6: Diagram (a) shows the nonclassicality and entanglement invariants for the twin
beams states occurring at the output ports of a beam splitter depending on the mean noise
photon number Bn, mean photon-pair number Bp, and transmissivity T according to Eq. (4.28)

for Bn ≡ Bs = Bi. The surfaces are plotted at I
(1)
ncl (Bn, Bp, T ) = 0

[
orange light gray surface

]
,

I
(2)
ncl (Bn, Bp, T ) = 0

[
orange light gray

]
and EI(Bn, Bp, T ) = 0

[
blue dark surface

]
indicating six

different regions specified in the text and Tab. 4.2. Diagrams (b) and (c) show the perpendicular
cross-sections of diagram (a) taken at chosen values of Bn = 0.1 and Bp = 0.1, respectively.

in region I. In region III, the states are entangled but locally classical. The locally nonclassical

and unentangled states are found in region IV. In region VI, the unentangled and locally classical

states exist.

The presence of noise in only one mode of the incident twin beam (Bs = 0, Bi ≡ Bn 6= 0)

leads to asymmetry between the output modes. This is shown in Fig. 4.7, where the surfaces

I
(1)
ncl (Bn, Bp, T ) = 0 and I

(2)
ncl (Bn, Bp, T ) = 0 behave differently. The symmetry, with respect

to the plane for T = 1
2
, which is clearly visible in Fig. 4.6, does not exist in Fig. 4.7. As a

consequence, two additional groups of states are found in the diagram. In region V, there are

unentangled states with only one marginal field exhibiting local nonclassicality. The entangled

states with only one locally nonclassical field are found in region II. In detail, mode 1 (2) is

locally nonclassical for T < 1
2

(T > 1
2
). We note that the EI Ient is not sensitive to the noise

asymmetry, as shown by the surface Ient(Bn, Bp, T ) = 0 in Fig. 4.7. It is worth noting that

positive values of the GNI Incl are exhibited when either entanglement or local nonclassicality

or even both are found. The negative values of the global NI Incl do not necessarily mean

classicality. The state with the negative GNI Incl can still be globally nonclassical due to
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Figure 4.7: Diagram (a) shows the nonclassicality and entanglement invariants for the twin
beams states occurring at the output ports of a beam splitter depending on the mean noise
photon number Bn, mean photon-pair number Bp, and transmissivity T according to Eq. (4.28)

for Bs = 0 and Bn = Bi. The surfaces are plotted at I
(1)
ncl (Bn, Bp, T ) = 0

[
orange light gray

surface
]
, I

(2)
ncl (Bn, Bp, T ) = 0

[
green dark gray surfaces

]
and EI(Bn, Bp, T ) = 0

[
blue dark

surface
]

indicating six different regions specified in the text and Tab. 4.2. Diagrams (b) and
(c) show the perpendicular cross-sections of diagram (a) taken at fixed values of Bn = 0.1 and
Bp = 0.1, respectively. These cross-sections are analogous to those in Figs. 4.6(b) and 4.6(c).

either its entanglement or local nonclassicality, but not both. The diagram in Fig. 4.6(a) can

serve as an example. The surface Incl(Bn, Bp, T ) = 0 lies naturally in between the surfaces

I
(1)
ncl (Bn, Bp, T ) = 0, and Ient(Bn, Bp, T ) = 0 and its position identifies the globally nonclassical

states with Incl < 0.

4.4 Squeezed vacuum state with noise

Here, we consider a squeezed vacuum state [27] mixed with the noise incident on one input

port of the beam splitter, whereas the second input port is left in the vacuum state. In this

case, the nonzero elements of evolution matrices U and V in Eq. (4.5) are given as (θ = 0 is

assumed):

U11(t) = cosh(gt), U22(t) = 1, V11(t) = i exp(iθ) sinh(gt). (4.33)
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The non-zero parameters of the normal characteristic function CN in Eq. (4.9) are B1 and C1

as given by: B1 = B̃sq
p + Bs and C1 = i

√
B̃sq

p (B̃sq
p + 1). The symbol B̃sq

p denotes the mean

number of squeezed photons and the symbol Bs stands for the mean number of the signal noise

photons (see also Fig. 4.2). The local NIs I
(j)
ncl and EI Ient are easily expressed in terms of the

global NI Incl as follows

I
(1)
ncl = T 2Incl, I

(2)
ncl = R2Incl, Ient = TRIncl, Incl = B̃sq

p (1− 2Bs)−B2
s . (4.34)

As the local NIs I
(1)
ncl and I

(2)
ncl , as well as the EI Ient are linearly proportional to the global

NI Incl, the global nonclassicality of the output states immediately guarantees both local non-

classicalities and entanglement. This occurs only for the positive values of the global NI Incl.

According to Eq. (4.34), Incl > 0 provided that the mean noise photon number Bs in the signal

mode is sufficiently small:

Bs <

√
B̃sq

p (B̃sq
p + 1)− B̃sq

p . (4.35)

Following Eq. (4.34), the mean noise photon number Bs in the signal mode has to be smaller

than 1. Also, the more intense is the squeezed state, the smaller is the number Bs of accepted

noise photons. We note that the condition, given in Eq. (4.34), can immediately be revealed

when the global Lee nonclassicality depth τ is analyzed. As an illustration, the dependencies

of the local NIs I
(1)
ncl and I

(2)
ncl and the EI Ient on the beam-splitter transmissivity T are plotted

in Fig. 4.8 for the incident noiseless squeezed states. The greatest values of EI Ient are reached

for the balanced beam splitter (T = 1
2
). However, some incident photon pairs are not broken

(i.e., split) by the beam splitter and give raise to nonzero local nonclassicalities I
(1)
ncl and I

(2)
ncl

even in this case.

The strength of squeezing in a given mode is commonly characterized by a principal squeeze

variance λ [33], which is here given by

λj = 1/2 +Bj − |Cj|. (4.36)

When a given output mode j = 1, 2 is locally nonclassical, it is also squeezed, which corresponds
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Figure 4.8: Invariant nonclassicality parameters: (a) the local nonclassicality invariants I
(1)
ncl

(orange light gray surface) and I
(2)
ncl (blue dark gray surface), and (b) the entanglement invariant

Ient versus the mean number B̃s
p of squeezed photons and the beam-splitter transmissivity T

according to Eq. (4.34) assuming Bs = 0.

to λj <
1
2
. According to the relation between the local NI I

(j)
ncl and the principal squeeze variance

λj derived by combining Eqs. (4.15) and (4.36),

I
(j)
ncl = (

1

2
− λj)(2Bj +

1

2
− λj), (4.37)

the smaller is the value of the principal squeeze variance λj below 1
2
, the greater is the value of

the local NI I
(j)
ncl .

4.5 Two squeezed vacua

Two independent squeezed states are generated by the Hamiltonian given in Eq. (4.1) provided

that the process of parametric down-conversion does not occur in the nonlinear medium (g12 =

0). The solution of the evolution governed by the Hamiltonian (4.1) gives us the following
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nonzero elements of the evolution matrices U and V:

U11 = cosh(2g11t), V11 = i exp(iκ1) sinh(2g11t),

U22 = cosh(2g22t), V22 = i exp(iκ2) sinh(2g11t), (4.38)

where κ1 and κ2 are arbitrary phases. The nonzero coefficients of the incident covariance

matrix AN are given as B1,2 = B̃s,i
p + Bs,i and C1,2 = exp(iθ1,2)

√
B̃s,i

p (B̃s,i
p + 1), θj = κj + π/2

for j = 1, 2, where B̃s
p (B̃i

p) stands for the mean number of squeezed photons in the signal

(idler) mode, whereas the corresponding mean signal (idler) noise photon number is denoted

as Bs (Bi).

After the beam splitter, the local NIs I
(j)
ncl , EI Ient and global NI Incl acquire the form:

I
(1)
ncl = T 2B̃s

p(B̃s
p + 1) +R2B̃i

p(B̃i
p + 1) + TRD̄′12 cos(θ1 − θ2)−

[
TB̃s

p +RB̃i
p + TBs +RBi

]2

,

Incl = B1 +B2 − 2BsBi

[
2B1(1 + B̃i

p) + 2B̃i
p(1 +B1) +Bi(1 + 2B1) +Bs(1 + 2B2)

]
− 2(BsB1 +BiB2)− (Bs +Bi)

2,

Ient = TR
[
− D̄′12 cos(θ1 − θ2) + (B̃s

p + B̃i
p + 2B̃s

pB̃
i
p)− (Bs +Bi)

2 − 2(B̃s
p − B̃i

p)(Bs −Bi)
]

+BsBi

[
2B̃s

p(1 +Bi) + 2B̃2
p(1 +Bs) + 4B̃s

pB̃
i
p + (1 +Bs)(1 +Bi)

]
,

(4.39)

where D̄′12 = 2
√
B̃s

p(B̃s
p + 1)B̃i

p(B̃i
p + 1), B1 = B̃s

p + Bs, B2 = Bi
p + Bi, and, for simplicity, we

assumed φ = 0 in Eq. (4.26). The formula for I
(2)
ncl is obtained from that for I

(1)
ncl in Eq. (4.39)

with the substitution s↔ i.

The global NI Incl does not depend on the relative phase ∆θ = θ1− θ2 of two incident squeezed

states, while the local NIs I
(j)
ncl and EI Ient change with the relative phase ∆θ. The case of two

equally intense incident noiseless squeezed states, as graphically analyzed in Fig. 4.9, shows

that the phase difference ∆θ plays a crucial role in distributing the nonclassicality between the

output entanglement and local nonclassicalities. If the phases θ1 and θ2 are equal, the incident

photon pairs stick (bunch) ideally together due to the interference at the beam splitter and the
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incident locally-nonclassical squeezed states are moved into the output ports. No photon pair is

broken and so no entanglement is observed. On the other hand, if ∆θ = π, then some incident

photon pairs are broken and, thus, the output squeezing (as well as local nonclassicalities) is

weaker. The broken photon pairs give rise to the entanglement. The value of EI Ient is maximal

for the transmissivity T = 1
2
. In this case, all the photon pairs are broken, their signal and

idler photons occur in different output ports and, as a consequence, the ideal conditions for

entanglement generation are met. Hand in hand, the vanishing local NIs I
(j)
ncl are found (see

Fig. 4.9).

Figure 4.9: (a) Local nonclassicality invariants I
(1)
ncl = I

(2)
ncl and (b) entanglement invariant Ient

versus the phase difference ∆θ and beam-splitter transmissivity T for two noiseless squeezed
states according to Eq. (4.39); B̃s

p = B̃i
p = 1. In panel (a), the blue surface at I

(1)
ncl = I

(2)
ncl = 0

shows the boundary between classical and nonclassical states.

It is remarkable that the global NI Incl for the equally intense noiseless squeezed states is given

formally by the same formula as that valid for the noiseless twin beams considering the mean

photon-pair number Bp instead of B̃s
p = B̃i

p ≡ B̃p. However, the incident twin beam serves as

a source of locally-nonclassical (squeezed) states, whereas the incident squeezed states provide

entangled states at the output of the beam splitter. The comparison of graphs in Figs. 4.4(a)

and 4.5(a) with those in Figs. 4.10(a) and 4.10(b) reveals that the incident noiseless squeezed

states generate entangled states for an arbitrary value of the transmissivity T , but the incident
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noiseless twin beams are capable of the generation of the output squeezed states only in a

certain interval of the transmissivity T depending on the intensity.

Figure 4.10: (a) Local nonclassicality invariant I
(1)
ncl and (b) entanglement invariant Ient versus

the beam-splitter transmissivity T and mean number B̃p of squeezed photons for two noiseless
squeezed states according to Eq. (4.39); B̃p ≡ B̃s

p = B̃i
p; ∆θ = π. In panel (a) the blue surface

at I
(1)
ncl = I

(2)
ncl = 0 shows the boundary between classical and nonclassical states.

Similarly as for the twin beams, the noise diminishes the global NI Incl [see the formula for

Incl in Eq. (4.39)]. Considering the incident states with B̃s
p = B̃i

p and Bs = Bi, the presence

of noise leads to the occurrence of the three different types of globally nonclassical states

already discussed in the connection with the noisy twin beams with symmetric noise. Regions

corresponding to different types of the output states are shown in the diagram in Fig. 4.11(a)

that can be compared with that of Fig. 4.6(a).

4.6 Twin beam mixed with squeezed states

Finally, we analyze an interplay of noiseless twin beams and equally populated noiseless squeezed

states (∆θ = 0) in forming the output state at the beam splitter with phase φ. Such state is

generated by the Hamiltonian (4.1) assuming g11 = g22 = g and described by the following
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Figure 4.11: Diagram (a) shows the nonclassicality and entanglement invariants for the two
squeezed vacua occurring at the output ports of the beam splitter versus the mean noise photon
number Bn, mean number B̃p of squeezed photons and transmissivity T assuming Bn ≡ Bs = Bi

and B̃p ≡ B̃s
p = B̃i

p and ∆θ = π. Surfaces at I
(j)
ncl(Bn, B̃p, T ) = 0 (j = 1, 2) (orange light gray)

and Ient(Bn, B̃p, T ) = 0 (blue dark gray) are shown surrounding different regions specified in
Tab. 4.2. Diagrams (b) and (c) show the perpendicular cross-sections of diagram (a) taken at
given values of Bn = 0.1 and B̃p = 0.1, respectively. These cross-sections can be compared
with those in panels (b) and (c) in Figs. 4.6 and 4.7.

elements of the evolution matrices U and V:

U11 = U22 = cosh(g12t) cosh(2gt),

V11 = V22 = i cosh(g12t) sinh(2gt),

U12 = U21 = sinh(g12t) sinh(2gt),

V12 = V21 = i sinh(g12t) cosh(2gt). (4.40)

Introducing the mean photon-pair number Bp as Bp = sinh2(g12t) and mean number B̃p of

squeezed photons per mode, B̃p = sinh2(2gt), the coefficients of the covariance matrix AN are

found in the form:

B1 = B2 = Bp + B̃p + 2BpB̃p,

C1 = C2 = i

√
B̃p(B̃p + 1)(2Bp + 1),

D12 = i
√
Bp(Bp + 1)(2B̃p + 1),

D̄12 = −2

√
Bp(Bp + 1)B̃p(B̃p + 1). (4.41)
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Figure 4.12: Global nonclassicality invariant Incl as a function of the mean photon-pair number
Bp and mean number B̃p of squeezed photons considering the noiseless twin beams and squeezed
states.

The local NIs I
(j)
ncl , EI Ient, and global NI Incl are then derived as follows:

I
(1,2)
ncl = [1− 4TR sin2(φ)]B̃p(B̃p + 1) + 4TRBp(Bp + 1)− (B̃p −Bp)2 ±K,

K = 4
√
TR cos(φ)

√
Bp(Bp + 1)B̃p(B̃p + 1),

Ient = (T −R)2Bp(Bp + 1) + 4TR sin2(φ)B̃p(B̃p + 1),

Incl = 2(Bp + B̃p + 2BpB̃p). (4.42)

The formula for the global NI Incl, given in Eq. (4.42), shows that both parametric down-

conversion and second subharmonic generation contribute to the global NI making Incl always

positive. Moreover, both processes enhance each other in producing larger values of the global

NI. The greater is the mean photon-pair number Bp and also the greater is the mean number

B̃p of squeezed photons, the greater is the global NI Incl (see Fig. 4.12). Additionally, both LNI

I
(j)
ncl and EI Ient become dependent on the phase φ of the beam splitter.

Provided that the phases of the incident squeezed states equal (φ = nπ, n ∈ Z), photons in

pairs stick together (bunch) completely when propagating through the beam splitter and so

they cannot contribute to the entanglement in the output state. In this case, the entanglement

originates only in photon pairs of the incident twin beam. When T = 1/2 all photons in pairs

from the twin beam are glued and so the output state is separable. Contrary to this, the
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Figure 4.13: Local nonclassicality invariants I
(1)
ncl (blue dark upper surface) and I

(2)
ncl (orange

light coloured lower surface) versus the beam-splitter transmissivity T and mean photon-pair
number Bp assuming Bp = B̃p appropriate for the noiseless twin beams and squeezed states
according to Eq. (4.42) assuming φ = 0.

local NIs I
(j)
ncl depend on both mean photon-pair number Bp and mean number B̃p of squeezed

photons. The fields characterizing photon pairs in individual output ports and originating in the

incident squeezed states and the incident twin beam interfere causing the asymmetry between

the output ports. Depending on the parity of n one obtains the maximal local NI I
(1)
ncl (I

(2)
ncl )

if n = 2k (n = 2k + 1), k ∈ Z. This asymmetry is the largest for T = 1/2. In this case, the

bunched photon pairs are completely missing in one output port due to completely destructive

interference. On the other hand, constructive interference provides the greatest number of the

bunched photon pairs in the other output port guaranteeing the largest attainable value of its

local NI I
(j)
ncl . This behavior is quantified in the graph in Fig. 4.13.

If φ = π
2

+ nπ, the local NIs are equal (I
(1)
ncl = I

(2)
ncl ) and the state at the beam-splitter output

ports acquires a symmetry. Under these phase relations, also the incident squeezed photon

pairs contribute, together with the twin-beam photon pairs, to the entanglement. It is worth

noting that for Bp = B̃p all the state quantifiers are the same: I
(1)
ncl = I

(2)
ncl = Ient = Bp(Bp + 1).
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4.7 Conclusions

Local and global invariants of the general two-mode Gaussian states have been used to construct

a specific local nonclassicality quantifier and entanglement quantifier. These quantifiers applied,

respectively, to the single-mode marginal states and the whole two-mode state add together to

give a quantity that is invariant under global linear unitary transformations. This invariant

then quantifies the nonclassicality resources of Gaussian states. Remarkably, this invariant

is linearly proportional to the number of photon pairs in the noiseless Gaussian states. The

general results have been used to study the beam-splitter transformations of fields composed

of photon pairs and additional noisy photons. Twin beams, squeezed states as well as their

combinations have been considered as important examples. The behavior of photon pairs at the

beam splitter causing their breaking or gluing (i.e., antibinching or bunching) has been used to

explain the flow of nonclassical resources between local nonclassicalities (implying squeezing)

and entanglement. A complete transfer of the entanglement of incident twin beams into the

squeezing of the output modes has been observed. Also the complete transfer of the incident

squeezing into the entanglement of the output fields can be reached. The role of noise in the

transfer of the nonclassicality invariant via the beam splitter has been elucidated on several

examples.



Chapter 5

Experimental detection of

nonclassicality of single-mode fields via

intensity moments

Text adopted from I. I. Arkhipov, J. Peřina Jr., O. Haderka and V. Michálek, Opt. Express.

24, 29496 (2016) [A6].

5.1 Introduction

Inequalities containing only moments of intensities are frequently used to reveal the nonclassi-

cality of experimentally investigated states, contrary to those written for amplitude moments.

This is natural, as the measurement of amplitude moments requires the homodyne scheme [27]

whose complexity of implementation is comparable to the homodyne tomography. On the other

hand, intensity moments can be obtained with the usual ’quadratic’ optical detectors or, for low

intensities, with their modern variants resolving individual photon numbers [96]. In this con-

tribution, we compare the nonclassicality inequalities derived from the matrix approach with

those provided by the majorization theory using a set of sub-Poissonian states with increasing

mean photon numbers [38]. These states are generated from a twin beam [A1] by postselection
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[97, 39] that is based on the detection of a given photocount number in one arm of the twin

beam by an intensified charge-coupled-device (iCCD) camera [98]. The iCCD camera is also

used to experimentally analyze the sub-Poissonian states with mean photon numbers ranging

from 7 to 14.

The chapter is organized as follows. In Sec. 5.2, systematic approach for the derivation of

nonclassicality inequalties is given using both the matrix approach and the majorization theory.

Inequalities derived in Sec. 5.2 are tested on the experimental data in Sec. 5.3. Sec. 5.4 brings

conclusions.

5.2 Derivation of nonclassicality inequalities

For the moments of classical integrated intensity I [28], a general nonnegative quadratic form

for the classical field is constructed via the function g(I) that is an arbitrary linear superposition

of the terms Ij for j = 0, 1, . . .:

g(I) =
N∑
j=0

gjI
j, (5.1)

and N is an arbitrary integer number giving the number of terms in the sum. The condition∫∞
0
dI P (I)|g(I)|2 ≥ 0 for a classical state with non-negative probability function P , when

transformed into the operator form written for the powers of photon-number operator n̂ (Ij ∝

: n̂j :), suggests the following nonclassicality condition [99, 100, 101, 102]:

N∑
j,j′=0

gjgj′〈: n̂j+j
′
:〉 < 0; (5.2)

symbol : : denotes normal ordering of field operators. Inequality (5.2) can be equivalently

expressed as the condition for negativity of a matrix M of dimension (N + 1)× (N + 1) with

the elements Mjj′ = 〈: n̂j+j′ :〉. The Hurwitz criterion then guarantees negativity of the matrix

M whenever any of its principal minors is negative.
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The simplest 2× 2 minors of the matrix M written as

det

 〈: n̂2k :〉 〈: n̂k+l :〉

〈: n̂k+l :〉 〈: n̂2l :〉

 (5.3)

provide the nonclassicality inequalities containing the products of two moments of in general

different orders:

〈: n̂2k :〉〈: n̂2l :〉 < 〈: n̂k+l :〉2, 0 ≤ k ≤ l. (5.4)

The 3× 3 minors of matrix M parameterized by integer numbers k, l and m already give more

complex nonclassicality inequalities involving in general 6 terms in the sum, each formed by

three moments in the product:

det


〈: n̂2k :〉 〈: n̂k+l :〉 〈: n̂k+m :〉

〈: n̂k+l :〉 〈: n̂2l :〉 〈: n̂l+m :〉

〈: n̂k+m :〉 〈: n̂l+m :〉 〈: n̂2m :〉

 < 0, 0 ≤ k ≤ l ≤ m. (5.5)

The form of nonclassicality inequalities originating in k × k minors for k > 3 is similar to that

derived for the 3× 3 minors.

On the other hand, the majorization theory [103] gives us the nonclassicality inequalities in-

volving two moments in the product and having the following form [20]:

R̃u+m,v−m
u,v ≡ 〈: n̂u+m :〉〈: n̂v−m :〉 − 〈: n̂u :〉〈: n̂v :〉 < 0, u ≥ v ≥ 0, v ≥ m ≥ 0. (5.6)

The inequalities written in Eq. (5.4) are a subset of those given in Eq. (5.6) with the mapping

u = v = k + l and m = l − k.

The following nonclassicality inequalities of the majorization theory represent the counterpart

of inequalities in Eq. (5.6) derived from the 3× 3 minors:

R̃u+k+l,v−k+m,w−l−m
u,v,w ≡〈: n̂u+k+l :〉〈: n̂v−k+m :〉〈: n̂w−l−m :〉 − 〈: n̂u :〉〈: n̂v :〉〈: n̂w :〉 < 0,

u ≥ v ≥ w ≥ 0; k, l,m ≥ 0. (5.7)
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Inequalities in Eq. (5.7) formed by two additive terms differ from those of Eq. (5.5) that contain

six additive terms. There does not seem to exist any simple relation between inequalities written

in Eqs. (5.7) and (5.5).

In general, the majorization theory provides a larger number of nonclassicality inequalities

compared to the matrix approach. Moreover these inequalities attain a simpler form [compare

Eqs. (5.5) and (5.7)]. To get a more detailed comparison of the two methods, we write down

explicitly the inequalities involving the moments with the overall power up to five, that are

useful for the experimental analysis below. The explicit formulas of Eq. (5.6) written in their

normalized (dimensionless) form are expressed as follows:

R2,0
1,1 ≡

〈: n̂2 :〉
〈: n̂ :〉2

− 1 < 0,

R3,0
2,1 ≡

〈: n̂3 :〉
〈: n̂ :〉3

− 〈: n̂
2 :〉

〈: n̂ :〉2
< 0,

R3,1
2,2 ≡

〈: n̂3 :〉
〈: n̂ :〉3

− 〈: n̂
2 :〉2

〈: n̂ :〉4
< 0,

R4,0
2,2 ≡

〈: n̂4 :〉
〈: n̂ :〉4

− 〈: n̂
2 :〉2

〈: n̂ :〉4
< 0,

R4,0
3,1 ≡

〈: n̂4 :〉
〈: n̂ :〉4

− 〈: n̂
3 :〉

〈: n̂ :〉3
< 0,

R5,0
4,1 ≡

〈: n̂5 :〉
〈: n̂ :〉5

− 〈: n̂
4 :〉

〈: n̂ :〉4
< 0,

R4,1
3,2 ≡

〈: n̂4 :〉
〈: n̂ :〉4

− 〈: n̂
2 :〉〈: n̂3 :〉
〈: n̂ :〉5

< 0,

R5,0
3,2 ≡

〈: n̂5 :〉
〈: n̂ :〉5

− 〈: n̂
2 :〉〈: n̂3 :〉
〈: n̂ :〉5

< 0. (5.8)

Only the first and the fourth inequalities in Eq. (5.8) stem from the matrix approach providing

Eq. (5.4). Similarly, the general formula in Eq. (5.7) leaves us with the following four normalized
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inequalities, which cannot be obtained from the matrix approach:

R3,0,0
1,1,1 ≡

〈: n̂3 :〉
〈: n̂ :〉3

− 1 < 0,

R4,0,0
2,1,1 ≡

〈: n̂4 :〉
〈: n̂ :〉4

− 〈: n̂
2 :〉

〈: n̂ :〉2
< 0,

R5,0,0
2,2,1 ≡

〈: n̂5 :〉
〈: n̂ :〉5

− 〈: n̂
2 :〉2

〈: n̂ :〉4
< 0,

R5,0,0
3,1,1 ≡

〈: n̂5 :〉
〈: n̂ :〉5

− 〈: n̂
3 :〉

〈: n̂ :〉3
< 0. (5.9)

The majorization theory gives us also inequalities containing four (five) moments in the product,

which encompass the following two (one) inequalities useful in our experimental analysis:

R4,0,0,0
1,1,1,1 ≡

〈: n̂4 :〉
〈: n̂ :〉4

− 1 < 0,

R5,0,0,0
2,1,1,1 ≡

〈: n̂5 :〉
〈: n̂ :〉5

− 〈: n̂
2 :〉

〈: n̂ :〉2
< 0,

R5,0,0,0,0
1,1,1,1,1 ≡

〈: n̂5 :〉
〈: n̂ :〉5

− 1 < 0. (5.10)

The above inequalities can be applied both to photon-number distributions as well as to pho-

tocount distributions that are directly measured. Whereas the normally-ordered moments of

photon number n̂ are suitable for characterizing intensity distributions, the usual moments

are immediately derived from the experimental photocount distributions. They are mutually

related by the following formula [28]:

〈: n̂k :〉 =

〈
n̂!

(n̂− k)!

〉
. (5.11)
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Figure 5.1: Scheme of the experiment generating sub-Poissonian states. A twin beam is gen-
erated in noncollinear geometry in a 5-mm-long type-I barium-borate crystal (BaB2O4, BBO)
pumped by the third harmonics (280 nm) of a femtosecond cavity dumped Ti:sapphire laser
(pulse duration 150 fs, central wavelength 840 nm). The signal field as well as the idler field (af-
ter reflection on a highly-reflecting mirror HR) are detected by Ns = 6528 and Ni = 6784 pixels
of the photocathode of iCCD camera Andor DH3345-18U-63 with dark-count rate d = 0.04
(Da = d/Na, a = s, i). The nearly-frequency-degenerate signal and idler photons at the wave-
length of 560 nm are filtered by a 14-nm-wide bandpass interference filter IF. Intensity of the
pump beam that is actively stabilized via a motorized half-wave plate followed by a polarizer
is monitored by detector D.

5.3 Experimental testing of nonclassicality inequalities

The above nonclassicality inequalities have been applied to a set of states with different ’degree’

of sub-Poissonian photon-number statistics that were generated from a twin beam using posts-

election based on the detection of a given number cs of photocounts in the signal field [38]. For

an ideal photon-number-resolving detector, detection of a given number cs of signal photocounts

leaves the idler field in the Fock state with cs photons. For a real photon-number-resolving de-

tector, an idler field with reduced photon-number fluctuations and potentially sub-Poissonian

photon-number statistics is obtained. As the mean number of idler photons in a postselected

field increases with the increasing signal photocount number cs, the set of generated states is

appealing for testing the power of the nonclassicality inequalities.

In the reported experiment, the twin beam was generated in a nonlinear crystal and both its

signal and idler fields were detected by an iCCD camera [73]. Whereas the signal photocounts

were used for the postselection process, the histograms of idler photocounts provided the infor-

mation about the postselected potentially sub-Poissonian idler fields. Experimental details are

written in the caption to Fig. 5.1. The experiment was repeated 1.2× 106 times. The obtained
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2D histogram of the signal and idler photocounts was used both to determine the photocount

moments occurring in the nonclassicality inequalities and to reconstruct the photon-number

distributions of the postselected idler fields by the method of maximum likelihood [104]. In the

reconstruction method, the idler-field conditional photon-number distribution pc,i(ni; cs) left af-

ter detecting cs signal photocounts is reached as a steady state found in the following iteration

procedure (with iteration index n) [73]

p
(n+1)
c,i (ni; cs) = p

(n)
c,i (ni; cs)

∑
ci

fi(ci; cs)Ti(ci, ni)∑
n′i
Ti(ci, n′i)p

(n)
c,i (n′i; cs)

(5.12)

that uses the normalized idler-field 1D photocount histogram fi(ci; cs) ≡ f(cs,ci)∑
ci

f(cs,ci)
built from the

detections with cs detected signal photocounts and contained in the joint signal-idler photocount

histogram f(cs, ci). In Eq. (5.12), the functions T (ci, ni) give the probabilities of having ci

photocounts when detecting a field with ni photons. The folowing formula was derived for an

iCCD camera with Na active pixels, detection efficiency ηa and dark-count rate per pixel Da

[73]:

Ta(ca, na) =

 Na

ca

 (1−Da)
Na(1− ηa)na(−1)ca

ca∑
l=0

 ca

l

 (−1)l

(1−Da)l

×
(

1 +
l

Na

ηa
1− ηa

)na

; a = s, i. (5.13)

The 2D histogram f(cs, ci) with 〈cs〉 = 2.20 and 〈ci〉 = 2.18 signal and idler mean photocounts,

respectively, also allowed to reconstruct the whole original twin beam in the form of multimode

Gaussian fields composed of the independent multimode paired, signal and idler parts charac-

terized by mean photon(-pair) numbers Ba per mode and numbers Ma of independent modes,

a = p, s, i [61]. The photon-nunber distribution psi(ns, ni) of the whole twin beam was expressed

in the form of a two-fold convolution of three Mandel-Rice photon-number distributions [28] in

this case [69, 61, 56]:

psi(ns, ni) =

min[ns,ni]∑
n=0

p(ns − n;Ms, Bs)p(ni − n;Mi, Bi)p(n;Mp, Bp); (5.14)
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(a) (b)

Figure 5.2: (a) Mean idler photocount number 〈ci〉 and photon number 〈nc,i〉 and (b) Fano
factor Fi [Fi ≡ (〈n̂2

i 〉 − 〈n̂i〉2)/〈n̂i〉] as they depend on the signal photocount number cs. The
values appropriate for the distributions of experimental photocounts are plotted with red aster-
isks whereas those characterizing the reconstructed photon-number distributions arising from
the maximum-likelihood method (from the best fit of the twin beam) are plotted with green
triangles (blue solid curves). Error bars in (a) are smaller than the used symbols.

p(n;M,B) = Γ(n+M)/[n! Γ(M)]bn/(1 +B)n+M and symbol Γ stands for the Γ-function. This

reconstruction revealed the following values of mean photon(-pair) numbers Ba and numbers

Ma of modes: Mp = 270, Bp = 0.032, Ms = 0.01, Bs = 7.6, Mi = 0.026, and Bi = 5.3. The

method also provided the signal (ηs = 0.23) and idler (ηi = 0.22) detection efficiencies and

the theoretical prediction for the conditional idler-field photon-number distributions pt
c,i(ni; cs)

arising in the postselection process with cs detected signal photounts (for details, see [38]):

pt
c,i(ni; cs) =

∑
ns
Ts(cs, ns)psi(ns, ni)

f t
s (cs)

(5.15)

where f t
s (cs) ≡

∑
ns,ni

Ts(cs, ns)psi(ns, ni) is the theoretical prediction for the signal-field photo-

count distribution.

In the experiment, eleven conditional idler fields generated after detection of a given number cs

of signal photocounts in the range < 0, 10 > were analyzed. Their mean photocount numbers

〈ci〉 and photon numbers 〈nc,i〉 plotted in Fig. 5.2(a) show that the conditional idler fields

contained from 7 to 14 photons on average. The corresponding Fano factors Fi determined from

the first- and second-order moments and drawn in Fig. 5.2(b) identify, within the experimental



5.3. Experimental testing of nonclassicality inequalities 83

Figure 5.3: Marginal signal-field photocount distribution fs(cs) =
∑

ci
f(cs, ci) (red asterisks)

and its theoretical prediction f t
s defined below Eq. (5.15) (blue solid curve). Error bars of fs

are smaller than the used symbols.

errors, the conditional fields with cs ∈< 2, 7 > as sub-Poissonian. They also suggest that the

nonclassicality of the conditional idler fields increases as cs increases from 2 to 6, but then the

nonclassicality decreases and it is lost for cs = 9. This behavior originates in the noise present

both in the experimental twin beam and the iCCD camera (that makes the postselection,

smaller cs) as well as the relatively low detection efficiency of the iCCD camera (greater cs)

[38].

Fano factors Fi for cs > 4 plotted in Fig. 5.2(b) are determined with larger errors that in-

crease with the increasing signal photocount number cs. This originates in relatively small

numbers of measurements appropriate for the mentioned numbers cs. Mean numbers of these

measurements are described by the signal-field photocount distribution fs plotted in Fig. 5.3.

According to this distribution, the probability of detecting the signal photocount numbers cs

greater than 7 is less than 1 %. Despite the large number N = 1.2×106 of experimental repeti-

tions, the determined quantities suffer from relatively large experimental errors in these cases.

The experimental errors (for photocounts) are quantified by the mean squared fluctuation σx

(σx =
√
〈x2〉 − 〈x〉2) multiplied by factor 1/

√
Nr that depends on the number Nr of actual ex-

perimental realizations. This approach was also applied to the determination of error bars of the

quantities characterizing the photon-number distributions reached by the maximum-likelihood

reconstruction. In this method that gives the most-probable photon-number distribution the
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experimental errors are naturally smoothed [also due to the form of Ta given in Eq. (5.13) that

includes Da]. We note that the extended approach based on the Fischer information matrix

[105] allows to quantify their contribution to the uncertainty characterizing the reconstructed

photon-number distribution. The reconstruction based on the best fit of the 2D experimental

histogram f(cs, ci) exploits the whole ensemble of the measured data with N = 1.2×106 entries

and so the corresponding relative errors are negligible.

The nonclassicality identifiers R belonging to the experimental photocounts and plotted in

Fig. 5.4 identify the conditional idler fields with cs ∈< 2, 7 > as nonclassical, in agreement with

the predictions made by the Fano factors. According to the graphs in Fig. 5.4, nonclassical

conditional idler fields can be divided into two groups. The conditional idler fields with cs ∈

< 5, 7 > have all fifteen nonclassicality identifiers R negative, determined both for photocounts

and photon numbers. Such fields can thus be considered as firmly nonclassical. This accords

with the lowest attained values of the Fano factor Fi(cs) shown in Fig. 5.2(b). On the other

hand, the conditional idler fields with cs ∈< 2, 4 > have negative only the nonclassicality

identifiers R of the ’order’, given as the sum of their upper (or equivalently lower) indices,

lower than four. The nonclassicality identifiers R of ’order’ four and five are positive for the

experimental photocounts. The maximum-likelihood reconstruction, that relies on the whole 1D

experimental histograms, additionally provides negative nonclassicality identifiers R of ’order’

four for cs ∈ < 3, 4 > and five for cs = 4. This corresponds to the decreasing values of Fano

factor Fi(cs) drawn in Fig. 5.2(b). Detailed inspection of the graphs in Fig. 5.4 reveals that

the behavior of nonclassicality identifiers R reached by the maximum-likelihood reconstruction

qualitatively agrees (up to cs = 7) with the behavior predicted by the reconstruction based on

the best fit of the 2D experimental histogram and quantified by blue solid curves in the graphs

of Figs. 5.2 and 5.4.

Compared to the Fano factor Fi, the nonclassicality identifiers R of ’order’ three or higher are

endowed with weaker capability to reveal the nonclassicality of the analyzed states obtained by

the post-selection method. The greater the ’order’ of nonclassicality identifier R the weaker the

capability. On the other hand, if the nonclassicality is observed in the nonclassicality identifiers

R of higher ’order’ it can be considered in certain sense as firm. This is the case of the conditional
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Figure 5.4: Nonclassicality identifiers R given in Eqs. (5.8)—(5.10) and determined for distribu-
tions of experimental photocounts (red asterisks with error bars), photon-number distributions
reached by the maximum-likelihood reconstruction method (green triangles with error bars)
and photon-number distributions derived from the best fit of the twin beam (blue solid curves)
as they depend on the signal photocount number cs. Some error bars are smaller than the
plotted symbols.
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idler fields obtained after postselecting by the detection of 5, 6 and 7 signal photocounts.

These fields, containing on average about 12-14 idler photons, exhibit their nonclassicality in

all observed nonclassicality identifiers.

5.4 Conclusions

We have shown that the majorization theory provides a greater number and more suitable

nonclassicality identifiers based on intensity moments compared to the commonly used matrix

method. Considering the products of moments up to the fifth order, we identified fifteen

independent identifiers and tested them on the experimental states with different ’degree’ of

sub-Poissonian photon-number statistics. Identifiers based on lower intensity moments were

identified as more powerful compared to those containing greater intensity moments. The

latter ones have been found useful for identifying states being firmly nonclassical.



Chapter 6

Entanglement and nonclassicality in

four-mode Gaussian states generated

via parametric down-conversion and

frequency up-conversion

Text adopted from I. I. Arkhipov, J. Peřina Jr., O. Haderka, A. Allevi and M. Bondani, Sci.

Rep. 6, 33802 (2016) [A5].

6.1 Introduction

In this chapter, we consider a four-mode system composed of two down-converted modes

and two up-converted modes. In the system, parametric down-conversion and frequency up-

conversion involving both down-converted modes simultaneously occur in the same nonlinear

medium [106]. While parametric down-conversion serves as the primary source of entangle-

ment [27], frequency up-conversion is responsible for the transfer of the entanglement to the

up-converted modes.

87
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This transfer operation is interesting from the fundamental point of view, as it generalizes the

well-known property of ‘one-mode’ frequency up-conversion pumped by a strong coherent field,

in which the statistical properties of the incident field are transferred to the frequency up-

converted counterpart, also including the nonclassical ones (e.g., squeezing, [28]). We note that

such properties are important for the applications of the up-conversion process: For instance, it

has been used many times for ‘shifting’ an optical ‘one-mode’ field to an appropriate frequency

where its detection could be easily achieved [107, 108].

In the general analysis of the four-mode system, we quantify its global nonclassicality via the

Lee nonclassicality depth [22]. Since the four-mode system under consideration cannot ex-

hibit nonclassicality of individual single modes, the global nonclassicality automatically implies

the presence of entanglement among the modes (for a two-mode Gaussian system involving

parametric down-conversion, see [A2]). The analysis of ‘the structure of entanglement’ further

simplifies by applying the Van Loock and Furusawa inseparability criterion [109] that excludes

the presence of genuine three- and four-partite entangled states. This means that in the sys-

tem discussed here there are only bipartite entangled states. It is thus sufficient to divide

the analyzed four-mode state into different bipartitions to monitor the structure of entangle-

ment. Then, the well-known entanglement criterion based on the positive partial transposition

of the statistical operator [24, 57], which gives the logarithmic negativity as an entanglement

quantifier, is straightforwardly applied [110, 42].

The experimental detection of two-mode (-partite) entanglement is in general quite challenging,

as it requires measurements in complementary bases. Here, we theoretically show that, for the

considered system with the assumed initial vacuum state, any two-mode partition exhibiting

sub-shot-noise intensity correlations is also entangled. As a consequence, the measurement of

intensity auto- and cross-correlations in this system is sufficient to give the evidence of the

presence of two-mode entangled states through the commonly used noise reduction factor.

Finally, we note that the Hamiltonian of the analyzed four-mode system formally resembles

that describing a twin beam with signal and idler fields divided at two beam splitters. This

analogy results in similar properties of the four-mode states obtained in the two cases, though
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Figure 6.1: Optical fields in modes 1 and 2 interact via parametric down-conversion described
by the nonlinear coupling constant g1. Photons from mode 1 (2) are converted into photons
of mode 3 (4) thanks to the frequency up-conversion characterized by the coupling constant g2

(g3); t stands for the interaction time. In the symmetric case we have g23 = g2 = g3.

the processes of down-conversion and up-conversion occur simultaneously in our system, at

variance with the system with two beam splitters, which modify the already emitted twin

beam. We note that the system with two beam splitters has been frequently addressed in the

literature as a prototype of more complex devices based on two multiports that are used to

have access to intensity correlation functions for the detailed characterization of the measured

fields [101], also including their photon-number statistics [111, 68, 112, 73, 113, 114]. The

chapter is organized as follows. In Section 6.2 the model of four-mode nonlinear interaction

including parametric down-conversion and frequency up-conversion is analyzed. Nonclassicality

of the overall system is addressed in Section 6.3. In Section 6.4, the entanglement of the overall

system is investigated considering the partitioning of the state into different bipartitions. Two-

mode entangled states obtained after state reduction are analyzed in Section 6.5, together

with two-mode sub-shot-noise intensity correlations. Suitable parameters of the corresponding

experimental setup can be found in Section 6.6. Section 6.7 summarizes the obtained results.

6.2 Four-mode nonlinear interaction

We consider a system of four nonlinearly interacting optical modes (for the scheme, see Fig. 6.1).

Photons in modes 1 and 2 are generated by parametric down-conversion with strong pumping

(coupling constant g1). Photons in mode 1 (2) can then be annihilated with the simultaneous
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creation of photons in mode 3 (4). The two up-conversion processes are possible thanks to the

presence of two additional strong pump fields with coupling constants g2 and g3. The overall

interaction Hamiltonian for the considered four-mode system is written as [106]:

Ĥint = ~g1â
†
1â
†
2 + ~g2â1â

†
3 + ~g3â2â

†
4 + H.c., (6.1)

where the operators â†1 and â†2 create an entangled photon pair in modes 1 and 2 and the

creation operators â3† and â†4 put the up-converted photons into modes 3 and 4, respectively.

Symbol H.c. replaces the Hermitian conjugated terms.

The Heisenberg-Langevin equations corresponding to the Hamiltonian Ĥint in Eq. (6.1) are

written in their matrix form as follows:

dâ

dt
= Uâ + L̂, (6.2)

where â = (â†1, â2, â
†
3, â4)T and L̂ = (L̂†1, L̂2, L̂

†
3, L̂2)T . The matrix U introduced in Eq. (6.2) is

expressed as

U =



−γ1/2 −ig1 −ig2 0

ig1 −γ2/2 0 ig3

−ig2 0 −γ3/2 0

0 ig3 0 −γ4/2,


(6.3)

in which γj stands for the damping coefficient of mode j, j = 1, . . . , 4. The Langevin operators

L̂j, j = 1, . . . , 4, obey the following relations:

〈L̂j(t)〉 = 〈L̂†j(t)〉 = 0, 〈L̂†j(t)L̂k(t′)〉 = δjkγj〈ndj〉δ(t− t′),

〈L̂j(t)L̂†k(t′)〉 = δjkγj(〈ndj〉+ 1)δ(t− t′). (6.4)

The Kronecker symbol is denoted as δij and the symbol δ(t) means the Dirac function. The

mean numbers ndj corresponding to noise reservoir photons have been used in Eqs. (6.4). We

note that for the noiseless system the following quantity 〈â†1â1〉 + 〈â†4â4〉 − 〈â†2â2〉 − 〈â†3â3〉 is

conserved in the interaction.
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Introducing frequencies ωj and wave vectors ~kj of the mutually interacting modes, we formu-

late the assumed ideal frequency and phase-matching conditions of the considered nonlinear

interactions in the form:

ωp12 = ω1 + ω2, ωp13 = ω1 + ω3, ωp24 = ω2 + ω4,

~kp12 = ~k1 + ~k2, ~kp13 = ~k1 + ~k3, ~kp24 = ~k2 + ~k4. (6.5)

In Eqs. (6.5), ωp12 (~kp12) stands for the pump-field frequency (wave vector) of parametric down-

conversion, whereas ωp13 [ωp24] (~kp13 [~kp24]) means the frequency (wave vector) of the field

pumping the up-conversion process between modes 1 [2] and 3 [4].

The solution of the system of first-order linear operator stochastic equations (6.2) can be con-

veniently expressed in the following matrix form:

â(t) = Mâ(0) + F̂(t), (6.6)

where the evolution matrix M is written in Eq. (6.18) of Appendix for the noiseless case and

vector F̂ arises from the presence of the stochastic Langevin forces. More details can be found

in Ref. [88]. When applying the solution (6.6), we consider the appropriate phases of the three

pump fields such that the coupling constants gj, j = 1, 2, 3, are real.

The statistical properties of the optical fields generated both by parametric down-conversion

and up-conversion are described by the normal characteristic function CN defined as

CN (β) = Tr

[
ρ̂(0) exp

(
4∑
i=1

βiâ
†
i

)
exp

(
−

4∑
i=1

β∗i âi

)]
, (6.7)

where Tr denotes the trace and β ≡ (β1, β2, β3, β4)T . Using the solution given in Eq. (6.6), the

normal characteristic function CN attains the Gaussian form:

CN (β) = exp
{
−

4∑
i=1

Bi|βi|2 +
[
D∗12β1β2 + D̄∗13β1β

∗
3 +D∗14β1β4 +D∗23β2β3

+D̄∗24β2β
∗
4 +D∗34β3β4 + c.c.

]}
(6.8)
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and c.c. replaces the complex conjugated terms. The coefficients occurring in Eq. (6.8) are

derived in the form:

B1 = 〈∆â†1∆â1〉 = |M12|2 + |M14|2 + 〈F̂ †1 F̂1〉,

B2 = 〈∆â†2∆â2〉 = |M21|2 + |M23|2 + 〈F̂ †2 F̂2〉,

B3 = 〈∆â†3∆â3〉 = |M32|2 + |M34|2 + 〈F̂ †3 F̂3〉,

B4 = 〈∆â†4∆â4〉 = |M41|2 + |M43|2 + 〈F̂ †4 F̂4〉,

D12 = 〈∆â1∆â2〉 = M∗
11M21 +M∗

13M23 + 〈F̂1F̂2〉,

D̄13 = −〈∆â†1∆â3〉 = −M∗
11M31 −M∗

13M33 − 〈F̂ †1 F̂3〉,

D14 = 〈∆â1∆â4〉 = M∗
11M41 +M∗

13M43 + 〈F̂1F̂4〉,

D23 = 〈∆â2∆â3〉 = M∗
32M22 +M∗

34M24 + 〈F̂2F̂3〉,

D̄24 = −〈∆â†2∆â4〉 = −M∗
42M22 −M∗

44M24 − 〈F̂ †2 F̂4〉,

D34 = 〈∆â3∆â4〉 = M∗
31M41 +M∗

33M43 + 〈F̂1F̂4〉. (6.9)

We note that the two-mode interactions characterized by the coefficients Dij and D̄ij in Eq. (6.8)

attain specific forms. While the coefficients Dij reflect the presence of photon pairs in modes i

and j, coefficients D̄ij describe mutual transfer of individual photons between modes i and j.

The normal characteristic function CN can be rewritten in the matrix form exp(β†Aβ/2) by

introducing the normally-ordered covariance matrix A:

A =



A1 D12 D13 D14

D†12 A2 D23 D24

D†13 D†23 A3 D34

D†14 D†24 D†34 A4


, (6.10)

where the 2× 2 matrices are defined as:

Ai =

−Bi 0

0 −Bi

 , Djk =

D̄∗jk Djk

D∗jk D̄jk

 , i, j, k = 1, . . . , 4. (6.11)
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The covariance matrix σ related to the symmetric ordering and corresponding to the phase

space (x̂, p̂) is needed to perform easily partial transposition. It has the same structure as the

covariance matrix A written in Eq. (6.10) with the blocks Ai (Djk) replaced by the blocks σi

(εjk) defined as:

σi =

Bi + 1
2

0

0 Bi + 1
2

 , εjk =

Re(Djk − D̄jk) Im(Djk − D̄jk)

Im(Djk + D̄jk) −Re(Djk + D̄jk)

 , i, j, k = 1, . . . , 4.

(6.12)

Symbol Re (Im) denotes the real (imaginary) part of the argument.

In what follows, we consider the situation in which all four modes begin their interaction in the

vacuum state. Moreover, we focus on the specific symmetric case in which g2 = g3 ≡ g23. A

note concerning the general case g2 6= g3 is found at the end.

6.3 Nonclassicality

We first analyze the global nonclassicality of the whole four-mode system as it is relatively easy

and, for the considered initial vacuum state, it implies entanglement (see below). Nonclassical-

ity of the whole four-mode state described by the statistical operator ρ̂ is conveniently quantified

by the Lee nonclassicality depth τ [22]. This quantity gives the amount of noise, expressed in

photon numbers, needed to conceal nonclassical properties exhibited by the Glauber-Sudarshan

P function, which attains negative values in certain regions or even does not exist as an ordi-

nary function. The Glauber-Sudarshan P function is determined by the Fourier transform of

the normally-ordered characteristic function CN given in Eq. (6.8). Technically, the Lee non-

classicality depth is given by the largest positive eigenvalue of the covariance matrix A defined

in Eq. (6.10). So, it can be easily determined.

The Lee nonclassicality depth τ as a function of the coupling parameters g1t and g23t is shown

in Fig. 6.2. The increasing values of g1t result in larger values of the nonclassicality depth

τ , as the number of photons simultaneously generated in modes 1 and 2 increases. We note
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Figure 6.2: Nonclassicality depth τ as a function of the parameters g1t and g23t.

that this pairing of photons in the process of parametric down-conversion is the only source of

nonclassicality in the analyzed four-mode system. On the contrary, nonzero values of parameter

g23t only lead to the oscillations of the nonclassicality depth τ . This behavior occurs as the

frequency up-conversion moves photons, and so also photon pairs, from modes 1 and 2 to modes

3 and 4 and vice versa (see the scheme in Fig. 6.1). This results in the nonclassical properties

of modes 3 and 4, at the expenses of the nonclassical properties of modes 1 and 2.

The maximum value of the Lee nonclassicality depth τ = 0.5 is reached for g23t = 0 and ideally

in the limit g1t → ∞, i.e. when only the strong parametric down-conversion occurs. This is

in agreement with the analysis of nonclassical properties of twin beams reported in Ref. [A1].

The value τ = 0.5 can also be asymptotically reached in the limit g23t→∞, in which we have

τg23t→∞ =
1

2

[√
(B1 −B2)2 + 4|D12|2 − (B1 +B2)

]
(6.13)

with B3 → B1, B4 → B2 and D34 → D12. It is worth noting that formula (6.13) applies also for

g23t = 0. Nonclassicality is also strongly resistant against damping in the system. This means

that even a low number of photon pairs is sufficient to have a nonclassical state. We demonstrate

this resistance by considering the damping constants γ proportional to the nonlinear coupling

constant g1, which quantifies the speed of photon-pair generation. The graphs in Fig. 6.3 show

that the generated states remain strongly nonclassical even though a considerable fraction of
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Figure 6.3: Nonclassicality depth τ as a function of the parameters g1t and g23t for (a) γ1t =
γ2t = g1t, γ3t = γ4t = 0; (b) γ1t = γ2t = 0, γ3t = γ4t = g1t, assuming ndj = 0 for j = 1, . . . , 4.

photon pairs is broken under these conditions. The comparison of graphs in Figs. 6.3(a) and

(b) reveals that the damping is more detrimental in the down-converted modes 1 and 2 than

in the up-converted modes 3 and 4.

At variance with nonclassicality, the determination and quantification of entanglement is more

complex and it is technically accomplished by considering all possible bipartitions of the four-

mode system (see the next Section). On the one side all bipartitions considered below are in

principle sufficient to indicate entanglement, on the other side the application of the Van Loock

and Furusawa inseparability criterion [109] to our system excludes the presence of genuine three-

and four-mode entanglement. The analyzed Hamiltonian written in Eq. (6.1) together with the

incident vacuum state also excludes the presence of nonclassical states in individual modes. In

what follows, the bipartite entanglement is thus the only source of the global nonclassicality

in the analyzed system. This situation considerably simplifies the possible experimental in-

vestigations as positive values of the Lee nonclassicality depth directly imply the presence of

entanglement somewhere in the system.
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6.4 Four-mode entanglement

In quantifying the entanglement in our four-mode Gaussian system, we rely on the following

facts applicable to an arbitrary (m+n)-mode Gaussian state. It has been proven that positivity

of the partially transposed (PPT) statistical operator describing any 2×2 or 2×3 bipartition of

the state is a necessary condition for the separability of the state [24, 57]. Moreover, it has been

shown that the violation of PPT condition occurring in any 1×(m+n−1) bipartitions or m×n

bisymmetric bipartitions for m > 2 and n > 3 is a sufficient condition for the entanglement

in the analyzed (m + n)-mode state [90, 115]. For continuous variables systems, the PPT is

simply accomplished when the symmetrically-ordered field operators are considered allowing

to perform the PPT only by changing the signs of the momenta p̂ [90]. Moreover, symplectic

eiganvalues ñi of the symmetrically-ordered covariance matrix σ can be conveniently used to

quantify entanglement in bipartite systems via the logarithmic negativity E [42], defined in

terms of eigenvalues ñi < 1/2:

E = max

{
0,−

∑
i

log(2ñi)

}
, (6.14)

where max gives the maximal value.

In the four-mode Gaussian state sketched in Fig. 6.1, we have two kinds of bipartitions. Either a

single mode forms one subsystem and the remaining three modes belong to the other subsystem,

or two modes are in one subsystem and the remaining two modes lie in the other subsystem.

Due to the symmetry, only two members of each group are of interest for us. Namely, these are

bipartitions 1× 234 and 3× 124 from the first group and bipartitions 12× 34 and 13× 24 from

the second one. We note that, while the bipartition 12 × 34 is bisymmetric in our interaction

configuration (provided that g2t = g3t), the bipartition 13×24 is not bisymmetric. Nevertheless,

positive values of both the logarithmic negativities E12×34 and E13×24 reflect entanglement as

both bipartitions involve two modes on both sides. Similarly, positive values of the logarithmic

negativities E1×234 and E3×124 guarantee the presence of entanglement.

We first pay attention to the entanglement expressed in the logarithmic negativities E1×234 and
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Figure 6.4: Logarithmic negativities E1×234 (a), E3×124 (b), E12×34 (c), and E13×24 (d) as
functions of parameters g1t and g23t for different bipartitions indicated in the subscripts.

E3×124. As suggested by the graphs in Figs. 6.4(a) and (b), the oscillating behavior of negativity

E1×234 is complementary to that of negativity E3×124. This means that the larger values of

negativity E1×234 are accompanied by the lower values of negativity E3×124 and vice versa. Such

a result is a consequence of the fact that the entanglement is due to the presence of photon pairs

and a photon created in mode 1 can move to mode 3 and later return back to mode 1. This

movement leads to the oscillations with frequency g23, which are clearly visible in Figs. 6.4(a)

and (b). This explanation also suggests that no entanglement is possible between modes 1 and

3. Indeed, if we also determine the negativity E1×24 (or E3×24), we will get the same values

already obtained for the negativity E1×234 (E3×124). The negativity E12×34, characterizing

the entanglement between the twin beam in modes 1 and 2 and the up-converted beams in

modes 3 and 4, is plotted in Fig. 6.4(c). It reflects the gradual movement of photon pairs from
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Figure 6.5: Logarithmic negativity E as a function of the damping coefficient γt for different
bipartitions: 1 × 234 (dashed red line), 3 × 124 (brown dotted line), 12 × 34 (dashed-dotted
green line), and 13× 24 (solid blue line). We set g1t = g2t = g3t = 0.7, γ ≡ γ1 = γ2 = γ3 = γ4;
ndj = 0 for j = 1, . . . , 4.

modes 1 and 2, where they are created, to modes 3 and 4. Note that the maxima of negativity

E12×34 along the g23t-axis occur inbetween the maxima of negativities E1×234 and E3×124. The

origin of entanglement in photon pairing is confirmed in the graph of Fig. 6.4(d), showing that

the negativity E13×24 is independent of parameter g23t and that the negativity E13×24 increases

with the increasing parameter g1t. In certain sense, the independence of negativity E13×24 from

parameter g23t represents the conservation law for nonclassical resources, as the negativities of

the different two-mode reductions derived from this bipartition (E1×2, E1×4, E3×2, and E3×4)

do depend on parameter g23t.

The developed model also allows us to study the role of damping in the entanglement creation.

The investigations based on equal damping constants γ and noiseless reservoirs (nd = 0) just

reveal the deterioration of entanglement in all the considered bipartitions with the increase of

damping constants (see Fig. 6.5).

6.5 Two-mode entanglement and noise reduction factor

The results of the theoretical analysis suggest that, from the experimental point of view, the

observation of entanglement between pairs of modes is substantial for the characterization of
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the emitted entangled states. Formally, the theory describes such observations through the

reduced two-mode statistical operators. The analysis shows that the behavior of two-mode

negativities E1×2, E3×4, and E1×4 with respect to parameters g1t and g23t is qualitatively

similar to that of four-mode negativities E1×234, E3×124, and E12×34 plotted in Figs. 6.4(a), (b)

and (c). This similarity originates in possible ‘trajectories’ of photon pairs born in modes 1

and 2 and responsible for the entanglement.

Additional insight into the generation of entanglement in the analyzed system is provided

when the entanglement is related to the intensities of the interacting fields. As quantified in

the graphs of Fig. 6.6, both mean photon numbers B1 ≡ B2 and B3 ≡ B4 are increasing

functions of parameter g1t and oscillating functions of parameter g23t. This oscillating behavior

is particularly interesting, as it reflects the flow of photons from modes 1 and 2 to modes 3 and

4, respectively, and vice versa. As we will see below, this is in agreement with the ‘flow of the

entanglement’ among the modes.

The graph in Fig. 6.7(a) shows that the negativity E1×2 is on the one side an increasing

function of the mean photon number B1, on the other side it only weakly depends on the mean

photon number B3. This confirms that pairing of photons in parametric down-conversion is

the only resource for entanglement creation. On the contrary, as shown in Fig. 6.7(b), the

negativity E3×4 is an increasing function of the mean photon number B3, whereas it weakly

depends on the mean photon number B1. This indicates that the entanglement in modes 34

comes from modes 12 through the transfer of photon pairs: The stronger the transfer is, the

larger the value of negativity E3×4 is. Moreover, optimal conditions for the observation of

entanglement in modes 1 and 4 occur provided that there is the largest available number of

photon pairs with one photon in mode 1 and its twin in mode 4. According to the graph in

Fig. 6.7(c) this occurs when the mean photon numbers B4 (B4 ≡ B3) and B1 are balanced,

independently of their absolute values. In general, the experimental identification of two-mode

entanglement is not easy, as it requires the simultaneous measurement of the entangled state in

two complementary bases. Alternatively, entanglement can be inferred from the reconstructed

two-mode phase-space quasi-distribution, which needs two simultaneous homodyne detectors

[35], each one endowed with a local oscillator. However, the detection of entanglement, at least
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Figure 6.6: Mean photon numbers B1 (a) and B3 (b) plotted as functions of parameters g1t
and g23t.

in some cases, can be experimentally accomplished by the observation of sub-shot-noise intensity

correlations. This is a consequence of the detailed numerical analysis, which reveals that

the majority of the reduced two-mode entangled states also exhibits sub-shot-noise intensity

correlations. Nevertheless, it should be emphasized here that, in the analyzed system, there

are also two-mode entangled states not exhibiting sub-shot-noise intensity correlations. On

the contrary, we note that the reduced two-mode separable states do not naturally exhibit

sub-shot-noise intensity correlations.

Sub-shot-noise intensity correlations are quantified by the noise reduction factor R [43, 45],

that is routinely measured to recognize nonclassical intensity correlations of two optical fields.

The noise reduction factor R expressed in the moments of photon numbers nj and nk of modes

j and k, respectively, is defined by the formula:

Rjk =
〈4(nj − nk)2〉
〈nj〉+ 〈nk〉

. (6.15)

Sub-shot-noise intensity correlations are described by the condition R < 1. We note that there

exists the whole hierarchy of inequalities involving higher-order moments of photon numbers

(or intensities) [101, 116, 102, 114] that indicate nonclassicality and, in our system, also en-

tanglement. We mention here the inequality derived by Lee [20] as a practical example that is

sometimes used in the experimental identification of nonclassicality. We note that this criterion
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Figure 6.7: Logarithmic negativities E1×2 (a), E3×4 (b) and E1×4 (c) as functions of the mean
photon numbers B1 and B3.

Figure 6.8: Noise reduction factors R1×2 (a), R3×4 (b) and R1×4 (c) as functions of the mean
photon numbers B1 and B3. In (c), the plane defined as R1×4 = 1 is represented by the blue
mesh.

is stronger than the noise reduction factor R in revealing the nonclassicality [43]. The noise

reduction factors R1×2, R3×4 and R1×4 describing the reduced two-mode fields with their neg-

ativities plotted in Fig. 6.7 are drawn in Fig. 6.8 for comparison. We can see complementary

behavior of the negativities E and noise reduction factors R in the graphs in Figs. 6.7 and 6.8.

An increase of the negativity E is accompanied by a decrease in the noise reduction factor R.

A closer inspection of the curves in these graphs shows that the condition R < 1 identifies very

well entangled states when the noise reduction factor is measured in modes 1 × 2 and 3 × 4.

Nevertheless, there are entangled states with R1×4 > 1, as shown in the graph of Fig. 6.9, in

which the values of parameters g1t and g23t appropriate for this situation occur in the areas I

and III. On the other hand, the entangled states found in the area II in the graph of Fig. 6.9

have R < 1. It is worth noting that the relative amount of entangled states not detected via
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Figure 6.9: Solutions of the equations for logarithmic negativity E1×4 = 0 (blue dashed line)
and noise reduction factor R1×4 = 1 (red solid line) in the plane spanned by parameters g1t
and g23t. The two-mode field is entangled (E1×4 > 0) inbetween the blue dashed lines, i.e. in
the areas I, II, and III, whereas it is sub-shot-noise (R1×4 < 1) inbetween the red solid lines,
i.e. in the area II.

Figure 6.10: Planes given by g1t = 0.5 (a), g1t = 1 (b) and g1t = 5 (c) in the ’phase diagram’
identifying classical states (white areas), entangled states without sub-shot-noise intensity cor-
relations (blue) and entangled states with sub-shot-noise intensity correlations (red) in the
space spanned by the coupling constants gjt, j = 1, 2, 3.

R < 1 increases with the increasing coupling constant g1t and so with the increasing overall

number of photons in the system. The observed relation between the entangled states and those

exhibiting sub-shot-noise intensity correlations can even be explained theoretically, due to the

specific form of the reduced two-mode Gaussian states analyzed in Ref. [A1]. According to

Ref. [A1] entangled states in modes i and j are identified through the inequality BiBj < |Dij|2.

On the other hand, the noise reduction factor Rij defined in Eq. (6.15) attains for our modes
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the form:

Rij = 1 +
B2
i +B2

j − 2|Dij|2

Bi +Bj

(6.16)

that assigns the sub-shot-noise intensity correlations to the states obeying the inequality B2
i +

B2
j < 2|Dij|2. Thus, the inequality B2

i +B2
j ≥ 2BiBj implies that the states with sub-shot-noise

intensity correlations form a subset in the set of all entangled states. Moreover, if Bi = Bj,

both sets coincide as we have B2
i + B2

j = 2BiBj. Thus, the noise reduction factors R12 and

R34 are reliable in identifying entangled states in the symmetric case, in which B1 = B2 and

B3 = B4.

We note that, according to the theory developed for the modes without an additional internal

structure [A1], the logarithmic negativity Eij can be determined along the formula [A1]

Eij = max

{
0,− log

(
1 +Bi +Bj −

√
(Bi −Bj)2 + 4|Dij|2

)}
, (6.17)

where |Dij|2 = 〈∆ni∆nj〉. According to Eq. (6.17) the logarithmic negativity Eij can, in

principle, be inferred from the measured mean intensities in modes i and j and the cross-

correlation function of intensity fluctuations in this idealized case.

At the end, we make a note about the entanglement in the general four-mode system with

different up-conversion coupling constants (g2 6= g3). This is relevant when non-ideal phase-

matching conditions of the three nonlinear interactions are met in the experiment (see below).

According to our investigations, the largest values of negativities E1×2 and E3×4 are found in

the symmetric four-mode system (g2 = g3) considered above. On the contrary, the largest

values of negativities E1×4 and E2×3 are obtained for unbalanced g2 and g3 interactions.

Similarly to the symmetric case, separable states, entangled states without sub-shot-noise in-

tensity correlations and entangled states exhibiting sub-shot-noise intensity correlations are

found in the whole three-dimensional parametric space spanned by variables gjt for j = 1, 2, 3.

As an example, the distribution of different kinds of reduced two-mode states found in the up-

converted modes 3 and 4 in this space is plotted in Fig. 6.10. The graphs in Fig. 6.10 indicate

that, in accord with the symmetric case, the larger the value of constant g1t, the larger the
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relative amount of entangled states that cannot be identified through sub-shot-noise intensity

correlations.

6.6 Experimental implementation

A possible experimental implementation of the four mode interaction described above can be

achieved by using a BaB2O4 crystal as the nonlinear medium, a ps-pulsed laser (a mode-locked

Nd:YLF laser regeneratively amplified at 500 Hz, High-Q Laser Production) to get the pump

fields and hybrid photodetectors (mod. R10467U-40, Hamamatsu Photonics) as the photon-

number-resolving detectors. A typical experimental setup can be built in analogy with other

previous experiments [114]. The phase-matching conditions can be chosen so as to have ω1 = ω2

and a common pump field for both up-conversion processes so that ω3 = ω4. In this specific

symmetric case we have g2 = g3 ≡ g23.

We can estimate the range of coupling constants achievable in this setup based on the above-

mentioned laser source. Let us consider the following parameters: wavelength of the pump

for down-conversion λp1 = 349 nm, λ1 = λ2 = 698 nm, wavelength of the pump for up-

conversion λp2 = 1047 nm, λ3 = λ4 = 418.8 nm, length of the BaB2O4 crystal L = 4 mm,

diameters of the pumps 0.5 mm, pulse duration 4.5 ps. The coupling constants g1 and g23 are

linearly proportional to the corresponding pump field amplitudes so that g1t = κ1Ap1L and

g23t = κ23Ap2L, where κj (j = 1, 23) are the nonlinear coupling coefficients and Aj (j = p1, p2)

are the pump amplitudes. For the considered parameters we can estimate κj ≈ 10−13s1/2.

The useful range of energies per pulse is up to 66 µJ in the UV and up to 240 µJ in the IR,

corresponding to maximum values g1t ≈ 5.9 and g2t ≈ 7. The theoretical results discussed

above predict an interesting behavior for this range of parameters, including the transfer of

entanglement into the up-converted modes.
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6.7 Conclusions

Four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

have been analyzed in terms of nonclassicality, entanglement and entanglement transfer among

the modes. While nonclassicality of the state has been described by the easily-computable Lee

nonclassicality depth, logarithmic negativity for different bipartitions has been applied to mon-

itor the occurrence of entanglement among different modes. It has been shown that whenever

the analyzed system is nonclassical, it is also entangled. Moreover, the entanglement is present

only in the form of bipartite entanglement. The analysis of the noise reduction factor identify-

ing sub-shot-noise intensity correlations, in parallel with the logarithmic negativity quantifying

two-mode entanglement, has shown that the noise reduction factor is a powerful indicator of the

entanglement in the analyzed system. This is substantial for the experimental demonstration

of the transfer of entanglement from the down-converted modes to the up-converted ones.

Appendix

The evolution matrix M

The evolution matrix M describing the operator solution of the Heisenberg equations written

in Eq. (6.2) is derived in the form:

M =



xc1−yc2
x−y

ixy(
√
y1s2−

√
x1s1)

(xy1−x1 y)g1

i(y
√
y1x1 s2−x

√
x1y1 s1)

g2 (xy1−x1 y)
xy(c2−c1)
g1 g3 (x−y)

ig1 (
√
y1s2−

√
x1s1)

x−y
xy1 c2−x1 yc1
xy1−x1 y

g1 y1 x1 (c2−c1)
g2 (xy1−x1 y)

i(
√
y1xs2−

√
x1ys1)

(x−y)g3

ig2 (
√
x1ys2−

√
y1xs1)√

x1(x−y)
√
y1

− g2 xy(c2−c1)
(xy1−x1 y)g1

xy1 c1−x1 yc2
xy1−x1 y

−ig2 xy(
√
x1s2−

√
y1s1)

g1 g3 (x−y)
√
x1
√
y1

g1 g3 (−c2+c1)
x−y

ig3 (
√
y1xs2−

√
x1ys1)

xy1−x1 y
ig1 g3 (x1

√
y1s2−y1

√
x1s1)

g2 (xy1−x1 y)
xc2−yc1
x−y


,

(6.18)

where x = (a + b)/2, x1 = (a1 + b)/2, y = (a − b)/2, y1 = (a1 − b)/2, a = −g2
1 + g2

2 − g2
3,

a1 = −g2
1 + g2

2 + g2
3, b =

√
g1

4 − 2 g1
2g2

2 − 2 g1
2g3

2 + g2
4 − 2 g2

2g3
2 + g3

4, c1 = cos(
√
x1t),
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c2 = cos(
√
y1t), s1 = sin(

√
x1t), and s2 = sin(

√
y1t).



Chapter 7

Retrieving the covariance matrix of an

unknown two-mode Gaussian state by

means of a reference twin beam

Text adopted from I. I. Arkhipov and J. Peřina Jr., Opt. Commun. 375, 29 (2016) [A4].

7.1 Introduction

The reconstruction of a state of any quantum system belongs to the most important tasks

in quantum physics [16, 117, 118]. For this reason, homodyne detection has been suggested

and experimentally implemented for the first time in Ref. [119] for quantum light. This was

the first successful example of the so-called quantum state tomography, that provides the full

information about the analyzed quantum state. The knowledge of the quantum state of light

is extraordinarily important, as such states are useful for testing the postulates of quantum

mechanics, showing peculiar features of quantum states (teleportation [31], dense coding [120,

121], etc.), as well as applying them in metrology and other applications (cryptography [122,

123]).

107
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The optical homodyne tomography both in its cw and pulsed variants has become the most

advanced and also powerful method in quantum state tomography [35] and, as such, it has

become an indispensable technique in the field of quantum optics. The method is based upon

overlapping an unknown state with a classical light (coherent state) with a well-defined phase,

that is called a local oscillator. The interference pattern depending on the varying phase

of the local oscillator then allows to reconstruct the quantum state, in detail to reconstruct

its Wigner function defined in the phase space [16, 35]. Subsequently, moments of the field

operators can be obtained and used to fully characterize nonclassicality of the analyzed quantum

state [124, 102]. However, the optical homodyne tomography is quite experimentally involved

and requires extended experimental data sets [35].

For this reason, a simplified method still relying on the coherent local oscillator has been

suggested for quantum state tomography in [125], and later elaborated in [126, 127]. In this

method, one of the output ports of a beam splitter that mixes the analyzed light with the

local oscillator is monitored in general by a photon-number resolving detector with the varying

attenuation coefficient. Also an attempt to use the data measured under different levels of noise

for quantum state tomography has been made [128].

In many cases, the light to be analyzed has specific properties that allow to apply simpler tools

in the determination of its state. For example, when we analyze the properties of twin beams

generated from the vacuum state by parametric down-conversion [28], the characterization

by means of the measured photocount statistics is fully sufficient [68, 73]. This possibility

originates in the generation process that does not ‘prescribe’ specific phases to the individual

signal and idler fields. Here, the generated light is Gaussian without coherent components, i.e.

it is completely characterized by means of its covariance matrix. Once the covariance matrix of

a given state is obtained, all the properties of the state are easily derived. As useful examples,

entanglement of a two-mode twin beam or local nonclassicalities of one-mode reduced states

can be mentioned [A2],[A3]. Even phase-space quasidistributions of integrated intensities can

be determined [61].

Whereas the analysis of covariance matrices of Gaussian two-mode twin beams is not difficult
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since only certain elements of their covariance matrices are nonzero, the measurement of covari-

ance matrices belonging to a general two-mode Gaussian state is more involved. To cope with

this problem, we have developed a method for reconstructing the normally- or symmetrically-

ordered covariance matrix of such a general two-mode Gaussian state based on mixing the

analyzed state with a reference twin beam with the varying overall phase.

Moreover, the developed approach can be extended to multimode Gaussian states provided

that the measurement on individual mode pairs can be performed. This is useful, e.g., for

spectrally multimode twin beams composed of N paired modes. Even in this case, the genuine

multimode entanglement of the state can be retrieved from its multimode covariance matrix

[109, 76]. A specific example of this general approach was studied by Altepeter et al. [129] who

reconstructed the polarization state of a photon pair by acquiring photon coincidence-count

statistics.

Thechapter is organized as follows. Description of general two-mode Gaussian states through

their covariance matrices is given in Sec. 7.2. Twin beams as the most common kind of two-

mode Gaussian states are discussed in Sec. 7.3. The method for revealing the covariance matrix

of a general two-mode Gaussian state is given in Sec. 7.4. Sec. 7.5 brings conclusions.

7.2 General two-mode Gaussian states

The normally-ordered characteristic function CN for a general two-mode Gaussian state is

defined as follows

CN (β1, β2) = Tr
[
ρ̂(0) exp(β1â

†
1 + β2â

†
2) exp(−β∗1 â1 − β∗2 â2)

]
, (7.1)

where Tr stands for the operator trace and âi (â†i ) denote the boson annihilation (creation)

operators of mode i, i = 1, 2.

The normally-ordered characteristic function CN in Eq. (7.1) can be expressed via its complex
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covariance matrix AN ,

AN =

 B1 D12

D†12 B2

 , (7.2)

Bj =

 −Bj Cj

C∗j −Bj

 , j = 1, 2, D12 =

 D̄∗12 D12

D∗12 D̄12

 , (7.3)

in the form CN (β̂) = exp(β̂
†
AN β̂/2), where β̂ = (β1, β

∗
1 , β2, β

∗
2)T . The coefficients Bj, Cj,

j = 1, 2, D̄12 and D12 occurring in Eq. (7.2) are defined as

Bj = 〈∆â†j∆âj〉, Cj = 〈∆â2
j〉,

D12 = 〈∆â1∆â2〉, D̄12 = −〈∆â†1∆â2〉. (7.4)

Given the above coefficients for the normally-ordered covariance matrix AN , the symmetrically-

ordered covariance matrix AS is obtained in its block structure as follows:

AS =

 BS1 DS

DT
S BS2

 , (7.5)

BSj =

 Bj + Re(Cj) + 1/2 Im(Cj)

Im(Cj) Bj − Re(Cj) + 1/2

 , j = 1, 2,

DS =

 Re(D12 − D̄12) Im(D12 + D̄12)

Im(D12 − D̄12) −Re(D12 + D̄12)

 ;

Re (Im) denotes the real (imaginary) part of the argument.

The determination of coefficients Bj and Cj, j = 1, 2, together with the coefficients D12 and

D̄12 is thus sufficient to fully characterize a general two-mode Gaussian field without coherent

components. All possible correlation functions can then be easily derived [28]. As it has been

shown in [A2],[A3], determinant I4 ≡ det(AS) of the symmetrically-ordered covariance matrix

along with the local unitary invariants Ij, j = 1, 2, 3, of the normally-ordered covariance matrix
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AN ,

I1 = det(B1), I2 = det(B2), I3 = det(D12), (7.6)

even completely determine the nonclassicality and entanglement of the state.

7.3 Pure twin beams

To determine the needed coefficients, we use as a reference a pure twin beam with a specific

form of its covariance matrix. Pure twin beams represent a specific form of two-mode Gaussian

states that is standardly generated in the process of parametric down-conversion. The boson

operators characterizing the emitted signal (âout
1 ) and idler (âout

2 ) fields are written in the

Heisenberg picture as follows [28]:

âout
1 = cosh(

√
G)âin

1 + i exp(iφ) sinh(
√
G)âin†

2 ,

âout
2 = cosh(

√
G)âin

2 + i exp(iφ) sinh(
√
G)âin†

1 , (7.7)

where G is the gain of the parametric process, âin
1 (âin

2 ) denotes the incident signal- (idler-) field

annihilation operator and φ stays for a phase that follows the phase of the coherent pump field.

Assuming the incident vacuum state in both the signal and idler fields, we arrive at the following

only nonzero coefficients of the normally-ordered covariance matrix of this reference beam:

BR
1,2 = Bp, DR

12 = i exp(iφ)
√
Bp(Bp + 1). (7.8)

The problem how to reconstruct the coefficients of the normally-ordered covariance matrix AR
N

of the reference twin beam has been discussed in detail in Refs. [89, 66, 73].
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Figure 7.1: The experimental scheme. Two modes (ĉ′1 and ĉ′2) of a pure twin beam are mixed
on beam splitter BS1 to provide a reference two-mode field (ĉ1 and ĉ2). The output modes ĉ1

and ĉ2 of beam splitter BS1 are combined with two modes â1 and â2 of an unknown two-mode
Gaussian state at balanced beam splitters BS2 and BS3. The photocount statistics of four
output modes â′j, j = 1, . . . , 4, leaving beam splitters BS2 and BS3 are measured by detectors
D1, D2, D3, D4 and correlation unit CU.

7.4 Retrieving the covariance matrix of an unknown two-

mode Guaussian state

The scheme for retrieving the covariance matrix of an unknown Gaussian state with vanishing

coherent components is shown in Fig. 7.1. It relies on mixing the analyzed state with a reference

twin beam. However, a pure twin beam composed of only photon pairs and exhibiting the

thermal photon-number statistics in the signal and idler fields is not sufficient for this task that

requires all the coefficients of the reference covariance matrix being nonzero. For this reason,

we first mix the signal (annihilation operator ĉ′1) and idler (ĉ′2) fields on a beam splitter BS1

with the varying transmissivity t1. At the output ports of beam splitter BS1 and depending on

the transmissivity t1, there occur different kinds of states useful in the reconstruction [A2],[A3].

In the proposed method, the reference light at the output ports (ĉ1 and ĉ2) of beams splitter

BS1 is superimposed with the analyzed two-mode Gaussian state at balanced beam splitters

BS2 and BS3. The output ports (â′j, j = 1, . . . , 4) of beam splitters BS2 and BS3 are then

monitored by four detectors measured in coincidence.
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The unitary transformations describing the functioning of three beam splitters BSj with am-

plitude transmissivities tj and phase shifts θj, j = 1, 2, 3, are expressed in general as follows:

ĉ1

ĉ2

 =

 t1 r1 exp(iθ1)

−r1 exp(−iθ1) t1


ĉ′1
ĉ′2

 ,

â′1
â′2

 =

 t2 r2 exp(iθ2)

−r2 exp(−iθ2) t2


â1

ĉ1

 ,

â′3
â′4

 =

 t3 r2 exp(iθ3)

−r3 exp(−iθ3) t3


â2

ĉ2

 , (7.9)

where the annihilation operators â1 and â2 belong to the modes of the analyzed two-mode

Gaussian state.

Assuming the balanced beam splitters BS2 and BS3 (t2 = t3 = 1/
√

2) with zero phase shifts

(θ2 = θ3 = 0) and applying the relations in Eqs. (7.9), we reveal the following formulas giving

the number operators n̂′j of fields at the detectors as functions of the operators of the analyzed

state and the reference state:

n̂′1 = â′
†
1â
′
1 =

1

2

(
â†1â1 + â†1ĉ1 + â1ĉ

†
1 + ĉ†1ĉ1

)
,

n̂′2 = â′
†
2â
′
2 =

1

2

(
â†1â1 − â†1ĉ1 − â1ĉ

†
1 + ĉ†1ĉ1

)
,

n̂′3 = â′
†
3â
′
3 =

1

2

(
â†2â2 + â†2ĉ2 + â2ĉ

†
2 + ĉ†2ĉ2

)
,

n̂′4 = â′
†
4â
′
4 =

1

2

(
â†2â2 − â†2ĉ2 − â2ĉ

†
2 + ĉ†2ĉ2

)
. (7.10)

The normally-ordered characteristic function CN of the four-mode Gaussian state characterizing

the four fields in front of detectors is written as

CN (β1, β2, β3, β4) = Tr

[
ρ̂′(0) exp

(
4∑
i=1

βiâ
′†
i

)
exp

(
−

4∑
i=1

β∗i â
′
i

)]
. (7.11)

The quantum-mechanical averaging in Eq. (7.11) is performed by the statistical operator ρ̂′(0) =

ρ̂12(0) ⊗ ρ̂R(0), where ρ̂12 is the statistical operator of the unknown two-mode Gaussian state
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and the operator ρ̂R describes the incident reference twin beam.

Given Eqs. (7.4) and (7.11), the normally-ordered characteristic function CN is obtained in the

form:

CN (β1, β2, β3, β4) =

exp

{
−

4∑
i=1

B′i|βi|2 +

[
1

2

4∑
i=1

C ′iβ
∗2
i +

4∑
j<k

D′jkβ
∗
jβ
∗
k +

4∑
j<k

D̄′jkβjβ
∗
k + c.c.

]}
,

(7.12)

where the coefficients B′i, C
′
i, D

′
jk, and D̄′jk are determined by the formulas written in Eqs. (7.4).

Second-order correlations of the integrated-intensity fluctuations ∆W in different modes are

easily derived from Eq. (7.12) [28]:

〈∆Wj∆Wk〉N = 〈â′†j â′
†
kâ
′
j â
′
k〉 − 〈â′

†
j â
′
j〉〈â′

†
kâ
′
k〉

=
∂4CN

∂βj∂(−β∗j )∂βk∂(−β∗k)

∣∣∣∣
{βj}={β∗j }=0

− ∂2CN
∂βj∂(−β∗j )

∂2CN
∂βk∂(−β∗k)

∣∣∣∣
{βj}={β∗j }=0

= |D′jk|2 + |D̄′jk|2, j 6= k. (7.13)

Now, applying the photodetection theory [28] for the detectors with quantum detection efficien-

cies ηj and dark-count rates ndj, we arrive at the following second-order moments of photocount

fluctuations at all four detectors:

〈∆m̂j∆m̂k〉 = ηjηk〈∆Wj∆Wk〉N , j 6= k. (7.14)

Applying further Eqs. (7.4), (7.9) and (7.13), we reveal the following second-order moments of
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photocount fluctuations:

〈∆m̂1∆m̂2〉 =
η1η2

4

(
B2

1 + |C1|2 +BR2
1 + |CR

1 |2 − 2B1B
R
1 − 2Re{C1C

R∗
1 }
)
,

〈∆m̂3∆m̂4〉 =
η3η4

4

(
B2

2 + |C2|2 +BR2
2 + |CR

2 |2 − 2B2B
R
2 − 2Re{C2C

R∗
2 }
)
,

〈∆m̂1∆m̂3〉 =
η1η3

4

(
|D12|2 + |D̄12|2 + |DR

12|2 + |D̄R
12|2 + 2Re{D12D

R∗
12 }+

2Re{D̄12D̄
R∗
12 }
)
,

〈∆m̂1∆m̂4〉 =
η1η4

4

(
|D12|2 + |D̄12|2 + |DR

12|2 + |D̄R
12|2 − 2Re{D12D

R∗
12 } −

2Re{D̄12D̄
R∗
12 }
)
,

〈∆m̂2∆m̂3〉 =
η2η3

4

(
|D12|2 + |D̄12|2 + |DR

12|2 + |D̄R
12|2 − 2Re{D12D

R∗
12 } −

2Re{D̄12D̄
R∗
12 }
)
,

〈∆m̂2∆m̂4〉 =
η2η4

4

(
|D12|2 + |D̄12|2 + |DR

12|2 + |D̄R
12|2 + 2Re{D12D

R∗
12 }+

2Re{D̄12D̄
R∗
12 }
)
. (7.15)

The formulas in Eqs. (7.15), when applied to the analyzed two-mode Gaussian state and the

reference twin beam, allow to recover all coefficients of the covariance matrix of the analyzed

state. The determination of the coefficients is naturally split into the following four steps.

Retrieving the coefficients B1 and B2 — These coefficients give the mean numbers of photons

present in both modes of the analyzed state. If the inputs of the reference field are replaced

by the vacuum, we immediately arrive at the values of these coefficients using the relations in

Eqs. (7.10):

B1 = 2 (〈m̂1〉 − nd1) /η1, B2 = 2 (〈m̂3〉 − nd3) /η3. (7.16)

Retrieving the coefficients C1 and C2 — To reveal these coefficients, we exploit the fact that

a pure twin beam with the mean photon-pair number Bp gives two separable squeezed states

with opposite phases φ when its constituents are combined at the balanced beam splitter

BS1 [95]. Thus, the reference field attains the coefficients BR
1 = BR

2 = Bp, CR
1 = −CR

2 =

i exp(iφ)
√
Bp(Bp + 1) [A2] and the suitable relations in Eqs. (7.15) can be recast into the
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form:

〈∆m̂1∆m̂2〉 =
η1η2

4

(
2B2

p +Bp(1− 2B1) + 〈∆W 2
1 〉N

)
−

η1η2

√
Bp(Bp + 1)

2
Im {exp (−iφ)C1} , (7.17)

〈∆m̂3∆m̂4〉 =
η3η4

4

(
2B2

p +Bp(1− 2B2) + 〈∆W 2
2 〉N

)
+

η3η4

√
Bp(Bp + 1)

2
Im {exp (−iφ)C2} . (7.18)

The formulas in Eqs. (7.18) allow us to determine the variances 〈∆W 2
j 〉N for j = 1, 2 of the

constituents of the analyzed field provided that the reference field is absent. The absolute

values |Cj| can immediately be derived using the relations |Cj|2 = 〈∆W 2
j 〉N − B2

j . For the

complex coefficients Cj, we need to vary the phase φ of the reference field, that is derived from

the pump field that created the reference pure twin beam. The obtained interference pattern

then gives us both the magnitudes and phases of both coefficients.

If the analyzed state is known to be symmetric (B1 = B2 and C1 = C2 ≡ C), we can even

apply the following simpler formula to arrive at the coefficient C:

1√
Bp(Bp + 1)

(
〈∆m̂3∆m̂4〉

η3η4

− 〈∆m̂1∆m̂2〉
η1η2

)
= Im {exp (−iφ)C} . (7.19)

Retrieving the coefficient D12 — We need as a reference field the original pure twin beam for

which DR
12 is given in Eq. (7.8) and D̄R

12 vanishes. The third and fourth relations in Eqs. (7.15)

can be rearranged into the formula:

1√
Bp(Bp + 1)

(
〈∆m̂1∆m̂3〉

η1η3

− 〈∆m̂1∆m̂4〉
η1η4

)
= Im {exp (−iφ)D12} . (7.20)

According to Eq. (7.20), the variation of the pump phase φ provided both the magnitude and

phase of coefficient D12. We note that also other combinations of the second-order moments in

Eqs. (7.15) can be used to reveal the coefficient D12.

Retrieving the coefficient D̄12 — To retrieve the coefficient D̄12 one needs a nonzero coefficient



7.4. Retrieving the covariance matrix of an unknown two-mode Guaussian state 117

D̄R
12 of the reference field. Such coefficient cannot be obtained by a simple mixing of the

constituents of a pure twin beam on beam splitter BS1. However, if we consider only one

constituent of the pure twin beam and mix it with the vacuum state of beam splitter BS1 with

transmissivity t1 = 1/
√

2, we arrive at the fields with zero values DR
12, CR

1 and CR
2 , but nonzero

coefficients BR
1 = BR

2 = Bp/2 and D̄R
12 = ±Bp/2, where the plus (minus) sign is taken for mode

ĉ′2 (ĉ′1) in the vacuum state. In this case, the following relation is revealed:

〈∆m̂1∆m̂3〉
η1η3

− 〈∆m̂1∆m̂4〉
η1η4

= Re{D̄R
12D̄

∗
12}. (7.21)

The formula in Eq. (7.21) suggests that the variation of complex phase of the reference coefficient

D̄R
12 allows to recover the coefficient D̄12 of the analyzed field. This can easily be accomplished

by imposing a variable phase shift θ to, e.g., mode ĉ1 by a phase modulator placed between the

beam splitters BS1 and BS2 [ĉ1 → exp(iθ)ĉ1]. In this case, Eq. (7.21) is transformed into the

form

2

Bp

(
〈∆m̂1∆m̂3〉

η1η3

− 〈∆m̂1∆m̂4〉
η1η4

)
= ±Re{exp(−iθ)D̄∗12}, (7.22)

where again the plus (minus) sign is taken for the mode ĉ′2 (ĉ′1) in the vacuum state. According

to Eq. (7.22) the variation of phase θ then provides both the real and imaginary part of the

coefficient D̄12.

We note that the reference pure twin beam can be characterized in the suggested scheme

provided that its copy is obtained. Such auto-characterization allows to check the quality of

the applied reference twin beam, that is ideally composed only of photon pairs.

At the end, we note that the developed method can be generalized to allow for the charac-

terization of two-mode Gaussian states with nonzero coherent components. In this case, the

coherent components in both modes of the analyzed state have to be identified first, by apply-

ing the homodyne detection scheme. Then, the above written formulas can be generalized to

include the coherent components. So the contributions from coherent components can easily

be subtracted.
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7.5 Conclusions

We have suggested a method for characterizing a general two-mode Gaussian state with van-

ishing coherent components. The coefficients of its normally-ordered covariance matrix are

revealed by mixing the analyzed state with a reference beam obtained from a pure twin beam,

by using two balanced beam splitters. The variation of the phase of the pump beam that

generates the reference twin beam together with the variation of the phase of one mode of the

reference beam are needed in the method that monitors the first- and second-order moments

of photocounts at four detectors placed in the experimental setup.



Chapter 8

Conclusions

• First, we have shown how the nonclassicality, entanglement, and dimensionality of a

noisy twin beam can be determined using a characteristic function of the twin beam

written in the Fock basis instead of using the covariance matrix approach. We have

found a one-to-one correspondence between the negativity quantifying entanglement and

the nonclassicality depth, and thus for the first time we have shown that the nonclassicality

of the twin beams is completely determined by their entanglement. Using Fock states basis

we were able to see the internal structure of the entanglement of the twin beams defined

in the subspaces of the Fock Hilbert space. We also compared the dimensionality of the

twin beam quantified by the participation ratio with the dimensionality of entanglement

determined from the negativity. We also considered the extension of the developed theory

to the multimode case and thus we have demonstrated how our model can be directly

applied to the experiment, therefore showing the model’s experimental significance.

• Second, we have investigated the behavior of general nonclassical two-mode Gaussian

states at a beam splitter and thus we have studied various states which can be gener-

ated at the output of the beam splitter. We have proposed new suitable quantifiers to

analyze single-mode nonclassicality as well as two-mode entanglement of both input and

output states. These new quantifiers have been derived from local and global invariants

of linear unitary two-mode transformations such that the sum of input (or output) local
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nonclassicality measures and entanglement measure gives a global invariant. Moreover

we showed that this new invariant quantifies the global nonclassicality resource. We have

demonstrated the applicability of such global nonclassicality invariant considering mutual

transformations of local nonclassicalities and entanglement induced by the beam splitter

for incident noisy twin beams, single-mode noisy squeezed vacuum states, and states en-

compassing both squeezed states and twin beams, and as such, a variety of new possible

states have been predicted.

• Third, we have considered one of the states that can be obtained from the twin beam,

namely single-mode nonclassical states, which were experimentally generated from a twin

beam by postselection based on detecting a given number of photocounts in one arm

by using an iCCD camera. For such states we have derived the nonclassicality criteria

based on intensity moments from the usual matrix approach and compared them with

those provided by the majorization theory. Our analysis has revealed that the majoriza-

tion theory gives a greater number of more suitable nonclassicality criteria. We have

experimentally identified fifteen useful criteria of the majorization theory containing the

intensity moments up to the fifth order. As such, we have also experimentally confirmed

the usefulness of our derived criteria to detect nonclassicality of single-mode states, which

resides in the intensity domain.

• At fourth, we have provided the study of the multipartite entanglement and nonclassicality

of four-mode Gaussian states generated in two simultaneous nonlinear processes involving

parametric frequency down-conversion and frequency up-conversion assuming the vacuum

as the initial state. Most importantly, we have found suitable conditions for the generation

of highly entangled states, which can be useful for future quantum telecommunication

when the problem of transfer of the state from one frequency domain into another one will

play a crucial role. We have also demonstrated the process of the flow of the entanglement

from the down-converted modes into the up-converted. The analysis of the whole set of the

obtained states shows that one can apply the common sub-shot noise intensity correlations

as an entanglement measure to uniquely identify the entanglement between the equally-

populated down-converted modes, as well as the equally-populated up-converted modes.
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• At fifth, we have developed a method for reconstruction of the Gaussian states making

use of the nonclassicality properties of the twin beam. Namely we have found a scheme

which allows to reveal the covariance matrix of an unknown two-mode Gaussian state.

The method is based on the interference of the unknown states with a reference twin

beam whose covariance matrix is known. Our approach relies on the first- and second-

order cross-correlation intensity moments, which are determined by varying the overall

phase of the reference twin beam. In other words, we have proposed the experimental

scheme which does not require the homodyne detection, and where the role of the phase

of the local oscillator is played by the phase of twin beams, which, in turn, is controlled

by the phase of the pump field in SPDC process. Thus, our method can utilize photon-

counting detectors instead of homodyne photodetectors which are demanding from the

experimental point of view.
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[41] A. S. K. Życzkowski, P. Horodecki and M. Lewenstein, “Volume of the set of separable

states,” Phys. Rev. A 58, 883 (1998).

[42] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65,

032314 (2002).



BIBLIOGRAPHY 127

[43] I. P. Degiovanni, M. Bondani, E. Puddu, A. Andreoni, and M. G. A. Paris, “Intensity

correlations, entanglement properties, and ghost imaging in multimode thermal-seeded

parametric down-conversion: Theory,” Phys. Rev. A 76, 062609 (2007).

[44] M. Bondani, E. Puddu, I. P. Degiovanni, and A. Andreoni, “Chaotically seeded para-

metric downconversion for ghost imaging,” J. Opt. Soc. Am. B 25, 1203—1213 (2008).

[45] I. P. Degiovanni, M. Genovese, V. Schettini, M. Bondani, A. Andreoni, and M. G. A.

Paris, “Monitoring the quantum-classical transition in thermally seeded parametric down-

conversion by intensity measurements,” Phys. Rev. A 79, 063836 (2009).

[46] C. Eltschka and J. Siewert, “Negativity as an estimator of entanglement dimension,”

Phys. Rev. Lett. 111, 100503 (2013).
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[88] J. Peřina, Jr. and J. Peřina, “Quantum statistics of nonlinear optical couplers,” Prog.

Opt. 41, 361 (2000).
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