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Abstract
Image  reproduction ought  to  provide  subjective  sensation possibly closest  to  the  one,  where  the 
original image is observed. Digital image reproduction involves image capture, image processing and 
rendering. Several techniques in this process are not ideal. This work proposes improvement of speed 
and accuracy of some state-of-the-art methods.

Abstrakt
Reprodukce obrazu má zprostředkovat  vjem co nejvíce podobný tomu,  když  pozorujeme původní 
obraz.  Digitální  reprodukce  obrazu  zahrnuje  snímání,  zpracování  a  vykreslení.  Mnohé  postupy 
v tomto  procesu nejsou  dokonalé.  Tato práce  předkládá zlepšení  v  rychlosti  a  přesnosti  několika 
ze současných metod.
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1 Introduction
Image reproduction is one of most common, most useful and most frequent tasks in human history.  
Technically, it means construction of a planar model aimed to evoke similar or nearly same sensation 
as with the observing of a real scene.

Digital image reproduction involves mainly image capture and image rendering. Between these two 
techniques, the data are digitally processed.

Meaning of the image  processing might  seem to be insignificant.  In fact,  if  the image  had been  
captured by an ideal camera and rendered via an ideal display device, no data processing would be  
necessary for perfect reproduction. Unfortunately, the available devices are certainly not ideal.

The scanning devices  suffer  of  geometry distortion,  luminance  non-linearity and limited  contrast  
(dynamic range). Although all of these imperfections has been overcome, in some of the cases it is at  
certain price.  High dynamic  range can be captured by multi-exposure,  which does  not  allow for 
taking photographs of non static objects or capturing of motion pictures. Geometry correction can be 
measured and corrected, but the algorithms are rather slow for real-time processing.

Commonly used LCD display devices have pixel matrix fixed by construction so they do not suffer  
from geometry distortion. But the pixel density is still low, the matrix is visible and causes disturbing 
artifacts. Either the highest displayable contrast is still limiting. Despite of the marketing claims, most  
of the common displays are not capable of rendering much higher contrast than 1:1000. The ordinary 
practice is to scale range of the digital image to fit the display range. The procedure is so frequent,  
that many users do not consider it as an image processing at all. Yet the image is certainly changed. 
And as will be explained further in this work, substantial change in the contrast causes noticeable  
change in the color perception.

In some cases, the user demands to alter the image instead of perfect reproduction. The operation is  
not easy, if the manipulations are to be precise. Human perception of the luminance scale is neither 
simple  nor  linear.  The  essentials  of  the  visual  perception  and its  aspects  to  the  practical  image  
manipulation are also explained in detail.

First part (Sections 2 to 4) refers to the present state of knowledge in the pertinent fields.

Section  2 briefly  summarizes  the  current  knowledge  about  the  physiology  of  the  human  visual 
system.  The  text  is  focused  particularly  to  these  aspects  of  vision,  which  are  important  for  
understanding of the image perception on a digital display device. The Section includes visual system 
anatomy,  functionality of the spatial image perception and perception of the luminance scale and 
colors.

An introduction to the image sampling and resampling is in the Section 3.

The methods for reduction of the luminance range are described in the Section  4. The aim is to 
preserve most of the image's subjective appearance while reducing the luminance contrast. Two state-
of-the-art methods are presented. Modern methods are non-linear, non-uniform and mostly influenced 
by human physiology.

Second part (Section 5) presents the author's contributions to the present state. A new algorithm for 
accelerated geometry correction is presented in Section 5.2. The method approximates the corrected 
image accurately and enables for very fast hardware realization. Section 5.3 presents acceleration of 
the bilateral filter. The filter is core of several state-of-the-art methods for dynamic range reduction 
(HDR  tone-mapping).  But  the  filter  is  also  a  performance  bottleneck.  The  improvement  of  the 
resampling for display devices is introduced in Section 5.4. The method involves examination of the 
optimal distance from the display (Section 5.5). The optimal distance is compared to the user's visual 
acuity (ability to  resolve  details).  The relation  distance-to-acuity is  then used  for  optimizing  the 
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resampling filter (Section  5.6). The visual system is modeled with selected response of the neural  
cells. The whole image transfer is calculated and optimized via the resampling filter.
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2 Present  Knowledge  About  Human  Vision 
Physiology

2.1 Basic Anatomy of the Eye

Figure 1: Transverse section of the eye, drawing by M. Seeman
As primates, we are together with some Cephalopoda equipped with the best kind of light sensitive 
organs in Animalia. Primate eye is equipped by complex optical part with several environments of 
different  refractive  indices,  enables  for  accommodation,  luminous  flux  control  and  three  axis 
individual rotation.

Human eye is a spherical organ of rather exact size (25.4mm [3, p.3]). Six muscles turn the eye in  
three axes, horizontally, vertically and axially(around the optical axis) to expose it to a desired view. 
The optical part consists of conjunctiva, cornea, iris,  lens  and two chambers of liquid - aqueous 
chamber with aqueous humor and vitreous chamber with vitreous humor. The front convex curvature  
of the cornea performs two thirds of the total refractive power. The iris with pair of muscles changes  
the area of pupil. This way is controlled the amount of luminous flux. The lens, a soft, transparent  
tissue allows for accommodation. The tension to the lens edge changes the lens shape and thereby the  
refractive power. The proper accommodation helps to project the sharp image of the observed scene  
at the surface of retina, the light sensitive tissue.

2.2 Basic Anatomy of the Retina
The  retina  is  highly  vascularized  layer  of  tissue,  approximately  0.4mm  thick.  It  contains 
photoreceptors and neural cells. The photoreceptors respond to the light stimuli and their signal is  
processed by several tens of specialized cell types [14]. Retina is full of neurons and therefore it is  
sometimes considered as a part of brain. Human retina is divided into central and peripheral. Central  
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retina  (macula  lutea)  senses  tiny  details.  Peripheral  retina  provides  considerably  lower  spatial  
resolution, but is very sensitive to the motion. A typical observing of an object of interest consists of 
two phases. In first, the motion is detected by the peripheral retina. In the second, the eye is turned to  
the exact direction and stabilized (so called fixation). The object can be then examined by the central  
retina accurate vision.

Figure 2: Basic scheme of retina neural connections
 

Photoreceptors
Two kinds of photoreceptors have been described, rods and cones. Rods are more sensitive and take  
part in nocturnal vision. Less sensitive cones work in daylight. Three types, L-, M- and S-cones in 
human retina are sensitive to different spectrum bands, which corresponds to the three basic colors -  
red, green and blue. L, M and S, means long, medium and short wavelength sensitivity.
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Figure 3: Photoreceptor density across transverse section [9]

Rods  and  cones  represent  two  separate  visual  systems.  The  photoreceptors  are  separated  by 
neurotransmitters, like dopamine and nitric oxide, released by specialized amacrine cells. When the 
retina is exposed to the high luminance level, neurotransmitters suppress the influence by the rod 
system [14].  This  functionality  controls  photopic  (daylight)  and  scotopic(nocturnal)  mode  of  the 
retina. Hence the rod signal doesn't  interfere visual sensation in high luminance levels.  The cone  
signal is not suppressed in the scotopic mode, but they can not influence the nocturnal vision due to  
low sensitivity.

Fovea
The photoreceptors are not spread uniformly across the retina (Figure 3). As was mentioned above, 
human visual system is divided to central and peripheral part. Cones predominate in the central area.  
The very center of the retina is a specialized area  called fovea (Figure 4). At the foveal pit there are 
no rods and the cone density is the highest of the whole retina. The fovea provides the finest vision 
and we use it to examine details. On the contrary, rods  are dominating in the peripheral retina.
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Figure 4: Human fovea section by Yamada [29], OF,  IS,  OS - different part of the cone layer, g -  
ganglion cells

Cell Signals
The retina neural cells form a complex structure. It can be divided into photoreceptor layer, outer 
plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. More details can 
be found in [14 (ch. 2,12), 3] 

The photoreceptors are in the very outer layer of the retina. The reason is a contact with the pigment 
epithelium, important for the photoreceptors metabolism. It follows, that the light, coming from the 
lens has to penetrate all layers of the retina before stimulating the photoreceptors. The photoreceptor 
reacts with a neural activity, which is processed by other specialized cells.

Recording  the  cells  electric  potentials  enlightened  the  fundamentals  of  the  retina  network 
functionality [1, 2, 10, 11, 12, 13]. The cell signal form depend on the particular cell type. Some cells 
respond with slow potentials. On activation, they get gradually more hyperpolarized. This signal is 
recorded directly as voltage. The other cells respond with action potentials. Their activity is measured 
as a count of hyperpolarization spikes per second. The action potentials are important in transporting 
the signal to longer distance, where the voltage fades.

Retina Cells Receptive Fields
The information travels from the photoreceptors through several different types of neural cells before 
it reaches the visual cortex in the brain. By now, tens of cell types and connections are described [14]  
however  one  must  keep  in  mind  that  the  complete  retina  behavior  is  still  not  revealed  by  the  
physiologists. 

Signal recording has revealed most of the cells function. The cell neural activity can be recorded  
either extracellularly or intracellularly. In extracellular recording, the electrode is placed to the cell  
proximity and records the activity of more cells. In the intracellular recording the electrode has to 
penetrate particular cell and recorded signal is not affected by other cells, e.g. [13].
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A cell's spatial response is a function of spatial position in the cell's surroundings, where the retina is  
stimulated by light, and it refers how much response is evoked (the response unit depends on the 
particular cell type). The receptive field of different retina cell types vary a lot (see Figure 5).

Figure 5: Bipolar and horizontal cells spatial responses

The essential principle of the human vision spatial characteristics is the signal fusion in horizontal  
and bipolar cells. Both types respond with the slow potentials. Horizontal cells collect the signal from 
many photoreceptors so their receptive field is rather wide. Moreover, their plasma membranes pass  
their potentials to the neighboring horizontal cells. Consequently their receptive field gets even wider.  
The  signal  travel  across  the  membrane  is  strongly suppressed  by neurotransmitters  produced by 
amacrine cells when exposed to the light [14]. Therefore, when the receptive field is being measured, 
the average luminance has is an important parameter.

Bipolar cells on the contrary collect the signal from few photoreceptors, so their receptive field is  
very narrow. Some bipolar cells connected to a single cone only provide the narrowest receptive field 
possible.  These cells  take part  in the finest  central  vision.  The real  response of the bipolar  cells  
includes an inverse of a neighboring horizontal cell potential. The result is a difference between two 
Gaussian-like responses (see Figure 5). The plot is similar to the common high-pass filter response. 
The characteristic shape is similar in the spatial response of other cell types which process the signal  
after bipolar and horizontal cells. Even the ganglion cells, last neurons to process the signal before it 
travels to the visual cortex, have similar spatial responses, though they respond with action potentials.  
Recording of the ganglion cell signals is particularly important, because it refers to the response of  
the whole eye.

The receptive field of ganglion cells has been measured, mainly in cat,  fish and monkey [1, 30],  
Figures 6, 7.

The  ganglion  cells  in  the  retina  are  separated  between  parvocellularly  projecting  (P)  and 
magnocellularly projecting (M) cells. While P cells are sensitive to fine, sharp but still details, M cells 
are sensitive to the motion.
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Figure 6: Section of ganglion cells spatial response in the central monkey retina, eccentricity: P cells  
0-5 degrees, M cells 0-10 degrees [1]
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Figure 7: Spatial response of retinal ganglion cell in cat [30], 1D integral

Spatial Characteristics in Human
Mostly for ethic reasons, only the non-invasive measurement is available in human. Visual acuity [3 
ch. 7] is the most common measure used by ophthalmologists. It describes few spatial vision features,  
however high spatial frequency cutoff due to optical aberrations and photoreceptor distribution is 
measured well. The subject is asked to resolve and describe different shapes observed from a specific 
distance. The smallest shape or the shape with the finest details just resolved gives the result value.  
Visual acuity changes with luminance, therefore distinct illumination level in the test-room may be  
demanded. Alternatively the illumination should be measured as a part of the result. Several kinds of  
acuity were described.

Figure 8: Visual acuity optotypes; a) Snellen acuity chart, b) Bailey & Lovie optotypes
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Contrast Sensitivity Function
Contrast Sensitivity Function (CSF), [17, 3 ch. 7], Figure 9 is another commonly used non-invasive 
measure. It refers to the HVS response to different spatial frequency in the observed scene (the term 
spectral sensitivity may be confused with the color spectrum).

Figure 9: Contrast Sensitivity Function [17]

It involves exposing a graphical patterns with different spatial frequencies to the subject. It is difficult  
to  measure  subject's  precise  sensation,  so  the  contrast  of  the  pattern  is  changed  gradually.  The 
particular frequency response is determined from the contrast needed to just resolve the pattern. The 
human CSF is  a  typical  band-pass filter  response [16],  the luminance level  of  common displays  
corresponds  to  the  retina  illumination  approximately  between  two  selected  curves  (50  and  500 
trolands1).

The high frequency inhibition is mainly due to the optical aberrations in the cornea and the lens. Even 
though the  sight  can  be  perfected  by an  individual  correction  to  the  supernatural  acuity [21],  a 
resolvable detail is still limited by the size of the photoreceptor.

On the contrary, the low frequency inhibition couldn't be explained by the eye's optical structure. The 
smooth patterns are suppressed via the neural network in the retina.

2.3 Luminance Scale
The perception of the luminance scale  uneasy to describe. The signals from several kinds of neural  
cells  do  affect  each  other.  Some  signals  are  modulated  by  neurotransmitters.  Many  of  this  
mechanisms help HVS to perceive the vast range of the luminance. Fast and global adaptation is  
provided by the iris. But unlike in the common belief, iris does not perform the major luminance  
adaptation.  Most  powerful  luminance  adaptation  is  the  photopic/scotopic  mode  control.  The  full  
adaptation lasts several minutes, exact time characteristics were modeled in [5]. Other form of light  
adaptation is the signal processing performed by the retina neural network. It seems that the retina  
signals refer more to the contrast between various areas than to the absolute luminance.

1 Troland  (Td)  is  a  retina  illuminance  unit.  One  troland  is  the  illuminance  of  the  retina  by an  external  
luminance 1cd·m-2 through a pupil with an area 1mm2. Note that troland differs for various genus, because 
the definition depends on the eye diameter, or more precisely, on the distance pupil-to-retina.

14

 10

 100

 1000

 1  10

1 
/ C

on
tra

st
 th

re
sh

ol
d

Spatial frequency [cycles/deg]

90td
900td



It is commonly known, that the dependency between observed luminance and the psychical sensation 
is close to logarithmic. Even if we look over the fact, that psychical sensation is difficult to measure 
and compare the observed scene with the ganglion cell signal, the findings are more complex.

Purpura & Kaplan [2] have measured the dependency of the ganglion cell activity on the mean scene  
luminance and local contrast in monkey.

The  stimuli  were  sine  gratings  of   different  mean  luminance  and  contrast.  The  sine  spatial  
wavelengths were chosen to correspond to each ganglion cell's maximal response. As ganglion cells 
respond with action potentials, the response is measured as the hyperpolarizarion frequency in the 
recorded signal.

Figure 10 shows that the response dependency on the local contrast of the sine gratings is almost  
exactly linear.  We were also looking for the response dependency on the global  illumination.  In 
Figure  11 the response is  plotted as  a  function of  absolute  illumination contrast  (Lmax-Lmin).  The 
sections of constant contrast percentage are close to logarithmic curves (close to lines in the chart, as 
the abscissa scale is logarithmic) Note that in our charts the illumination values are recalculated to  
human trolands according to [2].

Figure  10:  Ganglion  cell  response  dependency  on  local  contrast  and  global  illumination  in  
monkey[2]
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Figure 11: The same dependency [2] plotted as a function of absolute contrast in trolands
 

Color Perception
There are two kinds of color duality in the eye's  neural signal.  Red-Green and Blue-Yellow. The  
color-opponent signals emerge firstly in the bipolar cells which combine positive and negative s-
potentials of different cone types [22]. The color opponency was discussed and refused for a long 
time.  Present  knowledge  states,  that  most  of  the  ganglion  cells  are  color  opponent  [35].  These  
pathways show some form of time persistence and are sources of the famous afterimages. When the 
eye observes a still color image for a while and then stares at the neutral gray area, the color opponent  
image is observed.

The important fact is that the brightness information is passed separately and the color channel acuity  
is approximately one third of the brightness channel acuity [18]. Unfortunately it does not mean that  
the hue perception is not dependent on the luminance. The dependency is described as the Bezold-
Brücke phenomenon [15].

The same ratio of the base colors is interpreted slightly differently by the HVS when luminance level  
changes.  The  subjectively perceived  hue  seems  to  turn  closer  to  green  and red  with  the  raising 
luminance level. Four different hues, so called constant hues, appear not to change with the changing  
luminance. Yet the hues are constant over a small luminance range and with very different luminance 
level, either the “non changing hues” are shifted (see Figure 12).
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Figure 12: Bezold-Brücke Hue-Shift [15] in the extended wavelength scale [23] reprinted with kind  
permission of Dr. Pridmore
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3 Present State in Sampling
The ideal image subsampling in signal processing is clear: According to the Nyquist  theorem the 
sampled signal can not contain any harmonic wave of higher frequency than one half of the sampling  
frequency. Therefore the function (represented by the original samples) has to be filtered with a low-
pass filter, which removes any harmonic wave unsuitable for the lower sampling rate (see Figure 13)

Figure 13: Subsampling illustration

The ideal low pass filtering is a convolution with a properly scaled sinc function. For the computation 
complexity the sinc function is mostly windowed in practice. One example is  Lánczos filter (see 
Figure 14), which's accuracy is very close to optimal and computing time is significantly shorter.

Figure 14: Sinc and Lánczos filter

If the situation was considered only as a transport of the image to the display, there would be no space 
for improvement. But HVS is a part of the whole perception process. And HVS changes both the 
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spatial sensation and the luminance scale. The whole system can not be optimized by optimizing only 
the part of the system, which resamples the image.

As for the color information, many of the image processing algorithms do assume that the R, G and B 
luminance channels carry an independent information and therefore they can be resampled separately. 
Even this is true only when HVS is not involved. Hue perception is affected by luminance level. 
Details are explained in the following Section.
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4 Methods for Luminance Scale Displaying
Tone-mapping of the high dynamic range images became very topical in recent years. Tens of new 
algorithms were presented. The HDR displays are still not massively available, and using of HDR 
tone-mapping is still actual.

In  general,  the  tone-mapping operators (TMO) can be divided into two groups.  One group is  of 
physiologically influenced operators. The others aim is only to produce a visually attractive image.  
The relevance to the original scene or to the subjective perception of the scene is not important. For  
this work, the first group is more important and so the latter will not be discussed here.

Two important approaches have been selected for this Section

Dynamic Range Reduction Inspired by Photoreceptor Physiology
The main point of this article [33] is modeling the nonlinearity of a photoreceptor. Unlike in our 
survey (Section 2.3) authors use the nonlinear luminance characteristics of the cones only. 

The cone potential dependency on the intensity I is modeled as

V = I
I  I a

V max (4.1)

...where Ia is the adaptation intensity and adaptation function σ is given by

 I a= f  I a
m (4.2)

f and m are parameters of the operator.

Adaptation intensity is calculated as a linear combination of the pixel intensity and mean intensity in  
the image.

Figure  15:  [33]: Mapping  of  input  luminances  (horizontal)  to  display  luminances  (vertical)  for  
different values of m.

One advantage of this method is, that the three cone types can be modeled separately by adjusting of  
the parameters.
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A Local Model of Eye Adaptation for High Dynamic Range Images
This method [5] tries to implement most of the known luminance dependent features in the human  
retina. The aim was obviously not performance but precision. The modeled features include:

• Precise time adaptation

• Both photopic and scotopic modes, modeling

• Light adaptation is precisely computed by bilateral filtering of the image

The response is computed similarly to the previous method.

R= Y n

Y n n (4.3)

Also the adaptation function is similar

 I a= I a
 (4.4)

… where  α and  β are constant, different for rods and cones and  n is the sensitivity constant. The 
response is computed separately for photopic and scotopic mode, Y refers to the particular luminance.

When the luminance some area is in a mesopic range (between photopic and scotopic), the response 
is calculated from both types of photoreceptors by so called mesopic factor.

Figure 16: [5]:  Adaptation function
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5 Perception Optimizing on a Display
This  part  is  about  practical  contributions  to  the  image  reconstruction  on  display.  After  a  brief 
description  of  the  whole  setup,  the  particular  improvements  will  be  explained  in  detail  in  the  
following Sections.

5.1 Overview
Let us assume that display contains a matrix of horizontally and vertically aligned rectangular units  
(pixels) capable of emitting a light of different luminance and color.

Then let us state that an image represents information about the luminance distribution across a scene.

Rendering an image on a display comprises of following problems:

1. Inaccuracy in the scanning. This covers geometry distortion, brightness and hue bias. These 
aberrations ought to be compensated.

2. The image is almost always adjusted. Let us put aside the fact that users may want to modify  
the image. There are unavoidable changes because of display imperfections. The dynamic 
range  of  the  common  devices  is  not  sufficient  for  scenes  with  high  contrast  and  8-bit  
quantization is too rough for scenes with low contrast. In most cases, the dynamic range of 
the image is scaled to fit the display range. Change of the luminance may cause different hue 
perception (see Section 2.3, part Color Perception). In serious image reproduction, this should 
be also corrected.

3. Resampling to the device native resolution. This part should also include the shape of the 
pixels, as will be shown further below.

The physiology paper [25] proposes a framework for image reproducing and manipulation. In general 
case covered by this work it is extended by scanning correction and resampling (Figure 17). 

Scanning correction includes geometry correction and range scale correction. Neither is difficult to 
perform with sufficient  source data.  However the geometry correction may be too slow in some  
applications. For this purpose, an acceleration is presented. The method was designed specifically for  
fast  processing  of  images  distorted  by optics,  where  the  displacement  distance  is  not  long.  The 
method is described in Section 5.2 Image Resampling for Geometry Correction.
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Figure 17: General framework for image reproducing and manipulation

Methods for dynamic  range reduction may be performed in several  ways.  Very simply by linear 
scaling of the luminance (this is equal to the change of the illumination) or by scaling of logarithmic  
range.  The  scaling  of  gamma  shaped  luminance  is  incorrect,  it  follows  neither  physical  nor  
physiological behavior. More complex alternative is using of some more complex HDR tonemapping 
operator, e.g. dividing by bilateral filtered image [5, 6, 7] (more of luminance scale processing was 
described  in  Section  4).  The  weakness  of  these  state-of-the-art  methods  is  the  bilateral  filter  
computation  complexity.  A  close  and  accurate  approximation  for  bilateral  filter  designed  for 
especially for HDR tone-mapping is presented in Section 5.3

In the scheme in Figure 17, the adjusting is split between brightness and color. The reason is partly 
noticeable from the physiology (see Section 2.3, part Color Perception). In the HVS the pathways are 
separated. Also the resampling is separated to the brightness and color branch. This needs closer  
explanation. In theory, the resampling should be independent on all range operations and therefore it  
might be placed anywhere in the above scheme. Furthermore, either the geometry correction is clearly 
a resampling. But now the matter is the final resampling to the display device, which can not be error-
less. This is due to the size of the pixels. The pixel shape is recognizable by human eye, so an error is  
brought into the image. It means that the signal is changed and the resampling may be treated as an  
altering operation.  In  this  case  the  brightness  resampling  is  the  last  operation before  the  display 
device, but the color resampling is followed by hue correction. It is correct, because errors in the 
brightness and hue resampling are reflected in the hue correction. The Sections 5.4 to 5.6 describe the 
resampling optimization.

The luminance adjusting is divided into local contrast adjusting and local brightness adjusting. This 
corresponds to Section 2.3 Luminance Scale. Luminance range perception is different for contrast and 
mean illumination.

Local contrast altering, e.g. edge enhancing or smoothing filter applies for small areas, mostly single  
pixels.  The  sensation  is  linearly  dependent  on  luminance  difference  between  the  pixel  and  its 
surroundings. Besides, if a filter of this kind is applied in any but linear scale of luminance, brightness 
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would be changed (see  Figure 18). The reason is  the physical  nature of light.  Luminance in any 
optical system is integrated in linear scale.  

Figure  18: A black and white texture lo-passed in a nonlinear scale. The far area appears darker  
than the near, visible pattern.

Local  brightness  altering applies when the changed area is  larger.  The sensation depends on the  
absolute luminance value and the dependency is logarithmic. A typical example is adding brightness 
to some part of  an image.  The area border should be soft,  e.g. by using some window function, 
otherwise the local contrast on the area border would be affected too. An example of correct and 
wrong adding of  brightness is shown in  Figure 19. Adding a luminance in linear scale results in 
subjective contrast reduction. Again, operating with gamma shaped  luminance scale is incorrect,  
though it is frequently used and the error is less significant.

a b c
Figure 19: Brightness altering of an image part. a - Original. b - Multiplying luminance. c  - Adding 
luminance. The scale is calculated for observing via display / prints with gamma correction 2.2

If the Bezold-Brücke hue correction takes place, it should change the result hue to the hue, which 
would be observed under the original  luminance.  It  means that both source and result  luminance 
range must be known. But the absolute luminance value is not as important as the luminance range.  
The reason is that the perception of color adapts with time, so color differences across the image are 
subjectively much more apparent than the hue shift of the whole image.

The  correction  should  be  considered  for  each  particular  application.  In  scanned  images  with 
luminance  range  similar  to  the  range  of  the  display,  the  correction  may  be  insignificant.  The 
transform should be applied when the source image luminance range is much greater than the display 
luminance range. In this case the scene range has to be reduced, which causes subjective perception 
of a different hue.

With  synthesized  images  it  is  important  whether  the  source  data  represent  physical   color   or  
subjective hue. The correction for subjective hue is straightforward, the absolute hue shift for each  
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pixel luminance has to be used. The correction for physical source data is same as with the scanned 
data, only the hue shift caused by the luminance difference is counted (see  Figure 20).

The last part which has not been mentioned is the resampling in the hue & saturation branch. The 
problem is shortly described within Section 5.4 Resampling, but it is not trivial and will be not solved 
in this text. Instead, the optimization of the color resampling is planned as a future work.
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Figure  20:  Using  Bezold-Brücke  correction.  a  –  scanned  data  or  synthetic  image  representing  
physical color, b – synthetic data representing subjective hue.
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5.2 Image Resampling for Geometry Correction
The geometrical distortion may be unacceptable in some applications. Therefore it is desirable to 
acquire geometrically correct image. The presented algorithm helps in correcting such images. The 
algorithm provides high performance at the price of certain limits.  The displacement and rotation 
should stay in some constraints.

The geometrical correction itself - calculation of new sample positions corresponding to the new 
image samples in the original image - is, in the presented case, relatively straightforward. It can be  
performed through approximation of the distortion through rectangular mesh placed over the image 
where displacement in the corners of the mesh is known and within the nodes it is calculated through 
bilinear interpolation of coordinates.

The main problem of geometrical image correction is getting the new samples values so that the  
signal properties of the image remain as much preserved as possible. The often used methods, such as  
the nearest  neighbor method,  which heavily damages the image signal properties,  and bilinear or 
bicubic  interpolation which can  be  better,  but  by far  is  not  ideal,  are  traditionally  used  for  this  
purpose.  The  main  reason  is  that  while  the  algorithms  preserve  good  signal  properties,  namely 
frequency spectrum, are known, they are often considered prohibitively computationally expensive.

The presented approach uses a resampling filter that is far better from the point of view of signal 
properties than the bilinear or bicubic interpolation while still preserves relatively low computational  
requirements  and  allows  for  real-time  implementation.  The  filter  used  in  our  approach  is  finite  
impulse  response  filter  (FIR).  The  main  advantage  and novelty of  the  proposed  approach is  the 
combination  of  simple  yet  efficient  filter  structure  combined  with  efficient  implementation.  The 
potential drawback of the approach is that it can be used only in cases where the distortions do not  
involve significant angular or scale changes. The method allows for several pixels displacement with  
sub-pixel resolution and angles limited to less than π/20 [36]. This, however, suits exactly the purpose 
of the above-mentioned applications.

The resampling algorithm can be split into two relatively independent parts: calculation of sample 
(pixel)  values  for  the  known  sample  location  in  the  original  and  calculation  of  the  location 
(displacement) of the pixel locations.

First of all, let us summarize the requirements and properties of the resampling in the presented case, 
as indicated above:

• The displacement of the pixel location is small.

• The angular distortion is negligible.

• No scaling is involved in the correction.

The proposed selection of algorithms is based exactly on these properties. Although the choice can  
reduce generality, it leads into very efficient implementation as shown below. In this text, it is also  
assumed (without further loss of generality) that the image is a single-channel image - every pixel has 
a single scalar value belonging to some set of values (e.g. integer number).

Sample Value and Separability
The general task of resampling is merely to get precise sample values for every sample (pixel) of the 
output image based on the knowledge of the pixel displacement and, of course, ensure that the limit  
frequency of the sampling theorem is respected. From the above properties of the algorithm, it can be 
concluded that the sampling theorem cannot be violated through resampling (the sampling frequency 
remains the same in the input and output images) so the precise value of the sample is the only 
concern.  The  task  of  reconstruction  of  a  sample  value  can  be  described  through  the  following 
equation:
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R= f (O) (5.1)

where R is the resampled image, O is the original image, and f is the resampling function. In many 
cases,  the  above  function  can  be  made  separable,  so  that  its  calculation  can  be  split  into  two 
independent parts. As the separation allows in efficient implementation, the approach was also used  
in the presented case.

R= f ' ' ( f ' (O)) (5.2)

where R is the resampled image,  O is the original image and f' and f'' are the separated resampling 
functions.  The  functions  f' and  f'' can  be  implemented  using  several  methods.  In  the  presented 
approach, the finite impulse response (FIR) filter implementation was chosen as the general principle  
for the value reconstruction functions. The preservation of the signal properties is highly dependent 
on the size of the neighborhood of the pixel (in the theory, the signal can be fully reconstructed only 
from the complete set of samples), for practical purposes, neighborhood of several pixels is enough.  
The resampled signal can be evaluated using the rewritten equation.

R= FIR' ' (FIR ' (O)) (5.3)

Where  FIR' and  FIR'' are the separated resampling functions. The selected solution that uses FIR 
filters has an additional advantage in the fact that the FIR coefficients can be easily exchanged and 
therefore the features of the sample reconstruction can be fine-tuned based on the application,  if 
necessary at all. The filters considered further in this paper are Lánczos filters (see Section 3) Note, 
that in the FIR functions are dependent on the location (i.e. filter coefficients in this notation would 
have to be calculated separately for each output sample).

Geometry Correction
To enable proper reconstruction of the output sample, it is necessary not only to have proper sample 
reconstruction function (as described above), but also the accurate location of the desired sample in 
the original image. The location of the sample is possible to evaluate through an absolute location, but 
for  the  purpose  of  the  presented  approach,  it  is  better  to  evaluate  the  displacement  (difference  
between the location of the sample in the original image and its place in the output image) for each  
pixel, see Figure 21 for illustration.

Figure 21: Fig. 2 Displacement between corresponding pixels in distorted original image and output  
image marked with green arrow. The displacement can be decomposed into vertical displacement  
(red arrow) and horizontal displacement (blue arrow)

(xo , yo)=(xr , yr)+d (xr , yr) (5.4)
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where (xr, yr) is the pixel location in the resampled image, (xo, yo) the location in the original image, 
and d is the displacement function. The displacement can be also made separable, e.g. as shown in the 
equation below.

(xo , yo)=(xr+d x (xr , yr) , yr+d y( xr , yr)) (5.5)

where dx and dy are the separated displacement functions. To enable two completely separated steps in  
location evaluation, it is also possible to rewrite the above equation.

(xo , yo)=(xr , yr)+(0, d y (xr , yr))+(d x( xr , yr) , 0) (5.6)

In the presented approach, the correction function is done through bilinear interpolation within pre-
defined rectangular mesh (see Figure 22). Location in the original image can be expressed through the 
following equation.

(xo ,S , yo , S)=( xr , yr)+(0,d y , S (xr , yr))+(d x ,S ( xr , yr) ,0)
=( xr , yr)+(0, yr+ p ' xr+ p ' ' yr+ p ' ' ' ) +( yr+q ' xr+q ' ' yr+q ' ' ' ,0) (5.7)

The above described algorithm can be implemented using a differential scheme, where for each of the 
rectangular nodes, a set of four pre-calculated coefficients can be used:

• D0 top left pixel displacement.

• DC0 difference of displacements between adjacent pixels in first row of the square.

• DR difference of displacements between first pixels of adjacent rows.

• DDC change in difference of displacements between pixels of adjacent rows, that means 
DCn + 1 – Dcn.

For more detailed description, see  Figure 22. The displacement calculation can be subdivided into 
independent  calculation of vertical  and horizontal  displacements.  Pseudocode of the interpolation 
algorithm follows.

DoR = D0
DC = DC0
for each row in square
{
  D = DoR
  for each pixel in row
  {
    Output FIR[fp(D)](O,ip(D))
    D += DC
  }
  DoR += DR
  DC += DDC
}
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Figure 22: Displacement interpolation in squares. Pixels of original distorted image are plotted with  
gray dashed line, pixels of output image are plotted with black solid line. Meaning of precalculated  
coefficients is marked with coloured vectors

Complete algorithm
To  efficiently  implement  the  separated  FIR  filters  and  separated  location  evaluation,  the  FIR 
coefficients  need  to  be  pre-calculated  and stored.  For  this  purpose,  the  subpixel  position  of  the 
location, on which the FIR coefficients are, in fact, dependent, can be quantized and used to index a  
table of pre-calculated FIR filters. So single samples filtered through a FIR filter, can be evaluated  
e.g. in the following way.

FIR( I , x , y)=FIR fp(x)( I ,ip ( x) , y ) (5.8)

where fp(x) is a quantized fractional part of x, ip(x) is an integer part of x, FIRq is a filter from a filter 
bank  precalculated  for  sub-pixel  position  q.  (y is  assumed  to  be  integer  number  in  this  case). 
Therefore, the complete evaluation of a single pixel of the output image is as shown below.

r x , y=FIR ' ' fp( y+d y(x , y))( FIR' fp(x+d x(x , y))( I , x , y+d y( x , y)) , x+d x( x , y) , y) (5.9)

where x and y are the integer coordinate representations, dx and dy are the displacements (functions of 
x and y). Finally, let us summarize the features of the algorithm. The algorithm is based on the FIR  
filtering which is suitable to preserve signal properties as well as possible with the option to fine tune  
the features according to the application. The filter coefficients should be pre-calculated into a filter  
bank dependent on sub-pixel position of the samples. The approach is also based on the assumption  
that  the  suitable  filter  is  separable.  The  geometry  correction  is  performed  using  simple  bilinear 
interpolation.
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Results
This approach enables for implementation using a pipeline with low consumption of resources in a 
programmable hardware (FPGA). Although the implementation proposed in the presented approach is 
simple, it preserves the image, as well as the more complex implementations of the filters given the  
constraints  of  the  approach are  respected.  In  [34,  37],  the  device  design  is  also  described.  The 
described device clock frequency [34] is up to 105 MHz. While the resampling unit produces one 
output pixel per 2 clock cycles, the output resampling data rate is up to 52.5 Mpixels per second.

5.3 Dynamic Range Reduction Acceleration
The tone mapping operators (TMO) for dynamic range reduction has been rapidly improved during 
last  decade.  Currently  the  topic  is  rather  exhausted  and  next  wave  of  improvements  will  be 
supposedly related to new research findings in the field of physiology and psycho-physic perception.  
Still the count of available methods is high. A brief introduction to this area is in Section 4 Methods
for Luminance Scale Displaying.

One of the most complex physiologically influenced methods is [5]. This method (and many others, 
e.g. [6]) uses the bilateral filter for computing of the light adaptation. The filter is a bottle-neck in fast  
image processing. Though several attempts were made to accelerate the filtering, in 2011 we designed 
an approximation method with very small error and fastest computation so far. The method [7] is  
described in this Section.

Bilateral filtering is a nonlinear filtering computed as a weighted average of each pixel’s surrounding.  
The weight is based on the spatial distance and the intensity difference. In most cases, the maximum 
weight is centered at zero differences of position and intensity.

B( p)=
∑s∈ℤ2 Gσ s(s )⋅Gσ i (I p−I p+ s)⋅I p+s

∑s∈ℤ2 Gσ s(s)⋅Gσ i( I p− I p+s)
(5.10)

The input image Ip and filtered image B(p) are considered to be 2D discrete signals. The most used 
function for expressing the spatial and intensity scale weight functions are Gaussians:  Gσs and  Gσi. 
The overall weight function is a product of both values.

Proposed Accelerated Algorithm
Computation of a bilateral filter  is  extremely slow. The aim is to design a very fast acceleration 
method, keeping the error below a recognizable level of the human visual system.

The bilateral filter used for HDR imaging uses broad spatial core and narrow stripe intensity core 
which increases the processing time even more. Taking advantage of this, we need to greatly simplify 
the spatial weight function and preserve the intensity core thin and accurate enough.

Unlike in most other attempts to accelerate the filter, the image is split spatially.  In the following text, 
the presented algorithm will be explained step by step:

1. The image is split into tiles. Two different histograms are computed for each tile: histogram 
of the pixel intensity values and the same histogram where each count is multiplied by the  
intensity.

2. The histograms are convolved with a function close to intensity domain Gaussian Gσi.

3. A spatial  filter  close  to  convolution with a  space domain  Gaussian  Gσs is  applied to  the 
histograms. It means that the signal value is spread among the histograms in space, but not 
across each of the histograms. 
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4. The result image value is computed as the two histograms value ratio. An interpolation has to 
be applied.

Splitting the Image
The image is split into regular size, square tiles. Choosing an optimal tile size will be discussed below 
in the part Results. Using just equal splitting is not critical here. The rectangular tiles remaining at the  
far side of the image are treated in the same way as square tiles. The differential images (Figure 3 c,d) 
show no significant error along the right or bottom edge.

Now let us assume that the tiles are small enough and that the spatial weight Gσs can be approximated 
by a constant.

• Let θ be the tile size.

• Let ε(p) be the set of pixels in the tile around pixel p.

Then the filter can be approximated as follows:

B( p)=
∑s∈ℤ2 Gσ s(s )⋅Gσ i( I p− I p+s)⋅I p+s

∑s∈ℤ2 Gσ s(s )⋅Gσ i( I p− I p+s)

≈
∑t ∈ℤ2 [Gσ s(t⋅θ )⋅∑s ∈ϵ (t⋅θ )

Gσ i( I p−I p+s)⋅I p+ s]

∑t ∈ℤ2 [Gσ s(t⋅θ )⋅∑s ∈ϵ (t⋅θ )
Gσ i( I p−I p+s)]

(5.11)

Let D(φ , p) be the denominator inner sum (sum through one tile pixels).

D(φ , p)=∑
s∈φ

Gσ i(I p− I p+s) (5.12)

Let H φ (i ) be the histogram of the set φ. Then D(φ) can be stated as…

D(φ , p)=∑
i ∈ℤ

H φ (i)⋅Gσ i( I p−i ) (5.13)

…which can clearly be expressed as one item of the sequence calculated as the convolution.

D(φ , p)=[ Hφ (i)∗Gσ i(i)]I p
(5.14)

The numerator sum through tile pixels N (φ , p) can be simplified similarly. Let us define modified 
histogram H́ φ (i)=H φ (i)⋅i .

N (φ , p)=∑
s∈φ

Gσ i( I p− I p+s)⋅I p+s (5.15)

N (φ , p)=∑
i ∈ℤ

H́ φ (i )⋅Gσ i( I p−i) (5.16)
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N (φ , p)=[H́ φ (i)∗Gσ i(i)]I p
(5.17)

Both inner sums across all pixels in one tile D and N are dependent on the tile histogram and on the 
source pixel  intensity  Ip.  So one tile  D and  N can be pre-computed for all  source pixel  intensity 
values. To do so, the histogram of the tile has to be gathered and convolved with Gaussian Gσi which 
is described below.

Filtering the Histograms
We proposed the method for histogram convolution in [31]. It consists of the following steps:

1. The histogram is gathered already subsampled. The contribution of each pixel is distributed 
into the appropriate (closest) histogram values using a distribution function.

2. The sampled histogram is filtered by a set of exponential-average filters. This set of filters 
closely approximates convolution with a Gaussian, but is much faster.

3. The result value at any position is calculated using an interpolation function working with 
appropriate (closest) histogram values.

The error of the whole sequence can be enumerated.

The convolution of a function  f() with an exponential curve (1 –  α)n (EMA, Exponential Moving 
Average) can be computed within a single loop:

EMAialpha n , f = ∑
m=−∞

n

1−ialphan− m⋅f m (5.18)

EMAialpha n , f = f n1−ialpha⋅EMAialpha  n−1, f  (5.19)

EMA2 combines  two  symmetrically  flipped  exponential  curves  and  is  performed  by  two  loops,  
forward and backward.

EMA2α (n , f )= ∑
m=−∞

n

(1−α )n−m⋅ f (m)+∑
m=0

n

(1−α )n+m⋅ f (m+1) (5.20)

Three of the EMA2 pairs are combined (6 different exponential curves are used) to another proposed 
method called 3EMA, a discrete convolution with an approximated Gaussian.

3EMA(n , f )=3.9⋅EMA20.150(n , f )−3.9⋅EMA20.247(n , f )+1.0⋅EMA20.387(n , f ) (5.21)

The above values were computed by using the simple error minimization. More details about the  
histogram filtering method are described in [31].

The sigma of the simulated Gaussian is altered through changing histogram bins count. The 3EMA 
method simulates convolution with a Gaussian whose sigma is equal to 10 samples. So the number of  
histogram bins ∣H∣ per function range Δ f  is calculated as

∣H∣=10⋅Δ f
σ (5.22)
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Let us point some other implementation details:

1. When the values are read from the convolved histogram, care must be taken to add/subtract  
0.5 bin size to/from the index. The reason is that the EMA2 method does shift the signal by a 
half bin to the right or left (depending on the particular implementation)

2. For the above reason and in order to avoid problems with linear interpolation, the histogram 
range should be expanded to both sides behind the maximum/minimum intensity by at least  
one bin.

Spatial Filtering
Let  us  assume both smoothed histograms  N and  D for  each tile  in  the  source image.  The filter 
approximation would be as follows from (5.11).

B( p)=
∑s∈ℤ2 Gσ s(s )⋅Gσ i( I p− I p+s)⋅I p+s

∑s∈ℤ2 Gσ s(s )⋅Gσ i( I p− I p+s)

≈
∑t ∈ℤ2 [Gσ s(t⋅θ )⋅N (ε (t⋅θ ) , p)]

∑t ∈ℤ2 [Gσ s(t⋅θ )⋅D(ε (t⋅θ ) , p)]

(5.23)

Only one value from both smoothed histograms is taken for each tile. The tile contribution has to be  
weighted by a spatial Gaussian. In this case, however, the weighting of all tiles can be replaced by 
filtering the histograms in the spatial domain. It means that n-th bin of the histogram is filtered only 
with n-th bins of surrounding histograms. This 2D smoothing may be achieved by a separable filter.  
In  our  method  only  a  small  3×3  convolution  filter  is  applied,  using  the  3-item  convolution 
horizontally and vertically. The size of the tiles is dependent on the maximum tolerable error. In the 
practice, their size is similar to the spatial Gaussian sigma (σs). In such a case, the spatial weight 
drops very fast. If the tolerable error is very small, the tiles become smaller, the number of pixels to  
the number of histogram bins ratio would drop and the whole method would become ineffective.

The spatial filtering can be even degraded by using only one spatial sample while the method is still 
usable. Both variants are compared further below.

Interpolation
The histogram being used for computing the pixel response should not be replaced instantly by it’s 
neighbor  between  two  neighboring  tiles.  Therefore,  an  interpolation  should  be  applied  to  the 
histograms. The histogram used for a specific pixel response would be a weighted histogram of the 
pixel surrounding, where the weight centre is at the pixel. It makes the response closer to the original  
filter. In addition, the spatial interpolation avoids potentially visible edges at the tile borders.

According to the bilateral filter equation, interpolation should be applied to D and N separately. The 
simple linear interpolation would be as follows:

B( p)≈
(1− x)⋅N (ε (t⋅θ ) , p)+ x⋅N (ε (t+1⋅θ ) , p)
(1− x)⋅D(ε (t⋅θ ) , p)+ x⋅D(ε (t+1⋅θ ) , p)

(5.24)

x is  the relative pixel  position from 0 to 1 between two tiles.  The bilinear interpolation for two  
dimensions  is  straightforward.  Another  spatial  interpolating  algorithm,  Lánczos  filter,  has  been 
implemented, but the result quality has not outperformed bilinear filter.
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Figure 23: (a), (b) - spatial filtering performance; (c), (d) - various methods of histogram and spatial  
filtering performance for wide and narrow sigma configuration. Wide sigma (Durand) is used in (a)  
and (c), Narrow sigma (Ledda) in (b) and (d).
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Figure  24: Dependency of  a  computation time and PSNR on the image area.  Time of  the  exact  
bilateral filter computation (exact),  time of the accelerated algorithm (fast) –Durand, triple EMA,  
bilinear tile filtering and Ledda, single EMA, bilinear tile filtering and PSNR for both filter settings.
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a    b

c    d

Figure  25:  (a)  Tone-mapped input  image, (b) filtered image (Durand’s  σ),  (c)  differential  image  
(Durand’s  σ,  triple  EMA),  and  (d)  differential  image  (Ledda’s  σ,  single  EMA)
(filtered image with Ledda’s narrow σ is not visually different from the original image and therefore  
is not shown).
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Results
For testing, the real bilateral filter has been implemented. The only restriction is spatial radius, which  
is limited to 5σ where the weight is about 3.7·10-6.

Twenty-nine (29) images of different but ordinary topics have been filtered. The area of each image 
was approximately 0.7 megapixels. Two sets of tests have been run, approximating two state-of-the-
art papers [5, 6] on a bilateral filter adjustment. For each test, the image was also filtered by using the  
exact bilateral filter. The PSNR value has been computed for measuring the approximation precision 
as used in [32]. 

Durand  and  Dorsey  prefer  an  intensity  sigma  σi = 0.4 on  a  logarithmic  image  (log  10)  which 
corresponds to σi = 4dB. Ledda, Santos, Chalmers use a floating sigma value linearly dependent on 
the intensity σi = 0.15·i. In our test, the floating sigma was approximated by a fixed σi = 0.6dB on the 
logarithmic image (for both ideal model and accelerated filtering, so PSNR does not cover floating 
sigma approximation).

The filter spatial sigma  was always 2% of the image’s longer side.

Firstly, we tested the performance in PSNR against tile size. For each tile size we have found the best  
spatial filter values. Value Side Point Blur (SPB) was defined within a range  〈0 ;1/3〉 .  The tile 
spatial smoothing is performed as described above, by convolution vertically and horizontally with a  
vector (SPB, 1-2· SPB, SPB). The results (see Figure 23 a and b show that optimal tile size is about 
2.2%  of  the  image  size  and  this  corresponds  to  1.1σ.  In  the  same  graphs  non-filtered  method 
performance is plotted (blue curves). The non-filtered tile size should be about 4% of the image size,  
which corresponds to 2σ. PSNR is about 5dB below the filtered variant.

The next two graphs show the search for the best spatial filter values on the same set of images. The  
curves show the best Side Point Blur (the solution with the highest PSNR) for different tile sizes.  
0.1% tile size and 0.02 Side Point Blur steps were used for searching. The graph shows, that for the  
local neighborhood, the tile size can be compensated for by spatial tile filtering. The dependency is  
close to linear.  Figure 23 c and d show several tested methods.

Bilinear or  Lánczos is the interpolating method among tile histograms (see the part  Interpolation). 
Clearly, Lánczos interpolation consumes more computing time, but unexpectedly the PSNR is worse 
than with bilinear interpolation.

Skipping the spatial tile filtering loses some PSNR and spares some time in both sets as mentioned 
earlier (first the pair of graphs show it more precisely)

The last result is about using triple EMA histogram filtering. In the first set of tests (wide intensity 
Gaussian)  triple  EMA raises  PSNR by about  4dB at  about  10% more  time  cost.  In  the  narrow 
intensity  Gaussian  tests  however,  the  computing  time  rose  several  times  without  significant  
differences in PSNR and some results were even worse using triple EMA. But still the PSNR never  
dropped below 70dB using a single EMA with spatial tile filtering, which means that narrow intensity 
Gaussian are better to compute using a single EMA.

Another set of tests has been run for a different scaled image. As in the previous tests, both intensity  
sigma settings (Durand and Ledda) were tested against their exact computation (see Figure 24). For 
very large images  (over  5 megapixels)  the  computing of  the  exact  bilateral  filter  would take an  
unacceptably long time, so only the approximation time is shown. The time complexity order of the 
exact bilateral filtering is clearly quadratic. The complexity order of the accelerated algorithm is close  
to linear, yet some deceleration is apparent for smaller images. This might be caused by computing  
with too many histograms of very small areas. The algorithm would be obviously ineffective for very 
small images. Also, PSNR tends to rise with the image area.

The visual difference between fast and precise bilateral filter is shown in Figure 25.
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5.4 Resampling
Resampling methods were described in the Section 3. But it has to be said, that ideal resampling is 
not necessarily best for display devices. The reasons are:

1. Display  pixels  are  not  ideal  samples.  Ideal  sample  would  be  close  to  Gaussian  or  Sinc 
function with very low frequency domain response above half of the sampling frequency.

2. In the HVS there is no lo-pass filter, which would have suppressed high frequency harmonic 
signal caused by inadequate samples. Or to be more specific, there is a filter suppressing high 
frequencies in HVS, but the inhibition is not very steep and it depends on the observation 
distance.

These reasons results from the physiology part (Section 2). The problem is examined in detail on the 
following pages.

Resampling and the Color Information 
In practice, color information is mostly stored as radiance of three base colors. Total luminance is  
given by the three values. Alternatively the luminance channel is stored as one value apart from hue  
and saturation.

Both records are convertible and are capable of carrying the information processed by HVS. In fact,  
the retina records the signal as three base color values, but the pathways to visual cortex contain three 
different signals. Apart from the brightness, there are signals “red to green” and “blue to yellow” (see 
Section 2.3, part  Color Perception). These values represent a Cartesian parameters of a polar plane 
given by hue and saturation (see Figure 26).

Figure 26: Hue circle and color opponency dualities in the HSV

If  the  “hue  &  saturation”  is  represented  by  base  colors  (RGB)  or  any  Cartesian  parameters,  
interpolation between colors can be performed by simple linear combination of the values.

The question is, how should be the color treated in resampling. Strictly speaking, the observed color 
can be composed of base colors. Mixing of the light sources obviously results in a linear combination 
of the base colors. If the resampling is performed by a linear filter, it could be calculated separately  
per each base colors. Yet two problems have to be taken into account:
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The  first  problem is  that  in  practice,  digital  image  processing  is  often  performed  on  nonlinear  
luminance values. Commonly used 8-bit quantization is very rough in linear luminance recording.  
Therefore, nonlinear gamma-correction is mostly applied to the values before quantization. This kind 
of data should be not filtered by linear filter, even if the data had represented only the luminance  
without color.  And the error of the color is subjectively even more visible.  If the result  is to be  
correct, any nonlinear correction of the values being filtered is unacceptable.

The second problem comes with the resampling optimization. Measured characteristics of the primate  
visual system can be used to optimize the resampling. But these measurements [1, 2] are in colorless 
domain. The color information is separated in the HVS and we can not assume that the hue signal is  
processed in the same way. On the contrary, the hue visual acuity is approximately one third of the  
brightness acuity (see Section 2.3, part Color Perception). The source of this difference is unclear, yet 
it means that the hue information may be resampled without physiology influence. Before any more  
information about the hue pathways is available, the most correct way of resampling is the state-of-
the-art Lánczos filter. 

But the low color acuity also means,  that enhancing of the brightness channels precision may be 
worth lower precision in the color channel. In most displays, pixels are compiled of separated units  
with different base colors, like horizontally aligned rectangles  in most  of modern LCD displays.  
Specialized resampling methods for spatially split base colors have been presented, e.g. [28].

Brightness Channel Resampling
Generally accepted approach in image resampling comes from the signal theory, described in Section 
3. Basic assumption is sufficient information about the source image. In the ideal case, the image  
would be continuous. In practice, the image should be sampled with sampling frequency several times 
higher than the sampling frequency of the display. According to the Nyquist theorem, only harmonic 
signals up to the half of the sampling frequency may be stored in the sampled signal. Thence higher 
harmonics are to be filtered out.

Hi-Pass Filtering
Now, let  us leave the exact  ground for a while.  When we search the area of practical  computer  
graphics,  photographers,  DTP workers,  editors etc.,  we are to find that  the used methods  do not 
follow the approved theory. A dominating opinion tells, that a sharpening effect has to be applied to a  
digital  image  after  each  resampling.  The  exact  parameters  of  the  effect  are  a  subject  of  fierce  
discussions. This statement, is not supported by any serious research, and in fact it can be easily  
disproved, as will be shown further below. Nevertheless, the general view can not be underestimated.  
Aside from untrustworthy discussion forums, the sharpening is advised by some respected authorities  
and Google finds nearly one million pages with the keyword  “Unsharp mask”, Adobe Photoshop 
version of said filter. 

Before contradicting the sharpening approach, let us consider, if and why there could be any sense in 
it.

Most of these effects are simple hi-pas filters, often realized by subtracting a lo-passed and scaled 
original image (an open-source image manipulation program Gimp implements “Unsharp mask”, too, 
so Gimp's version of the source code is available). The recommendations tell that optimal effect is  
achieved by very small spatial kernel and strong weight. These parameters form the simplest hi-pass 
convolution filter with kernel size 3 (Figure 27).
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Figure 27: FIR hi-pass filter, size 3 samples

This filter strongly enhances harmonic signals close to the Nyquist criteria, one half of the sampling 
frequency.

When a typical user is observing a common display, the half-sampling frequency is below the HVS 
limits, but sure beyond the maximal sensitivity (see Figure 28). It follows that the sharpening effect 
clearly can make some component of the image easier recognizable.

Figure 28: Spectrum of scaled P ganglion cell spatial response from [1] projected to the display for  
a typical observer. Measurement of  the visual  acuity,  observation distance and computing of the  
response is explained below in Sections 5.5 and 5.6. Sampling frequency markings are plotted for the  
used display with pixel pitch 0.270mm.

So far, it makes sense that the sharpening may seem to add more details into the resampled image.  
But it doesn't prove, that the result after sharpening would be any closer to the original image. From  
the technical point of view, the approach has one strong weakness: It tries to enhance the harmonic 
components, which were mostly suppressed during the resampling. Even if the sharpening influence 
to the perception quality was admitted, amplifying a quantized signal, which has been just strongly 
suppressed is completely wrong on principle. In other words, the two steps used in sequence amplify  
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quantization noise. So even if there was a reason not to suppress some harmonic components of the  
image, the filter should have be applied in one step, nos sequentially. 

Pixel Shape Problem
In the signal theory, the ideal sampling is supposed in most cases. But this does not apply to the real 
display devices. The spatial characteristic of the pixel emittance is close to rectangular, width of the  
pixel is approximately between 80% and 90% of the pixel pitch (see Figure 29)

Figure 29: Detail of LCD screen, pixel pitch 0.28mm

The statement, that signal can not contain harmonic components of higher frequency than one half of  
the  sampling  frequency  doesn't  apply  here.  The  high  frequency  harmonics  above  the  sampling 
theorem are contained in the pixel shape.

Let us show an example. A one-dimensional signal consists only of one steep edge (Figure 30). The 
signal is filtered by an ideal lo-pass filter and sampled to the screen. The edge is positioned at the  
middle of a pixel (a). The sampled signal would look like two identical steps (b). The sharpening 
effect  broadens the differences between the neighboring pixels (c). So far, we can still believe, that  
once the image  was processed by HVS,  the  result  could be closer  to  the  original  edge.  But  the 
situation becomes different, when the edge is positioned exactly between two pixels (d). In this case  
the filtered and sampled almost exactly copies the original signal (e). The sharpening effect obviously 
damages the signal (f).
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Figure 30: Resampling and hi-pass filtering of an ideal step function

This example demonstrates two points. Firstly, the popular sharpening is unmistakeably wrong. And 
secondly, the pixel shape affects the result and must be taken into account, when the perception is  
optimized.

Resampling Optimization
On the following pages, a resampling optimization approach is presented. It combines pixel shape,  
HVS spatial  response and measurement  of the  optimal observation distance.  The goal  is  optimal 
perception,  which  means  optimal  transfer  of  the  whole  system,  including  the  physiological  part 
(Figure 31).
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Figure  31: Perception of an image on a display: Image is filtered and sampled, rendered via the  
display pixels and processed by the HSV

Most  displays  render  color  information  using  spatially  split  pixels  into  three  rectangular  areas 
emitting different base colors. Methods for this devices has been already presented, e.g. [28]. For this 
reason, and because of easier explanation, we present a one dimensional resampling optimization,  
which  can  be  used  vertically  on  these  displays.  2D  variant  of  our  method  can  be  derived 
straightforward and used for any display device with uniform rectangular pixels.

5.5 Relation  Between  Visual  Acuity  and  Optimal  Observation 
Distance

Users  tend  to  view  the  display  from  the  so-called  “comfortable  distance”.  However,  the  term 
“comfortable distance” is very vague, so it needs to be narrowed in order to be more specific. The aim 
is to find an ideal observation distance which is the best one for examination of details on a still  
photograph rendered via  the  display device.  As  the “examination  of  details”  is  still  not  specific 
enough and can even be different for different users, the task can be made more specific through 
description and comparison of the achieved quality of image perception. Each rendered picture was 
processed in several different ways and the users were to subjectively choose which version they like.  
This lead into spontaneous localization of the users in the optimal observation distance suitable for 
comparison of the image details.

The  question  is  how does  the  comfortable  observation  distance  correspond  to  the  visual  acuity. 
Unlike the standard visual acuity measurement, the optotypes were placed at the chosen distance,  
onto the display surface. The real visual acuity value is, therefore, relative to the chosen distance, 
which was measured as well. This approach ensures that the conditions, mainly the focal plane of the 
eyes, are close to those that apply during observation of the display. In some subjects, the different  
distances would also cause a need to change glasses which also means that the results in the subject  
with and without the glasses might not correspond.

23 subjects, 6 women and 17 men of ages between 23 and 86 years were tested. Each of the subjects  
was seated in front of a display on a movable chair and also instructed to move freely and position 
itself into a comfortable position. Several images were then shown in a sequence. Each of the images 
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was filtered by four slightly different hi-pass filters. All four variants of the same image were then 
rendered on the screen side by side. The order of the filters was always random. The subject was 
asked to rate all of the four variants by selecting “like” “dislike” or  “neutral” icon. The testing screen  
is  shown in  Figure  32.  The differences  between the  digital  filters  were  very tiny;  therefore,  the 
observer chooses the best conditions for careful and detailed examination of the images. Most persons  
stopped moving forward and back after first two image sets and stayed at the position for the rest of  
images. After the image rating was finished, they were asked not to move. The screen was then turned 
white and overplaced by the visual acuity measurement chart (see Figure 33). Subjects were asked to 
select the finest resolvable pattern of horizontal stripes. The distance eye to display was measured  
during the test, without disturbing the subjects (using triangulation). The optional reading aids were 
used throughout the test.

Two persons have chosen very long observation distance and were not able to recognize even the 
roughest  optotype  (3.35  cycles/mm),  possibly  because  of  being  affected  by  an  initial  phase  of 
hyperopia  with  no  correction.  The  acuity  could  not  be  measured,  therefore  the  subjects   were  
excluded from the statistics.

In the first test, many subjects reported difficulties in optotypes resolving, because with some of the 
densities, the pattern was visible at the field border only. To prevent the inaccuracy caused by this 
fact, another set of patterns were prepared with faded borders (Figure 34) and the subjects acuity was 
re-evaluated after the tests were repeated. 

Important data
Display model HP LP2465
White absolute luminance 60.8 cd·m-2

Black absolute luminance 0.245 cd·m-2

Luminance range 1:248
Pixel spacing 0.270mm
Display was calibrated with sensor (Datacolor Spyder 3 Pro)
Gamma correction 2.2
White balance 6500K
Diffuser underneath the optotypes
Thickness 3mm
Luminance loss 0.673 (-1.7dB)
Optotypes
Seven striped optotypes optically transferred to inverse film (Fuji Provia 100F RDP3)
Minimal density 3.35 cycles·mm-1

Maximal density 4.78 cycles·mm-1

White absolute luminance 15.1 cd·m-2

Black absolute luminance 0.202 cd·m-2

Contrast 1:74
Testing room 
Maximal illuminance
measured at the desk 65 lx
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Figure 32: Testing screen Figure 33: Optotypes

Figure 34: Optotype microscopy scan Figure 35: Optotype marks for density measuring

Figure 36: Distance measuring
Figure 37: Distance measuring

The distance from eye to the display was read from a marked point on a scale placed far on the side,  
parallel to the display axis (see Figure 36).  The parallax error was compensated by proper scaling of 
the meter. The reading included estimation of the distance covered by subjects nose (approximately 
1-2 cm, see Figure 37). Note that millimeter precision was anyway unable to reach due to permanent  
micro-movement  of  human  body.  Head  fixation  on  the  other  hand would  spoil  the  comfortable 
position choice.

The optotypes with exact density could not be made without specialized optics. The optotype set was  
made with approximate scaling. Control marks were printed among the stripes (see Figure 35).
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For each of the optotypes the distance between the marks was measured with precise caliper and the  
density was calculated from the scale factor.  Therefore the optotype set  do not follow linear nor  
logarithmic series.

Angular acuity was computed from the relative acuity and eye-to-optotype distance as follows:

Aa=10⋅Ar⋅d⋅ 
180 (5.25)

where Aa is the angular acuity in cycles per degree, Ar is the relative acuity in cycles per millimeter 
and  d is  the  distance  in  centimeters.  The  3mm  thickness  of  the  diffusing  plate  underneath  the  
optotypes was omitted in this calculation because of the distance precision issue mentioned above.

Results
Several subjects were complaining about the difficult judgment and tiny differences, yet  20 of 21 
subjects  showed clear  preference  in  some  methods.  The  order  of  the  image  processing  methods 
applied on the images to be observed was random for each person,  so it  is  clear that  the image  
differences were possible to recognize by the subjects. One person with almost stochastic preference  
among the methods was excluded from the statistics, because of possible misunderstanding of the 
instructions and choosing a far position where no differences might be recognizable.

We supposed that the results may be biased by subjects with possible professional interest in the field 
of digital image processing or photography. For this reasons, people were asked to state such level of 
interest in image processing and specifically marked in the results. In the charts they (aside from 
“Men” and “Women”) formed the third group “Graphics” without any further sex differentiation.

Both  angular  acuity  and  relative  acuity  are  statistically  non-symmetrical  values.  Even  if  the 
divergence is not  high,  acuity values should be by their  nature symmetrical  in logarithmic scale.  
Therefore, mean values and standard deviations were computed in log10. 

Angular acuity 32.3 cycles·deg-1

Ang. ac. deviation 0.118 log10 cycles·deg-1

Relative acuity 3.98 cycles·mm-1

Rel. ac. deviation 0.024 log10 cycles·mm-1

Although the acuity varies, it shows strong correlation with the preferred observing distance (Figure
38 and  Figure 39). The results show that the relative spatial acuity in preferred distance has much 
smaller deviation than the angular acuity.
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Figure 38: Correlation between angular acuity and preferred observing distance

Figure 39: Distribution of angular acuity across the age
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The fact, that human observers tend to normalize acuity at the display level opens new possibilities in  
image processing. It follows that the relative spatial acuity could be possibly applied with the HVS  
spatial response.

The test could be also extended by measurement with higher density displays. Such devices were so 
far not included for couple of reasons. Partly, because of poor availability at the time when the project  
started. However, the main problem was that many devices in consideration had either no anti-glare 
surfacing  or  extreme  luminance  instability  with  vertical  observing  angle.  In  both  cases,  it  was 
impossible to prepare stable measurement conditions.

It is not clear, if the divergence of the relative acuity would stay so low with high density displays.  
The comfortable observation distance is surely limited. Most likely, the unity among all observers  
would spread according to individual shortest focal length or even personal preference.

5.6 Resampling Filter Optimization
Choosing the Retina Spatial Response
The spatial response of many different cell types has been measured, mainly in cat, fish and monkey,  
see Section  2.2, part  Retina Cells Receptive Fields. Here, the most important is to get close to the 
conditions we are interested in.

1. The retina structure differs a lot among the various genus, therefore the recording in primates 
is the most accurate.

2. The aim is to refine the visual perception. It means, that the more of the visual system can be  
modeled, the better. The most interesting would be the recording of the ganglion cells, the 
last cells to process the signal before sending it to the brain, or recording of the brain cells 
themselves.

3. The examining of fine details is performed by cones in the fovea. Central vision in the fovea 
provides the finest spatial resolution. The peripheral retina inhibits several times lower spatial  
frequency than frequency passed by central retina. If the image is optimized for the fovea and  
observed by peripheral retina, the difference in high frequency signal would be negligible.

4. Parvocellularly projecting (P) ganglion cells are more sensitive to spatial details. Pathways 
from P cells are therefore essential in optimization of spatial perception quality.

5. The spatial attributes of the receptive field are affected by the light level, so recording in the  
average luminance of the common monitors (approximately 10-100cd∙m-2) is preferred.

Data  from  [1]  has  been  selected  as  the  most  appropriate  measurement.  The  macaque  monkey 
receptive field of P and M retina ganglion cells was measured. The mean luminance was 40cd∙m-2, see 
Section Retina Cells Receptive Fields, Figure 6.

The response has to be recalculated from section to integral along lateral domain.  Figure 40 Shows 
the one-dimensional integral of the spatial response, Figure 41 shows comparison between human 
CSF [17] and the spatial response spectrum. The small difference in frequency is caused firstly by 
greater  eccentricity  of  the  ganglion  cells  compared  to  the  size  of  fovea  centralis.  Possibly,  the 
difference may be caused even by different genus, namely different posterior nodal distance. 
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Figure 40: Small eccentricity P ganglion cell spatial response [1] recalculated from section to one-
dimensional integral.
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Figure  41: Human CSF [17] compared with  macaque P ganglion cells spatial response spectrum  
[1]. All functions are normalized.

Relative Acuity
People  with  worse  acuity  prefer  shorter  observation  distance  and  vice  versa.  The  measurement 
described in previous Section showed that people across very different angular acuity tend to chose a 
distance, where the relative acuity is almost constant.
The low divergence of the relative acuity allows for using a uniform response of the visual system for  
any observer. This approximation causes an error evaluated as follows.

Let us assume, that a lower visual acuity is caused mainly by optical aberration in the eye's optical 
part. The aberration can be expressed as a convolution of the retina cell spatial response with a point  
spread function (PSF). A general aberration PSF is a Gaussian.

Changing of the observation distance results in linear scaling of the receptive field projection at the  
observation plane.

So the receptive field projection onto the display plane is given by convolution with a distorting 
Gaussian and linear scaling.

The  angular  acuity standard  deviation  is  approximately  0.12  log10 cycles·deg-1 (see  Section  5.5), 
which corresponds to acuity ratio:

RA≈1.31 (5.26)

If the angular acuity is RA times worse and the relative acuity should stay the same, the person needs 
to shorten the observation distance by the same ratio.

The chosen spatial response was approximated as a sum of center positive and surround negative 
Gaussian. The ratio between center and surround sigma, is:
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RCS=
σ s

σ c
= 0.18

0.03
=6 (5.27)

Let us simplify the situation and assume, that RA times worse visual acuity corresponds nearly to RA 

times greater sigma of the receptive field center Gaussian (surround Gaussian spectrum is six times  
narrower so it's response to just resolvable frequency can be omitted). This change of acuity should 
correspond to convolution of the spatial response with a distorting Gaussian.

Convolution of two Gaussians with σ1 and σ2 is another Gaussian with:

= 1
2 2

2 (5.28)

Thence the person with RA times worse angular acuity has spatial response with:

c ' =c⋅RA

 s '=s
 RCS

2  RA
2 −1

RCS

(5.29)

If the spatial response distortion is approximated with scaling by  RA,  the error of surround sigma 
would be:

E s=
RCS⋅RA

 RCS
2 RA

2 −1
≈1.299 (5.30)

This is still  acceptable error,  because the surround sigma is six times greater.  Note that the ratio  
between center and surround Gaussian area is not affected. The distorting Gaussian area is equal to 1  
so it does not change  the convolved functions area.

The receptive field scaling is given by it's spectrum. The measured relative acuity at the display plane 
corresponds to the spectral frequency with loss equivalent to the optotype contrast (see Figure 42).
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Figure 42: Spectrum of scaled P ganglion cell spatial response from [1]. The scaling corresponds to  
the  measured  relative  acuity.  Relative  acuity  with  standard  deviation  is  plotted  at  the  optotype  
contrast level 1:74

The scaling is 7.570mm/deg. It gives the spatial response sigma values in display lateral domain:

 Ds≈1.010mm
 Dc≈0.168mm (5.31)

Filter Optimization
When the image is post-processed, rendered on a display and observed, the whole process can be  
described as follows.

Sens x=[ Img∗Filter⋅∗Pixel∗Eye] x (5.32)

The equation is in 1D space. Figure 43 illustrates the process. The image Img is firstly convolved by 
Filter and then sampled by multiplying with Dirac impulses  δ. The samples are convolved with a 
spatial  characteristic  of  a  screen  Pixel.  As  our  method  should  be  applicable  to  most  displays, 
rectangular characteristic with 85% size of the pixel-to-pixel  distance was assumed,  however for 
particular display the characteristic is better to be measured. The convolution with  Pixel gives the 
image on the screen. Finally it must be convolved with the properly scaled retina response Eye to get 
the sensation.
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Figure 43: Scheme of the post-processing and observing process

For the image observed directly the sensation is

Sensdirect x =[ Img∗Eye] x (5.33)

The best filter would give the same result as direct observing. However this is not possible due to the  
loss of information by sampling. The filter can by only optimized. Unfortunately the optimal  Filter 
with  minimal  error  can  not  be generally  expressed.  The equation  contains  both  convolution  and 
multiplying, so minimization can not be solved in spatial nor in frequency domain. But the problem 
could be split into different sub-pixel positions s. The result needs to be expressed as a convolution 
for any case of s. Each case gives a different  Kernel, so the complete operation is not convolution. 
But later we can minimize the error across all kernels.
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x=n+s∣n∈ℤ , s∈〈−1
2

,1
2

〉

Sens(n+s )=[Img∗Kernel s](n+s)
(5.34)

Now we are looking for the Kernels. One convolution and multiplying with the dirac impulses (1) can 
be expressed as a sum.

Sens(n+s )=∑
i ∈ℤ

[ Pixel∗Eye](n+s−i)⋅[ Img∗Filter ](i) (5.35)

Let us define a notation for shifting the function parameter:

f r x = f xr  (5.36)

According to the convolution definition, shifting of the result argument is equal to shifting of one of 
the convolved function's argument. Here i and (n+s) are swapped.

Sens(n+s )=∑
i ∈ℤ

[ Pixel∗Eye](n+s−i)⋅[ Img∗Filter(i−(n+ s))](n+s ) (5.37)

The convolution is a linear operation. Therefore the sum of convolutions, where one of the operand is 
constant, is a convolution with the sum of the other operands. This gives us the Kernel.

Sens(n+s )=[Img∗Kernel ' s , n](n+s )
Kernel ' s , n=∑

i ∈ℤ
[Pixel∗Eye ](n+s−i)⋅Filter(i−(n+s)) ∣n∈ℤ (5.38)

This  Kernel needs an extra parameter  n,  but  as  n belongs to integers and in both occurrences is 
subtracted from i which is an argument of sum across all integers, n can by simply omitted.

Kernel ' s , n=Kernel s=∑
i ∈ℤ

[Pixel∗Eye ](s−i)⋅Filter(i−s) (5.39)

Error Minimization Method
As was mentioned above, the ideal filter would give the closest result to direct observing. It means 
that  all  variants  of  Kernels would  be  same  as  Eye.  The  error  of  the  sensed  image  can  not  be 
enumerated for general data. For this reason the error of the Kernel has to be used. It can be expressed  
as the absolute difference integral.

Error s= ∫
x=−∞

∞

∣Kernel sx −Eye x ∣dx (5.40)

Difference square is often used to express error, but square is related to the signal energy. In this case 
the sensation depends linearly on the image.

The space of all Filters has to be searched by brute-force algorithm. For this purpose the space has to  
be reduced reasonably. Following method was used:
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• Filter is designed via Fourier transform. The highest harmonic frequency is not above the 
spatial frequency recognizable by the HVS. The amplitudes are not complex numbers. Filter  
should be symmetrical (even function), so only cosine harmonics are contained. This reduces 
the parameters to a relatively small amount of numbers.

• The parameter quantization step was selected as 1/1000. For the 8-bit displays the precision is  
sufficient. The Eye absolute values below 10-4 were ignored.

• Filter area (integral) should be 1. It gives that the zero harmonic value F0 is inverse of the 
Filter size.

• The Filter value at both ends should be 0. It gives that F0-F1+F2-F3+ ... = 0

• The spatial domain quantization was 11 samples per pixel. It is dense enough, so that the  
highest sampled frequency according to Nyquist is well beyond HVS recognition and odd 
number made some of the numeric computations easier.

The only value we do not know is the size of Filter. Let us submit a hypothesis that Filter of 2 pixels 
radius is sufficient. The error minimization process was run twice, for the  Filter of radius 2 and 3 
pixels.

Optimization Result
The  results  are  compared  in  Figure  44.  It  is  clear  that  the  function  is  close  to  zero  from the 
eccentricity about 2 pixels.

Figure 44: Optimization results for different filter sizes

The amplitudes of the filter with 2 pixels radius given by the optimization are listed below:
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Filter (x)=
1/4+
0.504⋅cos(1⋅π/2)+
0.302⋅cos(2⋅π /2)+
0.048⋅cos (3⋅π/2)

(5.41)

Nonlinearity Problem
The resampling method with the optimized filter  was implemented  and tested.  The images were 
subjectively slightly sharper than with using traditional method, but the edges did not appear over-
enhanced like with the using of hi-pass filter. But some barely visible artifacts were still apparent;  
very tiny, dark contours around some edges were detected. Note, that all images were processed as  
values of linear luminance with no gamma correction. It seems fitting the fact that the luminance is  
perceived logarithmically and so it might have been processed in the logarithmic scale. The truth is 
much  more  complex.  Firstly,  the  filter  integrates  the  luminance  and  luminance  must  be  only 
integrated  in  linear  domain,  because  of  the  physical  nature  of  the  light.  And  secondly,  as  we 
concluded [25] from data of Purpura and Kaplan. [2], the perception depends linearly on the local  
contrast, and logarithmically on the global illumination. The optimized filter is to correct the local  
contrast. But the problem is: in spite of the fact, that the filter should change only the local contrast,  
the least affected area of the display  is whole pixel. The pixel size of the used display (0.270mm) is 
still about twice the sigma of the projected receptive field center Gaussian. So the question is: Could  
the pixel area take part in global illumination perception? Unfortunately we could find no answer in  
present results. The current knowledge about perceptual quality of digital images [24] does assume  
that the HVS nonlinearity is independently placed before the contrast perception and that different 
spatial frequency stimuli are perceived in the same nonlinear scale. This statement is now obsolete,  
taking into account Purpura and Kaplan's measurement. The source of the scale duality has not been 
named yet and till some more accurate description is found, we may continue only with a hypothesis.

We suggest to split the kernel into two parts. The convolution with the parts is calculated in the linear 
scale. The results are summed in the logarithmic scale. The size of each part should be large enough 
to  interfere  global  illumination.  Much smaller  size  than a  pixel  would  also raise  the  integrating  
problem in nonlinear scale.

Results
The comparison of the error function is difficult, because no other resampling filter was optimized via 
our  approach.  If  the  frequency  analysis  of  the  whole  system  is  measured  (the  system  includes 
resampling filter, pixel shape and retina spatial response), the system passes approximately 5% higher  
frequency  compared  to  the  system  with  traditional  Lánczos  filter.  This  is  not  phenomenal  
improvement,  but the number does not cover reduced artifacts and overall  image quality.  Due to  
mentioned insufficiency in methods for perceptual quality comparison, precise evaluation is currently 
not available.

5.7 Summary of Results
The performance of the scanning correction was improved with a new algorithm for fast geometry  
correction.  The  algorithm enables  for  implementation  in  a  programmable  hardware.  Within  the 
constraints of the approach, it preserves the image, as well as the more complex implementations, but 
with  considerably  higher  performance.  The  performance  of  the  dynamic  range  reduction  was  
improved  with  new  implementation  of   bilateral  filter  approximation.  The  filter  results  were 
compared to the exact  bilateral  filter  implementation limited to the radius 5σ.  The precision was 
measured on twenty-nine different  images,  each with the area approximately 0.7megapixels.  The 
intensity sigma was set according to two state-of-the-art approaches [5, 6]. PSNR did not drop below 
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43dB for  σi = 4dB  [6]  or  below 69dB for   σi = 0.6dB  [5].  While  the  exact  bilateral  filter  time 
dependency  on  the  image  area  is  almost  exactly  quadratic,  in  the  approximation  method  the  
dependency is close to linear.
The perception was improved via new resampling optimization method. The method exploits a study 
of the display observation in many subjects. The proposed approach was used to measure correlation 
between optimal  observation distance  from the display device and the visual  acuity.  A standard 
monitor with the pixel spacing 0.270mm was used. The correlation was measured on 20 subjects. The 
relative acuity measured at the optimal observation distance of each subject was 3.98 cycles·mm-1, 
standard  deviation  in  logarithmic  scale  was  0.024 log10 cycles·mm-1.  The  statistics  were  used  to 
project the retina cell receptive field to the display plane. A novel resampling filter optimization was 
designed. The optimization respects spatial response of retina neural cells, measured relative acuity 
and shape of the display device pixel.
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6 Conclusions
The reconstruction of an image via digital display is a complex problem. The result is still not ideal 
with commonly available devices and current methods. The aim of this work was to identify the weak 
points in the whole system and improve them. Some of the methods already provide transfer with  
error undetectable by human vision, but the processing is too slow for interactive view or real-time  
video processing. Several improvements were achieved and described in this work.

A new resampling technique for correcting geometry distorted images was presented. The design 
enables for hardware realization. The technique allows for very fast resampling and can be performed 
even real-time on high resolution pictures. A new approximation of bilateral filter was proposed.  
Bilateral  filter  is  a  core  of  several  state-of-the-art  methods  for  dynamic  range reduction  and it's 
computation is the critical part in the performance. The new approximation is computed in constant 
time per image pixel for theoretically any size of the image. The error did not exceed the theoretical  
threshold considered as an error detectable by human observer for any tested image.

The  optimal  observation  distance  from  the  display  device  was  examined  experimentally.  A 
correlation between optimal distance and subject's visual acuity was measured statistically on a group 
of people. The measured correlation was used in a novel approach of image resampling for display 
devices. The method exploits present knowledge about human vision physiology, said experiments 
with observation distance and shape of the display pixel. Visual sensation is computed via visual  
system model and optimized for least difference from the original image. As far as we know, image 
processing optimization involving all these aspects was not attempted so far.

Several weak points of the image reconstruction framework were improved. The framework with 
proposed changes enhances both performance and perceived image quality.

The bilateral filter acceleration is fast, but enables for implementation using parallelism. Our intent is  
realization of high performance HDR processing using some modern parallel hardware architecture, 
e.g. NVIDIA® CUDA™. We expect that the implementation will be able to process high resolution 
pictures  real-time.  The  resampling  optimization  asks  for  further  investigation.  The  observation 
distance  measurement  ought  to  be  done  for  higher  density  displays,  which  are  becoming  more  
available. The relation between the display density and optimal distance is to be approximated in  
order  to  design a  general  optimization  of  the  resampling  algorithm.  Further  investigation is  also 
expected in the field of vision physiology.  The source of the HVS dual  luminance scale is  now  
unclear.  This  aspect  of  human vision should be also reflected in the  image  processing,  once the 
problem is enlightened. The discussed resampling method for a display with spatially split base colors 
[28], in our opinion, lefts a space for improvement. Base colors displacement is used, but the error is  
not  enumerated and no alias effect or  physiology behavior is considered. We intent to design an  
optimized resampling method for such displays.
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