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Abstract 

Similarly as in the animal kingdom, in the floral realm all development and 
growth are governed by hormones. One of the best and longest known groups of 
plant hormones bears the name cytokinins. Cytokinins are documented to take part 
in many developmental processes, including the senescence (“ageing” leading to 
death of particular plant parts) and handling of adverse environmental conditions. 
Although these plant hormones are well known for their ability to retard or slow 
down senescence, there are pieces of evidence that cytokinins can induce 
acceleration of senescence. Going through the literature, we have noticed that this 
reversal of cytokinin influence is connected with either their high concentration or 
exposition of leafs to high light doses, or both. On the basis of this assumption, 
substantiated by many reports, a new model for cytokinin action is presented here. 
Many of plant responses to cytokinin treatment imitate responses to light, and 
plants (plant parts) experiencing both cytokinin and light treatment simultaneously 
often exhibit the sum of the effects of these signals. However, when the sum of the 
light and cytokinin influence reaches a certain threshold the effect of their action 
turns over. In virtue of our observations a possible mechanism of the reversal of 
cytokinin action during artificial senescence is proposed. This mechanism, 
nevertheless, cannot explain many other responses originating in light and 
cytokinin interaction. Looking for a more general connection of cytokinin and light 
action the literature concerning cytokinin and light signalling pathways was 
researched. A brief review of common intermediates in cytokinin and light 
signalling is presented at the end of third chapter of this dissertation. The next part 
is dedicated to the influence of cytokinins on plants dealing with stressful 
conditions. Water deficit, being one of the most frequent plants stresses, comprises 
the best documented stress in the connection with cytokinin influence, thus it 
deserved a short section in my thesis. Further stress, pathogenic (mildew) infection, 
was the other aim of our interest and research. Some reports indicate that 
cytokinins could serve as a disease control agent; our results, however, 
contradicted the potential utility of cytokinins sprays in field conditions, at least for 
lettuce endangered by downy mildew. My further research should have been 
concerned with the influence of cytokinin application on plants undergoing cold 
stress, which is supposedly the least documented stress in the connection with 
cytokinin treatment. Nevertheless, our experiments (at the beginning intended to be 
pre-experiments) concerning the dgd1 Arabidopsis mutant during cold acclimation 
brought such interesting results, that it gained a separate manuscript. Hence, the 
“cytokinin work” remained for future research. My dissertation is based on three 
publications that are dealing with different aspects of plant physiology. Taking this 
fact into consideration, rather than rewriting the results and discussions of my 
research that have already been published and are enclosed, I decided to compile 
my doctoral thesis as a mini-review. A brief overview of the original results 
obtained during my Ph.D. research is presented in the “Summary”.  
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1 Introduction 
Cytokinins constitute a class of plant hormones that were first identified as 

factors promoting cell division during the 1950s and 1960s (Miller et al. 1955; 
Letham 1963). Since then the spectrum of cytokinin action has been largely 
extended. Today, it is evident that cytokinins, N6-substituted adenine derivatives, 
are involved in the control of numerous important processes associated with plant 
growth and development. They take part in the control of cell division, chloroplast 
development, bud and root differentiation, shoot meristem initiation and growth, 
stress tolerance, and senescence (Mok & Mok 2001; Schmülling 2002; Choi & 
Hwang 2007; Werner & Schmülling 2009; Perilli et al. 2010). At the cell level, 
cytokinins act by controlling the expression of many genes (Schmülling et al. 
1997) and by stimulating the chloroplast development (Synková et al. 1997b; 
Chernyad'ev 2000). Cytokinins increase also the rate of photosynthetic assimilation 
of carbon dioxide and activities of carbon metabolism enzymes: ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) (Lerbs et al. 1984; 
Kusnetsov et al. 1994; Chernyad'ev 1995); NAD-malate dehydrogenase (EC 
1.1.1.37); and NADP-glyceraldehydephosphate dehydrogenase complex (EC 
1.2.1.13 and EC 4.1.1.31) (Chernyad'ev 2002). 

Cytokinin structural diversity and its relation to the biological activity, 
together with cytokinin biosynthesis, metabolism and translocation are well 
summarized in reviews of e.g. Sakakibara (2006), Hirose et al. (2008), Ma (2008) 
or Kamada-Nobusada and Sakakibara (2009). The naturally occurring cytokinins 
have been divided into five functionally different groups: (1) physiologically active 
cytokinins [trans-zeatin (tZ), dihydrozeatin (DHZ) and N6-∆2-isopentenyl)adenine 
(iP) (Figure 1) and other] and their ribosides [tZ 9-riboside (tZR), DHZR, iPR]; (2) 
transport and storage forms represented by cytokinin O-glucosides, which can be 
hydrolysed to active forms [tZ O-glucoside (tZOG), tZROG, DHZROG]; (3) 
cytokinin nucleotides which are believed to be primary, physiologically inactive, 
products of cytokinin biosynthesis and precursors of their active forms [tZR-5’-
monophosphate (tZRMP), DHZRM, iPRM,]; (4) physiologically inactive cytokinin 
7- and 9-glucosides which cannot be converted back into the active forms; and (5) 
cis-zeatin and its derivatives (cis-zeatin, cis-zeatin 9-riboside and cis-zeatin 9-
riboside-5’-monophosphate) (for review see Zažímalová et al. 1999). In figure 1 
are displayed also synthetic cytokinins with high physiological activity which are 
most often used for studies of exogenous application of this hormone. 
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Figure 1. Structures of physiologically active cytokinins that are naturally 
abundant and/or most often used for exogenous application. 
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4 Stress & cytokinins 
Plants very frequently comfort biotic or abiotic stress environment and their 

sessile style of existence requires that they must show a considerable capacity to 
respond to these hardnesses. Morphological and physiological adaptations to 
stress conditions are very important for plant growth and development and 
therefore play significant roles in agriculture. It is known that under adverse 
environmental conditions endogenous cytokinin levels tend to decrease. Possible 
roles for cytokinins in affecting the overall hormonal balance following 
environmental stresses, and thereby their role in systemic response to stress, were 
discussed in Hare et al. (1997). Argueso et al. (2009) highlighted the most recent 
advances in the understanding of cytokinin signalling and their interaction with 
various environmental signals modulating plant growth, development and 
physiology. The protective action of cytokinins on the photosynthetic machinery 
and plant productivity under stress was reviewed by Chernyad'ev (2009). 
 

4.1 Drought stress 

The availability of water strongly restricts terrestrial plant production. A 
request for an increase of agriculture production brought demands on researchers 
to understand controls over plant water relations and consequences of drought 
stress. In drought stressed plants, cytokinin synthesis in the roots and delivery to 
leaves is usually decreased (for review see Pospíšilová 2003b). Water deficit, 
being one of the by plant most often suffered stresses, belongs to the best 
documented abiotic stresses in connection with cytokinin influence. 

Drought induces a number of responses in plants including leaf senescence 
which plays a major role in the survival of several species (Munné-Bosch & 
Alegre 2004). Drought-induced leaf senescence contributes to nutrient 
remobilisation, thus allowing the rest of the plant (i.e. the youngest leaves, fruits 
or flowers) to benefit from the nutrients accumulated during the life span of older 
leaves. In addition, drought-induced leaf senescence avoids large water losses 
through transpiration, thereby contributing to the maintenance of a favourable 
water balance of the whole plant. However, this drought-accelerated senescence 
leads to a decrease in canopy size, loss in photosynthesis and reduced yields, and 
in this way limits productivity of agricultural crops worldwide. Water loses 
through transpiration and consequent shoot desiccation are also avoided by 
stomatal regulation (Pospíšilová et al. 2000). Due to markedly decreased 
transpiration rate (E) water content in the leaf during drought stress can remain 
sufficiently high to prevent a real damage of photosynthetic apparatus.  
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Cytokinins (applied either exogenously or elevated endogenously via 
expression of transgenic ipt gene) have been shown to alleviate drought-induced 
leaf senescence (Clark et al. 2004; Munné-Bosch & Alegre 2004) as well as the 
stomatal reduction of transpiration (Todorov et al. 1998; Kumar et al. 2001; 
Rulcová & Pospíšilová 2001; She & Song 2006). The question arises as to 
whether the cytokinin action attenuating these plant defence reactions will 
heighten plant productivity or consequences of the water deficit. 

Exogenous application of cytokinin scaled down the drought stress induced 
changes in chlorophyll and carotenoid contents (Todorov et al. 1998; Rulcová & 
Pospíšilová 2001; Chernyad'ev & Monakhova 2003; Haisel et al. 2006), net 
photosynthetic rate (PN) (Kumar et al. 2001; Rulcová & Pospíšilová 2001; 
Pospíšilová 2003a), photochemical (Hill reaction) activity, number of oxygen 
evolving centres (both the latter Metwally et al. 1997), and chlorophyll 
fluorescence parameters reflecting the function of photosynthetic apparatus: 
vitality index (Rfd) (Haisel et al. 2006), maximal photochemical efficiency of 
photosystem II (Fv/Fm) (Rulcová & Pospíšilová 2001; Haisel et al. 2006), and 
photochemical chlorophyll fluorescence quenching (qP) (Yordanov et al. 1999; 
Haisel et al. 2006). Furthermore, cytokinin protected chloroplast ultrastructure 
under drought stress (Stoyanova & Yordanov 1999), alleviated negative effects of 
water deficit on lipid membrane composition (Ivanova et al. 1998), soluble 
protein content (Todorov et al. 1998; Chernyad'ev & Monakhova 2003), catalase 
activity, H2O2 accumulation, and lipid peroxidation (Todorov et al. 1998). In 
addition, Chernyad'ev and Monakhova demonstrated that cytokinins and 
cytokinin-like substances reduced the dehydration-induced inhibiton of activity of 
some photosynthetic enzymes, namely: Rubisco, NADP: glyceraldehyde-
phosphate dehydrogenase complex (determines the carbohydrate route of 
photosynthetic metabolism at the initial stages), NAD malate dehydrogenase and 
phosphoenolpyruvate carboxylase (Chernyad'ev 1995; Chernyad'ev & 
Monakhova 1998, 2001, 2003, 2006). The issue of plant photosynthesis under 
drought stress and cytokinin protective effects Chernyad'ev discussed in more 
detail in his review (Chernyad'ev 2005).  

Cytokinins favourably affected also recovery of plants during their 
rehydration (Yordanov et al. 1997; Pospíšilová 2003a; Vomáčka & Pospíšilová 
2003). Thus the question whether the cytokinin action heightens plant 
productivity or amplify consequences of the water deficit may seem to be 
answered; however, there exist evidences that cytokinin application had no effect 
or even deteriorated the impact of drought stress. For instance, cytokinin effects 
on stomatal opening, E and PN are strongly dependent on plant species, cytokinin 
concentration, way of application and duration of cytokinin action (Pospíšilová et 
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al. 2001; Rulcová & Pospíšilová 2001; Vomáčka & Pospíšilová 2003; Pospíšilová 
& Baťková 2004). Accordingly, we can see again that action of cytokinins cannot 
be generalized as also here cytokinins do not act in isolation but other 
phytohormones participate as well (Pospíšilová 2003b). Involvement in the 
regulation of stomatal opening has been generally accepted foremost for the 
abscisic acid (ABA). ABA influences not only the endogenous cytokinin content 
during drought stress but also the action of exogenously applied cytokinins 
(Pospíšilová 2003a; Pospíšilová et al. 2005). Additionally, an evidence exists that 
cytokinin action during drought stress is tightly connected also with nitric oxide 
signal (Shao et al. 2010).  

With promising results for agriculturalists, which support the idea of 
genetically modified plants, came Rivero and her colleagues. They generated 
transgenic tobacco plants expressing an isopentenyltransferase gene (ipt gene 
coding an enzyme of cytokinin biosynthesis) driven by a maturation- and drought 
stress- induced promoter SARK (senescence associated protein kinase) (Rivero et 
al. 2007). The SARK-ipt expression reached maxima levels in all leaves of the 
transgenic plants during the drought stress, accompanied with a significant 
increase in trans-zeatin levels. This increase in cytokinin contents resulted in 
suppression of drought-induced leaf senescence and in an outstanding drought 
tolerance. The PSARK::IPT transgenic tobacco exhibited vigorous growth after a 
two week drought period that killed the control plants (Figure 14). Moreover, the 
transgenic plants displayed minimal yield loss when watered with only 30% of 
the amount of water used under normal conditions (Rivero et al. 2007). Further 
investigation of Rivero et al. (2009) revealed that cytokinins during the growth 
under water limitation mediated induction of photorespiration. Thus cytokinins 
play a considerable role also in the protection of biochemical processes associated 
with photosynthesis under water deficit (Rivero et al. 2009).  
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Figure 14. Drought effects on Arabidopsis WT and two lines of PSARK::IPT 
transgenic tobacco plants (PSARK::IPT2-36 and PSARK::IPT4-24) (with permission4  
reprinted from Rivero et al. 2007). (A) Plants before drought, after 1 and 2 weeks 
of drought, and after 1 week of rewatering. (B) Dry weight (DW) of the plants 
(root, shoot, and whole plant) after drought/rewatering experiments. (C) Fresh 
weight (FW) and dry weight (DW) of seeds (S) and capsules containing seeds (C) 
collected at the end of the drought/rewatering experiments. Values are mean ± SE 
(n = 40). * indicate significant differences (P < 0.001) between WT and 
transgenic lines. 

                                                 
4  Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S. & Blumwald, E. 
(2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. 
Proceedings of the National Academy of Sciences of the United States of America 104, 19631-
19636. Copyright (2007) National Academy of Sciences, U.S.A. 
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4.2 Pathogenic infection 

Disease invasions constitute a major biotic stress to plant, and cytokinins 
are involved in mediating developmental changes caused by interactions with the 
pathogen. Both changes in endogenous cytokinin contents and exogenous 
applications of cytokinins affect plant interactions with pathogens (Ashby 2000; 
Talieva et al. 2001; Yarullina et al. 2001; Walters & McRoberts 2006; Bari & 
Jones 2009). Applying cytokinins to diseased plants has been known to have 
positive effects, including both delayed plant senescence and arrest of pathogen 
development, for several decades. For instance, relationships between effects of 
kinetin, concentrations of applied solutions and fungal developmental stages in 
wheat-Fusarium culmorum interactions were reported in the 1980s (Michniewicz 
et al. 1984). Kinetin has also been shown to diminish the number and size of 
necrotic lesions caused by the necrotrophic fungus Bipolaris sorokiniana on 
barley (Sarhan et al. 1991), and Mills et al. (1986) found that BA pre-treatment 
reduced the size of lesions on cucumber leaves infected by the hemibiotrophic 
fungus Colletotrichum lagenarium. However, some authors have found more 
ambiguous results for biotrophic powdery mildews. For example, Mishina et al. 
(2002) observed increases in the germination rate and formation of abnormal 
appressoria of Golovinomyces cichoracearum following exposure to trans-zeatin 
and kinetin. Further, application of these two cytokinins caused reduction in the 
intensity of conidia germination on infected phlox leaves, but had no significant 
effect on infected barley. Even though application of exogenous cytokinins may 
lead to suppression of pathogen development, or enhancement of plant resistance 
(Sarhan et al. 1991; Mishina et al. 2002); strikingly, the level and activity of 
plants’ endogenous cytokinins may be increased due to the infection process 
(Talieva et al. 2001; Yarullina et al. 2001). Transcriptome analysis of clubroots of 
Arabidopsis plants inoculated by Plasmodiophora brassicae showed that genes 
associated with cytokinin homeostasis (cytokinin synthase IPT3; cytokinin 
oxidase/dehydrogenases CKX1 and CKX6) are strongly down-regulated early in 
pathogen colonization (Siemens et al. 2006). Expression of many genes encoding 
proteins involved in cytokinin signalling was markedly influenced as well, in 
comparison to not inoculated Arabidopsis plants. Moreover transgenic plants 
overexpressing cytokinin oxidase/dehydrogenases (CKX1 and CKX3) were disease 
resistant, clearly indicating the importance of cytokinins as a key factor in clubroot 
disease development (Siemens et al. 2006). Further, various fungal biotrophs  
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 (including oomycete) have been proposed to modify plant metabolism via 
secretion of cytokinins (Ashby 2000; Walters et al. 2008). 

Thus we aimed our study at compatible interactions between lettuce 
(Lactuca sativa L., cv. Cobham Green) and an oomycete pathogen of downy 
mildew (Bremia lactucae Regel). Modifications in the photosynthetic machinery 
in leaf discs of lettuce were studied by chlorophyll fluorescence imaging, in the 
absence and presence of two aromatic cytokinins (BA or mT) and at two levels of 
irradiance (PAPER II). We have demonstrated that the pathogen caused 
accelerated decrease in photosynthetic pigment contents (Figure 15) and induced 
inhibition of PSII and the associated electron transport (Fv/Fm, ΦPSII; Figures 16, 
17). Reduced rate of photosynthesis observed also other authors on various plants 
infected with powdery mildew (Gordon & Duniway 1982; Wright et al. 1995a; 
Lebeda et al. 2008). It seems that mildew infection can inhibit the photosynthetic 
processes by various mechanisms, including lower supply of light energy due to 
covering of the leaf surface by mycelium (Yurina et al. 1996) and inhibition of 
CO2 influx due to stomata closure (Gordon & Duniway 1982). Powdery mildew 
can also affect photosynthesis indirectly, via pathogen-induced changes in source-  

 
Figure 15. Chlorophyll (a + b) and total carotenoid (car) contents in 

control lettuce leaves (left), non-infected leaf discs and discs infected with downy 
mildew, 13 days post inoculation. The discs were incubated under normal and low 
light (100 and 25 µmol m–2 s–1, respectively) in water, DMSO, BA or mT solutions. 
Means and SD are shown, n = 5. 
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Figure 16. Maximum quantum yield of photosystem II photochemistry (Fv/Fm) in 
non-infected lettuce leaf discs and discs infected with downy mildew, 13 days post 
inoculation, incubated under normal and low light (100 and 25 µmol m–2 s–1, 
respectively) in water, DMSO, BA or mT solutions. Medians and quartiles are 
shown, n = 16. 

Figure 17. Steady-state values of the actual quantum yield of photosystem II 
electron transport (ΦPSII) in non-infected lettuce leaf discs and discs infected with 
downy mildew 13 days post inoculation, incubated under normal and low light 
(100 and 25 µmol m–2 s–1, respectively) in water, DMSO, BA or mT solutions. 
Medians and quartiles are shown, n = 8. 
 
sink relations and nutrient remobilization towards infection sites (Scholes et al. 
1994; Wright et al. 1995b; Abood & Lösel 2003). This can result in inhibition of 
the Calvin cycle (Gordon & Duniway 1982; Scholes et al. 1994; Wright et al. 
1995a) and in inhibition of photosynthetic light reactions in thylakoid membranes 
(Magyarosy et al. 1976; Moll et al. 1995). It has been suggested that the down-
regulation of photosynthesis during powdery mildew infection is caused by higher 
activity of cell-wall invertase, which leads to accumulation of hexose sugars 
(Scholes et al. 1994; Wright et al. 1995b; Swarbrick et al. 2006) and subsequently 
to a feed-back inhibition of expression of some photosynthetic genes  
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Figure 18. Extracellular invertase 
activity in non-infected lettuce leaf 
discs and discs infected with 
downy mildew 13 days post 
inoculation, incubated in water, 
DMSO, BA or mT solutions (at 
light of 100 µmol m–2 s–1). The 
mean + SD of 3–4 measurements 
are shown. 
 

 
(especially CAB and rbcS) (Scholes et al. 1994; Fotopoulos et al. 2003; Swarbrick 
et al. 2006). Our results supported the proposed activation of the extracellular 
invertase also by downy mildew (Figure 18) and further reports showed that the 
downy mildew induction of invertase activity resulted in the feedback-inhibition 
of the Calvin cycle and of non-cyclic electron transport as well (Tang et al. 1996; 
Walters & McRoberts 2006).  

The exogenous application of both cytokinins used in our experiments had 
a dual effect. In infected tissues it retarded downy mildew development and 
restored functionality of photosynthetic processes; in healthy tissues, however, it 
impaired photosynthetic parameters similar to downy mildew infection. Our 
experiments have indicated that these contradictory results might have been 
explained by the cytokinin induction of extracellular invertase activity (Figure 18) 
and consequent increased hexose accumulation (see Chapter 3.2 Light influences 
the result of cytokinin action and vice versa). Our premise is supported by findings 
of Ehness, Roitsch, Lara and their other colleagues (Ehness & Roitsch 1997; Lara 
et al. 2004). Thus, cytokinins and the pathogen acting separately had similar 
effects. Nevertheless, contact of the pathogen with exogenously applied cytokinins 
suppressed the pathogen growth and consequently the negative effects of 
infection. External applications of cytokinins may thus suppress the pathogen-
driven relocation of carbohydrates and conserve energy in infected plants. Our 
experiments have shown that the exogenous cytokinin suppressed downy mildew 
sporulation only if applied prior to inoculation (24 h) and in concentrations as high 
as 2×10–4 M. This prerequisite together with the negative effect of such cytokinin 
concentrations in non-infected tissues reduces potential utility of cytokinin sprays 
in field conditions. 
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4.3 Low temperature stress  

Many researches were concentrated on the effect of ABA on cold 
resistance (Gusta et al. 2005; Kim 2007), but less is known of effects of 
cytokinins as well as of the other plant growth regulators on cold resistance. 
Nevertheless, the fact that low temperature often induces fast decrease in the 
shoot cytokinin content reflects possible significance of cytokinin in the cold 
acclimation. A dramatic decrease in the content of endogenous zeatin-type 
cytokinins, both in the apical shoot tissues and in the xylem sap after chilling 
treatment observed e.g. Lejeune et al. (1998)  in a cold sensitive maize (Zea mays 
L.). Low temperature stress strongly reduced the cytokinin content also in chilling 
sensitive plants of Euphorbia pulcherrima, while in chilling tolerant plants was 
observed only a slight drop (Tantau & Dorffling 1991). Decrease in the cytokinin 
content was also observed on wheat plants shortly after the start of root cooling 
(Veselov et al. 2002; Veselova et al. 2005; 2006). With presumable mechanism of 
the cytokinin decrease came Veselova et al. (2005; 2006) who suggested that such 
a fast decrease in cytokinin content was caused mainly by their degradation by 
cytokinin oxidase/dehydrogenase and further by their lower export rate from 
chilled roots (Veselova et al. 2005; 2006). Furthermore, Li et al. (2000) 
concluded that lower levels of active cytokinins under cold stress may have 
resulted from its conjugation by zeatin O-glycosyltransferases which they 
observed to accumulate in Phaseolus vulgaris and Zea mays seedlings under cold 
stress. Despite the most often observed drop in cytokinin level under cold 
treatment, there exists evidence of another tendency. One day low temperature 
treatment did not significantly change the total amount of cytokinins (Z, iP, DZ) 
in Arabidopsis plants (Todorova et al. 2005); however, the decrease in total 
amount of cytokinins was observed after 24 h of recovery under normal growth 
conditions, and after 2 and 5 day recovery of these plants there were observed 
marked increases in the cytokinin contents (Todorova et al. 2005).  

Other publications document consequences of cytokinin treatment in cold 
tolerance. Exogenous application of cytokinins on beans (Taspinar et al. 2009), 
sugarbeet (Dix et al. 1994) or Manila grass (Wang et al. 2009), as well as the 
enhanced levels of endogenous cytokinin in ipt-transgenic tall fescue (Hu et al. 
2005) resulted in enhanced cold tolerance. On the other hand, application of BA 
on woody plants of saskatoon berry markedly decreased their cold hardiness 
(Baldwin et al. 1998). A negative effect of cytokinin application observed also 
Veselova and her colleagues. The chilling induced decrease in shoot endogenous 
cytokinin content may have been responsible for observed closing of stomata in 
wheat seedlings (Veselova et al. 2005; 2006). Pre-treatment with synthetic 
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cytokinin BA albeit slowed the decline in the transpiration of plants with cooled 
roots, however, consequently it brought about a visible loss of turgor and wilting 
(Veselova et al. 2005). Turner et al. (2001) studied the effects of plant growth 
regulators on survival, recovery and post-recovery growth of the Anigozanthos 
viridis shoot apices following cryopreservation. They observed that survival of 
shoot apices was not correlated to cytokinin treatments administered in culture 
media prior to cryostorage. In recovery media, the application of cytokinins in 
combination with a gibberellin (GA(3)) was appropriate for obtaining vigorously 
growing plantlets following cryopreservation. This combination proved to be 
more effective than basal medium, or trans-zeatin and kinetin acting separately 
(Turner et al. 2001). 

Further positive effects of cytokinins during the cold treatment were 
observed on plant growth. Low temperature restrains plant growth of Arabidopsis 
thaliana by a prolonged duration of cell cycle. During the cold treatment, both 
amp1 plants with an elevated cytokinin level, and wild-type plants treated with 
exogenous cytokinins, displayed relative growth rates greater than untreated wild-
type plants due to an increase in the total cell number (Xia et al. 2009). Chilling 
treatment given just before the floral transition caused the topmost ear abortion 
and replacing by a sterile, leaf-like structure. Exogenous application of BA 
prevented the abortive response caused by chilling (Lejeune et al. 1998).  

To sum up, cytokinins may have a potential for increasing plant yield 
under low temperature conditions. Photosynthesis, being a source of plant energy, 
belongs to the most required processes for plant growth. Although chloroplasts 
come under the main targets of cytokinin action, studies on the effects of 
cytokinins on photosynthetic apparatus during cold stress and acclimation are 
very limited. Accordingly, the next goal of my work was an investigation of 
chloroplasts modifications during low temperature acclimation, and consequently 
the influence of cytokinins on it. On the basis of our investigation (PAPER III) we 
came to a conclusion that the function of photosynthetic pigment protein 
complexes (PSI and PSII) depends on physical properties as well as on the lipid 
composition of thylakoid membrane, both of which are affected by low 
temperature. We demonstrated that cold treatment induced a decrease in the 
content of a non-bilayer forming lipid monogalactosyl-diacylglycerol (MGDG) in 
thylakoid membranes of Arabidopsis thaliana (Figure 19). The fact that 
accumulation of this galactolipid requires cytokinins in addition to light 
(Yamaryo et al. 2003; Qi et al. 2004) suggests that cytokinins can also influence 
photosynthetic machinery in this way. Nevertheless, as far as I know there have  
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Figure 19. Monogalactosyl-diacylglycerol (MGDG) mole fraction of the total 
lipid content of chloroplast isolated from Arabidopsis thaliana plants subjected to 
cold acclimation. MGDG/(PG+DGDG+SQDG) represents the ratio of non-
bilayer-to-bilayer-forming lipids in chloroplasts (PG, phosphatidylglycerol; 
DGDG, digalactosyl-diacylglycerol; SQDG, sulfoquinovosyldiacylglycerol). Each 
point is the mean ± SE of three or four individual determinations. 

 
not been published any closer relationships between cytokinins and 
photosynthetic function during cold acclimation yet. Thus investigation pointed at 
this direction may contribute considerably to our knowledge.  

 

4.4 Conclusion 

The molecular mechanism of cytokinin action has not been fully 
understood yet and gaps in our knowledge project questions in the field of 
cytokinin influence over plants dealing with stress conditions as well. Although 
drought stress belongs to the best documented adverse environmental conditions 
in connection with cytokinins there still remain a lot of questions to be answered. 
Nevertheless, it seems that cytokinin application may help agriculturalists to 
reduce losses caused by drought. 

Cytokinin applications seem to be promising also for reduction of losses 
caused by pathogenic invasions. Our results, however, showed that the conditions 
needed for successful inhibition of pathogen growth (requirement of high 
cytokinin concentration together with the necessity of cytokinin application 
preceding the inoculation) highly reduce the possible utility of cytokinins as 
disease control agents, at least for lettuce (Lactuca sativa L.) endangered by the 
biotrophic oomycete pathogen Bremia lactucae Regel (PAPER II).  

There exists evidence of the positive effect of cytokinin application on 
plant cold hardiness but studies concerning this topic are limited. Thus, 
investigation focused on cytokinin influence on plants suffering cold stress may 
bring new results with implications for agronomists. From a few available reports 
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on cytokinin effects on chloroplasts during cold stress it is obvious that cytokinins 
can influence lipid composition of thylakoid membranes. Thus, my further 
research aimed initially at changes in thylakoid membrane properties during low 
temperature treatment (PAPER III). I have also performed some pre-experiments 
pointed at the influence of endogenously elevated cytokinin level on cold 
acclimation; however, there is still a long way before I can contrive the results 
into a publishable shape. And here I also see one of exciting challenges for my 
future work. 
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6 Summary 
 
PAPER I 

What does trigger the cytokinin-mediated acceleration of plant senescence? 
Cytokinins comprise regulators of plant growth that are well known for their 
ability to delay or slow down plant or leaf ageing, senescence. However, there 
emerge pieces of evidence that cytokinin application may cause an acceleration of 
senescence. We went through the literature and came to a conclusion that this 
reversal of cytokinin action could be connected with the application of cytokinins 
of high concentration and/or with the exposition of treated leaf to high light doses. 
The results of our experiment with detached wheat leaves treated with a cytokinin 
meta-topolin kept under continuous light or in darkness confirmed our 
presumption. We propose that the protective meta-topolin action in darkness 
becomes damaging in continuous light due to a feed-back inhibition of 
photosynthesis. Meta-topolin albeit preserved photosynthetic function but its 
coincidence with continuous irradiation led sequentially to an inordinate 
accumulation of assimilates, the feed-back inhibition of photosynthesis, PSII 
overexcitation and to induction of oxidative damage. 
 
 
PAPER II 

Could cytokinins serve as protecting agents against the pathogen infection? 
There exist indications that cytokinin application could play a considerable role in 
reduction of losses caused by pathogenic invasions. Desiring to answer this 
question, we investigated the effect of two aromatic cytokinins; benzyladenine 
and meta-topolin, on the pathogenesis of downy mildew (Bremia lactucae Regel) 
in leaf discs of lettuce. Our results showed that cytokinins retarded B. lactucae 
development and restored host photosynthetic function; however, for successful 
inhibition of pathogen growth were required high concentrations of cytokinin 
solutions (2×10–4 M) and cytokinin application must have preceded the 
inoculation. When these high cytokinin concentrations encountered healthy 
tissues, after few days they induced impairment of photosynthetic apparatus 
similar to that caused by downy mildew infection. Thus we came to a conclusion 
that cytokinins probably would not be appropriate protectors against pathogen 
infection, at least not for lettuce endangered by downy mildew. Our results further 
revealed that the affect of both cytokinins and downy mildew on photosynthesis 
could be connected with enhanced activity of extracellular invertase. The 
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invertase activation, mediated by downy mildew or by applied cytokinin, led to 
the hexose accumulation and consequently to a feedback-inhibition of 
photosynthesis. This effect of cytokinins on invertase activity could at least 
partially explain the feed-back inhibition of photosynthesis observed previously in 
PAPER I. Very interesting is the fact that although both cytokinins and downy 
mildew acting separately induced the invertase activity (in comparison to 
cytokinin untreated healthy leaf discs), under their coincidence the increase was 
not ascertained. 
 
 
PAPER III 

How plants deal with low temperature strongly depends on the lipid composition 
of thylakoid membrane. 
Only very little is known about the effects of cytokinins on plants exposed to low 
temperatures. Few reports demonstrated that cytokinins (either exogenously 
applied or endogenously elevated in ipt-transgenic plants) induced cold hardiness 
and that they might function via their influence on lipid composition of thylakoid 
membrane. We decided to investigate the thylakoid membrane of Arabidopsis 
thaliana wild-type and dgd1 mutant lacking more than 90% of one of the major 
galactolipids of the chloroplast – digalactosyl-diacylglycerol (DGDG). The warm 
grown dgd1 mutant showed markedly lower total chlorophyll and carotenoid 
contents and much reduced capacity for electron transport away from 
photosystem II. During cold acclimation, however, the dgd1 leaves recovered the 
pigment-protein polls and photosynthetic function equivalent to wild-type plants. 
Surprisingly, this recovery was not correlated with an increase in DGDG. When 
returned to warm temperatures the severe dgd1 phenotype reappeared. We 
conclude that the relative recovery of photosynthetic activity at 5 °C resulted from 
a temperature/lipid interaction enabling the stable assembly of photosystem I 
complexes in the thylakoid. Cytokinins were reported to take part in the formation 
of thylakoid galactolipids, thus now it remains for future research to establish 
their role during cold hardening.  
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