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Last, but not least, I would like to thank to all my friends, who supported and
helped me throughout my studies and my stay in Belgium. Namely : Janča a Rosťa,
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Abstrakt : Tato práce je zaměřena na rozhrańı (0001) α-Fe2O3 (he-

matit) v kombinaci s (111) platinou jako možným ma-
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Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Theoretical Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2. Exchange-Correlation Functionals . . . . . . . . . . . . . . . . 16

2.3. Computational Chemistry . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1. Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2. Pseudopotentials and PAW . . . . . . . . . . . . . . . . . . . 20

2.3.3. Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3. Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1. Bulk Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. Slabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3. Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4. Pt-doped Hematite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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1. Introduction

It is now a widely accepted fact that human activity causes global warming.

Humankind in its current phase grows rapidly, using modern technologies invented

in the last few decades. Not so long time ago, the total number of people reached

seven billion, and it is not going to stop there. An increasing population means a

growing demand for energy as one of the main pillars of modern society and this

problem concerns numerous scientific groups around the globe. New, renewable and

effective energy providing methods are necessary to sustain the growth since the

burning of fossil fuels is one of the causes of global warming.

Several renewable energy sources are known nowadays. Yet, mastering the energy

harvesting methods is not a simple task. Truly promising, although challenging is the

conversion of solar energy. The Sun provides our planet with an enormous amount

of energy. Nature figured out a way to collect it and convert it into chemical energy

in the form of chemical bonds. Now, the man tries to copy the work of nature

once again for his own use. Scientists are currently on a good starting point in this

pursuit of “free” energy. They know perfectly the theory behind the processes of

photosynthesis and with all the modern tools, they also succeeded in the creation

of various devices [1, 2]. This achievement opened different ways of solar energy

conversion. However, they all have common requirements. In order for them to be

widely applied, the devices must be cost-effective, efficient and nature-friendly. A

promising solution is a photoelectrochemical (PEC) water splitting method [3–6],

which uses the energy of photons to break water molecules into hydrogen and oxygen

gases. These can then be used to generate electricity in hydrogen-fuel cells. A scheme

of a PEC cell is illustrated in figure 1.

The crucial part of PEC cells is the construction of the photo-electrodes, where

photoinduced electron-hole pairs are created. Photo-electrodes are semiconductors

with a desirable width of bandgap, together with the required position of the gap

compared to the normal hydrogen electrode (NHE). The bandgap must be greater

than the potential of O2/H2O, which is 1.23 V against the NHE at pH=0. The

optimal position of the bandgap is so that the standard potentials of both half

reactions lie within the gap. Otherwise, bias voltage must be applied in order to

shift the positions of valence and conductive bands. If the material fulfils these
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Figure 1 – Scheme showing the processes during PEC water splitting. The yellow ho-
rizontal dashed lines illustrate redox potentials for O2/H2O (lower) and 2H+/H2 (upper),
respectively. EC and EV denote conductive and valence band, respectively. EF is the Fermi
level. Here the photo-active electrode is an anode, where the holes migrate onto the surface
and oxidize water molecules into oxygen molecules. This reaction is called oxygen evolution
reaction (OER). Reprinted from ref. [5]

requirements, it should also be a good absorber, meaning that it absorbs a wide

part of the spectrum for higher photon-to-electron conversion yield. Other important

factors describing the material’s suitability are surface catalytic properties, electron-

hole recombination rate, electric conductivity, stability and price. While the perfect

material satisfying all abovementioned requirements for the best performance stays

undiscovered, various known materials can be modified and combined resulting in

higher efficiency.

One material, in particular, receives high attention of the scientific community

for its obvious benefits. It is the most stable iron oxide - α-hematite. It is naturally

abundant, non-toxic and offers suitable bandgap of 2.2 eV [3]. Despite its numerous

drawbacks (bandgap position, low hole diffusion length, high electron-hole recom-

bination, low oxidation kinetics), it seems to be a possible candidate with high

potential for photoanode material. It is due to the fact that most of the drawbacks

can be suppressed in some way. Probably the most serious problems are low hole

diffusion length (∼5-10 nm), high electron-hole recombination rate and low conduc-

tivity. These effects are linked together and can be explained by the presence of

surface trap states [7–9]. The hole diffusion towards the surface is a key factor for a
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successful OER. Its low value limits the effective thickness of the hematite layer to

few nanometers but even the optimal thickness does not ensure effective migration

of holes into the electrolyte. The surface trap states are the reason for that. Several

ways of overcoming this sluggish migration were proposed [10, 11], including passi-

vation, doping or adding a layer of co-catalyst. On the other side of the hematite

layer, electrons are required to migrate towards the conductive back contact, which

leads them towards cathode for H+ reduction. Here the connection between hematite

and the conductive scaffolding is crucial in order to maximize the electron trans-

port. Therefore, any trap states at the interface are undesirable while a conductive

interface helps to increase the electron migration.

This work studies the influence of platinum layer as a potential substrate for

hematite, reducing electron-hole recombination rate. The aim of this research is to

provide theoretical support for experiments on this photoanode material and to des-

cribe the observed behaviour on an atomistic level. It was found out by an ongoing

experiment [12], that hematite shows superior properties when grown on a plati-

num substrate in comparison with other, more complex substrates, e.g. widely used

fluorine-doped tin oxide FTO. In order to provide deeper insights into the questions

from the experiment, we conducted a thorough analysis of the interface, looking

into structural changes and electronic properties arising from the heterojunction.

We employed density functional theory (DFT) simulations to describe the electro-

nic structure and structural properties of interest. Spin-polarized calculations with

projector augmented wave (PAW) formalism were carried out using the Vienna Ab-

initio Simulation Package (VASP). This work is divided into four parts. Firstly, the

bulk structure of hematite and platinum were modelled in order to get a base for

further calculations. The calculations parameters were tested in a convergence study

on these bulk materials. Electronic properties under investigation were the density

of states (DOS), bandstructure and Bader charge analysis. Magnetic properties of

hematite were also included. Secondly, thin layers (slabs) were modelled to represent

the surfaces of both materials. Workfunction was calculated herein to broaden the

analysis and local DOS (LDOS) are presented to better understand the electronic

changes with the creation of the surface. LDOS here was layer and orbital-resolved

to maximally illustrate the electronic structure. Geometry changes were evaluated
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using the mean absolute percentage error (MAPE). In the third part, the hematite

and platinum layers formed a heterostructure. The detailed study of properties of

the interface is presented and discussed here using the same evaluation procedure

as for slabs. The data obtained were compared with both slab and bulk results.

In the fourth part, a Pt-doped hematite surface was studied as a possible surface

modification towards better PEC performance.
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2. Theoretical Part

2.1. Quantum Mechanics

During the late 19th century, there seemed to be little left to be discovered

in physics. Newton’s equations of motion together with Maxwell’s electrodynamics

seemed satisfactory for the description of the world’s problems. Nonetheless, a great

commotion was on the doorstep with experiments on the radiation of the black

body and photo-electric effect. Max Planck came first with the idea of quantized

energy. Although his findings supported the measurements of the radiation of the

black body, this theory was too revolutionary and it has not been given enough

recognition. It was later when Albert Einstein studied the photoelectric effect. He

used Planck’s findings of quantized energy to explain the experiment and realized,

that not only it gave the explanation, but he also obtained the same value of Planck’s

constant. This was the first sign that there was still a lot to be discovered in physics.

Einstein described light as particles and found out that this particle has zero rest

mass. With his findings and Planck’s formula, he formulated equation 1 :

E = hν, (1)

which says that the quantum of energy is proportional to the frequency of the wave

and Planck constant. Louis de Broglie expressed the wavelength through Einstein

equation for relativistic energy and Einstein-Planck equation (eq. 1), yielding the

de Broglie wavelength :

E = mc2 = hν =
hc

λ
λ =

h

mc
=
h

p
. (2)

Through this relation, de Broglie postulated that every particle with momentum has

also its wavelength. This was the beginning of the theory that we nowadays know

as the wave-particle duality. The idea of energy having only discrete values did not

commute with classical mechanics and therefore there needed to be a way to connect

them. The foundation of quantum mechanics was laid by Erwin Schrödinger who

formulated the time-dependent Schrödinger equation (eq. 3) which describes the
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evolution of a system in time.

i~
d

dt
Ψ(t) = ĤΨ(t). (3)

In order to describe stationary states of the system, we can derive the time-independent

Schrödinger equation which has the following form :

ĤΨ = EΨ. (4)

In eq. 4 Ĥ is the Hamiltonian operator acting on the wavefunction Ψ. The wavefunc-

tion is also sometimes called the state and it is the eigenfunction of Ĥ. Its eigenvalue

is then the energy of the particular state. Each state can result in several energies

from which the lowest one describes the ground state of the system. If we solve eq.

4 numerically, we obtain the ground state. For that, we need to know the form of

Ĥ. Since the observable quantity represented by Hamiltonian is energy, it consists

of kinetic T̂ and potential V̂ energy operators (eq. 5).

Ĥ = T̂ + V̂ (5)

Both operators for kinetic and potential energy act on all particles i in the system

as shown in eq. 6-7

T̂i =
−}
2mi

∆i =
−}
2mi

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)
(6)

V̂ = V̂NN+V̂Ne+V̂ee =
1

4πε0

(∑
i

∑
i′>i

ZiZi′e
2

|Ri −Ri′ |
+
∑
i

∑
j

Zie
2

|Ri − rj|
+
∑
j

∑
j′>j

e2

|rj − rj′|

)
(7)

Lower indexes NN , Ne and ee denote potential energy between two nuclei, nucleus

and electron and between two electrons, respectively. Schrödinger equation can be

solved analytically only for the hydrogen atom where we consider the interaction

between a proton and an electron. We can separate independent variables and inter-

pret the molecular Hamiltonian as the sum of two separate Hamiltonians for nuclei

and electrons. The separation of these two Hamiltonians is justified by the Born-

Oppenheimer approximation (BOA) which simplifies the solution without significant
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error. The electronic Hamiltonian can be solved independently because the mass of

a nucleus is much higher than that of an electron, thus electrons move much faster

than nuclei and the nuclear motion is taken as independent of the electronic motion.

Then we solve the electronic wavefunction for every nuclear geometry and the total

wavefunction is given by the product of the electronic and nuclear wavefunctions. For

any system with more than one electron, the wavefunction cannot be solved analyti-

cally and we must accept further approximations. The total electronic wavefunction

can be approximately described as a product of one-electron wavefunctions. This ap-

proximation gives rise to an error originating in the neglection of electron-electron

interaction. This is due to the fact that all the electrons in the system are corre-

lated and their dynamics are dependent on each other. There are several methods

for calculating wavefunctions using the variational principle and solving correlation

energy afterwards. These methods are called ab-initio because, in the beginning,

they need only physical constants like mass fo electron, Planck’s constant etc. They

can be really precise but the computational cost is so high that they can be used

only for small systems. Further problem is that some of these methods are not size

consistent, which means that for larger systems one needs even more demanding

calculations. The limitation of methods based on wavefunction solutions is precision

versus applicability in the meaning of the size of the system. Nonetheless, there is

another method of how to calculate the total energy of the system without solving

the electronic wavefunction. This method is using electron density instead and thus

is called density functional theory. This method is described in the next chapter.

2.2. Density Functional Theory

Density functional theory, or DFT in short, is a widely used go-to method for

the electronic structure of larger systems [13, 14]. It is a function of 3 coordinates

for density ρ(r) while wavefunction methods are functions of 3N coordinates.

ρ(r) = N

∫
|Ψ(r1, r2, ..., rN)|2dr2...drN (8)
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ρ(r) represents the probability of finding any electron in dr. It is a natural number

and the probability is normalized such as :

∫
ρdr = N. (9)

Calculating electron density instead of the electronic wavefunction allows us to solve

the electronic structure on a larger scale with higher chemical interest. The precision

is based on the functional used which will be discussed later in this chapter.

The foundation of DFT was published in 1964 by Hohenberg and Kohn [15]

who presented two theorems giving DFT physical robustness. First one states :

“The external potential Vext(r) is (to within a constant) a unique functional of ρ(r) ;

since, in turn Vext(r) fixes Ĥ we see that the full many particle ground state is a

unique functional of ρ(r).” Here the Vext(r) is in term of Hamiltonian the interaction

of electrons with Coulombic potential of nuclei. This is the only contribution to the

Hamiltonian which does not come solely from electrons (V̂NN equals to a constant

in BOA) and thus it determines the Hamiltonian. Another important consequence

from this theorem is that the true electronic ground state is a functional of the

electron density ρ(r) so we can write :

E0[ρ0] = T [ρ0] + Vee[ρ0] + Vext[ρ0]. (10)

The external potential can be simplified into a one-electron term because the exter-

nal potential is the same for each electron. The first two terms are functionals of

electrons and they can be written together as Hohenberg-Kohn functional. We can

then rewrite eq. 10 as follows :

E0[ρ0] = FHK [ρ0] +

∫
ρ0(r)VNedr. (11)

Here the problem is the FHK because we do not know its correct form.

Even if we did know its correct form we still miss the correct electron density.

The second Hohenberg-Kohn theorem helps on finding the electron density : “For a

given Vext there is a given electron density ρ0. Then for any other electron density

14



ρ
′

the energy will be higher.” This can be written as

E[ρ0] < E[ρ
′
]. (12)

This is nothing else than a variational principle which allows us to change the elec-

tron density until we find the ground state. Here we have the manual on how to find

the correct electron density, but the correct functional is still a mystery. The first

idea of how to construct the functional came one year later in a work by Kohn and

Sham.

2.2.1. Kohn-Sham Equations

Kohn and Sham [16] presented one-electron wavefunctions for non-interacting

system :

FKSϕi = εiϕi, (13)

where FKS is a Kohn-Sham functional :

FKS = −1

2
∆i + Vs(r). (14)

Here Vs(r) is the potential of the non-interacting system. In order to find the po-

tential we write the energy functional for our real system :

E[ρ(r)] = Tn[ρ] + J [ρ] + FXC [ρ] +

∫
VNeρ(r)dr. (15)

Tn[ρ] is kinetic energy of non-interacting system, J [ρ] is coulombic interaction,

VNeρ(r)dr is the external potential and FXC [ρ] is the exchange-correlation func-

tional which contains everything we do not know :

FXC [ρ] = T [ρ]− Tn[ρ] + Vee[ρ]− J [ρ]. (16)

The form of the exchange-correlation functional is unknown, and its approximations

will be discussed in the next chapter. If we now apply the variational principle to

eq. 15 to find the energies of one-electron wavefunctions [17] (orbitals), we see that

15



they are the same as Kohn-Sham equations. We now find the form of Vs(r) as

Vs(r) =

∫
ρ(r2)

r12
dr2 −

M∑
A

ZA
r1A

+ VXC(r1). (17)

Once we know all terms in eq. 17, we can insert the Vs(r) into the one-electron

wavefunctions, that give us the ground state orbitals, thus the ground state electron

density which we can then insert into eq. 15 and get the ground-state energy. The

only problem is still the VXC , which is simply defined as

VXC =
δEXC
δρ

, (18)

which says that the exchange-correlation potential is a functional derivative of

exchange-correlation functional and thus has to be solved iteratively with respect

to energy. This procedure is based on the variational principle (eq. 12), and the

method is called the self-consistent field (SCF). Because we are unable to solve the

Hamiltonian directly, we take the road of guess and adjust. The general scheme of

the SCF method is shown in figure 2. Based on the input geometry, an initial guess

for wavefunction is used for density calculation. This guess density is then used to

solve the Hamiltonian and to produce a new density, which reacts to the potential of

the previous density. Then the comparison between the initial and current density

is done based on our criterion. If the change is small enough, the SCF loop ends.

Otherwise, it goes back to solve the Hamiltonian.

2.2.2. Exchange-Correlation Functionals

As stated above, we do not know the form of the FXC . Hence we try to substi-

tute it with other known parameters which we can calculate. There is a vast amount

of various functionals, and some can reach high accuracy and agreement with ex-

periments. Yet, there is none that can be used universally with desired precision.

The problem with universal correctness is simple. Developers of these functionals

form them in such a way, so they work well for their systems. A good functional for

metals does not have to work well for organic compounds etc. This is also caused

by the fact that the functional includes a part of error compensation arising from

approximations in the potential and kinetic energy terms, and these errors are not
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Figure 2 – The algorithm for the SCF method.

consistent throughout different systems.

The exchange-correlation functional can be expressed in the form of expansion

into a series of density gradients. Leaving a zero-order term in the expansion leads

to the approximation of local density known as the LDA. Including terms of hi-

gher orders generates further approximations, by definition more precise than the

LDA. They are namely : generalized gradient approximation (GGA), meta-GGA

and hybrid functionals, which is a specific case discussed below. LDA deals only

with the electron density at the point of interrest [18]. It is applicable for systems

with homogeneous density, i.e. solid state physics, but gives a high error for systems

of chemical interest. The improvement towards more universal usage (systems with

non-homogeneous density), is made by the GGA, i.e. GGA includes a dependence of

the exchange-correlation functional on the local gradient of the electron density [19].

Functionals using GGA give better results in molecular systems and ground-state

calculations, than those based on LDA. Functionals from the GGA family are widely

used for their balance between accuracy and affordable computational needs, which
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allows the study of large systems including hundreds of atoms. Next approximation

following GGA, is the meta-GGA, which depends on the Laplacian and the deriva-

tion of the kinetic energy of the electron density [20]. A further approximation is a

hybrid functional method [21], which includes part of HF energy together with DFT.

These functionals can give results of a great agreement with experiments however,

they are not universal. It is because the ratio between HF and DFT is mixed just

so it matches the property of interest. Then, the certain ratio of HF and DFT for

a precise description of bandgap may fail for optimization of bond lengths or other

parameters. The reason behind including HF is that HF method gives the exact

exchange energy. The correlation functional is built in such a way, that it cancels

part of the error arising from the approximate exchange functional (in DFT). Then,

if the exchange functional is described purely by HF exchange, the total error would

not be necessarily smaller than with pure DFT, thus only a part of HF is used in the

exchange functional. The ratio between HF and DFT differs, e.g. 25 % HF and 75

% PBE is used in HSE06 functional. Hybrids have higher computational demands

but give usually better results than GGA.

DFT can be widely used to study the electronic structure with great success but

fails to describe accurately the bandstructure of Mott insulators. Hendrik de Boer

and Verwey noticed in 1937 [22], that some transition metal oxides, predicted to be

conductors, are, in fact, insulators. After this, Mott suggested, that this is due to

the electron-electron interactions [23,24], which are not covered in the tight-binding

model. The Hamiltonian contains only a transfer integral in the kinetic term, which

describes hopping of electrons between atoms during conduction but it does not in-

clude electron-electron interactions. Electrons are located at their atoms and strong

Coulomb repulsion hinders hopping. These materials are strongly correlated, and

their properties have to be described with other methods. One of the simplest ways

of correcting this failure of DFT was presented in the 1960s by John Hubbard [25].

Hubbard model contains a potential term with on-site interactions in the Hamilto-

nian, which improves the strong correlation of electrons in Mott insulators.
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2.3. Computational Chemistry

As mentioned above, the wavefunction and/or electron density of the ground

state unambiguously describes observable properties of the system. The physical

foundation was presented in previous chapters while important parameters and fur-

ther approximations with their applications are described herein. With the develop-

ment of computers and quantum mechanics, it became possible to study materials

on a sub-atomic level. Computational chemistry is based on a physical description

of the system, which results in observable chemical properties.

2.3.1. Basis sets

In order to simplify the operations on wavefunction, we represent the wavefunc-

tion by a set of known functions. These functions are then called basis sets and differ

with the area of use. For chemistry, the basis functions are usually atomic orbitals

(AOs), which then produce molecular orbitals (MO) through linear combination.

This method is well known to chemists as the MO-LCAO method. Atomic orbitals

can be represented using various functions, for example Gaussians, centered at the

atomic nuclei. Several variations of basis sets [26, 27] using AO were developed to

increase the accuracy and to sufficiently describe the behaviour of the system (e.g.

polarizability [28]). Another way of substituting the electronic wavefunction is a

set of plane-waves. The plane-wave representation has several advantages against

AOs, especially in solid-state physics. It is due to the fact that calculations on

3-dimensional periodic systems, such as crystals, can be performed much more effi-

ciently using plane-waves [29]. The main reason to that is the Bloch’s theorem [30]

which says that in a periodic potencial of nuclei (periodic crystal lattice) the electron

potential is also periodic. Then the electronic wavefunction is identical to the Bloch

wave which is simply said a plane-wave multiplied by a periodic function (wavevec-

tor). This periodic function represents the periodicity of the crystal and thus extends

the plane wave through the lattice. The accuracy of the AOs is based on the number

of functions that describe each AO. In the plane-waves basis sets, their number and

so the accuracy of the calculation is governed by the energy cut-off. It has to be

specified in the calculation and the basis set includes all the plane-waves with their

energy up to the cut-off. The electronic wavefunction is then a Fourier transfor of
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the plane-waves. The expansion of the electronic wave functions in plane waves is

computationally very efficient : fast Fourier transofrm (FFT) allows a change from a

real-space (the potential energy is diagonal), to momentum-space (the kinetic energy

is diagonal).

2.3.2. Pseudopotentials and PAW

As shown earlier, the total electron wavefunction is a product of one-electron

wavefunctions solved for each electron in the system. This means that for heavier

atoms more wavefunctions have to be solved. In order to truncate the number of elec-

trons, we can focus only on valence electrons, which are of the highest interest, and

replace the core electrons with a representative potential. This approximation is cal-

led frozen core and is also often called as pseudopotential (PP) approximation [31].

The idea behind frozen core potential comes from the complexity of the oscilating

wavefucntion of core electrons. Inner electrons are much closer to the nucleus than

valence electrons and thus exhibit stronger interaction. The wavefunctions then os-

cilate rapidly (fig. 3 - blue Ψ) because of the requirement of their orthogonality.

Pseudopotentials are calculated on isolated atoms and the inner region, limited by

distance rc, is represented by smooth function. The outer region is identical to va-

lence electrons potential and the two functions are matched in value and derivation

at the rc point. This approximation effectively lowers the computational costs, but

lowers the accuracy and brings numerous parameters into the calculation.

An accurate method for description of all-electron system is linearized augmented

plane-wave (LAPW). The unit cell is divided into non-overlapping atom-centered

spheres and interstitial space between these spheres. Inside the spheres, atomic-

like functions describe the all-electron system. The interstitial space is described by

LAPWs which connect the functions inside each sphere. In comparison with PP the

LAPW method reaches higher accuracy by including all electrons in the calculation

which in turn results into more demanding calculations.

In 1994, Blöchl generalized both abovementioned methods into one [33]. His work

presented the projector-augmented wave (PAW) method which allows the use of fro-

zen core pseudopotentials with higher accuracy. It is achieved through transforma-

tion of pseudo wavefunction into all electron wavefunction with projector function.
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Figure 3 – Illustration of the difference between pseudopotential, Vpseudo, and real po-
tential (blue), as well as pseudo wavefunction and real wavefucntion, red and blue Ψ.
Reprinted from ref. [32]

This transformation happens only inside the cut-off radius, similarly to PP core

region. Outside of the core region the wavefunctions of PP and LAPW are identi-

cal. The result of this transformation is effectivity of PP and accuracy of LAPW.

Smoother wavefunction requires lower cut-off energy for the basis set i.e. the highest

frequency in Fourier transform. For effective calculations of solid state problems [34],

Kresse and Joubert [35] presented a way to implement plane-waves into the PAW

method.

2.3.3. Reciprocal Lattice

In the case of periodic structures, i.e. crystals, it is usefull to perform the calcu-

lations in the reciprocal space where it is easier to implement Bloch’s theorem and

symmetry [36]. A reciprocal space is a Fourier transform of a real space and is also

called a k -space. The reciprocal space is especially usefull for diffraction and band

theory, which is explained by Laue and Brillouin. First we need to define the reci-

procal lattice with respect to the real (direct) lattice. In crystalography, any lattice

can be described as a Bravais lattice, giving the minimal image of the crystal, which
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can be periodically transformed into an infinite crystal. It is defined by :

R = u1a1 + u2a2 + u3a3, (19)

where R is a position vector, ui are integers and ai are primitive vectors of given

lattice. Similarly the reciprocal position vector is written as

G = v1b1 + v2b2 + v3b3 (20)

where vi are integers, and bi are reciprocal lattice vectors. The relation between

primitive and reciprocal vectors is

bi · aj = 2πδij (21)

and δij = 1 if i = j and δij = 0 if i 6= j. Laue showed the geometrical representation

of diffraction theory by Laue’s equations :

a1 ·∆k = 2πv1 a2·∆k = 2πv2 a3 ·∆k = 2πv3

for ∆k = G
(22)

where ∆k is scattering vector. It gives the diffraction conditions based on the lat-

tice vectors. Brillouin further stated the diffraction conditions in the description of

electron band theory. The first step is construction of Brillouin zone. It is defined

as a Wigner-Seitz primitive cell in the reciprocal lattice. The first Brillouin zone is

the smallest volume entirely enclosed by planes that are the perpendicular bisectors

of the reciprocal lattice vectors drawn from the origin. Then any wave whose wave-

vector drawn from the origin terminates on the surface of the Brillouin zone will be

diffracted. These characteristics of the reciprocal space explain why is it usefull to

calculate for example electron band-structure in reciprocal rather than in real space.

Bloch’s theorem together with Brillouin zone support the concept of the electron

band structure. The band structure is a consequence of Pauli exclusion principle

which says that two electrons cannot occupy an orbital with the same energy. And

in crystals, there are N ∼ 1023 electrons that must occupy orbitals of different ener-

gies. Then, the accessible energies are not a discrete lines like in atoms but rather
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a continuum of states. Then electrons with similar energy, or we can say similar

wavevector occupy same band. The band-structure allows us to see if the material is

a metal, an insulator or rather a semiconductor with direct or indirect bandgap. In

order to be able to visualize the band-structure we need to specify the path along

k -points of interest with enough steps between them. K -points are high symmetry

points (or critical points) in the first Brillouin zone and we can visualize only the

values of energy along the line from one point to another. A typical band-structure

of silicon is shown in figure 4.

Figure 4 – Band-structure of Si showing indirect bandgap between Γ and X k-points.
Reprinted from thesis by Nicolas Large [37]
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3. Computational Details

3.1. Methodology

All simulations were carried out using PBE functional [19] in VASP program

with periodic boundary conditions. Due to the magnetic properties of iron oxide,

the calculations were spin-polarized. VASP is mostly aimed at solid-state physics of

periodic structures and therefore it works with a plane-wave basis set. Pseudopo-

tentials with PAW formalism were used. For a better description of the electronic

structure, the iron atoms were described by 14 electrons (3p6 3d7 4s1) with the

semi-core 3p orbitals being treated as valence. Oxygen and platinum atoms were

described by pseudopotentials with 6 and 10 valence electrons, respectively.

Hematite’s strongly correlated d electrons were described using the Hubbard

model. The form of Hubbard Hamiltonian is then,

H = −t
∑
<j,l>σ

c†jσclσ + U
∑
j

nj↑nj↓ − µ
∑
j

(nj↑ + nj↓). (23)

The first term is the kinetic energy, the second term is the interaction energy bet-

ween the electrons on the same occupied site and the last term is the chemical

potential controlling the filling. In VASP, two main approaches are implemented for

the Hubbard method. The first one is Liechtenstein’s [38] with the form shown below

Edc(n̂) =
U

2
n̂tot(n̂tot − 1)− J

2

∑
σ

n̂σtot(n̂
σ
tot − 1). (24)

This formalism requires setting for two parameters : U - effective on-site Coulomb

interaction and J - effective on-site exchange interaction. A second approach was

presented by Dudarev et al. [39] and the formalism is shown in equation 24.

EGGA+U = EGGA +
(U − J)

2

∑
σ

[(∑
m1

nσm1,m2

)
−

( ∑
m1,m2

nσm1,m2n
σ
m2,m1

)]
.) (25)

Here it is clear that U and J do not enter separately and U − J can be used as

Ueff . Throughout this paper, U is be used instead of Ueff since J was set to 0 eV.

The choice of U value depends on the properties that one wants to study. In this
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work, the effect of U was checked against DOS, magnetic moments and structural

parameters. The value of U was chosen to reproduce reasonable results for DOS

and magnetic moments and the same value was used throughout all calculations for

bulk and slab structures. The U value was set to 4.3 eV and on-site corrections were

applied only to Fe atoms.

3.2. Convergence

To obtain precise and reliable results, a convergence study is necessary for each

system. Convergence tests according to cut-off, k-points sampling and U value were

done herein. Cut-off energy and k-points are mutually independent, therefore they

were tested independently with the other value lower to speed up the calculations.

Once these parameters have been set, U was tested on chosen values from previous

convergence tests. The convergence study was performed on bulk hematite with the

structure specified in the following part.

Cut-off energy convergence test (fig. 5) was done for values 350 - 600 eV in steps

of 25 eV. K-points mesh was generated in format x×x×x in range 4-20. Evaluation
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Figure 5 – Energy plotted as a function of cut-off energy and K-points, respectively. In the
case of k-points, odd and even divisions are plotted separately to show bigger energy changes in odd
divisions.
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of the results led to working values for cut-off energy of 525 eV, for which the change

of Etot was less than 0.01 kcal/mol. K-points mesh was set to 12×12×12 for energy

calculations, where the change in energy was again less than 0.01 kcal/mol. For DOS

calculations, a 16×16×16 mesh was chosen, more dense grids did not show changes

in DOS plots. Energy values from odd numbers deviate more than these from even

numbers. For this reason, further calculations were carried out using even numbers.

Both cut-off and k-points were calculated using fixed U at 4 eV as a good initial

approximation according to literature [40–45]. After setting the first two parameters,

the convergence of on-site correction was done in range 2-8 eV in steps of 0.5 eV

and 0.1 eV between 4 and 5. Figure 6 shows the change in bandgap and magnetic

moments with increasing U . A U value of 4.3 eV provided good agreement with
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Figure 6 – Bandgaps and magnetic moments as functions of U. Calculated at constant structure
parameter. Dashed lines are shown to guide the eye. The vertical line shows value 4.3 eV for U,
used for further calculations. The horizontal line shows experimental bandgap with value of 2.2 eV.

literature, including experimental bandgap values [3, 46] and magnetic moments

[47,48], therefore this value was chosen for further calculations. As mentioned before,

the on-site correction parameter also affects the structure and its effect is shown in

figure 7. Volume versus U dependance differed from literature [49] in equilibrium

volumes but kept the same curve shape. This might be caused by using different

methods (functionals, pseudopotentials, minimization method).
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Figure 7 – Volume as a function of U parameter. The dashed horizontal line shows experimen-
tally found cell volume. U=0 eV corresponds to PBE without on-site correction.

3.3. Structures

Hematite bulk structure was optimized using rhombohedral primitive cell with

experimental lattice vectors [50] : a = 5.035 Å, c = 5.427 Å. The volume of the

cell was gradually increased, ions relaxed in their positions and the total energy was

calculated. Then, using the Birch-Murnaghan equation of state [51], the optimal

volume per atom was found to be 10.40 Å3. Electronic properties were calculated

on the hexagonal unit cell with lattice parameters : a = 5.081 Å, c = 13.871 Å.

Bulk platinum was modelled using experimental lattice vector for face-centered cu-

bic (FCC) unit cell [52] : a = 3.923 Å, which, after optimization, was found to be

a = 3.969 Å. Within the optimized cells, ions were allowed to relax their positions.

Unit cells of bulk structures contained 10/30 atoms for hematite rhombohedral and

hexagonal cells, respectively, and 4 atoms for platinum. In the case of thin layers,

bulk structures were cleaved in [0001] and [111] directions for hematite and plati-

num to form desired surfaces of the slabs. The (0001) hematite and (111) platinum

surfaces were created following work by Neufeld et al. [45] where they found the

optimal lattice vectors in order to minimise the lattice mismatch between hematite

and platinum. The lattice vectors used are then : a = 4.980 Å, b = 8.630 Å and

c was set to 32 Å as a satisfying layer of vacuum. The misfit is 2.25 % on Pt and

2.3 % for hematite lattices. In the case of hematite, non-stoichiometric slabs of 6

Fe-layers with two different terminations were prepared. These two slabs contained

54 and 66 atoms in Fe and O-terminated slabs, respectively. The platinum layer

was represented by a slab of four atomic layers with (111) surface containing 24
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atoms. Slab structures are illustrated in figure 8. All slabs structures were relaxed in

Figure 8 – a) An O-terminated oxide layer, inset shows the view from the top ; b) Fe-
terminated layer created by deleting two frontier oxygen layers ; c) Pt slab with a thickness
of four atomic layers. Illustrated structures are after geometry optimization. Red, gold
and grey balls represent oxygen, iron and platinum atoms, respectively. Miller indexes are
shown for better orientation in the direction of the cells.

order to correctly describe free surfaces and their electronic structure. The resulting

heterostructures were created by joining the platinum slab with hematite slabs of

both terminations. The heterostructures were gradually optimized in order to find

the optimal interface geometry.
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4. Results and Discussion

4.1. Bulk Structures

The optimization of the bulk unit cell volumes of both Fe2O3 and Pt showed an

increase compared to the experimentally found values by 3.2 and 1.2 %, respectively.

The volume was increased by changing the lattice vectors while the ratio between

them was held constant. The variation of energy with respect to cell volume for

different antiferromagnetic (AFM) ordering is shown in fig. 9 a. The α-hematite is

Figure 9 – (a) shows the dependency of total energy on cell volume for three different
AFM orderings. The dashed line marks experimental volume at 10.06 Å. The energy is
relative to the lowest value which is taken as zero. Possible forms of AFM structure are
illustrated (b)-(d) where the order corresponds to the graph.

antiferromagnetic below the Morin temperature ; for α-hematite it is 250 K. Morin

temperature is characteristic for hematite and tells at which temperature the magne-

tic phase transition from antiferromagnetism to weak ferromagnetism occurs. There

are multiple ways of organizing the magnetic moments in the AFM unit cell. The

options are illustrated in figure 9 b-d. The minimum energy corresponds to “long-

range” AFM ordering (fig. 9 b), where the orientation of the magnetic moments is

alike within an iron layer and alternates through the crystal. Iron atoms in bulk

α-Fe2O3 show a magnetic moment of 4.15 µB, which is close to the experimental

values of 4.6-4.9 µB [47, 48]. The geometry of the relaxed bulk oxide was taken as

a foundation for comparison of geometrical changes in slabs and heterostructures.
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The measured values are namely : O-O and Fe-Fe distances, Fe-O bond-length, O..O

layer distance and O-Fe-O bond angle. The results are summarized in table 1. The

Table 1 – Summary of chosen structural values of bulk hematite. Distances are given in Ang-
ströms.

Structure Fe-O Fe-Fe O-O O..O ]O-Fe-O
Bulk 1.962 2.996 2.693 2.312 102.53 ◦

optimized lattice parameter of FCC bulk platinum differs only by 1.2 % from the

experimental value (fig. 10) and shows no changes in electronic structure.
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Figure 10 – The dependence of Etot on lattice parameter for FCC bulk platinum. The vertical
dashed lines show experimental volume and optimal cell dimension, respectively.

The electronic structure of bulk hematite was analysed through the density of

states and bandstructure plots as well as Bader charge analysis [53–55]. Total DOS

plot and bandstructure (fig. 11) for bulk α-Fe2O3 show indirect bandgap of 2.2

eV. Bader charge analysis was conducted in order to study the charge distribution

between atoms. Results show that each oxygen atom receives 0.30 e per Fe-O bond,

summing in the total charge of -1.20 e per oxygen. Each iron atom bonds with six

oxygens, and each oxygen with four irons. Therefore, the total charge on each iron

atom is +1.80 e. In bulk hematite, the total charge of each Fe and O layer, in this

unit cell, is ±7.20 e.
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Figure 11 – Bandstructure and total DOS of bulk α-Fe2O3 with a bandgap of 2.2 eV.
Fermi energy is set to zero. Positions of indirect bandgap are marked by vertical dashed
lines ; conductive band minimum (M point), valence band maximum (between K and M
points.

4.2. Slabs

In order to simulate thin layers, slab structures were prepared as described above.

Hematite layer was cleaved to expose (0001) surface having a thickness of six Fe

layers. Two different, non-stoichiometric and non-polar terminations of oxide surface

were prepared and their properties compared. The first one was O-rich termination,

sometimes named in the literature as -FeO3. This surface was reported as the most

stable [56]. The second surface was Fe-terminated which was created by deleting the

frontier O layers from the previously described structure. These slabs are referred to

as O-O and Fe-Fe throughout this work, describing the terminations on both sides of

the slab. Platinum was cleaved in the [111] direction containing four atomic layers.

Both unit cells were created with the same lattice vectors. All surfaces were allowed

to relax by gradually tightening the optimization criteria until the forces acting on

atoms were less than 1 meV/atom.

The platinum surface shows minimal geometry changes while considerable surface

reconstruction happens on both oxide surfaces. Measured values are shown in table 2

together with their mean absolute percentage errors (MAPE). Structural changes at

the surface for both oxide slabs vary from 0.6 to 12.6 % where the highest changes are

observed for positions of Fe atoms closest to the surface. Two values with especially
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Table 2 – Atom distances, bond lengths and angles at the surface layer of both slabs showing
the surface reconstruction. Distances are given in Angströms. Values in brackets are MAPE in %
always compared with bulk values.

Structure Fe-O Fe-Fe O-O O..O ]O-Fe-O
Bulk 1.962 2.996 2.693 2.312 102.53 ◦

O-O 1.754 (11.86 %) 2.887 (3.78 %) 2.676 (0.64 %) 2.185 (5.81 %) 99.44 ◦ (3.11 %)
Fe-Fe 1.883 (4.20 %) 3.083 (2.82 %) 2.606 (3.34 %) 2.446 (5.48 %) 117.32 ◦ (12.61 %)

high MAPE compared to bulk values are Fe-O bond length in O-terminated slab

(11.86 %) and O-Fe-O bond angle (12.61 %) in Fe-terminated slab. The first is

caused by shortening the oxygen layers distance by almost 6 %, which results in

more densely packed monolayer. Latter mentioned a change of almost 15◦ is caused

by the iron atoms being much closer to the oxygen layer in order to stabilize the free

surface. It is clear from the results that both surfaces are stabilized by a contraction

in a direction perpendicular to the surface.

The electronic structures of both slabs exhibit the appearance of states within

the bandgap. In the case of O-O slab, new states around the Fermi level lower the

bandgap to only 0.37 eV. DOS for O-O slab is shown in figure 12 a. Total DOS shows

the electronic structure of the whole slab and red and blue curves only two frontier

layers of one side of the slab. If two layers of the opposite side of the slab were

plotted, the spins would flip. The difference of spin originates in the AFM ordering

in the oxide slab. It can be seen that the midgap states disappear gradually with the

distance from the surface. All states between -0.2 to ∼1.75 eV originate from the

free surface and after further investigation, it was found that they are both present

on O and Fe atoms with higher contribution from iron (fig. 12 b). Presence on both

elements shows strong hybridization between all surface atoms. These surface states

would effectively lower the PEC activity with the photo-induced electrons having low

energy altogether with the localization of these excited electrons onto the surface.

Truly narrow midgap states, around 0.25 eV, with sharp edges demonstrate strong

localization. Close positioning from both sides of the Fermi level implies that these

states can act as both electron and hole traps. Trapping of both charge carriers onto

the surface would lead to higher recombination rate, which is highly undesirable.

The bandstructure (fig. 13) shows that the bandgap of 0.37 eV is direct at the Γ

point. One can notice from figures 12-13 the difference of the electronic structure
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Figure 12 – (a) total DOS (black) and LDOS for O-O slab. LDOS for frontier Fe2O3

monolayer (red) and for second outer-most monolayer (blue). (b) LDOS contributions from
O (red) and Fe (blue) in the first Fe2O3 monolayer. Fermi energy is set to zero, marked
by the vertical dashed line.

for a different spin. While one can see mid-gap states in spin up, a wide bandgap

(1.67 eV) is present in spin down. The mid-gap states decrease towards bulk, already

almost disappearing in the third layer. The spin is opposite on the other surface of

the same slab, and it is due to the presence of opposite magnetic moment at the

Fe layer closest to the surface. This phenomenon is studied and used in the field

of spintronics, where it is required to have different bandgap or conductivity for

each spin. Although the use of hematite for spintronics is a question of time [57],

the outcomes of the surface creation mean a drawback in the PEC application. The

surface as created here shows bandgap too small, below the energy needed for water

splitting.

The electronic structure of Fe-terminated slab exhibits some similarities with its

more stable counterpart, especially in the really narrow bandgap in spin up while

preserving wider bandgap in spin down, as shown in figure 14 (red and blue). The

spin up bandgap is lowered to 0.22 eV while spin down bandgap is 1.8 eV wide with

a low number of states in the conductive band in the surface layer. This results in a

higher concentration of excited electrons in the bulk layers. The surface states in spin

down are localized mostly on Fe atoms in the first layer (fig. 14 b), which resembles
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Figure 13 – Bandstructure of O-O slab. Direct bandgap at the Γ point. The Fermi energy
is set to zero.

the previous case, although with opposite spin. Spin down conductive bands have

small DOS evenly spread on both elements, which suggests that the excitation would

mostly happen towards inner layers. Spin up channel is significantly different, with

frontier valence bands being evenly spread over multiple layers with low localization

on the surface. The bandstructure in figure 15 shows that the spin up bandgap of

0.22 eV is, in fact, indirect and the direct bandgap has the energy of 0.33 eV.

Changes in charge distribution due to the presence of free surface were evaluated

using Bader charge analysis. The inner layers of both slabs agree with the values

obtained from bulk hematite. The surface oxygen layer in O-O slab is stabilized by

higher charge transfer from iron to oxygen, 0.34 e per Fe-O bond compared to bulk

0.30 e. On the contrary, the bonds between frontier Fe atoms and second O layer

show transfer of only 0.28 e per Fe-O bond. In the case of Fe-Fe slab, the charge

transfer between surface Fe atoms and first O layer is 0.31 e per Fe-O bond which is

close to the bulk value. Other changes at the surface layers are in magnetic moments.

The first iron layer is the most affected, as one would expect. While iron atoms have

magnetic moments of 4.15 µB in bulk hematite, the surface layers change rapidly.

For O-O slab, the first Fe layer shows values of 2.80 and 3.66 µB for atoms closer
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Figure 14 – (a) total DOS (black) and LDOS for Fe-Fe slab. LDOS for frontier Fe2O3

monolayer (red) and for second outer-most monolayer (blue). (b) LDOS contributions from
O (red) and Fe (blue) in the first Fe2O3 monolayer. Fermi energy is set to zero, marked
by the vertical dashed line.

Figure 15 – Bandstructure of Fe-Fe slab. Indirect bandgap between conductive band
minimum (Γ point), valence band maximum (between Γ and Z points. Direct bandgap
marked by the vertical dashed line. The Fermi energy is set to zero.

to surface and bulk, respectively. The second Fe layer has already the value of 4.16

µB. The O atoms also have small magnetic moments at the surface. The first two
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O layers have 0.22 and 0.12 µB per O atom, respectively. Further layers have no

magnetic moment. In the Fe-Fe slab, the first Fe layer shows values of 3.84 and 3.63

µB for atoms closer to surface and bulk, respectively. The second layer has values of

4.08 and 4.11 µB. One can see that the iron atoms, that are closer to the first O layer

have somewhat smaller magnetic moments. This is due to the fact that these atoms

are closer together than in bulk structure and their magnetic moments interact with

each other. The first O layer has a negligible magnetic moment of 0.05 µB per atom.

Further characterisation of the surface was provided by workfunction calculations.

Figure 16 – The plane average potential of hematite O and Fe terminated slabs, (a) and
(b) ; (c) plane average potential of Pt slab. Potential is plotted against the z vector. The
Fermi energy is set to zero.

Workfunction is defined as the energy needed for an electron to be removed from a

surface of a material and therefore is a characteristic property of the surface. It is

obtained as the difference of electron potential in a vacuum out of the surface and

Fermi level. Plots of plane average potential for all slabs including Pt are shown in

figures 16 a-c. The workfunctions obtained from the calculations are 8.1, 5.5 and 5.5

eV for O-O, Fe-Fe and Pt slabs, respectively. These results show a high energetic

window for light absorption when excited electrons can potentially contribute to

PEC processes before being removed from the material.

4.3. Heterostructures

Slabs of hematite, which were thoroughly discussed above, were placed on top of

the Pt slab in order to create a heterostructure with α-Fe2O3/Pt interface. All atoms
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were allowed to relax, and the optimization criteria were raised gradually. In the end,

forces acting on atoms were lower than 1 meV/atom. The optimized heterostructures

are illustrated in figure 17 together with the positions of the frontier oxide layer with

respect to the first Pt layer. Placing of the O-terminated slab on platinum resulted in

O-O-Pt heterostructure, while the Fe-termination led to Fe-Fe-Pt heterostructure.

These labels are used hereafter. The evaluation of structural changes was done in

Figure 17 – Side-view illustration of the interface between (a) O-terminated (b) and
Fe-terminated heterostructures. Insets show the arrangement of atoms at the interface.

the same manner as for slabs. The interface between platinum and oxide exhibits

noticeable structural changes compared to bulk oxide. Smaller changes are observed

in O-O-Pt heterojunction, which suggests higher interface stability. Table 3 gives

summarized values of measured structural changes together with their MAPE. In

both heterostructures, the changes are in a range of several percents, with the lowest

and highest values being 0.48 and 6.72 %. These intermediate errors suggest that

(111) Pt is a suitable support layer for (0001) α-Fe2O3. This stability statement

is also supported by the bond lengths and respective positions between the frontier

layers of oxide and platinum. The O-Pt interface shows that O atoms are stable atop

of Pt atoms with O-Pt bond length of 1.961 Å. This bond length is very similar to

the Fe-O bond in bulk hematite (1.962 Å). Iron atoms at the Fe-Pt interface stabilize
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themselves between three platinum atoms with Fe-Pt bond length of 2.703 Å. This

value is lower than Fe-Fe distance in bulk and slabs which can be explained by strong

stabilization of unsaturated Fe atoms by platinum layer. Compared with changes in

free surfaces, the geometry at the heterojunction is closer to bulk hematite. However,

the structural changes are large enough to produce changes in electronic properties,

as shown below. The lattice mismatch was minimized in this heterostructure, thus

greater structural changes can be expected in real systems.

Table 3 – Atom distances, bond lengths and angles at the surface layer of both heterostructures
showing the interface reconstruction. Distances are given in Angströms. Values in brackets are
MAPE in % always compared with bulk values.

Structure Fe-O Fe-Fe O-O O..O ]O-Fe-O
Bulk 1.962 2.996 2.693 2.312 102.53 ◦

O-O-Pt 1.927 (1.81 %) 2.892 (3.60 %) 2.876 (6.37 %) 2.323 (0.48 %) 96.54 ◦ (6.20 %)
Fe-Fe-Pt 2.038 (3.72 %) 2.892 (3.59 %) 2.646 (1.78 %) 2.397 (3.55 %) 96.07 ◦ (6.72 %)

Results from electronic structure calculations show interesting properties indu-

ced by the semiconductor/metal junction. Total DOS shows a continuum of states

through the Fermi level for both heterostructures, which was expected as originating

from the platinum layer. In order to look into the electronic structure of the oxide

layer near the interface, the layer-projected DOS was created. It shows a continuum

of states in three monolayers closest to the junction in the case of O-O-Pt (fig. 18).

As the observed conductive layer does not tell its effect on PEC performance, further

analysis of band alignment was performed (fig. 19). Band alignment is based on

the unification of Fermi level, which then gives relative positions of bandgaps. For

this, a reference point common to all the systems of interest is needed. For slabs, a

convenient reference point is the energy of an electron in a vacuum. This is nothing

else than workfunction of a given surface. Band alignment graphs are convenient for

illustration of charge carrier transport. Holes migrate towards higher energies while

electrons migrate towards lower energies. Therefore, type II alignment is required for

better charge separation in heterostructures. Figure 19 illustrates the charge carrier

transport in macroscopic O-O-Pt material. It consists of four parts : Pt surface as

the metallic back-contact, Fe2O3 distorted bulk showing bandgap in non-conductive

layers further from heterojunction with Pt, Fe2O3 bulk representing pristine bulk

bandgap, far enough from Pt layer, where the structural distortion disappears, and
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Figure 18 – O-O-Pt heterostructure. Total DOS (black), LDOS of the first oxide layer
from the junction (red), LDOS of the second oxide layer from the junction (blue). Fermi
energy is set to zero, marked by the vertical dashed line.

finally, O surface represents trap states at the bare O-terminated hematite surface.

The electron transport towards these surface states, marked by an asterisk, can be

neglected in a system, where the surface is effectively modified to reduce electron

traps. It is clearly visible that this structure enhances charge separation resulting in

a lower recombination rate. The electron transport towards the Pt layer is also sup-

ported by results from Bader charge analysis. At the O-Pt interface each platinum

atom donates 0.32 e per Pt-O bond (bulk Fe-O transfer is 0.30 e), resulting in the

total charge of +1.89 e per Pt layer and -5.49 e per O layer at the heterojunction.

Deeper into the oxide slab, the charges agree with values from bulk structure : -7.20

e and +7.20 e per O and Fe layer, respectively. The positive charge of the platinum

layer together with a lower charge in the first oxygen layer can increase the electron

transport from hematite due to lower electrostatic repulsion. This effect lowers the

electron-hole recombination rate. These findings are in a strong agreement with the

ongoing experiment. Results from experimental measurements showed higher charge

separation originating from structure distortions due to the interface with platinum.

Better charge separation is caused by charge carriers of opposite signs migrating

in opposite directions. Lower hole transfer resistance was also measured by the ex-

periment. Results presented here describe (111) Pt layer as a great substrate for
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Figure 19 – Illustration of band bending in the metal-semiconductor junction in O-O-
Pt heterostructure. WF, VBM and CBM denote workfunction, valence band maxima and
conductive band minima, respectively. The relative positions of bandgaps and WFs are
compared with Fermi level which is set to zero, marked by the horizontal dashed line. O
surface represents surface states in O-O slab ; Fe2O3 bulk represents bulk-like bandgap, ta-
ken from the middle layer of O-O slab ; Fe2O3 distorted bulk represents bandgap taken from
the middle of hematite layer in O-O-Pt heterostructure ; Pt surface represents the metal
surface of freestanding Pt slab. Green and red balls and arrows illustrate the migration of
electrons and holes, respectively.
* migration of electrons towards surface states can be excluded via surface modification.

(0001) hematite for its moderate structural distortions and electronic hybridization,

enhancing the PEC performance.

The second heterostructure also shows a continuum of states around the Fermi

level for the first oxide monolayer (fig. 20). These states are more visible in the

spin down channel while the states in spin up are almost absent. The number of

states is lower than in the previous case and disappears immediately after the first

layer. Although the interface shows a conductive layer, the electron transport is

actually directed from platinum into hematite. This is shown in figure 21. It is clear

that the electron transport throughout the oxide layer does not show significant

improvement as the conductive band lies around the same energy level. The hole

transport is directed towards the Pt layer, which is an undesirable outcome. This
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scenario is also supported by the data from Bader charge analysis, which shows,

that the first Pt layer has a total charge of -1.79 e and the first Fe layer charge

of +5.29 e. This charge difference repels electrons from the heterojunction. Overall

results on the Fe-Fe-Pt heterostructure suggest that this system is highly ineffective

for PEC water splitting. Changes in magnetic moments were also observed besides

Figure 20 – Fe-Fe-Pt heterostructure. Total DOS (black), LDOS of the first oxide layer
from the junction (red), LDOS of the second oxide layer from the junction (blue). Fermi
energy is set to zero, marked by the vertical dashed line.

DOS and charge analysis. In the case of O-O-Pt interface, magnetic moments are

close to 4.15 µB. First Fe layer has a magnetic moment of 4.04 µB, first O layer

0.05 µB and first Pt layer 0.13 µB with the opposite moment compared to Fe layer.

These results describe (111) Pt layer as a great substrate for (0001) hematite which

stabilizes the heterojunction. The hybridization of interface works synergically with

geometrical changes and yields great improvement in charge separation.

Iron terminated heterostructure (Fe-Fe-Pt) also shows changes in a magnetic

moment, which are closer to bulk-like values, although still very distant compared

to O-O-Pt interface. The magnetic moment for the first Fe layer is 3.86 µB and the

first Pt layer has a magnetic moment of 0.24 µB with the same orientation as the

Fe layer. This shows the stabilization by Pt layer which adopts the same magnetic

ordering as the frontier Fe layer, resulting in the stabilized interface. It shows that

platinum can adapt in order to maximally stabilize its counterpart.
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Figure 21 – Illustration of band bending in the metal-semiconductor junction in Fe-
Fe-Pt heterostructure. WF, VBM and CBM denote workfunction, valence band maxima
and conductive band minima, respectively. The relative positions of bandgaps and WFs are
compared with Fermi level which is set to zero, marked by the horizontal dashed line. Fe
surface represents surface states in Fe-Fe slab ; Fe2O3 bulk represents bulk-like bandgap,
taken from the middle layer of Fe-Fe slab ; Fe2O3 distorted bulk represents bandgap ta-
ken from the middle of hematite layer in Fe-Fe-Pt heterostructure ; Pt surface represents
the metal surface of freestanding Pt slab. Green and red balls and arrows illustrate the
migration of electrons and holes, respectively.

As the last descriptive tool, workfunctions were calculated and compared with

the values of freestanding slabs. Plane average potentials of both heterostructures

varying with z vector are shown in figure 22. Their respective workfunctions are 7.8

and 4.3 eV. These workfunctions were measured from the oxide surface. It is clear

that the heterostructure with a platinum layer somewhat reduces the workfunction

of the oxide surface from 8.1 and 5.5 to 7.8 and 4.3 eV, respectively. For the O-

terminated surface, the energy needed for photoelectron emission is higher than the

energy of ambient incident light. The workfunction of Fe-terminated heterostructure,

on the other hand, lies within the spectra of UV-B light, which is present under

ambient conditions. The consequence would be that some electrons from the material

would be emitted and thus could not participate in PEC processes.
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Figure 22 – The plane average potential of (a) O-O-Pt and (b) Fe-Fe-Pt heterostructures
against the z vector. The Fermi energy is set to zero.

4.4. Pt-doped Hematite

Doping was represented by one Pt atom substituting Fe atom close to surface in

relaxed O-O slab (figure 23) in order to analyse its effect on the electronic structure.

Relaxation of the structure was done the same way as for a free surface in previous

Figure 23 – Structure of Pt-doped O-O slab.

chapters. The introduction of a Pt atom into the surface layer resulted in the ap-

pearance of new states around Fermi level as shown in figure 24. The graph consists

of two LDOS plots, illustrating states that come from the doping atom. The filled

cyan curve represents the free surface of the O-terminated oxide slab, summed over

a half of the unit cell, opposite to the doped surface. The red curve represents half

of the unit cell containing a platinum atom. First glance at the electronic structure

can be confusing. One hint for orienting is the fact that the cyan and the red curves

would be symmetrical in a case of undoped slab since they represent two opposite

halves of the slab. There are significant differences in spin up and spin down chan-
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Figure 24 – Total DOS of a single-doped slab (black) ; filled curve illustrates the contribu-
tion of pristine O-terminated surface (cyan) ; states originating in Pt-doped surface layer
(red). Fermi energy is set to zero, marked by the dashed line.

nels, starting from -0.6 eV. There are states in both channels around the Fermi level

which results in no bandgap. One can see that the states are strongly localized at

the surface layer, barely reaching to other layers (small difference between black

and red curves). These localized states around the Fermi level would trap charge

carriers and allow their prompt recombination. Data obtained from Bader charge

analysis show that the Pt atom acts as an electron donor to surrounding O atoms.

The difference is in the magnetic moment distribution, where the iron layer keeps

values similar to those in free surface but platinum has a magnetic moment of 0.66

µB with an opposite sign than the iron layer. Also, three closest O atoms to the

doping atom have opposite magnetic moments than the iron layer. These changes in

magnetic moments inside a monolayer disrupt the magnetic ordering of the material

and can explain the differences between both spins in LDOS of the doped layer.

Instead of showing states in only one spin channel due to the magnetic moment of

that layer, midgap states are observed in both channels, however, not completely

symmetrical. The overview of the changes with the introduction of Pt dopant shows

that platinum is not beneficial for surface modification towards better PEC perfor-

mance. The doping introduces surface localized states that would effectively reduce

charge separation leading towards low performance.
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5. Summary

The pursuit of so-called green energy is going through an intense phase, where we

have several known processes that we can use, but their efficiency is still a problem.

Experimental groups developing various devices for the harvesting of solar energy

and its conversion are often accompanied by theoreticians who help to understand

the processes inside these innovative materials. This thesis is aimed to describe

the properties of an interface between (0001) α-hematite and (111) platinum using

DFT+U methods. This heterosystem was prepared by the experimental group in

the Regional centre of advanced technologies and materials (RCPTM) and exhibited

superior photovoltaic properties against commonly used FTO substrate.

We modelled two different surfaces of the hematite layer in order to describe

the differences in electronic structure coming from the surface termination. These

structures consist of oxygen and iron terminated surfaces. Their structural changes

were compared with bulk values to show the magnitude of changes. The changes

were pronounced in the range of few percents, with exception of the positions of the

surface-most iron atoms. The changes in Fe-O bond lengths and O-Fe-O angles reach

up to 12 %. The electronic structure analysis showed that hematite free surfaces are

not suitable for PEC water splitting due to narrow bandgaps, less than 0.5 eV,

originating in surface states. Another drawback in the application of bare hematite

surface as photoanode material is the different electronic structure for each spin

channel.

Hematite slabs were placed on top of the platinum layer to form heterostruc-

ture as prepared in the experiments. Both structures exhibited structural changes

that partially restored bulk-like geometry near the interface. This was the first hint

that platinum can be a suitable substrate for the hematite layer. Analysis of the

electronic structure showed conductivity in a few layers at the interface which can

contribute to better performance in PEC water splitting by draining the excited elec-

trons from hematite to platinum substrate. The observed conductive interface was

more pronounced in the oxygen-terminated junction. The main reason for strong

hybridization between platinum and oxygen atoms is the arrangement at the in-

terface, where each O atom binds with one Pt. Minimal lattice mismatch allowed

relaxation of the surface towards bulk-like structure and hybridization with more
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layers of oxide, creating a deeper conductive layer. Both heterostructures were also

studied in the matter of charge separation, which showed superior properties of O-

O-Pt heterostructure over Fe-Fe-Pt. The results showed beneficial band alignment

throughout the structure. This increases the charge separation and guides holes onto

the oxide surface and electrons towards platinum. Holes concentrated on the oxide

surface can react with water molecules and electrons are lead to the cathode where

they participate in HER. This study also gives a hint on how to modify the oxide

surface towards better PEC performance. That is to keep the valence band maxi-

mum close to Fermi level, wide bandgap and of course good catalytic properties.

The latter is a subject for extensive research, whose mechanism is not completely

clear.

In the last part, the Pt-doped hematite surface was studied in order to see the

influence of doping Pt atom on the electronic structure of hematite. It was found

that platinum as a substituent of iron is not suitable for PEC applications for the

absence of bandgap and the creation of surface trap states. Localized continuum of

states around the Fermi level is the centre of electron-hole recombination.

This thesis gives a theoretical insight into the (0001) α-Fe2O3/(111) Pt inter-

face, explaining its benefits for the application in PEC water splitting cells. The

study of hematite surface shows some drawbacks of bare hematite surface. There

are several possible future developments in the study of this heterostructure, e.g.

calculations of electric conductivity through the interface, OER mechanism, surface

modification. Although the theoretical study of hematite is fairly complicated using

DFT methods, approximations and combinations of methods are available for these

purposes. Nonetheless, new methods have to be developed in this field of material

chemistry to better describe and understand the crucial properties in this highly

anticipated field.
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6. Závěr

Snaha o tzv. zelenou energii procháźı intenzivńı fáźı, kdy známe několik známých

proces̊u, které můžeme využ́ıt, ale jejich účinnost je stále problém. Experimentálńı

skupiny, které vyv́ıjej́ı r̊uzná zař́ızeńı pro sběr slunečńı energie a jej́ı přeměnu, jsou

často doprovázeny teoretiky, kteř́ı pomáhaj́ı pochopit procesy uvnitř těchto inova-

tivńıch materiál̊u. Ćılem této práce je popsat vlastnosti rozhrańı mezi (0001) α-

hematitem a (111) platinou metodami DFT+U. Tento heterosystém byl připraven

experimentálńı skupinou v Regionálńım centru pokročilých technologíı a materiál̊u

(RCPTM) a vykazoval vynikaj́ıćı fotovoltaické vlastnosti proti běžně použ́ıvanému

substrátu FTO.

Připravili jsme dva r̊uzné povrchy vrstvy hematitu, abychom popsali rozd́ıly v

elektronové struktuře, která vycháźı ze struktury povrchu. Tyto struktury se skládaj́ı

z kysĺıkem a železem ukončených povrch̊u. Jejich strukturálńı změny byly porovnány

s hodnotami pro bulk, aby ukázaly jejich velikost. Změny byly zřetelné v rozsahu

několika procent, s výjimkou poloh atomů železa nejbĺıže povrchu. Změny v délkách

vazeb Fe-O a O-Fe-O dosahuj́ı až 12 %. Elektronická analýza struktury ukázala, že

volné povrchy hematitu nejsou vhodné pro štěpeńı vody PEC v d̊usledku úzkých

zakázaných pás̊u, menš́ıch než 0,5 eV, pocházej́ıćıch z povrchových stav̊u. Daľśı

nevýhodou při použit́ı čistého povrchu hematitu jako materiálu pro fotoanodu je

odlǐsná elektronická struktura pro každý spin.

Vrstvy hematitu byly umı́stěny na vrstvu platiny, č́ımž byla vytvořena heteros-

truktura, popsána v experimentech. Obě struktury vykazovaly strukturálńı změny,

které částečně obnovily symetrickou geometrii pobĺıž rozhrańı. To byl prvńı náznak,

že platina může být vhodným substrátem pro hematit. Analýza elektronové struk-

tury ukázala vodivost v několika vrstvách na rozhrańı, která může přispět k lepš́ımu

výkonu při štěpeńı vody PEC odváděńım excitovaných elektron̊u z hematitu do pla-

tinového substrátu. Pozorované vodivé rozhrańı bylo výrazněǰśı na spoji zakončeném

kysĺıkem. Hlavńım d̊uvodem silné hybridizace mezi atomy platiny a kysĺıku je uspořádáńı

na rozhrańı, kde se každý atom O váže s jedńım tomem Pt. Minimálńı rozd́ıl krys-

talových mř́ıžek umožnil relaxaci povrchu směrem k bulkové struktuře a hybridizaci

s v́ıce vrstvami oxidu, č́ımž se vytvořila hlubš́ı vodivá vrstva. Obě heterostruktury

byly studovány také z hlediska separace náboj̊u, která ukázala lepš́ı vlastnosti O-
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O-Pt heterostruktury oproti Fe-Fe-Pt. Výsledky ukázaly př́ıznivé uspořádáńı pás̊u

v celé struktuře. To zvyšuje separaci náboj̊u. Nav́ıc vede d́ıry na povrch oxidu a

elektrony směrem k platině. Dı́ry koncentrované na povrchu oxidu mohou reagovat

s molekulami vody a elektrony jsou odvedeny na katodu, kde se účastńı HER. Tato

studie také naznačuje, jak modifikovat povrch hematite směrem k lepš́ımu výkonu v

PEC rozkladu vody. Tedy udržet maximum valenčńıho pásu bĺızko Fermiho hladiny,

široký zakázaný pás a samozřejmě dobré katalytické vlastnosti povrchu. Posledńı

źıněný jev je předmětem rozsáhlého výzkumu, jehož mechanismus neńı zat́ım zcela

jasný.

V posledńı části byl studován povrch hematitu dopovaný Pt, abychom zjistili vliv

dopuj́ıćıcho atomu Pt na elektronovou strukturu hematitu. Bylo zjǐstěno, že platina

jako substituent železa neńı vhodná pro aplikace PEC pro nepř́ıtomnost zakázaného

pásu a vytvářeńı povrchových past́ı. Lokalizované kontinuum stav̊u kolem Fermiho

hladiny je centrem rekombinace elektron̊u a děr.

Tato práce poskytuje teoretický pohled na rozhrańı (0001) α-Fe2O3/(111) Pt,

vysvětluj́ıćı jeho př́ınosy pro aplikaci v zař́ızeńıch pro PEC štěpeńı vody. Studium

povrchu hematitu ukazuje některé nevýhody čistého povrchu. Pro studium tohoto

systému existuje několik možných budoućıch směr̊u, např. výpočty elektrické vodi-

vosti skrze rozhrańı, mechanismus OER nebo modifikace povrchu. I když je teore-

tické studium hematitu metodami DFT poměrně komplikované, pro tyto účely jsou

k dispozici aproximace a kombinace metod. V této oblasti výpočetńı chemie však

muśı být vyvinuty nové metody, které by lépe popsaly a pochopily kĺıčové vlastnosti

tohoto vysoce perspektivńıho oboru.
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[12] Š. Kment, Z. Hubička, M. Allieta, J. Tuček, Y. Rambabu, G. Zoppellaro, A. Matěj,
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