

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL ENGINEERING

NÁVRH VÝMĚNÍKŮ TEPLA PRO VYSOKOTEPLOTNÍ APLIKACE

DESIGN OF HEAT EXCHANGERS FOR HIGH TEMPERATURE APPLICATIONS

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. MARTIN JONÁK

VEDOUCÍ PRÁCE SUPERVISOR Ing. VÍT KERMES, Ph.D.

BRNO 2010

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav procesního a ekologického inženýrství Akademický rok: 2009/2010

ZADÁNÍ DIPLOMOVÉ PRÁCE

student(ka): Bc. Martin Jonák

který/která studuje v magisterském navazujícím studijním programu

obor: Procesní inženýrství (3909T003)

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Návrh výměníků tepla pro vysokoteplotní aplikace

v anglickém jazyce:

Design of heat exchangers for high temperature applications

Stručná charakteristika problematiky úkolu:

1. Prostudovat základní dostupnou literaturu o výpočtových postupech pro trubkové a deskové výměníky tepla.

2. Seznámit se s dostupnými výpočtovými postupy a softwary pro výpočet zařízení na výměnu tepla u nichž je významná radiační složka sdílení tepla.

3. Pro konkrétní zadaný průmyslový případ analyzovat dostupné typy výměníků tepla a vybrat vhodné typ.

4. Provést stručný rozbor vybraných výpočtových vztahů a postupů a s pomocí dostupných softwarů formulovat matematický model pro tepelně-hydraulický výpočet výměníku tepla vybraného typu.

6. Aplikovat formulovaný matematický model na konkrétní praktické zadání.

7. Proveď te analýzu dosažených výsledků.

Cíle diplomové práce:

1. □Výběr vhodného typu výměníku pro zadanou aplikaci a zdůvodnění výběru

2. I Stručný rozbor vybraných výpočtových vztahů a jejich zápis formou výpočtového manuálu

3. 🗆 Tepelně-hydraulické výpočty řešeného případu výměníku pomocí dostupného softwaru

4. Stručný uživatelský manuál použitého softwaru

Seznam odborné literatury:

[1] Hewitt, G., F., (Executive Editor): Heat Exchanger Design Handbook, Begell House, Inc., New York (1998).

[2] Hewitt, G., F., Shires, G.,L. and Bott, T., R.: Process Heat Transfer, CRC Press, Inc., New York (1994).

[3] Smith E. M.: Thermal Design of Heat Exchangers: a numerical approach – direct sizing and stepwise rating, John Wiley & Sons, Chichester, England (1997).

Vedoucí diplomové práce: Ing. Vít Kermes, Ph.D.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2009/2010. V Brně, dne 1.10.2009

L.S.

prof. Ing. Petr Stehlík, CSc. Ředitel ústavu prof. RNDr. Miroslav Doupovec, CSc. Děkan fakulty

ABSTRAKT

Tato diplomová práce se zabývá tepelně-hydraulickým návrhem a kontrolou výměníků tepla pomocí specializovaného komerčního softwaru HTRI. Řešené výměníky tepla jsou určeny pro konkrétní vysokoteplotní aplikace, kde horkou pracovní látkou jsou spaliny o vysoké teplotě (nad 500 °C). V práci je proveden stručný rozbor konvenčních konstrukcí výměníků tepla používaných pro vysokoteplotní aplikace, popis základních výpočtových vztahů a charakteristika softwaru HTRI, ke kterému je sepsán stručný uživatelský manuál. Součástí práce je rozbor dostupných metod pro stanovení tlakových ztrát na 180° kolenech vynucený požadavky na nízké tlakové ztráty u řešených aplikací.

ABSTRACT

This thesis is devoted to thermal-hydraulic design and rating of heat exchangers with the specialized commercial software HTRI. These heat exchangers are solved for real high-temperature applications, where the hot fluid is a flue gas with high temperature (above 500 °C). In the thesis is made a brief analysis of the conventional design of heat exchangers usable for high-temperature aplications, description of the basic relations, description and brief user manual of software HTRI. Further, work includes a comparative study of methods for calculation of pressure drop of the fluid at 180° elbows, as support analysis for solution of required applications characterized by low pressure drop of process fluids.

KLÍČOVÁ SLOVA

Výměník tepla, příčně obtékaný svazek trubek, svazek trubek v plášti, vysokoteplotní aplikace, základní výpočtové vztahy, software HTRI, tlakové ztráty, 180° ohyby.

KEYWORDS

Heat exchanger, cross-flow tube bundle, shell and tube heat exchanger, high temperature aplications, basic relations, software HTRI, pressure drops, 180° elbow.

BIBLIOGRAFICKÁ CITACE VŠKP DLE ČSN ISO 690

JONÁK, M. *Návrh výměníků tepla pro vysokoteplotní aplikace*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2010. 128 s. Vedoucí diplomové práce Ing. Vít Kermes, Ph.D.

PROHLÁŠENÍ O PŮVODNOSTI

Prohlašuji, že jsem celou diplomovou práci včetně příloh vypracoval samostatně dle pokynů vedoucího diplomové práce s použitím uvedené literatury a podkladů.

V Brně dne 28. května 2010

Bc. Martin Jonák

PODĚKOVÁNÍ

Děkuji Ing. Vítu Kermesovi, Ph.D. za vytvoření podmínek pro vypracování diplomové práce a také děkuji doc. Ing. Zdeňku Jeglovi, Ph.D. a Ing. Bohuslavu Kilkovskému, Ph.D. za odbornou pomoc během vypracovávání této práce.

V Brně dne 28. května 2010

Bc. Martin Jonák

OBSAH

SE	ZNAM SYMBOLŮ	8
1.	ÚVOD	9
	1.1. ZADÁNÍ VYSOKOTEPLOTNÍ APLIKACE 1	9
	1.2. ZADÁNÍ VYSOKOTEPLOTNÍ APLIKACE 2	14
2.	PŘEHLED A CHARAKTERISTIKA KONVENČNÍCH KONSTRUKCÍ	
V	ÝMĚNÍKŮ TEPLA POUŽÍVANÝCH PRO VYSOKOTEPLOTNI APLIKACE	16
	2.1. ZÁKLADNÍ DĚLENÍ VÝMĚNÍKŮ TEPLA	16
	2.2. BLIZSI CHARAKTERISTIKA KONVENCNICH KONSTRUKCI VYMENIKU TEPLA POUŽÍVANÝCH PRO VYSOKOTEDI OTNÍ ADLIKACE	18
	2.2.1. Výměník tepla tvpu trubka v trubce	18
	2.2.2. Trubkový výměník tepla se svazkem trubek v plášti	19
	2.2.3. Deskové výměníky tepla	21
	2.2.4. Příčně obtékaný svazek trubek	22
3.	ZÁKLADNÍ VÝPOČTOVÉ VZTAHY PRO VÝPOČET VÝMĚNÍKU TEPLA.	24
	3.1. ÚVOD DO PROBLEMATIKY ANALYTICKÉHO ŘEŠENÍ VÝMĚNÍKŮ TEPLA	24
4.	SOFTWARE HTRI	27
	4.1. CHARAKTERISTIKA SOFTWARU	27
	4.2. PRINCIPY A PRVKY OVLÁDÁNÍ SOFTWARU	27
	4.3. Typy výstupních protokolů	28
5.	SROVNÁVACÍ VÝPOČET TLAKOVÝCH ZTRÁT PAROVZDUŠNÉ SMĚSI	VE
18	0° KOLENECH S POUŽITÍM PĚTI VYBRANÝCH VÝPOČTOVÝCH METOD	29
	5.1. PŘEHLED A ROZBOR METOD PRO VÝPOČET TLAKOVÉ ZTRÁTY VE 180° KOLENECH.	29
	5.1.1. Popis výpočtových metod	29
	Metoda ekvivalentni delky	30
	Hooperova 2-K metoda	31
	Darbyho 3-K metoda	32
	Blevinsova metoda	33
	5.1.2. Porovnání výpočtových metod	33
	5.1.3. Výběr vhodné metody výpočtu tlakové ztráty ve 180° kolenech	35
6.	ŘEŠENÍ VYSOKOTEPLOTNÍ APLIKACE 1 SOFTWAREM HTRI	36
	6.1. VSTUPNÍ DATA A POSTUP ŘEŠENÍ	36
	6.2. HLAVNÍ VÝSLEDKY ALTERNATIVY 1	38
	6.3. HLAVNI VYSLEDKY ALTERNATIVY 2	39
	6.5 SHPNUTÍ VÝSLEDKŮ VVSOKOTEPI OTNÍ API IKACE 1	40
7	ŘEŠENÍ VVSOKOTEPI OTNÍ APLIKACE 2 SOFTWAREM HTRI	10
		/11
	 7.1. V SIUPNI DAIA A POSIUP RESENI	41 42
	7.3. HLAVNÍ VÝSLEDKY VARIANTY 2	43
	7.4. Shrnutí výsledků vysokoteplotní aplikace 2	44

8.	ZÁVĚR	45
9.	CITOVANÁ LITERATURA	46
10.	SEZNAM PŘÍLOH:	48
PŘÍ	LOHY	49

Seznam symbolů

Symbol	Význam	Jednotka
Δp_{PVS}	dovolená tlaková ztráta na straně PVS	kPa
Δp_{sp}	dovolená tlaková ztráta na straně spalin	kPa
m_{PVS}	hmotnostní průtok PVS	$kg.s^{-1}$
m_{sp}	hmotnostní průtok spalin	$kg.s^{-1}$
P_{CS-AMH}	bilanční výkon CS-AMH	kW
P_{OPVS}	bilanční výkon OPVS	kW
p_{PVSin}	tlak PVS na vstupu do výměníku	kPa
T_{PVSin}	teplota PVS na vstupu do výměníku	°C
T_{PVSout}	teplota PVS na výstupu z výměníku	°C
T_{spin}	teplota spalin na vstupu do výměníku	$^{\circ}C$
T_{spout}	teplota spalin na výstupu z výměníku	$^{\circ}C$
W_{PVS}	hmotnostní podíl páry v PVS	\mathscr{H}_{hm}

Poznámka:

V seznamu symbolů jsou uvedeny pouze symboly, které nejsou v textu blíže specifikovány.

1. Úvod

Diplomová práce se zabývá problematikou tepelně-hydraulického návrhu a kontroly výměníků tepla určených pro vysokoteplotní aplikace v energetických systémech, kde horkou pracovní látkou jsou spaliny o vysoké teplotě (nad 500 °C).

Konkrétně jsou v diplomové práci z tepelně-hydraulického pohledu řešeny dva případy výměníků tepla pro níže detailně specifikované vysokoteplotní energetické aplikace. Současně je v práci proveden popis a rozbor dostupných výpočtových vztahů a analýza schopností a možností dostupného komerčního softwaru HTRI použitého pro řešení zadaných případů.

1.1. Zadání vysokoteplotní aplikace 1

Předmětem vysokoteplotní aplikace 1 je řešení ohříváku parovzduchové směsi (dále jen OPVS), který bude součástí vyvíjeného flexibilního energetického systému transformujícího primární energii biomasy i alternativních paliv při jejich spalování (popřípadě odpadní teplo z různých tepelných agregátů) na elektrickou energii s možností kogenerace s vyšší účinností. Principiální schéma zapojení ohříváku je znázorněno na obr. 1.1 [1].

Obr. 1.1 Schéma uspořádání výměníku OPVS a jeho nejbližšího okolí ve vyvíjeném energetickém systému [1].

V samotném OPVS bude probíhat tepelná výměna mezi spalinami a parovzduchovou směsí (dále jen PVS). OPVS má být navržen na jmenovité parametry, které jsou uvedeny v tab. 1.1.

Médium - umístění	Veličina	Hodnota	Jednotka
	p _{PVSin}	6,109	bar(abs.)
	T _{PVSin}	220,3	°C
DVS v trubliách	T _{PVSout}	835,0	°C
PVS - v trubkach	W _{PVS}	25,36	% hm.
	m _{PVS}	3,175	kg·s ⁻¹
	Δp_{PVS}	10,0	kPa
	T _{spin}	1200,0	°C
Suclius	T _{spout}	345,3	°C
Spanny - v prasu	m _{sp}	2,517	kg·s⁻¹
	$\Delta \mathbf{p_{sp}}$	1,5	kPa
Bilanční výkon OPVS	P _{OPVS}	2663	kW

Tab. 1.1 Zadávací parametry nominálního provozního režimu OPVS [1].

Zadavatel požaduje provést kontrolu výchozích tří alternativ návrhu OPVS tvořeného svazky trubek umístěnými do spalinového kanálu. Tyto alternativy se liší použitými rozměry trubek a uspořádáním trubkových svazků. Jejich základní specifikace je uvedena níže spolu s náčrty jednotlivých alternativ, které jsou na obr. 1.2 až 1.4.

Dle druhu materiálu, ze kterého budou vyrobeny svazky trubek a který je volen v závislosti na maximální teplotě jejich vnější stěny, je OPVS členěna do několika sekcí. V tab. 1.2 jsou jednotlivé sekce označeny příslušným číslem (1 až 5) a ke každé sekci je přiřazen určitý materiál, ze kterého bude daná sekce vyrobena. K jednotlivým materiálům jsou rovněž uvedeny i jejich maximální přípustné teploty na vnějším povrchu trubky.

Sekce	Materiál	Teplota stěny	Jednotka
5	třídy 12	500 (490)*	°C
4	třídy 15	650	°C
3	třídy 17	750	°C
1 a 2	Niklové slitiny	950 (až 980)	°C

*Poznámka: Hodnota teploty uvedená u páté sekce v závorce platí pro žebrované trubky.

Tab. 1.2 Materiály použité v jednotlivých sekcích OPVS [1].

Alternativa 1

Alternativa 1 je prvním ze tří možných řešení návrhu OPVS. Celý trubkový svazek je rozdělen do pěti sekcí, které se kromě použitého materiálu (viz tab. 1.2) liší i počtem trubkových chodů a řad. Základní geometrie a rozměry alternativy 1 jsou patrné z obr. 1.2.

První sekce, umístěná vespod spalinového kanálu, je nejexponovanější sekcí, neboť je vystavena nejvyšší teplotě a sálání, které produkují stěny spalinového kanálu. Tato skutečnost platí i pro následující dvě alternativy.

První sekce je tvořena dvěma chody po jedné řadě. Druhá a třetí sekce jsou tvořeny dvěma chody po čtyřech řadách, čtvrtá sekce má čtyři chody po čtyřech řadách a poslední pátá sekce je tvořena šesti chody po čtyřech řadách.

Ve druhé až páté sekci je výměník koncipován jako protiproudý, avšak v sekci první dochází k souproudému toku pracovních látek. Je to z důvodu, aby bylo zajištěno dostačující ochlazování stěny trubek v nejspodnější řadě první sekce.

Obr. 1.2 Schéma a hlavní rozměry alternativy 1 [23].

Alternativa 2

Tato alternativa, znázorněna spolu s hlavními rozměry na obr. 1.3, je rozdělena do pěti sekcí. I v tomto případě se jednotlivé sekce liší nejen materiálem trubek, ale i počtem trubkových chodů a řad.

První sekce je tvořena dvěma chody po dvou řadách, druhá, třetí a čtvrtá sekce jsou tvořeny jedním chodem obsahujícím osm řad a pátou sekci tvoří pět chodů rovněž po osmi řadách. Celý výměník je navržen jako protiproudý.

Obr. 1.3 Schéma a hlavní rozměry alternativy 2 [23].

Alternativa 3

Poslední alternativa, jejíž základní geometrie a rozměry jsou znázorněny na obr. 1.4, je sestavena, obdobně jako předchozí dvě alternativy, z pěti sekcí.

První sekce je tvořena jedním chodem o dvou řadách, druhá sekce má jeden chod se čtyřmi řadami, třetí a čtvrtá sekce se sestává ze dvou chodů po čtyřech řadách a pátou sekci tvoří šest chodů rovněž po čtyřech řadách.

Obr. 1.4 Schéma a hlavní rozměry alternativy 3 [23].

Detailní popis geometrie jednotlivých alternativ je uveden v kapitole 6.1., která se zabývá jejich kontrolním výpočtem.

Spaliny pro OPVS (o objemovém složení: Ar=0,86 %; CO₂=5,14 %; N₂=73,38 %; O₂=9,67 %; H₂O=10,95 % a požadované vstupní teplotě do OPVS: 1200 °C) jsou generovány ve spalovací komoře plynovým hořákem spalujícím zemní plyn.

Blok OPVS má být navržen na jmenovitý výkon zařízení, jenž odpovídá provoznímu režimu 25.36 % PVS (hmotnostní % páry v PVS) s teplotou ohřevu PVS 835 °C, viz tab. 1.1.

Dovolená tlaková ztráta, pro podmínky nominálního výkonu z tab. 1.1, byla specifikována na straně spalin na 1500 Pa (1,5 kPa) a na straně PVS na 10000 Pa (10 kPa).

Úkolem je provést tepelně-hydraulickou kontrolu tří uvedených alternativ OPVS (viz obr. 1.2 až obr. 1.4) a na základě obdržených výsledků doporučit technicko-ekonomicky nejvhodnější alternativu.

1.2. Zadání vysokoteplotní aplikace 2

Předmětem vysokoteplotní aplikace 2 je návrh vysokoteplotního výměníku parovzduchové směsi, označeného CS-AMH, který bude součástí vyvíjeného integrovaného zdroje pro bioplynové stanice s vyšší účinností výroby elektřiny s možností kogenerace. Principiální schéma výměníku je znázorněno na obr. 1.5.

Obr. 1.5 Principiální zadávací schéma výměníku CS-AMH [2].

Zdrojem tepla pro vysokoteplotní výměník tepla CS-AMH jsou spaliny ze spalování bioplynu produkované plynovými spalovacími motory kogeneračních jednotek. Tab. 1.3 uvádí složení spalin z motorů kogeneračních jednotek.

Koncentrace složek spalin			
Složka	[% _{hm}]	Složka	[% _{hm}]
CO ₂	14,98	SO_2	0,572
N_2	68,18	Ar	1,144
H_2O	7,789	O ₂	7,335

Tab. 1.3 Koncentrace složek spalin ze spalování bioplymu [2].

Teplota spalin z kogeneračních jednotek v předpokládaném místě napojení na výměník CS-AMH je 600 °C. Je požadováno, aby vysokoteplotní výměník tepla CS-AMH byl proveden v protiproudém zapojení. Ohřívaným médiem je komprimovaná parovzduchová směs (PVS), jejíž parametry jsou spolu s ostatními parametry výměníku CS-AMH pro nominální provozní režim uvedeny v tab.1.4.

Médium	Veličina	Hodnota	Jednotka
	p_{PVSin}	4,306	bar(abs.)
	T _{PVSin}	98,9	°C
DVC	T _{PVSout}	529,8	°C
PVS	W _{PVS}	11,81	% hm.
	$m_{\rm PVS}$	1,291	kg·s ⁻¹
	Δp_{PVS}	10 až 14	kPa
	T _{spin}	600	°C
G 1'	T _{spout}	144	°C
Spaliny	m_{sp}	1,24	kg·s⁻¹
	$\Delta \mathbf{p}_{sp}$	4	kPa
Bilanční výkon	P _{CS-AMH}	653	kW

Tab. 1.4 Zadávací parametry nominálního provozního režimu výměníku CS-AMH [2].

Úkolem je pro zadané pracovní podmínky a dovolené tlakové ztráty pracovních látek, specifikované v tab. 1.4, nalézt nejvhodnější řešení výměníku tepla z hlediska minimální plochy výměny tepla, resp. hmotnosti výměníku, je-li požadováno řešit výměník jako trubkový výměník tepla se segmentovými přepážkami. Je požadováno, aby pro řešení výměníku bylo uvažováno s potrubím o vnějším průměru 15,0 mm a tloušťkou stěny 1,5 mm.

Současně je za účelem minimalizace plochy, resp. hmotnosti výměníku požadováno nalézt vhodnou variantu zapojení pracovních látek ve výměníku (varianta 1: spaliny vně trubek a PVS uvnitř trubek; varianta 2: PVS vně trubek a spaliny uvnitř trubek).

2. Přehled a charakteristika konvenčních konstrukcí výměníků tepla používaných pro vysokoteplotní aplikace

V současné době existuje celá řada různých typů výměníků tepla. Jednotlivé typy se mohou lišit provedením, geometrií a tepelně-hydraulickými vlastnostmi. Tyto odlišnosti pak předurčují vhodnost, či nevhodnost daného typu výměníku pro určité aplikace. Současně s různými typy výměníků tepla existují i různé přístupy k jejich členění.

2.1. Základní dělení výměníků tepla

Mezi základní dělení výměníků tepla patří následující rozdělení:

- A) Dle provedení ploch zúčastňujících se přenosu tepla;
- B) Dle vzájemného směru a smyslu proudění obou pracovních látek;
- C) Dle konstrukčního provedení teplosměnných ploch.

A) Rozdělení výměníků tepla podle provedení ploch zúčastňujících se přenosu tepla

Rekuperační výměníky

Pracovní látky jsou odděleny pevnou stěnou o určité tloušťce. Tato stěna odděluje obě média od sebe tak, že nedochází k jejich mísení. Tepelná energie přechází z jedné pracovní látky do druhé přes tuto stěnu, jež současně tvoří plochu výměny tepla [4, 5, 6].

Regenerační výměníky

Regenerační výměníky využívají pro přenos tepla akumulační hmotu, která se střídavě zahřívá a ochlazuje a tím předává teplo do proudu jedné látky a odebírá ho látce druhé. Přenos tepla se uskutečňuje prostřednictvím pohyblivé nebo nepohyblivé výplně [4, 5, 6].

Směšovací výměníky

Sdílení tepla probíhá přímým stykem obou pracovních látek. Směšovací výměníky jsou výměníky, v nichž přenos tepla (a většinou i přenos hmoty) nastává při přímém styku plynu a kapaliny [3].

B) Rozdělení výměníků tepla podle směru a smyslu proudění pracovních látek

Souproudé uspořádání

Směry os teplého a studeného proudu jsou rovnoběžné a vektory rychlostí mají stejný smysl. Souproudé uspořádání využívá teplotní spád s nejmenší efektivitou a výstupní teplota ohřívaného média je vždy nižší než výstupní teplota ochlazovaného média. Jeho výhodou

využitelnou v některých případech je nižší teplota stěny teplosměnného povrchu než u protiproudého uspořádání (viz dále).

Protiproudé uspořádání

Směry os proudů jsou rovnoběžné, avšak vektory rychlostí mají opačný smysl. Toto uspořádání využívá teplotního spádu s největší efektivitou a výměníky tohoto typu umožňují dosažení nejvyšší teploty ohřívaného média nebo nejnižší teploty ochlazovaného média.

Křížové uspořádání

Osy proudů jsou mimoběžné a v kolmém průmětu spolu svírají úhel 90°. Výměníky tohoto typu mají jisté výhody z hlediska intenzifikace přenosu tepla a jejich konstrukční řešení je obvykle jednoduché [3].

Výměníky s kombinovaným prouděním

Kombinované proudění (tj. vícenásobně souproudé, protiproudé a křížové provedení) je kompromisní řešení mezi požadavky tepelné efektivnosti a snadné konstrukce. Počet chodů není omezen a při větším počtu chodů se takové uspořádání blíží protiproudému, popř. souproudému uspořádání. Teplotní spád je však využit s menší efektivitou než při čistém protiproudu [3].

Obr. 2.1 Proudění ve výměnících (protiproud, souproud) [5].

C) Rozdělení výměníků tepla podle konstrukčního provedení teplosměnné plochy

Výměníky trubkové

Teplosměnným elementem jsou přímé nebo vhodně tvarované trubky, jejichž povrch může být hladký nebo opatřený žebrováním. Průřez trubek je nejčastěji kruhový, může však také být oválný nebo kosočtvercový. Vzájemná orientace proudů je obvykle protiproudá. Výhodou je jednoduchá výroba a protiproudé uspořádání při současném využití příčného obtékání trubek pracovní látkou na vnější straně. Nevýhodou je nutnost výměny celé trubky v případě jejího porušení [3].

Výměníky deskové

Teplosměnným elementem je rovinná deska, která může být hladká, profilovaná, spirálovitě vinutá, popř. žebrovaná. Uspořádání toku pracovních látek může být protiproudé, souproudé, nebo s křížovým tokem.

Výměníky bez teplosměnných ploch

Jedná se převážně o výměníky směšovací. Častou aplikací je například chlazení spalin nástřikem vody. Za výměník bez teplosměnných ploch lze považovat i chladící věž, kde se ke chlazení vody používá okolního vzduchu [3].

2.2. Bližší charakteristika konvenčních konstrukcí výměníků tepla používaných pro vysokoteplotní aplikace

Následující pasáž bude zaměřena na popis čtyř základních typů výměníků tepla a na posouzení jejich předností, či nedostatků pro vysokoteplotní aplikace. Popisovány budou výměníky typu trubka v trubce, výměníky se svazkem trubek v plášti, deskové výměníky a výměníky s příčně obtékaným svazkem trubek.

2.2.1. Výměník tepla typu trubka v trubce

Svou konstrukcí je tento výměník nejjednodušším typem výměníku tepla. Zpravidla je sestaven ze dvou trubek různého průměru, kdy jedna je soustředně umístěna uvnitř druhé. Obě média, proudící uvnitř i vně trubky menšího poloměru, proudí souběžně v souproudu, nebo v protiproudu. Tyto výměníky jsou konstruovány v rozebíratelném, nebo nerozebíratelném provedení, přičemž vnitřní trubka může být hladká, žebrovaná, nebo jinak upravená za účelem intenzifikace přestupu tepla.

Výměníky tepla typu trubka v trubce jsou zpravidla používány do teplot 180 až 200 °C a do tlaku 5 MPa. U aplikací, které jsou náročnější z hlediska vyššího tlaku, popř. vyšší teploty, jsou výměníky kompletně svařované [3].

Výměníky tepla typu trubka v trubce jsou používány zejména u aplikací s nízkými výkony.

Obr. 2.2 Výměník typu trubka v trubce v rozebíratelném a nerozebíratelném provedení [9].

Jak bylo uvedeno výše, výměníky mohou být sestaveny buď v nerozebíratelném, nebo rozebíratelném provedení, přičemž nerozebíratelné provedení je zpravidla používáno pro aplikace, kde není potřeba čištění mezitrubkového prostoru a teplotní rozdíl mezi pracovními látkami není vyšší než 20 °C. U rozebíratelného provedení výměníku je údržba snazší a výměník je možno použít i tehdy, je-li teplotní rozdíl mezi pracovními látkami vyšší než 20 °C [5, 11, 13, 14, 15].

Obr. 2.3 Trubkový rekuperační výměník tepla typu trubka v trubce [11].

2.2.2. Trubkový výměník tepla se svazkem trubek v plášti

Trubkové výměníky tepla se svazkem trubek v plášti jsou v praxi nejčastěji používaným typem výměníků. Tyto výměníky jsou vhodné pro plynná i kapalná média, včetně jejich fázových změn, a jsou též používány pro vysokotlaké a vysokoteplotní aplikace.

Typický výměník tepla se svazkem trubek v plášti se sestává z pláště, svazku trubek, trubkovnic, vstupních a výstupních komor, popř. i obratových komor, a přepážek. Vzájemná orientace proudů se v průběhu jejich toku výměníkem mění a výsledný tok je dán určitou kombinací souproudu, protiproudu a křížového toku. Nikdy se však nejedná o čistý souproud či protiproud, tak jak jej známe z výměníku tepla typu trubka v trubce. Nicméně s rostoucím počtem chodů se lze přiblížit k ideálnímu protiproudému uspořádání. Proud může být dále rozdělen podélnými i příčnými přepážkami (segmentovými, diskovými, šroubovicovými, tyčovými) [3].

Výměníky se svazkem trubek v plášti jsou nejpoužívanějšími výměníky tepla v chemickém a petrochemickém průmyslu, a to s různými konstrukčními obměnami. Výměníky jsou dostatečně masivní, snesou tedy obvyklá namáhání v provozu. Dají se většinou snadno čistit a části, které jsou nejčastěji předmětem závad (těsnění a trubky), mohou být bez obtíží vyměněny [3].

Tyto výměníky jsou zpravidla používány pro aplikace, ve kterých se teploty pohybují do 800 °C a tlaky do 140 MPa pro trubky a 30 MPa pro plášť [3].

Existuje několik základních konstrukčních variant těchto výměníků tepla, z nichž některé jsou pro vysokoteplotní aplikace vhodnější než jiné. Výčet variant používaných pro vysokoteplotní aplikace je uveden dále.

1) Výměník tepla se segmentovým přepážkovým systémem s pevnou trubkovnicí, viz obr 2.4.

Pro vysokoteplotní aplikace s větším rozdílem teplot mezi jednotlivými pracovními látkami nelze z důvodu rozdílné teplotní roztažnosti trubek a pláště tuto variantu použít jako takovou a je ji nutno doplnit vlnovým kompenzátorem v plášti.

Obr. 2.4 Výměník tepla se segmentovým přepážkovým systémem s pevnou trubkovnicí [17].

2) Výměník tepla se segmentovým přepážkovým systémem s plovoucí hlavou, viz obr. 2.5.

Tento typ je vhodnější pro aplikace s větším teplotním rozdílem mezi pracovními látkami, neboť plovoucí hlava kompenzuje rozdílnou teplotní dilataci trubek a pláště.

Obr. 2.5 Výměník tepla se segmentovým přepážkovým systémem s plovoucí hlavou [10].

3) Výměník tepla se segmentovým přepážkovým systémem s U-trubkami, viz obr. 2.6. U těchto výměníků zpravidla nevznikají problémy s teplotními dilatacemi, neboť jeden konec trubkového svazku se může v plášti volně pohybovat. Problém však může nastat u aplikací s extrémní rozdílností teplot mezi pracovními látkami, kdy rozdíl mezi prodloužením jednoho trubkového chodu vůči druhému je natolik veliký, že jej kolena spojující oba chody již nedokážou účinně kompenzovat a může zde dojít k trvalé deformaci, nebo ke vzájemnému dotyku některých trubek. Se zmenšujícím se poloměrem kolen se jejich kompenzační schopnost snižuje a riziko poškození tak narůstá.

Obr. 2.6 Svazek trubek U-trubkového výměníku [12].

Kromě výše zmíněných tří konstrukčních variant existují i další konstrukční varianty výměníků tepla se svazkem trubek v plášti lišící se například přepážkovým systémem, trubkovým systémem apod.

2.2.3. Deskové výměníky tepla

Deskové výměníky tepla patří mezi nejrozšířenější typy konvenčních výměníků tepla. Jak již bylo poznamenáno výše, jsou tyto výměníky sestaveny z desek, mezi kterými proudí pracovní látky, které mohou být plynného i kapalného skupenství, popř. může během tepelné výměny docházet k jejich odpařování, či kondenzaci.

Dle typu použitých desek dělíme deskové výměníky tepla na výměníky s profilovanými deskami (viz obr. 2.7) a výměníky s hladkými deskami (viz obr. 2.8).

Hlavními výhodami deskových výměníku jsou vyšší účinnost než výměníky trubkové (3 až 5krát), malá hmotnost při zachování potřebných výkonových charakteristik, velká turbulence proudů pracovních látek spolu s malou tloušťkou stěny, možnost zvětšení nebo zmenšení teplosměnné plochy dle aktuálních požadavků, malá prostorová a půdorysná náročnost apod. Naopak, mezi hlavní nevýhody patří omezení z hlediska provozních tlaků a teplot, omezená odolnost vůči zanášení apod. [3].

Vzhledem k uvedeným omezením jsou výměníky tepla s profilovanými deskami zpravidla používány do teploty 250 °C a tlaku 1,6 MPa u skládaného typu tohoto výměníků a u pájených, popř. svařovaných, typů je jejich použití omezeno na teploty do 400 °C a tlaky do 2,5 MPa [3].

Deskové výměníky s hladkými deskami jsou zpravidla používány pro teploty do 600 °C a tlaky do 0,4 MPa [3].

Z výše uvedených teplotních a tlakových omezení je zřejmé, že deskové výměníky tepla nejsou vhodné pro vysokoteplotní aplikace řešené v této práci.

Obr. 2.7 Schéma skládaného deskového výměníku tepla s profilovanými deskami [10].

Obr. 2.8 Deskový výměník tepla s hladkými deskami [11].

2.2.4. Příčně obtékaný svazek trubek

Za příčně obtékaný svazek trubek se považuje paralelní uspořádání trubek, přičemž je tento ohříván, nebo sám ohřívá tekutinu proudící kolmo na něj. Mezitrubkovým prostorem zpravidla proudí ohřívající médium, velmi často se jedná o spaliny, které ohřívá pracovní látku proudící v trubkovém prostoru. Velikost teplosměnné plochy bývá zvětšována žebrováním, trnováním, popř. obdobným způsobem [3].

Výměník s příčně obtékaným svazkem trubek je obvykle používán do teploty stěny 600 °C pro hladké trubky a do 400 °C pro žebrované trubky. Nicméně při vhodné volbě materiálu trubek může být použit i pro teploty okolo 1000 °C, viz kapitola 6. Tlaky se mohou pohybovat do 140 MPa pro trubkový prostor a pro mezitrubkový prostor je maximální velikost tlaku závislá na konstrukci a materiálu pláště [3].

Na obr. 2.9 jsou schematicky znázorněny dvě možnosti uspořádání trubek ve svazku spolu s vyznačením umístění roztečí, které je převzato ze softwaru HTRI.

Obr. 2.9 Schematické znázornění uspořádání trubek v příčně obtékaném svazku; A - za sebou v zákrytu, B – vystřídané.

3. Základní výpočtové vztahy pro výpočet výměníku tepla

3.1. Úvod do problematiky analytického řešení výměníků tepla

Za účelem stanovení závislosti mezi tepelným tokem \dot{q} , plochou výměny tepla A, teplotami jednotlivých pracovních látek na vstupu, popř. výstupu z výměníku a rychlostmi toku medií byly zformulovány základní vztahy, ze kterých se vychází při analytickém řešení výměníků tepla. Dle zákona zachování energie platí:

$$\dot{Q}_H = \dot{Q}_C + \dot{Q}_Z \tag{3.1}$$

kde

 $\begin{array}{ll} \dot{Q}_{H} & tepelný výkon přiváděný do výměníku horkým médiem, [W]; \\ \dot{Q}_{C} & tepelný výkon přenesený do chladného média, [W]; \\ \dot{Q}_{Z} & tepelné ztráty, [W]. \end{array}$

Jelikož tepelné ztráty \dot{Q}_z u běžných zaizolovaných zařízení nepřekračují 5 % [16], je možno tyto zanedbat a rovnici (3.1) upravit do tvaru:

$$\dot{Q} = \dot{Q}_H = \dot{Q}_C \tag{3.2}$$

kde \dot{Q}

tepelný výkon výměníku, tj. teplo přijaté/odevzdané pracovní látkou za časovou jednotku, [W].

Pro obě pracovní látky lze vztah (3.2) upravit do tvaru tzv. bilanční rovnice.

$$\dot{Q} = \dot{m}_{H}.\bar{c}_{pH}.(t_{H,i} - t_{H,o}) = \dot{m}_{C}.\bar{c}_{pC}.(t_{C,o} - t_{C,i})$$
(3.3)

kde

\dot{m}_{H}, \dot{m}_{C}	hmotnostní průtok horkého, resp. chladného média, [kg.s ⁻¹];
$\overline{c}_{pH}, \overline{c}_{pC}$	střední měrná tepelná kapacita horkého, resp. chladného média, [J.K ⁻¹ .kg ⁻¹]:
$t_{H,i}$, $t_{H,o}$	teplota horkého (tedy ochlazovaného) média na vstupu, resp. výstupu, [°C];
$t_{C,i}$, $t_{C,o}$	teplota chladného (tedy ohřívaného) média na vstupu, resp. výstupu, [°C].

Velikost měrné tepelné kapacity závisí na okamžité teplotě pracovní látky. Ta se však během průchodu výměníkem mění a tudíž se mění i hodnota měrné tepelné kapacity. Pro výpočty se tedy používá střední měrná tepelná kapacita získaná z následujícího vztahu:

$$\bar{c}_{pH} = \frac{1}{t_{H,i} - t_{H,o}} \int_{t_{H,i}}^{t_{H,o}} fc_{pH}(t) dt$$
(3.4a)

pro horké médium, popř.

$$\bar{c}_{pC} = \frac{1}{t_{C,o} - t_{C,i}} \int_{t_{C,o}}^{t_{C,i}} fc_{pC}(t) dt$$
(3.4b)

pro chladné médium,

kde

$$c_{pH}$$
, c_{pC} měrná tepelná kapacita horkého, resp. chladného média,
 $[J.K^{-1}.kg^{-1}]$.

Přenos tepelného výkonu výměníkem popisuje tzv. přenosová rovnice, která udává závislost mezi tepelným tokem \dot{Q} , plochou výměny tepla *A*, středním teplotním rozdílem ΔT_m a součinitelem prostupu tepla *k* následovně:

$$\dot{Q} = k \cdot A \cdot \Delta T_m \tag{3.5}$$

kde

k	součinitel prostupu tepla, $[W.m^{-2}.K^{-1}]$; viz (3.6);
A	plocha výměny tepla, [m²];
ΔT_m	střední teplotní rozdíl, [K], viz (3.7).

Pro stanovení tepelného výkonu z rovnice (3.5), popř. pro stanovení plochy výměny tepla z téže rovnice, je nutno znát velikost součinitele prostupu tepla k. Tento součinitel popisuje vliv termomechanických vlastností pracovních látek i samotného materiálu výměníku tepla na celkový tepelný tok z jedné pracovní látky do druhé. Součinitel prostupu tepla k je dán následující rovnicí:

$$k = \frac{1}{\frac{d_o}{d_i} \cdot \left(\frac{1}{\alpha_1} + R_{z1}\right) + \frac{d_o}{2 \cdot \lambda_{mt}} \cdot \ln\left(\frac{d_o}{d_i}\right) + \left(\frac{1}{\alpha_2} + R_{z2}\right)}$$
(3.6)

kde

$$\begin{array}{ll} d_{o}, d_{i} & vnější, resp. vnitřní průměr potrubí, [m]; \\ a_{1}, a_{2} & součinitel přestupu tepla na straně trubkového, resp. mezitrubkového prostoru výměníku tepla, [W.m-2.K-1]; \\ R_{z1}, R_{z2} & součinitel zanášení v trubkovém, resp. mezitrubkovém prostoru, [m2.K.W-1]; \\ \lambda_{mt} & tepelná vodivost materiálu potrubí, [W.m-1.K-1]. \end{array}$$

Další významnou proměnnou nacházející se v základních výpočtových vztazích je tzv. střední teplotní rozdíl ΔT_{m} , (3.7), který je závislý na maximálním (Δt_{max}) a minimálním (Δt_{min}) rozdílu počátečních, popř. koncových teplot horkého a studeného proudu. Např. u protiproudého uspořádání se bude jednat o rozdíl teploty teplého proudu na výstupu a studeného proudu na vstupu, respektive o rozdíl teploty teplého proudu na vstupu a studeného na výstupu, viz obr. 3.1. Jako Δt_{max} je označená vyšší a jako Δt_{min} nižší získaná hodnota.

Ve vztahu pro výpočet středního teplotního rozdílu ΔT_m dále figuruje člen ε , který se nazývá opravný součinitel středního logaritmického teplotního rozdílu (někdy se též nazývá a označuje jako korekční faktor F) [16] a upravuje hodnotu středního logaritmického teplotního rozdílu pro případ vícechodého trubkového výměníku.

$$\Delta T_m = \frac{\Delta t_{\max} - \Delta t_{\min}}{\ln \left(\frac{\Delta t_{\max}}{\Delta t_{\min}}\right)} \cdot \varepsilon$$
(3.7)

kde

- teplotní rozdíl počátečních, popř. koncových teplot horkého a studeného Δt_{max} proudu, [K]; teplotní rozdíl počátečních, popř. koncových teplot horkého a studeného Δt_{min}
- proudu, [K]; Е

1 - teplejší pracovní látka 2 - chladnější pracovní látka

$$\Delta T_a = T_{11} - T_{22}$$

 $\Delta T_b = T_{12} - T_{21}$

Obr. 3.1 Znázornění třech možných teplotních rozdílů na křivkách průběhů teplot dvou pracovních látek [16].

4. Software HTRI

4.1. Charakteristika softwaru

Software HTRI je speciálně navržený a vysoce sofistikovaný nástroj pro analytická řešení tepelných výměníků. Tímto softwarem je možno navrhovat, kontrolovat a jinak početně analyzovat široké spektrum typů výměníků tepla. HTRI během výpočtu používá předdefinovaných výpočtových vztahů, které software pro daný typ úlohy volí dle nejnovějších poznatků z oblasti termomechaniky, mechaniky tekutin a mechaniky těles.

Software samotný se skládá z několika výpočtových modulů a z rozsáhlé databáze fyzikálních vlastností tekutin označovanou VMGThermo[™].

Mezi výpočtové moduly patří:

- *modul Xace* umožňuje výpočty vzduchem chlazených tepelných výměníků a ekonomizérů;

- modul Xfh pro výpočty pecí;
- modul Xist umožňuje výpočty trubkových výměníků se svazkem trubek v plášti;
- modul Xhpe umožňuje výpočty výměníků s vlásenkovými trubkami;
- modul Xjpe pro výpočty výměníků typu trubka v trubce;
- modul Xphe pro výpočty deskových výměníků;
- modul Xspe umožňuje výpočty spirálových výměníků tepla.

Dalšími moduly je modul Xtlo, nebo Xvib umožňující analýzu vibrací.

Všechny výše zmiňované moduly sjednocuje přehledné uživatelské rozhraní. Součásti softwaru HTRI je také rozsáhlý uživatelský manuál a propracovaný modul nápovědy, který je možno spustit klávesou F1 kdykoli během práce v HTRI.

Po úspěšné instalaci a spuštění softwaru je k dispozici uživatelské rozhraní, které má ve srovnání s podobnými aplikacemi pracujícími v systému MS Windows standardní strukturu a design. Kromě obsahově standardní nabídky, jako je *File, Edit, View,* jsou zde k dispozici prvky *Tools* a *Help*, které obsahují velmi zajímavé utility. Jsou to *Exchanger selector* pro výběr vhodného výměníku tepla, *Quick calculation tool*, ve kterém se nachází převodník mezi jednotkami a možnost výpočtu vybraných parametrů potrubí, a *Tutorials...*, což je výukový modul práce v HTRI.

4.2. Principy a prvky ovládání softwaru

Pro práci v softwaru HTRI je vytvořeno přehledné uživatelské rozhraní typické pro aplikace pracující v systému MS Windows. Práci samotnou je možno začít pomocí záložky *File*, v níž je na výběr buď otevření existujícího souboru pomocí *Open Case*... (popř. *Import Case*...), nebo vytvoření nového souboru *New case* a následný výběr výpočtového modulu (viz výše), který odpovídá typu řešeného výměníku.

Po otevření, nebo vytvoření nového souboru je k dispozici první pracovní okno *Input Summary*, které je spolu s ostatními pracovními okny sjednoceno do stromové struktury v levé části pracovního prostředí. Toto sjednocení spolu se všemi pracovními okny náleží pod záložku *Input*, jenž je jednou ze sedmi záložek nalézajících se ve spodní části pracovního prostředí.

Jednotlivá pracovní okna pak slouží pro zadávání vstupních dat potřebných pro výpočet, který se spouští ikonkou *Run case*. Podrobný popis zadávání vstupních dat v jednotlivých pracovních oknech je uveden v příloze P1.

Po dokončení výpočtu jsou dle módu výpočtu, který byl zvolen během zadávání vstupních dat, k dispozici další ze sedmi záložek.

Záložky *Reports*, *Graphs*, *Drawings*, *Multiple Services* a *Session* jsou k dispozici pro všechny módy výpočtu a záložka *Design* je využita při módu *Design*. Bližší popis záložek a vybraných módů je proveden v příloze P1.

4.3. Typy výstupních protokolů

V následujícím textu budou popsány výstupní protokoly, které jsou sjednoceny pod záložkou *Reports*, a ze kterých je sestavena příloha P3 a příloha P4.

Output Summary – shrnutí hlavních vstupních i výsledných dat.

Data Check Messages a *Runtime Messages* – oznamovací protokoly pro určité nesrovnalosti (popř. chyby) zjištěné softwarem ve vstupních datech, resp. během výpočtu.

Final Results – podrobný soupis hlavních vstupních a výstupních dat, včetně zadané geometrie výměníku, střední teploty trubek v jednotlivých řadách a vybrané parametry, které byly použity během výpočtu.

Tubeside Monitor – procesní parametry média proudícího v trubkovém prostoru uvedené pro každou trubku zvlášť.

Outside Monitor – procesní parametry média proudícího v mezitrubkovém prostoru v okolí jednotlivých trubek; obdoba protokolu *Tubeside Monitor*.

Temperature Monitor – teploty, tlaky a hmotnostní podíly plynné složky obou pracovních látek uvedené pro jednotlivé trubky a jejich okolí.

Pressure Drop Monitor – teplota, hmotnostní podíl plynné složky, hmotnostní průtok a tlaková ztráta média proudícího v trubkovém prostoru uvedená po jednotlivých řadách trubek.

Property Monitor – jednotlivé teploty, hmotnostní podíly plynné složky a předané teplo pracovní látkou v mezitrubkovém prostoru uvedené pro každou trubku zvlášť.

Stream Properties – shrnutí vlastností a složení obou pracovních látek.

Input Reprint – shrnutí všech vstupních dat.

Výše uvedené výstupní protokoly obsahují v písemné podobě všechna výstupní, popř. i vstupní data. Zbývající záložky obsahují výstupní data především v grafické podobě, nebo obsahují souhrn průběžných výsledků získaných během jednotlivých výpočtových cyklů. Popis zbývajících šesti záložek a ostatních výstupních protokolů je uveden v příloze P1.

5. Srovnávací výpočet tlakových ztrát parovzdušné směsi ve 180° kolenech s použitím pěti vybraných výpočtových metod

Následující řádky jsou věnovány jednomu ze stále aktuálních témat v oblasti potrubních systémů. Jedná se o tlakové ztráty v potrubních příslušenstvích, konkrétně pak ve 180° ohybech (kolenech). Absolutně přesné analytické řešení této problematiky není doposud známo, a tudíž jsou pro výpočet těchto tlakových ztrát používány buď postupy (metody) využívající metody konečných prvků, nebo postupy analytické, v nichž vystupují určité koeficienty, jejichž hodnoty jsou většinou získávány experimentálně.

Obdobně je tomu i v případě softwaru HTRI, který pro výpočet tlakových ztrát v ohybech využívá analytického postupu podrobněji rozepsaného níže. Vzhledem k tomu, že obdobných analytických postupů existuje více, vyvstává zde otázka, která z metod je nejpřesnější, popř. jsou-li si jednotlivé metody svými výsledky vzájemně rovny.

5.1. Přehled a rozbor metod pro výpočet tlakové ztráty ve 180° kolenech

Analytické stanovení tlakových ztrát tekutin na jednotlivých prvcích zařízení kromě přímého potrubí, tj. ventily, kolena apod. (dále jen armatury), je i v současnosti rozsáhlou problematikou. Přítomnost kolen, popř. jiných ohybů v potrubním systému, má za následek větší energetickou ztrátu, než jaká by byla u přímého potrubí, které by mělo délku daného ohybu.

Podle poměru poloměru zakřivení ohybu a vnitřního průměru potrubí mohou být ohyby klasifikovány jako mírné, tj. R/ID >= 1.5, nebo jako ostré, tj. R/ID < 1.5 (v některých zdrojích je jako rozdělující uváděna hodnota tohoto poměru 2). Platí, že na ostrých ohybech je tlaková ztráta vyšší než na mírných ohybech [19].

5.1.1. Popis výpočtových metod

Bylo vybráno pět výpočtových metod, které patří mezi nejznámější, a za účelem jejich porovnání byl proveden výpočet tlakových ztrát parovzdušné směsi na 180° kolenech. Důvodem volby parovzdušné směsi je, že PVS je ohřívaným médiem u vysokoteplotní aplikace 1 a 2 (viz kapitoly 1.1. a 1.2.). Tlakové ztráty byly počítány pro jeden tlak, dvě teploty a sedm rychlostí PVS. Dále bylo zvoleno pět průměrů potrubí a také byl do výpočtu zahrnut poměr mezi poloměrem zakřivení kolena a jeho vnitřním průměrem. Přesné hodnoty, ze kterých byly tlakové ztráty počítány, jsou uvedeny v příloze P2. Dle teplot a tlaku byly z tabelovaných hodnot stanoveny viskozity a hustoty PVS. Konkrétní hodnoty jsou uvedeny v tabulce 5.1 níže.

Parametry PVS pro tlak 0.617 MPa		
Teplota [°C] Dynamická viskozita [Pa.s] Hustota [kg/m3]		
350	0.00002816	2.984
800	0.00004278	1.718

Tab. 5.1 Parametry PVS [19].

U metod používajících koeficienty K se výsledná tlaková ztráta dopočítává podle vztahu:

$$\Delta p = K \cdot \frac{G^2}{2 \cdot \rho} \tag{5.1}$$

kde

∆p	velikost tlakové ztráty, [Pa];
G	hmotnostní průtok, [kg.s ⁻¹ .m ⁻²];
ρ	hustota tekutiny, [kg.m ⁻³];
K	ztrátový součinitel, [-].

Metoda ekvivalentní délky

První výpočet byl proveden použitím vztahu (5.2), ve kterém je použito ekvivalentní délky a součinitele tření (vypočtený dle Churchilova vztahu). Člen *ID* je vnitřní průměr potrubí.

$$\Delta p = \lambda \cdot L_{ekv} \frac{u^2}{2 \cdot ID} \cdot \rho \tag{5.2}$$

kde

Darcyho součinitel tření, [-];
ekvivalentní délka, [m];
vnitřní průměr potrubí, [m];
hustota proudícího média, [kg/m³];
rychlost proudícího média, [m/s].

Metoda ekvivalentní délky dává dané armatuře hypotetickou délku, kterou by muselo mít přímé potrubí, aby na něm vznikala stejná tlaková ztráta jako na dané armatuře. Metoda je založena na dvou předpokladech.

Zaprvé, velikosti armatur jsou charakterizovány odpovídajícím průměrem potrubí. Zadruhé, vliv velikosti Reynoldsova čísla na tlakovou ztrátu třením je stejný jak pro danou armaturu, tak pro přímé potrubí.

Nicméně, žádný z uvedených předpokladů není přesný a kromě toho, povaha laminárního, nebo turbulentního proudění tekutiny armaturou je obecně odlišná od přímého potrubí [18]. Pro ventily a jiné geometricky složitější armatury je použití metody ekvivalentní délky nevhodné. V našem případě, kdy se jedná o 180° kolena, je metoda velmi konzervativní a hodnoty tlakové ztráty jsou podstatně vyšší než v případě dalších čtyř metod uvedených níže.

Z důvodů uvedených výše, včetně neshody hodnoty tlakové ztráty s ostatními metodami, lze učinit závěr, že metoda ekvivalentní délky je vhodná pouze pro rychlé výpočty tlakové ztráty potrubního systému a zvláště tehdy, dají-li se tlakové ztráty v ohybech a dalších armaturách považovat za minoritní, např. při vysokých hodnotách Reynoldsova čísla [19].

Metoda používající součinitel místního odporu

Druhý výpočet byl proveden metodou používající součinitel místního odporu (5.3). Součinitel místního odporu se stanovuje z tabelovaných hodnot. V našem případě jsou tyto hodnoty v závislosti na poměru poloměru zakřivení kolena a vnitřním průměru potrubí a úhlu zakřivení kolena, viz tab. 5.2. Poměr R/ID je roven přibližně 1 pro typ kolena "short", tj. malý poloměr zakřivení, a přibližně 1.5 pro typ kolena "long", tj. velký poloměr zakřivení. Úhel zakřivení kolena je 180°. Jelikož naše konkrétní poměry R/ID nejsou přesně rovny 1, popř. 1.5, bylo nutno přesnou hodnotu z tabelovaných hodnot získat interpolací.

$$\Delta p = \xi \cdot \frac{u^2}{2} \cdot \rho \tag{5.3}$$

kde

ζ součinitel místního odporu, [-];
 u rychlost proudícího média, [m/s];

 ρ hustota proudícího média, [kg/m³].

R/ID	1	2	4	6	10
ζ	0,51	0,30	0,23	0,20	0,18

Tab. 5.2 Závislost součinitele místního odporu 180° kolena na poměru R/ID [20].

Výsledky tlakové ztráty při použití této metody jsou výrazně nižší než výsledky získané metodou ekvivalentní délky a zároveň jsou relativně podobné s výsledky z dalších uvedených metod. Z tab. 5.2 a vztahu (5.3) je dále patrné, že tlaková ztráta stanovená touto metodou není závislá na konkrétním průměru potrubí. Z tohoto důvodu je metoda vhodná pro hrubý odhad tlakové ztráty v potrubním systému, avšak pro získání přesných výsledků je nevhodná [19].

Hooperova 2-K metoda

Hooperova 2-K metoda, vyjádřená vztahem (5.4) pracuje s bezrozměrnými koeficienty *K*.

$$K = \frac{K_1}{\text{Re}} + K_{\text{inf}} \left(1 + \frac{25.4}{ID} \right)$$
(5.4)

kde

K ₁ ,K _{inf}	koeficienty dané tab. 5.3,[-];
ID İ	vnitřní průměr potrubí, [mm];
Re	Reynoldsovo číslo, [-].

Koeficient K nezávisí na drsnosti povrchu armatury ani na velikosti systému, ale je funkcí Reynoldsova čísla a geometrie daného prvku. Koeficient K je větší pro malé rozměry armatur, avšak se zvětšujícím se rozměrem armatury se již tolik nemění.

Nicméně člen I/ID ve vztahu (5.4), zohledňující velikost prvku, nemůže přesně zohlednit široké spektrum velikostí různých armatur. Navíc pro vysoká Reynoldsova čísla, nebo v případě již zmíněných rozměrnějších armatur nejsou hodnoty Hooperova koeficientu *K* srovnatelné s naměřenými hodnotami.

V případě 180° kolena, kdy byl za *ID* dosazován vnitřní průměr a za členy *K* tabelované hodnoty, jsou výsledky srovnatelné s ostatními metodami, kromě metody ekvivalentní délky.

Velikost poměru R/ID	Typ připojení	K ₁	K _{inf}
1	šroubovaný	1000	0.7
1	přírubový, svařovaný	1000	0.35
1.5	všechny typy	1000	0.3

Tab. 5.3 Hodnoty koeficientů pro 180° ohyby v rovnici (5.4) dle [18].

Darbyho 3-K metoda

V Darbyho 3-K metodě obdobně jako v Hooperově 2-K metodě figurují koeficienty *K*. 3-K metoda je rovněž závislá na velikosti vnitřního průměru potrubí, ze kterého je koleno vyrobeno, a na velikosti Reynoldsovoa čísla. Na rozdíl však od 2-K metody má Darbyho 3-K metoda má vyšší vypovídající hodnotu pro široké rozmezí hodnot Reynoldsova čísla, široké spektrum různých velikostí armatur a navíc dává dobré výsledky i pro laminární režimy proudění. Vztah pro výpočet ztrátového součinitele Darbyho metodou je ve tvaru:

$$K = \frac{K_{I}}{\text{Re}} + K_{\text{inf}} \left(I + K_{d} \left(\frac{25.4}{ID} \right)^{0.3} \right)$$
(5.5)

kde

K_1, K_i, K_d	koeficienty dané tab. 5.4, [-];
ID	vnitřní průměr potrubí, [mm];
Re	Reynoldsovo číslo, [-].

Hodnoty koeficientů K_1 , K_i , K_d , z nichž vybrané jsou uvedeny v tab. 5.4, lze nalézt např. v literatuře [18, 21].

Velikost poměru R/ID	Typ připojení	K ₁	K _i	K _d
1	šroubovaný	1000	0.23	4.0
1	přírubový, svařovaný	1000	0.12	4.0
1.5	všechny typy	1000	0.10	4.0

Tab. 5.4 Hodnoty koeficientů pro 180° ohyby v rovnici (5.5) dle [21].

V současné době je Darbyho 3-K metoda metodou uznávanou a používanou projekčními kancelářemi při výpočtech tlakových ztrát v potrubních příslušenstvích.

Blevinsova metoda

V Blevinsově metodě, kterou používá software HTRI, obdobně jako u metod 2-K a 3-K figurují koeficienty K. Na rozdíl však od ostatních metod je tato metoda podstatně složitější na výpočet. Postup výpočtu je závislý na velikosti Reynoldsova čísla a na poměru R/ID.

V této metodě jsou ohyby na potrubí (tedy i kolena) charakterizovány buď jako "ostré", tj. $R/ID \le 2$, nebo jako "mírné", tj. $R/ID \ge 2$. V našem případě pro 180° kolena, kdy je $R/ID \approx 1$, popř. 1.5 (tudíž se jedná o kolena "ostrá"), a turbulentní režim proudění, byly hodnoty pro koeficienty K získány z tabelovaných hodnot pomocí interpolace a dopočítány použitím vztahu (5.6). Bližší postup výpočtu je uveden např. v [22].

$$K = K' \left(\frac{5(10^5)}{\text{Re}}\right)^{0.17}$$
(5.6)

kde

ReReynoldsovo číslo, [-];K'koeficient stanovený z tabelovaných hodnot, [-].

5.1.2. Porovnání výpočtových metod

Výpočet tlakové ztráty ve 180° kolenech byl proveden pro potrubí s následujícími parametry:

- průměry potrubí DN 50, DN 80, DN 100, DN 150 a DN 200;
- ostré i mírné ohyby, tj. R/ID < 2 (short), resp. R/ID >= 2 (long);
- rychlosti proudění média 10, 15, 20 25, 30, 35 a 40 m/s.

Výsledky jsou v grafické podobě znázorněny na následujících grafech a v tabulkové podobě jsou uvedeny v příloze P2.

Obr. 5.1 Grafické znázornění závislosti tlakové ztráty na rychlosti proudění média pro teploty 350°C a 800°C [19].
5.1.3. Výběr vhodné metody výpočtu tlakové ztráty ve 180° kolenech

Z uvedených grafů, popř. z dat uvedených v příloze P2, je patrná závislost tlakových ztrát PVS na rychlosti proudění, průměru potrubí, poloměru ohybu a teploty PVS. Metoda ekvivalentní délky je z výše uvedených metod nejkonzervativnější a její výsledky jsou oproti ostatním metodám značně odlišné.

U ostatních metod je patrná jistá podobnost ve výsledcích tlakových ztrát. Z důvodu podobnosti výsledků získaných pomocí Blevinsovy metody, kterou používá software HTRI, a Darbyho 3-K metody, která je v současnosti obecně používána projekčními kancelářemi, lze učinit závěr, že hodnoty tlakových ztrát ve 180° kolenech získané během řešení dané úlohy v softwaru HTRI nebudou zbytečně vysoké, tak jak by tomu bylo v případě použití první uvedené metody (tj. metoda ekvivalentní délky).

Přesnější výpočet tlakové ztráty v kolenech je jeden z předpokladů pro optimálnější návrh výměníků tepla i přidružených zařízení.

6. Řešení vysokoteplotní aplikace 1 softwarem HTRI

V zadání vysokoteplotní aplikace 1 byly popsány tři alternativy provedení návrhu OPVS tvořeného svazky trubek umístěnými do spalinového kanálu (viz obr. 1.2, 1.3 a 1.4), u kterých má být proveden kontrolní výpočet zaměřený na ověření plnění výchozích požadavků, jenž jsou uvedeny v tab. 6.1. a označeny žlutou barvou. Jmenovitě se jedná o výstupní teplotu PVS, maximální teplotu povrchu stěny trubek v radiační (nejexponovanější) sekci výměníku (materiálové omezení), tlakové ztráty na straně spalin i PVS a požadovaný výkon. Samotná tab. 6.1 pak shrnuje všechny výchozí požadavky dané zadavatelem.

Kontrola všech tří alternativ je provedena v softwaru HTRI a její podrobný popis je uveden níže.

Médiu	m - umístění	Veličina	Hodnota	Jednotka
		p _{PVSin}	6,109	bar(abs.)
		T _{PVSin}	220,3	°C
DVC	م خرب او او خرب او	T _{PVSout}	835,0	°C
PVS.	- v trubkach	W _{PVS}	25,36	% hm.
		m _{PVS}	3,175	kg·s ⁻¹
		Δp_{PVS}	10,0	kPa
		T _{spin}	1200,0	°C
Crali	Que 11		345,3	°C
Span	ny - v plasti	m _{sp}	2,517	kg∙s ⁻¹
			1,5	kPa
Bilar	Bilanční výkon OPVS		2663	kW
Sekce	Materiál	Teplota stěny		Jednotka
5	třídy 12	500 (490)*		°C
4	třídy 15	650		°C
3	třídy 17	750		°C
1 a 2	Niklové slitiny	950 (a	950 (až 980)	

Tab. 6.1 Shrnutí požadavků daných zadavatelem s označením kontrolovaných parametrů [1].

6.1. Vstupní data a postup řešení

Během kontrolního výpočtu jednotlivých alternativ návrhu OPVS se vycházelo ze vstupních dat, z nichž některá byla daná zadavatelem a některá byla získána při výpočtech spojených s návrhem OPVS. Všechna vstupní data, která byla použita při kontrolním výpočtu jsou uvedena v tab. 6.2. Tato tabulka je rozdělena na čtyři části a až d, přičemž v části a jsou uvedeny především procesní parametry a v částech b až d geometrické parametry.

Tab. a							
Alternativa	1	2	3	Alternativa	1	2	3
Teplota PVS na vstupu, [°C]	220,3	220,3	220,3	Teplota spalin na vstupu, [°C]	1200,0	1200,0	1200,0
Tlak PVS na vstupu, [kPa]	610,9	610,9	610,9	Tlak spalin na vstupu, [kPa]	101,325	101,325	101,325
Hmotnostní tok PVS, [kg/s]	3,175	3,175	3,175	Hmotnostní tok spalin, [kg/s]	2,517	2,517	2,517
Ohřívaná plocha, [m ²]	491	648	546	Ohřívaná délka trubek, [m]	3	3	3

Tab. b

Geometrie alternativy 1					
Parametr / číslo sekce	1. sekce	2. sekce	3. sekce	4. sekce	5. sekce
Vnější průměr potrubí x tloušťka stěny, [mm]	60,3 x 2,9				
Počet chodů	2	2	2	4	6
Počet řad	2	8	8	16	24
Počet trubek v řadě	12	15	15	15	15
Rozteč - podélná / příčná, [mm]	420/110	80/90	80/90	80/90	80/90
Odsazení lichých řad, [mm]	62,35	14,85	14,85	14,85	14,85
Odsazení sudých řad, [mm]	62,35	59,85	59,85	59,85	59,85

Tab. c

Geometrie alternativy 2						
Parametr / číslo sekce	1. sekce	2. sekce	3. sekce	4. sekce	5. sekce	
Vnější průměr potrubí x tloušťka stěny, [mm]	33,7 x 2,3					
Počet chodů	2	1	1	1	5	
Počet řad	4	8	8	8	40	
Počet trubek v řadě	30	30	30	30	30	
Rozteč - podélná / příčná, [mm]	70/62	70/62	70/62	70/62	70/62	
Odsazení lichých řad, [mm]	14,15	14,15	14,15	14,15	14,15	
Odsazení sudých řad, [mm]	45,15	45,15	45,15	45,15	45,15	

Geometrie alternativy 3						
Parametr / číslo sekce	1. sekce 2. sekce 3. sekce 4. sekce 5. sekce					
Vnější průměr potrubí x tloušťka stěny, [mm]	33,7 x 2,3	33,7 x 2,3	60,3 x 2,9	60,3 x 2,9	60,3 x 2,9	
Počet chodů	1	1	2	2	6	
Počet řad	2	4	8	8	24	
Počet trubek v řadě	30	39	21	21	21	
Rozteč - podélná / příčná, [mm]	54/62	42/48	80/88	80/88	80/88	
Odsazení lichých řad, [mm]	14,15	7,15	13,50	13,50	13,50	
Odsazení sudých řad, [mm]	45,15	31,15	57,50	57,50	57,50	

Tab. d

Tab. 6.2 a – d Přehled vstupních dat jednotlivých alternativ použitých při kontrolním výpočtu návrhu OPVS [1, 23].

Po té co byl v softwaru HTRI spuštěn modul *Xace* umožňující výpočty vzduchem chlazených výměníků tepla a ekonomizérů, byla do příslušných kolonek zadána výše uvedená vstupní data, přičemž postup jejich zadávání byl následovný.

Po spuštění softwaru, výběru modulu *Xace* a přepnutí do požadované soustavy jednotek (v tomto případě do soustavy SI) je implicitně zobrazeno pracovní okno *Input Summary*. Zde se po přepnutí do módu simulace *(Simulation)* budou postupně zadávat vstupní hodnoty. Jsou to například hmotnostní tok, vstupní a výstupní teploty pracovních látek, rozměry potrubí apod. V dalších pracovních oknech je potřeba nadefinovat parametry potrubí v jednotlivých sekcích, geometrii spalinového kanálu a složení jednotlivých pracovních látek. Konkrétní postup práce se softwarem HTRI je uveden v příloze P1.

Jakmile jsou zadány všechny požadované vstupní hodnoty, je pomocí ikonky *Run case* spuštěn výpočet. Výsledky výpočtu jsou k dispozici v několika výstupních protokolech, viz. kapitola 4.3., přičemž výběr výsledných hodnot je uveden v tabulkách 6.3 až 6.5 v následující kapitole a kompletní výstupní protokoly jsou v příloze P3.

6.2. Hlavní výsledky alternativy 1

V tab. 6.3 níže jsou uvedeny hlavní výsledky kontrolního výpočtu alternativy 1. Z této tabulky jsou zřejmé následující skutečnosti.

Nejvyšší teplota stěny trubky je 922,30 °C, čímž je splněna podmínka, že maximální teplota trubky nesmí být vyšší než 950, popř. 980 °C (viz tab. 6.1).

Teplota spalin a teplota PVS na výstupu z výměníku je 296,05 °C, resp. 862,51 °C. Tyto teploty nejsou shodné s požadovanými teplotami.

Tepelný výkon OPVS je 2796 kW a je v přibližné shodě s požadovaným výkonem.

Tlaková ztráta na straně spalin je 0,114 kPa a nepřekračuje tak dovolenou tlakovou ztrátu, která je 1,5 kPa. Velikost tlakové ztráty na straně PVS je 29,358 kPa, čímž téměř trojnásobně překračuje zadavatelem dovolenou hodnotu, která je 10 kPa.

Alternativa 1				
Parametr / Pracovní látka	Spaliny (mezitrubkový prostor)	PVS (trubkový prostor)		
Teplota na výstupu, [°C]	296,05	862,51		
Tlak na výstupu, [kPa]	101,212	581,551		
Celková tlaková ztráta, [kPa]	0,114	29,358		
Rychlost proudění na vstupu, [m/s]	4.54*	6,05		
Rychlost proudění na výstupu, [m/s]	4,34*	73,36		
Nejvyšší teplota stěny trubky, [°C]	922,30	920,02		
Tepelný výkon, [kW]	2796			

* Poznámka: Jedná se o střední rychlost proudění.

Tab. 6.3 Vybrané výsledky kontrolního výpočtu alternativy 1.

6.3. Hlavní výsledky alternativy 2

V tab. 6.4 níže, obdobně jako v předchozím případě, jsou uvedeny hlavní výsledky kontrolního výpočtu alternativy 2.

Nejvyšší teplota stěny trubky je 924,82 °C, čímž je i v tomto případě splněna podmínka maximální teploty stěny trubky, která nesmí být vyšší než 950, popř. 980 °C (viz tab. 6.1).

Teplota spalin na výstupu je 281,98 °C a teplota PVS na výstupu je 871,05 °C. Obdobně jako u alternativy 1 nejsou výstupní teploty pracovních látek shodné s požadovanými teplotami a v případě výběru alternativy 2 bude pravděpodobně zapotřebí blíže posoudit význam této neshody.

Tepelný výkon OPVS je 2836 kW, tudíž je v přibližné shodě s požadovaným výkonem.

Tlaková ztráta na straně spalin je 0,039 kPa, přičemž je tato hodnota nižší než hodnota dovolené tlakové ztráty. Nicméně, tlaková ztráta na straně PVS je 21,003 kPa, čímž je hodnota dovolené tlakové ztráty překročena přibližně o dvojnásobek.

Alternativa 2				
Parametr / Pracovní látka	Spaliny (mezitrubkový prostor)	PVS (trubkový prostor)		
Teplota na výstupu, [°C]	281,98	871,05		
Tlak na výstupu, [kPa]	101,288	589,906		
Celková tlaková ztráta, [kPa]	0,039	21,003		
Rychlost proudění na vstupu, [m/s]	2 20*	5,30		
Rychlost proudění na výstupu, [m/s]	2,29*	51,11		
Nejvyšší teplota stěny trubky, [°C]	924,82	923,49		
Tepelný výkon, [kW]	on, [kW] 2836			

* Poznámka: Jedná se o střední rychlost proudění.

Tab. 6.4 Vybrané výsledky kontrolního výpočtu alternativy 2.

6.4. Hlavní výsledky alternativy 3

Výsledky poslední třetí alternativy, jenž jsou uvedeny v tab. 6.5, lze shrnout následovně.

Teplota spalin a teplota PVS na výstupu z výměníku je 307,49 °C, resp. 855,37 °C. Přestože tyto teploty nejsou shodné s požadovanými teplotami, tak v porovnání s předchozími alternativami, jsou jejich rozdíly nejmenší.

Nejvyšší teplota stěny trubky je 907,71 °C a splňuje tedy podmínku, že maximální teplota trubky nesmí být vyšší než 950, popř. 980 °C (viz tab. 6.1).

Tepelný výkon OPVS je 2763 kW a je v přibližné shodě s požadovaným výkonem.

Tlaková ztráta na straně spalin je 0,085 kPa a nepřekračuje tak dovolenou tlakovou ztrátu. Velikost tlakové ztráty na straně PVS je 11,165 kPa. I když tato tlaková ztráta překračuje dovolenou tlakovou ztrátu, tak na rozdíl od předchozích alternativ, kdy byla dovolená tlaková ztráta překročena až trojnásobně, je rozdíl mezi vypočtenou a dovolenou tlakovou ztrátou přibližně jen 10%.

Alternativa 3				
Parametr / Pracovní látka	Spaliny (mezitrubkový prostor)	PVS (trubkový prostor)		
Teplota na výstupu, [°C]	307,49	855,37		
Tlak na výstupu, [kPa]	101,242	599,744		
Celková tlaková ztráta, [kPa]	0,085	11,165		
Rychlost proudění na vstupu, [m/s]	2.54*	4,32		
Rychlost proudění na výstupu, [m/s]	5,54*	49,58		
Nejvyšší teplota stěny trubky, [°C]	907,71	906,42		
Tepelný výkon, [kW]	2763			

* Poznámka: Jedná se o střední rychlost proudění.

Tab.	6.5 Vybrané	výsledky	kontrolního	výpočtu	alternativy 3.
------	-------------	----------	-------------	---------	----------------

6.5. Shrnutí výsledků vysokoteplotní aplikace 1

Porovnáme-li výsledky jednotlivých alternativ se zadanými hodnotami uvedenými v tab. 6.1, je zřejmé, že žádná z alternativ stoprocentně nesplňuje požadavky zadání.

Při výběru vhodné alternativy bude tedy dle míry důležitosti plnění jednotlivých podmínek brána v potaz velikost rozdílu mezi vypočtenými a zadanými hodnotami. Pro zadavatele je jednou z nejdůležitějších podmínek plnění požadované tlakové ztráty. Tuto však, co se týče strany PVS, překračují všechny tři alternativy. Nicméně z důvodu, že alternativa 3 překračuje dovolenou tlakovou ztrátu na straně PVS nejméně a i ostatními parametry se nejvíce přibližuje požadovaným hodnotám, je tímto z hlediska plnění zadaných podmínek, uvedených v tab. 6.1, nejvhodnější alternativou pro budoucí realizaci vysokoteplotní aplikace 1.

7. Řešení vysokoteplotní aplikace 2 softwarem HTRI

V kapitole 1.2. je uvedeno zadání vysokoteplotní aplikace 2, v níž je úkolem provést návrh trubkového výměníku tepla se segmentovými přepážkami, dle parametrů zadaných v tab. 1.3, popř. v tab. 7.1.

Je požadováno provést minimalizaci plochy výměny tepla, resp. hmotnosti výměníku, při současném splnění požadavků zadání (výkon, dovolené tlakové ztráty). V rámci výše zmíněné minimalizace je rovněž požadováno nalézt vhodnou variantu zapojení pracovních látek ve výměníku. U varianty 1 jsou spaliny umístěny v mezitrubkovém a PVS v trubkovém prostoru a ve variantě 2 jsou spaliny umístěny v trubkovém a PVS v mezitrubkovém prostoru.

Požadavky, které mají být během návrhu prioritně dodrženy, jsou v tab. 7.1 zvýrazněny žlutě. Jedná se o tlakové ztráty obou pracovních látek a výkon navrhovaného výměníku.

Médium	Veličina	Hodnota	Jednotka
	p _{PVSin}	4,306	bar(abs.)
PVS	T _{PVSin}	98,9	°C
	T _{PVSout}	529,8	°C
	WPVS	11,81	% hm.
	m _{PVS}	1,291	kg·s ⁻¹
	Δp_{PVS}	10 až 14	kPa
	T _{spin}	600	°C
Smaliner	T _{spout}	144	°C
Spanny	m _{sp}	1,24	kg·s⁻¹
	$\Delta \mathbf{p_{sp}}$	4	kPa
Bilanční výkon	P _{CS-AMH}	653	kW

Tab. 7.1 Rekapitulace zadávacích parametrů nominálního provozního režimu výměníku CS-AMH [2].

7.1. Vstupní data a postup řešení

Návrhový výpočet obou variant výše zmíněného výměníku tepla je obdobně jako kontrolní výpočet v kapitole 6. proveden pomocí softwaru HTRI. Na rozdíl od kontrolního výpočtu je však při návrhovém výpočtu nutno před zadáváním vstupních dat zvolit mód *Design*. Procesní vstupní data pro obě řešené varianty jsou uvedena v tab. 7.1 a vstupní data týkající se geometrie jsou uvedena v tab. 7.2.

Výchozí geometrie				
Parametr Hodnota Jednotka				
Vnější průměr potrubí	15,0	mm		
Tloušťka stěny	1,5	mm		
Maximální délka	10	m		
Maximální průměr pláště	1600	mm		

Tab. 7.2 Zadané geometrické parametry shodné pro obě varianty výměníku tepla [2].

Samotný výpočet v softwaru HTRI probíhá po jednotlivých krocích v určitých mezích, přičemž jak velikost kroku, tak i meze je potřeba definovat během zadávání vstupních dat. Software pak tučným písmem označí výsledky, které splňují jistý zvolený parametr. V případě vysokoteplotní aplikace 2 je tímto parametrem požadavek na minimální velikost teplosměnné plochy.

Popis hlavních výsledků obou variant je proveden níže a výstupní protokoly jsou uvedeny v příloze P4.

7.2. Hlavní výsledky varianty 1

Po dokončení návrhového výpočtu varianty 1 je softwarem dle velikosti teplosměnné plochy vybrán nejrelevantnější výsledek. Souhrn procesních a geometrických parametrů nalezeného řešení je uveden v tab. 7.3.

Z hodnot uvedených v tab. 7.3 je zřejmé, že tlakové ztráty i tepelný výkon výměníku jsou ve shodě se zadanými hodnotami. Nicméně, pro splnění zadaných tlakových ztrát na straně spalin, které jsou umístěny v mezitrubkovém prostoru, při současném zachování požadovaného tepelného výkonu, by muselo být v procesu současně zapojeno více výměníků tepla. Z hlediska minimalizace teplosměnné plochy, resp. hmotnosti výměníku, není tento způsob řešení vhodný.

Varianta 1 – vypočítané parametry						
	Geometrické parametry					
Parametr	Hodnota					
Celková teplosměnná plocha, [m ²]	1395,58					
Vnitřní průměr pláště, [mm]	800,00					
Počet přepážek, [-]	8					
Vzdálenost mezi přepážkami, [mm]	388,083					
Délka trubek, [m]	4,0					
Rozteč trubek, [mm]	18,75					
Provedení výměníku dle TEMA [-]	AES					
Počet jednotek zapojených v sérii	2					
Počet paralelně zapojených jednotek	3					
	Procesní parametry					
Parametr/pracovní látka	Spaliny (mezitrubkový prostor)	PVS (trubkový prostor)				
Teplota na vstupu, [°C]	600,00	98,90				
Teplota na výstupu, [°C]	140,25	529,80				
Tlak na vstupu, [kPa]	107,002	430,606				
Tlaková ztráta, [kPa]	3,934	1,975				
Střední rychlost média, [m/s]	5,06	1,30				
Tepelný výkon, [kW] 656,9						

Tab. 7.3 Souhrn vybraných vypočítaných parametrů varianty 1.

7.3. Hlavní výsledky varianty 2

Po dokončení návrhového výpočtu varianty 2 dává software HTRI k dispozici více výsledků splňujících zadané parametry v závislosti na procentuální úrovni předimenzování (tzv. *overdesign*). Z výsledných variant byly pro diskusi vybrány dva výsledky, jejichž vypočítané parametry jsou uvedeny v tab. 7.4.

Z tabulky je patrné, že oba výsledky splňují požadavky uvedené v tab. 7.1. Nicméně výsledek 1, který byl vybrán pouze s ohledem na minimální plochu výměny tepla, vykazuje pouze minimální předimenzování, přičemž hodnota předimenzování je v tomto případě jen 0,32 %. V praxi je však určité předimenzování výměníku tepla žádoucí. Velikost předimenzování pak obecně závisí například na stupni zanášení teplosměnných ploch, nebo na přesnosti použitých korelací pro přestup tepla a tlakové ztráty.

Z tohoto důvodu je jako doporučený výsledek pro realizaci vybrán výsledek 2, který vykazuje předimenzování o 5,34 %, což je dostačující hodnota pro vysokoteplotní aplikaci, u které není potřeba uvažovat se zanášením teplosměnných ploch.

Varianta 2 – vypočítané parametry dvou vybraných výsledků								
Geometrické parametry								
Parametr / (Výsledek předimenzování, [%])	Výsledek 1	/ (0,32)	Výsledek 2 / (5,34)					
Celková teplosměnná plocha, [m ²]	351,9	21	374,507					
Vnitřní průměr pláště, [mm]	696,0	00	700,0	00				
Počet přepážek, [-]	22		22					
Vzdálenost mezi přepážkami, [mm]	324,2	23	343,1	10				
Délka trubek, [m]	8,10	0	8,500					
Rozteč, [mm]	18,750		18,750					
Provedení výměníku dle TEMA, [-]	AES		AES					
Pro	cesní parametry							
Parametr/pracovní látka	PVS (mezitrubkový prostor)	Spaliny (trubkový prostor)	PVS (mezitrubkový prostor)	Spaliny (trubkový prostor)				
Teplota na vstupu, [°C]	98,90	600,00	98,90	600,00				
Teplota na výstupu, [°C]	529,80	140,43	529,8	140,43				
Tlak na vstupu, [kPa]	430,606	107,002	430,606	107,002				
Tlaková ztráta, [kPa]	13,912	3,837	13,246	3,926				
Střední rychlost média, [m/s]	9,99	21,23	9,78	20,94				
Tepelný výkon, [kW]	656,	6	656,6					

Tab. 7.4 Souhrn vybraných vypočítaných parametrů dvou vybraných výsledků návrhu varianty 2.

7.4. Shrnutí výsledků vysokoteplotní aplikace 2

Porovnáme-li výsledky obou variant návrhu vysokoteplotního výměníku tepla CS-AMH, kdy je rozhodujícím faktorem pro výběr vhodné varianty minimální velikost plochy výměny tepla, resp. hmotnosti výměníku, je zřejmé, že varianta 2 je jedinou vhodnou variantou, přičemž výsledek 2 (viz tab.7.4) splňuje všechna kritéria daná zadavatelem. Z tohoto důvodu je návrh výměníku tepla označený jako výsledek 2, vybrán jako nejvhodnější řešení pro vysokoteplotní aplikaci 2.

8. Závěr

Diplomová práce je zaměřena na problematiku tepelně-hydraulického návrhového a kontrolního výpočtu konvenčních typů výměníků tepla určených pro vysokoteplotní aplikace, přičemž pro řešení je využit profesionální komerční software HTRI, jenž je ve výukové verzi k dispozici na Ústavu procesního a ekologického inženýrství.

Úvodní, teoretická část diplomové práce, je zaměřena na stručný popis konvenčních konstrukcí výměníků tepla s ohledem na jejich použití pro vysokoteplotní aplikace, popis základních výpočtových vztahů používaných pro výpočty výměníků tepla a na popis softwaru HTRI.

U řešených vysokoteplotních aplikací, kde pracovní látkou jsou spaliny o vysoké teplotě (nad 500 °C), je volba vhodného výměníku tepla složitější než u nízkoteplotních aplikací. Je zřejmé, že vysoká teplota pracovních látek omezuje, nebo zcela vylučuje použití jistých typů výměníků tepla a u typů, které jsou pro vysokoteplotní aplikace vhodné, klade zvýšené nároky na materiál, z něhož jsou tyto výměníky vyrobeny. Použití žáruvzdorného, popř. žáropevného materiálu je oproti klasické uhlíkové oceli drahé a navíc má tento materiál nižší tepelnou vodivost.

Výpočtové vztahy, které jsou v práci uvedeny, tvoří souhrn základních vztahů, používaných nejen při výpočtech výměníků tepla, ale i při řešení problematiky související s tepelnou výměnou.

V závěru teoretické části je představen software HTRI, který je následně použit pro řešení vysokoteplotní aplikace 1 a 2. K softwaru je rovněž zpracován stručný uživatelský manuál, který tvoří přílohu P1.

V praktické části diplomové práce je proveden srovnávací výpočet tlakové ztráty parovzduchové směsi na 180° kolenech pomocí pěti vybraných výpočtových metod, přičemž jednu z metod používá i software HTRI.

Dále je v práci řešena vysokoteplotní aplikace 1 a 2. U vysokoteplotní aplikace 1 je pomocí softwaru HTRI proveden kontrolní výpočet tří předložených alternativ ohříváku parovzduchové směsi, tedy OPVS, a u vysokoteplotní aplikace 2 je, rovněž pomocí softwaru HTRI, proveden návrh dvou variant trubkového výměníku tepla se segmentovými přepážkami.

Na základě práce s HTRI na řešených vysokoteplotních aplikacích lze konstatovat, že software HTRI představuje praktický, uživatelsky přívětivý a komfortní software, který díky přehlednému uživatelskému rozhraní umožňuje intuitivní řešení pracovních úkolů a v kombinaci s dostatečně výkonným hardwarem je i průběh samotného výpočtu velmi rychlý.

9. Citovaná literatura

- [1] STÁREK K., MILČÁK P., Zadání parametrů výměníku tepla "OPVS", Vítkovice Power Engineering a.s., červenec, 2009.
- [2] STÁREK K., KONVIČKA J., Zadání parametrů spalinového tepelného výměníku "CS-AMH", Vítkovice Power Engineering a.s., březen, 2010.
- [3] HAVLŮ, M. Algoritmus automatického výběru vhodného typu zařízení z databáze výměníků tepla. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2009. 77s. Vedoucí diplomové práce doc. Ing. Zdeněk Jegla, Ph.D.
- [4] KRBEK J., OCHRANA L., POLESNÝ B., *Průmyslová energetika*, Učební texty vysokých škol, VUT FSI Brno, 1996.
- [5] STEHLÍK P., KOHOUTEK J., *Přenos tepla*, Učební texty vysokých škol, VUT FSI Brno, 1992.
- [6] DVOŘÁK Z, *Sdílení tepla a výměníky*, Učební texty vysokých škol, ČVUT Praha, 1992.
- [7] ŠÍPAL J., *Moderní předávací stanice*, Univerzita Jana Evangelisty Purkyně, Ústí Nad Labem, FUTM, 2007.
- [8] JELEMENSKÝ K., ŠESTÁK J., ŽITNÝ R., *Tepelné pochody*, Slovenská Technická Univerzita v Bratislavě, 2000.
- [9] HLAVAČKA V., *Lamelové a deskové výměníky tepla*, Vydala Společnost pro techniku a prostředí, Novotného lávka S, 116 68 Praha 1, 1992.
- [10] STEHLÍK P., *Tepelné pochody*, Soubor přednášek předmětu, ÚPEI VUT FSI Brno, 2009.
- [11] KILKOVSKÝ, B. Modelování zařízení pro výměnu tepla v procesech termického zpracování. Disertační práce, Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav procesního a ekologického inženýrství, 2008. 185 s. Vedoucí disertační práce doc. Ing. Jegla, Z., Ph.D., 2008.
- [12] KRALOVOPOLSKA A.S. [online]. c2010, aktualizováno 12.1.2010, [cit. 5.5.2010]. < www.kralovopolska.cz >.
- [13] KILKOVSKÝ, B., JEGLA, Z., KOHOUTEK, J., STEHLÍK, P., Koncepce víceúčelového systému pro výpočty zařízení pro výměmu tepla, Výzkumná zpráva VZ-EU-UPEI-2004/07 pro řešení výzkumného záměru VZ 300004, Brno, 2004.
- [14] HEWITT, G. F., *Process Heat Transfer*, New York : Begall House, Inc., 1994.
- [15] STEHLÍK, P., KOHOUTEK, J., NĚMČANSKÝ, J., *Teplené pochody*, Učební texty vysokých škol, VUT FSI Brno, 1991.

- [16] JEGLA, Z., Tepelné pochody, Soubor cvičení předmětu, ÚPEI VUT FSI Brno, 2010.
- [17] <http://www.directindustry.com/prod/itt-standard/shell-and-tube-heat-exchanger-25340-236585.html>
- [18] COKER, A. KAYODE: Ludwig's Applied Process Design for Chemical Petrochemical Plants, Volume 1 (4th Edition), Elsevier Inc., 2007.
- [19] JEGLA, Z., ODSTRČIL, M., KOHOUTEK, J., KILKOVSKÝ, B., JONÁK, M.: Výzkum a vývoj flexibilního energetického systému transformujícího primární energii biomasy i alternativních paliv při jejich spalování, popřípadě odpadní teplo z různých tepelných agregátů na elektrickou energii s možností kogenerace s vyšší účinností. Výzkumná zpráva VZ-UPEI-2009-TI1/073-2, 2009.
- [20] VÁVRA, P. A KOL.: Strojnické tabulky, SNTL Praha, 1984.
- [21] DARBY, R.: Chemical Engineering Fluid Mechanics, second edition, Marcel Dekker, Inc., 2001.
- [22] BLEVINS, R.D., Applied Fluid Dynamics Handbook, Krieger, Malabar, FL, 2003.
- [23] ODSTRČIL, M., JEGLA, Z., KOHOUTEK, J., KILKOVSKÝ, B.,: Výzkum a vývoj flexibilního energetického systému transformujícího primární energii biomasy i alternativních paliv při jejich spalování, popřípadě odpadní teplo z různých tepelných agregátů na elektrickou energii s možností kogenerace s vyšší účinností. Výzkumná zpráva VZ-UPEI-2010-TI1/073-1, 2010.

10. Seznam příloh:

- 1. Příloha P1: Stručný uživatelský manuál k softwaru HTRI.
- 2. Příloha P2: Číselné výsledky získané při porovnávání různých metod výpočtu tlakové ztráty ve 180° kolenech. [19]
- 3. Příloha P3: Detailní výsledky kontrolního výpočtu všech tří alternativ návrhu OPVS určených pro vysokoteplotní aplikaci 1.
- 4. Příloha P4: Detailní výsledky návrhového výpočtu dvou variant výměníku CS-AMH určených pro vysokoteplotní aplikaci 2.

Přílohy

Příloha P1

Stručný uživatelský manuál k softwaru HTRI

Stručný uživatelský manuál k softwaru HTRI

1. Úvod

Tento manuál byl vypracován jako jednoduchý návod pro práci se softwarem HTRI a jeho úkolem je případného nového uživatele softwaru seznámit v několika krocích s principy práce v HTRI.

1.1. Charakteristika softwaru

Software HTRI (dále též HTRI, nebo software) je speciálně navržený a vysoce sofistikovaný nástroj pro analytická řešení tepelných výměníků. Tímto softwarem je možno navrhovat, kontrolovat a jinak početně analyzovat široké spektrum typů výměníků tepla. HTRI během výpočtu používá předdefinovaných výpočtových vztahů, které software pro daný typ úlohy volí dle nejnovějších poznatků z oblasti termomechaniky, mechaniky tekutin a mechaniky těles.

Software samotný se skládá z několika výpočtových modulů a z rozsáhlé databáze fyzikálních vlastností tekutin označovanou VMGThermoTM.

Mezi výpočtové moduly patří:

- *modul Xace* umožňuje výpočty vzduchem chlazených tepelných výměníků a ekonomizérů;
- *modul Xfh* pro výpočty pecí;
- modul Xist umožňuje výpočty trubkových výměníků se svazkem trubek v plášti;
- modul Xhpe umožňuje výpočty výměníků s vlásenkovými trubkami;
- modul Xjpe pro výpočty výměníků typu trubka v trubce;
- modul Xphe pro výpočty deskových výměníků;
- modul Xspe umožňuje výpočty spirálových výměníků tepla.

Dalšími moduly je modul *Xtlo*, nebo *Xvib* pro analýzu vibrací.

Všechny výše zmiňované moduly sjednocuje přehledné uživatelské rozhraní. Součástí softwaru HTRI je také rozsáhlý uživatelský manuál a propracovaný modul nápovědy, který je možno spustit klávesou F1 kdykoli během práce v HTRI.

Po úspěšné instalaci a spuštění softwaru je k dispozici uživatelské rozhraní, které má ve srovnání s podobnými aplikacemi pracujícími v systému MS Windows standardní strukturu a design. Krom obsahově standardní nabídky, jako je *File*, *Edit*, *View*, jsou zde k dispozici prvky *Tools* a *Help*, které obsahují velmi zajímavé utility. Jsou to *Exchanger selector* pro výběr vhodného výměníku tepla, *Quick calculation tool*, ve kterém se nachází převodník mezi jednotkami a možnost výpočtu vybraných parametrů potrubí, a *Tutorials*..., což je výukový modul práce v HTRI.

2. Práce v softwaru HTRI

V následujícím textu je prostřednictvím několika jednoduchých kroků popsána práce v softwaru HTRI. Jednotlivé kroky jsou zde uvedeny v takovém pořadí, v jakém na sebe budou navazovat i při samotné práci v HTRI. Pro lepší pochopení některých kroků jsou v textu uvedeny také obrázky, které vycházejí přímo z pracovního prostředí softwaru.

2.1. Krok první – Spuštění nové úlohy

Práci samotnou je možno začít pomocí záložky *File*, v níž je na výběr buď otevření existujícího souboru pomocí položky *Open Case*... (popř. *Import Case*...), nebo vytvoření nového souboru položkou *New case* a následný výběr výpočtového modulu (viz výše), který odpovídá typu řešeného výměníku.

Nyní je k dispozici první pracovní okno *Input Summary*, které je spolu s ostatními pracovními okny sjednoceno do stromové struktury v levé části pracovního prostředí. Toto sjednocení spolu se všemi pracovními okny náleží pod záložku *Input*, jenž je jednou ze sedmi záložek nalézajících se ve spodní části pracovního prostředí. Jednotlivá pracovní okna pak slouží pro zadávání vstupních dat potřebných pro výpočet.

Před zadáváním vstupních dat je potřeba zkontrolovat aktuálně používanou soustavu jednotek. Tyto je možno zkontrolovat, popř. změnit, buď přímo v horní liště, nebo pomocí $Edit \rightarrow Data \ Units...$ (popř. pomocí Modify... lze vytvářet vlastní soustavy jednotek). Nyní je program připraven pro zadávání vstupních dat.

Úloha, která zde bude dále uvedena jako ukázková, je kontrola výměníku tepla pro vysokoteplotní aplikaci 1, která byla řešena v diplomové práci, v níž vystupuje tento manuál jako příloha.

Pomocí $File \rightarrow New Case \rightarrow Air Cooler (Xace)$ jsme spustili novou úlohu, ve které bude řešen výměník tepla s příčně obtékaným svazkem trubek umístěným ve spalinovém kanálu.

2.2. Krok druhý – Zadávání vstupních dat

Jak bylo uvedeno výše je nyní k dispozici první pracovní okno *Input Summary*, které sjednocuje základní vstupní data. Jednotlivá data budou zadávána do bílých textových polí, z nichž ty, které jsou označené červeným rámečkem, musí být vyplněny. Počet a druh takto označených polí se mění v závislosti na zvoleném módu úlohy (*Case Mode* ve vrchní části pracovního okna *Input Summary*) a na postupu jejich vyplňování. V našem případě je zadán mód *Simulation*, který se volí v přídě, kdy je známá geometrie výměníku a vstupní, nebo výstupní parametry pracovních látek a ve výsledku jsou získány jejich zbylé parametry (např. tlakové ztráty, výstupní teploty apod.) včetně dalších údajů o průběhu výměny tepla. Textová pole samotná jsou podle druhu vstupních dat, která jsou do nich zadávána, seskupena do jistých skupin.

V následujícím textu je popsáno zadávání jednotlivých vstupních dat do příslušných polí spolu s doplňujícími obrázky, které obsahují konkrétní vstupní data a které jsou čerpány přímo z prostředí softwaru HTRI.

Postupně budou vyplněny následující pole:

Hmotnostní průtoky – *Flow rate* – horkého a chladného média.

Hmotnostní podíly plynné fáze obou médií na vstupu i výstupu – Inlet/outlet Y –.

Obě vstupní teploty – Inlet/outlet T – a oba dva vstupní tlaky – Inlet P –.

Process Conditions		
Flow rate Hot Outside 2,	,517 kg/s	Cold Inside 3,175 kg/s
Inlet/outlet Y 1 / 1	wt. frac. vapor	1 / 1 wt. frac. vapor
Inlet/outlet T 1200 /	C	220 / C
Inlet P/Allow dP 101,325 /	kPa / kPa	610,9 / kPa / kPa

Obr. 1 Procesní podmínky.

Typ jednotky – *Unit type* – je volen jako – *Economizer* –, aby bylo možné umístit horký proud (v našem případě spaliny) do mezitrubkového prostoru.

Orientace jednotky - Orientation - je - Horizontal - horizontální.

Počet paralelních oddílů (podjednotek) – *Number of bays in parallel per unit* – a počet paralelních svazků v jednom oddíle – *Number of bundles in parallel per bay* – je volen 1, neboť se v našem případě jedná o jeden výměník tepla s jedním trubkovým svazkem umístěným do jednoho spalinového kanálu.

Počet chodů ve svazku – *Number of tubepasses per bundle* – je ponechán nevyplněný a bude doplněn později v jiném pracovním okně.

_ Unit Geometry—		
Unit type	Economizer	Number of bays in parallel per unit
Orientation	Horizontal	Number of bundles in parallel per bay
Apex angle	deg	Number of tubepasses per bundle

Obr. 2 Geometrie jednotky.

Typ trubek – *Type* – je volen jako *Plain* (hladký).

Délka – *Length* – je 3,26 m. Ve skutečnosti je ohřívaná délka trubek 3 m, avšak software počítá s tím, že přechody mezi jednotlivými chody se uskutečňují mimo spalinový kanál a tudíž bere 0,26 m ze zadané délky jako část trubky, která se již neúčastní výměny tepla, neboť leží ve stěnách spalinového kanálu.

Tvar trubky – *Tube form* – je ponechán *Straight* (přímý).

Uspořádání trubek – *Tube layout* – je – *Staggered* – tj. střídavé uspořádání příčně obtékaného svazku.

Další parametry jako je vnější průměr – *OD (Outside diametr)* –, příčná rozteč – *Transverse pitch* –, podélná rozteč – *Longitudinal pitch* –, tloušťka stěny trubky – *Wall thickness* – apod. budou definovány později v jiném pracovním okně.

- Tube and Bundle Geometry							
Туре	Plain 💌	Wall thickness	2,9 💌 mm				
Length	3,26 m	No. of tuberows	58				
OD	60,3 — mm	No. of tubes in odd/even rows	14 / 14				
Transverse pitch	110 mm	Tube form	Straight 🗨				
Longitudinal pitch	420 mm	Tube layout	⊙ Staggered ⊂ Inline				

Obr. 3 Rozměry potrubí.

Nyní přejdeme do dalšího pracovního okna – *Geometry* –. Toto provedeme buď pomocí tlačítka – Next – v levém dolním rohu, nebo přímo myší klikneme ve stromové struktuře na položku – *Geometry* –. Zde je většina parametrů již navolena z předchozího pracovního okna a bude zde doplněna pouze část týkající se geometrie ventilátoru – *Fan Geometry* –.

V části – *Fan Geometry* – je počet ventilátorů na oddíl – *Number of fans/bay* – roven 0, neboť v řešeném zařízení není umístěn žádný ventilátor.

Fan Geometry	
Number of fans/bay	0
Fan arrangement	Forced draft C Induced draft
Fan diameter	m
Fan ring	Straight 💌

Obr. 4 Geometrie ventilátoru.

Dalším pracovním oknem je – *Unit* –. Zde je důležité zvolit umístění teplého média – *Hot fluid location* – do mezitrubkového prostoru – *Outside tube* –.

Dále zkontrolujeme zda je počet zařízení – Number of services – roven jedné a v poli – Schedule – zvolíme možnost STD.

-Bay Description	
Unit type	Economizer
Tube orientation	Horizontal
Hot fluid location	🖸 Inside tube 💿 Outside tube
Flow type	C Cocurrent C Countercurrent
Number of bays in	parallel per unit 1 💌
Number of bundle	in parallel per bay 1 💌 Number of services 1 💌
Number of tubepa	ses per bundle 16 😴

Obr. 5 Popis oddílu (jednotky).

V pracovním okně – *Fans (Ventilátory)* – pouze zkontrolujeme zda je nastavený jejich nulový počet.

Nyní přejdeme až do pracovního okna - *Tube Types (typy potrubí)*. Zde bude provedena definice jednotlivých sekcí, ze kterých se skládá trubkový svazek. Základní definice spočívá v přidání známého počtu typů trubek (jedna položka – *Tube Types* – odpovídá jedné sekci) pomocí tlačítka *Add (přidat)* a popř. v jejich pojmenování. Takto předdefinované sekce dále editujeme v samostatných oknech defaultně označených jako *TubeType1*, *TubeType2* atd.

Teoreticky lze takto vytvořit neomezené množství sekcí. Pro vysokoteplotní aplikaci 1 bylo vytvořeno pět sekcí pojmenovaných *Sekce 1* až *Sekce 5*, přičemž jako příklad bude dále uveden postup editace páté sekce.

- 1	'ube Typ	es			
		Tube Name	Tube Type	Tube Internal	Add
	1	Sekce 1	Plain	None	
	2	Sekce 2	Plain	None	Delete
	3	Sekce 3	Plain	None	
	4	Sekce 4	Plain	None	
	5	Sekce 5	Plain	None	
	6				
	7				
	8				
	9				
1					

Obr. 6 Typy potrubí (definování sekcí).

Po rozkliknutí *Sekce 5* ve stromové struktuře bude pracovní okno doplněno následujícími údaji, jejichž číselné hodnoty jsou uvedeny na obr. 7.

Typ potrubí – *Tube type* – je ponechán hladký – *Plain*.

Tělíska (turbulizátory) vložené do trubek – Tube internals – nejsou žádné – None.

Materiál trubek – Tube material code – není v databázi – Not in data bank.

Dále je zadána tepelná vodivost – *Tube thermal conductivity* –, vnější průměr – *OD (Outside diametr)* –, tloušťka stěny trubky – *Wall thickness* –, příčná rozteč – *Transverse pitch* – a podélná rozteč – *Longitudinal pitch* –.

Obr. 7 Pracovní okno pro zadávání parametrů Sekce 5.

Přejdeme do pracovního okna – *Bundle Layout* –, které umožňuje automatické, popř. manuální vytváření konfigurace svazku trubek. Z hodnot, jenž byly doposud zadány, program vygeneroval určitou konfiguraci trubkového svazku ve vrchní části pracovního okna. Tato konfigurace však neodpovídá té naší.

Stiskem klávesy *Page Down* si přiblížíme schéma trubkového svazku, které je zobrazeno nad tabulkou s údaji o jednotlivých sekcích, chodech, řadách apod. Nyní manuálně nadefinujeme konfiguraci páté sekce.

Myší označíme prvních 24 trubkových řad. Pravým tlačítkem myši klikneme na jednu z označených trubek a z nabídky vybereme možnost – *Tube Properties* –.

Zde vybereme v okně – *Tube type* – možnost *Sekce 5*.

Odsazení od stěny spalinového kanálu – *Set wall clearance* – zvolíme 14,85 mm (viz schéma alternativy 1).

Počet trubek v řade – Set number of tubes – zvolíme 15.

Pátá sekce je nyní předdefinována. Dále víme, že pátá sekce se skládá ze šesti chodů po čtyřech řadách.

Označíme tedy myší první čtyři trubkové řady tvořící první chod a v okně – *Tube Properties* – zvolíme číslo chodu – *Tubepass number* – 1.

Stejným postupem nadefinujeme zbývajících pět chodů, přičemž je postupně označíme čísly 2-6.

Posledním krokem definování páté sekce je nastavení správného odsazení sudých řad. Označíme tedy první sudou řadu a pak přidržením klávesy *Shift* označíme zbývající sudé řady v sekci. Otevřeme okno – *Tube Properties* – a odsazení od stěny spalinového kanálu – *Set wall clearance* – zvolíme 59,85 mm.

Konfigurace páté sekce je nyní dokončena. Zbývající čtyři sekce nadefinujeme obdobným způsobem. Pro kontrolu správnosti konfigurace trubkového svazku lze použít tabulku zobrazenou pod svazkem samotným.

Obr. 8 *Pracovní okno – Bundle Layout – s přiblížením trubkového svazku.*

V pracovním okně – *Process* – můžeme zkontrolovat, popř. změnit parametry pracovních látek a k jednotlivým pracovním látkám lze uvést jejich název.

Nyní přejdeme k definici vlastností jednotlivých pracovních látek. Ty se provedou v pracovních oknech – *Hot Fluid Properties* – a – *Cold Fluid Properties*, přičemž v obou oknech zvolíme možnost definice přesného složení pracovních látek – *Component by component* – a – *Program calculated*.

V pracovním okně – *Components* – nadefinujeme složení pracovních látek. Pro horké médium (spaliny) je složení uváděno v objemových procentech, tudíž zvolíme možnost – *Moles* – a pro chladné médium (PVS) je složení uváděno v hmotnostních procentech, tudíž zvolíme možnost – *Mass*. Přesná procentuální složení jsou patrná z obr. 9 a 10.

	verup Eackage				Find Componer	nt		
(User-Defined) Acetor Acetore Acetore Acetore Acetore Acetore Anti- Antime Antime Antime Antime Barcene				2H 402 3H 60 2H 2 H3 6H 7N 6H 6	I By name Find <u>Ei</u> Composition Ur C Mass	st F nits	By formula ind <u>N</u> ext Moles	
1,3 Butadiene 1,2 Butadiene			C	4H6 4H6 💌	Add	<u>D</u> elete	<u>O</u> rder	
Databank Name	Info		User Name		Phase	Quantity	Fraction	*
1 Argon 2 Carbon Dioxide		Argon Carbon Dioxide			Mixed	0,86	0,0086	
3 Nitrogen		Nitrogen			Mixed	73.38	0,0314	
4 Oxygen		Oxygen			Mixed	9,67	0,0967	
5 Water (IAPWS 1997)		Water (IAPWS 1997)			Mixed	10,95	0,1095	
7								
8								
9								
10								
11								
13								
14								
15								
liser N	ame	1	Phase	a 1	Quantiti	r Fra	ction	Т
ion			Mixed		0.8	al (3800 C	ŀ
han Diaxida			Mixed		<u> </u>		1 0514	1
			NACCESS			4 L	2,0014	
rogen			Mixed		<u>ک,ک/</u>		7'7228	
ygen			Mixed		9,6	7 (J,0967	
ter (IAPWS 1997)			Mixed		10,9	5 (0,1095	
· ·								1

		Paokage: HTRI Edit@ptoms Setup@ookage						Find Component		
		CLas Octimedo Acatin Add Acatine Acatine Acatine Ar Ar Ata-Vis-530 Aminonia Aniline Argon Berszene 1,3 Buademe 1,3 Buademe			C2H4D2 - C3H6D C2H2 NH3 C6H7N Ar C6H7N Ar CH6 C4H6 C4H6 C4H6		By name Find Eirst Composition Unit: Mass Add		By formula nd <u>N</u> ext Violes	
		Databank Name	Info	User Nam	9		Phase (Juantity	Fraction -	-
		1 Air		Air			Vapor	74,64	0,7464	
		2 Water (IAPWS 1997)		Water (IAPWS 1997)		_	Mixed	25,36	0,2536 -	
		3				_				
		5				_				
		6								
		7				_				
		8								
		9								
		10								
		11								
		12								
		13				_				
		14								
		16				_				
			-	1			ll-			
		User Name			Phase	0	Quantity	Fra	ction	4
ſ	Air				Vapor	Γ	74,64		7464	Ē
	Wat	er (IAPWS 1997)			Mixed		25.36	ſ	1.2536	
ľ								-		
						-		<u> </u>		

Obr. 9 a 10. Složení horké pracovní látky (spaliny) a chladné pracovní látky (PVS).

Zadávání potřebných vstupních dat je nyní dokončeno a lze tedy spustit samotný výpočet. Toto se provede pomocí ikonky *Run case* (obrázek semaforu).

2.3. Krok třetí – Výsledky a výstupní protokoly

Po dokončení výpočtu jsou dle módu výpočtu, který byl zvolen během zadávání vstupních dat (v našem případě *Simulation*), k dispozici další ze sedmi záložek, přičemž záložky *Reports*, *Graphs*, *Drawings*, *Multiple Services* a *Session* jsou k dispozici pro všechny módy výpočtu a záložka *Design* je využita při módu *Design*.

2.3.1. Typy výstupních protokolů

Záložka – *Reports* – sjednocuje veškerá výstupní data do několika typů výstupních protokolů. Jednotlivé protokoly a popis jejich obsahu je uveden níže.

Output Summary – shrnutí hlavních vstupních i výsledných dat.

Data Check Messages a *Runtime Messages* – oznamovací protokoly pro určité nesrovnalosti (popř. chyby) zjištěné softwarem ve vstupních datech, resp. během výpočtu.

Final Results – podrobný soupis hlavních vstupních a výstupních dat, včetně zadané geometrie výměníku, střední teploty trubek v jednotlivých řadách a vybraných parametrů, které byly během výpočtu použity (tlakové ztráty apod.).

Tubeside Monitor – procesní parametry média proudícího v trubkovém prostoru uvedené pro každou trubku zvlášť.

Outside Monitor – procesní parametry média proudícího v mezitrubkovém prostoru v okolí jednotlivých trubek, obdoba protokolu *Tubeside Monitor*.

Temperature Monitor – teploty, tlaky a hmotnostní podíly plynné složky obou pracovních látek uvedené pro jednotlivé trubky a jejich okolí.

Pressure Drop Monitor – teplota, hmotnostní podíl plynné složky, hmotnostní průtok a tlaková ztráta média proudícího v trubkovém prostoru uvedená po jednotlivých řadách trubek.

Property Monitor – jednotlivé teploty, hmotnostní podíly plynné složky a předané teplo pracovní látkou v mezitrubkovém prostoru uvedené pro každou trubku zvlášť.

Stream Properties – shrnutí vlastností a složení obou pracovních látek.

Input Reprint – shrnutí všech vstupních dat.

2.3.2. Grafy

V této záložce jsou výstupní data znázorněna ve formě grafů. Je zde možno nechat vykreslit grafické závislosti na vstupních datech – *Based on Input Data* –, popř. na výstupních datech – *Based on Output Data* –. Jednotlivé typy grafů jsou popsány níže.

Stream Properties – vykreslení závislosti entalpie, tlaku, hustoty atd. jednotlivých pracovních látek na teplotě.

Output Profiles – vykreslení závislostí mnoha různých parametrů na určitých místech ve zvoleném chodu výměníku tepla.

Output 3D Profiles – zobrazení závislosti různých parametrů vybraného média na jeho pozici ve výměníku tepla.

2.3.3. Vykreslení výměníku – Drawings –

V záložce – *Drawings* – si lze krom uspořádaní trubek v trubkového svazku – *Bundle Layout* – také prohlédnout schematické zobrazení výměníku, jenž je k dispozici ve dvourozměrné – 2D Exchanger Drawing –, popř. trojrozměrné – 3D Exchanger Drawing – podobě, která je zobrazena na obr. 11.

Obr. 11 Trojrozměrné schematické znázornění řešeného trubkového svazku.

2.3.4. Multiple Services

V našem případě, kdy se jedná o jedno zařízení je v záložce – *Multiple Services* – schematicky zobrazen jeden výměník spolu s některými parametry pracovních látek. Jsou to vstupní a výstupní teploty, koncentrace plynných fází obou pracovních látek a výkon.

Je-li však během zadávání vstupních dat zvolen větší počet zařízení, toto se provede v položce – *Number of services* –, budou tyto zařízení v záložce – *Multiple Services* – schematicky znázorněny včetně jejich vzájemného zapojení. Dále zde budou uvedeny i výše zmíněné parametry pracovních látek. Bude-li například pro případ vysokoteplotní aplikace 1 změněna položka – *Number of services* – z hodnoty jedna na hodnotu tři, bude schematické znázornění zapojení zvolených zařízení vypadat následovně:

Obr. 12 Schematické znázornění paralelního zapojení třech zvolených zařízení.

2.3.5. Návrh – Design –

Je-li jako mód výpočtu zvolen Návrh – *Design* – budou v této záložce během výpočtu postupně zobrazována jednotlivá data, která software vypočítá.

V modulu *Xace*, ve kterém je řešena vysokoteplotní aplikace 1, se však doslovný název módu – Design – ve výběru jednotlivých módu nenachází, nýbrž je možno vybrat z módů – Classic Design –, nebo – Grid Design –.

Mód – *Classic Design* – vyžaduje méně vstupních dat, avšak uživatel má menší kontrolu nad počítanými parametry.

Mód – *Grid Design* – umožňuje dosáhnout přesnějšího výpočtu, nicméně je zde nutné definovat větší množství vstupních parametrů.

2.3.6. Session

V této záložce jsou zobrazeny souhrnné výsledky vybraných výpočtů, přičemž výběr je možno provést v položce – *Program Settings* – nalézající se v nabídce – Edit – .

3. Závěr

Účelem tohoto uživatelského manuálu je seznámení prostřednictvím konkrétní úlohy se základy práce v softwaru HTRI. Přestože jsou zde uvedeny pouze základní instrukce a manuál jako takový zdaleka neobsahuje popis veškerých možných funkcí softwaru, je po osvojení si základních principů práce se softwarem již poměrně snadné dále rozšiřovat své schopnosti v jeho používání.

Nutno připomenout, že kdykoli během práce se softwarem lze stiskem klávesy *F1* spustit modul přehledné *Nápovědy*, přičemž je v tomto modulu pro danou položku, na níž se právě nachází kurzor, zobrazen popis položky a možnosti jejího vyplnění.

Příloha P2

Číselné výsledky získané při porovnávání různých metod výpočtu tlakové ztráty ve 180° kolenech

Teplota 350°C							
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200		
	52.5	77.9	102.3	154.1	202.7		
rychlost c [m/s]							
Ostrá kolena							
10.000	338.661	302.407	280.732	252.226	235.505		
15.000	745.397	665.965	618.439	555.890	519.175		
20.000	1309.388	1170.174	1086.846	977.135	912.716		
25.000	2030.476	1814.893	1685.820	1515.841	1416.014		
30.000	2908.572	2600.042	2415.288	2171.943	2029.008		
35.000	3943.617	3525.568	3275.200	2945.395	2751.655		
40.000	5135.570	4591.435	4265.523	3836.168	3583.927		
Mírná kolena							
10.000	225.774	201.605	187.155	168.151	157.004		
15.000	496.931	443.977	412.293	370.593	346.117		
20.000	872.925	780.116	724.564	651.423	608.477		
25.000	1353.651	1209.929	1123.880	1010.561	944.009		
30.000	1939.048	1733.361	1610.192	1447.962	1352.672		
35.000	2629.078	2350.379	2183.467	1963.597	1834.436		
40.000	3423.713	3060.957	2843.682	2557.446	2389.285		

Tlaková ztráta vypočtená pomocí ekvivalentní délky:

Teplota 800°C							
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200		
	52.5	77.9	102.3	154.1	202.7		
rychlost c [m/s]							
Ostrá kolena							
10.000	212.538	189.288	175.435	157.273	146.650		
15.000	458.209	408.653	379.075	340.232	317.480		
20.000	795.074	709.590	658.520	591.397	552.048		
25.000	1222.844	1091.838	1013.526	910.543	850.142		
30.000	1741.361	1555.253	1443.958	1297.546	1211.645		
35.000	2350.524	2099.744	1949.730	1752.329	1636.483		
40.000	3050.265	2725.250	2530.784	2274.838	2124.606		
Mírná kolena							
10.000	141.692	126.192	116.957	104.848	97.767		
15.000	305.473	272.435	252.716	226.821	211.653		
20.000	530.049	473.060	439.014	394.265	368.032		
25.000	815.229	727.892	675.684	607.029	566.761		
30.000	1160.907	1036.835	962.639	865.031	807.763		
35.000	1567.016	1399.830	1299.820	1168.219	1090.988		
40.000	2033.510	1816.833	1687.189	1516.559	1416.404		

Teplota 350°C							
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200		
	52.5	77.9	102.3	154.1	202.7		
rychlost c [m/s]							
Ostrá kolena							
10.000	108.574	108.225	107.250	107.727	107.077		
15.000	244.292	243.505	241.312	242.387	240.922		
20.000	434.297	432.898	428.999	430.910	428.306		
25.000	678.589	676.404	670.311	673.296	669.229		
30.000	977.167	974.021	965.247	969.547	963.689		
35.000	1330.034	1325.751	1313.809	1319.661	1311.688		
40.000	1737.187	1731.593	1715.995	1723.639	1713.226		
Mírná kolena							
10.000	87.235	86.710	85.679	85.678	84.880		
15.000	196.278	195.098	192.779	192.776	190.979		
20.000	348.939	346.841	342.718	342.713	339.518		
25.000	545.217	541.940	535.497	535.489	530.497		
30.000	785.113	780.393	771.115	771.105	763.916		
35.000	1068.626	1062.202	1049.573	1049.559	1039.775		
40.000	1395.756	1387.366	1370.871	1370.853	1358.074		

Tlaková ztráta vypočtená pomocí součinitele místního odporu:

Teplota 800°C						
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200	
	52.5	77.9	102.3	154.1	202.7	
rychlost c [m/s]						
Ostrá kolena						
10.000	62.510	62.309	61.748	62.023	61.648	
15.000	140.648	140.195	138.932	139.551	138.708	
20.000	250.041	249.236	246.991	248.091	246.592	
25.000	390.689	389.431	385.923	387.642	385.300	
30.000	562.592	560.780	555.729	558.204	554.832	
35.000	765.750	763.284	756.409	759.778	755.188	
40.000	1000.163	996.943	987.962	992.363	986.368	
Mírná kolena						
10.000	50.224	49.922	49.329	49.328	48.868	
15.000	113.005	112.325	110.990	110.988	109.954	
20.000	200.897	199.690	197.315	197.313	195.473	
25.000	313.902	312.015	308.305	308.301	305.427	
30.000	452.019	449.301	443.960	443.954	439.815	
35.000	615.248	611.549	604.279	604.270	598.637	
40.000	803.589	798.758	789.262	789.251	781.894	

Teplota 350°C					
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200
	52.5	77.9	102.3	154.1	202.7
rychlost c [m/s]					
Ostrá kolena					
10.000	80.161	71.049	66.568	61.743	59.458
15.000	178.351	158.506	148.744	138.237	133.258
20.000	315.282	280.584	263.517	245.146	236.441
25.000	490.952	437.283	410.884	382.470	369.005
30.000	705.362	628.603	590.847	550.208	530.950
35.000	958.511	854.544	803.406	748.361	722.277
40.000	1250.401	1115.107	1048.559	976.929	942.986
Mírná kolena					
10.000	69.093	61.158	57.255	53.054	51.063
15.000	153.447	136.249	127.790	118.685	114.370
20.000	271.008	241.017	226.265	210.386	202.862
25.000	421.773	375.459	352.678	328.157	316.538
30.000	605.745	539.577	507.031	471.998	455.398
35.000	822.922	733.370	689.322	641.909	619.442
40.000	1073.305	956.838	899.552	837.890	808.670

Tlaková ztráta vypočtená metodou 2-K:

Teplota 800°C						
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200	
	52.5	77.9	102.3	154.1	202.7	
rychlost c [m/s]						
Ostrá kolena						
10.000	48.681	42.611	39.624	36.410	34.887	
15.000	106.478	93.815	87.586	80.882	77.705	
20.000	186.579	164.952	154.314	142.864	137.438	
25.000	288.984	256.022	239.809	222.358	214.088	
30.000	413.692	367.024	344.070	319.362	307.654	
35.000	560.705	497.960	467.097	433.877	418.135	
40.000	730.021	648.828	608.891	565.903	545.533	
Mírná kolena						
10.000	42.309	36.916	34.263	31.407	30.054	
15.000	92.140	81.001	75.522	69.625	66.830	
20.000	161.089	142.172	132.867	122.852	118.106	
25.000	249.155	220.428	206.298	191.088	183.881	
30.000	356.339	315.769	295.813	274.334	264.155	
35.000	482.641	428.195	401.415	372.589	358.929	
40.000	628.060	557.707	523.102	485.853	468.203	

Teplota 350°C					
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200
	52.5	77.9	102.3	154.1	202.7
rychlost c [m/s]					
Ostrá kolena					
10.000	78.181	70.875	66.438	60.520	57.004
15.000	173.896	158.114	148.453	135.484	127.738
20.000	307.360	279.886	262.999	240.250	226.626
25.000	478.575	436.193	410.075	374.820	353.670
30.000	687.539	627.034	589.682	539.193	508.867
35.000	934.252	852.409	801.819	733.368	692.220
40.000	1218.715	1112.318	1046.487	957.346	903.727
Mírná kolena					
10.000	65.598	59.364	55.595	50.585	47.619
15.000	145.583	132.213	124.055	113.131	106.622
20.000	257.027	233.841	219.625	200.513	189.087
25.000	399.929	364.247	342.303	312.731	295.014
30.000	574.289	523.432	492.090	449.784	424.403
35.000	780.108	711.395	668.986	611.673	577.255
40.000	1017.384	928.136	872.991	798.398	753.569

Tlaková ztráta vypočtená metodou 3-K:

Teplota 800°C						
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200	
	52.5	77.9	102.3	154.1	202.7	
rychlost c [m/s]						
Ostrá kolena						
10.000	47.541	42.510	39.550	35.706	33.475	
15.000	103.913	93.589	87.419	79.296	74.526	
20.000	182.018	164.551	154.016	140.046	131.788	
25.000	281.858	255.395	239.343	217.954	205.259	
30.000	403.431	366.121	343.399	313.020	294.940	
35.000	546.738	496.730	466.184	425.245	400.830	
40.000	711.779	647.222	607.698	554.629	522.930	
Mírná kolena						
10.000	40.297	35.883	33.307	29.986	28.071	
15.000	87.612	78.677	73.372	66.427	62.369	
20.000	153.040	138.041	129.044	117.167	110.175	
25.000	236.579	213.973	200.324	182.206	171.489	
30.000	338.229	306.474	287.212	261.544	246.311	
35.000	457.991	415.543	389.707	355.181	334.641	
40.000	595.865	541.182	507.809	463.116	436.479	

Teplota 350°C					
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200
	52.5	77.9	102.3	154.1	202.7
rychlost c [m/s]					
Ostrá kolena					
10.000	72.534	65.129	55.005	54.586	48.207
15.000	152.331	136.780	115.517	114.638	101.241
20.000	257.886	231.559	195.562	194.074	171.393
25.000	387.947	348.342	294.191	291.952	257.833
30.000	541.595	486.304	410.706	407.581	359.948
35.000	718.103	644.793	544.557	540.414	477.257
40.000	916.879	823.277	695.294	690.004	609.366
Mírná kolena					
10.000	51.879	48.296	45.708	42.631	40.407
15.000	108.953	101.427	95.992	89.531	84.860
20.000	184.449	171.709	162.507	151.569	143.661
25.000	277.474	258.308	244.466	228.012	216.115
30.000	387.368	360.611	341.287	318.316	301.708
35.000	513.613	478.137	452.515	422.057	400.037
40.000	655.785	610.488	577.774	538.885	510.770

Tlaková ztráta vypočtená metodou Blevinse, která je použita v softwaru HTRI:

Teplota 800°C						
průměr d _i [mm]	DN50	DN80	DN100	DN150	DN200	
	52.5	77.9	102.3	154.1	202.7	
rychlost c [m/s]						
Ostrá kolena						
10.000	49.250	44.222	37.347	37.063	32.732	
15.000	103.431	92.872	78.434	77.837	68.741	
20.000	175.100	157.225	132.783	131.773	116.373	
25.000	263.410	236.519	199.751	198.231	175.064	
30.000	367.734	330.193	278.863	276.741	244.399	
35.000	487.581	437.804	369.745	366.932	324.050	
40.000	622.547	558.992	472.094	468.502	413.750	
Mírná kolena						
10.000	35.225	32.792	31.035	28.946	27.436	
15.000	73.977	68.867	65.177	60.790	57.619	
20.000	125.238	116.587	110.340	102.913	97.544	
25.000	188.400	175.387	165.989	154.816	146.739	
30.000	263.017	244.849	231.729	216.132	204.855	
35.000	348.735	324.647	307.250	286.570	271.619	
40.000	445.268	414.512	392.299	365.895	346.805	

Příloha P3

Detailní výsledky kontrolního výpočtu všech tří alternativ návrhu OPVS určených pro vysokoteplotní aplikaci 1 Výsledky alternativy 1
HTRI	Output Released t VUT Brnd VUT Brnd	Summar o the followi	y ng organizat	tion	:			Pa	ge 1
Xace E Ver. 5.00 13.5.201	10 15:09 SN: 1	600211661						SI Un	its
Vysokoteplotni aplikace 1_K	Controla varianty	1 by M. Jor	iak seflow						
Simulation-Honzontal econo	Benert for Wa	rning Moor	SSIIOW						
See Data Check Messages	s Report for Warnin		ayes.						
See Runtime Message Re	onditions	g message:	s. Out	sid	۵		Tubesi	de	
Fluid name	onations		/	Sia	•	PV/S	Tubeen		
Fluid condition				Se	ens Gas	1.00		Sens Gas	
Total flow rate	(ka/s)			00	2.517			3.175	
Weight fraction vapor In/Ou	ut (Ng/3)		1.000		1.000		1.000	1.000	
Temperature In/Out	(Deg C)		1200.00		296.05	23	20.30	862.51	
Skin tomporature Min/Max	(Deg C)		246 33		022 30	2/	16 18	920.02	
			101 226		101 212	<u>د</u> ۲۱	19,19 1 909	581 551	
	(KFA)		01,320		0.000		0,000	0.000	
Pressure drop, Total/Allow	(kPa)	(кна)	0,114		0,000	29	9,308	0,000	
Midpoint velocity	(m/s)				4,54		6.05	8,39	
- In/Out	(m/s)						6,05	73,36	
Heat transfer safety factor	()			~	1			0 000000	
Fouling	(m2-K/W)		Evolution	0	,000000		7	0,000000	
Quitaida filma aa af	(11/01/)			er P	Actual		(M/m2 K)	21 614	
	(VV/m2-K)		49,54		Actual U		(vv/m2-k)	31,014	
Tubeside film coef	(W/m2-K)		97,44		Required	U	(W/m2-K)	31,744	
Clean coef	(W/m2-K)		31,614		Area		(m2)	490,958	
Hot regime			Sens. Gas		Overdesi	gn	(%)	-0,41	
Cold regime			Sens. Gas			T	ube Geome	etry	
EMTD	(Deg C)		179,4		Tube typ	е		Plain	
Duty	(MegaWatts)		2,796	_	Tube OD		(mm)	60,300	
	Unit Geo	ometry			Tube ID		(mm)	54,500	
Bays in parallel per unit			1		Length		(m)	3,260	
Bundles parallel per bay			1	1	Area ratio	o(out/in)	()	1,10642	
Extended area	(m2)		490,958		Layout			Staggered	
Bare area	(m2)		490,958		Trans pit	ch	(mm)	90,000	
Bundle width	(m)		1,395		Long pito	h	(mm)	80,000	
Nozzle		Inlet	Outlet		Number	of passes	()	16	
Number	()	1	1		Number	of rows	()	58	
Diameter	(mm)	444 50	444 50		Tubecou	nt	()	864	
Volocity	(m/c)	5.45	13 23		Tubecou	nt Odd/Ev	(en ()	14 /	14
	(ka/mc^{2})	111 57	270 78		Tubo ma	torial	Not	in data bank	
R-V-SQ Brocouro drop	(kg/iii-32)	0.061	0.005		Tuberna	tenal	Fin Geome	trv	
Pressure drop	(KFa)	metry	0,095	-	Tuno			Nono	
		metry	0		Type Tipe//ana		fin /m atar	None	
No/Day	()		0			jui	iin/meter		
Fan ring type			0.000				mm		
Diameter	(m)		0,000		Height		mm	1	
Ratio, Fan/bundle face area	a ()		0.00		Base thic	KNESS	mm	1	
Driver power	(KW)		0,00		Over fin		mm	1	
l ip clearance	(mm)		0,000		Efficienc	y 	(%))	
	(%)	Actual	0 Standard	_	Area rati	u (IIN/bare	*) ())	
Anside velocities	11->	Actual	Stanuard		waterial	Ther	mal Resist	ance: %	
race	(m/s)	2,37			Ai-	iner	1101 1163131	anoe, /0 60.00	
	(m/s)	6,03						03,80	
	(100 m3/min)	6,471			Fouling			35,91	
velocity pressure	(Pa)	0,00			Matal			0,00	
Bunale pressure drop	(Pa)	114,35			Read			0,29	
Bundle	100.00						2	0,00	0.00
	100,00	Fon guard	-inside Pres	sur		Hoil ocr	, aon		0,00
	0,00	Fan guard	lookaaa		0,00	Stoom	coil		0,00
Fait filly	0,00	r an area D	iocraye		0,00	Steam			0,00

Released to the following organization: VUT Brno VUT Brno

Xace E Ver. 5.00 13.5.2010 15:09 SN: 1600211661

Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

	Process Data	Outsid	e	Tubesic	le
Fluid name	S	PALINY		PVS	
Fluid condition			Sens. Gas		Sens. Gas
Total flow rate	(kg/s)		2,517		3,175
Weight fraction vapor, In/Out	()	1,000	1,000	1,000	1,000
Temperature, In/Out	(Deg C)	1200,00	296,05	220,30	862,51
Skin temperature, Min/Max	(Deg C)	246,33	922,30	246,18	920,02
Wall temperature, Min/Max	(Deg C)	246,33	922,30	246,18	920,02
Pressure, In/Out	(kPa)	101,326	101,212	610,909	581,551
Pressure drop, Total/Allowed	(kPa)	0,114	0,000		
Tube pressure drop, Total/Allowed	(kPa)			29,358	0,000
Velocity - Midpoint	(m/s)	4,54		8,39	
- In/Out	(m/s)			6,05	73,36
Film coefficient, Bare/Extended	(W/m2-K)	49,54	49,54	97,44	
Mole fraction inert	()				
Heat transfer safety factor	()		1		1
Fouling resistance	(m2-K/W)		0,000000		0,000000
		Overall Perform	ance Data		
Overall coef, Design/Clean/Actual	(W/m2-K)	31,744 /	31,614 /	31,614	
Heat duty, Calculated/Specified	(MegaWatts)	2,7958 /	0,0000		
Effective mean temperature difference	(Deg C)	179 39			

See Runtime Message Report for V	Varning Messa	ges.					
		Unit and	Bundle Co	onst	ruction Information		
Bays in parallel/unit	()		1		Bundles in parallel/bay		1
Extended area/unit	(m2)		490,958		Bare area/unit	(m2)	490,958
Extended area/bundle	(m2)		490,958		Bare area/bundle	(m2)	490,958
Tubepasses/Tuberows	()	16 /	58		Number of tubes/bundle	()	864
Tubecount, Odd rows/Even rows	()	14 /	14		Edge seals	()	Yes
Bundle width	(m)		1,395		Fan guard	()	No
Clearance	(mm)		9,525		Louvers	()	No
Header depth	(mm)		101,600		Steam coil	()	No
Header Box					Hail screen	()	No
- Plate thickness	(mm)		104,775		Tube support information		
- Tubesheet thickness	(mm)		117,475		- Number	()	1
Plenum type			Box		- Width	(mm)	25,400
Weight/Bundle	(kg)		44496		Orientation (from horiz.)	(deg)	0,00
Structure weight	(kg)		0		Tubeside volume	(L)	7927,8
Total weight, Dry / Wet	(kg)		44496	/	52418		
Ladder/walkway weight	(kg)		0		Cost Factor	()	215,651
			Tube I	nfor	mation		

See Next Page For Tube Information.

HTRI	F Ri	inal Results eleased to the followin	ng organization:			Page 3
		/UT Brno				SI Linite
Xace E Ver. 5.00 13.5.2010	J 15:09 SN: 1	600211661				SI OIIIIS
Case-Vysokoteplotni aplikace	e 1. Kontrola va	arianty 1 by M. Jonak				
Simulation-Horizontal econor	nizer countercu	urrent to crossflow				
Straight length	(m)	3,260				
Unfinned length	(mm)	0,000				
Unheated length	(mm)	260,351				
Tube form	()	Straight	Tuno 2	Type 3	Turne 4	
Transverse nitch	(mm)	<u>110 000</u>	<u>90 000</u>	90 000	<u>1 ype 4</u> 90 000	<u>90 000</u>
Longitudinal pitch	(mm)	420.000	80.000	80,000	80.000	80.000
Outside diameter	(mm)	60,300	60,300	60,300	60,300	60,300
Inside diameter	(mm)	54,500	54,500	54,500	54,500	54,500
Tube type	()	Plain	Plain	Plain	Plain	Plain
Area ratio (out/in)	()	1,10642	1,10642	1,10642	1,10642	1,10642
Over fin diameter	(mm)					
Area ratio (fin/bare)	()					
Fins per unit length	(IIII/meter)					
Fin height	(mm)					
Fin thickness at base	(mm)					
Fin thickness at tip	(mm)					
Fin type	()					
Fin efficiency	(%)					
Split segment height	(mm)					
Split segment width	(mm)					
Rectangular fin height	(mm)					
Rectangular fin width	(mm)					
Number of stud rings	(IIIII) (stud/meter)					
Number of studs/ring	(5100/110101)					
Stud length	(mm)					
Stud diameter	(mm)					
Tube material		Not in data bank	No	t in data bank	No	t in data bank
Fin material		No	t in data bank	Not	in data bank	
Internal tube type		None	None	None	None	None
	UK	SE				
L						

TTTTT	Final Results			Page 4
H + U + U	Released to the following	organization:		
	VUT Brno	-		
	VUT Brno			
Xace E Ver. 5.00 13.5.2010 15:09	SN: 1600211661			SI Units
Problem-				
Case-Vysokoteplotni aplikace 1_Kon	trola varianty 1 by M. Jonak :			
Simulation-Horizontal economizer co	ountercurrent to crossflow			
Inlet Airside	Velocities		Actual	Standard
Face velocity	(m/s)	2,37	
Maximum velocity	(m/s)	6,03	
Volumetric flow	(100 m3/	min)	6,471	
Maximum mass velocity	(kg/s	-m2)	1,407	
Air humidity		(%)		
/olumetric flow per fan at fan inlet	(100 m3/	min)	0,000	
/elocity at fan inlet	(m/s)	0,00	
	Fan Description	and Fan Power		
lumber of fans per bay		()		0
Diameter		(m)		0,000
ip clearance		(mm)		0,000
tatio, fan area to bay face area		()		
an ring type		()		0
ercent open area - in fan guar		(%)		U
In hall scree		(%)		U
allo, ground clearance to fair diame	eter	(%)		0
undle pressure drop/ Velecity press		(P_2)	114 35 /	0 00
and drive efficiency		(%)	114,007	0,00
lotor power per fan-design air temp	erature	(kW)		0.00
lotor power per fan-minimum air ter	mperature	(kW)		0,00
mbient temperature, maximum / m	inimum	(Deg C)	/	
· ·	Two-Phase	Parameters		
Math ad	t Cantor	Outlet	Mix E	
Method Inie	t Center	Oullet		
Heat Transfer and Broos	ure Drop Parameters		Tubosido	Outsido
Heat Transfer and Press	sure Drop Parameters		Tubeside	Outside
Aidpoint j-factor		()	0.0000	0,0139
leat transfer	Wall Correction	(+-)	0,9636	1,0000
Aida aint 6 fa stan	Row Correction	()	0.0067	0,1304
	Wall Correction		0,0007	1 0000
ressure drop	Row Correction	()	0,9041	0,0000
evolds number		()	51992	1611
Reynolds humber	Midpoint	()	40428	3150
	Outlet	()	139329	4087
ouling layer thickness		(mm)	0,000	0,000
nput minimum velocity		(m/s)		
nput maximum velocity		(m/s)		
nput minimum wall temperature		(Deg C)		
nput maximum wall temperature		(Deg C)		
	Thermal Resistance (Pe	ercent)		Over
Air Tub	e Fouling	Metal	Bond	Design
7.11 1.02				-0,41
	Airside I	Pressure Drop	(Percent)	
cross bundle	100 00	Other obstructio	'n	0.00
	0.00	Stoom coll		0.00
an ning an quard				0,00
an guard Ground clearance	0.00	LUUVEIS		0,00
	0,00			
Tube Nozzle (P	erpendicular)	Inlet	Outlet	
lumber of nozzles	()	1	1	
liameter	(mm)	444,50	444,50	
<i>'elocity</i>	(m/s)	5,45	13,23	
lozzle R-V-SQ	(kg/m-s2)	111,57	270,78	
Pressure drop	(kPa)	0,061	0,095	

Released to the following organization: VUT Brno VUT Brno

SI Units

Page 5

Xace E Ver. 5.00 13.5.2010 15:09 SN: 1600211661 Problem-

Case-Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

Mean	Metal	Temperatures
------	-------	--------------

	dial	Rad	side	Ou	ide	Ins	pass	Tube	erow	Tube	
	251,0		251,1		250,9		1		1		
	253,3		253,4		253,2		1		2		
	255,8		255,9		255,7		1		3		
	258,5		258,6		258,5		1		4		
	270,8		270,8		270,7		2		5		
	273,4		273,4		273,3		2		6 7		
	279.3		270,3		270,1		2		, 8		
	292,9		293.0		292.8		3		9		
	295,9		296,0		295,8		3		10		
	299,2		299,3		299,1	_	3		11		
	302,8		302,9		302,7		3		12		
	317,8		317,9		317,7		4		13		
	321,2		321,3		321,1		4		14		
	324,9		325,0	-	324,8		4		15		
	329,0		329,1		328,8		4		16		
	345,9 349.8		346,0		345,8 349 7		5		17		
	354.0		349,9 354 1		349,7		5		10		
	358.7		358.8		358.5		5		20		
	377,3		377,4		377,2		6		21		
	381,8		381,9		381,6		6		22		
_	386,6	_	386,8		386,5		6		23		
	391,9		392,1		391,8		6		24		
	413,2		413,3		413,0		7		25		
	418,2		418,3	7	418,0		7		26		
	423,6		423,8		423,4		7		27		
	429,6	_	429,8	_	429,4		7		- 28		
	453,3		453,5		453,1		8		29		
	459,0 465 3		409,2 465 5		400,0 465 1		0 8		30		
	403,3		403,3		403,1		8		32		
	499.1		499.3		498.8		9		33		
	505,6		505,9		505,4		9		34		
	512,9		513,1		512,6		9		35		
	520,8		521,0		520,5		9		36		
	550,6		550,9		550,4		10		37		
	558,2		558,5		557,9		10		38		
	566,5		566,8		566,2		10		39		
	575,6		575,9		575,3		10		40		
	609,8		619.0		609,5 619.2		11		41		
	628.2		628.5		627.8		11		42		
	638.7		639 1		638.3		11		43		
	676.6		677.0		676.2		12		45		
	686.7		687.1		686.3		12		46		
	697,8		698,2		697,4		12		47		
	710,0		710,5		709,5		12		48		
	753,7		754,1		753,2		13		49		
	765,3		765,8		764,8		13		50		
		778,2		778,7		777,6		13		51	
		792,3		792,9		791,7		13		52	
		840,6		841,1		840,0		14		53	
		854,0		854,5		853,4		14		54	
		868,8		869,4		868,2		14		55	
		885,1		885,7		884,4		14		56	
		910,4		911,5		909,1		16		57	

Released to the following organization: VUT Brno VUT Brno

Xace E Ver. 5.00 13.5.2010 15:09 SN: 1600211661 Problem-

Case-Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

Nar	ne	Type	(mm)	(mm)	(mm)	(mm)	(mm)
1 Selo	ce 1	Plain	60,300	2,900	110,000	420,000	n/a
2 Selo	ce 2	Plain	60,300	2,900	90,000	80,000	n'a
3 Selo	ce 3	Plain	60,300	2,900	90,000	80,000	n/a
4 Selo	ce 4	Plain	60,300	2,900	90.000	80,000	n/a
5 Selo	ce S	Plain	60,300	2,900	90,000	80,000	n/a
				-			
Row	Number of Tubes	Tube Type	Clearance (mm)	Row	Number of Tubes	Tube Type	Clearance (mm)
				-			
1	15	Sexce 5	14,850	30	15	Sexce 4	59,850
- Z	15	Sexce 5	59,850	31	15	Sexce 4	14,850
3	15	Series 5	14,850	32	15	Series 4	59,850
	12	Select S	59,850	1 22	15	Select 4	14,850
2	12	Sexue 5	19,000	1 22	45	Sekce 4	39,630
2	10	Sekce 5	14,950	33	15	Sekce 4	E0.950
÷.	15	Seize S	50,850	1 22	16	Salara d	14 995
ö	15	Sakra 5	14,850	10	15	Seire d	59 850
10	15	Sekce 5	59,850	19	15	Seire d	14 6 50
11	15	Selvce 5	14.850	40	15	Sekre 4	59,850
12	15	Sekce 5	59,850	41	15	Sekre 3	14,850
13	15	Selcce 5	14,850	42	15	Sekce 3	59,850
14	15	Sekce 5	59,850	41	15	Sekce 3	14,850
15	15	Sekce 5	14,850	44	15	Sekce 3	59,850
16	15	Sekce 5	59,850	45	15	Sekce 3	14,850
17	15	Sekce 5	14,850	46	15	Sekce 3	59,850
18	15	Sekce 5	59,850	47	15	Sekce 3	14,850
19	15	Sekce 5	14,850	48	15	Sekce 3	59,850
20	15	Sekon 5	59,850	49	15	Sekce 2	14,850
21	15	Seloce 5	14,850	50	15	Sekce 2	59,850
22	15	Sekce 5	\$9,850	51	15	Sekce 2	14,850
23	15	Sekce 5	14,850	52	15	Sekce 2	59,850
24	15	Selice 5	59,850	53	15	Sekce 2	14,850
25	15	Seloce 4	14,850	54	15	Sekce 2	59,850
26	15	Seloce 4	59,850	55	15	Sekce 2	14,850
27	15	Sekce 4	14,850	56	15	Selvce 2	59,850
28	15	Sekce 4	59,850	57	12	Sekce 1	62,350
29	15	Selice 4	14,850	58	12	Selice 1	62,350

SI Units

 \bigcap

TTTDI	Input Reprint		Page 7
	Released to the following organization	ר:	
1 1 1 1 1	VUT Brno		
	VUT Brno		
Xace E Ver. 5.00 13.5.2010 1	5:09 SN: 1600211661		SI Units
Vysokoteplotni aplikace 1_Kontr	ola varianty 1 by M. Jonak		
Simulation-Horizontal economiz			
Unit Data			
Run mode		Simulation	
Unit type		Economizer	
Hot fluid location		Shellside	
Tube bundle angle (relative to h	iorizontal)	0,00	deg
Number of bays in parallel per u	unit	1	
Number of bundles in parallel p	er bay	1	
Number of services		1	
Number of tubepasses per bune	dle	16	
Tubeside nozzle distribution		Radial	
Tubeside nozzle distribution		Perpendicular	
Tubeside nozzle impingement of	levice	None	
Inlet inside diameter		444,501	mm
Number of inlet nozzles per bur	ndle	1	
Outlet inside diameter		444,501	mm
Number of outlet nozzles per bu	undle		
P			
Fans Data			
Number of fans per bay		0	
Fan arrangement		Forced draft	
Total combined fan and drive et	ficiency	1 0/000 0/011 65	%
Fon manufacturor	nciency	Unspecified	70
Fan ring type (inlet)		Straight	
Fair fing type (inlet)		Straight	
Optional Data			
Steam coil procent		No	
		NO	
Louvers present		N0	
Header box depth		101,600	mm
Plenum chamber type		Box	
Number of intermediate tube su	ipports	Program set	
Bundle Data			
Number of tubercoses			
Number of tuberaus		16	
Number of tubes in address		58	
Number of tubes in odd number		14	
Number of tubes in even numbe	erea row	14	
Tube layout		Staggered	
lube form		Straight	
Bundle width		1,395	m
Clearance, wall to first tube		9,525	mm
Bypass seal half tubes		Yes	
Default bundle type		User defined	
Tube length		3,260	m
]

	DI		Input R	Reprint Pa	age 10
	\Box		Released	to the following organization:	-
Des no sec			VUT Brn	0	
Arrest Game Game 4			VUT Brn	0	
Xace E Ver. 5.00	13.5.2010	15:09 5	SN: 16002	11661 SI U	nits
Vysokoteplotni a	plikace 1_Kon	trola var	ianty 1 by	M. Jonak	
Simulation-Horizo	ontal economiz	zer cour	ntercurren	t to crossflow	
Bundle Layout	Data (cont.)				
		Tube	Wall Clr.		
Tube Type	Row	Count	mm		
Sekce 5	1-1	15	14,850		
Sekce 5	3-2	15	59,850		
Sekce 5	4-3	15	14,850		
Sekce 5	5-4	15	59,850		
Sekce 5	6-5	15	14,850		
Sekce 5	7-6	15	59,850		
Sekce 5	8-7	15	14,850		
Sekce 5	9-8	15	59,850		l
Sekce 5	10-9	15	14,850		ĺ
Sekce 5	11-10	15	59,850		
Sekce 5	12-11	15	14,850		
Sekce 5	13-12	15	59,850		
Sekce 5	14-13	15	14,850		
Sekce 5	15-14	15	59,850		
Sekce 5	16-15	15	14,850		
Sekce 5	17-16	15	59,850		
Sekce 5	18-17	15	14,850		
Sekce 5	19-18	15	59,850		
Sekce 5	20-19	15	14,850		
Sekce 5	21-20	15	59,850		
Sekce 5	22-21	15	14,850		_
Sekce 5	23-22	15	59,850		
Sekce 5	24-23	15	14,850		
Sekce 5	25-24	15	59,850		
Sekce 4	26-25	15	14,850		
Sekce 4	27-26	15	59,850		
Sekce 4	28-27	15	14,850		
Sekce 4	29-28	15	59,850		
Sekce 4	30-29	15	14,850		
Sekce 4	31-30	15	59,850		
Sekce 4	32-31	15	14,850		
Sekce 4	33-32	15	59,850		
Sekce 4	34-33	15	14,850		
Sekce 4	35-34	15	59,850		
Sekce 4	36-35	15	14,850		
Sekce 4	37-36	15	59,850		
Sekce 4	38-37	15	14,850		
Sekce 4	39-38	15	59,850		
Sekce 4	40-39	15	14,850		
Sekce 4	41-40	15	59,850		
Sekce 3	42-41	15	14,850		
Sekce 3	43-42	15	59,850		
Sekce 3	44-43	15	14,850		ſ
Sekce 3	45-44	15	59,850		l
Sekce 3	46-45	15	14,850		
Sekce 3	47-46	15	59,850		
Sekce 3	48-47	15	14,850		

h h farmh	NT		Input Re	eprint			Page 11
	21		Released t	o the follo	wing organization:		-
			VUT Brnc)	g - g-		
			VUT Brnc)			
Xace E Ver. 5.00	13.5.2010	15:09 \$	SN: 160021	1661			SI Units
	ikaaa 1 Ka	atrala va	rianty 1 by	M lonak			
Simulation-Horizor	ikace I_No	ntrola va	nanty i by	to crossfl	0.14		
Bundle Layout D:	ata (cont.)		litercurrent	10 0105511	000		
Bullule Layout Da	ala (Cont.)	Tuba					
	Row	Count	wall Cir.				
Sekce 3	49-48	15	59 850				
Sekce 2	50-49	15	14,850				
Sekce 2	51-50	15	59,850				
Sekce 2	52-51	15	14.850				
Sekce 2	53-52	15	59,850				
Sekce 2	54-53	15	14,850				
Sekce 2	55-54	15	59,850				
Sekce 2	56-55	15	14,850				
Sekce 2	57-56	15	59,850				
Sekce 1	58-58	12	62,350				
Process Conditio	ons Data				Hot Fluid	Cold Fluid	
Phase condition				Ser	nsible gas	Sensible gas	
Flow rate					2,5170	3,1750	kg/s
Inlet vapor fraction	n					1	
Outlet vapor fracti	ion				1	- 1	0
Inlet temperature					1200,00	220,30	
Inlet Pressure					101,325	610,900	кРа
Duty multiplier							
Hot Fluid Propert	v Data						
Fluid name							
Physical property	method			Cor	moment by compone	ent properties	
Heat release met	hod			00.	Progra	am calculated	
Flash type						Integral	
Quantity units						Moles	
Temperature inter	polation op	tion				Program	
Number of compo	onents					5	
Hot Fluid Compo	nent Data						
Component numb	ber			1		2	3
Component name				Argon	Carbon Dioxide	e	Nitrogen
Comp. bank name	e			Argon	Carbon Dioxide	e	Nitrogen
Component bank			HTF	RI/DIPPR	HTRI/DIPPF	R H	ITRI/DIPPR
Component code				208	:	2	131
Component phase	e			Mixed	Mixed	d	Mixed
Component quant	tity			0,86		bl	73,51
Component numb	ber			4		5	
Component name)			Oxygen	Water (IAPWS 1997)	
Comp. bank name	е			Oxygen	Water (IAPWS 1997		
Component bank			HTF	RI/DIPPR	HTRI/DIPPF	2	
Component code				201		1	
Component phase	е			Mixed	Mixed	d	
Component quant	tity			9,7	10,93	3	

Betaeved to the following organization: With Betaeved to the following organization: State E Ver. S. 00. 13.5.2010. 15.09. SN: 16002.11601 Vision State of the following organization: Provision State of the following organization: Provision State organization: Component name: Provision State organization: Provision State organization: <t< th=""></t<>
VIT Bmc Xace E Ver. 5.00 13.5.2010 15:09 SN: 1600211661 SI Units Vyskoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Smulane-Horizontal economizer countercurrent to crossflow Cold Fluid Property Data Program calculated Fluid name PVS Physical property method Component by component properties Heat release method Program Quantity units Integral Quantity units 2 Component number 1 Component number 2 Component name Air Water (IAPWS 1997) Component nate cononexito Ai
With Brind St Units Vysokatepiotni apilkace 1, Kontrola varianty 1 by M. Jonak Simulation-Horizontal economizer countercurrent to crossflow Cold Fluid Property Dats Program calculated Fluid name PVS Physical property method Component by component properties Heat release method Program calculated Temperature interpolation option Program Number of component Data 1 Component number 1 Component name Air/Water (IAPWS 1997) Component quantity 74,64 25,36 Control Name Data Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Name Data 0 No Condensing correlation 0 No Pure component condensation 0 No Ordenensing correlation 0 No Control Methods Data No No Subliside friction factor method No No
Add E e Ver. 5.00 133.2010 150.00 135.00 135.00 150.00 5K1 16002/1661 St Units Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak PVS PVS Simulation-Horizontal economizer countercurrent to crossflow PVS Cold Fluid Property Data PVS Haid name PVS Physical property method Component properties Heat release method Program calculated Pragram Number of component Data Component number 1 Component number 1 Component name AirWater (IAPWS 1997) Component name AirWater (IAPWS 1997) Component bank HTR/IDIPPR Component bank HTR/IDIPR Component plase Vapor Vapor Mixed Component bank Vapor Pure component condensation 0 No No Control Name Data Commercial Control Name Data Ommercial Dure component condensation 0 % Pure component condensation 0 % Pure component condensation 0 % Compreret boilin
Vyskoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Simulaton-Horizontal economizer countercurrent to crossflow Cold Fluid Property Dat Fluid name PVS Physical property method Program calculated Flash type Integral Quantity units Component properties Heat release method Program calculated Flash type Integral Quantity units Immeteriate Program calculated Program Prog
Simulaton-Horizonial economizer countercurrent to crossitiow Fluid name luid name Fluid
Cold Fluid Property Data PVS Fluid name PVS Physical property method Component by component properties Heat release method Program calculated Quantity units Weight Temperature interpolation option Program Number of components 2 Codd Fluid Component Data
Fluid name PVS Physical property method Program calculated Program Number of components Program Number of component Data Component number 1 1 2 Component name Air Water (IAPWS 1997) Component name Air Water (IAPWS 1997) Component pase Vapor Mixed (IAPWS 1997) Component code 1 Mixed (IAPWS 1997) Component pase Vapor Mixed (IAPWS 1997) Component code 9 Mixed (IAPWS 1997) Component pase Vapor Mixed (IAPWS 1997) Component pase Vapor Mixed (IAPWS 1997) Component code 9 Mixed (IAPWS 1997) Component pase Vapor Mixed 9 Mixed (IAPWS 1997) Component code 9 Mixed 9 Mixed 9 Mixed 9 Mixed (IAPWS 1997) Component code 9 Mixed 9 Mix
Physical property method Program calculated Program calculated Plash type Integral Quantity units Weight Temperature interpolation option Program Number of component Date 2 Component number 1 1 2 2 Component number 2 Component name 1 Air Water (IAPWS 1997) Component phase 1 Air Water (IAP
Interviews method Program Calculated Quantity units Weight Temperature interpolation option Program Number of component Data 2 Component number 1 1 Component number 1 1 Component number 1 1 Component plass Vapor 1 Component quantity 74.64 25.38 Control Name Data Commercial Commercial Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Ommercial Pure component boling No No Condensing correlation No No Pure component boling method Nucleate and convective High-fin heat transfer method Nucleate and convective Single increament method No Single increament method
Firsh type Integral Quantity units Weight Temperature interpolation option Program Number of component Data 2 Component number 1 Component number 1 Air Water (IAPWS 1997) Component name Air Water (IAPWS 1997) Component bank HTR/DIPPR Component ode 3 Component ode 3 Component ode 3 Component ode 4 Component ode 3 Component ode 4 Component ode 4 Component ode 3 Component ode 3 Component ode 4 Component quantity 74.64 Zose Commercial Control Methods Data Commercial Tubeside friction factor method Commercial Pure component condensation 0 Momentum exclusion 0 Pure component boiling method Pure component boiling range Component boiling method HTRI High-fin heat transfer method HTRI
Guanny units Program Number of components 2 Cold Fluid Component Data 1 Component number 1 Component name 1 Component hase Vapor Component phase Vapor Component phase Vapor Control Name Data Commonent phase Control Name Data Commonent phase Control Name Data Commonent phase Control Methods Data Commercial Shelistide friction factor method Commercial Pure component boiling 0 % Pure component boiling No Component boiling method 0 % Pure component boiling method HTRI Single increment method Mark Single increment method Mark Single increment method No Control Safety Data 1 Hot fluid/sheliside film coefficient multiplier 1
Cold Fluid Component Data 1 2 Component number 1 2 Component name AirWater (IAPWS 1997) Component name AirWater (IAPWS 1997) Component name HTR/DIPR Component name AirWater (IAPWS 1997) Component bank HTR/DIPR Component bank HTR/DIPR Component bank HTR/DIPR Component phase Yapor Component phase Yapor Component code 3 Component code 3 Component code No Component code No Pure component condensation No Pure component condensation 0 % Noenetum exclusion 0 % Pure component colling No Nucleate boiling method No High-fin neas transfer method No High-fin heat transfer method No High-fin heat transfer method No Force phase separation in tube headers No Cold fluid/shellside finction factor multiplier 1 Hot fluid/shellside finction factor multiplier
Construction 1 2 Cold Fluid Component number 1 2 Component number 1 2 Component number 1 2 Component number 1 2 Component number 1 1 Component number 1 1 Component number 1 1 Component bank HTRI/DIPPR HTRI/DIPPR Component phase Vapor Mixed Component quantity 74,64 25,36 Control Name Data Commercial Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method No Pure component condensation 0 % No endersing correlation 0 % No endetabe boiling method No Pure component bolling No Pure component bolling method HTRI High-fin pressure drop method HTRI No No Force phase separation in tube headers No Codf fluid/shellside film coefficient multiplier
Cold Fluid Component Data 1 2 Component name Air Water (IAPWS 1997) Component bank HTRI/DIPPR Component code 3 Component quantity 74,64 Control Name Data Comment of the second of the sec
Component name 1 2 Component name Air/Water (IAPWS 1997) Component bank HTRI/DIPPR Component bank HTRI/DIPPR Component bank HTRI/DIPPR Component bank HTRI/DIPPR Component phase Vapor Component phase Vapor Component phase Vapor Component quantity 74,64 Zase name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method Commercial Pure component condensation 0 Component boiling 0 Pure component boiling Yes Nucleate boiling method Yes Nucleate boiling method HTRI High-fin heat transfer method HTRI High-fin pressure drop method HTRI Single increment method HTRI High-fin pressure drop method HTRI High-fin heat component nultiplier 1 Hot fluid/sheliside find coefficient multiplier 1 Hot fluid/sheliside find coefficient multiplier 1
Component name Air Water (IAPWS 1997) Component bank HTRI/DIPPR Component code 3 Component phase Vapor Component quantity 74,64 Zose name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Name Data Commercial Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method Commercial Pure component condensation 0 Mole fraction inerts 0 No 0 Pure component boiling No Component boiling No Component boiling method No High-fin heat transfer method HTRI High-fin pressure drop method HTRI Single increment method HTRI Single increment method HTRI Hot fluid/shellside finic oefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Component bank HTRI/DIPR Component code 3 Component phase Vapor Component quantity 74,64 Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method Commercial Pure component condensation No Momentum exclusion 0 % Pure component boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component method Yes Nucleate boiling method HTRI High-fin heat transfer method No High-fin pressure drop method HTRI High-fin pressure drop method No Force phase separation in tube headers No Control Safety Data No Hot fluid/shellside finction factor multiplier 1 Hot fluid/shellside finction factor multiplier 1 Cold fluid flubeside friction factor multiplier 1 Codi fluid flubeside friction factor multiplier 1 Cold fluid flubeside friction factor multiplier 1 Cold fluid flubeside frictin factor multip
Component bank HTRI/DIPPR HTRI/DIPPR Component code 3 1 Component quantity 74.64 25.36 Control Name Data Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Commercial Shellside friction factor method Commercial Commercial Pure component condensation 0 No Mole fraction inerts 0 % Pure component boiling Yes Nucleate boiling range Component boiling method Physical property/theoretical boiling range Component boiling method Nucleate and convective High-fin nessure drop method No Force phase separation in tube headers No Control Safety Data No Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fl
Component code Component phase Component quantity 3 Vapor 74,64 1 Mixed 25,36 Control Name Data Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Shellside friction factor method Tubeside friction factor method Pure component condensation Condensing correlation Mole fraction inerts Commercial Commercial No HTRI Proration Mole fraction inerts 0 % Pure component boiling Component boiling method High-fin heat transfer method High-fin pressure drop method Force phase separation in tube headers No Control Safety Data Lod fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling
Component phase Vapor Mixed Component quantity 74.64 25.36 Control Name Data Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method Commercial Pure component condensation No Pour component boiling No Pour component boiling method 0 % Pure component boiling method No Component boiling method Yes Nucleate boiling method Yes Nucleate boiling method No Force phase separation in tube headers No Component boiling method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside friction factor multiplier 1 Cold fluid/tubeside find coefficient multiplier 1 Cold fluid tubeside friction of critical flux for film boiling 1
Component quantity 74,641 25,361 Control Name Data Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method Commercial Pure component condensation No Gondensing correlation No HTRI Proration 0 % Pure component boiling No Homentum exclusion 0 % Pure component boiling No Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method No High-fin pressure drop method HTRI High-fin pressure drop method HTRI Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside find: coefficient multiplier 1 Cold fluid/tubeside finction factor multiplier 1 <tr< td=""></tr<>
Control Name Data Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method Commercial Pure component condensation 0 Kontrol Methods Data Commercial Pure component condensation 0 Momentum exclusion 0 Momentum exclusion 0 Momentum exclusion 0 Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method No High-fin heat transfer method HTRI High-fin pressure drop method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside friction factor multiplier 1 Hot fluid/shellside friction factor multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/fraction of critical flux for film boiling 1
Case name Vysokoteplotni aplikace 1_Kontrola varianty 1 by M. Jonak Control Methods Data Commercial Shellside friction factor method No Pure component condensation No Mole fraction inerts 0 More fraction inerts 0 Nucleate boiling method Yes Nucleate boiling method HTRI High-fin heat transfer method HTRI Single increment method No Single increment method No No No Cottol Safety Data 1 Hof fuid/shellside finit coefficient multiplier 1 Cold fluid/tubeside finit coefficient multiplier 1 C
Control Methods Data Shellside friction factor method Tubeside friction factor method Pure component condensation Condensing correlation Mole fraction inerts 0 Momentum exclusion 0 Component boiling method High-fin heat transfer method High-fin pressure drop method Single increment method Force phase separation in tube headers No Control Safety Data Hot fluid/shellside film coefficient multiplier 1 Cold fluid/fubeside fr
Control Methods Data Shellside friction factor method Tubeside friction factor method Pure component condensation Condensing correlation Mole fraction inerts 0 Momentum exclusion 0 Nomentum exclusion 0 Nomentum exclusion 0 Nucleate boiling method Component boiling method High-fin heat transfer method High-fin pressure drop method Single increment method Force phase separation in tube headers No Control Safety Data Hot fluid/shellside film coefficient multiplier 1 Hot fluid/ubeside film coefficient multiplier 1 Cold fluid fraction of critical flux for film boiling
Shellside friction factor method Commercial Tubeside friction factor method No Pure component condensation No Mole fraction inerts 0 Momentum exclusion 0 % Pure component boiling No Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method HTRI High-fin heat transfer method HTRI High-fin pressure drop method No Single increment method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside find coefficient multiplier 1 Cold fluid/tubeside find coefficient multiplier 1 Cold fluid/tubeside find coefficient multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Tubeside friction factor method Commercial Pure component condensation No Mole fraction inerts 0 Momentum exclusion 0 % Pure component boiling No Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method HTRI High-fin heat transfer method HTRI High-fin pressure drop method HTRI Single increment method No Force phase separation in tube headers No Control Safety Data No Hot fluid/shellside finc coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Pure component condensition No Condensing correlation HTRI Proration Mole fraction inerts 0 Momentum exclusion No Component boiling method Physical property/theoretical boiling range Component boiling method HTRI High-fin pressure drop method HTRI Single increment method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Condensing correlation O Mole fraction inerts O Momentum exclusion 0 % Pure component boiling No Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method Nucleate and convective High-fin heat transfer method HTRI High-fin pressure drop method HTRI Single increment method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Nomentum exclusion 0 % Pure component boiling No Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method Nucleate and convective High-fin heat transfer method HTRI Single increment method HTRI Single increment method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Nomentation exclusion 0 78 Pure component boiling No Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method Nucleate and convective High-fin heat transfer method HTRI High-fin pressure drop method HTRI Single increment method HTRI No Force phase separation in tube headers Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Check film boiling Yes Nucleate boiling method Physical property/theoretical boiling range Component boiling method HTRI High-fin heat transfer method HTRI High-fin pressure drop method HTRI Single increment method HTRI High-fin pressure drop method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Nucleate boiling method Component boiling method High-fin heat transfer method High-fin pressure drop method Single increment method Force phase separation in tube headers Control Safety Data Hot fluid/shellside film coefficient multiplier Hot fluid/shellside film coefficient multiplier Cold fluid/tubeside film coefficient multiplier Cold fluid/tubeside firction factor multiplier Cold fluid/tubeside firction factor multiplier Cold fluid fraction of critical flux for film boiling Hot fluid fraction of critical flux for film boiling
Component boiling method High-fin heat transfer method High-fin pressure drop method Single increment method Force phase separation in tube headers Control Safety Data Hot fluid/shellside film coefficient multiplier Hot fluid/shellside film coefficient multiplier Cold fluid/tubeside film coefficient multiplier Cold fluid/tubeside film coefficient multiplier Cold fluid/tubeside firiction factor multiplier Cold fluid/tubeside firiction factor multiplier Cold fluid fraction of critical flux for film boiling Hot fluid fraction of critical flux for film boiling
High-fin heat transfer method HTRI High-fin pressure drop method Single increment method Single increment method Force phase separation in tube headers Force phase separation in tube headers No No No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
High-fin pressure drop method HTRI Single increment method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Hot fluid/shellside friction factor multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Single increment method No Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside firction factor multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Force phase separation in tube headers No Control Safety Data 1 Hot fluid/shellside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Control Safety DataHot fluid/shellside film coefficient multiplier1Hot fluid/shellside friction factor multiplier1Cold fluid/tubeside friction factor multiplier1Cold fluid/tubeside friction factor multiplier1Cold fluid fraction of critical flux for film boiling1
Hot fluid/shellside film coefficient multiplier1Hot fluid/shellside friction factor multiplier1Cold fluid/tubeside film coefficient multiplier1Cold fluid/tubeside friction factor multiplier1Cold fluid fraction of critical flux for film boiling1
Hot fluid/shellside friction factor multiplier 1 Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Cold fluid/tubeside film coefficient multiplier 1 Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Cold fluid/tubeside friction factor multiplier 1 Cold fluid fraction of critical flux for film boiling 1
Cold fluid fraction of critical flux for film boiling 1

Výsledky alternativy 2

LITDI	Output	Summar	y					Pag	je 1
Π I K I	Released t	o the followi	ng organizat	tion:					
TTTT	VUT Brno								
Yeee 5 Ver 5 00 12 5 20	10 15:41 SN: 1	200211661						SLUni	ite
Xace E Ver. 5.00 13.5.20	10 15:41 SN: 1	000211001						51011	1.5
Vysokoteplotni aplikace 1_ł	Kontrola varianty	2 by M. Jor	nak						
Simulation-Horizontal econo	omizer countercu	urrent to cros	ssflow						
See Data Check Message	s Report for Wa	rning Mess	ages.						
See Runtime Message Re	port for Warnin	g Message	s.						
Process C	onditions		Out	side	e		Tubesid	е	
Fluid name		SPALINY	/			PVS			
Fluid condition				Se	ens. Gas			Sens. Gas	
Total flow rate	(kg/s)				2,517			3,175	
Weight fraction vapor, In/O	ut		1,000		1,000	1,	000	1,000	
Temperature, In/Out	(Deg C)		1200,00		281,98	220),30	871,05	
Skin temperature, Min/Max	(Deg C)		238,40		924,82	238	3,32	923,49	
Pressure, Inlet/Outlet	(kPa)		101,326		101,288	610,	909	589,906	
Pressure drop, Total/Allow	(kPa)	(kPa)	0,039		0,000	21,	003	0,000	
Midpoint velocity	(m/s)				2,29			7,29	
- In/Out	(m/s)						5,30	51,11	
Heat transfer safety factor	()				1			1	
Fouling	(m2-K/W)			0	,000000			0,000000	
			Exchange	er P	erformand	;e			
Outside film coef	(W/m2-K)		40,07		Actual U		(W/m2-K)	27,518	
Tubeside film coef	(W/m2-K)		102,41		Required	U	(W/m2-K)	27,333	
Clean coef	(W/m2-K)		27,518		Area		(m2)	647,849	
Hot regime	(, , , , , , , , , , , , , , , , , , ,		Sens. Gas		Overdesi	gn	(%)	0,68	
Cold regime			Sens. Gas			Tu	be Geomet	ry	
EMTD	(Deg C)		160.1		Tube typ	е		Plain	
Duty	(MegaWatts)		2.836		Tube OD		(mm)	33,700	
	Unit Geo	metry			Tube ID		(mm)	29,100	
Bays in parallel per unit					Length		(m)	3,260	
Bundles parallel per bay			1		Area ratio	o(out/in)	()	1 15808	
Extended area	(m2)		647 849		Lavout	S(Out/III)		Staggered	
Baro aroa	(m2)		647 849		Trans nit	ch	(mm)	62 000	
Dale alea Dundlo width	(m)		1 801		Long nite	sh	(mm)	70,000	
	(11)	Inlat			Lumbor	of noncoo	(1111)	10,000	
Nozzie		iniet	1		Number	of rouve	()	68	
Number	()	1	111 50			orrows	()	2040	
Diameter	(mm)	444,50	444,50		Tubecou		()	2040	
Velocity	(m/s)	5,45	13,14		Tubecou	nt Odd/Eve	en ()	147	14
R-V-SQ	(kg/m-s2)	111,57	268,93		Tube ma	terial	Not I	n data bank	
Pressure drop	(kPa)	0,061	0,094	_			in Geometi	ly	
	Fan Geo	metry			Туре			None	
No/bay	()		0		Fins/leng	Ith	tın/meter		
Fan ring type					Fin root		mm		
Diameter	(m)		0,000		Height		mm		
Ratio, Fan/bundle face area	a ()		_		Base thic	kness	mm		
Driver power	(kW)		0,00		Over fin		mm		
Tip clearance	(mm)		0,000		Efficienc	y	(%)		
Efficiency	(%)	A = f = = = 1	0	_	Area rati	o (fin/bare)	()		
Airside velocities	,	Actual	Standard		Material	T b c c c c c c c c c c	al Paciata	noo: %	
Face	(m/s)	1,75			<u>.</u> .	inern	iai resista	nice; %	
Maximum	(m/s)	4,23			Air			68,68	
Flow	(100 m3/min)	6,471			Tube			31,12	
velocity pressure	(Pa)	0,00			Fouling			0,00	
Bundle pressure drop	(Pa)	38,72			Metal			0,20	
Dundlo	100 00		Viroido Dire -		Bond			0,00	
	100,00	Fon minut	Airside Prés	sur			an	(
Ground clearance	0,00	Fan guard	lookaga		0,00	Stoom or	oll Dil	(0,00 0 00
ran nng	0,00	ran area b	lockage		0,00	Steam C	ווכ	(0,00

Released to the following organization: VUT Brno VUT Brno

Xace E Ver. 5.00 13.5.2010 15:41 SN: 1600211661

Vysokoteplotni aplikace 1_Kontrola varianty 2 by M. Jonak :

Simulation-Horizontal economizer counter	ercurrent to crossflow				
	Process Data	Outsid	de	Tubesid	е
Fluid name	S	PALINY		PVS	
Fluid condition			Sens. Gas		
Total flow rate	(kg/s)		2,517		
Weight fraction vapor, In/Out	()	1,000	1,000	1,000	
Temperature, In/Out	(Deg C)	1200,00	281,98	220,30	
Skin temperature, Min/Max	(Deg C)	238,40	924,82	238,32	
Wall temperature, Min/Max	(Deg C)	238,40	924,82	238,32	
Pressure, In/Out	(kPa)	101,326	101,288	610,909	
Pressure drop, Total/Allowed	(kPa)	0,039	0,000		
Tube pressure drop, Total/Allowed	(kPa)			21,003	
Velocity - Midpoint	(m/s)	2,29		7,29	
- In/Out	(m/s)			5,30	
Film coefficient, Bare/Extended	(W/m2-K)	40,07	40,07	102,41	
Mole fraction inert	()				
Heat transfer safety factor	()		1		
Fouling resistance	(m2-K/W)		0,000000		
		Overall Perforn	nance Data		
Overall coef, Design/Clean/Actual	(W/m2-K)	27,333 /	27,518 /	27,518	
Heat duty, Calculated/Specified	(MegaWatts)	2,8356 /	0,0000		
Effective mean temperature difference	(Deg C)	160.14			

See Runtime Message Report for	Warning Messa	ges.					
		Unit and	Bundle Co	nst	ruction Information		
Bays in parallel/unit	()		1		Bundles in parallel/bay		1
Extended area/unit	(m2)		647,849		Bare area/unit	(m2)	647,849
Extended area/bundle	(m2)		647,849		Bare area/bundle	(m2)	647,849
Tubepasses/Tuberows	()	10 /	68		Number of tubes/bundle	()	2040
Tubecount, Odd rows/Even rows	()	14 /	14		Edge seals	()	Yes
Bundle width	(m)		1,891		Fan guard	()	No
Clearance	(mm)		9,525		Louvers	()	No
Header depth	(mm)		101,600		Steam coil	()	No
Header Box					Hail screen	()	No
- Plate thickness	(mm)		104,775		Tube support information		
- Tubesheet thickness	(mm)		117,475		- Number	()	1
Plenum type			Box		- Width	(mm)	25,400
Weight/Bundle	(kg)		52211		Orientation (from horiz.)	(deg)	0,00
Structure weight	(kg)		0		Tubeside volume	(L)	5937,3
Total weight, Dry / Wet	(kg)		52211	/	58144		
Ladder/walkway weight	(kg)		0		Cost Factor	()	273,901
			Tube II	nfor	mation		

See Next Page For Tube Information.

SI Units

Sens. Gas 3,175 1,000 871,05 923,49 923,49 589,906

0,000

51,11

0,000000

1

HTRI	F	Final Results Released to the followi VUT Brno	ng organization:			Page 3
Xace E Ver. 5.00 13.5.2010	0 15:41 SN:	1600211661				SI Units
Problem-						
Case-Vysokoteplotni aplikace	e 1_Kontrola \	varianty 2 by M. Jonak	:			
Straight length	(m)	3,260				
Unfinned length	(mm)	0,000				
Unheated length	(mm)	260,351				
Tube form	()	Straight	-	-		
Transvorsa nitah	(mm)	<u>1ype 1</u>	<u>Type 2</u>	<u>1ype 3</u>	<u>Type 4</u>	<u>Type 5</u>
I ongitudinal pitch	(mm)	70,000	70,000	70,000	62,000 70,000	62,000
Outside diameter	(mm)	33,700	33,700	33,700	33,700	33,700
Inside diameter	(mm)	29,100	29,100	29,100	29,100	29,100
Tube type	()	Plain	Plain	Plain	Plain	Plain
Area ratio (out/in)	()	1,15808	1,15808	1,15808	1,15808	1,15808
Over tin diameter	(mm)					
Fins per unit length	() (fin/meter)					
Fin root diameter	(mm)					
Fin height	(mm)					
Fin thickness at base	(mm)					
Fin thickness at tip	(mm)					
Fin type	()					
Fin efficiency	(%)					
Split segment height	(mm)					
Rectangular fin height	(mm)					
r cottangular ini noigint	(mm)					
Rectangular fin width						
Rectangular fin width Wall thickness (finned)	(mm)					
Rectangular fin width Wall thickness (finned) Number of stud rings	(mm) (stud/meter)					
Rectangular fin widthWall thickness (finned)Number of stud ringsNumber of studs/ring	(mm) (stud/meter) ()					
Rectangular fin widthWall thickness (finned)Number of stud ringsNumber of studs/ringStud length	(mm) (stud/meter) () (mm)		5			
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter	(mm) (stud/meter) () (mm) (mm)	Not in data bank		t in data bank		
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring (Stud length (Stud diameter (Tube material ((mm) (stud/meter) () (mm) (mm)	Not in data bank	Noi	t in data bank	No tin data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring (Stud length (Stud diameter (Tube material ((mm) (stud/meter) () (mm) (mm)	Not in data bank	t in data bank	t in data bank Not	No t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material	(mm) (stud/meter) () (mm) (mm)	Not in data bank No	t in data bank	t in data bank Not	No t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	No t in data bank	ot in data bank None
Rectangular fin width Wall thickness (finned) Number of stud rings Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings Number of studs/ring Stud length Stud length Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank Not	t in data bank Not	No t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank None	t in data bank Not	Note	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	Note	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank None	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank None	t in data bank Not	No t in data bank None	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	Not nt in data bank None	t in data bank Not	Note	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	Nor It in data bank None	t in data bank Not	Note	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank None	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No None	t in data bank	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	Not It in data bank None	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	Not It in data bank None	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	Nor It in data bank None	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No	t in data bank	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	Nore	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	t in data bank	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank No	Not It in data bank None	t in data bank Not	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	Not It in data bank None	t in data bank	t in data bank	ot in data bank
Rectangular fin width Wall thickness (finned) Number of stud rings (Number of studs/ring Stud length Stud diameter Tube material Fin material Internal tube type	(mm) (stud/meter) () (mm) (mm)	Not in data bank None	Nor It in data bank None	t in data bank Not	t in data bank	ot in data bank

T T'T'D T	nal Results			Page 4
Rel	eased to the following org	ganization:		
	JT Brno JT Brno			
Xace E Ver. 5.00 13.5.2010 15:41 SN: 1600211	661			SI Units
Problem-				
Case-Vysokoteplotni aplikace 1_Kontrola varianty 2	2 by M. Jonak :			
Simulation-Horizontal economizer countercurrent to	crossflow			
Inlet Airside Velocities			Actual	Standard
Face velocity	(m/	s)	1,75	
Maximum velocity	/m) (100 m3/mi	S) n)	4,23 6.471	
Maximum mass velocity	(kg/s-m)	2)	0,988	
Air humidity	(%	%)		
Volumetric flow per fan at fan inlet	(100 m3/mi	n)	0,000	
Velocity at fan inlet	(m/	s)	0,00	
	Fan Description an	id Fan Power		
Number of fans per bay		()		0
Diameter		(m)		0,000
l ip clearance Ratio, fan area to hav faco area		(mm)		0,000
Fan ring type		()		
Percent open area - in fan guard		(%)		0
- in hail screen		(%)		0
Ratio, ground clearance to fan diameter		()		_
Percent blockage, other obstruction		(%)	00.70	0
Bundle pressure drop/ Velocity pressure		(Pa)	38,727	0,00
Motor power per fan-design air temperature		(%) (kW)		0.00
Motor power per fan-minimum air temperature		(kW)		0,00
Ambient temperature, maximum / minimum		(Deg C)	1	
	Two-Phase Pa	rameters		
Method Inlet	Center	Outlet	Mix F	
		4	_	
Heat Transfer and Pressure Drop Par	ameters		Tubeside	Outside
Midpoint j-factor		()		0,0208
Heat transfer	Wall Correction	()	0,9726	1,0000
	Row Correction	()	0.0078	1,0000
Pressure drop	Wall Correction	()	0,0078	1 0000
	Row Correction	()	0,0111	0,0000
Reynolds number	Inlet	()	24343	633
	Midpoint	()	19245	949
	Outlet	()	51916	1220
Fouling layer thickness		(mm) (m/s)	0,000	0,000
Input minimum velocity		(m/s)		
Input minimum wall temperature		(Deg C)		
Input maximum wall temperature		(Deg C)		
Thermal F	esistance (Perc	ent)		Over
Air Tube	Fouling	Metal	Bond	Design
				0,68
	Airside Pre	essure Drop	(Percent)	
Across bundle	100,00	Other obstructio	n	0,00
Fan ring	0,00	Steam coil		0,00
Fan guard	0,00	Louvers		0,00
	0,00			
Tube Nozzle (Perpendicular)		Inlet	Outlet	
Number of nozzles	()	1	1	
	(mm)	444,50 5 4 5	444,50 13 14	
Nozzle R-V-SO	(III/S) (ka/m-s2)	5,45 111 57	268.93	
Pressure drop	(kPa)	0.061	0.094	
	()	2,20,	-, ·	

Released to the following organization: VUT Brno VUT Brno

SI Units

Page 5

Xace E Ver. 5.00 13.5.2010 15:41 SN: 1600211661 Problem-

Case-Vysokoteplotni aplikace 1_Kontrola varianty 2 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

	Ме	an Metal Temperat	ures		
I	Mean tube metal t	emperature in eacl	n tubepass, (Deg C	:)	
Tuberow	Tubepass	Inside	Outside	Radial	
1	1	246,1	246,2	246,2	
2	1	247,9	247,9	247,9	
3	1	249,7	249,8	249,8	
4	1	251,7	251,8	251,8	
5	1	253,9	254,0	253,9	
6	1	256,2	256,3	256,2	
7	1	258,6	258,7	258,7	
8	1	261,4	261,5	261,4	
9	2	278,0	278,1	278,1	
10	2	280,2	280,3	280,3	
11	2	282,6	282,7	282,6	
12	2	285,1	285,2	285,2	
13	2	287,8	287,9	287,9	
14	2	290,8	290,9	290,8	
15	2	293,9	294,0	294,0	
16	2	297,3	297,4	297,4	
17	3	317,9	318,0	317,9	
18	3	320,7	320,8	320,7	
19	3	323,7	323,8	323,8	
20	3	326,9	327,1	327,0	
21	3	330,4	330,6	330,5	
22	3	334,2	334,4	334,3	
23	3	338,3	338,5	338,4	
24	3	342,7	342,8	342,8	
23	4	307,5	307,0	307,0	
20	4	371,1	371,2	375.0	
21	4	374,9	370,3	379.2	
20	4	383.7	383.0	383.8	
30	4	386.5	386.7	386.6	
31	4	391.5	391 7	391.6	
32	4	397.0	397.2	397.1	
33	5	428.0	428.2	428.1	
34	5	432,5	432,7	432,6	
35	5	437,3	437,5	437,4	
36	5	442,5	442,7	442,6	
37	5	448,2	448,4	448,3	
38	5	454,3	454,6	454,4	
39	5	461,0	461,2	461,1	
40	5	468,2	468,5	468,3	
41	6	505,3	505,5	505,4	
42	6	511,0	511,2	511,1	
43	6	517,1	517,4	517,3	
44	6	523,8	524,1	524,0	
45	6	531,1	531,5	531,3	
46	6	539,0	539,4	539,2	
47	6	547,7	548,0	547,9	
48	6	557,0	557,4	557,2	
49	7	605,6	605,9	605,8	
50	7	613,2	613,6	613,4	
51	/ 7	0∠1,5 620 5	0∠1,9 621.0	0∠1,1 620.9	
52	ו 7	640.4	640.0	640.7	
55	י 7	040,4 651 1	040,9 651 7	651 A	
55	7	662.8	663.4	663 1	
56	, 7	675.6	676.2	675.9	
57	8	733.3	733.9	733.6	
58	8	743,5	744,1	743,8	
59	8	754,7	755,3	755,0	
60	8	766,8	767,5	767,2	

Page 6

Released to the following organization: VUT Brno VUT Brno

SI Units

Xace E Ver. 5.00 13.5.2010 15:41 SN: 1600211661 Problem-

Case-Vysokoteplotni aplikace 1_Kontrola varianty 2 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

Mean Metal Temperatures

Mean tube metal temperature in each tubepass, (Deg C)

Tuberow	Tubepass	Inside	Outside	Radial
61	8	780,1	780,8	780,5
62	8	794,6	795,4	795,0
63	8	810,5	811,4	810,9
64	8	827,8	828,7	828,3
65	9	823,5	824,6	824,1
66	9	833,9	835,2	834,6
67	10	887,0	888,2	887,6
68	10	898,8	900,3	899,6

educationa use only

Released to the following organization: VUT Brno VUT Brno

13.5.2010 15:41 SN: 1600211661 Xace E Ver. 5.00 Problem-

0000

88

.....

...........

Outer Wall Diameter Thickness (mm) (mm)

33,700 33,700 33,700 33,700 33,700 33,700

Wali Clearance (mm)

 $\begin{array}{c} 14,150\\ 45,150\\ 14,150\\ 45,150\\ 14,150\\ 45,151\\ 14,150\\ 45,150\\ 14,150\\ 45,150\\ 14,150\\ 45,150\\ 14,150\\ 45,150\\ 14,150\\ 45,150\\ 14,150\\$

2,300 2,300 2,300 2,300 2,300 2,300 62,000 62,000 62,000 62,000 62,000

Туре

Plain Plain Plain Plain Plain

Sekce Sekce

Number of Tubes Tube Type

Row

ransven Pitch (mm)

Case-Vysokoteplotni aplikace 1_Kontrola varianty 2 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

TTTTT	Input Reprint		Page 8	
	Released to the following organization:		-	
	VUT Brno			
	VUT Brno			
Xace E Ver. 5.00 13.5.2010 15	5:41 SN: 1600211661		SI Units	
Wysokoteplotni aplikace 1. Kontro	Na varianty 2 by M. Jonak			
Simulation-Horizontal economize	r countercurrent to crossflow			
Unit Data	Contervarient to prossilow			
Run mode		Simulation		
Hot fluid location		Shollside		
Tube bundle angle (relative to be	orizontal)	0.00	dea	
Number of bays in parallel per u	nit	0,00	uog	
Number of bundles in parallel pe	er bay	1		
Number of services		1		
Number of tubepasses per bund	le	10		
Tubeside nozzle distribution		Radial		
Tubeside nozzle distribution		Perpendicular		
Tubeside nozzle impingement de	evice	None		
Inlet inside diameter		444,501	mm	
Number of inlet nozzles per bund		1		
Outlet inside diameter		444,501	mm	
Number of outlet nozzles per bui	ndie			
Fans Data				
Number of fene per boy				
Eap arrangement		U Ecreed draft		
Total combined fan and drive eff	iciency	1 orced dran	%	
Fan manufacturer		Unspecified	/0	
Fan ring type (inlet)		Straight		
5 31 4 4 7		J		
Optional Data				
Steam coil present		No		
Louvers present		No		
Header box depth		101,600	mm	_
Plenum chamber type		Box		
Number of intermediate tube sup	oports	Program set		
Bundle Data				
Number of tubepasses		10		
Number of tuberows		68		
Number of tubes in odd number	ed row	14		
Number of tubes in even numbe	red row	- 14 Starsen		
Tube layout		Staggered	-	
Bundle width		Siraight 1 801		
Clearance, wall to first tube		9.525	mm	
Bypass seal half tubes		Yes		
Default bundle type		User defined		
Tube length		3,260	m	
_		·		
4				

Input Reprint	Page 10
Released to the following organization:	
VUT Brno	
VUT Brno	
ace E Ver. 5.00 13.5.2010 15:41 SN: 1600211661	SI Units
ysokoteplotni aplikace 1_Kontrola varianty 2 by M. Jonak	
imulation-Horizontal economizer countercurrent to crossflow	
undle Layout Data	
$\overset{K}{\overset{r}{\overset{I}{\overset{R}{\overset{O}}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{{}}{\overset{O}{{}}}{\overset{O}{\overset{O}{{}}{\overset{O}{{}}}{\overset{O}{{}}}{\overset{O}{{}}}{{}$	
rs • • • • • • • • • • • • • • • • • • •	
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
rs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
s	
rs • • • • • • • • • • • • • • • • • • •	
r5 @ Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	
rs • • • • • • • • • • • • • • • • • • •	
r5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
rs @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	
rs © © © © © © © © © © © © © © © © © © ©	
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
15 © © © © © © © © © © © © © © © © © © ©	
	_
A D <td></td>	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
™ ™ © © © © © © © © © © © © © © © © © ©	
- 2 W W W W W W W W W W W W W W W W W W	
72 © © © © © © © © © © © © © © © © © © ©	
• • • • • • • • • • • • • • • • • • •	
, he a a a a a a a a a a a a a a a a a a	

The second	DY		nput R	eprint	Page 11
	\Box	F	Released	to the following organization:	5
			VUT Brn	0	
Const Const Const 14			VUT Brn	0	
Xace E Ver. 5.00	13.5.2010	15:41 S	N: 16002	11661	SI Units
Vysokoteplotni a	plikace 1_Kont	trola var	ianty 2 by	M. Jonak	
Simulation-Horizo	ontal economiz	zer coun	itercurren	t to crossflow	
Bundle Layout I	Data (cont.)				
		Tube	Wall Clr.		
Tube Type	Row	Count	mm		
Sekce 5	1-1	30	14,150		
Sekce 5	3-2	30	45,150		
Sekce 5	4-3	30	14,150		
Sekce 5	5-4	30	45,150		
Sekce 5	6-5	30	14,150		
Sekce 5	7-6	30	45,150		
Sekce 5	8-7	30	14,150		
Sekce 5	9-8	30	45,150		
Sekce 5	10-9	30	14,150		
Sekce 5	11-10	30	45,150		
Sekce 5	12-11	30	14,150		
Sekce 5	13-12	30	45,150		
Sekce 5	14-13	30	14,150		
Sekce 5	15-14	30	45,150		
Sekce 5	16-15	30	14,150		
Sekce 5	17-16	30	45,150		
Sekce 5	18-17	30	14,150		
Sekce 5	19-18	30	45,150		
Sekce 5	20-19	30	14,150		
Sekce 5	21-20	30	45,150		
Sekce 5	22-21	30	14,150		
Sekce 5	23-22	3U 20	45,150		
Sekce 5	24-23	30 20	14,150		
Sekce 5	20-24	30	14 150		
Sekce 5	20-25	30	45 150		
Sekce 5	28-27	30	14 150		
Sekce 5	20-27	30	45 150		
Sekce 5	30-29	30	14 150		
Sekce 5	31-30	30	45,150		
Sekce 5	32-31	30	14,150		
Sekce 5	33-32	30	45.150		
Sekce 5	34-33	30	14,150		
Sekce 5	35-34	30	45,150		
Sekce 5	36-35	30	14,150		
Sekce 5	37-36	30	45,150		
Sekce 5	38-37	30	14,150		
Sekce 5	39-38	30	45,150		
Sekce 5	40-39	30	14,150		
Sekce 5	41-40	30	45,150		
Sekce 4	42-41	30	14,150		
Sekce 4	43-42	30	45,150		
Sekce 4	44-43	30	14,150		
Sekce 4	45-44	30	45,150		
Sekce 4	46-45	30	14,150		
Sekce 4	47-46	30	45,150		
Sekce 4	48-47	30	14,150		

	D T		Input R	eprint	Page 12
	\mathbf{L}		Released	to the following organization:	
A A A			VUT Brnd	2	
			VUT Brnd	0	
Xace E Ver. 5.00	13.5.2010	15:41	SN: 16002	11661	SI Units
Vysokoteplotni ap	olikace 1_Ko	ntrola va	rianty 2 by	M. Jonak	
Simulation-Horizo	ontal econom	nizer cou	ntercurrent	to crossflow	
Bundle Layout D	ata (cont.)				
		Tube	Wall Clr.		
Tube Type	Row	Count	mm		
Sekce 4	49-48	30	45,150		
Sekce 3	50-49	30	14,150		
Sekce 3	51-50	30	45,150		
Sekce 3	52-51	30	14,150		
Sekce 3	53-52	30	45,150		
Sekce 3	54-53	30	14,150		
Sekce 3	55-54 56 55	30	45,150		
Sekce 3	57-55	30	14,150		
Sekce 2	58-57	30	14 150		
Sekce 2	59-58	30	45.150		
Sekce 2	60-59	30	14,150		
Sekce 2	61-60	30	45,150		
Sekce 2	62-61	30	14,150		
Sekce 2	63-62	30	45,150		
Sekce 2	64-63	30	14,150		
Sekce 2	65-64	30	45,150		
Sekce 1	66-65	30	14,150		
Sekce 1	67-66	30	45,150		
Sekce 1	68-67	30	14,150		
Sekce 1	69-68	30	45,150		
Process Conditi	ons Data			Hot Fluid	
Phase condition				Sensible gas Se	nsible gas
Flow rate				2,5170	3,1750 kg/s
Inlet vapor fractio	on tion			1	1
Inlot tomporature				1200.00	220.30 C
Inlet Pressure	7			101 325	610 900 kPa
Duty multiplier				101,020	1
Hot Fluid Prope	rty Data				
Fluid name					SPALINY
Physical property	y method			Component by component	properties
Heat release me	thod			Program	calculated
Cuantity unite					Moles
Temperature inte	rnolation on	tion			Program
Number of comp	onents				5
					-
L					

TTTTT	Input Reprint	Page 13
	Released to the following organization:	
	VUT Brno	
	VUT Brno	
Xace E Ver. 5.00 13.5.2010	15:41 SN: 1600211661	SI Units
Vysokoteplotni aplikace 1 Kor	ntrola varianty 2 by M. Jonak	
Simulation-Horizontal econom	izer countercurrent to crossflow	
Hot Fluid Component Data		
Component number	1 2	2
	Argon Carbon Dioxide	Nitrogen
Comp. bank name	Argon Carbon Dioxide	Nitrogen
Component bank		
Component code	208 2	131
Component phase	Mixed Mixed	Mixed
Component quantity	0,86 5	73,51
Component number	4 5	
Component name	Oxvgen Water (IAPWS 1997)	
Comp. bank name	Oxygen Water (IAPWS 1997)	
Component bank	HTRI/DIPPR HTRI/DIPPR	
Component code	201 1	
Component phase	Mixed	
Component quantity	9,7 10,93	
Cold Fluid Property Data		
Fluid name		PVS
Physical property method	Component by componen	t properties
Heat release method	Program	calculated
Flash type		Integral
Quantity units		Weight
Temperature interpolation opt	tion	Program
Number of components	$\mathbf{\Gamma}$	2
Cold Fluid Component Data		
Component number	1 2	
Component name	Air Water (IAPWS 1997)	
Comp. bank name	AirWater (IAPWS 1997)	
Component bank	HTRI/DIPPR HTRI/DIPPR	
Component code	3	
Component phase	Vapor Vapor	
Component quantity	74,64 25,36	
Control Name Data		
Case name	Vysokoteplotni aplikace 1_Kontrola varianty 2 b	y M. Jonak
		-

TTTT	Input Reprint	Page 14
	Released to the following organization:	J J
	VUT Brno	
	VUT Brno	
(ace E Ver. 5.00 13.5.2010) 15:41 SN: 1600211661	SI Units
/ysokoteplotni aplikace 1_Ko	ontrola varianty 2 by M. Jonak	
Simulation-Horizontal econor	nizer countercurrent to crossflow	
Control Methods Data		
Shellside friction factor meth	od Commercial	
Tubeside friction factor meth	od Commercial	
Pure component condensati	on No	
Condensing correlation	HTRI Proration	
Mole fraction inerts	0	
Momentum exclusion	0 0	%
Pure component boiling	No	
Check film boiling	Yes	
Nucleate boiling method	Physical property/theoretical boiling range	
Component boiling method	Nucleate and convective	
High-fin heat transfer metho	d HTRI	
High-fin pressure drop method		
Single increment method	No headers No	
force phase separation in to	inde meaders	
ontrol Safety Data		
Hot fluid/shellside film coeffi	cient multiplier 1	
Hot fluid/shellside friction fac	tor multiplier 1	
Cold fluid/tubeside film coeff	icient multiplier 1	
Cold fluid/tubeside friction fa	ctor multiplier 1	
Cold fluid fraction of critical f	lux for film boiling 1	

Výsledky alternativy 3

TTTTT	Output \$	Summar	y			Pa	ge 1
HIVI	Released to	o the followi	ng organizat	ion:			
	VUT Brno						
	VUT Brno						
Xace E Ver. 5.00 13.5.201	10 16:02 SN: 16	600211661				SI Ur	nits
Vysokoteplotni aplikace 1_k	Controla varianty	3 by M. Jor	nak				
Simulation-Horizontal econo	omizer countercu	irrent to cros	ssflow				
See Data Check Messages	s Report for Wa	rning Mess	ages.				
See Runtime Message Re	port for Warning	g Message	S.				
Process C	onditions		Out	side	Tul	beside	
Fluid name		SPALINY	/		PVS		
Fluid condition				Sens. Gas		Sens. Gas	j l
Total flow rate	(kg/s)			2,517		3,175	
Weight fraction vapor, In/Ou	ut		1,000	1,000	1,000	1,000	
Temperature, In/Out	(Deg C)		1200,00	307,49	220,30	855,37	,
Skin temperature, Min/Max	(Deg C)		252,71	907,71	252,57	906,42	
Pressure. Inlet/Outlet	(kPa)		101,326	101,242	610,909	599,744	
Pressure drop Total/Allow	(kPa)	(kPa)	0.085	0,000	11 165	0,000	
Midnoint velocity	(m/s)		0,000	3 54		5.88	
	(m/s)			5,54	4 32	49.58	
Heat transfer safety factor	(11/5)			1	4,52	-3,50	
Fouling	(m2-K/M)			0.000000		0 00000	
rouing	(1112-13/777)		Exchange	er Performan	ce	0,000000	
Outside film coef	(W/m2-K)		42 72	Actual U	(W/m	(2-K) 26.603	
	(W/m2-K)		78.80	Require	dil (W/m	(2-K) 26.614	
	$(\sqrt{m^2-K})$		26 603	Area		(m^2) 545.916	
	(\\/\\\2-r\)		20,000	Overdee	ian	(112) 040,010	
Hot regime			Sens. Gas	Overdes		(%) -0,04	
			Sens. Gas	The	Tube Ge	Distr	
EMID	(Deg C)		190,2		be (
Duty	(MegaWatts)		2,763) (mm) 60,300	
	Unit Geo	metry		Tube ID		mm) 54,500	
Bays in parallel per unit		-	1	Length		(m) 3,260	
Bundles parallel per bay				Area rat	io(out/in)	() 1,10642	ľ
Extended area	(m2)		545,916	Layout		Staggered	
Bare area	(m2)		545,916	Trans pi	tch (mm) 88,000	1
Bundle width	(m)		1,891	Long pit	ch (mm) 80,000)
Nozzle		Inlet	Outlet	Number	of passes	() 12	2
Number	()	1	1	Number	of rows	() 46	ò
Diameter	(mm)	444,50	444,50	Tubecou	unt	() 1056	;
Velocity	(m/s)	5,45	12,75	Tubecou	unt Odd/Even	() 14	/ 14
R-V-SQ	(kg/m-s2)	111,57	260,88	Tube ma	aterial	Not in data bank	:
Pressure drop	(kPa)	0,061	0,091		Fin Geo	ometry	
	Fan Geo	metry		Type		None	
No/bay	()	-	0	Fins/len	gth fin/m	neter	
Fan ring type	× /		5	Fin root		mm	
Diameter	(m)		0 000	Height		mm	
Ratio Fan/hundle face area	a ()		0,000	Base thi	ckness	mm	
Driver power	. (=) (kW)		0.00	Over fin		mm	
Tip clearance	(mm)		0,000	Efficienc	ev.	(%)	
Efficiency	(%)		0,000	Area rat	io (fin/bare)	()	
Airside Velocities		Actual	Standard	Material	(
Face	(m/s)	1 75			Thermal Re	esistance: %	
Maximum	(m/s)	4.23		Air		61.30)
Flow	(100 m3/min)	6.471		Tube		38.48	3
Velocity pressure	(Pa)	0.00		Fouling		0.00)
Bundle pressure dron	(Pa)	84.58		Metal		0.23	3
	(1 a)	04,00		Bond		0,20	,
Bundle	100.00		Airside Pres	sure Drop: %	Louvers	0,00	0,00
Ground clearance	0.00	Fan quard		0.00	Hail screen		0.00
Fan ring	0,00	Fan area h	lockage	0,00	Steam coil		0,00

VUT Brno

Released to the following organization: *VUT Brno*

Xace E Ver. 5.00 13.5.2010 16:02 SN: 1600211661

Vysokoteplotni aplikace 1_Kontrola varianty 3 by M. Jonak :

Simulation-Horizontal economizer counte	ercurrent to crossflow				
	Process Data	Outsid	de	Tubesio	le
Fluid name	S	PALINY		PVS	
Fluid condition			Sens. Gas		Sens. Gas
Total flow rate	(kg/s)		2,517		3,175
Weight fraction vapor, In/Out	()	1,000	1,000	1,000	1,000
Temperature, In/Out	(Deg C)	1200,00	307,49	220,30	855,37
Skin temperature, Min/Max	(Deg C)	252,71	907,71	252,57	906,42
Wall temperature, Min/Max	(Deg C)	252,71	907,71	252,57	906,42
Pressure, In/Out	(kPa)	101,326	101,242	610,909	599,744
Pressure drop, Total/Allowed	(kPa)	0,085	0,000		
Tube pressure drop, Total/Allowed	(kPa)			11,165	0,000
Velocity - Midpoint	(m/s)	3,54		5,88	
- In/Out	(m/s)			4,32	49,58
Film coefficient, Bare/Extended	(W/m2-K)	42,72	42,72	78,80	
Mole fraction inert	()				
Heat transfer safety factor	()		1		1
Fouling resistance	(m2-K/W)		0,000000		0,00000
		Overall Perforn	nance Data		
Overall coef, Design/Clean/Actual	(W/m2-K)	26,614 /	26,603 /	26,603	
Heat duty, Calculated/Specified	(MegaWatts)	2,7634 /	0,0000		
Effective mean temperature difference	(Deg C)	190 19			

See Runtime Message Report for Warning Messages.

				_			
		Unit and	l Bundle Co	nst	ruction Information		
Bays in parallel/unit	()		1		Bundles in parallel/bay		1
Extended area/unit	(m2)		545,916		Bare area/unit	(m2)	545,916
Extended area/bundle	(m2)		545,916		Bare area/bundle	(m2)	545,916
Tubepasses/Tuberows	()	12 /	46		Number of tubes/bundle	()	1056
Tubecount, Odd rows/Even rows	()	14 /	14		Edge seals	()	Yes
Bundle width	(m)		1,891		Fan guard	()	No
Clearance	(mm)		9,525		Louvers	()	No
Header depth	(mm)		101,600		Steam coil	()	No
Header Box					Hail screen	()	No
- Plate thickness	(mm)		104,775		Tube support information		
- Tubesheet thickness	(mm)		117,475		- Number	()	1
Plenum type			Box		- Width	(mm)	25,400
Weight/Bundle	(kg)		40231		Orientation (from horiz.)	(deg)	0,00
Structure weight	(kg)		0		Tubeside volume	(L)	7994,3
Total weight, Dry / Wet	(kg)		40231	/	48219		
Ladder/walkway weight	(kg)		0		Cost Factor	()	235,874
			Tube Ir	nfor	mation		

See Next Page For Tube Information.

TTTT	Fir	al Results				Page 3
	Rele	eased to the following	ng organization:			
	VL	IT Brno				
	VL	IT Brno				
Xace E Ver. 5.00 13.5.2010	16:02 SN: 160	0211661				SI Units
Problem-						
Case-Vysokoteplotni aplikace	• 1_Kontrola vari	anty 3 by M. Jonak	:			
Simulation-Horizontal econon	nizer countercur	rent to crossflow				
Straight length	(m) (mm)	3,260				
Unhoated length	(mm)	260 351				
	()	Straight				
		Type 1	Type 2	Type 3	Type 4	Type 5
Transverse pitch	(mm)	62,000	48,000	88,000	88,000	88,000
Longitudinal pitch	(mm)	54,000	42,000	80,000	80,000	80,000
Outside diameter	(mm)	33,700	33,700	60,300	60,300	60,300
Inside diameter	(mm)	29,100	29,100	54,500	54,500	54,500
Tube type	()	Plain	Plain	Plain	Plain	Plain
Area ratio (out/in)	()	1,15808	1,15808	1,10642	1,10642	1,10642
Over fin diameter	(mm)					
Area ratio (fin/bare)	()					
Fins per unit length	(in/meter)					
Fin height	(mm)					
Fin thickness at base	(mm)					
Fin thickness at tip	(mm)					
Fin type	()					
Fin efficiency	(%)					
Split segment height	(mm)					
Split segment width	(mm)					
Rectangular fin height	(mm)					
Rectangular fin width	(mm)					
Wall thickness (finned)	(mm)					
Number of stud rings (stud/meter)					
Number of studs/ring	()					
Stud length Stud diameter	(mm)					
Tube material	No	ot in data bank	No	t in data bank	No	t in data bank
		No	t in data bank	Not	t in data bank	
Fin material						
Internal tube type		None	None	None	None	None

T TTTTTT	inal Results			Page 4
R	eleased to the following org	anization:		
	/UT Brno			
	/UT Brno			
Xaco E Vor. 5.00 13.5.2010 16:02 SN: 16002	1661			SI Units
Adde E Ver. 5.00 13.5.2010 10.02 SN. 10002	1001			or or into
Problem-				
Case-Vysokoteplotni aplikace 1_Kontrola varianty	/ 3 by M. Jonak :			
Simulation-Horizontal economizer countercurrent	to crossflow			
Inlet Airside Velocities			Actual	Standard
Face velocity	(m/s	;)	1.75	
Maximum velocity	(m/s	;)	4.23	
	(100 m3/min)	6.471	
Maximum mass velocity	(kg/s-m2	·/	0,988	
	(12)	·)	0,000	
Air numidity	(100 0/)	0.000	
Volumetric flow per fan at fan inlet	(100 m3/mir)	0,000	
Velocity at fan inlet	(m/s	5)	0,00	
	Fan Description and	d Fan Power		
Number of fans per hav		()		0
Diamotor		(m)		0 000
		(mm)		0,000
nip diedidlide Datie, fan area te kaufaan area		(1111)		0,000
rallo, fan area to bay face area		()		
ran ring type		()		-
Percent open area - in fan guard		(%)		0
- in hail screen		(%)		0
Ratio, ground clearance to fan diameter		()		
Percent blockage, other obstruction		(%)		0
Bundle pressure drop/ Velocity pressure		(Pa)	84,58 /	0,00
Fan and drive efficiency		(%)		0
Motor power per fan-design air temperature		(kW)		0,00
Motor power per fan-minimum air temperature		(kW)		0.00
Ambient temperature, maximum / minimum		(Deg C)		-,
	Ture Dharas Day		1	
	Two-Phase Par	ameters		
Method Inlet	Center	Outlet	Mix F	
_				
Heat Transfer and Pressure Drop Pa	arameters		Tubeside	Outside
Miller aller hill fan skrie				0.0155
Wildpoint J-ractor		()	0.0522	1,0000
Heat transfer	Wall Correction	()	0,9525	1,0000
	Row Correction	()	0.0070	1,0508
Midpoint f-factor		()	0,0072	0,1372
Pressure drop	Wall Correction	()	0,9531	1,0000
	Row Correction	()		0,0000
Reynolds number	Inlet	()	37137	633
	Midpoint	()	29232	2380
	Outlet	()	52419	3086
Fouling layer thickness		(mm)	0,000	-0,000
Input minimum velocity		(m/s)		
Input maximum velocity		(m/s)		
Input minimum wall temperature		(Deg C)		
Input maximum wall temperature		(Deg C)		
	Pasistanas (Para	(=-3/		Over
Therman	Resistance (Ferce	<i>int)</i>		Over
Air Tube	Fouling	Metal	Bond	Design
				-0,04
	Airside Pres	ssure Drop	(Percent)	
Across bundle	100,00	Other obstruction	on	0,00
Fon ring	0.00	Oto and and!		0.00
ran ring Fan award	0,00	Steam coll		0,00
⊢an guard	0,00	Louvers		0,00
Ground clearance	0,00			
Tube Nozzle (Perpendicula	r)	Inlet	Outlet	
Number of nozzles	()	1	1	
Diamotor	(mm)	111 50	111 50	
	(11111)	,50 E 4 E	40.75	
velocity	(m/s)	5,45	12,75	
Nozzle R-V-SQ	(kg/m-s2)	111,57	260,88	
Pressure drop	(kPa)	0,061	0,091	

Released to the following organization: VUT Brno VUT Brno

SI Units

Page 5

Xace E Ver. 5.00 13.5.2010 16:02 SN: 1600211661 Problem-

Case-Vysokoteplotni aplikace 1_Kontrola varianty 3 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

Mean Metal Temperatures

Mean tube metal temperature in each tubepass, (Deg C)

Tuberow	Tubepass	Inside	Outside	Radial	
	1 1	258,8	259,0	258,9	
	2 1	262,2	262,4	262,3	
	3 1	265,9	266,1	266,0	
	4 1	270,1	270,3	270,2	
	5 2	285,8	285,9	285,9	
	6 2	289,7	289,9	289,8	
	7 2	294,0	294,2	294,1	
	8 2	298,8	299,0	298,9	
4	9 3	316,7	316,8	316,8	
1	0 3	321,3	321,4	321,4	
1	1 3 2 2	320,3	320,5	320,4	
1	2 3	352.0	352,1	352,0	
1	5 4 4 4	357.3	357.5	357.4	
1	5 4	363.2	363.4	363.3	
1	6 4	369.7	369.9	369.8	
1	7 5	392.6	392.9	392.8	
1	8 5	398,9	399,1	399,0	
1	9 5	405,8	406,0	405,9	
2	0 5	413,4	413,6	413,5	
2	1 6	439,6	439,9	439,7	
2	2 6	446,7	447,0	446,9	
2	36	454,6	454,9	454,7	
2	4 6	463,3	463,6	463,5	
2	5 7	493,6	493,9	493,7	
2	6 7	501,9	502,3	502,1	
2	7 7	511,2	511,6	511,4	
2	8 7	521,4	521,9	521,7	
2	9 8	556,1	556,5	556,3	
3	0 8	565,9	566,4	566,2	
3	1 8	576,8	577,3	577,1	
3	2 8	588,9	589,5	589,2	
ى 2	3 9	620,4	620,9	640.2	
3	5 9	652.8	653 5	653.2	
3	6 9	667.2	667.9	667.5	
3	7 10	713.0	713 7	713.4	
3	8 10	726.7	727.4	727.0	
3	9 10	741.9	742,6	742,3	
4	0 10	758,8	759,6	759,2	
4	1 11	793,0	793,8	793,4	
4	2 11	811,8	812,7	812,3	
4	3 11	833,4	834,5	834,0	
4	4 11	858,3	859,5	858,9	
4	5 12	871,1	872,3	871,7	
4	6 12	882,0	883,4	882,7	

Т5

тз

тз

туре

Plain Plain Plain Plain Plain

Final Results

Released to the following organization: VUT Brno VUT Brno

13.5.2010 16:02 SN: 1600211661 Xace E Ver. 5.00 Problem-

Case-Vysokoteplotni aplikace 1_Kontrola varianty 3 by M. Jonak : Simulation-Horizontal economizer countercurrent to crossflow

Row	Number of Tubes	Tube Type	Wall Clearance (mm)	Row	Number of Tubes	Tube Type	Wall Clearance (mm)
1	21	Sekce 5	13.500	24	21	Sekce 5	57.500
2	21	Sekce 5	57,500	25	21	Sekce 4	13,500
3	21	Sekce 5	13,500	26	21	Sekce 4	57,500
4	21	Sekce 5	57,500	27	21	Sekce 4	13,500
5	21	Sekce 5	13,500	28	21	Sekce 4	57,500
6	21	Sekce 5	57,500	29	21	Sekce 4	13,500
7	21	Sekce 5	13,500	30	21	Sekce 4	57,500
8	21	Sekce 5	57,500	31	21	Sekce 4	13,500
9	21	Sekce 5	13,500	32	21	Sekce 4	57,500
10	21	Sekce 5	57,500	33	21	Sekce 3	13,500
11	21	Sekce 5	13,500	34	21	Sekce 3	57,500
12	21	Sekce 5	57,500	35	21	Sekce 3	13,500
13	21	Sekce 5	13,500	36	21	Sekce 3	57,500
14	21	Sekce 5	57,500	37	21	Sekce 3	13,500
15	21	Sekce 5	13,500	38	21	Sekce 3	57,500
16	21	Sekce 5	57,500	39	21	Sekce 3	13,500
17	21	Sekce 5	13,500	40	21	Sekce 3	57,500
18	21	Sekce 5	57,500	41	39	Sekce 2	7.150
19	21	Sekce 5	13,500	42	39	Sekce 2	31,150
20	21	Sekce 5	57,500	43	39	Sekce 2	7,150
21	21	Sekce 5	13,500	44	39	Sekce 2	31,150
22	21	Sekce 5	57,500	45	30	Sekce 1	14,150
22	21	Column F	13,500	1 40	20	Calves 4	45,450

TTTTT	Input Reprint		Page 7
	Released to the following organization:		-
	VUT Brno		
	VUT Brno		
Xace E Ver. 5.00 13.5.2010 16:0	02 SN: 1600211661		SI Units
Vysokoteplotni aplikace 1_Kontrola	a varianty 3 by M. Jonak		
Simulation-Horizontal economizer	countercurrent to crossflow		
Unit Data			
Run mode		Simulation	
Unit type		Economizer	
Hot fluid location		Shellside	
Tube bundle angle (relative to hor	izontal)	0,00	deg
Number of bays in parallel per uni	t	1	
Number of bundles in parallel per	bay	1	
Number of services		1	
Number of tubepasses per bundle	9	12	
Tubeside nozzle distribution		Radial	
Tubeside nozzle distribution		Perpendicular	
Tubeside nozzle impingement dev	vice	None	
Inlet inside diameter		444,501	mm
Number of inlet nozzles per bundl	e	1	
Outlet inside diameter		444,501	mm
Number of outlet nozzles per bund		1	
Fans Data			
Number of fore ner have		_	
Number of fans per bay		— 0 Forced direct	
Fail arrangement	ionau	Forced draft	9/
Total complined fan and drive effic	aency	65 Linenseifist	70
		Unspecified	
ran nng type (iniet)		Straight	
Optional Data			
Stoom coil present		Nia	
		NO	
Header box donth		101 600	mm
Plenum chamber type		101,000 Roy	
Number of intermediate tube supr	ports	DUX Program set	
maniper of intermediate tube supp		r rogram set	
Bundle Data			
Number of tubepasses		12	
Number of tuberows		46	
Number of tubes in odd numbered	d row	14	
Number of tubes in even numbered	ed row	14	
Tube layout	· · · ·	Staggered	
Tube form		Straight	
Bundle width		1.891	m
Clearance, wall to first tube		9,525	mm
Bypass seal half tubes		Yes	
Default bundle type		User defined	
Tube length		3.260	m
		2,200	

Input Reprint	Page 10
Released to the following organiz	ation:
VUT Brno	
VUT Brno	
Xace E Ver. 5.00 13.5.2010 16:02 SN: 1600211661	SI Units
vysokotepiotni aplikace 1_Kontrola varianty 3 by M. Jonak	
Simulation-Horizontal economizer countercurrent to crossflow	
Bundle Layout Data (cont.)	
Tube Wall Cir.	
Tube Type Row Count mm	
Sekce 5 1-1 21 13,500	
Sekce 5 3-2 21 57,500	
Server 5 4-3 21 13,500 Server 5 5.4 24 57,500	
Server 5 5-4 21 57,500 Server 5 6.5 24 42,500	
Serve 5 0-5 21 13,500	
Sekce 5 /-6 21 57,500	
Sekce 5 8-7 21 13,500	
Sekce 5 9-8 21 57,500	
Serce 5 10-9 21 13,500	
Sekce 5 11-10 21 57,500	
Serve 5 12-11 21 13,500	
Sekce 5 13-12 21 57,500	
Sekce 5 14-13 21 13,500	
Sekce 5 15-14 21 57,500	
Sekce 5 10-15 21 13,500	
Sekce 5 17-10 21 57,500 Sekce 5 19 17 21 12 500	
Sekce 5 10-17 21 13,500 Sekce 5 10.19 21 57,500	
Sekce 5 19-16 21 57,500 Sekce 5 20.10 21 12.500	
Sekce 5 21 20 21 13,000	
Sekce 5 22-21 21 13 500	
Sekce 5 23-22 21 57 500	
Sekce 5 24-23 21 13 500	
Sekce 5 25-24 21 57 500	
Sekce 4 26-25 21 13 500	
Sekce 4 27-26 21 57 500	
Sekce 4 28-27 21 13 500	
Sekce 4 29-28 21 57 500	
Sekce 4 30-29 21 13 500	
Sekce 4 31-30 21 57.500	
Sekce 4 32-31 21 13.500	
Sekce 4 33-32 21 57.500	
Sekce 3 34-33 21 13.500	
Sekce 3 35-34 21 57,500	
Sekce 3 36-35 21 13,500	
Sekce 3 37-36 21 57,500	
Sekce 3 38-37 21 13,500	
Sekce 3 39-38 21 57,500	
Sekce 3 40-39 21 13,500	
Sekce 3 41-40 21 57,500	
Sekce 2 42-41 39 7,150	
Sekce 2 43-42 39 31,150	
Sekce 2 44-43 39 7.150	
Sekce 2 45-44 39 31.150	
Sekce 1 46-45 30 14.150	
Sekce 1 47-46 30 45.150	

TTTT	Input Reprint	Page	11
	Released to the following organiz	ation:	
	VUT Brno		
	VUT Brno		
Xace E Ver. 5.00 13.5.2010 16:0	2 SN: 1600211661	SI Units	;
Vysokoteplotni aplikace 1_Kontrola	varianty 3 by M. Jonak		
Simulation-Horizontal economizer of	countercurrent to crossflow		
Process Conditions Data	Hot Fluid	Cold Fluid	
Phase condition	Sensible gas	Sensible gas	
Flow rate	2.5170	3,1750 kg/s	
Inlet vapor fraction	_,00	1	
Outlet vapor fraction	1	1	
Inlet temperature	1200,00	220,30 C	
Inlet Pressure	101,325	610,900 kPa	
Duty multiplier		1	
Hot Fluid Property Data			
Fluid name		SPALINY	
Physical property method	Component by c	omponent properties	
Heat release method		Program calculated	
Flash type		Integral	
Quantity units		Moles	
Temperature interpolation option		Program	
Number of components		5	
			_
Hot Fluid Component Data			
Component number	1	2	3
Component name	Argon Carbon	Dioxide Nitroger	ו ו
Comp. bank name	Argon Carbon	Dioxide Nitroger	ו ו
Component bank	HTRI/DIPPR HTR	I/DIPPR HTRI/DIPPF	2
Component code	208	2131	
Component phase	Mixed	Mixed Mixed	
Component quantity	-0,86	5 73,5	
Component number		5	
Component number		S 1007)	
	Oxygen Water (IAPW	S 1997)	
Component bank			
Component code	201	1	
Component phase	Mixed	Mixed	
Component quantity	9,7	10,93	
Cold Fluid Property Data			
Fluid name		PVS	
Physical property method	Component by c	omponent properties	
Heat release method		Program calculated	
Flash type		Integral	
Quantity units		Weight	
Temperature interpolation option		Program	
Number of components		2	

HTDL	Input Reprint Released to the following organization:	Page 12
111VI	VUT Brno	
Xace E Ver. 5.00 13.5.2010 16:02	SN: 1600211661	SI Units
Vysokoteplotni aplikace 1_Kontrola v Simulation-Horizontal economizer co	arianty 3 by M. Jonak untercurrent to crossflow	
Cold Fluid Component Data		
Component number	1 2	
Component name	AirWater (IAPWS 1997)	
Comp. bank name	AirWater (IAPWS 1997)	
Component bank	HTRI/DIPPR HTRI/DIPPR	
Component phase	Vapor Mixed	
Component quantity	74,64 25,36	
Control Nome Date		
	sokotenlotni anlikace 1. Kontrola varianty 3 by M	l .lonak
Vyc		
Control Methods Data		
Shellside friction factor method	Com	mercial
Tubeside friction factor method	Com	mercial
Condensing correlation	HTRIP	roration
Mole fraction inerts		0
Momentum exclusion		0 %
Pure component boiling		No
Check film boiling	Physical property/theoretical bailing	Yes
Component boiling method	Nucleate and con	vective
High-fin heat transfer method		HTRI
High-fin pressure drop method		HTRI
Single increment method Force phase separation in tube head	lers	No
Control Safety Data		
Hot fluid/shellside film coefficient mu	ltiplier	1
Hot fluid/shellside friction factor mult		
Cold fluid/tubeside friction factor mul	tiplier	
Cold fluid fraction of critical flux for fi	Im boiling	1
		L

Příloha P4

Detailní výsledky návrhového výpočtu dvou variant výměníku CS-AMH určených pro vysokoteplotní aplikaci 2 Výsledky varianty 1

HT	RI	Dutput Sumr Released to the fo <i>VUT Brno</i>	nary Illowing organi:	zation:	Page 1
XistS Vor. 5.00	25.5.2010 12:4	<u>001 0110</u> 6 SN: 160021166	31		SI Units
XISIS VEI. 5.00	25.5.2010 12.4	0 511. 100021100	51		or onits
TVT se segmer Design - Horizo	ntovými pøepážkai intal Countercurrei	mi_spaliny vnì_1x	1_by M. Jonak S Shell With S	: ingle-Segmental I	Baffles
See Data Chec	k Messages Rep	ort for Warning	Vessages.	ngie eegmentari	Damoo
See Runtime M	lessage Report f	or Warning Mess	ages		
Brocoss	Conditions	Hot Sho	llsido	Cold T	ubosido
FIUCESS	Jonanions		liside		ubeside
Fluid name		Spaliny		PVS	
Flow rate	(kg/s)		1,2400		1,2910
Inlet/Outlet Y	(Wt. frac vap.)	1,000	1,000	1,000	1,000
Inlet/Outlet I	(Deg C)	600,00	140,25	98,90	529,80
Inlet P/Avg	(kPa)	107,002	1.000	430,606	429,619
dP/Allow.	(kPa)	3,934	4,000	1,975	215,303
Fouling	(m2-K/W)		0,000000		0,000000
		Exchanger Pe	erformance		
Shell h	(W/m2-K)	92,15	Actual U	(W/m2-K)	10,26
Tube h	(W/m2-K)	14,44	Required U	(W/m2-K)	9,89
Hot regime	()	Sens. Gas	Duty	(MegaWatts)	0,6569
Cold regime	()	Sens. Gas	Area	(m2)	1360,13
EMTD	(Deg C)	48,8	Overdesign	(%)	3,73
	Shell Geometry			Baffle Geomet	try
TEMA type	()	AES	Baffle type	()	Single-Seq.
Shell ID	(mm)	800,000	Baffle cut	(Pct Dia.)	21,28
Series	()	2	Baffle orient	ation ()	Perpend.
Parallel	()	3	Central space	ing (mm)	388,083
Orientation	(deg)	0,00	Crosspasse	s ()	9
	Tube Geometry			Nozzles	
Tubethere		Disia	Oh all islat		307 087
Tube type	()	Plain 15.000	Shell inlet	(mm)	258 877
Tube OD	(mm)	13,000		(mm)	230,077
Length	(m)	4,000		(mm)	21,209
Pitch ratio	()	1,2500		t (mm)	21,209
Layout	(deg)	40		(mm)	102,201
	()	1234		(mm)	102,201
	()	1			
I hermal Re	esistance; %	Velocities	s; m/s	Flow F	ractions
Shell	9,11	Shellside	5,06	A	0.255
Tube	90,85	Tubeside	1,30	В	0.511
Fouling	0,00	Crossflow	7,69	С	0.083
Metal	0,039	Window	15,00	E	0.151
				F	0.000

Final Results

Released to the following organization: *VUT Brno*

VUT Brno

XistS Ver. 5.00 25.5.2010 12:46 SN: 1600211661

TVT se segmentovými pøepážkami_spaliny vnì_1x1_by M. Jonak

Design - Horizontal Countercurrent Flow TEMA AES Shell With Single-Segmental Baffles

Process	Data		Hot	Shellside	Cold	Tubeside
Fluid name		Sp	aliny		PVS	
Fluid condition		~ F		Sens. Gas		Sens. Gas
Total flow rate	(kg/s)		1,2400		1,2910
Weight fraction vapor. In	n/Out	()	1.000	1,000	1.000	1.000
Temperature, In/Out	(D	a C)	600.00	140.25	98,90	529.80
Temperature, Average/S	Skin (D	eq C)	370.1	369.31	314.4	369.28
Wall temperature. Min/N	/lax (D	ea C)	,-			,
Pressure. In/Average	((kPa)	107.002		430,606	429.619
Pressure drop Total/All	owed	(kPa)	3 934	4 000	1 975	120,010
Velocity Mid/Max allow	onou	(m/s)	5.06	1,000	1 30	
Mole fraction inert		()	0,00	1	1,00	1
Average film coef.	(W/n	12-K)		92.15		14.44
Heat transfer safety fact	or	()		1.000		1.000
Fouling resistance	.01 (m2-	() K/W)		0.00000		0.000000
		vorall De	orformance	Data		0,000000
	U					10.00
Uverall coet., Reqd/Clea	an/Actual		(vv/m2-K)	9,89 /	10,26 /	10,26
Heat duty, Calculated/S	pecified	1)	viegavvatts)	0,6569 /		
Effective overall tempera	ature difference	е	(Deg C)	48,8	0.0470 +	
EMID = (MID) * (DELT	A) ^ (F/G/H)		(Deg C)	53,24 *	0,9170 *	
			1			
See Runtime Message	s Report for				↓ Ţ	↑ I
warnings.			┣━━╓╢━━━		╷──╷└└╢	
						800,000 mm
Exchanger Flui	d Volumes					
Approximate shellside	(L)		▝▝▔▝ं▁	4,000 m		
Approximate tubeside	(L)		· · · ·		4	
	Shel	l Constr	uction Info	rmation		
			Ch		(mm)	800.000
Shalle Series	2 Paral		30	tal area	(m2)	1205 58
Dassas Sholl	2 Fala 1 Tubo	1			(m2/sholl)	226 680
Shall orientation angle (Li	. area	(mz/sneir)	220,009
Impingement present	ueg) 0,00					
Pairs soal strips	6		Pa	selano soal rod	s (mm) No	h l
Shall expansion joint	No		Га	or bood suppor	s (mm) No.	0
Shell expansion joint	Dru/Pundlo		7502.2 /			(aball)
vveignt estimation vvet/	Jy/Bunale		1093,3 /	3408,1 /	∠/33,3 (Kg	/sneit)
		Battle	informatio	n m		
lype Pe	rpend. Single	Seg.	Ba	ffle cut (% dia)	21,28	
Crosspasses/shellpass	,	9	No.	(Pct Area) (mm) to C.L	
Central spacing	(mm) 388	3,083	1	17,28	229,780	
Inlet spacing	(mm) 648	3,600	2	0,00	0,000	
Outlet spacing	(mm) 533	3,130				
Baffle thickness	(mm)	7,938				
			1			
		Tube	Informatio	n		
Tube type		Plain	Tu	becount per sh	ell	1234
Overall length	(m) 4	1,000	Pc	t tubes remove	d (none)	
Effective length	(m) :	3,898	Ou	itside diameter	(mm)	15,000
Total tubesheet	(mm) 10 ⁻	1,600	Wa	all thickness	(mm)	1,500
Area ratio	(out/in) 1,	2500	Pit	ch (mm) 1	8,7500 Ratio	1,2500
Tube metal	Carbon	steel	Tu	be pattern (deg)	45

Page 2

SI Units

Final Results

Released to the following organization: *VUT Brno* Page 3

SI Units

VUT Brno

KistS Ver. 5.00 25.5.2010 12:46 SN: 1600211661

TVT se segmentovými pøepážkami_spaliny vnì_1x1_by M. Jonak

Design - Horizontal Countercurrent Flow TEMA AES Shell With Single-Segmental Baffles

Shellside Performance

F=0,0000

Nom vel, X-flow/window 7,69 / 15,00

Flow fractions for heat transfer 0,657 A=0,2548 B=0,5112 C=0,0831 E=0,1509

Shellside Heat Transfer Corrections Total Beta Gamma End Fin 0,971 0,907 1,071 0,948 1,000 Pressure Drops (Percent of Total) Cross Window Ends Nozzle Shell Tube 40.52 49.05 28.07 9.22 Inlet 7.56 MOMENTUM 0.00 Outlet 6.11 55.95 **Two-Phase Parameters** Method Inlet Center Outlet Mix F H. T. Parameters Shell Tube 1,000 0,000 Overall wall correction Midpoint Prandtl no. 0,00 0,00 Midpoint Reynolds no. Reynolds no. Bundle inlet Bundle outlet Reynolds no. Fouling layer (mm) **Thermal Resistance** Tube Fouling **Over Des** Shell Metal 9,11 90,85 0,00 0,039 3,73 Total fouling resistance 0,00000 Differential resistance 0,00365 Shell Nozzles Liquid Inlet at channel end-No Inlet Outlet Outlet Number at each position 1 1 307.087 Diameter 258,877 (mm)13,15 Velocity (m/s)9,09 Pressure drop (kPa) 0,297 0,240 Height under nozzle 21,269 (mm) 21,269 Nozzle R-V-SQ (kg/m-s2) 73,39 71,38 Shell ent. (kg/m-s2) 308,69 247,91 Inlet Outlet Liquid **Tube Nozzle** RADIAL Outlet Diameter 102,261 102,261 (mm) Velocity 30,12 (m/s) 13,88 Pressure drop (kPa) 0,800 1,105 Nozzle R-V-SQ (kg/m-s2) 727,40 1578,31 Inlet Outlet **Annular Distributor** Length (mm)Height (mm) Slot area (mm2) Diametral Clearances (mm)

Dia	imetral Clearances (mm)	
Baffle-to-shell	Bundle-to-shell	Tube-to-baffle
4,7625	42,0629	0,7938

TTTTT	Input Reprint	Page 6
	Released to the following organization:	
	VUT Brno	
	VUT Brno	
XistS Ver. 5.00 25.5.2010 12:4	6 SN: 1600211661	SI Units
 TVT se segmentovými pøepážka	mi spaliny vnì 1x1 by M. Jonak	
Design - Horizontal Countercurre	nt Flow TEMA AES Shell With Single-Segmental Baffles	
Shell Data		
Service type	Generic Shell and Tube	
TEMA type	AES	
Run mode	Design	
Hot fluid location	Shellside	
Number of shells in series	1	
Number of shells in parallel	1	
Shell inside diameter	800,000 m	m
Flow in 1st tubepass	Countercurrent	
I rain flow direction	Countercurrent	
Reboiler Data		
Reboiler type	No piping specified	
Inlet pressure location	Inlet nozzle	
Tube Data		
Tube type	Plain	
Tube outside diameter	15,000 m	m
Tube wall thickness	1,500 m	m
Tube pitch	18,750 m	m
Tube pitch ratio	1,250	
Tubepasses per shell	1	
Tube pattern		egrees
Tube length	A 000 m	
Tube material	Carbon steel	
Tubepass Arrangement Data		
Force symmetric layout	No	
Force cleaning lanes	No	
lubes to remove for the rods	Calculated	
Baffle Data		
Baffle type	Single segmental	
Baffle orientation	Program sets	
Variable baffle spacing	No	
Window cut from baffles	No	
Clearance Data		
Number of seal strip pairs	Calculated	
Baffle clearance type	TEMA	
Block A stream	No	
Block E stream	No	
Block F stream	No	
Number of passlane seal rods	Calculated	

TTTT	nput Reprint	Page 7
R	eleased to the following organization:	
TTTT	VUT Brno	
	VUI Brno	<u>SI IIrita</u>
NSIS VER. 5.00 25.5.2010 12:46 S	N. 10UUZ11001	SIUNITS
TVT se segmentovými pøepážkami s	paliny vnì 1x1 by M. Jonak	
Design - Horizontal Countercurrent FI	ow TEMA AES Shell With Single-Segmental Baffles	
Nozzle Data		
Number of shellside inlet nozzles	1	
Number of shellside outlet nozzles	1	
Number of tubeside inlet nozzles	1	
Number of tubeside outlet nozzles	1	
Radial position on shell inlet nozzle	Program decides	
Longitudinal position on shell of inlet	nozzle At rear head	
Radial position on shell outlet nozzle	Program decides	
Tubeside entry type	Radial Eropt bood	
Tubeside exit type	Floht head Same as inlet	
Front head location	Left	
Impingement Data		
Impingement device present	If required by TEMA	
Impingement type	Circular plate	
Optional Geometry Data		
Small exchanger	No	
Tubesheet type	Single	
Shell expansion joint	No	
Floating head support type	None	
Insulated longitudinal baffle	No	
Process Conditions Data	Hot Eluid Cold Eluid	
Flow rate	1 2400 1 2010 k	
Inlet vapor fraction	1,2400 1,2910 K	y/s
Outlet vapor fraction	1 1	
Inlet temperature	600,00 98,90 C	
Outlet temperature	529,80 C	;
Inlet Pressure	107,000 430,600 k	Pa
Allowable pressure drop	4,000 k	Pa
Duty multiplier		
Hot Eluid Property Data		
Physical property method	Spaliny	
Heat release method	Program calculated	
Flash type	Integral	
Quantity units	Weight	
Temperature interpolation option	Program	
Number of components	6	

TTTTT	Input Reprint		Page 8
	Released to the following	g organization:	
	VUT Brno		
	VUT Brno		
XistS Ver. 5.00 25.5.2010 12:4	46 SN: 1600211661		SI Units
TVT se segmentovými naenážka	ami spaliny ynì 1x1 by M I	onak	
Design - Horizontal Countercurre	ent Flow TEMA AES Shell W	ith Single-Segmental B	affles
Hot Fluid Component Data			
	1	2	3
		Nitrogen	Water (IAPW/S 1997)
Comp bank name	Carbon Dioxide	Nitrogen	Water (IAPWS 1997)
Component bank	HTRI/DIPPR	HTRI/DIPPR	HTRI/DIPPR
Component code	2	131	1
Component phase	Mixed	Mixed	Mixed
Component quantity	14,98	68,18	7,789
	.1	- 1	
		5	6
	Sultur Dioxide	Argon	Oxygen
Component bank	Suirur Dioxide	Argon םפפוס/ופדע	Uxygen
Component park			
	Mixed	200 Mixed	Mixed
Component quantity	0 572	1 144	7 335
	0,0721	1,144	7,000
Cold Fluid Property Data			
Fluid name			PVS
Physical property method	Cor	nponent by component	properties
Heat release method		Program	calculated
Flash type			Integral
Quantity units			Weight
Temperature interpolation option			Program
Number of components			2
Cold Fluid Component Data			
Component number	1	2	
Component name	Water (IAPWS 1997)	Air	
Comp. bank name	Vvater (IAPVVS 1997)	Air חססוס/וסדוו	_
Component bank			
Component phase	Mixed	Vapor	
Component quantity	11 81	88 19	
		00,10	
Design Geometry Data		Minimum Maximum	Step Size
Vary shell diameter		750,000 850,000	50,000 mm
Vary tube length		3,000 5,000	1,000 m
Design Ontions Data			
End haffle spacing equal to cont	tral	Droor	am decides
Minimize number of baffles	uai	Fiogra	No
Crosspass design		Prog	ram control
Tubepass design sequence		i logi	Even 2.4.6
			,.,•
Control Name Data			
Case name TV1	se segmentovými pøepážka	ami_spaliny vnì_1x1_b	y M. Jonak

TTTTT	Input Reprint	Page 9
H H H H H H H H H H	Released to the following organization:	
C	VUT Brno	
XistS Ver. 5.00 25.5.2010 12:4	5 SN: 1600211661	SI Units
TVT se segmentovými naenážkar	ni spaliny vnì 1x1 hy M. lonak	
Design - Horizontal Countercurrer	t Elow TEMA AES Shell With Single-Segmental Baffles	
Control Methods Data		
Shallside friction factor method	Commorcial	
Tubeside friction factor method	Commercial	
Pure longitudinal flow	No	
Pure component condensation	No	
Condensing correlation	HTRI Proration	
Mole fraction inerts	0	
Momentum exclusion	0	%
Pure component boiling	No	
Check film boiling	Yes	
Nucleate boiling method	Physical property/theoretical boiling range	
Component boiling method	Nucleate and convective	
Control Safety Data		
Hot fluid/shellside film coefficient	multiplier 1	
Hot fluid/shellside friction factor n	nultiplier 1	
Cold fluid/tubeside film coefficien	t multiplier 1	
Cold fluid/tubeside friction factor	multiplier 1	
Cold fluid fraction of critical flux for	or film boiling 1	
Control User-Defined Methods I	Data	
Add non-nucleate boiling	Yes	
Control Vibration Data		
Damping factor method	HTRI Method	
Include inlet vibration support	No	
Include outlet vibration support	No	

Výsledky varianty 2

ΗЛ	RI	Dutput Sumn Released to the fo VUT Brno	nary Ilowing organiz	zation:	Page 1
XistS Ver. 5.00	20.5.2010 15:59	9 SN: 160021166	51		SI Units
TVT se segmer	ntovými pøepážkar	mi_spaliny v tr_1x	1_by M. Jonak	ζ.	
Design - Horizo	ontal Countercurrer	nt Flow TEMA AES	S Shell With S	ingle-Segmental Ba	ffles
No Data Check	« Messages.				
See Runtime N	lessage Report fo	or Warning Mess	ages.		
Process (Conditions	Cold She	llside	Hot Tube	eside
Fluid name		PVS		Spaliny	
Flow rate	(kg/s)		1,2910		1,2400
Inlet/Outlet Y	(Wt. frac vap.)	1,000	1,000	1,000	1,000
Inlet/Outlet T	(Deg C)	98,90	529,80	600,00	140,43
Inlet P/Avg	(kPa)	430,606		107,002	105,038
dP/Allow.	(kPa)	13,246	14,100	3,926	4,100
Fouling	(m2-K/W)		0,000000		0,000000
		Exchanger Pe	erformance		
Shell h	(W/m2-K)	216.07	Actual U	(W/m2-K)	35,62
Tube h	(W/m2-K)	53,42	Required U	(W/m2-K)	33,81
Hot regime	()	Sens. Gas	Duty	(MegaWatts)	0,6566
Cold regime	()	Sens. Gas	Area	(m2)	358,717
EMTD	(Deg C)	52,1	Overdesign	(%)	5,34
	Shell Geometry			Baffle Geometry	
	()	AES	Baffle type	()	Single-Seg
Shell ID	(mm)	700.000	Baffle cut	(Pct Dia)	21 37
Series	(((((((((((((((((((((((((((((((((((((((1	Baffle orient:	ation ()	Perpend
Parallel	()	1	Central space	ring (mm)	343.110
Orientation	()	0.00	Crosspasse	s ()	23
Chemation	Tube Geometry	5,50	0100000000000	Nozzles	
	rube Geometry			11022163	454.054
Tube type	()	Plain	Shell inlet	(mm)	154,051
Tube OD	(mm)	15,000	Shell outlet	(mm)	205,004
Length	(m)	8,500	Inlet height	(mm)	24,302
Pitch ratio	()	1,2500	Outlet heigh	t (mm)	24,302
Layout	(deg)	45	Tube inlet	(mm)	387,351
Tubecount	()	935	Tube outlet	(mm)	307,087
Tube Pass	()	1			
Thermal Re	esistance; %	Velocitie	s; m/s	Flow Fra	ctions
Shell	13,63	Shellside	9,78	A	0.328
Tube	86,24	Tubeside	20,94	В	0.458
Fouling	0,00	Crossflow	7,38	С	0.081
Metal	0,138	Window	14,37	E	0.134
				l F	0.000

Final Results

Released to the following organization: *VUT Brno*

VUT Brno

XistS Ver. 5.00 20.5.2010 15:59 SN: 1600211661

TVT se segmentovými pøepážkami_spaliny v tr_1x1_by M. Jonak

Design - Horizontal Countercurrent Flow TEMA AES Shell With Single-Segmental Baffles

	Dutu	Co	la Sheliside	Hot	lubeside
Fluid name		PVS		Spaliny	
Fluid condition			Sens. Gas		Sens. Gas
Total flow rate	(kg/	s)	1,2910		1,2400
Weight fraction vapor, Ir	n/Out (-	-) 1,000	1,000	1,000	1,000
Temperature, In/Out	(Deg (C) 98,90	529,80	600,00	140,43
Temperature, Average/S	Skin (Deg (C) 314,4	326,62	370,2	326,72
Wall temperature, Min/M	/lax (Deg (C)			
Pressure, In/Average	(kPa	a) 430,606		107,002	105,038
Pressure drop, Total/Alle	owed (kPa	a) 13,246	14,100	3,926	4,100
Velocity, Mid/Max allow	(m/	s) 9,78		20,94	
Mole fraction inert	` (-	-)	I		1
Average film coef.	(W/m2-ł	Ś	216,07		53,42
Heat transfer safety fact	or (-	-)	1,000		1,000
Fouling resistance	(m2-K/V	ń	0,000000		0,000000
0	Over	, all Performanc	o Data		
	Over				05.00
Overall coet., Reqd/Clea	an/Actual	(W/m2-ł	K) 33,81 /	35,62 /	35,62
Heat duty, Calculated/S	pecified	(MegaWatt	s) 0,6566 /		
Effective overall tempera	ature difference	(Deg C	52,1		
EMTD = (MTD) * (DELT.	A) * (F/G/H)	(Deg C	C) 54,11 *	0,9619 *	
O. D. Marson					Ţ
See Runtime Message	s Report for				700,000 mm
warnings.		│ ╨─₩ _₽ └╵	8,500 n	_ ' ' ' ' n	
Evolor vor Elui	d Value aa	⊲ ••••	.,		
Exchanger Fiul	a volumes				
Approximate shellside					
I Annrovimate ti inesine					
	(-)				
	Shell C	onstruction Inf	formation		
TEMA shell type	Shell Co AES	onstruction Inf	formation Shell ID	(mm)	700,000
TEMA shell type Shells Series	Shell Co AES 1 Parallel	onstruction Inf S 1 T	formation Shell ID Total area	(mm) (m2)	700,000 374,507
TEMA shell type Shells Series Passes Shell	AES 1 Parallel 1 Tube	onstruction Inf S 1 T 1 E	formation Shell ID Total area ff, area	(mm) (m2) (m2/shell)	700,000 374,507 358,717
TEMA shell type Shells Series Passes Shell Shell orientation angle (Shell Co AES 1 Parallel 1 Tube deg) 0,00	nstruction Inf S 1 T 1 E	formation Shell ID Fotal area Eff. area	(mm) (m2) (m2/shell)	700,000 374,507 358,717
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present	Shell Co AES 1 Parallel 1 Tube deg) 0,00 No	nstruction Inf S 1 T 1 E	formation Shell ID Total area Eff. area	(mm) (m2) (m2/shell)	700,000 374,507 358,717
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5	nstruction Inf S 1 T 1 E	formation Shell ID Total area Eff. area Passlane seal rod	(mm) (m2) (m2/shell) Is (mm) No. (700,000 374,507 358,717
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No	nstruction Inf 1 T 1 E	formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor	(mm) (m2) (m2/shell) Is (mm) No. (t plate No	700,000 374,507 358,717
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I	Shell Co AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle	nstruction Inf 1 T 1 E F F 11348	Formation Shell ID Otal area Eff. area Passlane seal rod Rear head suppor / 8167,2 /	(mm) (m2) (m2/shell) Is (mm) No. (rt plate No 4699,2 (kg	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I	Shell Co AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle	nstruction Inf 1 T 1 E F F 11348 affle Informati	formation Shell ID otal area Eff. area Passlane seal rod Rear head suppor / 8167,2 /	(mm) (m2) (m2/shell) Is (mm) No. (t plate No 4699,2 (kg	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E	nstruction Inf 1 T 1 E F 11348 Saffle Information	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / tion	(mm) (m2) (m2/shell) Is (mm) No. (t plate No 4699,2 (kg	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se	affle Informati	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / Sion Baffle cut (% dia)	(mm) (m2) (m2/shell) Is (mm) No. (t plate No 4699,2 (kg 21,37	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Pei Crosspasses/shellpass	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se	affle Informati g. B	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / fion Baffle cut (% dia) o. (Pct Area) (1 17.52	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (t plate No 4699,2 (kg 21,37 (mm) to C.L 200 384	700,000 374,507 358,717 0
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Pei Crosspasses/shellpass Central spacing	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 483,02	affle Informati g. B	Formation Shell ID Total area Eff. area Passlane seal rod Rear head support / 8167,2 / fion Baffle cut (% dia) o. (Pct Area) (1 17,52	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (4699,2 (kg 21,37 (mm) to C.L 200,384 0 000	700,000 374,507 358,717 0
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se (mm) 343,11 (mm) 487,03 (mm) 410,10	affle Informati g. B	Formation Shell ID Total area Eff. area Passlane seal rod Rear head support / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (t plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,22	affle Informati Baffle Informati Construction Information Statement Statement State	Formation Shell ID Total area Eff. area Passlane seal rod Rear head support / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00	(mm) (m2) (m2/shell) (m2/shell) No. (rt plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35	affle Informati Baffle Informati Call Column	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00	(mm) (m2) (m2/shell) (s (mm) No. (t plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35	affle Informati 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / fion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35	affle Information	Formation Shell ID Fotal area Passlane seal rod Rear head suppor / 8167,2 / fion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0 /shell)
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Pei Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35	nstruction Inf S 1 T 1 E F 11348 Saffle Information 3 Notest 1 50 Tube Information Tube Information T	Formation Shell ID Total area Eff. area Passlane seal rod Rear head support / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00 on Tubecount per she	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0 /shell) 935
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Pel Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness Tube type Overall length	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35	nstruction Inf S 1 T 1 E F 11348 Saffle Information 3 No 0 1 1 50 Tube Information 1 50 Tube Information 50 50 50 50 50 50 50 50 50 50	formation Shell ID Total area Eff. area Passlane seal rod Rear head support / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00 on Tubecount per she Pot tubes removed	(mm) (m2) (m2/shell) (m2/shell) (mm) No. (4699,2 (kg 21,37 (mm) to C.L 200,384 0,000	700,000 374,507 358,717 0 /shell) 935
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness Tube type Overall length Effective length	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35 (mm) 8,50 (m) 8,14	affle Information	formation Shell ID Total area Eff. area Passlane seal rod Rear head support / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00 on Tubecount per she Pot tubes remover Dutside diameter	(mm) (m2) (m2/shell) ls (mm) No. (rt plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000 ell d (both) (mm)	700,000 374,507 358,717 /shell) 935 15,000
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness Tube type Overall length Effective length Total tubesheet	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35 (mm) 8,50 (m) 8,14 (mm) 358,35	Image: Construction Information Information Image: Construction Image: Construction Information Image: Construction Information Image: Construction Image: Constretin Image:	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / ion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00 on Tubecount per sho Pot tubes remove Dutside diameter Vall thickness	(mm) (m2) (m2/shell) ls (mm) No. (t plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000 ell d (both) (mm) (mm)	700,000 374,507 358,717 /shell) 935 15,000 1,500
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness Tube type Overall length Effective length Total tubesheet Area ratio	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35 (mm) 8,14 (m) 8,50 (m) 8,14 (mm) 358,35 (out/in) 1,250	I S 1 T	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / fion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00 on Tubecount per shi Pot tubes remove Dutside diameter Vall thickness Pitch (mm) 1	(mm) (m2) (m2/shell) (m2/shell) Is (mm) No. (t plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000 ell d (both) (mm) (mm) 8,7500 Ratio	700,000 374,507 358,717 0 /shell) 935 15,000 1,500 1,2500
TEMA shell type Shells Series Passes Shell Shell orientation angle (Impingement present Pairs seal strips Shell expansion joint Weight estimation Wet/I Type Per Crosspasses/shellpass Central spacing Inlet spacing Outlet spacing Baffle thickness Tube type Overall length Effective length Total tubesheet Area ratio Tube metal	Shell Ca AES 1 Parallel 1 Tube deg) 0,00 No 5 No Dry/Bundle E rpend. Single-Se 2 (mm) 343,11 (mm) 487,03 (mm) 449,12 (mm) 6,35 (mm) 8,14 (mm) 358,35 (out/in) 1,250 Carbon ste	Distruction Information Informatio Information Information Information Information Informa	Formation Shell ID Total area Eff. area Passlane seal rod Rear head suppor / 8167,2 / fion Baffle cut (% dia) o. (Pct Area) (1 17,52 2 0,00 on Tubecount per she Pott tubes remove Dutside diameter Vall thickness Pitch (mm) 1 Tube pattern (deg	(mm) (m2) (m2/shell) (m2/shell) (m) No. (t plate No 4699,2 (kg 21,37 (mm) to C.L 200,384 0,000 ell d (both) (mm) (mm) 8,7500 Ratio	700,000 374,507 358,717 0 /shell) 935 15,000 1,500 1,2500 45

Page 2

SI Units

HTR		inal Result eleased to the f /UT Brno /UT Brno	S following organiza	tion:	Page 3
XistS Ver. 5.00 20.	5.2010 15:59	SN: 16002116	61		SI Units
TVT se segmentovýr Design - Horizontal C	ni pøepážkam Countercurrent	i_spaliny v tr_1 t Flow TEMA Al	x1_by M. Jonak ES Shell With Sin	gle-Segmenta	Baffles
		Shellside	Performance		
Nom vel, X-flow/wind	ow 7,	38 / 14,37			
Flow fractions for hea A=0,3280 B=0,	at transfer 4579 C=0,0	0,619 0805 E=0,133	86 F=0,0000		
		Shellside H	leat Transfer Co	rrections	
Total	Beta	Gamma	End	Fin	
0,973	0,907	1,072	U,983	1,000	
Cross	F Window	Ende		shell	Tube
48.39	28.54	4.21	Inlet	10.03	3.66
MOMENTUM		0.00	Outlet	8.83	2.89
		Two-Phas	e Parameters		
Method	Inlet	Center	Outlet	Mix F	
Н. Т. Г	Parameters		Shell	Tube	
Overall wall correctio	n		0,992	0,000	
Midpoint Pra	andtl no.		0,00	0,00	
Midpoint Re	ynolds no.				
Bundle inlet Re	ynolds no.				
Fouling laver	(mm)				
	()	Thermal	Resistance		
Shell	Tube	Fouling	Metal	Over Des	
13,63	86,24	0,00	0,138	5,34	
Total fouling resistan	се			0,00000	
Differential resistance				0,00150	Liquid
Inlet at channel end-	No		Inlet	Outlet	Outlet
Number at each posi	tion		1	1	0
Diameter		(mm)	154,051	205,004	
Velocity		(m/s)	18,35	23,13	
Pressure drop		(kPa)	1,329	1,170	
Nozzle R-V-SQ		(mm) (ka/m-s2)	1271 12	904 86	
Shell ent.		(kg/m-s2)	1704,71	1728,65	
	h a NI'		Inlet	Outlet	Liquid
Tu Diameter		(mm)	387 351	307 087	Outlet
Velocity		(m/s)	24.79	19.37	
Pressure drop		(kPa)	0,144	0,114	
Nozzle R-V-SQ		(kg/m-s2)	260,90	324,36	
Annul	ar Distributor	-	Inlet	Outlet	
Length		(mm)			
Height		(mm)			
SIULATEA		Diamatral C	loaranaaa (mm)		
De	fflo-to oball			-	
Da	4,7625	l	39 8242		0.7938
	.,. 020		00,0212		-,

TTTTT	Input Reprint	Page 6
	Released to the following organization:	-
	VUT Brno	
	VUT Brno	
XistS Ver. 5.00 20.5.2010 15:59	SN: 1600211661	SI Units
TVT se segmentovými pøepážkam	i_spaliny v tr_1x1_by M. Jonak	
Design - Horizontal Countercurrent	Flow TEMA AES Shell With Single-Segmental Baffles	
Shell Data		
Service type	Generic Shell and Tube	
TEMA type	AES	
Run mode	Design	
Hot fluid location	Tubeside	
Number of shells in series	1	
Number of shells in parallel	1	
Shell inside diameter	700,000	mm
Train flow direction	Countercurrent	
	Countercurrent	
Reboiler Data		
Reboiler type	No piping specified	
Inlet pressure location	Inlet nozzle	
Tube Data		
Tube type	Plain	
Tube outside diameter	15,000	mm
Tube wall thickness	1,500	mm
Tube pitch	18,750	mm
Tube pitch ratio	1,250	
Tube pattern	1	dogroop
Tube count method	Rigorous	degrees
Tube length	8,500	m
Tube material	Carbon steel	
Tubepass Arrangement Data		
Force symmetric layout	No	
Force cleaning lanes	No	
I upes to remove for tie rods	Calculated	
Battle Data		
Baffle type	Single segmental	
Baffle orientation	Program sets	
Variable battle spacing	No	
window cut from barries	No	
Clearance Data		
Number of seal strip pairs	Calculated	
Baffle clearance type	TEMA	
Block A stream	No	
Block E stream	No	
Block F stream	No	
Number of passiane seal rods	Calculated	

TTTTT	Input Reprint	Page 7
	Released to the following organization:	
T T T T / T	VUT Brno	
	VUT Brno	0111.11
XistS Ver. 5.00 20.5.2010 15:59	SN: 1600211661	SIUnits
TVT se segmentovými pøepážkami	spaliny v tr. 1x1, by M. Jonak	
Design - Horizontal Countercurrent	Flow TEMA AES Shell With Single-Segmental Baffles	
Nozzle Data		
Number of shellside inlet nozzles	1	
Number of shellside outlet nozzles	1	
Number of tubeside inlet nozzles	1	
Number of tubeside outlet nozzles	1	
Radial position on shell inlet nozzle	Program decides	
Radial position on shell outlet pozz	et nozzie At rear nead	
Tubeside entry type	Radial	
Tubeside inlet position	Front head	
Tubeside exit type	Same as inlet	
Front head location	Left	
Impingement Data		
Impingement device present	If required by TEMA	
Impingement type	Circular plate	
Optional Geometry Data		
Small exchanger	No	
Tubesheet type	Single	
Shell expansion joint	No	
Floating head support type	None	
insulated foligitudinal ballie		
Process Conditions Data	Hot Fluid Cold Fluid	
Phase condition	Sensible gas Sensible gas	
Flow rate	1,2400 1,2910	kg/s
Inlet vapor fraction	1 1	0
Outlet vapor fraction	1 1	
Inlet temperature	600,00 98,90	C
Outlet temperature	107.000	C
Allowable pressure drop	4 100 4 100	kPa
Duty multiplier	4,100	Ki d
Hot Fluid Property Data		
Fluid name	Spaliny	
Physical property method	Component by component properties	
Heat release method	Program calculated	
Cuantity units	Integral Weight	
Temperature interpolation option	Program	
Number of components	6	
		J

HTRI	Input Reprint Released to the followin	ng organization:	Page 8
TTTT	VUT BINO VUT Brno		
XistS Ver 5.00 20.5.2010 15:59	<u>VOT BIII0</u> SN: 1600211661		SI Units
	SN. 1000211001		or onits
TVT se segmentovými pøepážkami	_spaliny v tr_1x1_by M.	Jonak	Doffloo
	FIOW TEIMA AES Shell W	vith Single-Segmental	Bames
Hot Fluid Component Data	1		
Component number	1	2	3
Component name	Carbon Dioxide	Nitrogen	Water (IAPWS 1997)
Comp. bank name	Carbon Dioxide	Nitrogen	Water (IAPWS 1997)
Component bank	HTRI/DIPPR	HTRI/DIPPR	HTRI/DIPPR
Component code	2	131	1
Component phase	Mixed	Mixed	Mixed
Component quantity	14,98	68,18	ij 7,789
Component number	4	5	6
Component name	Sulfur Dioxide	Argon	Oxygen
Comp. bank name	Sulfur Dioxide	Argon	Oxygen
Component bank	HTRI/DIPPR	HTRI/DIPPR	HTRI/DIPPR
Component code	120	208	201
Component phase	Mixed	Mixed	Mixed
Component quantity	0,572	1,144	7,335
Cold Fluid Property Data			
Fluid name			PVS
Physical property method	Со	mponent by componer	nt properties
Heat release method		Program	m calculated
Flash type			Integral
Quantity units			Weight
Temperature interpolation option			Program
Number of components			2
Cold Fluid Component Data			
Component number	1	2	
Component name	Water (IAPWS 1997)	Air	-
Comp. bank name	Water (IAPWS 1997)	Air	
Component bank	HTRI/DIPPR	HTRI/DIPPR	
Component code	1	3	
Component phase	Mixed	Vapor	
Component quantity	11,81	88,19	
Design Geometry Data		Minimum Maximum	Step Size
Vary shell diameter		675,000 725.000	12,500 mm
Vary tube length		8,000 8,500	0,100 m
Design Options Data			
End baffle spacing equal to central		Prog	ram decides
Minimize number of haffles		Filly	No
Crosspass design		Proc	pram control
Tubepass design sequence		1100	Even 2,4,6
Control Name Data			
Case name TVT se	e segmentovými pøepážk	<ami_spaliny td="" tr_1x1_<="" v=""><td>by M. Jonak</td></ami_spaliny>	by M. Jonak

TTTTT	nput Reprint	Page 9
	Released to the following organization:	
TTTT	VUT Brno	
Viete Ver E 00 - 20 E 2010 15:50 S	<u>VUI Brno</u>	SILInito
XISIS Ver. 5.00 20.5.2010 15:59 S	IN. 1000211001	Si Units
TVT se segmentovými pøepážkami_	spaliny v tr_1x1_by M. Jonak	
Design - Horizontal Countercurrent F	low TEMA AES Shell With Single-Segmental Baffles	
Control Methods Data		
Shellside friction factor method	Commercial	
Tubeside friction factor method	Commercial	
Pure longitudinal flow	No	
Pure component condensation	No	
Condensing correlation	HTRI Proration	
Mole fraction inerts	0	0/
Momentum exclusion	U	%
Check film boiling	NU Ves	
Nucleate boiling method	Physical property/theoretical boiling range	
Component boiling method	Nucleate and convective	
Control Safety Data		
Cold fluid/shellside film coefficient m		
Cold fluid/shellside friction factor mu	Itiplier	
Fraction of critical flux for film boiling	1	
Hot fluid/tubeside film coefficient mu	Itiplier 1	
Hot fluid/tubeside friction factor mult	iplier 1	
Control User-Defined Methods Dat	a	
Add non-nucleate boiling	Yes	
Control Vibration Data		
Damping factor method	HTRI Method	
Include inlet vibration support	No	
Include outlet vibration support	No	