BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

INTEGRATION OF SENSORS AND ACTORS INTO THE
BEEEON SYSTEM

INTEGRACE SENZORU A AKTORU DO SYSTEMU BEEEON

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR LUKAS SISMIS
AUTOR PRACE
SUPERVISOR Ing. MARTIN SAKIN

VEDOUCI PRACE

BRNO 2018



Vysoké uceni technické v Brné
Fakulta informaénich technologii

Ustav inteligentnich systém( (UITS) Akademicky rok 2018/2019
Zadani bakalafské prace AT
21396
Student: Sismis$ Lukas
Program: Informacni technologie
Nazev: Integrace senzora a aktort do systému BeeeOn

Integration of Sensors and Actors into the BeeeOn System
Kategorie: Vestavéné systémy
Zadani:
1. Nastudujte dodané senzory nebo aktory uréené pro automatizaci domacnosti podporujici technologii Wi-Fi.
2. Seznamte se s architekturou brany systému BeeeOn.
3. Navrhnéte zplsob integrace nastudovanych technologii do systému BeeeOn.
4. Implementujte navrzené feSeni a ovéerte funkénost v domacnosti.
5. Diskutujte dosazené vysledky a moznosti pokracovani projektu.
Literatura:
* Dle pokyn( vedouciho, zejména dokumentace k vybranym senzorlim/aktorlim a dokumentace systému
BeeeOn.
Pro udéleni zapoctu za prvni semestr je pozadovano:
¢ Splnéni bodl 1 az 3 zadani.
Podrobné zavazné pokyny pro vypracovani prace viz http://www.fit.vutbr.cz/info/szz/

Vedouci prace: Sakin Martin, Ing.
Konzultant: Viktorin Jan, Ing., FIT VUT
Vedouci Ustavu: Hané&cek Petr, doc. Dr. Ing.
Datum zadani: 1. listopadu 2018

Datum odevzdani: 15. kvétna 2019

Datum schvaleni: 1. listopadu 2018

Zadani bakalarské prace/21396/2018/xsismi01 Strana 1z 1



Abstract

The goal of this thesis was to extend BeeeOn system with a Vektiva module and to do a
research on possibilities of Smarwi implementation, which not only included studying dif-
ferent communication protocols that the device uses, but also comparing them and choosing
the most suitable protocol for the implementation. In the beginning of the thesis, BeeeOn
system and its’ components are described followed by the description of implementation
and testing process of the Vektiva module and the Smarwi emulator.

Abstrakt

Cielom tejto prace bolo rozsirit systém BeeeOn o modul Vektiva a preskimat moznosti
implementovania produktu Smarwi do systému BeeeOn, ¢o zahfnalo nielen Stidium ko-
munikacénych protokolov, ktoré zariadenie pouziva ale aj ich porovnanie a vyber vhodného
protokolu pre implementaciu. Na zaciatku préace je popisany BeeeOn systém a jeho kom-
ponenty, na ktory nasledne nadvizuje popis procesu implementacie a testovania Vektiva
modulu a aj Smarwi emulatoru.

Keywords
Home Automation, Smart Home, Vektiva, Smarwi, BeeeOn, Gateway, Window Ventilation,
Window Opener

Klicova slova

Automatizdcia Domécnosti, Inteligentnd Domaéacnost, Vektiva, Smarwi, BeeeOn, Gateway,
Ventilacia Okien, Otvarac¢ Okien

Reference

SISMIS, Lukas. Integration of Sensors and Actors into the BeeeOn System. Brno, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Martin Sakin



Rozsireny abstrakt

V dnesnej dobe sa casto stretavame s pojmoj IoT alebo Internet veci. Aby sme si mohli
vysvetlif tento pojem, musime si predstavit obrovské mmnozstvo zariadeni, ¢i uz su to
vozidla, senzory, monitorovacie prostriedky ¢i domace spotrebice vsetky pripojené do si-
ete Internet aby nasledne spolu mohli komunikovat. Vysledkom moéze byt zvysend zivotna
kvalita a troven zivota, uSetrené naklady, vyssia bezpecnost alebo zachranené Tudské zivoty.
Konkrétny priklad moéze byt zapnutie robotického vysavaca ak sa nikto nenachddza v dome
a je detegovand Spinava podlaha alebo dorucenie kamerového zaznamu policii po nasilnom
vlamani do budovy pre rychlejsiu identifikaciu zlocinca.

IoT a automatizacia domacnosti je stdle sa rozvijajica oblast I'T. Preto podlieha dynam-
ickym zmenam, ktoré implementuji rézni vyrobcovia tychto zariadeni inak, ¢o zapri¢inuje
nekompatibilitu medzi jednotlivymi zariadeniami od rozli¢nych znaciek.

Tejto prilezitosti vyuzili vyzkumnici z Fakulty Informacénych Technolégii v Brne, ktori
navrhli a implementovali systém BeeeOn. Jeho hlavnou tlohou je zjednocovat zariade-
nia réznych vyrobcov do jedného bodu, z ktorého je mozné kontrolovat vSetky zariadenia
stcasne. Tymto krokom eliminuji potrebu nativnych aplikacii od jednotlivych vyrobcov a
prispievaju k lepsej komunikacii medzi samostatnymi zariadeniami.

Systém BeeeOn je open-hardware a open-source, ¢im spristuptiuje kéd nielen na stadium
ale aj jeho upravenie. Pojem open-hardware znamend, ze vnitorna architektira primarne
zvoleného pocitacu je verejne dostupné a aj ked by vyrobca ukon¢il masovt produkciu, nie
je potrebné navrh mati¢nej dosky robit opét aby sa mohla produkcia obnovif.

Samotny systém sa skladd z 4 vrstiev, kde okrajové vrstvy tvoria koncové zariadenia,
¢i uz su to senzory/aktory alebo zariadenia uzivatelov ako mobily alebo pocitace. Vni-
torné 2 vrstvy sa skladaji z BeeeOn aplikacii Gateway a Server. Vsetky doélezité data st
uchované na serveri, pricom aplikicia Gateway slizi ako prostrednik medzi senzormi/ak-
tormi a serverom. Gateway bud zbiera tdaje od inteligentnych zariadeni a nasledne ich
posiela na server alebo prijima prikazy zo serveru, akt akciu ma vykonat.

Ako moznosti inteligetnych zariadeni rasti, nachddzaji sa pre ne aj nové sposoby
vyuzitia a uplatnenia. Jednym z prikladov mo6zu byt dialkovo ovlddané otvaranie ok-
ien, ktoré moze byt nainstalované na uz zabudované okna. Mozu priniest niekolko vyhod
ako inteligentné vetranie, prevetranie miestnosti v ktorych sa momentalne nezdrziavame
alebo otvaranie okien v fazko dostupnych miestach. Celia vSak niekolkym problémom
ako nakladnd pociatocné investicia, hluénost zariadenia, rézne typy otvarania okien alebo
obmedzeny priestor na instalaciu takychto zariadeni. Viacero vyrobcov uz vytvorilo takéto
zariadenia pricom tie najzniamejsie typy pouzivaju hriadelové, refazové alebo skladacie
otvarace okien.

Ceské firma Vektiva priniesla na trh svoj produkt Smarwi, inteligentny otvarac¢ okien,
ktory v sebe obsahuje Wi-Fi prijima¢ a dokaze tak komunikovat s inteligentnymi systé-
mami ako Fibaro, IFTTT, OpenHAB a iné. Ulohou tejto prace bolo implementovat toto
zariadenie do systému BeeeOn. Na rozdiel od uz predstavenych typov otvaracov okien,
Vektiva zvolila hreben, ktory je pripevneny na pevnom rame okna a ozubené koleso, ktoré
je zabudované v Smarwi. Kedze Smarwi je nalepené na pohyblivej ¢asti okna, pomocou
ozubeného kolesa sa pohybuje po hrebeni.

Existuji 3 moznosti pre ovladanie zariadenia a to bud cez fyzické tlacitko, cez API pomo-
cou HTTP alebo cez MQTT spravy. Cez HT'TP je mozné Smarwi ovladat len po lokélnej
sieti, kdezto MQTT spravy dokdzu menit stav zariadenia aj mimo LAN. Vektiva ma aj
vlastny portél pre spravu pripojenych Smarwi vdaka ¢omu poskytuje API aj vo WAN. Po



spracovani poziadavky Vektiva server kontaktuje Vektiva MQTT broker a ten vysle dant
Smarwi MQTT spravu.

Po prestudovani BeeeOn systému a komunikacie medzi Smarwi a klientom sa vytvoril

navrh implementacie, v ktorom sa posudzovali protokoly HTTP a MQTT, navrhol sa dia-
gram tried a zvolila vhodna metodika implementacie. Navrh zariadenia obsahuje 4 moduly z
¢oho jeden poskytuje iba informécie a 3 ostatné moduly dokazu zmenif stav Smarwi. Pocas
samotnej prace na zapracovani nadvrhu do systému sa pracovalo v iteraciach s priemernou
dizkou 10 dni. Pocas tohto ¢asu sa opravovali chyby, priddvali sa nové Casti a testy na
ne a konzultoval sa dalsi postup. Modul je implementovany v jazyku C++ s kniznicami
std a Poco. V spravcovi zariadeni sa nachadzaju 2 klienti MQT'T, z ¢oho jeden manipuluje
vzdy iba s jednym vybranym zariadenim Smarwi a druhy prijima a analyzuje vsetky spravy
prijaté na vybrand tému ion/#.
Pre zaistenie korektného fungovania modulu prebiehalo aj testovanie, ktoré zahinalo aj jed-
notkové aj manudlne testy. Jednotkové testy slizia pre overenie spravnosti spracovavania
prijatych sprav a ich vytvaranie, manudlne testovanie prebiehalo po kazdej pridanej casti
pre overenie celkovej funkénosti.

Pre zjednodusenie dalsej prace so Smarwi bol vytvoreny emulator, ktory mé za tlohu
simulovat chovanie Smarwi na sieti pomocou MQTT sprav. Emulator je schopny simulo-
vat viaceré Smarwi zariadenia stucasne. Vytvorené zariadenie je mozné ovladat cez MQTT
spravy, API alebo grafické uzivatelské rozhranie. Pre tento 1ucel bolo vytvorené REST
API, pomocou ktorého sa daju ovladat vSetky zariadenia, ktoré emulator obsahuje. Vsetky
zmeny vykonané cez jeden z vymenovanych spdsobov sa propaguji pomocou MQTT sprav.
Pre vytvorenie emulatoru bol pouzity Python3 s kniznicami Paho client, Threading a sock-
etserver. Pre vytvorenie uzivatelského rozhrania bolo pouzité HTML, CSS a jQuery.



Integration of Sensors and Actors into the BeeeOn
System

Declaration

Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mr. Martin Sakin. The supplementary information was provided by Mr.
David Bednarik. All the relevant information sources, which were used during preparation
of this thesis, are properly cited and included in the list of references.

Lukas Sismis
July 2, 2019

Acknowledgements

Here I would like to express thanks to my supervisor Ing. Martin Sakin for the consul-
tation he has provided to me while writing the thesis and to Bc. David Bednarik for the
consultation related to the code.



Contents

Introduction

System BeeeOn
2.1 System architecture

2.2 User interface

2.3 Server . . . ... ... ...
2.3.1 Application layer . . . . ... ..
2.3.2  Service layer . ... ... .. ..
2.3.3 Database layer . . ... ... ..

24 Gateway . . . ... ...

2.5 Devices . ... ... ... ... ...,

2.6 Testing center and virtual devices . . . .

Remote window opening options

3.1 Problems and requirements . . . . . ..
3.2 Opening options . . . . ... ... ...
3.3 Existing products . . . . ... ...

Smarwi - a window opener

4.1 Vektiva . .. ... ... ... ... ..
4.2 Control . . ... ... ... ... ....
4.3 Principle of Smarwi functionality . . . .
4.4 Communication . . . . . . ... ... ..
45 HTTP API . ... ... .. .......
4.6 MQTT. . ... ... ... ........
Integration design of Vektiva module
5.1 Device Manager . . . . ... .. ... ..
5.2 Vektiva Device Manager . . . . . .. ..
5.3 Communication . . . . . . . .. .. ...
5.3.1 Vektiva’s broker . . ... .. ..
5.3.2 Gateway’s broker . . . . ... ..
533 Onconnect ... .........
5.3.4 Proposal of communication design

Implementation into the BeeeOn system
6.1 Implemented parts of the proposed plan
6.2 Parts changed

w

—_
= O 00 J~Jo otWm

—

12
13
14

16
16
16
16
17
18
19

24
24
24
27
27
28
28
28



6.3 Implementation tests . . . . . . . .. .. L L

7 Testing - Smarwi emulator

7.1 TImplementation . . . . . . . . ... L
7.1.1 Routing . . . . . . . .
7.1.2 Smarwi handling . . . . . ... ... o

7.2 APl endpoints . . . . . . . . . . ...

7.3 MQTT . . .

7.4 Userinterface . . . . . . . . . . e

7.5 Scheduling and fixing errors . . . . . . . ... oL

8 Conclusion
Bibliography

A Smarwi MQTT communication
A1l MQTT messages . . . . . . o oo i it e
A1l Open . ... . e
A12 Close . . . . . e e
A3 Stop . . . e e
A.2 Smarwi Statuscodes . . . . . ..
A.3 Smarwi Errors . . . . . . . ..
A4 Mosquitto examples . . . . . ..

B CD contents

33
33
33
34
34
36
36
37

40

41

43
43
95
55
56
o7
58
58

59



Chapter 1

Introduction

We often hear of the term Internet of Things or IoT. It basically connects every device that
is able to receive and transmit data without any need of human being. That means we can
have billions of devices talking to each other, exchanging gathered information and based
on that, it can either help us to do the right decision or even do the decision for us. It can
go from simple things such as reminding us to take an umbrella when a thunderstorm is
forecasted to more complex ones such as detecting unclean floor to start home vacuuming
and mopping when we are not at home.

It also adds a security layer to our lives by analyzing who just entered home, whether
it was a brute force attack or not. In case of an intruder, home owner and police can be
notified with intruder’s photos.

IoT appears everywhere we can think of. It has found its’ use case at homes, businesses
and among all different kinds of industries. Industry 4.0 is the name of the current era of
letting machines do the work for us.

Home automation is a great market opportunity with many things far away from per-
fection. Because of this, manufacturers often just experiment with their products and are
moving extremely fast. However, no organizations stand on top of the industry and there-
fore no common universal protocol is used. Because of this, different devices often can
not communicate with each other. It seems like there can not be any protocol since we
have many totally distinct devices that don’t share any common traits. Devices such as a
window opener and a thermostat regulator don’t go well along.

After researchers at the Faculty of Information Technology at the University of Brno
realized this, they created a project named BeeeOn which act as a unifier or in other words
it unites devices from completely different vendors with different communication protocols.
Manufacturers” APIs are implemented into BeeeOn with the goal of having one app to rule
them all. BeeeOn is developed and maintained by a group of professors, students, and
enthusiasts.

List of supported devices and vendors slowly but steadily expands. One such device that
is not supported so far is called Smarwi from Vektiva. It is an almost universal window
regulator especially suitable for tilt-turn windows. Having always fresh air when we need it
is very valuable. While windows can be controlled with a click on a security box, its’ main
advantage is that it can be interconnected with platforms like OpenHAB, Fibaro, IFTTT
or Stringify. The main goal of the thesis is to implement Smarwi into the BeeeOn Gateway
which allows us to remotely regulate windows.

In the following chapter, the BeeeOn system is briefly explained. It shows the inner
architecture of the system with parts such as the gateway, server, user devices and sensors



or actors and their relationships. In the third chapter, remote windows opening solutions
are presented where you will learn about not only the theoretical part but also you will see
real-world examples. With not only that, Smarwi as a device is thoroughly described as
well. In the fourth chapter, a proposal for integrating a Vektiva module into the BeeeOn
system is presented. A chapter about implementing a proposed plan and testing follows
where parts of the plan are described with their outcome. The last part describes Smarwi
emulator, presents the implementation and ways to use it.



Chapter 2

System BeeeOn

For an introduction system called BeeeOn' is briefly described. This system works with
Internet of Things (IoT) or more precisely, it is focused on home automation. Its’ main
purpose is not to create something entirely new but to act more as a unifier. Since home
automation is a relatively new and broad field, there hasn’t been introduced a protocol
with which one could control devices across all spectrums. Because of this, vendors that
produce devices intended for home automation create protocols by themselves. This leads
to incompatibility issues across devices even if they are designated to do the same things.
As a result people are forced to have multiple apps, since every manufacturer has an app or
a web interface to control solely his devices. To solve this problem, the BeeeOn system was
created. It is an open-hardware and open-source initiative to have a single app that is able
to communicate with all supported devices from many different vendors by implementing
necessary components that are required to successfuly handle these devices.

2.1 System architecture

With a system of this aim, it is expected that the project will grow at a fast pace. Often
times projects as they are developed, get so big it is very complex to modify parts of the
code. To properly handle this scenario, project is designed as a modular kit and therefore
getting to know the code can be easier. This is particularly important attribute in case
of open-source code. Thanks to dependency injection, it also allows us to only have the
components we want to be enabled.

As we can see on image 2.1 BeeeOn consists of 4 separate layers, each connecting with
neighboring layer. Arrows show the flow of communication. Bidirectional arrows mean
there are flows of data from one layer to the other and vice versa.

A layer, which can be found on the top, is intended for end users. It is an access point
for a user to interact with the system.

Beneath, we can see a server layer. The server serves as a controller and a data collector
for a user. It is connected to multiple gateways that work as independent units. Communi-
cation with both end-user devices and gateways is usually ensured on the Internet (WAN)
network.

To reduce the load on the server, the third layer called Gateway was implemented. Its’
main function is to listen to what the server says and to communicate with end devices.
As a result, Gateway translates the message from a unified protocol that is between the

"http://www.beeeon.org


http://www.beeeon.org

server and the Gateway to a protocol that selected end device uses and vice versa. It sends
collected data and exchange commands with the server. It also reads data from sensors
and sends instructions to actors. To be able to do that it needs to have a list of properly
connected end devices. This way the server is connected to only one device and is able to
send commands to all of the registered end devices. Gateway is further described in 2.4.

End devices are a general term for sensors/actors. Sensors measure things according
to their intention in their surroundings and actors can also change its’ state and therefore
impact the environment. After their initial setup, they connect to the gateway and the
rest of the communication is solely between the end device and the gateway. Section 2.5
provides more information related to sensors or actors.

‘ End user device ‘ ‘ End user device ‘ ‘ End user device ‘

A
T
Y
‘ Server ‘
Sensor Sensor Sensor Sensor
! ! ! !
Actuator Actuator Actuator Actuator

Figure 2.1: System architecture of the BeeeOn system

There are many other parts of the system which are not entirely important for this
bachelor thesis so for this reason and for the sake of clarity they will not be described.

2.2 User interface

On the top layer, we find a user interface which consists of devices such as tablets, mobile
phones or even laptops or personal computers. These are called end-user devices as they



serve as an access point for users to set up their intelligent devices or watch statistics
gathered by them.

In the current state of the system, there are two ways of accessing the user interface of
the BeeeOn system. An end user can use either a web application or an Android application.
The latter option has not been maintained for a while so it is possible to be a little outdated.
The web interface is a convenient way to interact with the system, thanks to the thin client
that is a web browser that almost any device has.

2.3 Server

The layer just under the top one is called a server layer. The server is usually located
at a remote location and is not maintained by a user. It serves as a middleware between
a user and a gateway. User requests are sent to the server and after they are processed,
the gateway is contacted with tasks to do. Once Gateway accomplishes given tasks it will
respond to the server with their outcomes. The server can write results to a database that is
usually located on the server and then notifies the user with the results. To further support
extendability and manageability of the server code architecture, it was divided into three
layers:

e Application layer
e Service layer

e Database layer

2.3.1 Application layer

The application layer provides a way how either users with end user devices or gateways
communicate with the server. It deals with user registration or their requests and passes
them to the service layer if needed. At the same time, it has a pool of connections with
connected gateways, which is needed because gateways might not be available from outside
of the local network. It periodically checks for the availability of gateways or sends tasks
to them. In case of failure, it can promptly notify the user.

2.3.2 Service layer

The service layer implements the core logic of the server. It handles most of the user’s or
gateway’s requests and responses. It works with both layers, especially with a database
layer for easy and consistent access to the database.

2.3.3 Database layer

The database layer serves as an abstract layer to access the database. It also guarantees
that server logic is not coupled to any database system. After the implementation of given
interfaces, we can change database systems with ease and in a matter of seconds. In the
current implementation, PostgreSQL is used.



2.4 Gateway

The main component that is important to the user is a gateway. It provides a point to which
every smart device at home should connect to. Gateway then collects all the information
it can from these sensors/actors and sends them to the server. If it receives any task to
do, it contacts the required device and tries to fulfill the request. It periodically checks end
devices for their availability and data and at the same time sends data to the server.

As an initiative to have a dedicated device that this system can run on, A10-OLinuXino-
LIME? from Olimex was chosen. It is an open hardware ARM Linux computer that serves
well enough to cover all needs BeeeOn Gateway requires. An example can be seen in a
modified BeeeOn case on image 2.2 with the specifications such as 1GHz Allwinner A10
Cortex-A8, Mali 400 GPU, 512MB DDR3 RAM memory, 160 GPIOs on four GPIO rows
of pins (0.05” step), 5V input power supply, noise immune design and PCB dimensions of
84x60 mm. More precise information can be found on the vendor’s webpage®.

Since it is an open hardware solution, the project is not closely dependent on Olimex.
Even if A10-OLinuXino-LIME manufacturer stops mass-producing these boards, schemas
and data sheets are always available and production can be renewed easily.

Figure 2.2: Photo of Olimex board A10 on which the BeeeOn system runs [18]

To A10-OLinuXino-LIME, an extension board MRF89XA from Microchip is connected
via GPIO pins, providing radio connectivity to the entire system.

Although this board is recommended for the gateway software, it can run on any other
device with Linux distribution based on Debian. My personal experience was setting up
the BeeeOn Gateway on Raspberry Pi Model 1B which has only an ARM1176JZF-S 700
MHz CPU and 256MB RAM. After an initial hassle, I was able to install the whole gateway
system with an installation script. I did not try to connect the radio extension board. I
successfully ran the system in testing mode.

’https://www.olimex.com/Products/0LinuXino/A10/A10-0LinuXino-LIME-n4GB/open-source-
hardware


https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME-n4GB/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A10/A10-OLinuXino-LIME-n4GB/open-source-hardware

Gateway

Exporter Exporter Exporter
(I_ocall_oopj tSerwerConnectorJ [UI‘II.’( pipe)
Command = . Sensorl:lata P - i
B e
b . .
Command
Dispatcher Distributor
[ y y
R = SensorData _
Ccommand --.‘._"..:‘:_‘_::: T
¥ ¥ h 4
Device manager Device manager Device manager
(Belkin) (Jablotran) (Thermona)
A A A A A
Sensors/Actuators 4

Vi , : Vi Y E o S

(Belkin Wemo . ( Jablotron . 4 Thermona

\ Light Switch || -~ ~ N \daetr . [ WPT

Y . Y e ™ AN ¢

— - Be Ikin We mo S - [ Jablotron ™, :egulator/ J
\,  Dimmer Y. L JA-B3P Y. T—

" r " r
R — S o

Figure 2.3: Gateway architecture

Internal gateway architecture

According to image 2.3, we see briefly described the way the gateway works.

Device managers are one of the most important parts of the gateway system. They
communicate with end devices and gather their data. They act as a bridge between Dis-
tributor and end devices. Once they receive something from the end device they support,
they immediately convert the data to a unified message format and send it to the Dis-
tributor and vice versa. Each device manager represents a group of devices with similar
characteristics (usually the same vendor) and runs in a separated thread simultaneously
with other device managers. Asynchronous processing allows us to run the gateway even in
high traffic environments and it also optimizes and speeds up data handling. Each device
manager is tailored to the needs of the vendor’s devices or any other group of devices. Since
home automation progress extremely fast and no universal and comprehensive protocol has
been introduced, the BeeeOn system implements vendors’ protocols.

For messages, a class SensorData is used. For a device manager to know to which
device a message should be sent, we need some form of a unique ID. For this purpose an
identification field in SensorData is created. It has space for a unique identifier that has
64 bits, where the first 8 bits are reserved for an ID of the Device Manager and the rest is
created in another way. It can be either random or set according to some other device’s
property usually a MAC address of the device is used.



When Distributor receives a SensorData message from the Device Manager it can prop-
agate the message to every registered Exporter. Ezporter is an interface that when imple-
mented, aims to dispatch every message that is meant to be exported to a platform or a
place according to the implementation. Such class can be a ServerConnector, which sends
messages to the specified server or a UnixPipe that sends output to the Unix pipeline.

CommandDispatcher runs in a separate thread, waiting for commands that come from
a server or any other registered place. On received command, CommandDispatcher looks
up a receiver of the given command and sends it directly to him. Any object can obtain
a Command after implementing a Command interface and register itself to the Command-
Dispatcher.

2.5 Devices

Sensors/actors are the devices for which is this system designed. They are usually small,
often easily overlooked but they are bringing the new era of home automation in the form
of smarter, affordable technologies and more intelligent and resource-saving homes for us.
There are many ways how they enhance our lives ranging from having automatically ad-
justed room’s temperature according to the desires of people there or weather forecast
throughout the day to efficiently manage all home resources without the need of us even
thinking about it.

From the most abstract view point we can divide this category into two main groups:

e Sensors — devices, which are often unnoticeable, passive, serve as data collectors in
a sense, their purpose is to measure its’ surroundings with tools they have available.
Gathered data are sent immediately after measurement is finished to the gateway
they are connected to, where they are additionally processed. Instances of equipment
that falls into this category might be sensors for CO detection, moisture detection,
open window and door detection and many others.

e actors — devices that can actively alter the environment where they are installed.
Regularly accompanied with a sensor or a collection of them, they try to adjust
their surroundings to the desired state. Gateway may either ask for a state in which
the device currently is or it may request to change it. The actor afterwards sends
a response with an outcome. Devices that can be considered as members of this
category might be a smart bulb, dimmer, thermostat or a smart window opener —
Smarwi which is the main topic of this bachelor thesis.

Currently supported end devices are from vendors like:

e Jablotron

Philips Hue 2.4
Belkin 2.4

7-Wave

and other devices supporting protocols such as Bluetooth or FIT Protocol [16]

The FIT protocol was designed by a student of Faculty of Information Technology at
Brno University of Technology and is used for a communication with end devices developed
at FIT VUT[16].

10



Figure 2.4: From left to right: Belkin Wemo Switch, Philips Hue [3] [4]

2.6 Testing center and virtual devices

Implementing new features to the system with always real sensors would be a hard and a
time-consuming task, not only because it takes time for a sensor/actor to either measure
data or change state but also some edge cases occur just occasionally.

Therefore, the testing center was developed along with the gateway which allows us to
artificially emulate implemented sensors and actors for testing purposes. Once the device
has been implemented for emulation, we can add it to our test cases with the parameters
we set. Data can be either preset or randomly generated. Afterwards, device managers act
as they would be in a regular mode.

11



Chapter 3

Remote window opening options

For centuries, humans strive to be more efficient and live more comfortably. Technology
helps us to achieve greater things every day and allows us to be more productive. In return,
it allows us to have extra spare time for relaxation. As described in the previous chapter,
IoT and home automation can really make things easier for us.

This chapter will introduce problems and solutions for electric window openers con-
trolled remotely. In the end solutions of different vendors are described.

3.1 Problems and requirements

Examples of common problems with windows that are eliminated with the use of smart
windows:

e open windows that are in hard-to-reach places,
e be welcomed with fresh air when we enter a room,
e remotely create some airflow to currently unoccupied buildings,

e regulate room temperature with no need to waste resources either on the heater or
A/C.

Smart or electric window openers were invented to help us with mentioned and many
other problems. Here are the major requirements:

e windows open differently that means several mechanisms had to be invented,
e keep the initial cost low,

e not having to replace the whole window,

e quiet operation,

e installation in limited space,

e other problems with installation (e.g. can not drill, nonadhesive surface),

e casy to install.

12



3.2 Opening options

There were already many attempts to invent the most practical and universally fitting
window regulator but it seems like there is no device to rule them all. There is a huge
diversity of technologies for various use cases.

The most common form of solving this issue is using a window actuator, the main
component to provide the force needed for a window movement. Window actuators are
divided into three main types [12] and they are as follows.

Linear or spindle actuators

These devices apply a linear force to open windows usually upwards. They have great lifting
force to open even heavy windows.

Such equipment has either a rack or a rod that can be extended or shortened according to
user needs. The rack moves on a pinion that transforms rotational motion to linear. Linear
actuators can be used in a wide variety of window openings such as louvers, dampers,
awning windows, vents and external vertical louvers [13]. An example can be seen in figure
3.1.

Chain actuators

Both chain and linear actuators share the same fundamentals. A window is pushed upwards
or to any other desired direction with a bar or in this case a chain. It is enclosed in a body of
a window opener carefully winched over a pinion. As it rotates, chain segments are rotated
at a 90-degree angle which afterwards form into a solid bar that can put a pressure on the
window to open it up. Together with linear actuators, they are suitable for the majority of
windows, however thanks to the characteristics of linear actuators, it is better to use the
linear actuators for lifting heavy windows. On the contrary, thanks to the compact size of
chain actuators they are widely used in the industry and at home applications. An example
can be seen in figure 3.1.

Folding arm actuators

Instead of ejecting a rod straight they have an arm that pushes window sideways. They
don’t take as much space as other variants. They are usually meant for side hung windows
as they don’t have as much force as other types of actuators. An example can be seen in
figure 3.1.

Figure 3.1: Window actuators. From left to right: linear actuator, chain actuator, folding
arm actuator [7] [6] [5]

13



For comparison purposes, the data from Arens' are put into table 3.1 and are used to
show differences in linear and chain actuators. We can clearly see, how linear actuators
are much stronger but also have higher current requirements. On the other hand, compact
size and flexibility of chain actuators allow them to have a much longer stroke. When
the actuators with the best characteristics from each category are compared, we can see
that the chain actuator can have a stroke length more than 3 times longer than the linear
actuator. On the other hand, it can apply almost three times less force than the linear
actuator.

Chain actuators | Stroke[mm)] | Force[N] | Current[A]
Arens Compact 50-400 250 ~0.6
UCS Vega Synchro 300-800 250 ~0.7
UCS Quasar L 300-1000 300 ~0.9
Linear actuators | Stroke[mm)] | Force[N] | Current[A]
Arens Spindle 180, 300 650, 800 ~0.8, ~1
UCS Ulysses 180, 300 650, 800 ~0.8, ~1

Table 3.1: Comparison between the chain and linear actuators [13]

From table 3.1 we can observe chain actuators are suited for solutions where either
long strokes have to be implemented or limited space restricts usage of linear actuators. In
case the window requires more force than the actuator can provide, more actuators can be
added to the same window thanks to synchronisation across all actuators. This way multiple
actuators act as one stronger actuator but the pushing force is also better distributed on
the window frame.

3.3 Existing products

As mentioned in the beginning, many companies developed various window actuators. Sev-
eral examples were picked from each category, each with a unique solution. The main
differences can be in the way and the direction it opens the window or in the power supply.

As the most classic example of windows actuators, the linear actuator developed by the
company Teal Products [11] can be introduced. The description of linear actuators can be
found in the previous section. Source of power is electricity provided by a cable leading to
the actuator. They are provided with just a cable that can be attached to the controller of
your choice. It can be either a simple switch or a more complex receiver connected to the
network.

Another product is from a company named Solar Smart [10] that eliminates the need
of cables with a set of batteries and a photovoltaic panel on the top of the actuator. Panel
converts solar energy to electric power and recharges the batteries. As it is not dependent
on power from the electrical grid, in case of a power outage, the window is not stuck in the
position and can operate with no change. It is also equipped with a rain sensor, which can
help to adjust the window to the proper position according to the weather.

Actuator from Fenestra [2] serves for a different type of windows as previously mentioned
products. It allows to opening horizontally slid windows. Another benefit is a solar panel
and a LiO battery that comes with the actuator to allow cable free installation. A position

'https://arens.com.au/electric-products/

14


https://arens.com.au/electric-products/

of the window can be changed even when the Fenestra actuator has no power by manually
moving the window.

All up to now presented products are solutions to already installed windows from
which we want to make smart windows. The next generation of glass panels can look
like Blickdomi[l]. It has built-in roller shades together with motors for controlling the win-
dow position and window sensors. It is also equipped with cameras and other sensors to
detect a potentional intruder.

15



Chapter 4

Smarwi - a window opener

Another idea came from a small Czech innovator company called Vektiva and their Smarwi.
It is a smart window opener which allows us to comfortably and remotely control window
ventilation according to our needs or according to data measured by other sensors (e.g.
CO2 sensor or temperature and humidity sensors). This way we no longer worry about an
airflow at our homes because BeeeOn in combination with Smarwi can do that for us and
we are always greeted at home with fresh air to breathe.

4.1 Vektiva

Vektiva is a small company located in the capital city of the Czech Republic. Started as
a start-up company in 2015 with an idea of an inteligent device for controlling window
ventilation. Fast forward to 2016 and they have several working prototypes available and
started a platform vektiva.online' to allow users to remotely manage their Vektiva’s devices.

Nowadays, they have Smarwi, as can be seen in the image 4.1, in serial production
which slowly makes its’ way to shops. They are also in the progress of making new sensors
and other IoT products.

4.2 Control

Window regulation can be done either from remote locations or by a safety control box
which is connected to Smarwi and acts as a switch for opening and closing window. For
distant access, WebGUI is provided on a site vektiva.online where a user can register their
Smarwis and manage them from any device that has a web browser and access to the
Internet. After login, the site informs us about the status of registered devices and provides
options to adjust settings to the window requirements. We can also add more devices if
needed.

4.3 Principle of Smarwi functionality

The whole system that moves the window has two core elements and that is a ridge and
Smarwi. Ridge is glued with double sided tape on top of the window frame (i.e. immovable
part). One side of the ridge consists of cogs, the other is flat. It is attached with a hinge to

"https://vektiva.online

16


https://vektiva.online

BesC e
B %%

ADE mchma

Ndvod k pouzivani

- Typ piEtroje/Model: SWR1010
Verze névodu: 2.3

‘www veklivg.com
Talo verze navody fe origindiniin ndvodem k

Figure 4.1: Smarwi and other accessories

properly fit in Smarwi. Smarwi is placed on top of the window (i.e. moveable part). Inside
we can find a cogwheel that runs back and forth on the ridge.

Once everything is correctly installed and calibration is finished, Smarwi saves the
calibrated distance between opened and closed positions of the window. As can be seen on
image 4.2, Smarwi has 2 sensors. The ridge in/out sensor serves as a protective mechanism
to ensure Smarwi stays on the window in case improper handling or conditions occur. The
sensor pushes the ridge towards the cogwheel with a plastic slider lifted by a spring. If
the cogwheel is locked and an extreme force is applied to the window, the spring is pushed
downwards and Smarwi slides on the ridge. This mechanism ensures plastic parts don’t
break.

Smarwi checks pressure on the open/close sensor and when the sensor is slightly pushed
down, Smarwi stops because it has reached the closed position.

4.4 Communication

Smarwi uses Wi-Fi to be able to communicate with other devices. It first creates an access
point to which a user can connect to (default name prefix for Wi-Fi network (SSID) is
SWR- followed by numbers and a default password is 12345678) and then access a user
interface on the local IP address 192.168.1.1. Since it’s a website, it can be accessed
by any device ranging from all kinds of mobile devices to desktop computers as long as it

17



Open/Close  Cogwheel Ridge in/out
Sensor sensor

Figure 4.2: Front-facing view of Smarwi

has a web browser. Here users can properly configure credentials to successfully connect
Smarwi to the Wi-Fi router, they want to and more importantly, they can set an IP address
of the MQTT broker. They also have an option to supply RemotelD and RemoteKey to
connect to the Vektiva portal, however, this action is not mandatory. Smarwi can fully
work even with no connection to the Internet as Smarwi’s state can be altered in three
different ways and that is using an API (application programming interface) described in
section 4.5, through MQTT messages to which Smarwi is subscribed described in 4.6 or
through the physical button that should be placed next to the window where Smarwi is
installed. Button not only serves as an option to open the window manually but also as a
safety feature to stop Smarwi from currently performed action in case action is not desired.

4.5 HTTP API

Smarwi’s application programming protocol communicates through the HTTP protocol
which can be easily accessible with tools such as curl or simply a web browser. This is
the easiest way to change the state of Smarwi. Communication uses basic request-response
method and there are currently implemented two types of responses which have a simple
text format. It can be either OK when an action is successful and ERR for other cases.
Smarwi can be easily controlled via GET requests to following end-points:

e open — opens the window
e close — closes the window
e stop — stop any current action

e fix — fixes the window

18



e statusn — returns a status message
e lcfg — loads basic configuration
e Icfa — loads advanced configuration

The more advanced commands such as those that save configuration are POST requests
encapsulated and then sent in MIME format to the Smarwi. These requests are more
complicated to simulate and will not be discussed any more.

API can be accessed by both external and local network. Its’ structure from external
network is

https://vektiva.online/api/<REMOTE_ID>/<API_KEY>/<DEVICE_ID>/<command>
HTTP API call from an external network

where REMOTE_ID, API_KEY, DEVICE_ID are parameters that can be obtained from the
Vektiva web interface.
Since WAN communication is implemented using MQTT messages, remote access through
the Vektiva portal will not work if we change the default MQTT broker to a user defined
one.
The command structure for a local network is:

http://IP/cmd/<command>
HTTP API call from a local network

where IP is an IP address of Smarwi. Parameter command is for controlling actuator’s
state. All possible options can be found in the product’s documentation [14].

4.6 MQTT

MQTT [8] protocol or Message Queuing Telemetry Transport protocol is a messaging proto-
col that is designed to work even in unstable networks with limited bandwidth. Therefore,
it fits well into an IoT field where devices send just small chunks of data periodically and
a small delay isn’t a problem. It works on publish-subscribe (PUB/SUB) model what means
there is one MQTT broker which acts as a router and handles all messages sent to him.
MQTT architecture is displayed on image 4.3.

19



}

SUBSCRIBE > CLIENT
SUBSCRIBE

< PUBLISH

MQTT

BROKER

PUBLISH ——>| ¢ y
PUBLISH
«——— SUBSCRIBE

Figure 4.3: MQTT architecture

As we can see the architecture of MQTT is centralized to one broker and multiple clients
connected to the broker. Clients can be either publishing or receiving messages or both of
them simultaneously. Each client can be subscribed to a different topic or even multiple
topics and therefore it receives only messages it intends to.

Topics are similar to what we are already used to in file systems and therefore it creates
a sort of a path where the delimiter is a slash ’/’. When subscribed to topics, wildcards
*#° and ’+’ are available. Wildcard >+’ can be used for single segment wildcard, whereas
’#° can be used for all remaining segments and thus it is mandatory to only use it at the
end of the subscribed topic. Several examples are provided to show how topic subscriptions
work.

If a device publishes a message with topic /ion/dowarogxby/%aabbccddeeff/status
and the client is subscribed to following topics, it:

e # — matches because it accepts every message it receives

e ion/# — matches because it accepts all topics that have the first segment equal to
ion

e ion/dowarogxby/+ /status — matches because it accepts all topics that start with
ion/dowarogxby/ and end with /status

e ion/+/status — doesn’t match because the ,+“ wildcard is only applicable to one
segment

e ion/ — doesn’t match because it only matches topics that are only equal to ion
o # /%aabbccddeeff — invalid subscription

MQTT has a mechanism of retained messages and wills. Retained messages received
by the broker stay stored in the broker storage and are sent to every subscription that
matches the topic without the exception of the new subscriptions. One topic is allowed to

20



have one retained message, therefore if a new message that should be retained is received,
the previous is replaced by the newer one. If a retained message needs to be deleted, an
empty message should be sent to the intended topic. Wills are published by the broker
when the client unexpectedly disconnects from the broker. For this mechanism, PING is
implemented in the MQTT protocol. Will messages are specified when the client connects
to the broker. Smarwi uses wills when is disconnected and the broker publishes a message
to topics online and status to let other clients know it is not available anymore.

The communication as seen at 4.4 runs on the default port 1883 and Smarwi uses
Vektiva’s broker by default. Even though the port can not be altered, the user can define
custom URL of the broker. Because of that, Smarwi can be easily controlled both locally
and remotely via MQTT messages. Message’s topic structure is:

ion/<USER>/%<DEVICE_ID>
Topic structure of Smarwi MQTT messages

where USER and DEVICE_ID can be found in Smarwi’s WebGUI.

An instance of such communication is provided in the following lines. If a message is
sent with topic ,ion/dowarogxby/%aabbccddeeff/cmd“ and message ,status“, Smarwi if
connected to the MQTT broker and is not malfunctioned, responses with:

t:swr

s:250

e:0

ok:1

ro:0

pos:o

fix:0

a:-98
fw:3.4.1-15-g3d0f
mem: 23704
up:8631362
ip:268446218
cid:xsismiO1
rssi:-70
time:1550970087
wm:1

wp:1

wst:3

Client PUB/SUB Broker PUB/ SUB Smarwi

Figure 4.4: Communication between a client and Smarwi

Status message description

A brief explanation of the message can be found in the list below.

21



e t — device type (swr),

e s — state code,

e ¢ — error code,

e ro — ridge out of the device (0 - in, 1 - out),

e ok — OK status — when OK == 1 then RO == 0 and vice versa,
e pos — window position (c - closed, o - open),

e fix — window position fixed (window fixed by device),
e ip — a 32bit number representing IP addres,

e cid — device name,

e rssi — signal strength,

e fw — device firmware version,

e time — device time in seconds,

e up — uptime of the device in milliseconds,

e wm — not documented,

e wp — not documented,

e wst — not documented,

e mem — not documented,

e a — not documented.

Smarwi Status codes

Smarwi produces a wide range of status codes which can be found in the status message in
the ,s“ field. In the end, we can find basic procedures of how are status codes in messages
produced during some tasks.

e 200 — near frame opening,

e 210 — opening,

e 212 — closing but will open,

e 220 — closing,

e 230 — near frame closing,

e 232 — closing from the closed state, opens a little bit,
e 234 — closing from the closed state, closing,

e 250 — no action,

22



e -1 — not calibrated not ready,
e 130 — closing window, finishing calibration,

e 10 — error has occurred.

When opening from the closed state, 200 and then 210 status codes are produced.

When opening from the open state, 212 and then 210 status codes are produced.

When closing from the open state, 220 and then 230 status codes are produced.

When closing from the closed state, 232, 234 and then 230 status codes are produced.
When changing states and outside button is pressed, the 250 status code is produced with
OK and RO set to 0 and then OK set to 1.

Smarwi Errors

Smarwi also detects some errors which can occur during regular usage. Errors can be found
in the status message in the ,e“ field. Following errors were detected and found ways to
reproduce them:

e 0 — no errors have occurred,

e 10 — window seems locked. To reproduce - press on ridge sensor, press on open/close
sensor and send message open,

e 20 — movement timeout. To reproduce - set movement speed to 1 and let it open in
long enough distance so the opening time will reach 30 seconds.

An overview of the complete MQTT communication is described in the appendix A.
During configuration a domain name or an IP address of the broker can be entered but
Smarwi uses a default port for MQTT that is 1883. In the current version QoS and secured
MQTT transmission is not supported. Once connected Smarwi publishes retained status
and online messages and last-will messages of the same types. Such messages can be seen
in the example below. As mentioned earlier last-will messages are published by the broker
when Smarwi does not respond to MQTT PING requests.

Topic: ’ion/dowarogxby/\%600194496fd2/online’
Message: ’1°

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr
s:250
e:0
ok:1
ro:0
pos:o
fix:1
a:-98

23



Chapter 5

Integration design of Vektiva
module

This chapter consists of the proposed implementation details that are planned for the next
several months. Class diagram, design as well as other important parts of the BeeeOn
Gateway are described here. At the beginning DeviceManager as the most important
component is described with an explanation of the main functions that a device manager
fulfill. Afterwards, a class diagram of the Vektiva module is described.

5.1 Device Manager

Each group of devices has to be implemented in a separate module for BeeeOn to be able
to communicate with them. Each module has one main component and that is a DeviceM-
anager. Fach specific device manager act as a hub to receive commands and according to
their meaning, it attempts to perform predefined implemented actions. For example, such
actions can be changing device’s state or collecting data. Gathered data are then shipped
to exporters which are designed to handle sensor data accordingly. DeviceManager is an
abstract class to provide a uniformed API following the principles of polymorphism. It
implements basic functionalities such as command handling and calling appropriate meth-
ods that each module has to implement. For this reason, every module is based on the
DeviceManager class.

5.2 Vektiva Device Manager

On image 5.1 we can see a class diagram of Vektiva module. VektivaDeviceManager inherits
the abstract class of DeviceManager and implements all virtual methods needed to function
properly such as startSetValue, handleAccept or startUnpair.

Part of VektivaDeviceManager is VektivaSeeker which is used to look for Vektiva devices
such as Smarwi. When a new device is found, Gateway let the user know that he is able
to pair the device. When a command for accepting the device is received, VektivaDevice M-
anager adds the device to the list of paired devices. Every time the Gateway starts up, it
has an empty list of paired devices but once it connects to the server it retrieves all paired
devices from the past. After obtaining the list of DevicelDs, Vektiva module attempts to
contact every paired device with a request for the status message. If the device responses in
time, VektivaSmarwi class is instantiated and the device is added to the hash map of found

24



Loggable

DeviceManager VektivaSmarwi

i

VektivaDeviceManager

¥ V

MgttClient VektivaSmarwiStatus

Figure 5.1: Proposed class diagram of the Vektiva module

HTTP | MQTT

status changes propagated

LAN communication

WAN communication

easy to request basic command

easy to request advanced command

simple discovery

simple user configuration

EIENESIESIENEENES
N EIENENENENENEN

OO T = | W N~

small network overhead

Table 5.1: Comparison between HT'TP and MQTT

devices. Hash map consists of key-value pairs where the key is a DevicelD and the value is
an instance of the device. An instance of the device is then used throughout the lifetime
of the Gateway app to manipulate with an actual Smarwi device. Apart from this initial
process of finding already paired devices, the user can start the discovery of new devices at
any time. The Gateway then requests status messages from all found devices and confirms
their availability.

An instance of MqttClient provides an easy way to interact with Smarwi. VektivaSmarwi
is a class which represents standalone Smarwi device and therefore it allows to manipulate
with the actual device. VektivaSmarwiStatus is a class which reproduce a status message
that is parsed and therefore is more accessible and is easier to manipulate with. As men-
tioned in section 4.4, Smarwi listens to commands received by HT' TP and MQTT messages.
Comparison is shown in table 5.1 and further explaination of every aspect included in the
table is provided in the following list.

25



Plain TCP session | Outcoming bytes | Incoming bytes | Number of packets
HTTP 675 431 10
MQTT [Wi-Fi] 615 352 11
MQTT [Ethernet] 601 342 11

Table 5.2: MQTT vs HTTP performance tests from Flespi [15]

. There are three ways how to change the state of Smarwi as described in 4.4. When a
state change occurs (e.g. opening the window), Smarwi publishes an MQTT message
no matter which way was used to change the state. As HT'TP is a stateless protocol,
it is impossible for Smarwi to let interested clients know that a change has happened.
For this reason, to keep up-to-date information in which state Smarwi is, it is needed to
periodically check the status by sending requests to Smarwi. Since the HT'TP protocol
defines one-to-one communication, every client that is interested in this information
needs to contact Smarwi individually, which even more clutters the network. As a
result, MQTT seems as a much better solution since it works on one-to-many basis
and publishes a message after each status change.

. Ability to communicate on a LAN network.

. Ability to communicate on a WAN network. While it would be possible for HTTP
(via port mapping in the router’s settings), it’s not straightforward to configure for
an ordinary user.

. Basic commands include: open, close, stop, statusn.
. Advanced commands include scfg, acfg, acfa or others.

. As previously discussed HTTP is a stateless protocol and thus when Smarwi connects
to the network, it is not aware to whom it should send a message that it has connected.
To find new devices, a scan of the whole network would be required which can be
resource expensive. In the case of MQTT communication, as soon as the device
connects to the network, it publishes online and status messages to let interested
clients know, it is available.

. When configuring Smarwi initially, the user has to input the network SSID and the
password to be able to connect to the desired network. As soon as Smarwi is connected
to the network, it can be controlled via HT'TP API. To set up MQTT communication
and connect Smarwi to the BeeeOn Gateway, the user has to change the MQTT
broker address to the IP address of the device on which Gateway runs.

. According to performance and power profiling tests done by Flespi [15] and Stephen
Nicholas [17] MQTT requires 10 % less traffic than HTTP. That means it not only
saves the bandwidth but also it allows bigger message throughput. Tests also show
MQTT uses less power than HTTP client however, in case of Smarwi this is negligible.
Examples of tables can be seen at 5.2 and 5.3.

26



Receiving HTTPS MQTT
Messages / Hour 3628 263314
Messages Received | 524 / 1024 | 1024 / 1024

Sending HTTPS MQTT
Messages / Hour 5229 23184

Table 5.3: HTTPS vs MQTT comparison from Stephen Nicholas [17]

5.3 Communication

To better understand the way Smarwi works, reverse research engineering was conducted to
reveal communication between a client and Smarwi and data that were captured, were writ-
ten down and described in the best manner possible. Communication is almost completely
described in the appendix A with little information missing that couldn’t be deciphered.
Reverse engineering was done by a tool named Wireshark and being in the middle of the
communication between Vektiva broker and Smarwi. In other words, a computer with
Wireshark created an access point to which Smarwi was connected to. After that, every
possible option in the web interface was executed to reveal all messages that are involved in
the communication. To have a better idea of how the communication worked please have
a look at 5.2. The dashed arrows show a relationship between the two elements while solid
bidirectional arrows show the flow of communication.

Vektiva's
MQTT
broker

Laptop with
an acces
point

4 A

Running on the ."

v '
Connected to the

Web browser
Vektiva portal
WebGUI

\
v
\

Controls Smarwi through

Figure 5.2: Communication setup during the process of reverse engineering

5.3.1 Vektiva’s broker

As stated earlier in 4.6, communication is done on port 1883 and in case of Vektiva’s default
broker server! an authentication is required to be able to conect to their broker. As 1883

'https://broker.vektiva.com

27


https://broker.vektiva.com

port is the default for unencrypted MQTT communication, getting a username (RemotelD)
and a password RemoteKey can be easily obtained if MITM attack is performed since they
are transferred in a clear text form. With credentials a hacker can connect to the broker,
however, the broker after successfull connection only allows to control devices or subscribe
to topics that are assigned to the same RemotelD. That means if RemotelD is equal to
sdowarogxby*, it only grants us access to the topic of ion/dowarogzby/#. This leads to
exploiting all devices that the user has registered to the broker and a possible threat of
altering windows to an undesired position.
An example of publishing a message to the Vektiva’s broker is provided.

mosquitto_pub -h "broker.vektiva.com" -t "ion/REMOTEID/%MACADDRESS/LAST_SEGMENT"
-m "MESSAGE" -u "REMOTEID" -P "REMOTEKEY" -r

5.3.2 Gateway’s broker

Since the main purpose of the Gateway is to search for devices on a local network and
control them, no authentication is required to connect to the broker. Communication is
done on port 1883.

5.3.3 On connect

When Smarwi is attempting to connect to the specified broker, together with credentials
it is sending the last-will message which is published by the broker, when Smarwi does not
respond to the PING requests for an extended period of time. Once Smarwi successfully
connects to the broker, it publishes retained online and status messages.

5.3.4 Proposal of communication design

As mentioned in 4.4, Smarwi is able to communicate both on local and wide-area networks,
however in regards to network, pure LAN communication between the device and the
Gateway is chosen as the best option since the network is not only less cluttered but also
the communication is more reliable and to a greater extent more secure.

When deciding what protocol for communication to use table 5.1 was created to clearly
presents the advantages of each protocol. According to the criteria presented in the table,
MQTT is chosen as a way of communication.

Inside the VektivaSmarwi class there are 4 modules, one which is only an output module
and the other 3 are controllable. The list of the modules with description is below where
they are ordered respectively to their module ID starting from 0.

e open/close module — to either open or close the window completely,

e open to module — to open the window measured in percentage of the calibrated
distance,

e un/fix module — to un/fix or to un/lock the window by Smarwi,

e rssi module — output module to provide information about the strength of the Wi-Fi
signal.

28



Chapter 6

Implementation into the BeeeOn
system

The chapter presents the results of the gradual progress of the final implementation and
the testing that was conducted in each stage of the development. Several not so fortunate
decisions were unveiled in the proposed plan as the development progressed but thanks to
well timed code evaluations, they were corrected. As no code design is fault-proof, the
proposed implementation plan was no exception although in many regards it was correct.

Development was conducted in series of iterations, where in the end of each iteration
code review took a place. This process allowed effective communication and minimum
misunderstandings. On average each iteration was long about 9-10 days. In the first half
of iteration, time was reserved for fixing the code and implementing goals defined in the
previous iteration. When work was done and tested, code was commited to the repository.
The rest of the time was reserved for code review and additional discussion.

Several libraries has helped to avoid code repetition and speeded up the whole develop-
ment process. The most used ones were std and Poco [9] C++ libraries. Poco consists of
several modules that range from string manipulation through XML, JSON or ZIP manip-
ulation to network and cryptographic operations.

6.1 Implemented parts of the proposed plan

As described in 5.2 the main function of VektivaDeviceManager is to control all paired
Smarwis and search for other available devices. This remained unchanged together with
the class diagram which can be seen at 5.1. For communication MQTT protocol was chosen
as a more reliable and versatile option compared to the HT'TP. Additionally, dependency
diagram generated from the code at 6.1 can confirm class diagram has not changed.

6.2 Parts changed

During the development, several decisions were made where the actual implementation
started to differ from the proposed plan.

VektivaDeviceManager has 2 instances of MQTT clients, one of which is constantly
passively analyzing incoming messages and the second one controls individual Smarwis.
Since MQTT messages in the current implementation are impossible to sort through and
can only be buffered until they are returned from the client, it was clear that 2 instances are

29



needed. In case of one instance the problems such as finding a device while waiting to finish
the operation might have occurred. To be more elaborate, it takes at least 3 seconds for the
Gateway to receive the final message of the operation. Its’ aim is the status message which
signalises an idling state from the specific Smarwi. While waiting, several less important
messages are thrown away and possibly with them a message about the new device in the
network. As MQTT has no way of device discovery, the device restart would be necessary.

To further explain the first instance of MQTT client, if an online message of unknown
Smarwi is received, it creates a VektivaSmarwi instance and adds it to the list of found
devices. In another case, if a status message of paired Smarwi is received and the status
code equals to the idling state (250), the Gateway ships the data to the exporters. The
instance is only used for analyzing and never for publishing any messages. The process of
analyzing the received MQTT message can be seen at diagram 6.2.

The second instance is solely used for manipulation with other Smarwis. To ensure one
to one communication, the second instance is protected by mutex and topics and messages
are filtered by a regular expression. Before any modification, a message buffer is cleared
to make sure only the newest messages are analyzed. Afterwards, a command is sent to
the specified device and the Gateway awaits for the confirmation message. In case message
delivery timed out or a change led to failure, exceptions are thrown.

As mentioned in 5.2 part of the VektivaDeviceManager class is a seeker to add new
devices. When the Gateway receives command listen, all found devices are contacted with
a message requesting for their status response. NewDeviceCommand is then dispatched for
every device that responds in time. This strategy can be also beneficial to determine the
last time paired, infrequently used device was active.

6.3 Implementation tests

Most of the testing was manually performed as it’s very hard to simulate network traffic
and device behaviour in automated tests. Until the modified Gateway was able to commu-
nicate with the server, tests were conducted thanks to TestingCenter and an application
netcat. TestingCenter as mentioned in the 2.6 act as a server for developers to verify
newly implemented features. After communication with the server was established, the
testing was done with the web browser. To ensure that message parsing is correct, several
unit tests were written together with tests for MQTT message building and for validating
MQTT message topic. These tests were implemented with respect to other tests in the
testing framework CppUnit.

30



S[NPOU BAIINOA JO

wreIgerp Aouspuado(] :T°9 9IS

/TP

ddosmels
MBS
BAIEA

ddousbBeuepyasaagennyan,

Y- 5524ppYdI

412N

Jodod

3

y-snieis

TMUBWS y-a1gebbo y-adfianpow Y- aIa 1 npok

enTiyan rah=1h] /12pou /1epow

ABATINSA

F K F3 F Y
Y~ SSSJAPPYITH y-juat1d33ibu Yy-gr=>ta=q 1sT]
fi=u fi2u f12pow
F FY A 3 F S F3
Y- aayasg Y- TMUBWS . y-aasaey Y- aszTUSHOL
1oed1sqy Joidan eATINSA u mummLMrm:r_mm Jagquny Butaas y-Butils/os0d
FERT-E] JenTiyan £=p Josog Josog
3 3 [ 3 i 7 3
Y- qaomoulsy y-aabeuey . y-uorssasdx3y .
buty>o1g a3TAaQ Y- xainpsosod Ut uo.un_u_un..un.u s aenbay y-u mn..uumomE.n._. dew
/1Tan fai02 £ d /fooco4d £ d
3 3 3 ﬁ i ﬁ 3 ﬁ 3 3
y-J=beuen Y- puewwo)
Y XT 151433 TASQ Y- elegiosusg EEY LT y-dwejsawt) us1STi1ABMaLE
/12pow /12pow EATIHIA Josod 15Tl 1e9
Jentasen /Spuewwod
r r r r r
|~ pUBLWOY U~ pUBWWoD R B B
. . U~ puewwo] Y- puewwo) y-aayoiedstg
ura1qeisafur 4 ._.DW\_M“M Nn_oam W_MMM“M meMWWMm 1dasoyadTaag 22TAIAMSN puUBWWOD
/5puewwo> /spueuwo> /spuewwo /Spuewwod FERLE]
r r 3 r

dd> - tmuews
EATINOA

31



YES

Message received

Is it "status"

message and is it
valid?

Retrieve device info
from the topic

|

Build device ID

Parse status
message

Is the device
in idling state?
(s == 250)

YES

Ship Smarwi data
by exporters

Is the device
paired?

Retrieve device info
from the topic

A 4

Instantiate Smarwi
class

A 4

Ignore the message

Request status from
the device

YES

Ignore the message

Has the device
been already
found?

Update the device
info in the list of
found devices

Status message
received in time?

Is it "online"
message and is it
valid?

Ignore the message

Ignore the message

Add the device to the
list of found devices

Figure 6.2: Decision tree of analyzing the received message

32



Chapter 7

Testing - Smarwi emulator

Often times, we can find ourselves in a situation when our work depends on something we
don’t possess at the time and therefore we are unable to continue, until we obtain it. It
can range from credentials, through a file to a tangible thing. It can be possible to store
all electronic information we need to small hard-drives but it can be usually challenging to
always carry around bulky IoT devices. For this reason, emulators exists. They substitue
devices that they are specifically designed to, by simulating their normal operation as
close to reality as possible. Additionally, since running multiple instances of the emulator is
generally cheaper than buying dozens of devices, they can be used in stress or load testing to
prove the tested system is reliable and does not contain bugs. For this reason an emulator
was built that is easy to control, has a wide variety of options and at the same time is
easy enough to run on any platform. Vektiva Smarwi emulator provides a user interface
from which a user is able to manage multiple instances, dynamically change the number
of Smarwis and at the same time, they all act as standalone devices which communicate
correctly with other programs similarly as Smarwi.

7.1 Implementation

Vektiva Smarwi emulator was implemented in Python 3 as a multithreaded application,
providing a REST API to interact with the emulator. On top of that we can find a graphical
user interface provided on a page hosted on the local server. For the user interface HT ML)
together with CSS and jQuery as a Javascript framework. In the backend, Python 3 was
used together with a set of libraries that helped to speed up the development process. From
the main ones Paho client, Threading and socketserver can be mentioned.

7.1.1 Routing

To be able to recognize what action user wants from the emulator, it needs some decision
making process, in this case it is implemented as a router. Since the whole application runs
on a light HTTP server, it can be controlled via specified end points. Once the request is
received by the HT'TP server, the URL is parsed and the path is passed to the class Router.
The path is divided into segments where the delimiter is a slash. If the first segment is
correct, it is passed to the class VektivaSmarwiHandler for further processing. In case the
first segment is not recognized by the Router, the main page is returned.

To have a better idea of how the emulator works, diagrams of decision trees can be
seen at 7.2 and 7.3. Figure 7.2 shows the internal structure of the whole emulator. At the

33



beginning we can see HT'TP request received by the server, which calls Router to further
analyze the request. Following conditional control statements decide what is the outcome of
the received request. In case the first segment of the URL contains a valid MAC address, the
request is passed to the VektivaSmarwiHandler where a correct action is executed according
to the request attributes.

Figure 7.3 shows the decision tree of one of the internal methods in the Router. It can
represent the node "Return method output” in the 7.2. It shows the endpoint /devices
which have a REST interface to enable easy manipulation with Smarwis. In the first three
conditional control statements, we are distinguishing between GET, POST and DELETE
request methods. GET method returns an array of Smarwis serialized in JSON, POST
request passes a request to the VektivaSmarwiHandler which validates data received in the
body of the request and in case of success a new Smarwi is added to the list of running
Smarwis. DELETE method removes the Smarwi from the list of existing Smarwis if a valid
MAC address is in the second segment of the URL.

7.1.2 Smarwi handling

After the parsed path has been passed to the VektivaSmarwiHandler, according to other
segments of the path, the correct action is performed. The class’ main goal is to keep the
manipulation and storing Smarwis separated from the routing process. It holds a list of
created Smarwi instances and performs operations on either the whole list or a specific
Smarwi.

General operations over Smarwi instances include:

e adding — creates a new Smarwi instance and adds it to the list,
e deleting — deletes the specified instance from the list,

e retrieving — retrieves the list of Smarwis with their status.
Specific Smarwi operations include:

e open/close — opening or closing the window,

e on/off — turning on or off Smarwi,

e stop — provides an immediate stop and unfixing the window,

e fix — fixing the Smarwi, which locks the window and can’t be moved mechanically,
e status — provides the status of the Smarwi,

e error — schedules an error. This action does not throw an error state immediatelly
but just after opening or closing begins as the real behaviour of Smarwi.

Following sections present a short explanation of how to use the respective parts of the
emulator. Even though the emulator was designed to be as intuitive as possible, following
sections will try to guide you when in doubt.

7.2 API endpoints

API provides an easy way to programmatically control the emulator. It is built in REST
architectural style following the design guidelines. All CRUD operations can be found in
table 7.1.

34



Request | Route Description

type

GET /devices lists all devices available in the emulator

POST /devices with correct JSON in the body creates new
device

DELETE| /devices/<MAC> deletes the device with the MAC address pro-
vided in the MAC parameter

GET /<MAC>/open opens the device specified in the MAC pa-
rameter

GET /<MAC> /close closes the device specified in the MAC pa-
rameter

GET /<MAC>/on turns on the device specified in the MAC pa-
rameter

GET /<MAC> /off turns off the device specified in the MAC pa-
rameter

GET /<MAC> /error/<ERRNO> | schedule error on the device specified in the
MAC parameter with the error number spec-
ified in the NUMBER parameter

GET /<MAC> /stop stops the current action carried out on the
device specified in the MAC parameter and
unfixes the window

GET /<MAC> /fix fixes the window by the device specified in
the MAC parameter

GET /<MAC> /status publishes the status message of the device

specified in the MAC parameter

Table 7.1: Documentation of an API of Vektiva Smarwi emulator

35




7.3 MQTT

Part of Vektiva Smarwi emulator is an MQTT client and it works by default on localhost
however, this can be easily changed by providing a host name and a port to connect to.
This enables using the emulator on the WAN network through MQTT messages. Adding
new devices is however required to do locally either in the user interface or through API.
Messages sent by the emulator are described in A. Each device can be controlled the same
as Smarwi or similarly to the API commands. As an example, we can find a command to
schedule an error on Smarwi.

mosquitto_pub -t "ion/dowaroxby/%aabbcceeddff/cmd" -m "error/20"
Scheduling an error over MQTT

7.4 User interface

As mentioned earlier, user interface built in HTML, CSS and a Javascript framework jQuery,
provides an easy access to the main to control all emulated Smarwis. It is possible to work
with the graphical interface even with no connection to the Internet, however as it is using
jQuery it needs to be either loaded from a CDN or a local file. By default the CDN is used,
however a user can put the jQuery file into the same folder as the emulator and name it
accordingly to the HT'ML page.

In the image 7.1 in the top left corner we can see a Reload button to retrieve the status
of all devices in the emulator. Next, we can see Generate MAC: checkbox which allows us
to automatically generate MAC address when creating a new device. If we wish to input a
specific MAC address we can use the text field next to the MAC: field. The last element is
a Create button that creates a new device if the correct MAC address is provided. Below,
we can find a list of all instantiated Smarwis that we can control.

e online — availability of Smarwi

— green — online
— orange — error occurred

— red — offline
e position — position of Smarwi

— open

— close
e mac address — MAC address of Samrwi
e actions — available actions to Smarwi

— open — opens the specific Smarwi

— close — closes the specific Smarwi

— fix — fixes the window by the specific Smarwi

— stop — stops the current action the specific Smarwi and unfixes the window

— on — turns on the specific Smarwi

36



— off — turns off the specific Smarwi

— throw error — schedules error on the specific Smarwi and throws error imme-
diately as open/close action is performed

error schd — notices that error is scheduled on the specific Smarwi, can be
canceled by stop action

delete — deletes the specific Smarwi

Reload ) Generate mac: MAC: Create

Online Position Mac Address Actions
. CLOSE e61591873cll oOPEN ) CLOSE) FIX) SsTOP ) OFF )(ERRORSCEHD) (HEED

OPEN 6c4f3cf04c5e OPEN ) CLOSE) FIX) STOP ) OFF )(THROWERRCR) (D
. CLOSE 7d47a42210bf oOPEN ) CLOSE) FIX) _STOP) on ){(THROWERRGR) (D
. OPEN cb46efl66dld o©PEN) CLOSE) FIX) sToP ) oOFF )(THROWERRCR) (DD

Figure 7.1: User interface of Smarwi emulator

7.5 Scheduling and fixing errors

As stated several times before, errors can not be thrown immediately after receiving a
command to do so because it would not simulate real life operation of Smarwi. Instead, we
can schedule an error and it is thrown as soon as emulator attempts to manipulate with
the window with the specific Smarwi.

To follow Smarwi operation as close as possible, an error can be fixed by sending a stop
command. It both fixes an existing error state and unschedule any error that is supposed
to be thrown.

37



Stop the thread

YES

Request received
by the HTTP server

Passed to the Router

Is the first segment of URL
a method of the Router?

Return method
output

instance already
running in a thread?

Request passed to

the VektivaSmarwiHandler

s an operation on Smarwi

Is the second
segment of URL
a method of Smarwi?

l

Add the thread to the
list of running threads

v

Execution passed to
the Smarwi instance

|

Return success state

Is the first segment of URL
a MAC address?

Return error state

Figure 7.2: Decision tree of the emulator

38

Return index.html




Request passed to
the Router

Is it a GET request?

Return serialized
array of instantiated

YES

|

Does JSON property
"macAddr" contain valid MAC

Smarwis

YES Is it a POST request?
Loads JSON data
from the request

body

Is it a DELETE request?
NO
YES
Is the MAC address specified? NO
YES Does JSON has a property

"macAddr"

NO

address?

Y

Lowercase MAC
address

Remove from the list
Return error state of Smarwis in the Return error state

VektivaSmarwiHandler

)

Instantiate Smarwi
class

Return success state

I}

Add to the list of
Smarwis in the
VektivaSmarwiHandler

|

Return success state

Figure 7.3: Decision tree of the emulator’s ”/devices” endpoint

39



Chapter 8

Conclusion

In this thesis a successful implementation of a new Vektiva module was described which
allowed a new device called Smarwi to be controlled from the BeeeOn interface. Smarwi, a
name of the implemented device, is a smart window opener connected to the network with
Wi-Fi and communicating with HTTP and MQTT.

BeeeOn system was the first thing that was needed to study to know, how it works
and what parts it consists of. Parts of the system related to the implementation of new
modules were a primary focus afterwards. After that, the possibilities of Smarwi imple-
mentation were researched and with gathered data a decision about the best strategy for
Vektiva module implementation has been made. The module was designed to follow pat-
terns of object-oriented programming and a set of standards established by the BeeeOn
community. While MQTT and HTTP are available options to control Smarwi with, the
whole communication with the BeeeOn Gateway uses only MQTT protocol as it had more
advantages compared to HTTP. After reading the documentation of Smarwi and making
it more comprehensive, usage of the MQTT client in the BeeeOn Gateway was explored to
further understand possibilities of implementation.

Implementation was conducted in a series of iterations with an average duration of
10 days. Implemented parts were regularly tested either with manual testing or unit tests.
Manual testing included work with the device over the network while unit tests were mostly
testing message parsing and message creation.

To further verify the correctness of the implementation and to allow Vektiva Smarwi
development even with no presence of an actual Smarwi, an emulator was developed with
an intention to substitue Smarwi as best as possible. In the emulator multiple instances can
be managed to fully simulate a network with Smarwis. It has proven the implementation
of Vektiva module in Gateway works with multiple instances of Smarwi at the same time.

40



Bibliography

1]

BlickDomi actuator. [Online; Accessed 15.01.2019].
Retrieved from: https://www.blickdomi.com/blickdomi-compact.html

Horizontally sliding actuator. [Online; Accessed 15.01.2019].
Retrieved from: http://www.smartfenestra.com/products/

Image of the arm-folding actuator. [Online; Accessed 19.05.2019].
Retrieved from: https://www.belkin.com/uk/p/P-F7C027/

Image of the arm-folding actuator. [Online; Accessed 19.05.2019].
Retrieved from:
https://www.aihome.my/product/philips-hue-single-bulb-a60-e27/

Image of the arm-folding actuator. [Online; Accessed 06.03.2019].
Retrieved from:
https://cellcode.us/quotes/openers-window-electric-casement.html

Image of the chain actuator. [Online; Accessed 05.03.2019].
Retrieved from:
https://www.window-openers.com/ackb-electric-chain-actuator/

Image of the linear actuator. [Online; Accessed 05.03.2019].
Retrieved from: http://coral-home.over-blog.com/article-how-to-remote-
control-skylight-window-116201643.html

Message Queuing Telemetry Transport. [Online; Accessed 22.03.2019).
Retrieved from: http://mqtt.org/documentation

Poco, C++ library. [Online; Accessed 22.03.2019).
Retrieved from: https://pocoproject.org/

Solar smart linear actuator. [Online; Accessed 13.01.2019].
Retrieved from: https://www.solarsmartopener.com/store/

Teal products linear actuator. [Online; Accessed 14.01.2019].
Retrieved from: https://wuw.tealproducts.com/product/actuators/linear-
type/rack-pinion-actuators/mingardi-sl-rack-actuator

Types of electrical window actuators. [Online; Accessed 01.05.2019).
Retrieved from: https://www.tealproducts.com/products/actuators

41


https://www.blickdomi.com/blickdomi-compact.html
http://www.smartfenestra.com/products/
https://www.belkin.com/uk/p/P-F7C027/
https://www.aihome.my/product/philips-hue-single-bulb-a60-e27/
https://cellcode.us/quotes/openers-window-electric-casement.html
https://www.window-openers.com/ack5-electric-chain-actuator/
http://coral-home.over-blog.com/article-how-to-remote-control-skylight-window-116201643.html
http://coral-home.over-blog.com/article-how-to-remote-control-skylight-window-116201643.html
http://mqtt.org/documentation
https://pocoproject.org/
https://www.solarsmartopener.com/store/
https://www.tealproducts.com/product/actuators/linear-type/rack-pinion-actuators/mingardi-s1-rack-actuator
https://www.tealproducts.com/product/actuators/linear-type/rack-pinion-actuators/mingardi-s1-rack-actuator
https://www.tealproducts.com/products/actuators

[13] Use of linear actuators and comparison between linear and chain actuators. [Online;
Accessed 04.05.2019].
Retrieved from: https://arens.com.au/electric-products/

[14] Vektiva API documentation. [Online; Accessed 19.01.2019].
Retrieved from: https://vektiva.gitlab.io/vektivadocs/api/api.html

[15] Bartnitsky, J.: MQTT vs HTTP performance tests. Jan 2018. [Online; Accessed
24.02.2019].
Retrieved from: https://flespi.com/blog/http-vs-mqtt-performance-tests

[16] Necasova, K.: Extension of wireless sensor protocol. May 2017. [Online; Accessed
28.12.2018].
Retrieved from: https:
//www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=159153

[17] Nicholas, S.: MQTT vs HTTP comparison. May 2012. [Online; Accessed 22.02.2019].
Retrieved from:
http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https

[18] Cizek, J.: Na brnénské FIT se rodi BeeeOn. Univerzdilni chytrd domdcnost. February
2016. [Online; Accessed 28.11.2018].
Retrieved from: https://www.zive.cz/clanky/na-brnenske-fit-se-rodi-
beeeon-univerzalni-chytra-domacnost/sc-3-a-181423/default.aspx

42


https://arens.com.au/electric-products/
https://vektiva.gitlab.io/vektivadocs/api/api.html
https://flespi.com/blog/http-vs-mqtt-performance-tests
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=159153
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=159153
http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https
https://www.zive.cz/clanky/na-brnenske-fit-se-rodi-beeeon-univerzalni-chytra-domacnost/sc-3-a-181423/default.aspx
https://www.zive.cz/clanky/na-brnenske-fit-se-rodi-beeeon-univerzalni-chytra-domacnost/sc-3-a-181423/default.aspx

Appendix A

Smarwi MQTT communication

A.1 MQTT messages

Settings->Info
Command

stat

Description

Status of Smarwi, which consists of multiple fields is returned.
e t — device type (swr)
e s — state code
e e — error code
e ro — ridge out of the device (0 - in, 1 - out)
e ok — OK status — when OK == 1 then RO == 0 and vice versa.
e pos — window position (c - closed, o - open)
e fix — window position fixed (window fixed by device)
e ip — 32bit number representing IP addres
e cid — device name
e 1ssi — signal strength
o fw — device firmware version
e time — device time in seconds
e up — uptime of the device in milliseconds
e wm — unknown

e wp — unknown

43



e wst — unknown
e mem — unknown

e a — unknown

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr

s:250

e:0

ok:1

ro:0

pos:c

fix:1

a:-98
fw:3.4.1-15-g3d0f
mem: 25416
up:477890
ip:268446218
cid:xsismiO1

rssi:-58
time:1550968238
wm:1

wp:1

wst:3

Settings->Basic
Command

lcfg

Description

Loads a basic configuration.

e ssid — name of the Wi-Fi network Smarwi is connected to

e pass — password used to authenticate when connecting to Wi-Fi network

e ssidap — name of the Wi-Fi network that Smarwi creates when set to AP mode

e passap — password for connecting to the Wi-Fi network created by Smarwi

e mode — current mode in which Smarwi is (cli - client, ap - access point)

e dst — Daylight saving mode (more described in Settings->Time)

e zone — Time zone in which Smarwi is (more described in Settings->Time)

44



e wsleep — hours in which Wi-Fi network (that Smarwi is connected to) is planned to
be turned off. (more described in Settings->Advanced)

e mqttsvr — MQTT broker for communicating with Smarwi

e mgqttuser — known as RemotelD, user ID according to which Smarwis can be assigned
to one user

e mqttpass — RemoteKEY

e mqgttport — port to which Smarwi connects to when communicating with MQTT
broker

e swrname — device name

e lat — latitude (more described in Settings->Advanced)

e lon — longitude (more described in Settings->Advanced)

e phym — WiFi PHY Mode (more described in Settings->Advanced)
e unst — unknown

e sunalgo — unknown

e mqttka — unknown

e rsetup — unknown

e rasetup — unknown

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/config/basic’
Message:

ssid:1uksPC
pass:A0CqjsTF
ssidap:SWR-496fd2
passap:12345678
mode:cli

dst:1

zone: 60

rsetup:1
rasetup:1
wsleep:0
mqttsvr:10.42.0.1
mgttuser:dowarogxby
mqttpass:53214716
mgttport:1883
mqgttka:30
swrname:xsismiO1
1at:50.088001

45



lon:14.420000
sunalgo:0
phym:b

unst:0

Settings->Basic->Select Wifi Network
Command

Scan

Description

Once clicked on dropdown named ,Select Wifi network”, Smarwi scans for available net-
works in his surrounding area and shows it appropriately in a dropdown menu.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/wlist’
Message:

-30|Vodafone-4AF188]|9
-45|1uksPC|1

-76 | MEO-WiFi|6
-78|MEO-18CF7D|6
-83|Vodafone-23280A(3
-85|Vodafone-DESSES| 1
-89 |MED-A2F510]1

-89 |MEO-WiFil1
-89|JCM|8

-89 |Vodafone-CF6DBO | 5
-90|Vodafone-25F158]3

Settings->Basic->Save

Command

scfg01/1|swrname:xsismiO1
ssid:1uksPC
ssidap:SWR-496fd2
mode:cli
mqgttuser:dowarogxby
mqttpass:53214716

Description

After button is clicked, it sends an actual state of configuration to Smarwi to save.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/online’
Message:

46



Settings->Basic->Apply
Command

acfg01/1|swrname:xsismiOl
ssid:luksPC
ssidap:SWR-496fd2
mode:ap
mgttuser:dowarogxby
mqttpass:53214716

Description

Applies currently set settings to Smarwi without saving them. When ,mode” is set to ,ap“,
Smarwi switches to access point mode. If password is not specified, Smarwi uses default
»12345678“

Sample return

No message is returned.

Settings->Basic->Reboot
Command

boot

Description

Smarwi is rebooted.

Sample return

No message is returned.

Settings->Advanced
Command

lcfg

Description

Loads configuration of Smarwi.

Sample return

Same as Settings->Basic

47



Settings->Advanced->Apply
Command

acfg01/1|mqttsvr:broker.vektiva.com
wsleep:2113665

lat:50.088002

lon:14.420001

phym:g
Description

Applies settings currently set on configuration ,,Advanced“ page.

e wsleep states for Wi-Fi off hours, where hours in which Wi-Fi will be off can be
selected. They are in binary order where 0 o’clock is an least significant bit. 2113665
as a decimal or 1000000100000010000001 in binary therefore selects 0, 7, 14, 21 hours
as Wi-Fi off hours.

e Phym states for WiFi PHY Mode. 3 options are available and that is:

e — 802.11b (set as b)
— 802.11g (set as g)
— 802.11n (set as n

)
e lat states for latitude (N/S) in degrees

e lon states for longitude (E/W) in degrees

Sample return

No message is returned.

Settings->Advanced->Save
Command

scfg01/1|mqttsvr:broker.vektiva.com
wsleep:2113665

lat:50.088002

lon:14.420001

phym:b

Description

Saves settings from ,,Advanced“ tab to Smarwi.

Sample return

No message is returned.

48



Settings->Finetune
Command

lcfa

Description

Loads a finetune configuration of Smarwi. In this configuration changes related to movement
speed, power or window position can be made

e vpct — Maximum open position

e ospd — Movement speed

e ofspd — Near frame speed

e orpwr — Movement power

e ofpwr — Near frame power

e ohcpwr — Closed holding power

e ohopwr — Open holding power

e hdist — Window closed position finetune
e lwid — Window locked error trigger

e cfdist — Calibrated distance

e cvdist — unknown

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/config/advanced’
Message:

vpct:97
ospd:85
ofspd:3
orpwr:77
ofpwr:5
ohcpwr:46
ohopwr:41
hdist:-2
1wid:23
cfdist:2560
cvdist:79488

49



Settings->Finetune-> Apply
Command

acfg01/1|ospd:87
ofspd:4

orpwr:79

ofpwr:7
ohcpwr:47
ohopwr:43
hdist:-3

lwid:24

vpct:95
cfdist:2560

Description

Applies finetune settings to Smarwi configuration.

Sample return

No message is returned.

Settings->Finetune->Save
Command

scfa01/1|ospd:87
ofspd:4

orpwr:79

ofpwr:7
ohcpwr:47
ohopwr:43
hdist:-3

lwid:24

vpct:95
cfdist:2560

Description

Saves finetune settings in Smarwi. Settings are described in A.1.

Sample return

No message is returned.

Settings->Finetune->Reset to defaults
Command

rcfa

50



Description

Resets finetune settings to defaults except field named Calibrated Distance. Therefore
recalibration is not needed.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/config/advanced’
Message:

vpct:100
ospd:40
ofspd: 40
orpwr:50
ofpwr:60
ohcpwr:60
ohopwr:30
hdist:0
lwid:20
cfdist:2560
cvdist:79488

Settings->Calibration->Stepl
Command

stab

Description

Window position is saved in its’ closest position to window frame while we push it towards
a window frame.
Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr

s:250

e:0

ok:1

ro:0

pos:c

fix:1

a:-98
fw:3.4.1-15-g3d0f
mem: 25240
up:6041397
ip:268446218

51



cid:xsismiO1

rssi:-59
time:1550957092
wm:1

wp:3

wst:3

Settings->Calibration->Step2
Command

cstart

Description

Window position is recorded in its’ loose state or a state in which window stays relatively
closed without applying any force to it.
Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr

s:110

e:0

ok:0

ro:0

pos:c

fix:1

a:-98
fw:3.4.1-15-g3d0f
mem: 25240
up:6121679
ip:268446218
cid:xsismiO1

rssi:-57
time:1550957172
wm:1

wp:3

wst:3

Settings->Calibration->Step3
Command

cend

52



Description

We open window to a desired open state. Smarwi measure the maximum open position.

Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’

Message:

t:swr

s:130

e:0

ok:0

ro:0

pos:o

fix:1

a:-98
fw:3.4.1-15-g3d0f
mem: 25240
up:6197250
ip:268446218
cid:xsismiO1

rssi:-55
time:1550957248
wm:1

wp:3

wst:3

Settings->Time->Save settings
Command

scfg01/1|dst:2
zone:210
ntp:pt.pool.ntp.org

Description

Saves settings related to time to Smarwi.

values are:
e 0 — DST off

e 60 - DST on +1h

30 — DST on +30min

1 - Auto EU

2 — Auto USA

»dst“ means Daylight saving mode. Possible

53



»zone“ means what time zone is selected. Value of 0 means time zone is set to UTC.
According to this time zone value can be either more, equal or less than zero. Value in this
field means how many minutes it is distant from UTC time zone. Values range from -720
to +765. Possible values are:

e 0 — UTC zone

e 60 — +1h

e 120 — +2h

e 180 — +3h

e 210 — 4+3h 30min

e -60 —-1h

,atp® is an NTP server.

Fields ,dst“ and ,zone* are loaded from Smarwi config/basic(,lcfg”) message, while
field ,ntp“ is most likely an artificial field, which is not loaded from anywhere and is just
added by Javascript.

Sample return

No message is returned.

Settings->Update->Update Firmware
Command

updf

Description

Proceeds to update firmware in Smarwi if any update is available.
Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr
s:250

e:0

ok:1

ro:0
pos:c
fix:1
a:-98
fw:3.4.1-15-g3d0f
mem: 25560
up:329119

54



ip:268446218
cid:xsismiO1
rssi:-53

time: 1550968090
wm:1

wp:1

wst:3

ur:2

A.1.1 Open
Command

open; 100

Description

Opens window on which Smarwi is installed. Parameter after semicolon is optional and sets
the number of percent Parameter should be in range from 0 to 100, otherwise unexpected
behaviour happen.

Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr

s:212

e:0

ok:1

ro:0

pos:o

fix:1

a:-98
fw:3.4.1-15-g3d0f
mem: 23568
up:8257915
ip:268446218
cid:xsismiO1
rssi:-72
time:1550969713
wm:1

wp:1

wst:3

A.1.2 Close
Command

close

55



Description

Attempts to close window on which Smarwi is installed.
Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

s:220

e:0

ok:1

ro:0

pos:o

fix:1

a:-98
fw:3.4.1-15-g3d0f
mem: 23680
up:8526574
ip:268446218
cid:xsismiO1
rssi:-67
time:1550969982
wm:1

wp:1

wst:3

A.1.3 Stop

Command

stop

Description

Immediately stop the current process of opening or closing window.
Return message described in A.1.

Sample return

Topic: ’ion/dowarogxby/\%600194496fd2/status’
Message:

t:swr
s:250
e:0
ok:1
ro:0
pos:o
fix:0

56



a:-98
fw:3.4.1-15-g3d0f
mem: 23704
up:8631362
ip:268446218
cid:xsismiO1

rssi:-70
time:1550970087
wm:1

wp:1

wst:3

A.2 Smarwi Status codes

Smarwi produces wide range of status codes. They can be found in the status message
A.1 in the ,s“ field. To better understand them, a list of them was created with a brief
explanation. In the end we can find basic procedures of how are status codes in messages
produced during some tasks.

e 200 — near frame opening

e 210 — opening

e 212 — closing but will open

e 220 — closing

e 230 — near frame closing

e 232 — closing from closed state, opens a little bit
e 234 — closing from closed state, closing

e 250 — no action

e -1 — not calibrated not ready

e 130 — closing window, finishing calibration

e 10 — error

When opening from closed state, 200 and then 210 status codes are produced. When
opening from open state, 212 and then 210 status codes are produced. When closing from
open state, 220 and then 230 status codes are produced. When closing from closed state,
232, 234 and then 230 status codes are produced.

When changing states and outside button is pressed, 250 status code is produced with
OK and RO set to 0 and then OK set to 1.

57



A.3 Smarwi Errors

Smarwi also detect some errors which can occur during regular usage. Errors can be found
in the status message A.1 in the e field. Following errors were detected and found ways
to reproduce them:

e 0 — no errors

e 10 — window seems locked. To reproduce - press on ridge sensor, press on open/close
sensor and send message open

e 20 — movement timeout. To reproduce - set movement speed to 1 and let it open in
long enough distance so the opening time will reach 30 seconds.

A.4 Mosquitto examples

In following examples we will assume that mosquitto broker is hosted on an address
BrokerIP and Smarwi listens to topic ion/RemoteID/%,SmarwiMAC/cmd.
To change state of Smarwi we send a following command:

mosquitto_pub -h BrokerIP -t "ion/RemoteID/%SmarwiMAC/cmd" -m $’content’

As Smarwi will change states, it will send several messages one of them described in A.1
To save configuration to Smarwi following command will work:

mosquitto_pub -h 10.42.0.1 -t "ion/dowarogxby/%600194496£d2/cmd"
-m $’scfg01/1|ospd:90\nofspd:3\norpwr:77\nofpwr:5\nohcpwr:46\n
ohopwr:41\nhdist:-2\nlwid:23\nvpct:100\ncfdist:2560\n’

There is no return message for this command.
To see all messages that were exchanged between clients and Smarwi we can subscribe to
the broker such as:

mosquitto_sub -h BrokerIP -t "ion/RemoteID/%SmarwiMAC/#" -v

58



Appendix B

CD contents

Thesis in PDF and TEX format.

BeeeOn Gateway app with implemented Vektiva module.

Installation script.

Smarwi Emulator.

Video example of achieved results.

59



	Introduction
	System BeeeOn
	System architecture
	User interface
	Server
	Application layer
	Service layer
	Database layer

	Gateway
	Devices
	Testing center and virtual devices

	Remote window opening options
	Problems and requirements
	Opening options
	Existing products

	Smarwi - a window opener
	Vektiva
	Control
	Principle of Smarwi functionality
	Communication
	HTTP API
	MQTT

	Integration design of Vektiva module
	Device Manager
	Vektiva Device Manager
	Communication
	Vektiva's broker
	Gateway's broker
	On connect
	Proposal of communication design


	Implementation into the BeeeOn system
	Implemented parts of the proposed plan
	Parts changed
	Implementation tests

	Testing - Smarwi emulator
	Implementation
	Routing
	Smarwi handling

	API endpoints
	MQTT
	User interface
	Scheduling and fixing errors

	Conclusion
	Bibliography
	Smarwi MQTT communication
	MQTT messages
	Open
	Close
	Stop

	Smarwi Status codes
	Smarwi Errors
	Mosquitto examples

	CD contents

