
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

INTEGRATION OF SENSORS AND ACTORS INTO THE
BEEEON SYSTEM
INTEGRACE SENZORŮ A AKTORŮ DO SYSTÉMU BEEEON

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

LUKÁŠ ŠIŠMIŠ

Ing. MARTIN SAKI N

BRNO 2018

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav inteligentních systémů (UITS)

Zadání bakalářské práce
Akademický rok 2018/2019

21396

Student:
Program:
Název:

Šišmiš Lukáš
Informační technologie
Integrace senzorů a aktorů do systému BeeeOn
Integration of Sensors and Actors into the BeeeOn System
Vestavěné systémy Kategorie:

Zadání:
1. Nastudujte dodané senzory nebo aktory určené pro automatizaci domácnosti podporující technologii Wi-Fi.
2. Seznamte se s architekturou brány systému BeeeOn.
3. Navrhněte způsob integrace nastudovaných technologií do systému BeeeOn.
4. Implementujte navržené řešení a ověřte funkčnost v domácnosti.
5. Diskutujte dosažené výsledky a možnosti pokračování projektu.

Literatura:
• Dle pokynů vedoucího, zejména dokumentace k vybraným senzorům/aktorům a dokumentace systému

BeeeOn.
Pro udělení zápočtu za první semestr je požadováno:

• Splnění bodů 1 až 3 zadání.
Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce:
Konzultant:
Vedoucí ústavu:
Datum zadání:
Datum odevzdání:
Datum schválení:

Sakin Martin, Ing.
Viktorin Jan, Ing., FIT VUT
Hanáček Petr, doc. Dr. Ing.
1. listopadu 2018
15. května 2019
1. listopadu 2018

Zadání bakalářské práce/21396/2018/xsismi01 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this thesis was to extend BeeeOn system w i th a Vekt iva module and to do a
research on possibilities of Smarwi implementation, which not only included studying dif
ferent communicat ion protocols that the device uses, but also comparing them and choosing
the most suitable protocol for the implementation. In the beginning of the thesis, BeeeOn
system and i ts ' components are described followed by the description of implementat ion
and testing process of the Vekt iva module and the Smarwi emulator.

Abstrakt
Cieľom tejto práce bolo rozšíriť systém BeeeOn o modu l Vekt iva a preskúmať možnosti
implementovania produktu Smarwi do systému BeeeOn, čo zahŕňalo nielen štúdium ko
munikačných protokolov, ktoré zariadenie používa ale aj ich porovnanie a výber vhodného
protokolu pre implementáciu. N a začiatku práce je popísaný BeeeOn systém a jeho kom
ponenty, na ktorý následne nadväzuje popis procesu implementácie a testovania Vekt iva
modulu a aj Smarwi emulátoru.

Keywords
Home Automat ion , Smart Home, Vekt iva, Smarwi , BeeeOn, Gateway, W indow Vent i lat ion,
W indow Opener

K lícová slova
Automatizácia Domácnosti, Inteligentná Domácnosť, Vekt iva, Smarwi , BeeeOn, Gateway,
Ventilácia Okien, Otvárač Okien

Reference
SISMIS, Lukas . Integration of Sensors and Actors into the BeeeOn System. Brno , 2018.
Bachelor's thesis. Brno Universi ty of Technology, Faculty of Information Technology. Su
pervisor Ing. M a r t i n Sakin

Rozšířený abstrakt
V dnešnej dobe sa často stretávame s pojmoj IoT alebo Internet vecí. A b y sme si mohl i
vysvetliť tento pojem, musíme si predstaviť obrovské množstvo zariadení, či už sú to
vozidlá, senzory, monitorovacie prostriedky či domáce spotrebiče všetky pripojené do si
ete Internet aby následne spolu mohl i komunikovať. Výsledkom môže byť zvýšená životná
kval i ta a úroveň života, ušetrené náklady, vyššia bezpečnosť alebo zachránené ľudské životy.
Konkrétny príklad môže byť zapnutie robotického vysávača ak sa nikto nenachádza v dome
a je detegovaná špinavá podlaha alebo doručenie kamerového záznamu polícii po násilnom
vlámaní do budovy pre rýchlejšiu identifikáciu zločinca.

IoT a automatizácia domácnosti je stále sa rozvíjajúca oblasť IT . Preto podl ieha dynam
ickým zmenám, ktoré implementujú rôzni výrobcovia týchto zariadení inak, čo zapríčiňuje
nekompat ib i l i tu medzi jednotlivými zariadeniami od rozličných značiek.

Tejto príležitosti využili výzkumníci z Fakul ty Informačných Technológií v Brne, ktorí
navrhl i a implementovali systém BeeeOn. Jeho hlavnou úlohou je zjednocovať zariade
nia rôznych výrobcov do jedného bodu, z ktorého je možné kontrolovať všetky zariadenia
súčasne. Týmto krokom eliminujú potrebu natívnych aplikácií od jednotlivých výrobcov a
prispievajú k lepšej komunikácií medzi samostatnými zariadeniami.
Systém BeeeOn je open-hardware a open-source, čím sprístupňuje kód nielen na štúdium
ale aj jeho upravenie. Po jem open-hardware znamená, že vnútorná architektúra primárne
zvoleného počítaču je verejne dostupná a aj keď by výrobca ukončil masovú produkciu, nie
je potrebné návrh matičnej dosky robiť opäť aby sa mohla produkcia obnoviť.
Samotný systém sa skladá z 4 vrstiev, kde okrajové vrstvy tvor ia koncové zariadenia,
či už sú to senzory/aktory alebo zariadenia užívateľov ako mobi ly alebo počítače. Vnú
torné 2 vrstvy sa skladajú z BeeeOn aplikácií Gateway a Server. Všetky dôležité dáta sú
uchované na serveri, pričom aplikácia Gateway slúži ako prostredník medzi senzormi/ak-
tormi a serverom. Gateway buď zbiera údaje od inteligentných zariadení a následne ich
posiela na server alebo prijíma príkazy zo serveru, akú akciu má vykonať.

Ako možnosti inteligetných zariadení rastú, nachádzajú sa pre ne aj nové spôsoby
využitia a uplatnenia. Jedným z príkladov môžu byť diaľkovo ovládané otváranie ok
ien, ktoré môže byť nainštalované na už zabudované okná. Môžu priniesť niekoľko výhod
ako inteligentné vetranie, prevetranie miestností v ktorých sa momentálne nezdržiavame
alebo otváranie okien v ťažko dostupných miestach. Čelia však niekoľkým problémom
ako nákladná počiatočná investícia, hlučnosť zariadenia, rôzne typy otvárania okien alebo
obmedzený priestor na inštaláciu takýchto zariadení. Viacero výrobcov už vytvori lo takéto
zariadenia pričom tie najznámejšie typy používajú hriadeľové, reťazové alebo skladacie
otvárače okien.

Česká f irma Vekt iva priniesla na t rh svoj produkt Smarwi , inteligentný otvárač okien,
ktorý v sebe obsahuje W i - F i prijímač a dokáže tak komunikovať s inteligentnými systé
mami ako Fibaro , I F T T T , O p e n H A B a iné. Úlohou tejto práce bolo implementovat toto
zariadenie do systému BeeeOn. N a rozdiel od už predstavených typov otváračov okien,
Vekt iva zvol i la hrebeň, ktorý je pripevnený na pevnom ráme okna a ozubené koleso, ktoré
je zabudované v Smarwi . Keďže Smarwi je nalepené na pohyblivej časti okna, pomocou
ozubeného kolesa sa pohybuje po hrebeni.
Existujú 3 možnosti pre ovládanie zariadenia a to buď cez fyzické tlačítko, cez A P I pomo
cou H T T P alebo cez M Q T T správy. Cez H T T P je možné Smarwi ovládať len po lokálnej
sieti, kdežto M Q T T správy dokážu meniť stav zariadenia aj mimo L A N . Vekt iva má aj
vlastný portál pre správu pripojených Smarwi vďaka čomu poskytuje A P I aj vo W A N . Po

spracovaní požiadavky Vekt iva server kontaktuje Vekt iva M Q T T broker a ten vyšle danú
Smarwi M Q T T správu.

Po preštudovaní BeeeOn systému a komunikácie medzi Smarwi a kl ientom sa vytvor i l
návrh implementácie, v ktorom sa posudzovali protokoly H T T P a M Q T T , navrhol sa dia
gram tr ied a zvol i la vhodná metodika implementácie. Návrh zariadenia obsahuje 4 moduly z
čoho jeden poskytuje iba informácie a 3 ostatné moduly dokážu zmeniť stav Smarwi . Počas
samotnej práce na zapracovaní návrhu do systému sa pracovalo v iteráciach s priemernou
dĺžkou 10 dní. Počas tohto času sa opravovali chyby, pridávali sa nové časti a testy na
ne a konzultoval sa další postup. M o d u l je implementovaný v j a zyku C + + s knižnicami
std a Poco. V správcovi zariadení sa nachádzajú 2 kl ient i M Q T T , z čoho jeden manipuluje
vždy iba s jedným vybraným zariadením Smarwi a druhý prijíma a analyzuje všetky správy
prijaté na vybranú tému ion/#.
Pre zaistenie korektného fungovania modulu prebiehalo aj testovanie, ktoré zahŕňalo aj jed
notkové aj manuálne testy. Jednotkové testy slúžia pre overenie správnosti spracovávania
prijatých správ a ich vytváranie, manuálne testovanie prebiehalo po každej pridanej časti
pre overenie celkovej funkčnosti.

Pre zjednodušenie ďalšej práce so Smarwi bo l vytvorený emulátor, ktorý má za úlohu
simulovať chovanie Smarwi na sieti pomocou M Q T T správ. Emulátor je schopný simulo
vať viaceré Smarwi zariadenia súčasne. Vytvorené zariadenie je možné ovládať cez M Q T T
správy, A P I alebo grafické uživatelské rozhranie. Pre tento účel bolo vytvorené R E S T
A P I , pomocou ktorého sa dajú ovládať všetky zariadenia, ktoré emulátor obsahuje. Všetky
zmeny vykonané cez jeden z vymenovaných spôsobov sa propagujú pomocou M Q T T správ.
Pre vytvorenie emulátoru bo l použitý Py thon3 s knižnicami Paho client, Threading a sock-
etserver. Pre vytvorenie uživatelského rozhrania bolo použité H T M L , C S S a jQuery.

Integration of Sensors and Actors into the BeeeOn
System

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of M r . M a r t i n Sakin. The supplementary information was provided by M r .
Dav id Bednařík. A l l the relevant information sources, which were used dur ing preparation
of this thesis, are properly cited and included in the list of references.

Lukáš Šišmiš
Ju l y 2, 2019

Acknowledgements
Here I would like to express thanks to my supervisor Ing. M a r t i n Sakin for the consul
tat ion he has provided to me while wr i t ing the thesis and to Be. Dav id Bednaf ik for the
consultation related to the code.

Contents

1 I n t r o d u c t i o n 3

2 S y s t e m B e e e O n 5
2.1 System architecture 5
2.2 User interface 6
2.3 Server 7

2.3.1 App l i ca t i on layer 7
2.3.2 Service layer 7
2.3.3 Database layer 7

2.4 Gateway 8
2.5 Devices 10
2.6 Testing center and v i r tua l devices 11

3 R e m o t e w i n d o w o p e n i n g o p t i o n s 12
3.1 Problems and requirements 12
3.2 Opening options 13
3.3 Ex is t ing products 14

4 S m a r w i - a w i n d o w o p e n e r 16
4.1 Vekt iva 16
4.2 Contro l 16
4.3 Pr inc ip le of Smarwi functionality 16
4.4 Communicat ion 17
4.5 H T T P A P I 18
4.6 M Q T T 19

5 I n t e g r a t i o n d e s i g n o f V e k t i v a m o d u l e 24
5.1 Device Manager 24
5.2 Vekt iva Device Manager 24
5.3 Communicat ion 27

5.3.1 Vektiva 's broker 27
5.3.2 Gateway's broker 28
5.3.3 O n connect 28
5.3.4 Proposal of communicat ion design 28

6 I m p l e m e n t a t i o n i n t o t h e B e e e O n s y s t e m 29
6.1 Implemented parts of the proposed p lan 29
6.2 Parts changed 29

1

6.3 Implementation tests ^l)

7 T e s t i n g - S m a r w i e m u l a t o r 33
7.1 Implementation 33

7.1.1 Rout ing 3 3

7.1.2 Smarwi handl ing 3 4

7.2 A P I endpoints 3 4

7.3 M Q T T 3 6

7.4 User interface 3 6

7.5 Scheduling and fixing errors 3 ?

8 C o n c l u s i o n 40

B i b l i o g r a p h y 41

A S m a r w i M Q T T c o m m u n i c a t i o n 43
A . l M Q T T messages 4 3

A . l . l Open 55
A.1.2 Close 5 5

A.1.3 Stop 5 6

A.2 Smarwi Status codes 57
A .3 Smarwi Errors 58
A.4 Mosquit to examples 58

B C D c o n t e n t s 5 9

2

Chapter 1

Introduct ion

We often hear of the term Internet of Things or IoT. It basically connects every device that
is able to receive and transmit data without any need of human being. That means we can
have bil l ions of devices ta lk ing to each other, exchanging gathered information and based
on that, it can either help us to do the right decision or even do the decision for us. It can
go from simple things such as reminding us to take an umbrel la when a thunderstorm is
forecasted to more complex ones such as detecting unclean floor to start home vacuuming
and mopping when we are not at home.

It also adds a security layer to our lives by analyz ing who just entered home, whether
it was a brute force attack or not. In case of an intruder, home owner and police can be
notified w i th intruder's photos.

IoT appears everywhere we can th ink of. It has found i ts ' use case at homes, businesses
and among a l l different kinds of industries. Industry 4.0 is the name of the current era of
lett ing machines do the work for us.

Home automation is a great market opportunity w i th many things far away from per
fection. Because of this, manufacturers often just experiment w i th their products and are
moving extremely fast. However, no organizations stand on top of the industry and there
fore no common universal protocol is used. Because of this, different devices often can
not communicate w i th each other. It seems like there can not be any protocol since we
have many total ly distinct devices that don't share any common traits. Devices such as a
window opener and a thermostat regulator don't go well along.

After researchers at the Faculty of Information Technology at the Univers i ty of B rno
realized this, they created a project named BeeeOn which act as a unifier or in other words
it unites devices from completely different vendors w i th different communicat ion protocols.
Manufacturers ' A P I s are implemented into BeeeOn w i th the goal of having one app to rule
them a l l . BeeeOn is developed and maintained by a group of professors, students, and
enthusiasts.

L ist of supported devices and vendors slowly but steadily expands. One such device that
is not supported so far is called Smarwi from Vekt iva. It is an almost universal window
regulator especially suitable for t i l t - turn windows. Hav ing always fresh air when we need it
is very valuable. Wh i l e windows can be controlled w i th a click on a security box, i ts ' ma in
advantage is that it can be interconnected w i th platforms like O p e n H A B , F ibaro , I F T T T
or Stringify. The main goal of the thesis is to implement Smarwi into the BeeeOn Gateway
which allows us to remotely regulate windows.

In the following chapter, the BeeeOn system is briefly explained. It shows the inner
architecture of the system w i th parts such as the gateway, server, user devices and sensors

3

or actors and their relationships. In the th i rd chapter, remote windows opening solutions
are presented where you w i l l learn about not only the theoretical part but also you w i l l see
real-world examples. W i t h not only that, Smarwi as a device is thoroughly described as
well. In the fourth chapter, a proposal for integrating a Vekt iva module into the BeeeOn
system is presented. A chapter about implementing a proposed plan and testing follows
where parts of the p lan are described w i th their outcome. The last part describes Smarwi
emulator, presents the implementat ion and ways to use it .

4

Chapter 2

System BeeeOn

For an introduct ion system called BeeeOn is briefly described. This system works w i th
Internet of Things (IoT) or more precisely, it is focused on home automation. Its' ma in
purpose is not to create something entirely new but to act more as a unifier. Since home
automation is a relatively new and broad field, there hasn't been introduced a protocol
w i th which one could control devices across a l l spectrums. Because of this, vendors that
produce devices intended for home automation create protocols by themselves. Th is leads
to incompat ib i l i ty issues across devices even i f they are designated to do the same things.
As a result people are forced to have mult iple apps, since every manufacturer has an app or
a web interface to control solely his devices. To solve this problem, the BeeeOn system was
created. It is an open-hardware and open-source init iat ive to have a single app that is able
to communicate w i th a l l supported devices from many different vendors by implementing
necessary components that are required to successfuly handle these devices.

2.1 System architecture

W i t h a system of this a im, it is expected that the project w i l l g row ctt £t fctst pace. Often
times projects as they are developed, get so big it is very complex to modify parts of the
code. To properly handle this scenario, project is designed as a modular kit and therefore
getting to know the code can be easier. Th is is part icular ly important attr ibute i n case
of open-source code. Thanks to dependency injection, it also allows us to only have the
components we want to be enabled.

As we can see on image 2.1 BeeeOn consists of 4 separate layers, each connecting w i th
neighboring layer. Arrows show the flow of communicat ion. Bid i rect ional arrows mean
there are flows of data from one layer to the other and vice versa.

A layer, which can be found on the top, is intended for end users. It is an access point
for a user to interact w i th the system.

Beneath, we can see a server layer. The server serves as a controller and a data collector
for a user. It is connected to mult iple gateways that work as independent units. Communi
cation w i th both end-user devices and gateways is usually ensured on the Internet (WAN)
network.

To reduce the load on the server, the th i rd layer called Gateway was implemented. Its'
main function is to listen to what the server says and to communicate w i th end devices.
A s a result, Gateway translates the message from a unified protocol that is between the

x

http: / / www.beeeon.org

5

http://www.beeeon.org

server and the Gateway to a protocol that selected end device uses and vice versa. It sends
collected data and exchange commands w i th the server. It also reads data from sensors
and sends instructions to actors. To be able to do that it needs to have a list of properly
connected end devices. This way the server is connected to only one device and is able to
send commands to a l l of the registered end devices. Gateway is further described in 2.4.

E n d devices are a general term for sensors/actors. Sensors measure things according
to their intention in their surroundings and actors can also change i ts ' state and therefore
impact the environment. After their in i t i a l setup, they connect to the gateway and the
rest of the communicat ion is solely between the end device and the gateway. Section 2.5
provides more information related to sensors or actors.

End user device End user device End user device

Gateway

1

WAN

LAN

Sensor
f

Actuator

Sensor
/

Actuator Actuator

Sensor
f

Actuator

Figure 2.1: System architecture of the BeeeOn system

There are many other parts of the system which are not entirely important for this
bachelor thesis so for this reason and for the sake of clarity they w i l l not be described.

2.2 User interface

O n the top layer, we find a user interface which consists of devices such as tablets, mobile
phones or even laptops or personal computers. These are called end-user devices as they

(i

serve as an access point for users to set up their intelligent devices or watch statistics
gathered by them.

In the current state of the system, there are two ways of accessing the user interface of
the BeeeOn system. A n end user can use either a web appl icat ion or an And ro i d appl icat ion.
The latter opt ion has not been maintained for a while so it is possible to be a l i t t le outdated.
The web interface is a convenient way to interact w i th the system, thanks to the th in client
that is a web browser that almost any device has.

2.3 Server

The layer just under the top one is called a server layer. The server is usual ly located
at a remote location and is not maintained by a user. It serves as a middleware between
a user and a gateway. User requests are sent to the server and after they are processed,
the gateway is contacted w i th tasks to do. Once Gateway accomplishes given tasks it w i l l
respond to the server w i th their outcomes. The server can write results to a database that is
usually located on the server and then notifies the user w i th the results. To further support
extendabil ity and manageabil ity of the server code architecture, it was div ided into three
layers:

• App l i ca t ion layer

• Service layer

• Database layer

2 .3 .1 A p p l i c a t i o n l a y e r

The appl icat ion layer provides a way how either users w i th end user devices or gateways
communicate w i th the server. It deals w i th user registration or their requests and passes
them to the service layer i f needed. A t the same time, it has a pool of connections w i th
connected gateways, which is needed because gateways might not be available from outside
of the local network. It periodical ly checks for the avai labi l i ty of gateways or sends tasks
to them. In case of failure, it can prompt ly notify the user.

2 .3 .2 S e r v i c e l a y e r

The service layer implements the core logic of the server. It handles most of the user's or
gateway's requests and responses. It works w i th both layers, especially w i th a database
layer for easy and consistent access to the database.

2 . 3 . 3 D a t a b a s e l a y e r

The database layer serves as an abstract layer to access the database. It also guarantees
that server logic is not coupled to any database system. After the implementat ion of given
interfaces, we can change database systems w i th ease and in a matter of seconds. In the
current implementation, PostgreSQL is used.

7

2.4 Gateway

The main component that is important to the user is a gateway. It provides a point to which
every smart device at home should connect to. Gateway then collects a l l the information
it can from these sensors/actors and sends them to the server. If it receives any task to
do, it contacts the required device and tries to fulfill the request. It periodical ly checks end
devices for their avai labi l i ty and data and at the same time sends data to the server.

As an init iat ive to have a dedicated device that this system can run on, A l O - O L i n u X i n o -
L I M E 2 from Ol imex was chosen. It is an open hardware A R M L inux computer that serves
well enough to cover a l l needs BeeeOn Gateway requires. A n example can be seen in a
modified BeeeOn case on image 2.2 w i th the specifications such as 1GHz A l lw inner A10
Cortex-A8, M a l i 400 G P U , 5 1 2 M B D D R 3 R A M memory, 160 G P I O s on four G P I O rows
of pins (0.05" step), 5V input power supply, noise immune design and P C B dimensions of
84x60 m m . More precise information can be found on the vendor's webpage 2 .

Since it is an open hardware solution, the project is not closely dependent on Ol imex.
Even i f A l O - O L i n u X i n o - L I M E manufacturer stops mass-producing these boards, schemas
and data sheets are always available and product ion can be renewed easily.

Figure 2.2: Photo of O l i m e x b o a r d A 1 0 on which the BeeeOn system runs [18]

To A l O - O L i n u X i n o - L I M E , an extension board M R F 8 9 X A from Microch ip is connected
v ia G P I O pins, providing radio connectivity to the entire system.

A l though this board is recommended for the gateway software, it can run on any other
device w i th L inux d istr ibut ion based on Debian. M y personal experience was setting up
the BeeeOn Gateway on Raspberry P i Mode l I B which has only an A R M 1 1 7 6 J Z F - S 700
M H z C P U and 2 5 6 M B R A M . After an in i t ia l hassle, I was able to insta l l the whole gateway
system w i th an instal lat ion script. I d id not t ry to connect the radio extension board. I
successfully ran the system in testing mode.

2

https://www. olimex.com/Products/0LinuXino/A10/A10-0LinuXino-LIME-n4GB/open-source-

hardware

8

https://www
http://olimex.com/Products/0LinuXino/A10/A10-0LinuXino-LIME-n4GB/open-

Gateway
E x por te r

j- ^ (LocalLoop) 1 I E x p o r t e r
(S e r v e r C o n n e c l o r)

E x p o r t e r
{Unix pip-e)

Corn rna rKJ
D i s p a t c h e r

_

X

I
S e n s or D a t a /- J
Distributor

_
I

C o m m a n d

S e n s o r D a l a

E
D e v r c e m a n a g e r

(Belkin)
D e v i c e m a n a g e r

[Jablotron)
D e v i c e m a n a g e r

[The rmona]

S e n s o r s / A c t u a t o r s

Figure 2.3: Gateway architecture

I n t e r n a l g a t e w a y a r c h i t e c t u r e

According to image 2.3, we see briefly described the way the gateway works.
Device managers are one of the most important parts of the gateway system. They

communicate w i th end devices and gather their data. They act as a bridge between Dis
tributor and end devices. Once they receive something from the end device they support,
they immediately convert the data to a unified message format and send it to the Dis
tributor and vice versa. Each device manager represents a group of devices w i th similar
characteristics (usually the same vendor) and runs in a separated thread simultaneously
w i th other device managers. Asynchronous processing allows us to run the gateway even in
high traffic environments and it also optimizes and speeds up data handl ing. Each device
manager is tai lored to the needs of the vendor's devices or any other group of devices. Since
home automation progress extremely fast and no universal and comprehensive protocol has
been introduced, the BeeeOn system implements vendors' protocols.

For messages, a class SensorData is used. For a device manager to know to which
device a message should be sent, we need some form of a unique ID. For this purpose an
identif ication field i n SensorData is created. It has space for a unique identifier that has
64 bits, where the first 8 bits are reserved for an ID of the DeviceManager and the rest is
created in another way. It can be either random or set according to some other device's
property usually a M A C address of the device is used.

9

W h e n Distributor receives a SensorData message from the DeviceManager it can prop
agate the message to every registered Exporter. Exporter is an interface that when imple
mented, aims to dispatch every message that is meant to be exported to a platform or a
place according to the implementation. Such class can be a ServerConnector, which sends
messages to the specified server or a Un i xP i p e that sends output to the U n i x pipeline.

CommandDispatcher runs in a separate thread, wait ing for commands that come from
a server or any other registered place. O n received command, CommandDispatcher looks
up a receiver of the given command and sends it directly to h im . A n y object can obtain
a Command after implementing a Command interface and register itself to the Command-
Dispatcher.

2.5 Devices

Sensors/actors are the devices for which is this system designed. They are usually smal l ,
often easily overlooked but they are br inging the new era of home automation in the form
of smarter, affordable technologies and more intelligent and resource-saving homes for us.
There are many ways how they enhance our lives ranging from having automatical ly ad
justed room's temperature according to the desires of people there or weather forecast
throughout the day to efficiently manage a l l home resources without the need of us even
th ink ing about it.
F rom the most abstract view point we can divide this category into two main groups:

• Sensors - devices, which are often unnoticeable, passive, serve as data collectors in
a sense, their purpose is to measure i ts ' surroundings w i th tools they have available.
Gathered data are sent immediately after measurement is finished to the gateway
they are connected to, where they are addit ional ly processed. Instances of equipment
that falls into this category might be sensors for C O detection, moisture detection,
open window and door detection and many others.

• actors - devices that can actively alter the environment where they are installed.
Regularly accompanied w i th a sensor or a collection of them, they t ry to adjust
their surroundings to the desired state. Gateway may either ask for a state i n which
the device currently is or it may request to change i t . The actor afterwards sends
a response w i th an outcome. Devices that can be considered as members of this
category might be a smart bulb, dimmer, thermostat or a smart window opener -
Smarwi which is the main topic of this bachelor thesis.

Current ly supported end devices are from vendors like:

• Jablotron

• Ph i l ips Hue 2.4

• Be lk in 2.4

• Z-Wave

• and other devices support ing protocols such as B luetooth or F I T Protoco l [16]

The F I T protocol was designed by a student of Faculty of Information Technology at
Brno University of Technology and is used for a communicat ion w i th end devices developed
at F I T VUT[16] .

10

Figure 2.4: F rom left to right: Be lk in Wemo Switch, Ph i l ips Hue [3] [4]

2.6 Test ing center and v i r tua l devices

Implementing new features to the system w i th always real sensors would be a hard and a
t ime-consuming task, not only because it takes t ime for a sensor/actor to either measure
data or change state but also some edge cases occur just occasionally.

Therefore, the testing center was developed along w i th the gateway which allows us to
arti f icial ly emulate implemented sensors and actors for testing purposes. Once the device
has been implemented for emulation, we can add it to our test cases w i th the parameters
we set. D a t a can be either preset or randomly generated. Afterwards, device managers act
as they would be in a regular mode.

11

Chapter 3

Remote window opening options

For centuries, humans strive to be more efficient and live more comfortably. Technology
helps us to achieve greater things every day and allows us to be more productive. In return,
it allows us to have extra spare t ime for relaxation. As described in the previous chapter,
IoT and home automation can really make things easier for us.

This chapter w i l l introduce problems and solutions for electric window openers con
trol led remotely. In the end solutions of different vendors are described.

3.1 Prob lems and requirements

Examples of common problems w i th windows that are el iminated w i th the use of smart
windows:

• open windows that are i n hard-to-reach places,

• be welcomed w i th fresh air when we enter a room,

• remotely create some airflow to currently unoccupied buildings,

• regulate room temperature w i th no need to waste resources either on the heater or
A / C .

Smart or electric window openers were invented to help us w i th mentioned and many
other problems. Here are the major requirements:

• windows open differently that means several mechanisms had to be invented,

• keep the in i t i a l cost low,

• not having to replace the whole window,

• quiet operation,

• instal lat ion in l imi ted space,

• other problems w i th instal lat ion (e.g. can not dr i l l , nonadhesive surface),

• easy to instal l .

12

3.2 Open ing options

There were already many attempts to invent the most pract ica l and universally f itt ing
window regulator but it seems like there is no device to rule them a l l . There is a huge
diversity of technologies for various use cases.

The most common form of solving this issue is using a window actuator, the main
component to provide the force needed for a window movement. W indow actuators are
div ided into three main types [12] and they £1X6 ctS follows.

L i n e a r o r s p i n d l e a c t u a t o r s

These devices apply a l inear force to open windows usually upwards. They have great l i f t ing
force to open even heavy windows.

Such equipment has either a rack or a rod that can be extended or shortened according to
user needs. The rack moves on a p in ion that transforms rotat ional mot ion to linear. L inear
actuators can be used in a wide variety of window openings such as louvers, dampers,
awning windows, vents and external vert ical louvers [13]. A n example can be seen in figure
3.1.

C h a i n a c t u a t o r s

B o t h chain and linear actuators share the same fundamentals. A window is pushed upwards
or to any other desired direction w i th a bar or in this case a chain. It is enclosed in a body of
a window opener carefully winched over a p inion. A s it rotates, chain segments are rotated
at a 90-degree angle which afterwards form into a solid bar that can put a pressure on the
window to open it up. Together w i th linear actuators, they are suitable for the majority of
windows, however thanks to the characteristics of linear actuators, it is better to use the
linear actuators for l i f t ing heavy windows. O n the contrary, thanks to the compact size of
chain actuators they are widely used in the industry and at home applications. A n example
can be seen in figure 3.1.

F o l d i n g a r m a c t u a t o r s

Instead of ejecting a rod straight they have an a rm that pushes window sideways. They
don't take as much space as other variants. They are usually meant for side hung windows
as they don't have as much force as other types of actuators. A n example can be seen in
figure 3.1.

Figure 3.1: W i n d o w a c t u a t o r s . F rom left to right: l inear actuator, chain actuator, folding
arm actuator [7] [6] [5]

13

For comparison purposes, the data from Arens are put into table 3.1 and are used to
show differences i n linear and chain actuators. We can clearly see, how linear actuators
are much stronger but also have higher current requirements. O n the other hand, compact
size and flexibil ity of chain actuators allow them to have a much longer stroke. W h e n
the actuators w i th the best characteristics from each category are compared, we can see
that the chain actuator can have a stroke length more than 3 times longer than the linear
actuator. O n the other hand, it can apply almost three times less force than the linear
actuator.

C h a i n a c t u a t o r s S t r o k e [mm] F o r c e [N] C u r r e n t [A]
Arens Compact 50-400 250 - 0 . 6

U C S Vega Synchro 300-800 250 - 0 . 7
U C S Quasar L 300-1000 300 - 0 . 9

L i n e a r a c t u a t o r s S t r o k e [mm] F o r c e [N] C u r r e n t [A]
Arens Spindle 180, 300 650, 800 - 0 . 8 , -1
U C S Ulysses 180, 300 650, 800 - 0 . 8 , -1

Table 3.1: Compar ison between the chain and linear actuators [13]

From table 3.1 we can observe chain actuators are suited for solutions where either
long strokes have to be implemented or l imited space restricts usage of l inear actuators. In
case the window requires more force than the actuator can provide, more actuators can be
added to the same window thanks to synchronisation across a l l actuators. Th is way mult iple
actuators act as one stronger actuator but the pushing force is also better distr ibuted on
the window frame.

3.3 Ex i s t i ng products

As mentioned in the beginning, many companies developed various window actuators. Sev
eral examples were picked from each category, each w i th a unique solution. The main
differences can be in the way and the direction it opens the window or i n the power supply.

A s the most classic example of windows actuators, the linear actuator developed by the
company Teal Products [11] can be introduced. The description of linear actuators can be
found in the previous section. Source of power is electricity provided by a cable leading to
the actuator. They are provided w i th just a cable that can be attached to the controller of
your choice. It can be either a simple switch or a more complex receiver connected to the
network.

Another product is from a company named Solar Smart [10] that eliminates the need
of cables w i th a set of batteries and a photovoltaic panel on the top of the actuator. Panel
converts solar energy to electric power and recharges the batteries. A s it is not dependent
on power from the electrical grid, in case of a power outage, the window is not stuck i n the
posit ion and can operate w i th no change. It is also equipped w i th a ra in sensor, which can
help to adjust the window to the proper posit ion according to the weather.

Actuator from Fenestra [2] serves for a different type of windows as previously mentioned
products. It allows to opening horizontal ly s l id windows. Another benefit is a solar panel
and a L i O battery that comes w i th the actuator to allow cable free instal lat ion. A posit ion

x

https://arens. com.au/electric-products/

14

https://arens
http://com.au/electric-products/

of the window can be changed even when the Fenestra actuator has no power by manual ly
moving the window.

A l l up to now presented products are solutions to already installed windows from
which we want to make smart windows. The next generation of glass panels can look
like B l i ckdomi f l] . It has bui l t - in roller shades together w i th motors for control l ing the win
dow posit ion and window sensors. It is also equipped w i th cameras and other sensors to
detect a potentional intruder.

15

Chapter 4

Smarwi - a window opener

Another idea came from a smal l Czech innovator company called Vekt iva and their Smarwi .
It is a smart window opener which allows us to comfortably and remotely control window
venti lat ion according to our needs or according to data measured by other sensors (e.g.
C 0 2 sensor or temperature and humidi ty sensors). Th is way we no longer worry about an
airflow at our homes because BeeeOn in combinat ion w i th Smarwi can do that for us and
we are always greeted at home w i th fresh air to breathe.

4.1 Vek t i va

Vekt iva is a smal l company located i n the capita l city of the Czech Republ ic . Started as
a start-up company in 2015 w i th an idea of an inteligent device for control l ing window
venti lat ion. Fast forward to 2016 and they have several working prototypes available and
started a platform vektiva.online 1 to allow users to remotely manage their Vektiva's devices.

Nowadays, they have Smarwi , as can be seen i n the image 4.1, i n serial product ion
which slowly makes i ts ' way to shops. They are also i n the progress of making new sensors
and other IoT products.

4.2 Con t ro l

Window regulation can be done either from remote locations or by a safety control box
which is connected to Smarwi and acts as a switch for opening and closing window. For
distant access, W e b G U I is provided on a site vektiva.online where a user can register their
Smarwis and manage them from any device that has a web browser and access to the
Internet. After login, the site informs us about the status of registered devices and provides
options to adjust settings to the window requirements. We can also add more devices i f
needed.

4.3 P r inc ip l e of Smarw i funct ional i ty

The whole system that moves the window has two core elements and that is a ridge and
Smarwi . Ridge is glued w i th double sided tape on top of the window frame (i.e. immovable
part) . One side of the ridge consists of cogs, the other is flat. It is attached w i th a hinge to

1

https: //vektiva.online

16

Figure 4.1: Smarwi and other accessories

properly fit in Smarwi . Smarwi is placed on top of the window (i.e. moveable part) . Inside
we can find a cogwheel that runs back and forth on the ridge.

Once everything is correctly instal led and cal ibrat ion is finished, Smarwi saves the
cal ibrated distance between opened and closed positions of the window. A s can be seen on
image 4.2, Smarwi has 2 sensors. The ridge in/out sensor serves as a protective mechanism
to ensure Smarwi stays on the window in case improper handl ing or conditions occur. The
sensor pushes the ridge towards the cogwheel w i th a plastic slider lifted by a spring. If
the cogwheel is locked and an extreme force is applied to the window, the spring is pushed
downwards and Smarwi slides on the ridge. Th is mechanism ensures plastic parts don't
break.

Smarwi checks pressure on the open/close sensor and when the sensor is sl ightly pushed
down, Smarwi stops because it has reached the closed posit ion.

4.4 Commun ica t i on

Smarwi uses W i - F i to be able to communicate w i th other devices. It first creates an access
point to which a user can connect to (default name prefix for W i - F i network (SSID) is
SWR- followed by numbers and a default password is 12345678) and then access a user
interface on the local IP address 1 9 2 . 1 6 8 . 1 . 1 . Since it 's a website, it can be accessed
by any device ranging from a l l kinds of mobile devices to desktop computers as long as it

17

Open/Close Cogwheel Ridge in/out
Sensor \ / sensor

Figure 4.2: Front-facing view of Smarwi

has a web browser. Here users can properly configure credentials to successfully connect
Smarwi to the W i - F i router, they want to and more importantly, they can set an IP address
of the M Q T T broker. They also have an option to supply Remote lD and RemoteKey to
connect to the Vekt iva porta l , however, this act ion is not mandatory. Smarwi can fully
work even w i th no connection to the Internet as Smarwi 's state can be altered i n three
different ways and that is using an A P I (application programming interface) described in
section 4.5, through M Q T T messages to which Smarwi is subscribed described i n 4.6 or
through the physical but ton that should be placed next to the window where Smarwi is
installed. Bu t t on not only serves as an option to open the window manual ly but also as a
safety feature to stop Smarwi from currently performed action in case action is not desired.

4.5 H T T P A P I

Smarwi 's appl icat ion programming protocol communicates through the H T T P protocol
which can be easily accessible w i th tools such as curl or s imply a web browser. Th is is
the easiest way to change the state of Smarwi . Communicat ion uses basic request-response
method and there are currently implemented two types of responses which have a simple
text format. It can be either OK when an act ion is successful and ERR for other cases.
Smarwi can be easily controlled v i a G E T requests to following end-points:

• open - opens the window

• close - closes the window

• stop - stop any current act ion

• fix - fixes the window

18

• statusn - returns a status message

• lcfg - loads basic configuration

• lcfa - loads advanced configuration

The more advanced commands such as those that save configuration are P O S T requests
encapsulated and then sent i n M I M E format to the Smarwi . These requests are more
complicated to simulate and w i l l not be discussed any more.

A P I can be accessed by both external and local network. Its' structure from e x t e r n a l
n e t w o r k is

https://vektiva.online/api/<REMOTE_ID>/<API_KEY>/<DEVICE_ID>/<command>

H T T P A P I cal l from an external network

where REM0TE_ID, API_KEY, DEVICE_ID are parameters that can be obtained from the
Vekt iva web interface.
Since W A N communicat ion is implemented using M Q T T messages, remote access through
the Vekt iva porta l w i l l not work i f we change the default M Q T T broker to a user defined
one.
The command structure for a l o c a l n e t w o r k is:

http://IP/cmd/<command>
H T T P A P I cal l from a local network

where IP is an IP address of Smarwi . Parameter command is for control l ing actuator 's
state. A l l possible options can be found in the product 's documentation [14].

4.6 M Q T T

M Q T T [8] protocol or Message Queuing Telemetry Transport protocol is a messaging proto
col that is designed to work even in unstable networks w i th l imi ted bandwidth. Therefore,
it fits well into an IoT field where devices send just smal l chunks of data periodical ly and
a smal l delay isn't a problem. It works on publish-subscribe (PUB/SUB) model what means
there is one M Q T T broker which acts as a router and handles a l l messages sent to h im.
M Q T T architecture is displayed on image 4.3.

19

https://vektiva.online/api/%3cREMOTE_ID%3e/%3cAPI_KEY%3e/%3cDEVICE_ID%3e/%3ccommand
http://IP/cmd/%3ccommand

Figure 4.3: M Q T T architecture

As we can see the architecture of M Q T T is centralized to one broker and mult iple clients
connected to the broker. Cl ients can be either publ ishing or receiving messages or both of
them simultaneously. Each client can be subscribed to a different topic or even mult iple
topics and therefore it receives only messages it intends to.

Topics are s imi lar to what we are already used to i n file systems and therefore it creates
a sort of a pa th where the delimiter is a slash '/ ' • W h e n subscribed to topics, wildcards

and ' + ' are available. W i l d ca rd ' + ' can be used for single segment wi ldcard, whereas
'# ' can be used for a l l remaining segments and thus it is mandatory to only use it at the
end of the subscribed topic. Several examples are provided to show how topic subscriptions
work.

If a device publishes a message w i th topic /ion/dowarogxby/°/0aabbccddeeff/status
and the client is subscribed to following topics, i t :

• # - matches because it accepts every message it receives

• i o n / # - matches because it accepts a l l topics that have the first segment equal to
i o n

• i o n / d o w a r o g x b y / + / s t a t u s - matches because it accepts a l l topics that start w i th
ion/dowarogxby/ and end w i th / s t a t u s

• i o n / + / s t a t u s - doesn't match because the „ + " wi ldcard is only applicable to one
segment

• i o n / - doesn't match because it only matches topics that are only equal to ion

• ^ t / % a a b b c c d d e e f F - inval id subscription

M Q T T has a mechanism of retained messages and wil ls . Retained messages received
by the broker stay stored in the broker storage and are sent to every subscription that
matches the topic without the exception of the new subscriptions. One topic is allowed to

20

have one retained message, therefore i f a new message that should be retained is received,
the previous is replaced by the newer one. If a retained message needs to be deleted, an
empty message should be sent to the intended topic. W i l l s are published by the broker
when the client unexpectedly disconnects from the broker. For this mechanism, PING is
implemented i n the M Q T T protocol. W i l l messages are specified when the client connects
to the broker. Smarwi uses wills when is disconnected and the broker publishes a message
to topics online and status to let other clients know it is not available anymore.

The communicat ion as seen at 4.4 runs on the default port 1883 and Smarwi uses
Vektiva 's broker by default. Even though the port can not be altered, the user can define
custom U R L of the broker. Because of that, Smarwi can be easily controlled both locally
and remotely v ia M Q T T messages. Message's topic structure is:

ion/<USER>/°/„<DEVICE_ID>

Topic structure of Smarwi M Q T T messages

where USER and DEVICE_ID can be found in Smarwi 's WebGUI .
A n instance of such communicat ion is provided i n the following lines. If a message is

sent w i th topic „ion/dowarogxby/°/
0
aabbccddeef f/cmd" and message „status", Smarwi i f

connected to the M Q T T broker and is not malfunctioned, responses wi th:

t: swr

s:250

e:0

ok:l

ro:0

pos :o

fix:0

a:-98

fw:3.4.1-15-g3d0f

mem:23704

up:8631362

ip:268446218

cid:xsismi01

rssi:-70

time:1550970087

wm: 1

wp: 1

wst :3

PUB/SUB- Broker PUB/SUB- Smarwi

Figure 4.4: Communicat ion between a client and Smarwi

S t a t u s m e s s a g e d e s c r i p t i o n

A brief explanation of the message can be found in the list below.

21

• t - device type (swr),

• s - state code,

• e - error code,

• ro - ridge out of the device (0 - in , 1 - out),

• ok - O K status —>• when O K = = 1 then R O == 0 and vice versa,

• pos - window posit ion (c - closed, o - open),

• fix - window posit ion fixed (window fixed by device),

• ip - a 32bit number representing IP addres,

• c id - device name,

• rssi - signal strength,

• fw - device firmware version,

• t ime - device t ime i n seconds,

• up - upt ime of the device in milliseconds,

• w m - not documented,

• wp - not documented,

• wst - not documented,

• mem - not documented,

• a - not documented.

S m a r w i S t a t u s codes

Smarwi produces a wide range of status codes which can be found in the status message in
the „s" field. In the end, we can find basic procedures of how are status codes in messages
produced during some tasks.

• 200 - near frame opening,

• 210 - opening,

• 212 - closing but w i l l open,

• 220 - closing,

• 230 - near frame closing,

• 232 - closing from the closed state, opens a l i tt le bit ,

• 234 - closing from the closed state, closing,

• 250 - no action,

22

• -1 - not cal ibrated not ready,

• 130 - closing window, finishing cal ibrat ion,

• 10 - error has occurred.

W h e n opening from the closed state, 200 and then 210 status codes are produced.
W h e n opening from the open state, 212 and then 210 status codes are produced.
W h e n closing from the open state, 220 and then 230 status codes are produced.
W h e n closing from the closed state, 232, 234 and then 230 status codes are produced.
W h e n changing states and outside but ton is pressed, the 250 status code is produced w i th
O K and R O set to 0 and then O K set to 1.

S m a r w i E r r o r s

Smarwi also detects some errors which can occur dur ing regular usage. Errors can be found
in the status message i n the „e" field. Fol lowing errors were detected and found ways to
reproduce them:

• 0 - no errors have occurred,

• 10 - window seems locked. To reproduce - press on ridge sensor, press on open/close
sensor and send message open,

• 20 - movement t imeout. To reproduce - set movement speed to 1 and let it open in
long enough distance so the opening t ime w i l l reach 30 seconds.

A n overview of the complete M Q T T communicat ion is described in the appendix A .
Dur ing configuration a domain name or an IP address of the broker can be entered but
Smarwi uses a default port for M Q T T that is 1883. In the current version QoS and secured
M Q T T transmission is not supported. Once connected Smarwi publishes retained status
and online messages and last-wi l l messages of the same types. Such messages can be seen
in the example below. As mentioned earlier last-wi l l messages are published by the broker
when Smarwi does not respond to M Q T T P I N G requests.

Topic: ' ion/dowarogxby/\°/„600194496fd2/online'

Message: ' 1'
Topic: ' ion/dowarogxby/\°/

0
600194496fd2/status'

Message:

t: swr

s:250

e:0

ok:l

ro:0

pos :o

f i x : l

a:-98

23

Chapter 5

Integration design of Vekt iva
module

This chapter consists of the proposed implementat ion details that are planned for the next
several months. Class diagram, design as well as other important parts of the BeeeOn
Gateway are described here. A t the beginning DeviceManager as the most important
component is described w i th an explanation of the main functions that a device manager
fulfill. Afterwards, a class diagram of the Vekt iva module is described.

5.1 Device Manager

Each group of devices has to be implemented in a separate module for BeeeOn to be able
to communicate w i th them. Each module has one ma in component and that is a Dev iceM
anager. Each specific device manager act as a hub to receive commands and according to
their meaning, it attempts to perform predefined implemented actions. For example, such
actions can be changing device's state or collecting data. Gathered data are then shipped
to exporters which are designed to handle sensor data accordingly. DeviceManager is an
abstract class to provide a uniformed A P I following the principles of po lymorphism. It
implements basic functionalities such as command handl ing and cal l ing appropriate meth
ods that each module has to implement. For this reason, every module is based on the
DeviceManager class.

5.2 Vek t i va Device Manager

O n image 5.1 we can see a class diagram of Vekt iva module. VektivaDeviceManager inherits
the abstract class of DeviceManager and implements a l l v i r tua l methods needed to function
properly such as startSetValue, handleAccept or startUnpair.

Part of VektivaDeviceManager is VektivaSeeker which is used to look for Vekt iva devices
such as Smarwi . W h e n a new device is found, Gateway let the user know that he is able
to pair the device. W h e n a command for accepting the device is received, VektivaDeviceM
anager adds the device to the list of paired devices. Every t ime the Gateway starts up, it
has an empty list of paired devices but once it connects to the server it retrieves a l l paired
devices from the past. After obtaining the list of Dev ice lDs, Vekt iva module attempts to
contact every paired device w i th a request for the status message. If the device responses in
time, VektivaSmarwi class is instantiated and the device is added to the hash map of found

24

Loggable

DeviceManager VektivaSmarwi

4\

Ve ktiva Device Manager
1

l o

Use

V V
MqttClient vekOvaSmarwiStatus

Figure 5.1: Proposed class diagram of the Vekt iva module

H T T P M Q T T
1 status changes propagated X /
2 L A N communicat ion / /
3 W A N communicat ion X /
4 easy to request basic command / /
5 easy to request advanced command X /
6 simple discovery X /
7 simple user configuration / X
8 smal l network overhead X /

Table 5.1: Compar ison between H T T P and M Q T T

devices. Hash map consists of key-value pairs where the key is a Dev ice lD and the value is
an instance of the device. A n instance of the device is then used throughout the lifetime
of the Gateway app to manipulate w i th an actual Smarwi device. Apar t from this in i t ia l
process of f inding already paired devices, the user can start the discovery of new devices at
any time. The Gateway then requests status messages from a l l found devices and confirms
their availability.

A n instance of MqttClient provides an easy way to interact w i th Smarwi . VektivaSmarwi
is a class which represents standalone Smarwi device and therefore it allows to manipulate
w i th the actual device. VektivaSmarwiStatus is a class which reproduce a status message
that is parsed and therefore is more accessible and is easier to manipulate w i th . A s men
tioned in section 4.4, Smarwi listens to commands received by H T T P and M Q T T messages.
Comparison is shown in table 5.1 and further explainat ion of every aspect included in the
table is provided i n the following list.

25

P l a i n T C P s e ss i on O u t c o m i n g b y t e s I n c o m i n g b y t e s N u m b e r o f p a c k e t s
H T T P 675 431 10

M Q T T [Wi-Fi] 615 352 11
M Q T T [Ethernet] 601 342 11

Table 5.2: M Q T T vs H T T P performance tests from Flespi [15]

1. There are three ways how to change the state of Smarwi as described in 4.4. W h e n a
state change occurs (e.g. opening the window), Smarwi publishes an M Q T T message
no matter which way was used to change the state. A s H T T P is a stateless protocol,
it is impossible for Smarwi to let interested clients know that a change has happened.
For this reason, to keep up-to-date information in which state Smarwi is, it is needed to
periodical ly check the status by sending requests to Smarwi . Since the H T T P protocol
defines one-to-one communicat ion, every client that is interested in this information
needs to contact Smarwi individual ly, which even more clutters the network. As a
result, M Q T T seems as a much better solution since it works on one-to-many basis
and publishes a message after each status change.

2. Ab i l i t y to communicate on a L A N network.

3. Ab i l i t y to communicate on a W A N network. Wh i l e it would be possible for H T T P
(via port mapping in the router's settings), i t 's not straightforward to configure for
an ordinary user.

4. Basic commands include: open, close, stop, statusn.

5. Advanced commands include scfg, acfg, acf a or others.

6. A s previously discussed H T T P is a stateless protocol and thus when Smarwi connects
to the network, it is not aware to whom it should send a message that it has connected.
To find new devices, a scan of the whole network would be required which can be
resource expensive. In the case of M Q T T communicat ion, as soon as the device
connects to the network, it publishes online and status messages to let interested
clients know, it is available.

7. W h e n configuring Smarwi init ial ly, the user has to input the network SSID and the
password to be able to connect to the desired network. As soon as Smarwi is connected
to the network, it can be controlled v ia H T T P A P I . To set up M Q T T communicat ion
and connect Smarwi to the BeeeOn Gateway, the user has to change the M Q T T
broker address to the I P address of the device on which Gateway runs.

8. According to performance and power profi l ing tests done by Flespi [15] and Stephen
Nicholas [17] M Q T T requires 1 0 % less traffic than H T T P . That means it not only
saves the bandwidth but also it allows bigger message throughput. Tests also show
M Q T T uses less power than H T T P client however, i n case of Smarwi this is negligible.
Examples of tables can be seen at 5.2 and 5.3.

26

R e c e i v i n g H T T P S M Q T T
Messages / Hour 3628 263314

Messages Received 524 / 1024 1024 / 1024
S e n d i n g H T T P S M Q T T

Messages / Hour 5229 23184

Table 5.3: H T T P S vs M Q T T comparison from Stephen Nicholas [17]

5.3 Commun ica t i on

To better understand the way Smarwi works, reverse research engineering was conducted to
reveal communicat ion between a client and Smarwi and data that were captured, were writ
ten down and described i n the best manner possible. Communicat ion is almost completely
described i n the appendix A w i th l i tt le information missing that couldn't be deciphered.
Reverse engineering was done by a tool named Wire shark and being i n the middle of the
communicat ion between Vekt iva broker and Smarwi . In other words, a computer w i th
Wireshark created an access point to which Smarwi was connected to. After that, every
possible opt ion in the web interface was executed to reveal a l l messages that are involved in
the communicat ion. To have a better idea of how the communicat ion worked please have
a look at 5.2. The dashed arrows show a relationship between the two elements while solid
bidirect ional arrows show the flow of communicat ion.

Connected to the Wi-Fi network created by

Laptop with
an acces

point

Laptop with
an acces

point ^ ^

Running on the ,'

Web browser

Connected to the

Vektiva portal
WebGUI

Controls Smarwi through

Figure 5.2: Communicat ion setup dur ing the process of reverse engineering

5 .3 .1 V e k t i v a ' s b r o k e r

As stated earlier in 4.6, communicat ion is done on port 1883 and in case of Vektiva 's default
broker server 1 an authenticat ion is required to be able to conect to their broker. A s 1883

x

https: //broker.vektiva.com

27

port is the default for unencrypted M Q T T communicat ion, getting a username (RemotelD)
and a password RemoteKey can be easily obtained if M I T M attack is performed since they
are transferred i n a clear text form. W i t h credentials a hacker can connect to the broker,
however, the broker after successfull connection only allows to control devices or subscribe
to topics that are assigned to the same Remote lD . That means i f Remote lD is equal to
„dowarogxby", it only grants us access to the topic of ion/dowarogxby/#. This leads to
exploit ing a l l devices that the user has registered to the broker and a possible threat of
altering windows to an undesired posit ion.

A n example of publ ishing a message to the Vektiva's broker is provided.

mosquitto_pub -h "broker.vektiva.com" -t "ion/REMOTEID/°/„MACADDRESS/LAST_SEGMENT"

-m "MESSAGE" -u "REMOTEID" -P "REMOTEKEY" -r

5.3 .2 G a t e w a y ' s b r o k e r

Since the ma in purpose of the Gateway is to search for devices on a local network and
control them, no authenticat ion is required to connect to the broker. Communicat ion is
done on port 1883.

5 .3 .3 O n c o n n e c t

W h e n Smarwi is attempting to connect to the specified broker, together w i th credentials
it is sending the last-wi l l message which is published by the broker, when Smarwi does not
respond to the P I N G requests for an extended period of time. Once Smarwi successfully
connects to the broker, it publishes retained online and status messages.

5 .3 .4 P r o p o s a l o f c o m m u n i c a t i o n d e s i g n

As mentioned in 4.4, Smarwi is able to communicate both on local and wide-area networks,
however in regards to network, pure L A N communicat ion between the device and the
Gateway is chosen as the best opt ion since the network is not only less cluttered but also
the communicat ion is more reliable and to a greater extent more secure.

W h e n deciding what protocol for communicat ion to use table 5.1 was created to clearly
presents the advantages of each protocol. Accord ing to the criter ia presented i n the table,
M Q T T is chosen as a way of communicat ion.

Inside the VektivaSmarwi class there are 4 modules, one which is only an output module
and the other 3 are controllable. The list of the modules w i th description is below where
they are ordered respectively to their module ID start ing from 0.

• open/close module - to either open or close the window completely,

• open to module - to open the window measured in percentage of the calibrated
distance,

• un/fix module - to un/fix or to un/lock the window by Smarwi ,

• r s s i module - output module to provide information about the strength of the W i - F i
signal.

28

http://broker.vektiva.com

Chapter 6

Implementation into the BeeeOn
system

The chapter presents the results of the gradual progress of the final implementat ion and
the testing that was conducted in each stage of the development. Several not so fortunate
decisions were unveiled in the proposed p lan as the development progressed but thanks to
well t imed code evaluations, they were corrected. A s no code design is fault-proof, the
proposed implementation plan was no exception although in many regards it was correct.

Development was conducted in series of iterations, where in the end of each iteration
code review took a place. Th is process allowed effective communicat ion and m in imum
misunderstandings. O n average each iteration was long about 9-10 days. In the first half
of i teration, t ime was reserved for fixing the code and implementing goals defined i n the
previous i terat ion. W h e n work was done and tested, code was commited to the repository.
The rest of the t ime was reserved for code review and addit ional discussion.

Several libraries has helped to avoid code repetit ion and speeded up the whole develop
ment process. The most used ones were std and Poco [9] C + + libraries. Poco consists of
several modules that range from str ing manipulat ion through X M L , J S O N or Z IP manip
ulat ion to network and cryptographic operations.

6.1 Implemented parts of the proposed p lan

As described i n 5.2 the ma in function of VektivaDeviceManager is to control a l l paired
Smarwis and search for other available devices. This remained unchanged together w i th
the class diagram which can be seen at 5.1. For communicat ion M Q T T protocol was chosen
as a more reliable and versatile opt ion compared to the H T T P . Addit ional ly , dependency
diagram generated from the code at 6.1 can confirm class diagram has not changed.

6.2 Par ts changed

Dur ing the development, several decisions were made where the actual implementat ion
started to differ from the proposed plan.

VektivaDeviceManager has 2 instances of M Q T T clients, one of which is constantly
passively analyz ing incoming messages and the second one controls ind iv idua l Smarwis.
Since M Q T T messages in the current implementat ion are impossible to sort through and
can only be buffered unt i l they are returned from the client, it was clear that 2 instances are

29

needed. In case of one instance the problems such as finding a device while wait ing to finish
the operation might have occurred. To be more elaborate, it takes at least 3 seconds for the
Gateway to receive the final message of the operation. Its' a im is the status message which
signalises an id l ing state from the specific Smarwi . Wh i l e wait ing, several less important
messages are thrown away and possibly w i th them a message about the new device i n the
network. As M Q T T has no way of device discovery, the device restart would be necessary.

To further explain the first instance of M Q T T client, i f an online message of unknown
Smarwi is received, it creates a VektivaSmarwi instance and adds it to the list of found
devices. In another case, i f a status message of paired Smarwi is received and the status
code equals to the id l ing state (250), the Gateway ships the data to the exporters. The
instance is only used for analyz ing and never for publ ishing any messages. The process of
analyzing the received M Q T T message can be seen at diagram 6.2.

The second instance is solely used for manipulat ion w i th other Smarwis. To ensure one
to one communicat ion, the second instance is protected by mutex and topics and messages
are filtered by a regular expression. Before any modif ication, a message buffer is cleared
to make sure only the newest messages are analyzed. Afterwards, a command is sent to
the specified device and the Gateway awaits for the confirmation message. In case message
delivery t imed out or a change led to failure, exceptions are thrown.

As mentioned in 5.2 part of the VektivaDeviceManager class is a seeker to add new
devices. W h e n the Gateway receives command listen, a l l found devices are contacted w i th
a message requesting for their status response. NewDeviceCommand is then dispatched for
every device that responds in time. Th is strategy can be also beneficial to determine the
last t ime paired, infrequently used device was active.

6.3 Implementat ion tests

Most of the testing was manual ly performed as it 's very hard to simulate network traffic
and device behaviour in automated tests. U n t i l the modified Gateway was able to commu
nicate w i th the server, tests were conducted thanks to TestingCenter and an appl icat ion
netcat. TestingCenter as mentioned in the 2.6 act as a server for developers to verify
newly implemented features. After communicat ion w i th the server was established, the
testing was done w i th the web browser. To ensure that message parsing is correct, several
unit tests were wr i t ten together w i th tests for M Q T T message bui ld ing and for val idating
M Q T T message topic. These tests were implemented w i th respect to other tests i n the
testing framework CppUnit.

30

2
TJ
O

I

CC

a
o

TJ
a
o
&
o
O

2

31

Message received

yes—

Retrieve device info
from the topic

Build device ID

>

>

Retrieve device info
from the topic

>

Instantiate Smarwi
class

>

Request status trom
the device

Figure 6.2: Decision tree of analyzing the received message

32

Chapter 7

Testing - Smarwi emulator

Often times, we can find ourselves i n a s i tuat ion when our work depends on something we
don't possess at the t ime and therefore we are unable to continue, unt i l we obtain it . It
can range from credentials, through a file to a tangible thing. It can be possible to store
al l electronic information we need to smal l hard-drives but it can be usually challenging to
always carry around bulky IoT devices. For this reason, emulators exists. They substitue
devices that they are specifically designed to, by s imulat ing their normal operation as
close to reality as possible. Addi t ional ly , since running mult iple instances of the emulator is
generally cheaper than buying dozens of devices, they can be used in stress or load testing to
prove the tested system is reliable and does not contain bugs. For this reason an emulator
was built that is easy to control, has a wide variety of options and at the same t ime is
easy enough to run on any platform. Vekt iva Smarwi emulator provides a user interface
from which a user is able to manage mult iple instances, dynamical ly change the number
of Smarwis and at the same time, they a l l act as standalone devices which communicate
correctly w i th other programs s imi lar ly as Smarwi .

7.1 Implementat ion

Vekt iva Smarwi emulator was implemented in P y t h o n 3 as a mult i threaded appl icat ion,
providing a R E S T A P I to interact w i th the emulator. O n top of that we can find a graphical
user interface provided on a page hosted on the local server. For the user interface H T M L 5
together w i th C S S and jQuery as a Javascript framework. In the backend, Py thon 3 was
used together w i th a set of libraries that helped to speed up the development process. F rom
the ma in ones Paho client, Threading and socketserver can be mentioned.

7 .1 .1 R o u t i n g

To be able to recognize what act ion user wants from the emulator, it needs some decision
making process, in this case it is implemented as a router. Since the whole appl icat ion runs
on a light H T T P server, it can be controlled v ia specified end points. Once the request is
received by the H T T P server, the U R L is parsed and the path is passed to the class Router.
The path is div ided into segments where the delimiter is a slash. If the first segment is
correct, it is passed to the class VektivaSmarwiHandler for further processing. In case the
first segment is not recognized by the Router , the main page is returned.

To have a better idea of how the emulator works, diagrams of decision trees can be
seen at 7.2 and 7.3. Figure 7.2 shows the internal structure of the whole emulator. A t the

33

beginning we can see H T T P request received by the server, which calls Router to further
analyze the request. Fol lowing condit ional control statements decide what is the outcome of
the received request. In case the first segment of the U R L contains a val id M A C address, the
request is passed to the VektivaSmarwiHandler where a correct act ion is executed according
to the request attributes.
Figure 7.3 shows the decision tree of one of the internal methods in the Router. It can
represent the node "Re tu rn method output " in the 7.2. It shows the endpoint /devices
which have a R E S T interface to enable easy manipulat ion w i th Smarwis. In the first three
condit ional control statements, we are dist inguishing between G E T , P O S T and D E L E T E
request methods. G E T method returns an array of Smarwis serialized in J S O N , P O S T
request passes a request to the VektivaSmarwiHandler which validates data received in the
body of the request and in case of success a new Smarwi is added to the list of running
Smarwis. D E L E T E method removes the Smarwi from the list of existing Smarwis if a val id
M A C address is i n the second segment of the U R L .

7 .1 .2 S m a r w i h a n d l i n g

After the parsed path has been passed to the VektivaSmarwiHandler, according to other
segments of the path, the correct act ion is performed. The class' ma in goal is to keep the
manipulat ion and storing Smarwis separated from the rout ing process. It holds a list of
created Smarwi instances and performs operations on either the whole list or a specific
Smarwi.
General operations over Smarwi instances include:

• a d d i n g - creates a new Smarwi instance and adds it to the list,

• d e l e t i n g - deletes the specified instance from the list,

• r e t r i e v i n g - retrieves the list of Smarwis w i th their status.

Specific Smarwi operations include:

• o p e n / c l o s e - opening or closing the window,

• on/o f f - turn ing on or off Smarwi ,

• s t o p - provides an immediate stop and unfixing the window,

• f i x - f ixing the Smarwi , which locks the window and can't be moved mechanically,

• s t a t u s - provides the status of the Smarwi ,

• e r r o r - schedules an error. This act ion does not throw an error state immediatel ly
but just after opening or closing begins as the real behaviour of Smarwi .

Fol lowing sections present a short explanation of how to use the respective parts of the
emulator. Even though the emulator was designed to be as intuit ive as possible, following
sections w i l l t ry to guide you when in doubt.

7.2 A P I endpoints

A P I provides an easy way to programmatical ly control the emulator. It is bui l t i n R E S T
architectural style following the design guidelines. A l l C R U D operations can be found in
table 7.1.

34

R e q u e s t
t y p e

R o u t e D e s c r i p t i o n

G E T / devices lists a l l devices available i n the emulator
P O S T / devices w i th correct J S O N i n the body creates new

device
D E L E T E /devices/< M A C > deletes the device w i th the M A C address pro

vided in the M A C parameter
G E T / < M A C > / o p e n opens the device specified in the M A C pa

rameter
G E T /<MAC>/c lose closes the device specified in the M A C pa

rameter
G E T / < M A C > / o n turns on the device specified in the M A C pa

rameter
G E T /<MAC>/o f f turns off the device specified in the M A C pa

rameter
G E T / < M A C > / e r r o r / < E R R N O > schedule error on the device specified in the

M A C parameter w i th the error number spec
ified in the N U M B E R parameter

G E T / < M A C > / s t o p stops the current act ion carried out on the
device specified in the M A C parameter and
unfixes the window

G E T / < M A C > / f i x fixes the window by the device specified in
the M A C parameter

G E T /<MAC>/s ta tus publishes the status message of the device
specified in the M A C parameter

Table 7.1: Documentat ion of an A P I of Vekt iva Smarwi emulator

35

7.3 M Q T T

Part of Vekt iva Smarwi emulator is an M Q T T client and it works by default on localhost
however, this can be easily changed by providing a host name and a port to connect to.
This enables using the emulator on the W A N network through M Q T T messages. Add ing
new devices is however required to do local ly either i n the user interface or through A P I .
Messages sent by the emulator are described i n A . Each device can be controlled the same
as Smarwi or s imi lar ly to the A P I commands. A s an example, we can find a command to
schedule an error on Smarwi .

mosquitto_pub -t "ion/dowaroxby/°/
0
aabbcceeddf f/cmd" -m "error/20"

Scheduling an error over M Q T T

7.4 User interface

As mentioned earlier, user interface bui l t i n H T M L , C S S and a Javascript framework jQuery,
provides an easy access to the main to control a l l emulated Smarwis. It is possible to work
w i th the graphical interface even w i th no connection to the Internet, however as it is using
jQuery it needs to be either loaded from a C D N or a local file. B y default the C D N is used,
however a user can put the j Query file into the same folder as the emulator and name it
accordingly to the H T M L page.

In the image 7.1 in the top left corner we can see a Reload but ton to retrieve the status
of a l l devices i n the emulator. Next, we can see Generate MAC: checkbox which allows us
to automatical ly generate M A C address when creating a new device. If we wish to input a
specific M A C address we can use the text field next to the MAC: field. The last element is
a Create but ton that creates a new device if the correct M A C address is provided. Below,
we can find a list of a l l instantiated Smarwis that we can control.

• o n l i n e - avai labi l i ty of Smarwi

— g r e e n - online

— o r a n g e - error occurred

— r e d - offline

• p o s i t i o n - posit ion of Smarwi

— o p e n

— c lose

• m a c a d d r e s s - M A C address of Samrwi

• a c t i o n s - available actions to Smarwi

— o p e n - opens the specific Smarwi

— c lose - closes the specific Smarwi

— f i x - fixes the window by the specific Smarwi

— s t o p - stops the current action the specific Smarwi and unfixes the window

— o n - turns on the specific Smarwi

36

— off - turns off the specific Smarwi

— t h r o w e r r o r - schedules error on the specific Smarwi and throws error imme
diately as open/close act ion is performed

— e r r o r s c h d - notices that error is scheduled on the specific Smarwi , can be
canceled by stop act ion

— de l e t e - deletes the specific Smarwi

Reload ; Generate mac: O M A C :

Online Position Mac Address

Create

Actions • C L O S E e 6 1 5 9 1 8 7 3 c l l t OPEN) t CLOSE) FIX)^STOP).OFF j E R R O R S C H D j ^ J ^

O P E N 6c4f3cf04c5e t OPEN) . CLOSE) . FIX) . STOP) . OFF J!THROW ERROR ^ ^ ^ B • C L O S E 7d47a42210bf .OPEN X CLOSE J . FIX J . STOP). ON XTHROW ERROR ^ ^ ^ ^ • O P E N c b 4 6 e f l 6 6 d l d t OPEN) . CLOSE) . FIX) . STOP) . OFF J!THROW ERROR ^ ^ ^ B

Figure 7.1: User interface of Smarwi emulator

7.5 Schedul ing and fixing errors

As stated several t imes before, errors can not be thrown immediately after receiving a
command to do so because it would not simulate real life operation of Smarwi . Instead, we
can schedule an error and it is thrown as soon as emulator attempts to manipulate w i th
the window w i th the specific Smarwi .
To follow Smarwi operation as close as possible, an error can be fixed by sending a stop
command. It bo th fixes an existing error state and unschedule any error that is supposed
to be thrown.

37

Request received
by the HTTP server

Passed to the Router

Stop the thread

I ZZ

Add the th
list of runn

read to the
ng threads

Execution passed to
the Smarwi instance

i

Return success state

Figure 7.2: Decision tree of the emulator

38

Request passed to
the Router

Instantiate Smarwi
class

Add to the list ot
Smarwis in the

VektivaSmarwiHandler

Return success state

Return success state

Figure 7.3: Decision tree of the emulator's "/devices" endpoint

39

Chapter 8

Conclusion

In this thesis a successful implementat ion of a new Vekt iva module was described which
allowed a new device called Smarwi to be controlled from the BeeeOn interface. Smarwi , a
name of the implemented device, is a smart window opener connected to the network w i th
W i - F i and communicat ing w i th H T T P and M Q T T .

BeeeOn system was the first th ing that was needed to study to know, how it works
and what parts it consists of. Parts of the system related to the implementat ion of new
modules were a pr imary focus afterwards. After that, the possibilities of Smarwi imple
mentation were researched and w i th gathered data a decision about the best strategy for
Vekt iva module implementat ion has been made. The module was designed to follow pat
terns of object-oriented programming and a set of standards established by the BeeeOn
community. Wh i l e M Q T T and H T T P are available options to control Smarwi wi th , the
whole communicat ion w i th the BeeeOn Gateway uses only M Q T T protocol as it had more
advantages compared to H T T P . After reading the documentation of Smarwi and making
it more comprehensive, usage of the M Q T T client i n the BeeeOn Gateway was explored to
further understand possibilities of implementation.

Implementation was conducted in a series of iterations w i th an average durat ion of
10 days. Implemented parts were regularly tested either w i th manual testing or unit tests.
Manua l testing included work w i th the device over the network while unit tests were mostly
testing message parsing and message creation.

To further verify the correctness of the implementat ion and to allow Vekt iva Smarwi
development even w i th no presence of an actual Smarwi , an emulator was developed w i th
an intention to substitue Smarwi as best as possible. In the emulator mult iple instances can
be managed to fully simulate a network w i th Smarwis. It has proven the implementat ion
of Vekt iva module i n Gateway works w i th mult iple instances of Smarwi at the same time.

40

Bibl iography

[1] BlickDomi actuator. [Online; Accessed 15.01.2019].
Retrieved from: h t t p s : //www.b l ickdomi .com/bl ickdomi-compact .html

[2] Horizontally sliding actuator. [Online; Accessed 15.01.2019].
Retrieved from: h t tp ://www.smar t f enes t ra .com/products/

[3] Image of the arm-folding actuator. [Online; Accessed 19.05.2019].
Retrieved from: ht tps ://www.be lk in .eom/uk/p/P-F7C027/

[4] Image of the arm-folding actuator. [Online; Accessed 19.05.2019].
Retrieved from:
h t t p s : / / w w w . a i h o m e . m y / p r o d u c t / p h i l i p s - h u e - s i n g l e - b u l b - a 6 0 - e 2 7 /

[5] Image of the arm-folding actuator. [Online; Accessed 06.03.2019].
Retrieved from:
h t t p s : / / c e l l c o d e . u s / q u o t e s / o p e n e r s - w i n d o w - e l e c t r i c - c a s e m e n t . h t m l

[6] Image of the chain actuator. [Online; Accessed 05.03.2019].
Retrieved from:
h t t p s : / / www.w indow-opene r s . com/ack5 - e l e c t r i c - cha in - a c t u a t o r /

[7] Image of the linear actuator. [Online; Accessed 05.03.2019].
Retrieved from: h t t p : / / c o r a l - h o m e . o v e r - b l o g . c o m / a r t i c l e - h o w - t o - r e m o t e -
c o n t r o l - s k y l i g h t - w i n d o w - 1 1 6 2 0 1 6 4 3 . h t m l

[8] Message Queuing Telemetry Transport. [Online; Accessed 22.03.2019].
Retrieved from: h t t p : //mq t t . o r g/documen ta t i on

[9] Poco, C++ library. [Online; Accessed 22.03.2019].
Retrieved from: h t t p s : / / p o c o p r o j e c t . o r g /

[10] Solar smart linear actuator. [Online; Accessed 13.01.2019].
Retrieved from: h t tps ://www.so la rsmar topener . com/store/

[11] Teal products linear actuator. [Online; Accessed 14.01.2019].
Retrieved from: h t t p s : / / w w w . t e a l p r o d u c t s . c o m / p r o d u c t / a c t u a t o r s / l i n e a r -
t y p e / r a c k - p i n i o n - a c t u a t o r s / m i n g a r d i - s l - r a c k - a c t u a t o r

[12] Types of electrical window actuators. [Online; Accessed 01.05.2019].
Retrieved from: h t t p s : //www. t ea l p r oduc t s . c om/produc t s/ac tua t o r s

41

http://www.blickdomi.com/blickdomi-compact.html
http://www.smartfenestra.com/products/
https://www.belkin.eom/uk/p/P-F7C027/
http://www.aihome.my/product/philips-hue-single-bulb-a60-e27/
http://www.window-openers.com/
http://coral-home.over-blog.com/
http://mqtt.org/documentation
https://pocoproject.org/
https://www.solarsmartopener.com/store/
http://www.tealproducts.com/product/actuators/linear-
https://www.tealproducts.com/products/actuators

[13] Use of linear actuators and comparison between linear and chain actuators. [Online:
Accessed 04.05.2019].
Retrieved from: h t t p s : / / a r e n s . c o m . a u / e l e c t r i c - p r o d u c t s /

[14] Vektiva API documentation. [Online; Accessed 19.01.2019].
Retrieved from: h t t p s : / / v e k t i v a . g i t l a b . i o / v e k t i v a d o c s / a p i / a p i . h t m l

[15] Bartni tsky, J . : MQTT vs HTTP performance tests. J an 2018. [Online; Accessed
24.02.2019].
Retrieved from: h t t p s : / / f l e s p i . c o m / b l o g / h t t p - v s - m q t t - p e r f o r m a n c e - t e s t s

[16] Nečasová, K. : Extension of wireless sensor protocol. M a y 2017. [Online; Accessed
28.12.2018].
Retrieved from: h t t p s :
//www.vutbr.cz/www_base/zav_prace_soubor_vere jne.php?f i l e _ i d = 1 5 9 1 5 3

[17] Nicholas, S.: MQTT vs HTTP comparison. M a y 2012. [Online; Accessed 22.02.2019].
Retrieved from:
h t t p : //s t ephendn i cho las . com/pos t s/power -p ro f i l i n g - m q t t - v s - h t t p s

[18] Čížek, J . : Na brněnské FIT se rodí BeeeOn. Univerzální chytrá domácnost. February
2016. [Online; Accessed 28.11.2018].
Retrieved from: h t t p s : //www.z i ve . c z/c lanky/na-brnenske - f i t - s e - r o d i -
b e e e o n - u n i v e r z a l n i - c h y t r a - d o m a c n o s t / s c - 3 - a - 1 8 1 4 2 3 / d e f a u l t . a s p x

42

https://arens.com.au/electric-products/
http://vektiva.gitlab.io/vektivadocs/
http://flespi.com/blog/http-vs-mqtt-performance-tests
http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f
http://www.zive.cz/clanky/na-brnenske-f

Append i x A

Smarwi M Q T T communicat ion

A . l M Q T T messages

S e t t i n g s - > I n f o

C o m m a n d

stat

D e s c r i p t i o n

Status of Smarwi , which consists of mult iple fields is returned.

• t - device type (swr)

• s - state code

• e - error code

• ro - ridge out of the device (0 - in , 1 - out)

• ok - O K status —> when O K = = 1 then R O = = 0 and vice versa.

• pos - window posit ion (c - closed, o - open)

• fix - window posit ion fixed (window fixed by device)

• ip - 32bit number representing IP addres

• c id - device name

• rssi - signal strength

• fw - device firmware version

• t ime - device t ime in seconds

• up - upt ime of the device in milliseconds

• w m - unknown

• wp - unknown

43

• wst - unknown

• mem - unknown

• a - unknown

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/
0
600194496fd2/status'

Message:

t: swr

s:250

e:0

ok:l

ro:0

pos: c

f i x : l

a:-98

fw:3.4.1-15-g3d0f

mem:25416

up:477890

ip:268446218

cid:xsismi01

rssi:-58

time:1550968238

wm: 1

wp: 1

wst :3

S e t t i n g s - > B a s i c

C o m m a n d

l c f g

D e s c r i p t i o n

Loads a basic configuration.

• ssid - name of the W i - F i network Smarwi is connected to

• pass - password used to authenticate when connecting to W i - F i network

• ssidap - name of the W i - F i network that Smarwi creates when set to A P mode

• passap - password for connecting to the W i - F i network created by Smarwi

• mode - current mode i n which Smarwi is (cli - client, ap - access point)

• dst - Dayl ight saving mode (more described i n Settings-> Time)

• zone - T ime zone i n which Smarwi is (more described i n Settings->Time)

44

• wsleep - hours in which W i - F i network (that Smarwi is connected to) is planned to
be turned off. (more described i n Settings->Advanced)

• mqttsvr - M Q T T broker for communicat ing w i th Smarwi

• mqttuser - known as Remote lD , user ID according to which Smarwis can be assigned
to one user

• mqttpass - R e m o t e K E Y

• mqttport - port to which Smarwi connects to when communicat ing w i th M Q T T
broker

• swrname - device name

• lat - lat itude (more described i n Settings->Advanced)

• Ion - longitude (more described i n Settings-> Advanced)

• phym - W i F i P H Y Mode (more described i n Settings->Advanced)

• unst - unknown

• sunalgo - unknown

• mqt tka - unknown

• rsetup - unknown

• rasetup - unknown

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/„600194496f d2/conf ig/basic'

Message:

ssid:luksPC

pass:AOCqjsTF

ssidap:SWR-496fd2

passap:12345678

mode:cli

d s t : l

zone:60

rsetup:1

rasetup:1

wsleep:0

mqttsvr:10.42.0.1

mqttuser:dowarogxby

mqttpass:53214716

mqttport:1883

mqttka:30

swrname:xsismiOl

lat:50.088001

45

Ion:14.420000

sunalgo:0

phym:b

unst:0

S e t t i n g s - > B a s i c - > S e l e c t W i f i N e t w o r k

C o m m a n d

scan

D e s c r i p t i o n

Once clicked on dropdown named „Select W i f i network", Smarwi scans for available net
works i n his surrounding area and shows it appropriately i n a dropdown menu.

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/Y/„600194496fd2/wlist'

Message:

-30 Vodafone-4AF188|9

-45 luksPC11

-76 MEO-WiFi|6

-78 ME0-18CF7DI6

-83 Vodafone-23280A|3

-85 Vodafone-DE58E811

-89 ME0-A2F510I1

-89 MEO-WiFi|1

-89 JCMI8

-89 Vodafone-CF6DB015

-90 Vodafone-25F158|3

S e t t i n g s - > B a s i c - > S a v e

C o m m a n d

scfg01/11swrname:xsismiOl

ssid:luksPC

ssidap:SWR-496fd2

mode:cli

mqttuser:dowarogxby

mqttpass:53214716

D e s c r i p t i o n

After but ton is clicked, it sends an actual state of configuration to Smarwi to save.

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/
0
600194496fd2/online'

Message:

46

0

S e t t i n g s - > B a s i c - > A p p l y

C o m m a n d

acfgOl/11swrname:xsismiOl

ssid:luksPC

ssidap:SWR-496fd2

mode:ap

mqttuser:dowarogxby

mqttpass:53214716

D e s c r i p t i o n

Appl ies currently set settings to Smarwi without saving them. W h e n „mode" is set to „ap",
Smarwi switches to access point mode. If password is not specified, Smarwi uses default
„12345678"

S a m p l e r e t u r n

No message is returned.

S e t t i n g s - > B a s i c - > R e b o o t

C o m m a n d

boot

D e s c r i p t i o n

Smarwi is rebooted.

S a m p l e r e t u r n

No message is returned.

S e t t i n g s - > A d v a n c e d

C o m m a n d

l c f g

D e s c r i p t i o n

Loads configuration of Smarwi .

S a m p l e r e t u r n

Same as Settings-> Basic

47

S e t t i n g s - > A d v a n c e d - > A p p l y

C o m m a n d

acfgOl/11mqttsvr:broker.vektiva.com

wsleep:2113665

lat:50.088002

Ion:14.420001

phymrg

D e s c r i p t i o n

Appl ies settings currently set on configuration „Advanced" page.

• wsleep states for W i - F i off hours, where hours i n which W i - F i w i l l be off can be
selected. They are in binary order where 0 o'clock is an least significant bit . 2113665
as a decimal or 1000000100000010000001 in binary therefore selects 0, 7, 14, 21 hours
as W i - F i off hours.

• P h y m states for W i F i P H Y Mode. 3 options are available and that is:

• - 802.11b (set as b)

- 8 0 2 . l l g (set as g)

- 802.1 I n (set as n)

• lat states for latitude (N/S) i n degrees

• Ion states for longitude (E/W) in degrees

S a m p l e r e t u r n

No message is returned.

S e t t i n g s - > A d v a n c e d - > S a v e

C o m m a n d

scfg01/lImqttsvr:broker.vektiva.com

wsleep:2113665

lat:50.088002

Ion:14.420001

phym:b

D e s c r i p t i o n

Saves settings from „Advanced" tab to Smarwi .

S a m p l e r e t u r n

No message is returned.

18

S e t t i n g s - > F i n e t u n e

C o m m a n d

l c f a

D e s c r i p t i o n

Loads a fmetune configuration of Smarwi . In this configuration changes related to movement
speed, power or window posit ion can be made.

• vpct - M a x i m u m open posit ion

• ospd - Movement speed

• ofspd - Near frame speed

• orpwr - Movement power

• ofpwr - Near frame power

• ohcpwr - Closed holding power

• ohopwr - Open holding power

• hdist - W indow closed posit ion fmetune

• lw id - W indow locked error trigger

• cfdist - Ca l ibrated distance

• cvdist - unknown

S a m p l e r e t u r n

Topic: 'ion/dowarogxby/\°/
0
600194496fd2/config/advanced'

Message:

vpct:97

ospd:85

ofspd:3

orpwr:77

ofpwr:5

ohcpwr:46

ohopwr:41

hdist:-2

lwid:23

cfdist:2560

cvdist:79488

49

S e t t i n g s - > F i n e t u n e - > A p p l y

C o m m a n d

acfg01/l|ospd:87

ofspd:4

orpwr:79

ofpwr:7

ohcpwr:47

ohopwr:43

hdist:-3

lwid:24

vpct:95

cfdist:2560

D e s c r i p t i o n

Appl ies fmetune settings to Smarwi configuration.

S a m p l e r e t u r n

No message is returned.

S e t t i n g s - > F i n e t u n e - > S a v e

C o m m a n d

scfa01/l|ospd:87

ofspd:4

orpwr:79

ofpwr:7

ohcpwr:47

ohopwr:43

hdist:-3

lwid:24

vpct:95

cfdist:2560

D e s c r i p t i o n

Saves fmetune settings i n Smarwi . Settings are described i n A . l .

S a m p l e r e t u r n

No message is returned.

S e t t i n g s - > F i n e t u n e - > R e s e t t o d e f a u l t s

C o m m a n d

rcf a

50

D e s c r i p t i o n

Resets finetune settings to defaults except field named Cal ibrated Distance. Therefore
recalibration is not needed.

S a m p l e r e t u r n

Topic:
 ,

ion/dowarogxby/\°/
0
600194496fd2/config/advanced'

Message:

vpct:100

ospd:40

ofspd:40

orpwr:50

ofpwr:60

ohcpwr:60

ohopwr:30

hdist:0

lwid:20

cfdist:2560

cvdist:79488

S e t t i n g s - > C a l i b r a t i o n - > S t e p 1

C o m m a n d

stab

D e s c r i p t i o n

Window posit ion is saved in i ts ' closest posit ion to window frame while we push it towards
a window frame.

Re turn message described i n A . l .

S a m p l e r e t u r n
Topic: ' ion/dowarogxby/\°/

0
600194496fd2/status'

Message:

t: swr

s:250

e:0

ok:l

ro:0

pos: c

f i x : l

a:-98

fw:3.4.1-15-g3d0f

mem:25240

up:6041397

ip:268446218

51

cid:xsismj.01

rssi:-59

time:1550957092

wm: 1

wp: 3

wst :3

S e t t i n g s - > C a l i b r a t i o n - > S t e p 2

C o m m a n d

cstart

D e s c r i p t i o n

Window posit ion is recorded i n i ts ' loose state or a state in which window stays relatively
closed without apply ing any force to it.
Re turn message described i n A . l .

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/
0
600194496fd2/status'

Message:

t: swr

s:110

e:0

ok:0

ro:0

pos: c

f i x : l

a:-98

fw:3.4.1-15-g3d0f

mem:25240

up:6121679

ip:268446218

cid:xsismi01

rssi:-57

time:1550957172

wm: 1

wp: 3

wst :3

S e t t i n g s - > C a l i b r a t i o n - > S t e p 3

C o m m a n d

cend

52

http://cid:xsismj.01

Description

We open window to a desired open state. Smarwi measure the max imum open posit ion.
Re turn message described in A . l .

Sample return

Topic: ' ion/dowarogxby/\°/0600194496fd2/status'
Message:

t : swr
s:130
e:0
ok:0
ro:0
pos :o
f i x : l
a:-98
fw:3.4.1-15-g3d0f
mem:25240
up:6197250
ip:268446218
cid:xsismi01
r s s i : - 5 5
time:1550957248
wm: 1
wp: 3
wst :3

S e t t i n g s - > T i m e - > S a v e s e t t i n g s

Command

scfg01/lIdst:2
zone:210

ntp :pt .pool .ntp .org

Description

Saves settings related to t ime to Smarwi . „dst" means Dayl ight saving mode. Possible
values are:

• 0 - D S T off

• 60 - D S T on + l h

• 30 - D S T on +30min

• 1 - Au to E U

• 2 - Au to U S A

53

„zone" means what t ime zone is selected. Value of 0 means t ime zone is set to U T C .
Accord ing to this t ime zone value can be either more, equal or less than zero. Value in this
field means how many minutes it is distant from U T C time zone. Values range from -720
to +765. Possible values are:

• 0 - U T C zone

• 60 - + l h

• 120 - +2h

• 180 - +3h

• 210 - +3h 30min

• -60 - - l h

„ntp" is an N T P server.
Fields „dst" and „zone" are loaded from Smarwi config/basic(„lcfg") message, while

field „ntp" is most l ikely an arti f icial field, which is not loaded from anywhere and is just
added by Javascript.

S a m p l e r e t u r n

No message is returned.

S e t t i n g s - > U p d a t e - > U p d a t e F i r m w a r e

C o m m a n d

updf

D e s c r i p t i o n

Proceeds to update firmware in Smarwi if any update is available.
Re turn message described i n A . l .

S a m p l e r e t u r n

Topic: 'ion/dowarogxby/\%600194496fd2/status'
Message:

t: swr

s:250

e:0

ok:l

ro:0

pos: c
f i x : l

a:-98

fw:3.4.1-15-g3d0f

mem:25560

up:329119

54

ip:268446218

cid:xsismi01

rssi:-53

time:1550968090

wm: 1

wp: 1

wst :3

ur :2

A . 1 . 1 O p e n

C o m m a n d

open;100

D e s c r i p t i o n

Opens window on which Smarwi is instal led. Parameter after semicolon is opt ional and sets
the number of percent Parameter should be i n range from 0 to 100, otherwise unexpected
behaviour happen.
Re turn message described i n A . l .

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/
0
600194496fd2/status'

Message:

t: swr

s:212

e:0

ok:l

ro:0

pos :o

f i x : l

a:-98

fw:3.4.1-15-g3d0f

mem:23568

up:8257915

ip:268446218

cid:xsismi01

rssi:-72

time:1550969713

wm: 1

wp: 1

wst :3

A . 1.2 C l o s e

C o m m a n d

close

55

D e s c r i p t i o n

At tempts to close window on which Smarwi is installed.
Re turn message described i n A . l .

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/
0
600194496fd2/status'

Message:

s:220

e:0

ok:l

ro:0

pos :o

f i x : l

a:-98

fw:3.4.1-15-g3d0f

mem:23680

up:8526574

ip:268446218

cid:xsismi01

rssi:-67

time:1550969982

wm: 1

wp: 1

wst :3

A . l . 3 S t o p

C o m m a n d

stop

D e s c r i p t i o n

Immediately stop the current process of opening or closing window.
Re turn message described i n A . l .

S a m p l e r e t u r n

Topic: ' ion/dowarogxby/\°/
0
600194496fd2/status'

Message:

t: swr

s:250

e:0

ok:l

ro:0

pos :o

fix:0

56

a:-98

fw:3.4.1-15-g3d0f

mem:23704

up:8631362

ip:268446218

cid:xsismi01

rssi:-70

time:1550970087

wm: 1

wp: 1

wst :3

A.2 Smarw i Status codes

Smarwi produces wide range of status codes. They can be found in the status message
A . l in the „s" field. To better understand them, a list of them was created w i th a brief
explanation. In the end we can find basic procedures of how are status codes i n messages
produced dur ing some tasks.

• 200 - near frame opening

• 210 - opening

• 212 - closing but w i l l open

• 220 - closing

• 230 - near frame closing

• 232 - closing from closed state, opens a l i tt le bit

• 234 - closing from closed state, closing

• 250 - no action

• -1 - not cal ibrated not ready

• 130 - closing window, finishing cal ibrat ion

• 1 0 - error

W h e n opening from closed state, 200 and then 210 status codes are produced. W h e n
opening from open state, 212 and then 210 status codes are produced. W h e n closing from
open state, 220 and then 230 status codes are produced. W h e n closing from closed state,
232, 234 and then 230 status codes are produced.

W h e n changing states and outside button is pressed, 250 status code is produced w i th
O K and R O set to 0 and then O K set to 1.

57

A . 3 Smarw i E r ro r s

Smarwi also detect some errors which can occur dur ing regular usage. Errors can be found
in the status message A . l in the „e" field. Fol lowing errors were detected and found ways
to reproduce them:

• 0 - no errors

• 10 - window seems locked. To reproduce - press on ridge sensor, press on open/close
sensor and send message open

• 20 - movement t imeout. To reproduce - set movement speed to 1 and let it open in
long enough distance so the opening t ime w i l l reach 30 seconds.

A .4 Mosqu i t t o examples

In following examples we w i l l assume that mosquitto broker is hosted on an address
BrokerIP and Smarwi listens to topic ion/RemoteID/

0

/
0
SmarwiMAC/cmd.

To change state of Smarwi we send a following command:

mosquitto_pub -h BrokerIP -t "ion/RemoteID/
0

/
0
SmarwiMAC/cmd" -m $' content'

As Smarwi w i l l change states, it w i l l send several messages one of them described in A . l
To save configuration to Smarwi following command w i l l work:

mosquitto_pub -h 10.42.0.1 -t "ion/dowarogxby/°/
0
600194496fd2/cmd"

-m $'scfg01/11ospd:90\nofspd:3\norpwr:77\nofpwr:5\nohcpwr:46\n

ohopwr:41\nhdist:-2\nlwid:23\nvpct:100\ncfdist:2560\n'

There is no return message for this command.
To see a l l messages that were exchanged between clients and Smarwi we can subscribe to
the broker such as:

mosquitto_sub -h BrokerIP -t "ion/RemoteID/°/
0
SmarwiMAC/#" -v

58

Append i x B

C D contents

• Thesis i n P D F and T E X format.

• BeeeOn Gateway app w i th implemented Vekt iva module.

• Instal lat ion script.

• Smarwi Emulator .

• Video example of achieved results.

59

