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Abstract 
The goal of this thesis is to refactor the implementation of speech processing module for 
mobile appl icat ion used for teaching pronunciation, profile it and propose optimizations 
wi th respect to increasing accuracy, processing speed, and decreasing memory footprint. 

Abstrakt 
Cílem t é t o p r á c e je vylepš i t implementaci modulu pro mob i ln í aplikace pro v ý u k u výs lovnos t i , 
naj í t m í s t a v h o d n á pro opt imal izaci a p rovés t opt imal izaci s c í lem zvýši t p ře snos t , snížit 
čas zp racován í a snížit paměťovou n á r o č n o s t zpracování . 
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Rozšířený abstrakt 
P ř i v ý u c e j azyka je výs lovnos t dů lež i tou součás t í . Z a t í m c o slovíčka lze t r énova t p s a n í m 

slov a vět , a n á s l e d n ý m p o r o v n á n í m se s p r á v n o u variantou, výs lovnos t lze t r é n o v a t pouze 
opakován ím a vys lovováním frází a vět . U výs lovnos t i neexistuje s p r á v n á a š p a t n á odpověď, 
obvykle lze porovnat p ře snos t výs lovnos t i vůči referenční n a h r á v c e nebo p o m o c í výs lovnos-
t n í h o modelu. 

Cí lem t é t o p r á c e je optimalizovat modu l pro mobi ln í apl ikaci , k t e r ý u m o ž n í z ískat 
p řesnos t výs lovnos t i . V ý s t u p e m t é t o p r á c e je modul , k t e r ý je schopen rychle ohodnotit 
výs lovnos t i na m é n ě výkonných chy t rých telefonech a tabletech, k t e r ý bude fungovat i na 
p o m a l é m nebo ž á d n é m i n t e r n e t o v é m př ipo jen í . 

P ro d e m o n s t r a č n í účely m á modu l j e d n o d u c h é grafické rozh ran í , p o m o c í k t e r é h o je 
m o ž n é zkouše t r ů z n é p ř í p a d y použ i t í . R o z h r a n í je i m p l e m e n t o v a n é v React Native a nen í 
u rčeno pro koncové už iva te le . M o d u l by mě l bý t i m p l e m e n t o v á n do aplikace, k t e r á u m o ž n í 
uživatel i p ř e h r á t referenční n a h r á v k u , n a h r á t svůj hlas, vyhodnot i t výs lovnos t a zobrazit 
uživatel i výsledky. 

Vedoucí p r áce poskyt l p ů v o d n í v ý p o č e t n í modu l i m p l e m e n t o v a n ý v p r o g r a m o v a c í m 
jazyce Java. M o d u l by l poskytnut vče tně n a t r é n o v a n é h o modelu pro extrakci p ř í z n a k ů 
z řeči, vzorové a n o t o v a n é n a h r á v k y a v y p o č í t a n ý c h p ř í z n a k ů pro vzorovou n a h r á v k u . Dá le 
poskyt l j e d n o d u c h é grafické r o z h r a n í i m p l e m e n t o v a n é p o m o c í React Native frameworku. 
P ů v o d n í modu l by l ne s t ab i ln í a obsahoval chyby ve v ý p o č t u . V r á m c i p r á c e b y l modul 
p ř epsán , by la p ř i d á n a m o ž n o s t a u t o m a t i z o v a n é h o s p o u š t ě n í a t e s tován í , a d íky tomu mohly 
bý t nep ře snos t i ve v ý p o č t u lokal izovány a opraveny. V už iva te l ském r o z h r a n í byly opraveny 
p á d y a bylo rozš í řeno zobrazován í a k t u á l n í h o stavu modulu , ze jména př i více souběžných 
operac ích . 

Zpracován í p r o b í h á p ř í m o v zař ízení , t a k ž e funguje i off-line. Tomu bylo p o t ř e b a p ř izpů
sobit p o u ž i t é algoritmy. Zvolený algoritmus je založený na p o r o v n á v á n í p ř í z n a k ů dvou au
dio n a h r á v e k . Opro t i p ř e v o d u řeči na text a n á s l e d n é m p o r o v n á n í vyžadu je tento p ř í s t u p 
menš í neuronovou síť, tedy menš í v ý p o č e t n í ná roky . Tento p ř í s t u p je t a k é více z a m ě ř e n ý 
na intonaci a s p r á v n o u výs lovnos t . 

Nejprve je n a h r á n hlas už iva te le jako j e d n o k a n á l o v é audio (mono), kde j edno t l ivé vzorky 
jsou r ep rezen továny p o m o c í n e k o m p r i m o v a n é p u l zn ě kódové modulace ( P C M ) s bitovou 
hloubkou 16 b i t ů . Tento fo rmát je použ ívaný n a p ř í k l a d u f o r m á t u W A V ( R I F F ) . U za
ř ízeních s O S A n d r o i d je j e d i n á g a r a n t o v a n á vzorkovací frekvence 44 100 H z . P o n a h r á n í 
hlasu je sníženo vzorkování n a h r á v k y ze 44 100 H z na 8 000 H z . P o t é jsou z j edno t l i vých 
vzo rků audio n a h r á v k y v y t v o ř e n y překrývaj íc í se r á m c e . P r o tyto r á m c e jsou v y p o č t e n y 
frekvenční charakterist iky p o m o c í diskrétní Fourierovy transformace. T y t o frekvence jsou 
p o t é p ř evedeny a s loučeny do Mel bank. Mel banky cha rak te r i zu j í úseky n a h r á v e k z hlediska 
frekvencí, k t e r é jsou pro l idský hlas v ý z n a č n é , p o m o c í 24 charakteristik (bank). P o t é 
p r o b í h á v ý p o č e t fonémů. P r o t o ž e ale n e p o t ř e b u j e m e p řevádě t hlas na t e x t o v ý přep is , 
využívaj í se pouze 3 vrs tvy z p ů v o d n í neu ronové s í tě pro v ý p o č e t fonémů a v ý s t u p e m 
je ne jmenš í z vrstev {bottleneck vrstva), k t e r á dokáže r á m e c popsat p o m o c í 30 číselných 
hodnot. P r o t o ž e p o t ř e b u j e m e porovnat dvě odl išné nah rávky , s od l i šnou délkou a s různě 
rych lými řečníky, p o t ř e b u j e m e čás t i n a h r á v e k zarovnat p o m o c í DTW a lgori tmu. Výs tu 
pem algori tmu je ře tězec ve f o r m á t u JSON, k t e r ý obsahuje celkový výs ledek i ú spěšnos t 
pro j edno t l i vá slova. 

Hlavn í n á p l n í a ne jvě t š ím p ř í n o s e m t é t o p ráce je identifikace čás t í , k t e r é lze vylepši t 
a optimalizovat. P o u ž i t é techniky lze použ í t v p o d o b n ý c h apl ikacích , p r o t o ž e uvedený 
způsob zp racován í řeči je p o m ě r n ě rozšířený. Nejprve byla aplikace čás t ečně p ř e p s á n a 



z p r o g r a m o v a c í h o j azyka Java do j azyka Kotlin. To umožn i lo použ i t í knihovny Kotlin 
Coroutines. K n i h o v n a je u r č e n a pro s n a d n é p s a n í a s y n c h r o n n í h o k ó d u a obsahuje dalš í 
ná s t ro j e pro pa ra l e ln í p r o g r a m o v á n í (nap ř . Kotlin Channels pro komunikaci mezi v l ákny) . 

P o t é jsme se zaměř i l i na z rychlen í n a č í t á n í modulu a z rychlen í zp racován í n a h r á v e k 
př i zachování p řesnos t i . P r o využ i t í nízko ú rovňových funkcí, k t e r é hardware dnešn ích 
telefonu poskytuje, jsme využil i vysoko ú rovňovou knihovnu TensorFlow Lite. Vyzkoušel i 
jsme r ů z n é akcelerá tory , ale nakonec se pro p o u ž i t ý model osvědči la C P U varianta s j e d n í m 
v l á k n e m (použ i t á neu ronová síť nen í d o s t a t e č n ě složi tá , s d o s t a t e č n o u ari tmetickou inten
zitou). V ý p o č e t se p o d a ř i l o dá le zrychli t v ý p o č t e m více r á m c ů za ráz . Jako o p t i m á l n í se 
jeví v ý p o č e t 16 r á m c ů zaráz , dalš í zvě tšování p o č t u r á m c ů nevede k da l š ímu zrychlení . P r o 
složitější s í tě se ukáza lo v ý h o d n é p rovádě t v ý p o č e t na G P U . Naopak NNAPI se n e u k á z a l o 
pro tento typ modelu příl iš v ý h o d n é . D í k y TensorFlow Lite se p o d a ř i l o z k r á t i t dobu 
n a č í t á n í neu ronové s í tě ze 7,6 sekund na 0,8 sekund. Zpracován í lOsekundové n a h r á v k y 
t r v á 1 sekundu m í s t o p ů v o d n í c h 2,7 sekund. U 5s n a h r á v k y se doba zpracován í zk rá t i l a 
z 1,1 sekund na 0,3 sekund. 

Jako druhou techniku jsme zvol i l i paralelizaci. Identifikovali jsme p r o b l e m a t i c k é bloky 
pro paralelizaci a navrhl i m o ž n é způsoby paralelizace. I m p l e m e n t o v a n é pa ra le ln í řešení 
zachovává p ů v o d n í p ře snos t a p ř ináš í z rychlení 45 % oproti č a s ů m po nasazen í TensorFlow 
Lite. 

Pos ledn í věcí je už iva te lské rozh ran í . Zpracován í se m ů ž e zrychli t , ale pokud je uživa
te lské r o z h r a n í a vykres lování p o m a l é , už iva te l ž á d n é zrychlení nepoc í t í . Nav íc i po použ i t í 
výše uvedených op t ima l i zac í je pro zp racován í s tá le p o t ř e b a 174 ms. Tuto dobu m ů ž e ap
likace sk rý t do p ř e c h o d ů mezi stavy nebo do k r á t k ý c h an imac í , t a k ž e z pohledu uživate le 
bude zobrazen í výs ledků o k a m ž i t é . 

Proces optimalizace lze vyhodnoti t jako úspěšný. P o d a ř i l o se snížit čas zpracováván í 5s 
z á z n a m u z 928 ms na 174 ms se stejnou p řesnos t í . Delší z á z n a m (10 sekund) b y l p ů v o d n ě 
zp racován za 2,5 sekundy, na konci p r á c e pouze za 0,5 sekundy. D o b a n a č í t á n í neuronové 
sí tě byla sn ížena ze 6 sekund na 8 mil isekund. 

V modulu jsou s tá le prostory pro zrychlení . V paralelizaci lze p o u ž í t normalizaci s 
p lovouc ím oknem a experimentovat s p řesnos t í . D T W lze upravit tak, aby pracovalo pouze 
s čás t í s t avového prostoru. V grafickém r o z h r a n í s t á le docház í ke zpomalen í , pokud p r o b í h á 
více ope rac í současně . 

V budoucnu je p l ánováno nasazen í ve s k u t e č n é apl ikaci pro v ý u k u cizích j a z y k ů . Dá le je 
zamýš leno využ í t tyto techniky na dalš í p o d o b n é aplikace, jako n a p ř í k l a d na rozpoznávač 
řeči. 
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Chapter 1 

Introduction 

The goal of this thesis is to refactor the provided implementat ion of the speech processing 
module used i n the A n d r o i d mobile applicat ion for learning foreign languages. Refactoring 
should mainly speed up processing, improve code readabil i ty and divide the code into 
separate modules, which should make easier development in the future. 

W h e n learning a language, we need to learn new vocabulary, the wri t ten form, and 
learn how to pronounce i t . Then compose words into sentences and learn proper intonation 
and accent. The grammar can be checked by wri t ing the sentence, composing from blocks, 
or selecting the correct form. B u t only repeating or reading phrases or words can check 
the pronunciation. Also , i n terms of pronunciation, there is no correct or wrong answer. 
There is usually a reference recording or pronunciation model to be compared wi th . Users 
can get success a rate or success/fail in case of applying a threshold. The output of this 
thesis w i l l be a library, which w i l l to evaluate the user pronunciat ion from a recording. The 
application is intended, among other countries, for the Indian market. So, there is a request 
for fast speech evaluation even on low-end smartphones or tablets and for low mobile data 
usage and offline mode. Tha t is the purpose of refactorization and finding ways, how to 
speed up the evaluation process. 

M y supervisor provided me the evaluation module, including a trained model i n the 
binary form used for features extraction, one example of annotated recording, reference 
features of recording, and a simple React Native wrapper ( G U I ) . The original module was 
created by por t ing JavaScript implementat ion used i n the company Replay Well1 into Java. 
The module was able to evaluate the speech but it was crashing when cal l ing the A P I 
in the wrong order or mult iple times. Beyond the scope of this work, I fixed the crashes 
and changed error handling and logging. The evaluation results seemed inaccurate, but it 
was not possible to test the implementation. Before experimenting wi th different models 
and optimizations, I added loading and saving user speech into the W A V file. Thus, the 
application can be run mult iple times wi th the same input data, which generates the same 
output results. So, the output results can be compared. The applicat ion now includes a 
debug mode which dumps output, as a mat r ix of each processing phase, into the file. W i t h 
the debug mode, I was able to locate and fix the source of evaluation inaccuracy. Figures 
4.1 and 4.2 display the difference between the original solution and the refactored solution. 
Refactorizations w i th impact on speed or accuracy are included in chapter five. The user 
interface was simplified into a more compact layout. Messages from the processing module 
are parsed to show mult iple progress bars. A l l known bugs, that were causing the crashes, 

1 ReplayWel l - systems for speech and video processing, ht tps: / /www.replaywell .com 
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were fixed. The added profiling mode can automatical ly go through an in i t ia l iz ing phase 
to the processing phases based on states received from the computing module. 

This thesis is divided into six chapters. In the second chapter, I w i l l describe the func
t ional i ty and usage of this module. In the th i rd chapter, I w i l l explain the used algori thm 
for speech processing, which explains the background of a lgori thm complexity. In chap
ters four and five, the process of refactorization is described. The refactorization process 
is d ivided into two parts. Chapter four is about changes improving module architecture 
and chapter five is an experimental part, which describes proposed optimizations and the 
process of their implementation. 
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Chapter 2 

Mobile application 

In this chapter, I w i l l describe applicat ion architecture, communicat ion between React Na
tive U I and native Speech Engine module, the functionality of the module, typica l usage of 
the A P I , options available in configuration files, and file structure of tasks and the module 
itself. The module lacked documentation, so I w i l l reference to A P I or schemas attached in 
Appendices. 

2.1 React Native UI 

The SpeechEngine module w i l l be used i n an applicat ion already implemented i n React 
Native1. The module does not have its user interface. The SpeechEngine module is wrapped 
i n a simple React Native user interface to demonstrate module functionalities and test them 
properly. But tons are cal l ing corresponding A P I functions (see appendix A ) and state and 
progress indicators displaying feedback from the module, see figure 2.1. Th is interface is 
not intended for users as wrong combinations of cal l sequences w i l l cause errors The U I of a 
real appl icat ion w i l l be like the U I of the module implemented i n JavaScript w i th the user 
interface wri t ten in H T M L (see figure 2.2). 

Bu i ld ing React Native app requires Node.js2 (at least version 12 for React Native version 
0.64) and npnxi. J S X (JavaScript extended by React Native) describes U I and its behaviour. 
JavaScript engine renders native U I and handles O S events using React Native Bridge. 
Modules implemented i n Kotlin or Java are wrapped into React Package using Native 
Modules. Communica t ion between the JavaScript engine and the native module is by 
emit t ing and listening to asynchronous calls. 

The project can be deployed i n development mode to mobile using Android Studio. 
React Native part is distr ibuted using the Metro server' 1. The app is released for users as 
a regular APK (Andro id applicat ion package) file w i th its requirements for min ima l and 
targeting A n d r o i d version directed by applicat ion developers. The min ima l required A P I 
level is currently 23 (Andro id Marshmal low) . 

1 React Native - a framework for building Android and iOS applications using React, h t t p s : / / 
reactnat ive .dev 

2Node.js - JavaScript runtime, build on Google's V 8 engine, h t t p s : / / node j s . o r g  
3 n p m - package manager for Node.js, https://www.npmjs.com. 
4 Met ro - JavaScript bundler for React Native, h t tps : / / f acebook .g i thub . io /met ro 
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Audio Energy: 

Progress: 8200 

100% 

State: 6002 

LOAD COMPONENT CONFIGURATION 

LOAD TASK CONFIGURATION 

SELECT TASK SEGMENT ^ SELECT TASK SEGMENT ' 
1 2 

Reference audio player: 

WORD 4 

User audio player: 

V WORD 4 • ä WAV 

{"ID": "8219_0000000audio_0000A_0002370_0002749", 
"FromTime": "23,70", "ToTime": "27,49", "AcousticSimilarity": 
"81,530418", "SpeedRatio": "102,397247", "OverallScore": 
"81,530418", "word_array_exa": [{"Word": "SENT_START!", 
"FromTime": "0,00", "ToTime": ,,0,74", "AccDist": "45,892502", 

Figure 2.1: Graph ica l user interface (GUI) of React Nat ive wrapper. The buttons corre
spond to the functions from the A P I . Numbers i n the circles indicate the order i n which the 
buttons are used (numbers are not part of G U I ) . There are two configured tasks (buttons 
3a and 3b) to choose from. 

Figure 2.2: Screenshot of Replay We 11 user interface demonstration wri t ten in H T M L and 
JavaScript . Available at: https://www.replaywell.com/glplayer/demo/. 
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2.2 Speech Engine module 

The speech engine module provides functionalities for playing reference recording, recording 
user's voice and evaluating the accuracy of pronunciation. Th is part is implemented i n Java 
and K o t l i n , and unlike to React Nat ive part, it is targeted only to A n d r o i d . Creat ing a 
native engine module for i O S is not covered by this thesis. 

2.3 Program functions 

The following use case diagram (figure 2.3) represents functions that can be called from the 
applicat ion. There are functions to ini t ial ize the speech engine and to control the audio 
recorder or player. There is also debugging function allowing to load user voice from W A V . 
A l o n g wi th other options, it is available through configuration files SpeechEngineConf i g . j son 
and TaskConfig. json (see appendix B ) . 

Figure 2.3: Use case diagram representing functions that can be called from the applicat ion. 

2.4 Use case 

In figure 2.4 can be seen an example of the typica l use case of this module. A user launches 
the applicat ion and the component configuration is loaded in the background. If the user 
selects a lesson that includes a task w i th pronunciation, the applicat ion loads task config
urat ion i n the background. 

As a lesson, we can imagine for example "exercise 3.12" from some book. This lesson 
(exercise) would be focused on job interviews. The lesson would include multiple tasks (lines 
"a)" to "f)" in the book). The first task would be to correctly write "interview" word, the 
next task would be to repeat a phrase "I perform well under pressure ". 

The user can solve tasks listed before the task wi th pronunciation, then he has to 
wait, t i l l previous configurations are loaded. If the configurations are loaded, then the 
task segment is selected on the foreground, and the user has to wait (but it is loaded 
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almost immediately) . Then the applicat ion initiates a recorder i n the background. User 
can meanwhile play the whole reference recording or only part using the p lay/s top button. 
If the task allows showing transcription, then the user can play a specific word. T h e n the 
user hit the record but ton and the applicat ion starts the audio recorder. The recording is 
stopped by the user or when the t ime runs out. T h e applicat ion immediately fires processing 
in the background. D u r i n g that time, the user can listen to his recording. The applicat ion 
shows the result when it is available and the user can t ry it again, proceed to the next task, 
or finish the lesson and select the next lesson. 
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User can solve 
tasks listed before the 
task with speech, then 
he has to wait till 
previous 
configurations are 
loaded. 

User can play/stopl_j 
whole reference 
record or play/stop 
nth word (if the task 
allows to show 
transcription). Player 
actions are 
nonblocking. 

User Application 

launch application 

Speech Engine 

0 

0 
1 

• 0 

select lesson which 
includes task with 

• • • pronunciation 

load component configuration 

-"-i • • • • reach speech task 

^ loaded 

start reference player 

recorder enabled 

stop reference player 

r-n hit record button 

Application shows thel—^ 
result and User can: 

(a) try it again, then go to A 
(b) proceed to a next task, 
then go to B 
(c) finish the lesson and 
select next lesson, then go 
toC 

stop audio recorder 
(or time runs out) 

start audio player 
user whole 

stop reference player 

results D 

load task configuration 

select task segment 

. initiate recorder [ A . 

start audio player 

stop audio player 

start audio recorder 

stop audio recorder 

evaluate 

start audio player r 

stop audio player 

results J 

Figure 2.4: Example of the typica l use case of the module. A u d i o players actions are non-

blocking (white activation blocks and shadow arrows i n the picture). Points A , B , C are 

t ime points referenced i n the bo t tom text description on the left. 
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Chapter 3 

Speech processing 

The applicat ion needs to extract speech features from a recording. The widely used term 
speech recognition is inaccurate i n this C c t s e cts the goal of the appl icat ion is not to obtain 
a transcript of spoken words. The processing algori thm only needs to compare features of 
user recordings w i th reference recording features. 

There are more possible approaches to the issue of evaluating the user's speech. The first 
possibili ty is to recognize spoken words and compare a text transcript w i t h a reference text 
transcript. The success rate would be the probabilities of these words from the recognition 
module. The second possibil i ty is to compare the characteristics of audio recordings. The 
first opt ion is resistant to common user errors, like word repetition, skipping a word, wrong 
order of words, or saying a different sentence. B u t this method is not focused on checking 
intonation, speed or pronouncing accuracy well. The second one considers pronunciation, 
but it cannot get over word repetition, wrong word order, total ly different sentence, or over 
recordings (user or reference) w i th background noise. Th is app accomplishes the goal using 
the second way (comparing recordings) because it focuses on intonation and pronunciation. 
The first opt ion would require a bigger model, thus more powerful devices, but we need 
fast, off-line, on-device processing (even on low-end smartphones). 

The input of the processing algori thm is audio recorded from a microphone or loaded 
from a W A V file (see figure 3.2). A s an output, there is a J S O N object containing overall 
and par t ia l global scores and scores for each word. Figure 3.1 shows the whole process. 

Figure 3.1: Overview of the speech processing pipeline. 
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Original recording 

Figure 3.2: Recorded speech (5 s) represented by 220 500 samples i n P C M format before 
the processing. 

3.1 Recording 

Audio is recorded from a microphone wi th a sampling frequency of 44 100 H z . It is the only 
rate that is guaranteed to work on a l l devices 1 . The recording is in one channel (mono) wi th 
uncompressed pulse code modulation ( P C M ) . E a c h sample is represented by a 16-bit signed 
integer value. Thus, each sample can hold discrete value i n the range -32 768 and 32 767 
inclusive. This format is guaranteed to be supported by a l l devices. The whole recording 
is stored in AudioBuffer (array of shorts). W h e n the recording finished, the array proceeds 
for further processing. There is also an option to load recording from uncompressed W A V 
( R I F F ) file w i th 16-bit P C M encoding for testing purposes 2 . Reference audio is stored in 
this format as well . 

The recorder is implemented using AudioRecord class. The audio recorder reads chunks 
from AudioRecord using while cycle and copies data from AudioRecord buffer into large 
AudioBuffer. The recorder stops when a user hits the stop but ton or when enough samples 
were recorded (if the recording durat ion was previously set). The AudioBuffer is managed 
by the app. The app manages AudioBuffer. A new larger array of shorts is created when 
the large AudioBuffer gets full . D a t a from the current AudioBuffer are copied into this 
new and this new one is set as AudioBuffer. The output of this step is AudioBuffer (array 
of shorts). 

1 AudioRecord - Android Developers, h t tps : / /deve loper .andro id .com/reference /andro id /media / 
AudioRecord 

2 A u d i o File Format Specifications, http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/ 
WAVE.html 
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3.2 Down-sampling 

The input of this step is AudioBuffer (array of shorts). It is the first step of audio processing. 
16-bit samples captured 44 100 times per second means a lot of data for further processing, 
but not every device supports lower frequencies. Thus, the recorded signal is down-sampled 
to 8 000 H z . Th is frequency comes from the provided neural network, but it is possible to 
retrain the model and use different frequency (e.g., 15 k H z ) . The usual frequency for voice 
sampling is from 300 H z to 3400 H z in telephony. The sampling theorem by Shannon says 
that sampling frequency must be at least two times higher than the highest frequency 
component. In this case, the highest frequency is 3400 H z , thus sampling frequency has to 
be 6 800 H z or higher, so 8 k H z for speech is enough to avoid the aliasing effect [3]. 

The aliasing effect i n Shannon theorem is about sampling and reconstructing continuous 
signals, but aliasing is also a side effect of down-sampling itself. Each input sample goes 
through an IIR (infinite impulse response) filter, which behaves like LPF (low-pass filter). 
Output samples are converted from short integers into float values (this w i l l be important 
for further steps). Every nth sample is kept, other samples are dropped. If the recorded 
sample has zero value, it is replaced by a random value from interval < —1; 1 >, which 
adds l i t t le noise to the signal. It is essential in cases when the recorder would record only 
zero values (e.g., due to faulty hardware) as the a lgori thm of computing M e l banks includes 
computing logar i thm of values. The output of this step is an array of float samples. Down-
sampling can be done during recording as AudioRecorder produces the samples i n smaller 
parts. 

3.3 Mel filter 

In this step, the applicat ion gets ampli tude values i n t ime (array of float samples). B u t 
to compare two signals, the a lgori thm needs frequency characteristics i n t ime and even 
better features of the signal i n t ime. Th i s step consists of framing input signal into sepa
rated frames, applying Hamming window, calculat ing spectral analysis on each frame, and 
calculating Mel filter banks from the analysis. 

3.3.1 F r a m i n g 

Calcula t ing spectral analysis on input signal would return one frequency characteristics for 
the whole recording. Thus, the a lgori thm needs to split recording into frames and calculate 
spectral analysis on each frame. W i t h this approach, the a lgori thm gets a sequence of 
spectral analysis in time. 

Input samples are divided into 200 samples w id th frames. Tha t means frames of wid th 
25 ms when using 8 k H z frequency. We need to start a new frame quite often, and at 
the same time, we need the frames long enough (e.g., 25ms) . Therefore, the frames are 
overlapping. The frame starts every 80 samples. So, each frame contains 120 samples 
(15 ms) from the previous frame and 80 new samples (10 ms) (see figure 3.3). 

3.3.2 H a m m i n g w i n d o w 

B u t even wi th overlapping frames, the a lgori thm has to deal w i th values at bo th edges of 
the frame. C l i p p i n g signal at ampli tude peak would cause distort ion of spectral analysis. 
So each value of the frame is mul t ip l ied by weight at the corresponding posit ion. This 
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Framing 

1000 -

-1000 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1— 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 
samples 

Figure 3.3: Spl i t t ing down-sampled signal into overlapping frames. 

weight function is called Hamming window and it is defined by the following formula: 

/ „ ( „ ) = ( 0 . 5 4 - 0 . 4 6 c o s ( - ^ T ) ) (3.1) 

where: 

• width is the w id th of the frame, i n this case width = 200 

• n is the posit ion of weight i n the frame, in this case, an integer value from interval 
< 0; 200 > 

The frame has an actual wid th of 256 float values, last 56 values are padded by zeros (due 
to F F T ) . The weight of the first and 200th sample is 0.08 so the values are less important 
and appended constant zero values do not affect the a lgori thm at a l l (see figure 3.5). The 
hamming window weights are computed only once before processing, they are the same for 
al l frames (see figure 3.4). 

3.3.3 D i scre te F o u r i e r t r a n s f o r m ( D F T ) 

In this part of the step, every 256 discrete samples are converted into a same-length sequence 
of the discrete spectrum of the signal, see figure 3.6. A n original D F T algori thm requires 
0(N2) mult ipl icat ions and additions. The applicat ion uses an efficient version of D F T 
called ID Fast Fourier transform ( F F T ) wi th 0(N log N) mult ipl icat ions and additions [3]. 
Th is applicat ion uses the JTransforms l ibrary wi th its DoubleFFTID class 3 , a parallel 
implementation of spli t -radix and mixed-radix algorithms opt imized for S M P (symmetric 
multiprocessing) systems. 

3 DoubleFFT_lD class documentation, h t t p : / / i n c a n t e r . o r g / d o c s / p a r a l l e l c o l t / a p i / e d u / e m o r y / 
mathcs / j t ransforms/ f f t /DoubleFFT_lD.html 
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Figure 3.4: H a m m i n g window function, defined on interval < 0; 199 >. 

Apply ing hamming widow 
1000 ~i 1 

-1000 H 1 1 1 1 r-1 
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samples 

Figure 3.5: F i rs t 256 samples wid th frame before and after applying hamming window. 

3.3.4 M e l banks 

A t this point, the a lgori thm has each frame represented by 256 complex numbers. N o w the 
algori thm separates the input signal into 24 M e l filter banks. It is not necessary to describe 
the characteristic of the speech signal by 256 values as human hearing is not sensitive to a l l 
frequency intervals equally. A n d this is how filter banks work. It divides frequencies into 
24 overlapping banks taking speech characteristics into account. The applicat ion works on 
each frame by following. A l l banks are ini t ia ted to zero values. E a c h frequency of spectrum 
weights on each of output bank, the a lgori thm goes through a l l frequencies and multiplies 
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Spectrogram of original recording 

time [s] 

Figure 3.6: Spectrogram of the original recording from figure 3.2. Frequencies from the 
upper half of the spectrum occurs less frequently. 

them by the corresponding vector of weights for that frequency, outcomes are added into 
the banks. Weights represent the bandpass filter, and its values displays figure 3.7. The 
output of this phase is a feature matr ix . The matr ix always has 24 columns (24 filter 
banks). The number of rows is equal to the number of frames - the number of samples after 
down-sampling minus length of the frame (200) divided by step (80), rounded up. So, if we 
have 39 040 samples after down-sampling, the FeaturesMatrixF (containing floating-point 
numbers) would be 24x486 (see figure 3.8). 

Weight of spectral component to mel banks 

J2 lo 
° 14 

0.0 0.2 0.4 0.6 0.8 

Figure 3.7: Parts of the frequency spectrum wi th weights on each M e l bank. The upper 
half of the spectrum has no effect on banks. 
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Figure 3.8: M e l banks of a l l frames from FeaturesMatrixF w i th a silence at the beginning. 
Note that while i n the spectrum only the first half of frequencies were used, M e l banks are 
used equally. 

3.4 Feed forward neural network 

From the beginning to this step, the process is the same as the process of speech recogni
t ion. A t this point, a forward-feed neural network ( F F N N ) converts spectral analysis into 
phonemes (the smallest units of sounds i n a language). Forward-feed neural network is an 
artificial neural network where connections between nodes (neurons) do not form a cycle. 
The network groups into the layers, and each neuron has input from the previous layer and 
output connected to the next layer. The first layer is called the input layer, and the last 
layer is called the output layer. Layers between them are called hidden layers, see figure 
3.9. E a c h neuron, sometimes called perceptron, has single output defined by the following 
formula [2]: 

y ipj^WjXj + b) i/?(wTx + b) (3.2) 

where: 

• w is the vector of weights 

• x is the vector of inputs 

• b is the bias 

• (p is the act ivat ion function, it is a sigmoid function i n this network 

• n is number of input connections, in this network n = 1 

W h e n we look at the whole layer, the input is the same vector for a l l perceptrons i n the 
layer. B u t the weight can differ for each perceptron. The whole layer can be described by 
a similar equation: 

y = ¥ ?(w T x + 6) (3.3) 
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Input layer Hidden layer Hidden layer Bottleneck layer Hidden layer Output layer 

Figure 3.9: The whole feed-forward neural network wi th 5 layers. Layers to the right of 
the vert ical dashed line are omit ted i n this project and the Bottleneck layer is used as the 
Output layer. 

where x is s t i l l a vector of inputs, but w is a matr ix of the weights. The number of weight 
matr ix rows corresponds to matr ix length and the number of columns to the output vector 
length (see figure 3.10). So, this feed-forward neural network is nothing different than 
matr ix mul t ip l ica t ion, mat r ix addi t ion and applying a sigmoid function to each value of 
the output vector. T h i n k i n g of neural networks this way w i l l be useful i n connection to the 
optimizations and usage of TensorFlow in the later chapters. 

This applicat ion does not require phonemes, so it uses only the first three layers of 
F F N N and uses the bottleneck layer as the output layer (the left part of the vertical dashed 
line i n figure 3.9). The bottleneck layer output is only 30 floating-point values w id th vector 
[5]-

The input of this F F N N is a vector of the w id th of 360 floating-point values. F F N N 
processes chunks of 15 frames M e l banks (each frame is defined by 24 M e l banks). This 
method works wi th the context of 7 frames before the actual frame and seven frames after 
it. F F N N always computes 15 frames, so each frame computes 15 times. Us ing a buffer and 
computing each frame only once can improve that. The output of this phase is different 
FeaturesMatrixF. It has 30 columns and the wid th depends on the number of frames. 

This part is the most expensive part of processing i n terms of computing time. 

3.4.1 M e a n n o r m a l i z a t i o n 

Before F F N N , the M e l bank values have to be normalized (to remove channel effects). 
Normal iza t ion is usually done by subtracting mean values from input and then by d iv id ing 
by the variance. In this case, mean and variance values are precomputed and stored as 
a vector of 360 values. Variance values are stored as the mult ipl icat ive inverse of values: 
mean values are stored as the additive inverse of values. We described the neural network 
as a sequence of mat r ix addi t ion and mul t ip l ica t ion. T h e n the process of normalizat ion can 
handle the first hidden layer of the neural network as well . Before applying weights of the 
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Figure 3.10: Three layers neural network displayed as a sequence of mat r ix operations. 

first layer, the vector of mean values is added to the input vector, and then each value of 
the vector is mul t ip l ied by a vector of variance values. 

3.5 Dynamic time warping 

Dynamic t ime warping ( D T W ) is a common technique to find a nonlinear alignment of two 
time-dependent sequences of a digi ta l signal. It is often used to compare different speech 
patterns (see figure 3.11). 

The objective of D T W is to find surjective function X —>• Y of two sequences X = 
(xi, X2, • • •, XN) of length N G N and Y = (yi, 7/2, • • •, VM) of length M G N . We can define 
feature space T as x n , y m G T for n G X and y G Y. Then, it is a problem of state-space 
search. The algori thm starts at (a;n,yn): a n d the goal is to a find path to (XN,VM) w i th 
min ima l overall cost. Th is a lgori thm needs a local distance measure (or local cost measure) 
which is a function c : J- x T —> M>o- This cost depends on speech features s imilar i ty at 
that point. The distance mat r ix displays figure 3.12. The cost is computed using cosine 
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Figure 3.11: D T W algori thm principle of t ime alignment of two speech recordings. 

distance [4] from features by the following formula: 

N 

^Xnli] * ym[i] 

+ 1; (3.4) 

N 

i=l 
where: 

• N is the number of descriptors of each frame (N = 30 i n this case) 

W h e n the cost mat r ix is computed, it is t ime for finding a warping path. The warping 
path is defined by the following definition taken from the book [3]: 

Definition 3.1 A (N, M)-warping path is a sequence p = (p\,... ,PL) with pi = (tie, mi) G 
[1 : N] x [1 : M] for 1 € [1 : L] satisfying the following three conditions: 

(i) Boundary condition: p\ = (1,1) and pi = (M,N) 

(ii) Monotonicity condition: n\ < 112 < . . . < and mi < < ... < m^ 

(Hi) Step size condition: pi+\ — pt G {(1, 0), (0,1), (1,1)}fori £ [1 : L — 1] 

Before starting the finding the path, the mat r ix of the overall score is created and every 
point has a value of Infinity (means unreachable). T h e n the distance (score) f r o m p i = (1,1) 
to each point is calculated. The th i rd phase is finding the best path, the path wi th the 
lowest overall price. D u r i n g this phase, the a lgori thm notes the start and stop timestamps 
of each word. The algori thm compares even first the frame w i t h the last frame. We can 
search only i n the l imi ted wid th from the diagonal as the speech wi th a path far from the 
diagonal of the D T W matr ix would not pass any exam. 

— \—' it i & it 
N 

Xn\l\ 
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Local distance measure 

x = (xi,x2 xN) 

Figure 3.12: Distance (cost) mat r ix of two similar speech recordings. Da rk blue means 
lower cost, which is better. The white line is drawn according to the best path matr ix . 
This mat r ix does not have a rectangle shape, as the users recording Y is longer (5 s) than 
reference recording X (3 s). 

3.6 Calculating the score 

Overall Score consists of Acoustic Similarity and Speed Ratio. Acoustic Similarity is com
puted as a ratio of the total distance between a l l connected reference and recorded words. 
The best ratio is 1. The Speed Ratio is the ratio of the sum of lengths of a l l words i n user 
and reference recording (silence is not included), the ratio 1 is the best score. 

3.7 Conclusion 

It is essential to understand what is behind the processing algori thm and divide the algo
r i thm into independent parts. In the following chapters, we w i l l improve the t ime complexity 
of those parts. Complex i ty depends on the number of samples, which depends on recording 
length and sampling frequency. Down-sampling can reduce the sampling frequency. We 
are using a widely used speech processing a lgor i thm used for extracting phonemes and text 
from speech recording. We are only using the first part of the feed-forward neural network. 
Values from the bottleneck layer are the output of the a lgori thm as we are not decoding 
phonemes into transcription. To compare phonemes of reference and user audio recording 
we use D T W . The final score consists of acoustic s imilar i ty and speed ratio (for each word 
and as an overall score). The score is provided to the applicat ion as J S O N . 
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Chapter 4 

Refactoring 

The original solution of SpeechEngine had shortcomings. It was necessary to fix a l l bugs 
causing applicat ion crashes. The engine contained an error in the filter, which pre-processes 
the input, decreasing evaluation accuracy. Now the applicat ion can work wi th multiple 
threads; asynchronous tasks are submitted into queues and dynamical ly assigned to the 
threads (using K o t l i n coroutines 1 ) . In the previous solution, there was one thread shared 
for a l l background tasks. 

4.1 Code readability and maintainability 

The previous solution was based on sending messages between synchronous and asyn
chronous threads. The class diagram of the o ld solution displays figure 4.1, the new 
solution is i n figure 4.2. F r o m React Native, the requests come as asynchronous call
backs to the ISpeechEngine interface implementation. The ma in thread handles those 
callbacks. Requests are t ransmit ted to the background thread by sending messages from 
the main thread in SpeechWorkerThread to the handlerThread in the same class. The 
handlerThread listens for incoming messages i n a loop. It can handle only one background 
task at the same t ime. For communicat ion from handlerThread of SpeechWorkerThread 
to the SpeechEngine (e.g., to report progress), the messages are sent to the handlerThread 
of SpeechEngine which scope allows cal l ing React Native callbacks. The example commu
nication that follows starting audio recorder shows the blue arrows. 

The disadvantage of this solution is mainly only one task at the foreground thread, only 
one task at the background (processing) thread and one task at the state reporting thread 
(calling callbacks). The readabil i ty for programmers is difficult because of thread switching 
using messages. Simple task includes mult iple ca l l and messages to be sent. Jumping 
through code does not provide even advanced I D E like Android Studio, it is necessary to 
find usages of exact message through the project. The first idea was to move to AsyncTasks, 
which is perfect for the needs of this project, but it is now deprecated 2 . The solution is to 
extend the Thread object or to use Kotlin coroutines. Because A n d r o i d is going forward to 
Kotlin first approach3, we decided to rewrite the module controller into K o t l i n and Kotlin 
coroutines. 

1 K o t l i n coroutines on Android - Android Developers, h t t p s : / / d e v e l o p e r . a n d r o i d . c o m / k o t l i n / 
corout ines 

2 AsyncTask is Deprecated, Now What? - TechYour Chance, https://www.techyourchance.com/ 
asynctask-deprecated 

3 Android ' s Kotlin-first approach - Android Developers, h t t p s : / / d e v e l o p e r . a n d r o i d . c o m / k o t l i n / f i r s t 
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Figure 4.1: Class diagram of the old solution. The bold orange arrow represents messages, 
and orange blocks represent message receivers. Dashed arrows mean non-blocking commu
nication considering the main thread. Blue arrows are an example of calls required to start 
the recorder. 
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Figure 4.2: Simplified class diagram, after refactoring, without communicat ion using mes
sages. Dashed arrows mean non-blocking communicat ion considering the main thread. 
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4.2 Kotlin with Java code 

New parts of code are wri t ten in K o t l i n and a l l classes except those from separated modules 
are ported into K o t l i n . I refactored and ported them only when I needed to use new features 
like Coroutines or Channels. Some of the previous modules are s t i l l implemented in Java 
(e.g., AlignmentXML or AudioBuf f er). Those two languages are mutual ly compatible, that 
allows the code wri t ten i n one of this language to be used i n the second of these languages 1 . 
The biggest change is the nullable types. W h e n not expl ic i t ly stated, the objects may be 
nul l (type T?), or of the provided data type T. Th is ambiguity is represented as T! type in 
K o t l i n . If we are aware that the value can be nul l , we should add ONullable annotation 
to the Java code. If the nu l l cases of value are handled in the code, we can add ONotNull 
annotation. Then it is not necessary to do nu l l checks when using the value i n K o t l i n code. 

4.3 Kotlin coroutines 
K o t l i n coroutines are design pattern and l ibrary to simplify code that executes asyn
chronously. Coroutines are an idea of suspendable computations. A suspendable function 
can suspend its execution at some point and resumes later. Launching an asynchronous 
block of code is like submit t ing it into the pool of manually created thread. Threads and 
pools are created and managed by the system. The number of threads depends on the 
number of C P U cores and the amount of concurrency work, but it is guaranteed to have 
at least two threads. T h e following code shows how to launch heavy execution and print 
info before and after execution. Specified default dispatcher (the targeted pool) determines 
coroutine context and on which thread(s) w i l l be this code executed (it can be for example 
U I thread or thread designed for 10 operat ions) 5 . 

private val scope: CoroutineScope = CoroutineScope(Dispatchers.Default) 
fun speechEngineExecuteQ { 

onStatus("RNWP — Starting speech engine") 
scope.launch { 

speechController.speechEngineExecuteQ 
onStatus("RNWP — Speech engine finished") 

} 
} 

The widely propagated benefit of coroutines is that when the job of scope is cancelled, 
it cancels a l l coroutines started i n that scope, which brings more control over background 
tasks. A l so , the function speechEngineExecute() can return value, or throw exceptions 
that can be caught and handled like in synchronous code. 

4 M i x i n g Java and Ko t l i n in one project, h t t p s : / / k o t l i n l a n g . o r g / d o c s / m i x i n g - j a v a - k o t l i n -
i n t e l l i j .html 

5 Coroutine context and dispatchers, h t t p s : / / k o t l i n l a n g . o r g / d o c s / c o r o u t i n e - c o n t e x t - a n d -
d i spa t cher s .html 
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Chapter 5 

Optimizing 

In this chapter, I w i l l propose possible improvements to decrease processing t ime wi th 
respect to the accuracy, implement them, compare and evaluate them. The chapter is 
divided into applied techniques or tools in chronological order as they were implemented. 

To speed up the applicat ion, we can move computat ion closer to H W , use paralleliza-
t ion or optimize used algorithms. To use the H W features, we can rewrite the code to a 
low-level programming language (use Android NDK1), use compiler directives i n already 
implemented code, or use a high-level l ibrary (e.g., TensorFlow). 

5.1 Measurement methodology 

In the following sections, this methodology of measuring computing t ime is used. First 
run means loading and running the program ten times and taking the median of the result. 
Side effects between invocations are not el iminated. Multiple evaluation means running 
the program and then running evaluation ten times and taking the median of the results. 

Taking the median of values comes from my previous experience wi th measuring the 
t ime complexity of algorithms. If we take an algori thm wi th complexity described by an 
equation, then the average is impacted by peaks in mult iple measurements, thus, it is 
not applicable. Med ian follows the expected values better, and taking the lowest value 
almost follows the equation. The lowest value is best for comparing different algorithms or 
methods isolated from O S or other applications. M e d i a n is best for speed up measurement 
and comparing before/after, as some algori thm may be prone to random interruptions or 
actual load of a device (e.g., algorithms using mult iple cores). We decided to consider the 
runtime environment, as A n d r o i d users usually have no control over running processes in 
the background, so we are using the median. 

T ime of invocation was measured using the most precise available system timer 
System. nanoTime () as a difference between time before invocation a function and time after 
returning from the function. Measured t ime using custom code can be logged or printed 
into the user interface wi th no need to instal l development tools, which was necessary, as 
measurements on other devices could not be performed in person due to the pandemic. 
Another option is to use a profiler bundled wi th Android Studio. A usable result was 
achieved w i t h Java Method Sample Recording configuration by composing the t ime from 
mult iple threads, and from times before and after suspending. B u t some functions were 
missing i n the profiler output, and some of the times d id not correspond to reality. Trace 

1 A n d r o i d N D K - Android Developers, h t tps : / /developer .android .com/ndk 
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Java Methods configuration d id not provide good results. Thus, custom implementat ion 
fits better this project. 

5.2 Profiling before optimization 

Before proposing any speed up it is necessary to analyse the existing solution and focus on 
parts w i th a big impact on processing time. The profiled code is the original code wi th 
rewritten controllers, fixed bugs, handled exceptions and some smal l improvements. The 
original code before factorization would be hardly profiled. Some parts would be impossible 
to measure (e.g., Load engine config). 

ms % 
L o a d Engine Config 7 687.6 74.7 
L o a d Task Config 629.7 6.1 
Select Task Segment 812.7 7.9 
Init AudioRecorder 33.0 0.3 
Execute 1123.3 10.9 

E 10 253.2 

Table 5.1: Prof i l ing by comparing elapsed time. The recording is not included as it is 
almost the same as the recording durat ion. The evaluation was executed as first run on 
5 s recording. 

Execute 
first run 

ms % Execute 
multiple evaluation 

ms % 

Prepare Static D a t a 4.5 0.5 Prepare Static D a t a 1.7 0.2 
Down-sampling 19.2 2.1 Down-sampling 14.4 1.6 
M e l banks 223.2 24.2 M e l banks 221.8 24.1 
F F N N 611.1 66.2 F F N N 619.3 67.3 
D T W 53.9 5.8 D T W 53.2 5.8 
Calculate Score 0.9 0.1 Calculate Score 0.6 0.1 
Pr in t J S O N 10.6 1.2 P r in t J S O N 9.1 1.0 

E 923.4 E 920.0 

Table 5.2: Prof i l ing detail of Execute. The evaluation was executed on the 5 s recording. 
The sum of times in the left table is less than t ime i n 5.1, and it is caused by Execute 
function overhead. 

The most expensive is Load Engine Config, specifically loading neural network. Pars
ing neural network is implemented using RandomAccessFile, which is slow, and it is a 
known issue 2 . The second most expensive part is Execute. If we investigate Execute 
part, we can see that the most expensive part is computing F F N N (feed-forward neural 
network). It takes about 0.6 seconds. A n d i f we add loading of neural network from Load 
Engine Config part, it takes 7 seconds to load and compute the neural network. To im
prove that, we used TensorFlow Lite, which describes the next section. If we compare first 
run w i th the following multiple evaluation, the percentages of each phase are almost 

2 JDK-4056207 A d d a buffered version, ht tps: / /bugs.openjdk.java.net/browse/JDK-4056207 
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the same. The t ime is saved for example by already allocated memory, but the t ime of the 
heaviest parts ( F F N N and M e l banks) are not significant. 

5.3 TensorFlow Lite 

TensorFlow Li t e is an open-source high-level deep learning framework for mobile and IoT 
devices developed by Google, presented during Google I / O i n 2017 3 . It is a simplified 
version of TensorFlow, an open-source deep-learning software l ibrary for defining, t raining 
and deploying machine learning models, that was open-sourced i n November 2015 by Google 
[1]. It provides hardware acceleration or parallel ization. The same code can be used for 
example on G P U or multi-core C P U . 

TensorFlow L i t e consists of two main components - converter and interpreter. T F Li te 
works w i th compressed models as displayed i n figure 5.1. F i rs t , it is necessary to pick an 
existing model or create own. Trained models are available through the TensorFlow H u b 
repository' 1 , but it is possible to create a custom model using supported operations. 

input TF Lite model output^ 
tensor static data + operations tensor 

Figure 5.1: TensorFlow L i t e interpreter works as a filter w i th one input and one output 
tensor. 

5.3.1 C r e a t i n g c u s t o m m o d e l 

The custom model can be any model that can benefit from H W acceleration or paral
lelization, not just a model based on machine learning. T F L i t e operations support 32-bit 
floating-point and quantized ( u i n t 8 , i n t 8 ) values. Strings or 16-bit floats are not sup
ported yet. We are using 32-bit floating-point values obtained from AudioRecorder. A s 
2021 the T F L i t e model supports 123 operations, but even if the operation does not have 
a direct equivalent, it can be fused into a more complex operator, replaced by tensors, or 
removed from the computat ion graph' ' . 

TensorFlow L i t e model can be converted from TensorFlow SavedModel using the Ten
sorFlow Lite converter. T F L i t e model is an opt imized FlatBuffer format identified by 
the . t f l i t e file extension. The recommended way, w i th more features, is converting T F 
SavedModel or Keras model using P y t h o n A P I (see figure 5.2). A simple way, how to set 
up the TensorFlow environment w i th P y t h o n A P I , is to use a Docker image containing 
configured TensorFlow and Jupyter server . 

The feed-forward neural network, displayed i n figure 3.10, can be implemented in Ten
sorFlow as t f .Module. The Module class describes a sequence of operations, as shows 
the l is t ing 5.1. Static values (e.g., variables like NN_layerl_mean) are NumPy arrays, and 

3 Google's new machine learning framework is going to put more A I on your phone - The Verge, h t t p s : 
//www.theverge. com/2017/5/17/15645908 

4 TensorFlow Hub - a repository of trained T F models, h t tps : / / t fhub .dev 
5 T F Lite and T F operator compatibility, h t t p s : / /www. t enso r f l ow .o rg / l i t e / gu ide /ops_compa t ib i l i t y  
6 Instal l TensorFlow using Docker, h t t p s : / /www. t enso r f low .o rg / in s t a l l / docke r 
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T e n s o r F l o w P y t h o n A P I T F L i t e C o n v e r t e r 

CustomModule SavedModel TF Lite model 
class file compressed file 

Figure 5.2: Process of converting CustomModule class into compressed T F L i t e model. 
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they are stored i n SavedModel as well . Those arrays are loaded from a file, reshaped or 

transposed, but the loading and pre-processing is not part of the model . The model stores 

constant data, which makes interpreting the model faster (but sometimes wi th the cost of 

a bigger model). 

class CustomModule(tf.Module): 
# Init defines and loads static values, their shape and used data types, stored inside the model 
def init (self): 

super(CustomModule, self). init () 
self.nn layerl mean = tf.constant(NN layerl mean, shape=(l,360), dtype=tf.float32) 
self.nn layer l_var = tf.constant(NN layerl var, shape=( 1,360), dtype=tf.float32) 
self.nn layerl weights = tf.constant(NN layerl weights, shape=(360,300), dtype=tf.float32) 
self.nn_layerl_bias = tf .constant(NN_layerl_bias, shape=( 1,300), dtype=tf.float32) 
self.nn layer2 weights = tf.constant(NN layer2 weights, shape=(300,300), dtype=tf.float32) 
self.nn layer2 bias = tf. constant ( N N layer2 bias, shape=( 1,300), dtype=tf.float32) 
self.nn layer3_weights = tf.constant ( N N layer3 weights, shape=(300,30), dtype=tf.float32) 
self.nn_layer3_bias = tf.constant(NN_layer3_bias, shape=(l,30), dtype=tf.float32) 

# Function 'call' describes a sequence of operation applied to the input tensor 
@tf.function(input_signature=[tf.TensorSpec((l,360), tf.float32)]) 
def call (self, x): 

# Layerl (first hidden layer with normalization) 
tensor = tf.add(x, self.nn layerl mean) 
tensor = tf.multiply(tensor, self.nn layerl_var) 
tensor = tf.matmul(tensor, self.nn layerl weights) 
tensor = tf.add(tensor, self.nn layerl bias) 
tensor = tf. sigmoid (tensor) 
# Layer2 (hidden layer) 
tensor = tf.matmul(tensor, self.nn layer2 weights) 
tensor = tf.add(tensor, self.nn layer2 bias) 
tensor = tf. sigmoid (tensor) 
# Layer3 (bottleneck layer and the output layer at the same time) 
tensor = tf.matmul(tensor, self.nn_layer3_weights) 
tensor = tf.add(tensor, self.nn layer3 bias) 

return tensor 

L i s t ing 5.1: F F N N implemented using TensorFlow P y t h o n A P I as TensorFlow Module . 

TensorFlow Modu le is then saved into the custom_module file i n the SavedModel file 

format. The SavedModel file can be loaded back into TensorFlow and can be interpreted. 

It is useful to check the output of this model before and after export ing using sample input 

(see l is t ing 5.2). 

# Save custom model 
module = CustomModuleQ 
tf.saved model.save(module, 'custom module') 
# Load custom model 
loaded = tf.saved model.load('custom module') 
# Run models 
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module (test tensor). numpy () .round (6) 
loaded(test tensor).numpy().round(6) 

Lis t ing 5.2: Save and load the custom TensorFlow Module as SavedModel. 

If the model outputs meet expected results, the model can be converted into TensorFlow 
Li t e binary file using l is t ing 5.3. T h e T F L i t e model cannot be loaded and run under P y t h o n 
A P I , so it is necessary to verify the correctness of the TensorFlow model. 

converter = tf. lite. TFLiteConverter . from saved model ('custom module') 
tflite model = converter.convert() 
with open('model.tflite', 'wb') as f: 

f. write (tflite model) 

Lis t ing 5.3: Convert the TensorFlow model into the TensorFlow L i t e model. 

The same code can be implemented using Keras'. Keras is a deep learning A P I wri t ten 
in P y t h o n running on top of the machine learning platform TensorFlow. It can combine 
matr ix mul t ip ly ing , bias, and activation function (sigmoid) into a Dense layer, see figure 
5.4. Layers of the Keras model are defined inside the i n i t function, normalizat ion is applied 
in the c a l l function (before the invocation of the Keras model). 

self.model = tf.keras. Sequential [ 
tf.keras.layers.Dense(300, activation= "sigmoid", name="layerl", 

weights=[self.nn layerl weights, self.nn layerl bias] ), 
tf.keras.layers.Dense(300, activation= "sigmoid", name="layer2", 

weights= [self.nn layer2 weights, self.nn layer2 bias] ), 
tf.keras.layers.Dense(30, activation=None, name="layer3", 

weights= [self.nn layer3 weights, self.nn layer3 bias] ) 
]) 

L i s t ing 5.4: The neural network defined as a Keras model inside the i n i t function. 

5.3.2 D e p l o y i n g m o d e l 

The TensorFlow Li t e interpreter is a l ibrary that loads a model file, then takes input data, 
executes the operations defined by the model on input data, and produces the output data, 
see figure 5.1. The interpreter works across mult iple platforms and provides a simple A P I 
for running TensorFlow L i t e models from Java or K o t l i n , Swift, Object ive-C, C + + , and 
Py thon . It can be used on A n d r o i d , i O S or L i n u x platform . 

Running T F L i t e interpreter works i n the following steps - loading a . t f l i t e model 
into memory, transforming input data, running inference (executing model), interpreting 
the output. Input and output tensors are pr imit ive type arrays (float, int, long, byte, 
or String). Complex data types like Integer or Float are not supported. Us ing pr imit ive 
types as input makes the invoking slow. The interpreter always checks the shape of the 
input array and tries to reshape it, which causes a slowdown. The A P I is more efficient 
if a direct ByteBuffer (or FloatBuffer, IntBuffer, LongBuffer) is used as the input 
data type of interpreter. The input pr imit ive type array can be wrapped into a buffer 
using ByteBuffer .wrap () function. Wrapp ing data is fast enough to do not affect the 
model execution time. It is not clear whether buffer should be preferred for output as well. 
Accord ing to my experiments, using pr imit ive type arrays as output is as fast as using 
ByteBuffer. 

7 Keras - a deep learning A P I , h t t p s : / / k e r a s . i o 
8 TensorFlow Lite inference, h t t p s : / /www. t enso r f low .o rg / l i t e /gu ide / i n f e r ence 
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Invocation is done by the interpreter, run (input, output) command. The applica
t ion cannot change the behaviour of the binary model . B u t the same model can be invoked 
wi th different environment configurations, which can be changed dynamical ly during the 
run. TensorFlow Li t e allows running accelerated computat ion. Those accelerators are called 
delegates. Using the right delegate for a specific model and device can have a big impact 
on execution time. 

B y default, TensorFlow Li t e uses C P U kernels opt imized for the A R M Neon instruction 
set. However, the C P U is a multi-purpose processor that may not be suitable for the heavy 
arithmetic typ ica l i n machine learning models 9 . O r even when there is no suitable delegate, 
the model can use parallel computat ion on mult iple C P U cores. Available delegates depend 
on the platform, and i n the case of A n d r o i d , even on the A n d r o i d version. Some delegates 
support only certain types of model, as shows the table 5.3. 

M o d e l Type G P U N N A P I Hexagon C o r e M L 
Supported platforms A n d r o i d , i O S A n d r o i d 8.1 + A n d r o i d i O S 
Float ing-point (32 bit) Yes Yes N o Yes 
Post- t raining float 16 quanti Yes N o N o Yes 
zat ion 
Post- t raining dynamic Yes Yes N o N o 
range quantizat ion 
Post- t raining integer quan Yes Yes Yes N o 
t izat ion 
Quantization-aware t raining Yes Yes Yes N o 

Table 5.3: T F L i t e delegates platform and model type support. Delegates suitable for this 
project are bold. 

5.3.3 P r o f i l i n g 

F i n d i n g the best delegate and its configuration, like the number of threads or number of 
inputs values, maximises the benefit of the TensorFlow. The achieved results may also 
depend on used devices. 

Delegates and models 

In figure 5.3 you can see the time of different delegates during loading and execution. 
Each delegate is w i th the model implemented using T F functions and using Keras model. 
Ini t ia l izat ion of G P U variants costs significantly more t ime ( G P U 277 ms, N N A P I 5 ms, 
and C P U variant only 3 ms). C P U is also slower i n the execution of these models. N N A P I 
and C P U variants have similar t ime. The C P U variant is the winner as this variant can be 
run on any device wi th the same speed as N N A P I . 

We can take into account the times of multiple evaluation. These times are dis
played i n table 5.4. The table compares only times of FFNN. There is no significant speed 
improvement w i th the next execution. 

9 TensorFlow Lite Delegates, h t tps : / /www. tensor f low.org / l i t e /per formance /de lega tes 
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TF Lite Delegates 

(Keras) 
PI 
PI (Keras) 
1 core 
1 core (Keras) 

Load Engine Confrg Load Task Config Select Task Segment Execute 

Figure 5.3: Execut ion times of T F Li t e delegates on 10 seconds recording. 

T F Lite Delegate first run [ms] multiple evaluation [ms] 
G P U 1157 1157 
G P U (Keras) 1185 1104 
N N A P I 362 353 
N N A P I (Keras) 385 361 
C P U 1 core 362 363 
C P U 1 core (Keras) 359 351 

Table 5.4: Execute times of FFNN on 10 s recording using different delegates. 

The reason why T F L i t e delegates are slower than C P U is the smal l size of the model. 
We have a smal l model, which is not worth delegating to either the N N A P I or the G P U . 
Accelerators are better for large models w i th high ari thmetic in tens i ty 1 0 . 

In the case of G P U , the TensorFlow Lite Interpreter needs to copy data into C P U 
before execution and copy output from G P U into C P U memory. The other reason is that 
tensor data is sliced into 4-channels for G P U delegate. B u t we have an input vector ( I D 
data), eventually a 2D mat r ix (in case of processing mult iple frames at once). Input has to 
be transformed into 4-channel values, which w i l l affect the final speed 1 1 . 

Delegates can be also slowed down by operator incompatibi l i ty. Delegates do not support 
a l l operators as T F Li t e . If the model uses not supported operator, the operation has to be 
computed on the C P U . This w i l l require synchronization of H W or copy-in/copy-out i n the 
case of G P U , which w i l l reduce the speed. A s this behaviour is undesirable, it is disabled 
by default, and the delegate would throw an exception instead of execution. O u r models 
are compatible w i th a l l these delegates. 

The results also depend on the used chipset ( C P U , G P U , and various coprocessors). 
The following experiment explains when it is better to use G P U or N N A P I than C P U . We 

1 0 T F Lite performance best practices, h t tps : / /www. tensor f low.org / l i t e /pe r fo rmance /bes t_prac t i ce  
1 1 TensorFlow Lite on G P U , ht tps: / /www.tensorf low.org/ l i te /performance/gpu_advanced 
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t r ied different models of different size and on different chipsets. In a l l experiments, we use 
Samsung Galaxy A40. In this comparison, we use different devices listed i n table 5.5. 

Device Samsung Galaxy A40 Samsung Galaxy Tab S6 Lite 
Released 2019 2020 
Chipset Exynos 7904 (14 nm) Exynos 9611 (lOnm) 

8 cores: 8 cores: 
C P U 2x1.77 G H z Cor tex-A73 4x2.3 G H z Cor tex-A73 

6x1.59 G H z Cor tex-A53 4x1.7 G H z Cor tex-A53 
G P U M a l i - G 7 1 M P 2 M a l i - G 7 2 M P 3 

Device X i a o m i M i 9 L G G8S T h i n Q 
Released 2019 2019 

Chipset 
Qualcomm SM8150 
Snapdragon 855 (7 nm) 

Qua lcomm SM8150 
Snapdragon 855 (7 nm) 

8 cores: 8 cores: 

C P U 
1x2.84 G H z K r y o 485 1x2.84 G H z K r y o 485 

C P U 
3x2.42 G H z K r y o 485 3x2.42 G H z K r y o 485 
4x1.78 G H z K r y o 485 4x1.78 G H z K r y o 485 

G P U Adreno 640 Adreno 640 

Table 5.5: Devices used in the experiments w i th bigger models. 

The first model i n figure 5.4 is a neural network wi th 6 624 630 parameters (input ma
t r ix enlarged from 1x360 to 32x360, hidden and bottleneck layers contain 32 times more 
perceptrons). Th is model produces val id outputs; it computes 32 frames at once. The file 
of the compressed T F Li t e model increased from 0.8 M B to 1 M B . O n a l l devices, the C P U 
variant was s t i l l sl ightly faster than the N N A P I variant. There is notable that only pre
viously used Samsung Galaxy A40 has s imilar performance wi th N N A P I and C P U . G P U 
variant is missing as the T F L i t e was crashing during the execution of this model . G P U 
delegate is s t i l l marked as experimental, s imilar bug reports to this problem can be found 
on the T F L i t e G i t H u b repository. Th is model does not have sufficient ari thmetic intensity 
to run using N N A P I . 

The second model is a neural network wi th three duplicated inner layers. The network 
has 388 230 parameters, input and output layers are the same. The output is not val id. 
Th is model is used only to compare delegates. Dimensions of static data (like weights) are 
the same, so the size of the model remained 0.8 M B . Th is model works on the G P U but is 
six times to 10 times slower than the C P U variant. Three inner layers are not s t i l l enough 
to use the G P U or the N N A P I , which is s t i l l sl ightly slower. 

The th i rd model has 1 928 628 000 parameters (input layer is 1200x360, the hidden layer 
has 1440000 perceptrons, and the output layer has 36000 perceptrons). Even this model is 
not va l id , but model size increased from 0.8 M B to 7.6 M B . In this model, we can see that 
G P U speed up is 1.3 to 1.7 against C P U variant. The G P U is the best option i n this case, 
and wi th even bigger models, G P U w i l l be more efficient. N N A P I is probably not suitable 
for these models (without reinforcement learning and other advanced N N features). 

5.3.4 B a t c h process ing 

The model can compute mult iple frames at once. Tha t was used in the second model in 
figure 5.4. It was not good to delegate this model to the G P U or N N A P I , but it can s t i l l 
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Figure 5.4: Execut ion times of T F L i t e delegates on bigger models. 
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bring some improvement to the C P U . Before execution, the data has to be prepared and 
copied into the input buffer. After the execution, T F L i t e copies the output into the output 
array. Comput ing mult iple frames at once (batch processing) can reduce this overhead, but 
it w i l l require a bigger model and more operation memory for computing. The batch size 
cannot be changed i n runtime as changing the input and output shape of the model requires 
creating and converting a new model . The workaround would be storing mult iple models, 
but it increases the size of the app. 

Figure 5.5 displays dependency of Execute t ime on the number of frames computed 
i n one invocation of the T F Li t e model . We also tr ied four models on the N N A P I (but 
there is s t i l l no benefit of the N N A P I ) . There is a notable increase when computing two 
frames i n a batch. It requires more array copies, and the handling of model input /output 
is complicated. Star t ing from 4 frames per batch, there are significant t ime savings. F r o m 
12 frames per batch, the savings are smaller, and from 24 frames the t ime is not decreasing 
at a l l but slightly increasing. We chose the model w i th 16 frames per batch. The size of 
this model is 895 k B which is acceptable. 
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Figure 5.5: Number of frames in one batch and the t ime of Execute processing. 

5.3.5 N u m b e r of threads 

B y default, the T F L i t e C P U delegate uses only a single thread, as only some operators 
can be parallelized. Mul t i - threading may speed up execution, but it w i l l consume more 
resources and power. The speedup is device-dependent and depends on the actual usage of 
the C P U by other apps. 

A s it is clear i n figure 5.6, using mult i- threading does not come w i t h speed up for a 
simple model without computing i n batches, and it does not matter whether Keras version 
is used or not. A l l provided devices have only eight cores. Thus it is pointless to t ry 
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more than eight threads. We also t r ied to use mult i- threading i n combination wi th batch 
processing. Figure 5.7 compares the t ime of different batch size computed using a single 
thread and using eight threads. The single thread variant is slightly faster, as running a 
single thread is easier for the scheduler. 
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Figure 5.6: Us ing mult iple threads does not speed up Execute processing. 

5.3.6 C o n c l u s i o n 

C P U delegate best suits our model, but using mult i- threading is useless i n our case. Using 
batch computing is a good improvement and computing 16 frames at once seems like a 
good choice. Previous charts, and graphs, were measured on 10 seconds recording. Longer 
recording means bigger differences. Table 5.6 compares the median of times before and 
after implementing T F L i t e bo th on 10 seconds and 5 seconds recording. W i t h 5 seconds 
recording, the Execute t ime was reduced from 1.1 seconds to 0.3 seconds, and Load 
Engine Config (loading of neural network model) was reduced from 7.6 seconds to 0.8 
seconds. Execute done under a second means sufficient t ime from the user's point. 

5.4 Parallelization 

Speech processing t ime can be more improved. For example, Prepare static data, and 
Down-sampling can be done during recording. Tha t would save 12 ms, which is only 3.1 % 
of processing t ime. We need to identify parallelizable code and find those parts that prevent 
code from parallel ization. Those problematic parts are: using the number of samples, using 
the sum of samples, or using samples "from future". 
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Figure 5.7: T ime of Execute processing is slightly faster when using a single thread. 

5 s recording before T F Lite [ms] % with T F Lite [ms] % 
L o a d Engine Config 7687.6 74.7 7.9 0.4 
L o a d Task Config 629.7 6.1 658.2 36.1 
Select Task Segment 812.7 7.9 808.9 44.3 
Init AudioRecorder 33.0 0.3 33.0 1.8 
Execute 1123.3 10.9 316.3 17.3 

E 10 253.2 1791.3 

10 s recording before T F Lite [ms] % with T F Lite [ms] % 
L o a d Engine Config 7677.3 54.7 7.6 0.2 
L o a d Task Config 1415.5 10.1 1424.0 34.7 
Select Task Segment 2191.8 15.6 1635.1 39.9 
Init AudioRecorder 33.0 0.2 33.0 0.8 
Execute 2 714.6 19.3 1000.8 24.4 

E 13 999.2 4 067.5 

Table 5.6: Prof i l ing by comparing elapsed t ime without and w i t h implemented T F Li te . 
The evaluation was executed as the first run. The recording is not included as it is almost 
the same as the recording duration. 

5.4.1 Identify paral le l izable code 

Static data has to be prepared when the recording starts and before the first data are 
produced by AudioRecorder. The Prepare Static D a t a block can be split into two parts 
and make the m a x i m u m of preparing (e.g., in i t ia t ing H a m m i n g window) i n previous loading 

— C P U 8 threads 

- • - CPU 1 thread 
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Execute ms % 
multiple evaluation 

Prepare Static D a t a 2.7 0.7 
Down-sampling 8.8 2.4 
M e l banks 219.5 59.3 
F F N N 56.0 15.1 
D T W 46.9 12.7 
Calculate Score 1.1 0.3 
Pr in t J S O N 34.9 9.4 

E 369.9 

Table 5.7: Prof i l ing w i th T F Li t e by comparing elapsed time. The evaluation was executed 
on a 5 s recording. The sum of times i n this table does not match the time i n Execute in 
the above table 5.6 as those tables come from different measurement. 

phases and m i n i m u m before each processing. A l l global variables have to be checked for 
R / W conflicts. 

Down-sampling can be parallelized as it s imply takes every n th sample and drops others. 
The first challenge comes wi th framing. AudioRecorder produces chunks of samples, that 
has to be framed. The last frames w i l l overlap into "future" samples, see figure 3.3. Or ig ina l 
code would handle this like end of recording and pad samples by zeros. That would make 
the speech regularly interrupted by silence, and it would worsen the final score. The number 
of frames has to be rounded down, and samples start ing from the first omit ted frame has 
to be copied into the beginning of the next chunk from AudioRecorder, see figure 5.8. The 
recording is not distorted dur ing recording, but up to 199 last samples of recording are 
dropped (as they are not padded by zeros). Tha t means up to 25ms. Considering the 
recorder stops recording ± 2 0 0 ms against the required length, a deviat ion of 25 ms does not 
introduce much inaccuracy into the evaluation. 

Hamming window and Discrete Fourier transform can be parallelized as well . Mel banks 
can be computed except the final normalizat ion. The normalizat ion computes the difference 
of the banks mean and actual value. Tha t requires knowing the sum of the bank and number 
of frames, as this module uses normalizat ion over a l l frames, so N = num_frames. We can 
use Uniform last-N normalization, a floating window of wid th N < num_frames. B u t the 
accuracy grows wi th N so the best result w i l l be wi th N = num_frames. Another option is 
exponential normalizat ion [5]. In the following experiments, I w i l l keep iV = num_frames 
and exclude normalizat ion from Mel banks as normalizat ion itself takes only 3.7 ms. 

The feed-forward neural network w i l l not be parallelized at this t ime, as I decided to use 
normalizat ion through a l l frames, which stop the parallel part. B u t it can be parallelized. 
The only difference is that the neural network uses previous frames as input and works like 
mult iple shift registers. Thus, this step (the controller of F F N N ) has to preserve the inner 
state between each invocation. We can store input data and pointers into the input vector 
as a global variable that is reset only at the beginning at Prepare static data phase. 

Some parts of Dynamic time warping could be parallelized as well . The cost mat r ix can 
be computed piecewise for just computed frames, and the matr ix of the overall score can 
be ini t ia ted to Infinity. 

Another thing to consider is the approach to parallel ization. We can use pipel ining 
known from C P U s or use linear processing on a background thread (see figure 5.9). The 
first approach is effective when each phase takes the approximately same time. Otherwise, 
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Figure 5.8: A chunk of 320 samples. Frame 2 (samples 160 to 299) w i l l be copied into the 
next chunk and the current chunk w i l l process samples from 0 to 159 (frame 0 and 1). 

the t ime w i l l depend on the slowest part. In our case, the whole processing is faster than 
recording (to process 5 seconds of recording, it takes 0.3 s), so threads 2, 3 and 4 would not 
be fully ut i l ized (resource wasting). The second approach can be used, as the whole linear 
process of thread 2 is faster than recording. The advantage of this approach is using only 
two threads, instead of 4. Tha t means one queue and mutex between threads instead of 3. 
We w i l l use the second approach and check whether the second thread finishes processing 
before new data comes from the recorder. 

5.4.2 I m p l e m e n t a t i o n 

Background thread (task) is implemented as Kotlin Coroutine (see chapter 4.3). The record
ing thread creates a new asynchronous task and then continues to start recording. It 
is a simple "producer-consumer problem". The recording thread is a producer, and the 
new asynchronous processing task is a consumer. Tha t can be easily implemented using 
Kotlin Channels12. Channels are like queues. It provides two interfaces, SendChannel and 
ReceiveChannel. The channel capacity can be 0, which is called the rendezvous queue, and 
the sender has to meet w i th the receiver to transfer value. O r the capacity can be l imi ted, 
and more values are dropped or the sender is suspended un t i l the queue is free 1 3 . The 
capacity can be unl imited, which is used i n this case. The sender is then never suspended. 
If there are no values inside the queue, the receiver is suspended. If the sender has no 

1 2 K o t l i n Channels, h t t p s : / / k o t l i n l a n g . o r g / d o c s / c h a n n e l s . h t m l 
1 3 K o t l i n Channels A P I documentation, h t t p s : / / k o t l i n . g i t h u b . i o / k o t l i n x . c o r o u t i n e s / k o t l i n x -

corout i n e s - c o r e / k o t l i n x . corout ines , channels / -channel 
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Figure 5.9: Baseline and two approaches to parallel ization - pipel ining or linear processing 
on background thread. 

samples to send, the sender can close the channel, the receiver is resumed and can check 
whether the isClosedForReceive is set. 

AudioRecorder is filling the internal buffer, and when the buffer is full, it provides an ar
ray of short samples. The buffer size depends on the sampling frequency, the number of au
dio channels and bit depth. This value can be obtained from AudioRecord.getMinBuf f erSize () 
function, and it can be for example 3 528 samples. The recorder puts the values one by one 
from the full buffer into the channel. The receiver takes values and fills its buffer. Th is 
buffer should have the same wid th as AudioRecorder or its multiples. In that case, the 
processing covers the t ime during which the next samples are recorded. 

5.4.3 P r o f i l i n g 

W h a t mult iple of the buffer size to choose, is part of experiments. Whether the background 
thread finishes processing in t ime and the sum of processing times are the values included 
in table 5.8. 
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buffer size execution time sum blocks not finished in time 
3 528 1 805 986 0-1 
7056 1 772 244 0-1 
10 584 1 795 072 0 

Table 5.8: Sum of parallel execution times (Execute part) using multiple evaluation on 
10 s recording. Buffer size means the number of received samples from the recorder before 
invocation Execute in the background. It can be considered as a delay. 

Based on the table, the size does not impact the sum of execution t ime and the number 
of blocks not finished in t ime. Not finished blocks were i n the middle of processing, bo th 
in the case of 3 528 and 7 056 block size, and the following blocks were processed i n time. 
Bigger blocks mean a longer t ime of processing the last block when the recording is finished. 
Thus, a smaller block size means faster processing from the user's point. The block size 
of 10 584 samples represent 0.24 ms of recording, and i n the case of sampling frequency 
44100 H z , so 5 s recording would be divided only into 21 blocks. We chose the block size 
to the buffer size. Bigger size requires more operation memory for computing, which is a 
l imi t ing factor for smartphones. 

Conclusion and comparison are i n the following tables 5.9 and 5.10. The recording is 
not included as it is almost the same as the recording durat ion. The right table is from 
the user's point of view, Prepare Static D a t a is done during recording. T i m e of Down-
sampling is computed as the t ime of processing the data left in the buffer after finishing 
the recording. M e l banks t ime consists of the t ime of normalizat ion and time of computing 
M e l banks for the data left in the buffer after finishing the recording. 

5 s recording after T F Lite [ms] % with parallelization [ms] % 
L o a d Engine Config 7.9 0.4 8.1 0.9 
L o a d Task Config 658.2 36.1 57.9 6.1 
Select Task Segment 808.9 44.3 659.6 69.7 
Init AudioRecorder 33.0 1.8 34.4 3.6 
Execute 316.3 17.3 186.1 19.7 

E 1 824.3 946.0 

10 s recording after T F Lite [ms] % with parallelization [ms] % 
L o a d Engine Config 7.6 0.2 7.5 0.3 
L o a d Task Config 1424.0 34.7 61.2 2.8 
Select Task Segment 1635.1 39.9 1553.1 70.4 
Init AudioRecorder 33.0 0.8 37.1 1.7 
Execute 1000.8 24.4 546.1 24.8 

E 4100.5 2 205.0 

Table 5.9: Prof i l ing by comparing elapsed t ime without and wi th implemented paralleliza
t ion. The evaluation was executed as the first run. 

For lack of t ime, the parallel ization was not finished whole. M e l banks normalizat ion 
and F F N N can be s t i l l parallelized, which would save another 90 ms. B u t even this solution 
reduced processing t ime by 45 % i n the case of 5 s recording and by 55 % i n 10 s recording. 
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Execute 5 s 
first run 

ms % Execute 10 s 
first run 

ms % 

Prepare Static D a t a - 0.0 Prepare Static D a t a - 0.0 
Down-sampling 0.02 0.0 Down-sampling 0.01 0.0 
M e l banks 2.81 1.4 M e l banks 3.71 0.7 
F F N N 104.49 52.8 F F N N 178.11 31.5 
D T W 62.68 31.7 D T W 329.67 58.4 
Calculate Score 1.01 0.5 Calculate Score 1.66 0.3 
P r in t J S O N 26.91 13.6 P r in t J S O N 51.55 9.1 

E 197.92 E 564.72 

Table 5.10: Prof i l ing wi th parallel ization by comparing elapsed time. The t ime of a l l 
phases was computed after the recording was stopped and the user was wai t ing for results. 
Prepare static data is computed during recording. Thus, it does not affect processing 
time. 

5.5 Improving the UI response time 

The speech module was speedup in previous sections, but those changes d id affect the client 
site. The user interface displayed the results s t i l l after 3 seconds, al though the results were 
available in Logcat much earlier. 

It was caused by flooding the bottleneck of React Native called React Native bridge15, 
visualized i n figure 5.10. The bridge manages communicat ion between JavaScript app 
controller and native modules (e.g., O S callbacks and A P I , SpeechEngine module). 

React community is aware of this l imi ta t ion , and they are currently working on the new 
architecture of a native module system called Turbo M odules16. 

l . event 

3. process event 2. serialized payload 

JavaScript 
Thread Bridge Native 

Thread 
OS events and API 
Native modules 

4. serialized response 5. update UI 

Figure 5.10: React native bridge wi th visualized event handling. 

The actual problem was wi th the frequency of onProgressChange events sent from 
the SpeechEngine module into the React Native. The bridge was flooded by those events. 
Redrawing and responding to the user's touches became more and more delayed, and the 
response to the onResuits event was processed and passed for rendering several seconds 
after the event occurred. 

The frequency of reporting was reduced. The onProgressChange events were sent after 
processing 500 ms of data, then it was reduced to each 2 560 ms. After parallelization, the 

1 4 Logca t command-line tool - Android Developers, h t tps: / /developer .android.com/studio/command-
l i n e / l o g c a t 

1 5 A n d r o i d Native Modules, h t t p s : / / r e ac tna t i ve .dev /docs /na t i ve -modu le s - and ro id  
1 6 TurboModules proposal, h t t p s : / / g i thub .com/ reac t -na t ive -communi ty /d i scuss ions -and-

p roposa l s / i s sues /40 
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reporting was removed from background parallel parts and remained only in FFNN and 
later phases. 

B u t s t i l l , when the recording and player are active at the same time, the U I is slow and 
delayed as both of the activities produces events for the U I . 

I would not recommend React Native for real-time visualisations that need to be accurate 
and up-to-date. 

5.6 Conclusion 

In previous sections, we applied two main optimizations of the processing pipeline (compu
tat ion closer to H W and parallelization) and one opt imizat ion of G U I rendering response. 
The processing pipeline of Execute phase summarizes along wi th processing times figure 
5.11. 

Recording Down-sampling Mel filter Feed Forward 
neural network 

Dynamic Time 
Warping 

f features \ f phonemes \ 

I I ^ 5 X M L 

1 24 Mel banks I I 30 desriptors I 1 Alignment , 
^ ^ e r f r a m ^ ^ ^ ^ e r f r a m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

53.9 ms 

62.7 ms 

611.1 ms 

104.5 ms 

Figure 5.11: Compar ison of profiling Execute pipeline before and after optimizations (from 
tables 5.1 and 5.10) on 5s recording using the first run methodology. 

The first opt imizat ion reduced loading and computing feed-forward neural network using 
high-level l ibrary TensorFlow Lite. This reduced Load Engine Config t ime and F F N N 
t ime i n Execute phase (see tables 5.11 and 5.12). TF Lite uses C P U kernels opt imized 
for the A R M Neon instruct ion set. Even better performance is achieved by computing 16 
frames at once. It means that the input and output of this N N are 16 times bigger, but the 
N N model is executed 16 times less often. 

The second opt imizat ion reduced Prepare Static Data, Down-sampling, and M e l 
banks times i n Execute phase. Paral le l izat ion is implemented using Kotlin Coroutines 
and Channels from the Kotlin Coroutines l ibrary. Execute phase is invoked each time 
when AudioRecorder produces new samples on a background thread. The applicat ion 
needs only two threads for recording and processing, as processing is faster than recording. 
Figure 5.12 displays the implementat ion of the second approach {Linear with two threads). 

The last opt imizat ion is not related to the evaluation module. It reduces the delay of 
the U I renderer. The number of state and progress updates sent by the evaluation module 
to the React Native U I was reduced more than five times. If progress updates come too 
often, React Native queues them, and the results are displayed after a l l previous progress 
updates are processed and displayed. W i t h further optimizations, it w i l l be necessary to 
further reduce, or even remove, reporting of processing progress. 

The final architecture of the evaluation module is displayed i n figure 4.2. 
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Figure 5.12: The final scheme of implemented parallel ization. Unl ike to 5.9, the M e l banks 
block was split into computing M e l banks and normalizing them. Due to this change, the 
F F N N block was not parallelized. 

5 s recording before optimizations [ms] after optimizations [ms] 
L o a d Engine Config 7687.6 8.1 
L o a d Task Config 629.7 57.9 
Select Task Segment 812.7 659.6 
Init AudioRecorder 33.0 34.4 
Execute 1123.3 186.1 

E 10 253.2 946.0 

10 s recording before optimizations [ms] after optimizations [ms] 
L o a d Engine Config 7677.3 7.5 
L o a d Task Config 1415.5 61.2 
Select Task Segment 2191.8 1553.1 
Init AudioRecorder 33.0 37.1 
Execute 2 714.6 546.1 

E 13 999.2 2 205.0 

Table 5.11: Prof i l ing by comparing elapsed t ime before and after implementing opt imiza
tions (from tables 5.7 and 5.10). The evaluation was executed using the first run method
ology. The recording is not included as it is almost the same as the recording durat ion. 
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Execute 5 s before optimizations [ms] after optimizations [ms] 
first run 

Prepare Static D a t a 4.5 -
Down-sampling 19.2 0.02 
M e l banks 223.2 2.81 
F F N N 611.1 104.49 
D T W 53.9 62.68 
Calculate Score 0.9 1.01 
P r in t J S O N 10.6 26.91 

E 923.4 197.92 

Execute 10 s before optimizations [ms] after optimizations [ms] 
first run 

Prepare Static D a t a 8.3 -
Down-sampling 56.1 0.01 
M e l banks 525.7 3.71 
F F N N 1451.9 178.11 
D T W 329.2 329.67 
Calculate Score 3.1 1.66 
P r in t J S O N 90.7 51.55 

E 2 465.0 564.72 

Table 5.12: Prof i l ing by comparing elapsed t ime before and after implementing opt imiza
tions (from tables 5.2 and 5.10). Prepare static data is after the optimizations computed 
during recording. Thus , it does not affect the processing time. 
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Chapter 6 

Conclusion 

A s part of this work, we explained the process of speech processing and comparing two 
speech recordings. We introduced, how the processing is used i n the applicat ion and what 
is the expected functionality of the applicat ion. The largest part and contr ibution of this 
work is identifying parts that can be refactored and opt imized. Those techniques can be 
used in similar applications as the presented processing pipeline is quite common in speech 
processing. 

We used a high-level l ibrary TensorFlow Lite to access low-level functionalities provided 
by the hardware of today's smartphones. We tr ied different accelerators but finally, we stick 
to the single thread C P U variant as we do not have so complex neural network. We showed 
an example of a complex network and speed up achieved by delegating to the device G P U . 
Then we gained more speed up by computing more dcttct ctt once and found the opt imal 
data size. 

A s a second technique, we chose parallelization. We identified problematic blocks for 
parallelization and proposed two ways of parallel ization. Implemented parallel ization pre
serves the original accuracy and s t i l l brings 45 % speed up. 

The last th ing considered is the user interface. Processing may speed up, but if the user 
interface and the rendering is slow, the user cannot feel the acceleration techniques. After 
applying the techniques above, there is s t i l l needed 174 ms for processing. We can t r ick ly 
hide this t ime into transitions or short animation, so the user cannot note any delay before 
the results. 

We were able to reduce speech processing of 5 s recording from 928 ms to 174 ms at 
the same accuracy. Longer (10 seconds) recording originally takes 2.5 seconds, and at the 
end of the work, it takes only 0.5 seconds. Load ing of neural network was reduced from 6 
seconds to 8 milliseconds. 

However, there are s t i l l opportunities to speed up the program. We can continue wi th 
parallelization and use uniform-n normalizat ion (floating window wi th in i t i a l value or value 
from previous processing) and experiment w i th the size of windows and in i t i a l value in 
the context of accuracy. Dynamic t ime warping uses an algori thm that computes the 
whole graph. We can choose windows of l imi ted wid th where we are looking for the best 
path. React Nat ive can be s t i l l slowed down when there is mult iple progress reported at 
the same t ime. We could t ry to compute the progress on the React side and send only 
start /s top/change events. The other opt ion is discovering alternative solutions like Flutter, 
Apache Cordova or Fuse. 

We are going to integrate this module into a real appl icat ion and then t ry to apply the 
same methods on the different app (speech recognizer). 
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Appendix A 

A P I Documentation 

The following list contains functions and properties which can be used from the applicat ion 
and messages that are sent to the React Native applicat ion. 

• Config options: 

— LogVerbosity logVerbosity 

• Interface methods: 

— loadTaskJSONConfig(jsonData: String) 
— initAudioRecorder(length: Int) 
— startAudioRecorder() 
— stopAudioRecorder() 
— selectTaskSegment(taskSegment: String) 
— startAudioPlayerRef(wrdld: Int) 
— stopAudioPlayerRef() 
— startAudioPlayerUsr(wrdld: Int) 
— stopAudioPlayerUsr() 
— speechEngineExecute() 
— saveAudioUsrAsWAV(filename: String) 

• Interface events (differs from Interface methods): 

— onError(WritableMap payload) 
* String payload.error 
* Int payload.state 

— onProgressChanged(WritableMap payload) 
* Double payload.progress 
* Int payload.state 

— onStateChanged(WritableMap payload) 
* Int payload.state 

— onStatus(WritableMap payload) 
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* String payload.status 
* LogLevel payload.logLevel 

— onResults(WritableMap payload) 
* String payload.results 

— onAudioEnergy(WritableMap payload) 
* Double payload.audioEnergy 
* Double payload.progress 
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Appendix B 

Configuration files 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

The module can be configured through configuration files SpeechEngineConf i g . json and 
task specific configuration is stored in TaskConf i g . json of each task. Those files are de
scribed by J S O N Schema Schema_SpeechEngineConf i g . j son and Schema_TaskConf i g . j son. 
J S O N Schemas are not included here, as they are too long for a single page. 

B . l SpeechEngineConfig.json 

{ 
"SpeechEngine_StatusLevel": "INFO", 
" AudioRecorder AudioEnergy Refresh": 0.1, 
"AudioRecorder AudioSamplingFrequency": 44100, 
"AudioRecorder AudioChannels": " M O N O " , 
"AudioRecorder_AudioSource": "MIC" , 
"AudioRecorder_AudioEncoding": " P C M _ 1 6 B I T " , 
"FeatureExtraction Use": "default", 
"FeatureExtraction List": [ 

{ 
"Version": "default", 
"NeuralNet BinFi le": " / s to rage /emula ted /0 / sewrapperdemo/SpeechEngine /mode l lßx . t f l i t e " 

} 

B.2 TasklConfig.json 

{ 
"Task Transcript X M L " : "/storage/emulated/0/sewrapperdemo/Taskl/OOOOOOOaudio.xml", 
"Task Audio Reference_WAV": "/storage/emulated/0/sewrapperdemo/Taskl/0000000audio.wav" 
"Task Audio User W A V " : "/storage/emulated/0/sewrapperdemo/Taskl/user audio.wav", 
"Task Features List": [ 

{ 
"Version": "default", 
"FileName": "/storage/emulated/0/sewrapperdemo/Taskl/OOOOOOOaudio.bnfea" 

} 
] 

} 
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