
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

MODULE FOR PRONUNCIATION TRAINING AND FOR
EIGN LANGUAGE LEARNING
M O D U L PRO V Ý U K U VÝSLOVNOSTI CIZÍCH JAZYKŮ

MASTER'S THESIS
D I P L O M O V Á PRÁCE

AUTHOR Be. VLADAN KUDLÁČ
A U T O R PRÁCE

SUPERVISOR Ing. IGOR SZÖKE, Ph.D.
V E D O U C Í PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

Master's Thesis Specification |||||||||||||||||||||||||
23944

Student: Kudláč Vladan, Be.
Programme: Information Technology
Field of Computer Networks
study:
Title: Module for Pronunciation Training and Foreign Language Learning
Category: Speech and Natural Language Processing
Assignment:

1. Get familiar with basics of pronunciation training and comparison of two audio
examples (using DTW). Study basics of implementation for OS Android.

2. Study provided language learning mobile application.
3. Refactor the provided mobile implementation, profile it and propose optimizations with

respect to increasing accuracy, and processing speed and decreasing memory footprint (if
possible).

4. Discuss achieved results and future work.
5. Create an A2 poster and a short video presenting your work.

Recommended literature:
• M. Muller, Information Retrieval for Music and Motion, Springer-Verlag, 2007.
• According to supervisor's recommendation

Requirements for the semestral defence:
• Items 1, 2 and part of item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Szöke Igor, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: October 30, 2020

Master's Thesis Specification/23944/2020/xkudla15 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to refactor the implementation of speech processing module for
mobile appl icat ion used for teaching pronunciation, profile it and propose optimizations
wi th respect to increasing accuracy, processing speed, and decreasing memory footprint.

Abstrakt
Cílem t é t o p r á c e je vylepš i t implementaci modulu pro mob i ln í aplikace pro v ý u k u výs lovnos t i ,
naj í t m í s t a v h o d n á pro opt imal izaci a p rovés t opt imal izaci s c í lem zvýši t p ře snos t , snížit
čas zp racován í a snížit paměťovou n á r o č n o s t zpracování .

Keywords
speech processing, profiling, optimisation, D T W , TensorFlow, A n d r o i d , parallel ization

Klíčová slova
zpracován í z á z n a m u řeči, profilování, optimalizace, D T W , TensorFlow, A n d r o i d , paralelizace

Reference
K U D L Ä C , V i a d a n . Module for Pronunciation Training and Foreign Language Learning.
Brno , 2021. Master 's thesis. Brno Universi ty of Technology, Facul ty of Information Tech
nology. Supervisor Ing. Igor Szöke, P h . D .

Rozšířený abstrakt
P ř i v ý u c e j azyka je výs lovnos t dů lež i tou součás t í . Z a t í m c o slovíčka lze t r énova t p s a n í m

slov a vět , a n á s l e d n ý m p o r o v n á n í m se s p r á v n o u variantou, výs lovnos t lze t r é n o v a t pouze
opakován ím a vys lovováním frází a vět . U výs lovnos t i neexistuje s p r á v n á a š p a t n á odpověď,
obvykle lze porovnat p ře snos t výs lovnos t i vůči referenční n a h r á v c e nebo p o m o c í výs lovnos-
t n í h o modelu.

Cí lem t é t o p r á c e je optimalizovat modu l pro mobi ln í apl ikaci , k t e r ý u m o ž n í z ískat
p řesnos t výs lovnos t i . V ý s t u p e m t é t o p r á c e je modul , k t e r ý je schopen rychle ohodnotit
výs lovnos t i na m é n ě výkonných chy t rých telefonech a tabletech, k t e r ý bude fungovat i na
p o m a l é m nebo ž á d n é m i n t e r n e t o v é m př ipo jen í .

P ro d e m o n s t r a č n í účely m á modu l j e d n o d u c h é grafické rozh ran í , p o m o c í k t e r é h o je
m o ž n é zkouše t r ů z n é p ř í p a d y použ i t í . R o z h r a n í je i m p l e m e n t o v a n é v React Native a nen í
u rčeno pro koncové už iva te le . M o d u l by mě l bý t i m p l e m e n t o v á n do aplikace, k t e r á u m o ž n í
uživatel i p ř e h r á t referenční n a h r á v k u , n a h r á t svůj hlas, vyhodnot i t výs lovnos t a zobrazit
uživatel i výsledky.

Vedoucí p r áce poskyt l p ů v o d n í v ý p o č e t n í modu l i m p l e m e n t o v a n ý v p r o g r a m o v a c í m
jazyce Java. M o d u l by l poskytnut vče tně n a t r é n o v a n é h o modelu pro extrakci p ř í z n a k ů
z řeči, vzorové a n o t o v a n é n a h r á v k y a v y p o č í t a n ý c h p ř í z n a k ů pro vzorovou n a h r á v k u . Dá le
poskyt l j e d n o d u c h é grafické r o z h r a n í i m p l e m e n t o v a n é p o m o c í React Native frameworku.
P ů v o d n í modu l by l ne s t ab i ln í a obsahoval chyby ve v ý p o č t u . V r á m c i p r á c e b y l modul
p ř epsán , by la p ř i d á n a m o ž n o s t a u t o m a t i z o v a n é h o s p o u š t ě n í a t e s tován í , a d íky tomu mohly
bý t nep ře snos t i ve v ý p o č t u lokal izovány a opraveny. V už iva te l ském r o z h r a n í byly opraveny
p á d y a bylo rozš í řeno zobrazován í a k t u á l n í h o stavu modulu , ze jména př i více souběžných
operac ích .

Zpracován í p r o b í h á p ř í m o v zař ízení , t a k ž e funguje i off-line. Tomu bylo p o t ř e b a p ř izpů
sobit p o u ž i t é algoritmy. Zvolený algoritmus je založený na p o r o v n á v á n í p ř í z n a k ů dvou au
dio n a h r á v e k . Opro t i p ř e v o d u řeči na text a n á s l e d n é m p o r o v n á n í vyžadu je tento p ř í s t u p
menš í neuronovou síť, tedy menš í v ý p o č e t n í ná roky . Tento p ř í s t u p je t a k é více z a m ě ř e n ý
na intonaci a s p r á v n o u výs lovnos t .

Nejprve je n a h r á n hlas už iva te le jako j e d n o k a n á l o v é audio (mono), kde j edno t l ivé vzorky
jsou r ep rezen továny p o m o c í n e k o m p r i m o v a n é p u l zn ě kódové modulace (P C M) s bitovou
hloubkou 16 b i t ů . Tento fo rmát je použ ívaný n a p ř í k l a d u f o r m á t u W A V (R I F F) . U za
ř ízeních s O S A n d r o i d je j e d i n á g a r a n t o v a n á vzorkovací frekvence 44 100 H z . P o n a h r á n í
hlasu je sníženo vzorkování n a h r á v k y ze 44 100 H z na 8 000 H z . P o t é jsou z j edno t l i vých
vzo rků audio n a h r á v k y v y t v o ř e n y překrývaj íc í se r á m c e . P r o tyto r á m c e jsou v y p o č t e n y
frekvenční charakterist iky p o m o c í diskrétní Fourierovy transformace. T y t o frekvence jsou
p o t é p ř evedeny a s loučeny do Mel bank. Mel banky cha rak te r i zu j í úseky n a h r á v e k z hlediska
frekvencí, k t e r é jsou pro l idský hlas v ý z n a č n é , p o m o c í 24 charakteristik (bank). P o t é
p r o b í h á v ý p o č e t fonémů. P r o t o ž e ale n e p o t ř e b u j e m e p řevádě t hlas na t e x t o v ý přep is ,
využívaj í se pouze 3 vrs tvy z p ů v o d n í neu ronové s í tě pro v ý p o č e t fonémů a v ý s t u p e m
je ne jmenš í z vrstev {bottleneck vrstva), k t e r á dokáže r á m e c popsat p o m o c í 30 číselných
hodnot. P r o t o ž e p o t ř e b u j e m e porovnat dvě odl išné nah rávky , s od l i šnou délkou a s různě
rych lými řečníky, p o t ř e b u j e m e čás t i n a h r á v e k zarovnat p o m o c í DTW a lgori tmu. Výs tu
pem algori tmu je ře tězec ve f o r m á t u JSON, k t e r ý obsahuje celkový výs ledek i ú spěšnos t
pro j edno t l i vá slova.

Hlavn í n á p l n í a ne jvě t š ím p ř í n o s e m t é t o p ráce je identifikace čás t í , k t e r é lze vylepši t
a optimalizovat. P o u ž i t é techniky lze použ í t v p o d o b n ý c h apl ikacích , p r o t o ž e uvedený
způsob zp racován í řeči je p o m ě r n ě rozšířený. Nejprve byla aplikace čás t ečně p ř e p s á n a

z p r o g r a m o v a c í h o j azyka Java do j azyka Kotlin. To umožn i lo použ i t í knihovny Kotlin
Coroutines. K n i h o v n a je u r č e n a pro s n a d n é p s a n í a s y n c h r o n n í h o k ó d u a obsahuje dalš í
ná s t ro j e pro pa ra l e ln í p r o g r a m o v á n í (nap ř . Kotlin Channels pro komunikaci mezi v l ákny) .

P o t é jsme se zaměř i l i na z rychlen í n a č í t á n í modulu a z rychlen í zp racován í n a h r á v e k
př i zachování p řesnos t i . P r o využ i t í nízko ú rovňových funkcí, k t e r é hardware dnešn ích
telefonu poskytuje, jsme využil i vysoko ú rovňovou knihovnu TensorFlow Lite. Vyzkoušel i
jsme r ů z n é akcelerá tory , ale nakonec se pro p o u ž i t ý model osvědči la C P U varianta s j e d n í m
v l á k n e m (použ i t á neu ronová síť nen í d o s t a t e č n ě složi tá , s d o s t a t e č n o u ari tmetickou inten
zitou). V ý p o č e t se p o d a ř i l o dá le zrychli t v ý p o č t e m více r á m c ů za ráz . Jako o p t i m á l n í se
jeví v ý p o č e t 16 r á m c ů zaráz , dalš í zvě tšování p o č t u r á m c ů nevede k da l š ímu zrychlení . P r o
složitější s í tě se ukáza lo v ý h o d n é p rovádě t v ý p o č e t na G P U . Naopak NNAPI se n e u k á z a l o
pro tento typ modelu příl iš v ý h o d n é . D í k y TensorFlow Lite se p o d a ř i l o z k r á t i t dobu
n a č í t á n í neu ronové s í tě ze 7,6 sekund na 0,8 sekund. Zpracován í lOsekundové n a h r á v k y
t r v á 1 sekundu m í s t o p ů v o d n í c h 2,7 sekund. U 5s n a h r á v k y se doba zpracován í zk rá t i l a
z 1,1 sekund na 0,3 sekund.

Jako druhou techniku jsme zvol i l i paralelizaci. Identifikovali jsme p r o b l e m a t i c k é bloky
pro paralelizaci a navrhl i m o ž n é způsoby paralelizace. I m p l e m e n t o v a n é pa ra le ln í řešení
zachovává p ů v o d n í p ře snos t a p ř ináš í z rychlení 45 % oproti č a s ů m po nasazen í TensorFlow
Lite.

Pos ledn í věcí je už iva te lské rozh ran í . Zpracován í se m ů ž e zrychli t , ale pokud je uživa
te lské r o z h r a n í a vykres lování p o m a l é , už iva te l ž á d n é zrychlení nepoc í t í . Nav íc i po použ i t í
výše uvedených op t ima l i zac í je pro zp racován í s tá le p o t ř e b a 174 ms. Tuto dobu m ů ž e ap
likace sk rý t do p ř e c h o d ů mezi stavy nebo do k r á t k ý c h an imac í , t a k ž e z pohledu uživate le
bude zobrazen í výs ledků o k a m ž i t é .

Proces optimalizace lze vyhodnoti t jako úspěšný. P o d a ř i l o se snížit čas zpracováván í 5s
z á z n a m u z 928 ms na 174 ms se stejnou p řesnos t í . Delší z á z n a m (10 sekund) b y l p ů v o d n ě
zp racován za 2,5 sekundy, na konci p r á c e pouze za 0,5 sekundy. D o b a n a č í t á n í neuronové
sí tě byla sn ížena ze 6 sekund na 8 mil isekund.

V modulu jsou s tá le prostory pro zrychlení . V paralelizaci lze p o u ž í t normalizaci s
p lovouc ím oknem a experimentovat s p řesnos t í . D T W lze upravit tak, aby pracovalo pouze
s čás t í s t avového prostoru. V grafickém r o z h r a n í s t á le docház í ke zpomalen í , pokud p r o b í h á
více ope rac í současně .

V budoucnu je p l ánováno nasazen í ve s k u t e č n é apl ikaci pro v ý u k u cizích j a z y k ů . Dá le je
zamýš leno využ í t tyto techniky na dalš í p o d o b n é aplikace, jako n a p ř í k l a d na rozpoznávač
řeči.

M o d u l e for Pronunciat ion Training and Foreign
Language Learning

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of Doc . Igor Szoke. I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

V l a d a n K u d l a c
M a y 17, 2021

Acknowledgements
I would like to thanks to the supervisor who was providing valuable advice and hints and
who introduced me deeper into the issue of speech processing. M a n y thanks to my family
for their support.

Contents

1 Introduction 3

2 Mobi le application 5
2.1 React Nat ive U I 5
2.2 Speech Engine module 7
2.3 Program functions 7
2.4 Use case '

3 Speech processing 10
3.1 Recording 11
3.2 Down-sampling 12
3.3 M e l filter 12

3.3.1 Framing 12
3.3.2 Ham m ing window 12
3.3.3 Discrete Fourier transform (D F T) 13
3.3.4 M e l banks 14

3.4 Feed forward neural network 16
3.4.1 M e a n normalizat ion 17

3.5 Dynamic t ime warping 18
3.6 Calcula t ing the score 20
3.7 Conclusion 20

4 Refactoring 21
4.1 Code readabili ty and maintainabi l i ty 21
4.2 K o t l i n w i t h Java code 23
4.3 K o t l i n coroutines 23

5 Opt imiz ing 24
5.1 Measurement methodology 24
5.2 Prof i l ing before opt imizat ion 25
5.3 TensorFlow Li t e 26

5.3.1 Creat ing custom model 26
5.3.2 Deploying model 28
5.3.3 Prof i l ing 29
5.3.4 B a t c h processing 31
5.3.5 Number of threads 33
5.3.6 Conclusion 34

5.4 Paral lel izat ion 34

1

5.4.1 Identify parallelizable code 35
5.4.2 Implementation 37
5.4.3 Profi l ing 38

5.5 Improving the U I response t ime 40

5.6 Conclus ion 41

6 Conclusion 44

Bibl iography 46

A A P I Documentat ion 47

B Configuration files 49
B . l S p e e c h E n g i n e C o n f i g . j s o n 49
B.2 T a s k l C o n f i g . j s o n 49

2

Chapter 1

Introduction

The goal of this thesis is to refactor the provided implementat ion of the speech processing
module used i n the A n d r o i d mobile applicat ion for learning foreign languages. Refactoring
should mainly speed up processing, improve code readabil i ty and divide the code into
separate modules, which should make easier development in the future.

W h e n learning a language, we need to learn new vocabulary, the wri t ten form, and
learn how to pronounce i t . Then compose words into sentences and learn proper intonation
and accent. The grammar can be checked by wri t ing the sentence, composing from blocks,
or selecting the correct form. B u t only repeating or reading phrases or words can check
the pronunciation. Also , i n terms of pronunciation, there is no correct or wrong answer.
There is usually a reference recording or pronunciation model to be compared wi th . Users
can get success a rate or success/fail in case of applying a threshold. The output of this
thesis w i l l be a library, which w i l l to evaluate the user pronunciat ion from a recording. The
application is intended, among other countries, for the Indian market. So, there is a request
for fast speech evaluation even on low-end smartphones or tablets and for low mobile data
usage and offline mode. Tha t is the purpose of refactorization and finding ways, how to
speed up the evaluation process.

M y supervisor provided me the evaluation module, including a trained model i n the
binary form used for features extraction, one example of annotated recording, reference
features of recording, and a simple React Native wrapper (G U I) . The original module was
created by por t ing JavaScript implementat ion used i n the company Replay Well1 into Java.
The module was able to evaluate the speech but it was crashing when cal l ing the A P I
in the wrong order or mult iple times. Beyond the scope of this work, I fixed the crashes
and changed error handling and logging. The evaluation results seemed inaccurate, but it
was not possible to test the implementation. Before experimenting wi th different models
and optimizations, I added loading and saving user speech into the W A V file. Thus, the
application can be run mult iple times wi th the same input data, which generates the same
output results. So, the output results can be compared. The applicat ion now includes a
debug mode which dumps output, as a mat r ix of each processing phase, into the file. W i t h
the debug mode, I was able to locate and fix the source of evaluation inaccuracy. Figures
4.1 and 4.2 display the difference between the original solution and the refactored solution.
Refactorizations w i th impact on speed or accuracy are included in chapter five. The user
interface was simplified into a more compact layout. Messages from the processing module
are parsed to show mult iple progress bars. A l l known bugs, that were causing the crashes,

1 ReplayWel l - systems for speech and video processing, ht tps: / /www.replaywell .com

3

https://www.replaywell.com

were fixed. The added profiling mode can automatical ly go through an in i t ia l iz ing phase
to the processing phases based on states received from the computing module.

This thesis is divided into six chapters. In the second chapter, I w i l l describe the func
t ional i ty and usage of this module. In the th i rd chapter, I w i l l explain the used algori thm
for speech processing, which explains the background of a lgori thm complexity. In chap
ters four and five, the process of refactorization is described. The refactorization process
is d ivided into two parts. Chapter four is about changes improving module architecture
and chapter five is an experimental part, which describes proposed optimizations and the
process of their implementation.

4

Chapter 2

Mobile application

In this chapter, I w i l l describe applicat ion architecture, communicat ion between React Na
tive U I and native Speech Engine module, the functionality of the module, typica l usage of
the A P I , options available in configuration files, and file structure of tasks and the module
itself. The module lacked documentation, so I w i l l reference to A P I or schemas attached in
Appendices.

2.1 React Native UI

The SpeechEngine module w i l l be used i n an applicat ion already implemented i n React
Native1. The module does not have its user interface. The SpeechEngine module is wrapped
i n a simple React Native user interface to demonstrate module functionalities and test them
properly. But tons are cal l ing corresponding A P I functions (see appendix A) and state and
progress indicators displaying feedback from the module, see figure 2.1. Th is interface is
not intended for users as wrong combinations of cal l sequences w i l l cause errors The U I of a
real appl icat ion w i l l be like the U I of the module implemented i n JavaScript w i th the user
interface wri t ten in H T M L (see figure 2.2).

Bu i ld ing React Native app requires Node.js2 (at least version 12 for React Native version
0.64) and npnxi. J S X (JavaScript extended by React Native) describes U I and its behaviour.
JavaScript engine renders native U I and handles O S events using React Native Bridge.
Modules implemented i n Kotlin or Java are wrapped into React Package using Native
Modules. Communica t ion between the JavaScript engine and the native module is by
emit t ing and listening to asynchronous calls.

The project can be deployed i n development mode to mobile using Android Studio.
React Native part is distr ibuted using the Metro server' 1. The app is released for users as
a regular APK (Andro id applicat ion package) file w i th its requirements for min ima l and
targeting A n d r o i d version directed by applicat ion developers. The min ima l required A P I
level is currently 23 (Andro id Marshmal low) .

1 React Native - a framework for building Android and iOS applications using React, h t t p s : / /
reactnat ive .dev

2Node.js - JavaScript runtime, build on Google's V 8 engine, h t t p s : / / node j s . o r g
3 n p m - package manager for Node.js, https://www.npmjs.com.
4 Met ro - JavaScript bundler for React Native, h t tps : / / f acebook .g i thub . io /met ro

5

https://nodejs.org
https://www.npmjs.com
https://facebook.github.io/metro

Audio Energy:

Progress: 8200

100%

State: 6002

LOAD COMPONENT CONFIGURATION

LOAD TASK CONFIGURATION

SELECT TASK SEGMENT ^ SELECT TASK SEGMENT '
1 2

Reference audio player:

WORD 4

User audio player:

V WORD 4 • ä WAV

{"ID": "8219_0000000audio_0000A_0002370_0002749",
"FromTime": "23,70", "ToTime": "27,49", "AcousticSimilarity":
"81,530418", "SpeedRatio": "102,397247", "OverallScore":
"81,530418", "word_array_exa": [{"Word": "SENT_START!",
"FromTime": "0,00", "ToTime": ,,0,74", "AccDist": "45,892502",

Figure 2.1: Graph ica l user interface (GUI) of React Nat ive wrapper. The buttons corre
spond to the functions from the A P I . Numbers i n the circles indicate the order i n which the
buttons are used (numbers are not part of G U I) . There are two configured tasks (buttons
3a and 3b) to choose from.

Figure 2.2: Screenshot of Replay We 11 user interface demonstration wri t ten in H T M L and
JavaScript . Available at: https://www.replaywell.com/glplayer/demo/.

(i

https://www.replaywell.com/glplayer/demo/

2.2 Speech Engine module

The speech engine module provides functionalities for playing reference recording, recording
user's voice and evaluating the accuracy of pronunciation. Th is part is implemented i n Java
and K o t l i n , and unlike to React Nat ive part, it is targeted only to A n d r o i d . Creat ing a
native engine module for i O S is not covered by this thesis.

2.3 Program functions

The following use case diagram (figure 2.3) represents functions that can be called from the
applicat ion. There are functions to ini t ial ize the speech engine and to control the audio
recorder or player. There is also debugging function allowing to load user voice from W A V .
A l o n g wi th other options, it is available through configuration files SpeechEngineConf i g . j son
and TaskConfig. json (see appendix B) .

Figure 2.3: Use case diagram representing functions that can be called from the applicat ion.

2.4 Use case

In figure 2.4 can be seen an example of the typica l use case of this module. A user launches
the applicat ion and the component configuration is loaded in the background. If the user
selects a lesson that includes a task w i th pronunciation, the applicat ion loads task config
urat ion i n the background.

As a lesson, we can imagine for example "exercise 3.12" from some book. This lesson
(exercise) would be focused on job interviews. The lesson would include multiple tasks (lines
"a)" to "f)" in the book). The first task would be to correctly write "interview" word, the
next task would be to repeat a phrase "I perform well under pressure ".

The user can solve tasks listed before the task wi th pronunciation, then he has to
wait, t i l l previous configurations are loaded. If the configurations are loaded, then the
task segment is selected on the foreground, and the user has to wait (but it is loaded

7

almost immediately) . Then the applicat ion initiates a recorder i n the background. User
can meanwhile play the whole reference recording or only part using the p lay/s top button.
If the task allows showing transcription, then the user can play a specific word. T h e n the
user hit the record but ton and the applicat ion starts the audio recorder. The recording is
stopped by the user or when the t ime runs out. T h e applicat ion immediately fires processing
in the background. D u r i n g that time, the user can listen to his recording. The applicat ion
shows the result when it is available and the user can t ry it again, proceed to the next task,
or finish the lesson and select the next lesson.

8

User can solve
tasks listed before the
task with speech, then
he has to wait till
previous
configurations are
loaded.

User can play/stopl_j
whole reference
record or play/stop
nth word (if the task
allows to show
transcription). Player
actions are
nonblocking.

User Application

launch application

Speech Engine

0

0
1

• 0

select lesson which
includes task with

• • • pronunciation

load component configuration

-"-i • • • • reach speech task

^ loaded

start reference player

recorder enabled

stop reference player

r-n hit record button

Application shows thel—^
result and User can:

(a) try it again, then go to A
(b) proceed to a next task,
then go to B
(c) finish the lesson and
select next lesson, then go
toC

stop audio recorder
(or time runs out)

start audio player
user whole

stop reference player

results D

load task configuration

select task segment

. initiate recorder [A .

start audio player

stop audio player

start audio recorder

stop audio recorder

evaluate

start audio player r

stop audio player

results J

Figure 2.4: Example of the typica l use case of the module. A u d i o players actions are non-

blocking (white activation blocks and shadow arrows i n the picture). Points A , B , C are

t ime points referenced i n the bo t tom text description on the left.

9

Chapter 3

Speech processing

The applicat ion needs to extract speech features from a recording. The widely used term
speech recognition is inaccurate i n this C c t s e cts the goal of the appl icat ion is not to obtain
a transcript of spoken words. The processing algori thm only needs to compare features of
user recordings w i th reference recording features.

There are more possible approaches to the issue of evaluating the user's speech. The first
possibili ty is to recognize spoken words and compare a text transcript w i t h a reference text
transcript. The success rate would be the probabilities of these words from the recognition
module. The second possibil i ty is to compare the characteristics of audio recordings. The
first opt ion is resistant to common user errors, like word repetition, skipping a word, wrong
order of words, or saying a different sentence. B u t this method is not focused on checking
intonation, speed or pronouncing accuracy well. The second one considers pronunciation,
but it cannot get over word repetition, wrong word order, total ly different sentence, or over
recordings (user or reference) w i th background noise. Th is app accomplishes the goal using
the second way (comparing recordings) because it focuses on intonation and pronunciation.
The first opt ion would require a bigger model, thus more powerful devices, but we need
fast, off-line, on-device processing (even on low-end smartphones).

The input of the processing algori thm is audio recorded from a microphone or loaded
from a W A V file (see figure 3.2). A s an output, there is a J S O N object containing overall
and par t ia l global scores and scores for each word. Figure 3.1 shows the whole process.

Figure 3.1: Overview of the speech processing pipeline.

10

Original recording

Figure 3.2: Recorded speech (5 s) represented by 220 500 samples i n P C M format before
the processing.

3.1 Recording

Audio is recorded from a microphone wi th a sampling frequency of 44 100 H z . It is the only
rate that is guaranteed to work on a l l devices 1 . The recording is in one channel (mono) wi th
uncompressed pulse code modulation (P C M) . E a c h sample is represented by a 16-bit signed
integer value. Thus, each sample can hold discrete value i n the range -32 768 and 32 767
inclusive. This format is guaranteed to be supported by a l l devices. The whole recording
is stored in AudioBuffer (array of shorts). W h e n the recording finished, the array proceeds
for further processing. There is also an option to load recording from uncompressed W A V
(R I F F) file w i th 16-bit P C M encoding for testing purposes 2 . Reference audio is stored in
this format as well .

The recorder is implemented using AudioRecord class. The audio recorder reads chunks
from AudioRecord using while cycle and copies data from AudioRecord buffer into large
AudioBuffer. The recorder stops when a user hits the stop but ton or when enough samples
were recorded (if the recording durat ion was previously set). The AudioBuffer is managed
by the app. The app manages AudioBuffer. A new larger array of shorts is created when
the large AudioBuffer gets full . D a t a from the current AudioBuffer are copied into this
new and this new one is set as AudioBuffer. The output of this step is AudioBuffer (array
of shorts).

1 AudioRecord - Android Developers, h t tps : / /deve loper .andro id .com/reference /andro id /media /
AudioRecord

2 A u d i o File Format Specifications, http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/
WAVE.html

11

https://developer.android.com/reference/android/media/
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/

3.2 Down-sampling

The input of this step is AudioBuffer (array of shorts). It is the first step of audio processing.
16-bit samples captured 44 100 times per second means a lot of data for further processing,
but not every device supports lower frequencies. Thus, the recorded signal is down-sampled
to 8 000 H z . Th is frequency comes from the provided neural network, but it is possible to
retrain the model and use different frequency (e.g., 15 k H z) . The usual frequency for voice
sampling is from 300 H z to 3400 H z in telephony. The sampling theorem by Shannon says
that sampling frequency must be at least two times higher than the highest frequency
component. In this case, the highest frequency is 3400 H z , thus sampling frequency has to
be 6 800 H z or higher, so 8 k H z for speech is enough to avoid the aliasing effect [3].

The aliasing effect i n Shannon theorem is about sampling and reconstructing continuous
signals, but aliasing is also a side effect of down-sampling itself. Each input sample goes
through an IIR (infinite impulse response) filter, which behaves like LPF (low-pass filter).
Output samples are converted from short integers into float values (this w i l l be important
for further steps). Every nth sample is kept, other samples are dropped. If the recorded
sample has zero value, it is replaced by a random value from interval < —1; 1 >, which
adds l i t t le noise to the signal. It is essential in cases when the recorder would record only
zero values (e.g., due to faulty hardware) as the a lgori thm of computing M e l banks includes
computing logar i thm of values. The output of this step is an array of float samples. Down-
sampling can be done during recording as AudioRecorder produces the samples i n smaller
parts.

3.3 Mel filter

In this step, the applicat ion gets ampli tude values i n t ime (array of float samples). B u t
to compare two signals, the a lgori thm needs frequency characteristics i n t ime and even
better features of the signal i n t ime. Th i s step consists of framing input signal into sepa
rated frames, applying Hamming window, calculat ing spectral analysis on each frame, and
calculating Mel filter banks from the analysis.

3.3.1 F r a m i n g

Calcula t ing spectral analysis on input signal would return one frequency characteristics for
the whole recording. Thus, the a lgori thm needs to split recording into frames and calculate
spectral analysis on each frame. W i t h this approach, the a lgori thm gets a sequence of
spectral analysis in time.

Input samples are divided into 200 samples w id th frames. Tha t means frames of wid th
25 ms when using 8 k H z frequency. We need to start a new frame quite often, and at
the same time, we need the frames long enough (e.g., 25ms) . Therefore, the frames are
overlapping. The frame starts every 80 samples. So, each frame contains 120 samples
(15 ms) from the previous frame and 80 new samples (10 ms) (see figure 3.3).

3.3.2 H a m m i n g w i n d o w

B u t even wi th overlapping frames, the a lgori thm has to deal w i th values at bo th edges of
the frame. C l i p p i n g signal at ampli tude peak would cause distort ion of spectral analysis.
So each value of the frame is mul t ip l ied by weight at the corresponding posit ion. This

12

Framing

1000 -

-1000 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1—

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
samples

Figure 3.3: Spl i t t ing down-sampled signal into overlapping frames.

weight function is called Hamming window and it is defined by the following formula:

/ „ („) = (0 . 5 4 - 0 . 4 6 c o s (- ^ T)) (3.1)

where:

• width is the w id th of the frame, i n this case width = 200

• n is the posit ion of weight i n the frame, in this case, an integer value from interval
< 0; 200 >

The frame has an actual wid th of 256 float values, last 56 values are padded by zeros (due
to F F T) . The weight of the first and 200th sample is 0.08 so the values are less important
and appended constant zero values do not affect the a lgori thm at a l l (see figure 3.5). The
hamming window weights are computed only once before processing, they are the same for
al l frames (see figure 3.4).

3.3.3 D i scre te F o u r i e r t r a n s f o r m (D F T)

In this part of the step, every 256 discrete samples are converted into a same-length sequence
of the discrete spectrum of the signal, see figure 3.6. A n original D F T algori thm requires
0(N2) mult ipl icat ions and additions. The applicat ion uses an efficient version of D F T
called ID Fast Fourier transform (F F T) wi th 0(N log N) mult ipl icat ions and additions [3].
Th is applicat ion uses the JTransforms l ibrary wi th its DoubleFFTID class 3 , a parallel
implementation of spli t -radix and mixed-radix algorithms opt imized for S M P (symmetric
multiprocessing) systems.

3 DoubleFFT_lD class documentation, h t t p : / / i n c a n t e r . o r g / d o c s / p a r a l l e l c o l t / a p i / e d u / e m o r y /
mathcs / j t ransforms/ f f t /DoubleFFT_lD.html

13

http://incanter.org/docs/parallelcolt/api/edu/emory/

Hamming Window
1.1 -

1 n
l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -

l .U

0.9 -

0.8 -

0.7 -

3 0.6 -
.SP
'o

S 0.5 •

0.4 -

0.3 -

0.2 -

0.1 -

0.0 -
1 1 i 1 1 1 i 1

index of sample

Figure 3.4: H a m m i n g window function, defined on interval < 0; 199 >.

Apply ing hamming widow
1000 ~i 1

-1000 H 1 1 1 1 r-1

0 50 100 150 200 250

samples

Figure 3.5: F i rs t 256 samples wid th frame before and after applying hamming window.

3.3.4 M e l banks

A t this point, the a lgori thm has each frame represented by 256 complex numbers. N o w the
algori thm separates the input signal into 24 M e l filter banks. It is not necessary to describe
the characteristic of the speech signal by 256 values as human hearing is not sensitive to a l l
frequency intervals equally. A n d this is how filter banks work. It divides frequencies into
24 overlapping banks taking speech characteristics into account. The applicat ion works on
each frame by following. A l l banks are ini t ia ted to zero values. E a c h frequency of spectrum
weights on each of output bank, the a lgori thm goes through a l l frequencies and multiplies

14

Spectrogram of original recording

time [s]

Figure 3.6: Spectrogram of the original recording from figure 3.2. Frequencies from the
upper half of the spectrum occurs less frequently.

them by the corresponding vector of weights for that frequency, outcomes are added into
the banks. Weights represent the bandpass filter, and its values displays figure 3.7. The
output of this phase is a feature matr ix . The matr ix always has 24 columns (24 filter
banks). The number of rows is equal to the number of frames - the number of samples after
down-sampling minus length of the frame (200) divided by step (80), rounded up. So, if we
have 39 040 samples after down-sampling, the FeaturesMatrixF (containing floating-point
numbers) would be 24x486 (see figure 3.8).

Weight of spectral component to mel banks

J2 lo
° 14

0.0 0.2 0.4 0.6 0.8

Figure 3.7: Parts of the frequency spectrum wi th weights on each M e l bank. The upper
half of the spectrum has no effect on banks.

15

Down-sampled recording

20000

-20000 -

loOOO 20000
samples

Mel filter banks

^ 10
-

•° 15

20 I
0 50 100 150 200 250 300 350 400 450

frames

Figure 3.8: M e l banks of a l l frames from FeaturesMatrixF w i th a silence at the beginning.
Note that while i n the spectrum only the first half of frequencies were used, M e l banks are
used equally.

3.4 Feed forward neural network

From the beginning to this step, the process is the same as the process of speech recogni
t ion. A t this point, a forward-feed neural network (F F N N) converts spectral analysis into
phonemes (the smallest units of sounds i n a language). Forward-feed neural network is an
artificial neural network where connections between nodes (neurons) do not form a cycle.
The network groups into the layers, and each neuron has input from the previous layer and
output connected to the next layer. The first layer is called the input layer, and the last
layer is called the output layer. Layers between them are called hidden layers, see figure
3.9. E a c h neuron, sometimes called perceptron, has single output defined by the following
formula [2]:

y ipj^WjXj + b) i/?(wTx + b) (3.2)

where:

• w is the vector of weights

• x is the vector of inputs

• b is the bias

• (p is the act ivat ion function, it is a sigmoid function i n this network

• n is number of input connections, in this network n = 1

W h e n we look at the whole layer, the input is the same vector for a l l perceptrons i n the
layer. B u t the weight can differ for each perceptron. The whole layer can be described by
a similar equation:

y = ¥ ?(w T x + 6) (3.3)

16

Input layer Hidden layer Hidden layer Bottleneck layer Hidden layer Output layer

Figure 3.9: The whole feed-forward neural network wi th 5 layers. Layers to the right of
the vert ical dashed line are omit ted i n this project and the Bottleneck layer is used as the
Output layer.

where x is s t i l l a vector of inputs, but w is a matr ix of the weights. The number of weight
matr ix rows corresponds to matr ix length and the number of columns to the output vector
length (see figure 3.10). So, this feed-forward neural network is nothing different than
matr ix mul t ip l ica t ion, mat r ix addi t ion and applying a sigmoid function to each value of
the output vector. T h i n k i n g of neural networks this way w i l l be useful i n connection to the
optimizations and usage of TensorFlow in the later chapters.

This applicat ion does not require phonemes, so it uses only the first three layers of
F F N N and uses the bottleneck layer as the output layer (the left part of the vertical dashed
line i n figure 3.9). The bottleneck layer output is only 30 floating-point values w id th vector
[5]-

The input of this F F N N is a vector of the w id th of 360 floating-point values. F F N N
processes chunks of 15 frames M e l banks (each frame is defined by 24 M e l banks). This
method works wi th the context of 7 frames before the actual frame and seven frames after
it. F F N N always computes 15 frames, so each frame computes 15 times. Us ing a buffer and
computing each frame only once can improve that. The output of this phase is different
FeaturesMatrixF. It has 30 columns and the wid th depends on the number of frames.

This part is the most expensive part of processing i n terms of computing time.

3.4.1 M e a n n o r m a l i z a t i o n

Before F F N N , the M e l bank values have to be normalized (to remove channel effects).
Normal iza t ion is usually done by subtracting mean values from input and then by d iv id ing
by the variance. In this case, mean and variance values are precomputed and stored as
a vector of 360 values. Variance values are stored as the mult ipl icat ive inverse of values:
mean values are stored as the additive inverse of values. We described the neural network
as a sequence of mat r ix addi t ion and mul t ip l ica t ion. T h e n the process of normalizat ion can
handle the first hidden layer of the neural network as well . Before applying weights of the

17

Mel banks

input 1 x360
> i + mean

1 x360

L I
weights

360x300

> r * var
1 x360 1 x300

i r + L I bias
1x300 i 1 x300

L I

L I out

L I out 1 x300

i r + L2 bias
— sigmoid^ 1 x300 1 x300

L2

L2 out

L3
weights

300 x 30

L2 out 1 x300 1 x30
+ L3 bias

L3

1 x30 - H 1x30 | L3 out

Figure 3.10: Three layers neural network displayed as a sequence of mat r ix operations.

first layer, the vector of mean values is added to the input vector, and then each value of
the vector is mul t ip l ied by a vector of variance values.

3.5 Dynamic time warping

Dynamic t ime warping (D T W) is a common technique to find a nonlinear alignment of two
time-dependent sequences of a digi ta l signal. It is often used to compare different speech
patterns (see figure 3.11).

The objective of D T W is to find surjective function X —>• Y of two sequences X =
(xi, X2, • • •, XN) of length N G N and Y = (yi, 7/2, • • •, VM) of length M G N . We can define
feature space T as x n , y m G T for n G X and y G Y. Then, it is a problem of state-space
search. The algori thm starts at (a;n,yn): a n d the goal is to a find path to (XN,VM) w i th
min ima l overall cost. Th is a lgori thm needs a local distance measure (or local cost measure)
which is a function c : J- x T —> M>o- This cost depends on speech features s imilar i ty at
that point. The distance mat r ix displays figure 3.12. The cost is computed using cosine

18

Figure 3.11: D T W algori thm principle of t ime alignment of two speech recordings.

distance [4] from features by the following formula:

N

^Xnli] * ym[i]

+ 1; (3.4)

N

i=l
where:

• N is the number of descriptors of each frame (N = 30 i n this case)

W h e n the cost mat r ix is computed, it is t ime for finding a warping path. The warping
path is defined by the following definition taken from the book [3]:

Definition 3.1 A (N, M)-warping path is a sequence p = (p\,... ,PL) with pi = (tie, mi) G
[1 : N] x [1 : M] for 1 € [1 : L] satisfying the following three conditions:

(i) Boundary condition: p\ = (1,1) and pi = (M,N)

(ii) Monotonicity condition: n\ < 112 < . . . < and mi < < ... < m^

(Hi) Step size condition: pi+\ — pt G {(1, 0), (0,1), (1,1)}fori £ [1 : L — 1]

Before starting the finding the path, the mat r ix of the overall score is created and every
point has a value of Infinity (means unreachable). T h e n the distance (score) f r o m p i = (1,1)
to each point is calculated. The th i rd phase is finding the best path, the path wi th the
lowest overall price. D u r i n g this phase, the a lgori thm notes the start and stop timestamps
of each word. The algori thm compares even first the frame w i t h the last frame. We can
search only i n the l imi ted wid th from the diagonal as the speech wi th a path far from the
diagonal of the D T W matr ix would not pass any exam.

— \—' it i & it
N

Xn\l\

19

Local distance measure

x = (xi,x2 xN)

Figure 3.12: Distance (cost) mat r ix of two similar speech recordings. Da rk blue means
lower cost, which is better. The white line is drawn according to the best path matr ix .
This mat r ix does not have a rectangle shape, as the users recording Y is longer (5 s) than
reference recording X (3 s).

3.6 Calculating the score

Overall Score consists of Acoustic Similarity and Speed Ratio. Acoustic Similarity is com
puted as a ratio of the total distance between a l l connected reference and recorded words.
The best ratio is 1. The Speed Ratio is the ratio of the sum of lengths of a l l words i n user
and reference recording (silence is not included), the ratio 1 is the best score.

3.7 Conclusion

It is essential to understand what is behind the processing algori thm and divide the algo
r i thm into independent parts. In the following chapters, we w i l l improve the t ime complexity
of those parts. Complex i ty depends on the number of samples, which depends on recording
length and sampling frequency. Down-sampling can reduce the sampling frequency. We
are using a widely used speech processing a lgor i thm used for extracting phonemes and text
from speech recording. We are only using the first part of the feed-forward neural network.
Values from the bottleneck layer are the output of the a lgori thm as we are not decoding
phonemes into transcription. To compare phonemes of reference and user audio recording
we use D T W . The final score consists of acoustic s imilar i ty and speed ratio (for each word
and as an overall score). The score is provided to the applicat ion as J S O N .

20

Chapter 4

Refactoring

The original solution of SpeechEngine had shortcomings. It was necessary to fix a l l bugs
causing applicat ion crashes. The engine contained an error in the filter, which pre-processes
the input, decreasing evaluation accuracy. Now the applicat ion can work wi th multiple
threads; asynchronous tasks are submitted into queues and dynamical ly assigned to the
threads (using K o t l i n coroutines 1) . In the previous solution, there was one thread shared
for a l l background tasks.

4.1 Code readability and maintainability

The previous solution was based on sending messages between synchronous and asyn
chronous threads. The class diagram of the o ld solution displays figure 4.1, the new
solution is i n figure 4.2. F r o m React Native, the requests come as asynchronous call
backs to the ISpeechEngine interface implementation. The ma in thread handles those
callbacks. Requests are t ransmit ted to the background thread by sending messages from
the main thread in SpeechWorkerThread to the handlerThread in the same class. The
handlerThread listens for incoming messages i n a loop. It can handle only one background
task at the same t ime. For communicat ion from handlerThread of SpeechWorkerThread
to the SpeechEngine (e.g., to report progress), the messages are sent to the handlerThread
of SpeechEngine which scope allows cal l ing React Native callbacks. The example commu
nication that follows starting audio recorder shows the blue arrows.

The disadvantage of this solution is mainly only one task at the foreground thread, only
one task at the background (processing) thread and one task at the state reporting thread
(calling callbacks). The readabil i ty for programmers is difficult because of thread switching
using messages. Simple task includes mult iple ca l l and messages to be sent. Jumping
through code does not provide even advanced I D E like Android Studio, it is necessary to
find usages of exact message through the project. The first idea was to move to AsyncTasks,
which is perfect for the needs of this project, but it is now deprecated 2 . The solution is to
extend the Thread object or to use Kotlin coroutines. Because A n d r o i d is going forward to
Kotlin first approach3, we decided to rewrite the module controller into K o t l i n and Kotlin
coroutines.

1 K o t l i n coroutines on Android - Android Developers, h t t p s : / / d e v e l o p e r . a n d r o i d . c o m / k o t l i n /
corout ines

2 AsyncTask is Deprecated, Now What? - TechYour Chance, https://www.techyourchance.com/
asynctask-deprecated

3 Android ' s Kotlin-first approach - Android Developers, h t t p s : / / d e v e l o p e r . a n d r o i d . c o m / k o t l i n / f i r s t

21

https://developer.android.com/kotlin/
https://www.techyourchance.com/
https://developer.android.com/kotlin/first

• « — c a l l b a c k — » -

1.startAudioRecorder(^

interface
ISpeechEngine

imple nents

l '
AlignmentXML
AudioBuffer
AudioPlayer

AudioRecorder

RNSpeechEngine
WrapperModule »—-eaW-bac-k-- SpeechEngine_vl

IhandlerThread

2.startAudioRecorder^l
; ^.messages....
3.startRecorder()

SpeechWorker
r......Ihxsacl.-
handlerThread

RNSpeechEngine
WrapperPackage

7^onStatiis(ms^)

4.HSG_SE_AUDIO_REC_S TART
5.ar_StartRecorder(i

.6.MSG WR AUDIO REC STARTED

Figure 4.1: Class diagram of the old solution. The bold orange arrow represents messages,
and orange blocks represent message receivers. Dashed arrows mean non-blocking commu
nication considering the main thread. Blue arrows are an example of calls required to start
the recorder.

RNSpeechEngine
WrapperPackage

interface
ISpeechEngine

imple nents

SpeechEngine_v2

callback -fprSgress)

•^callback (progress)

. use_
use

Engine
AlignmentXML

AudioBuffer
AudioPlayer

AudioRecorder

SpeechController

Separated units (modules), holds
the maximum ofapp state.

Synchronous code, does not care
about concurrency or threads.

Interface between React Uland
native code. On received event

launches syn. or asynchronously
methods from controller.

Holds the state, loads and
controls modules. Heavy methods

are suspend, only few simple
methods can be called directly.

Figure 4.2: Simplified class diagram, after refactoring, without communicat ion using mes
sages. Dashed arrows mean non-blocking communicat ion considering the main thread.

22

4.2 Kotlin with Java code

New parts of code are wri t ten in K o t l i n and a l l classes except those from separated modules
are ported into K o t l i n . I refactored and ported them only when I needed to use new features
like Coroutines or Channels. Some of the previous modules are s t i l l implemented in Java
(e.g., AlignmentXML or AudioBuf f er). Those two languages are mutual ly compatible, that
allows the code wri t ten i n one of this language to be used i n the second of these languages 1 .
The biggest change is the nullable types. W h e n not expl ic i t ly stated, the objects may be
nul l (type T?), or of the provided data type T. Th is ambiguity is represented as T! type in
K o t l i n . If we are aware that the value can be nul l , we should add ONullable annotation
to the Java code. If the nu l l cases of value are handled in the code, we can add ONotNull
annotation. Then it is not necessary to do nu l l checks when using the value i n K o t l i n code.

4.3 Kotlin coroutines
K o t l i n coroutines are design pattern and l ibrary to simplify code that executes asyn
chronously. Coroutines are an idea of suspendable computations. A suspendable function
can suspend its execution at some point and resumes later. Launching an asynchronous
block of code is like submit t ing it into the pool of manually created thread. Threads and
pools are created and managed by the system. The number of threads depends on the
number of C P U cores and the amount of concurrency work, but it is guaranteed to have
at least two threads. T h e following code shows how to launch heavy execution and print
info before and after execution. Specified default dispatcher (the targeted pool) determines
coroutine context and on which thread(s) w i l l be this code executed (it can be for example
U I thread or thread designed for 10 operat ions) 5 .

private val scope: CoroutineScope = CoroutineScope(Dispatchers.Default)
fun speechEngineExecuteQ {

onStatus("RNWP — Starting speech engine")
scope.launch {

speechController.speechEngineExecuteQ
onStatus("RNWP — Speech engine finished")

}
}

The widely propagated benefit of coroutines is that when the job of scope is cancelled,
it cancels a l l coroutines started i n that scope, which brings more control over background
tasks. A l so , the function speechEngineExecute() can return value, or throw exceptions
that can be caught and handled like in synchronous code.

4 M i x i n g Java and Ko t l i n in one project, h t t p s : / / k o t l i n l a n g . o r g / d o c s / m i x i n g - j a v a - k o t l i n -
i n t e l l i j .html

5 Coroutine context and dispatchers, h t t p s : / / k o t l i n l a n g . o r g / d o c s / c o r o u t i n e - c o n t e x t - a n d -
d i spa t cher s .html

23

https://kotlinlang.org/docs/mixing-java-kotlin-
https://kotlinlang.org/docs/coroutine-context-and-

Chapter 5

Optimizing

In this chapter, I w i l l propose possible improvements to decrease processing t ime wi th
respect to the accuracy, implement them, compare and evaluate them. The chapter is
divided into applied techniques or tools in chronological order as they were implemented.

To speed up the applicat ion, we can move computat ion closer to H W , use paralleliza-
t ion or optimize used algorithms. To use the H W features, we can rewrite the code to a
low-level programming language (use Android NDK1), use compiler directives i n already
implemented code, or use a high-level l ibrary (e.g., TensorFlow).

5.1 Measurement methodology

In the following sections, this methodology of measuring computing t ime is used. First
run means loading and running the program ten times and taking the median of the result.
Side effects between invocations are not el iminated. Multiple evaluation means running
the program and then running evaluation ten times and taking the median of the results.

Taking the median of values comes from my previous experience wi th measuring the
t ime complexity of algorithms. If we take an algori thm wi th complexity described by an
equation, then the average is impacted by peaks in mult iple measurements, thus, it is
not applicable. Med ian follows the expected values better, and taking the lowest value
almost follows the equation. The lowest value is best for comparing different algorithms or
methods isolated from O S or other applications. M e d i a n is best for speed up measurement
and comparing before/after, as some algori thm may be prone to random interruptions or
actual load of a device (e.g., algorithms using mult iple cores). We decided to consider the
runtime environment, as A n d r o i d users usually have no control over running processes in
the background, so we are using the median.

T ime of invocation was measured using the most precise available system timer
System. nanoTime () as a difference between time before invocation a function and time after
returning from the function. Measured t ime using custom code can be logged or printed
into the user interface wi th no need to instal l development tools, which was necessary, as
measurements on other devices could not be performed in person due to the pandemic.
Another option is to use a profiler bundled wi th Android Studio. A usable result was
achieved w i t h Java Method Sample Recording configuration by composing the t ime from
mult iple threads, and from times before and after suspending. B u t some functions were
missing i n the profiler output, and some of the times d id not correspond to reality. Trace

1 A n d r o i d N D K - Android Developers, h t tps : / /developer .android .com/ndk

24

https://developer.android.com/ndk

Java Methods configuration d id not provide good results. Thus, custom implementat ion
fits better this project.

5.2 Profiling before optimization

Before proposing any speed up it is necessary to analyse the existing solution and focus on
parts w i th a big impact on processing time. The profiled code is the original code wi th
rewritten controllers, fixed bugs, handled exceptions and some smal l improvements. The
original code before factorization would be hardly profiled. Some parts would be impossible
to measure (e.g., Load engine config).

ms %
L o a d Engine Config 7 687.6 74.7
L o a d Task Config 629.7 6.1
Select Task Segment 812.7 7.9
Init AudioRecorder 33.0 0.3
Execute 1123.3 10.9

E 10 253.2

Table 5.1: Prof i l ing by comparing elapsed time. The recording is not included as it is
almost the same as the recording durat ion. The evaluation was executed as first run on
5 s recording.

Execute
first run

ms % Execute
multiple evaluation

ms %

Prepare Static D a t a 4.5 0.5 Prepare Static D a t a 1.7 0.2
Down-sampling 19.2 2.1 Down-sampling 14.4 1.6
M e l banks 223.2 24.2 M e l banks 221.8 24.1
F F N N 611.1 66.2 F F N N 619.3 67.3
D T W 53.9 5.8 D T W 53.2 5.8
Calculate Score 0.9 0.1 Calculate Score 0.6 0.1
Pr in t J S O N 10.6 1.2 P r in t J S O N 9.1 1.0

E 923.4 E 920.0

Table 5.2: Prof i l ing detail of Execute. The evaluation was executed on the 5 s recording.
The sum of times in the left table is less than t ime i n 5.1, and it is caused by Execute
function overhead.

The most expensive is Load Engine Config, specifically loading neural network. Pars
ing neural network is implemented using RandomAccessFile, which is slow, and it is a
known issue 2 . The second most expensive part is Execute. If we investigate Execute
part, we can see that the most expensive part is computing F F N N (feed-forward neural
network). It takes about 0.6 seconds. A n d i f we add loading of neural network from Load
Engine Config part, it takes 7 seconds to load and compute the neural network. To im
prove that, we used TensorFlow Lite, which describes the next section. If we compare first
run w i th the following multiple evaluation, the percentages of each phase are almost

2 JDK-4056207 A d d a buffered version, ht tps: / /bugs.openjdk.java.net/browse/JDK-4056207

25

https://bugs.openjdk.java.net/browse/JDK-4056207

the same. The t ime is saved for example by already allocated memory, but the t ime of the
heaviest parts (F F N N and M e l banks) are not significant.

5.3 TensorFlow Lite

TensorFlow Li t e is an open-source high-level deep learning framework for mobile and IoT
devices developed by Google, presented during Google I / O i n 2017 3 . It is a simplified
version of TensorFlow, an open-source deep-learning software l ibrary for defining, t raining
and deploying machine learning models, that was open-sourced i n November 2015 by Google
[1]. It provides hardware acceleration or parallel ization. The same code can be used for
example on G P U or multi-core C P U .

TensorFlow L i t e consists of two main components - converter and interpreter. T F Li te
works w i th compressed models as displayed i n figure 5.1. F i rs t , it is necessary to pick an
existing model or create own. Trained models are available through the TensorFlow H u b
repository' 1 , but it is possible to create a custom model using supported operations.

input TF Lite model output^
tensor static data + operations tensor

Figure 5.1: TensorFlow L i t e interpreter works as a filter w i th one input and one output
tensor.

5.3.1 C r e a t i n g c u s t o m m o d e l

The custom model can be any model that can benefit from H W acceleration or paral
lelization, not just a model based on machine learning. T F L i t e operations support 32-bit
floating-point and quantized (u i n t 8 , i n t 8) values. Strings or 16-bit floats are not sup
ported yet. We are using 32-bit floating-point values obtained from AudioRecorder. A s
2021 the T F L i t e model supports 123 operations, but even if the operation does not have
a direct equivalent, it can be fused into a more complex operator, replaced by tensors, or
removed from the computat ion graph' ' .

TensorFlow L i t e model can be converted from TensorFlow SavedModel using the Ten
sorFlow Lite converter. T F L i t e model is an opt imized FlatBuffer format identified by
the . t f l i t e file extension. The recommended way, w i th more features, is converting T F
SavedModel or Keras model using P y t h o n A P I (see figure 5.2). A simple way, how to set
up the TensorFlow environment w i th P y t h o n A P I , is to use a Docker image containing
configured TensorFlow and Jupyter server .

The feed-forward neural network, displayed i n figure 3.10, can be implemented in Ten
sorFlow as t f .Module. The Module class describes a sequence of operations, as shows
the l is t ing 5.1. Static values (e.g., variables like NN_layerl_mean) are NumPy arrays, and

3 Google's new machine learning framework is going to put more A I on your phone - The Verge, h t t p s :
//www.theverge. com/2017/5/17/15645908

4 TensorFlow Hub - a repository of trained T F models, h t tps : / / t fhub .dev
5 T F Lite and T F operator compatibility, h t t p s : / /www. t enso r f l ow .o rg / l i t e / gu ide /ops_compa t ib i l i t y
6 Instal l TensorFlow using Docker, h t t p s : / /www. t enso r f low .o rg / in s t a l l / docke r

26

http://www.theverge
https://tfhub.dev
http://www.tensorflow.org/lite/guide/ops_compatibility
https://www.tensorflow.org/install/docker

T e n s o r F l o w P y t h o n A P I T F L i t e C o n v e r t e r

CustomModule SavedModel TF Lite model
class file compressed file

Figure 5.2: Process of converting CustomModule class into compressed T F L i t e model.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

they are stored i n SavedModel as well . Those arrays are loaded from a file, reshaped or

transposed, but the loading and pre-processing is not part of the model . The model stores

constant data, which makes interpreting the model faster (but sometimes wi th the cost of

a bigger model).

class CustomModule(tf.Module):
Init defines and loads static values, their shape and used data types, stored inside the model
def init (self):

super(CustomModule, self). init ()
self.nn layerl mean = tf.constant(NN layerl mean, shape=(l,360), dtype=tf.float32)
self.nn layer l_var = tf.constant(NN layerl var, shape=(1,360), dtype=tf.float32)
self.nn layerl weights = tf.constant(NN layerl weights, shape=(360,300), dtype=tf.float32)
self.nn_layerl_bias = tf .constant(NN_layerl_bias, shape=(1,300), dtype=tf.float32)
self.nn layer2 weights = tf.constant(NN layer2 weights, shape=(300,300), dtype=tf.float32)
self.nn layer2 bias = tf. constant (N N layer2 bias, shape=(1,300), dtype=tf.float32)
self.nn layer3_weights = tf.constant (N N layer3 weights, shape=(300,30), dtype=tf.float32)
self.nn_layer3_bias = tf.constant(NN_layer3_bias, shape=(l,30), dtype=tf.float32)

Function 'call' describes a sequence of operation applied to the input tensor
@tf.function(input_signature=[tf.TensorSpec((l,360), tf.float32)])
def call (self, x):

Layerl (first hidden layer with normalization)
tensor = tf.add(x, self.nn layerl mean)
tensor = tf.multiply(tensor, self.nn layerl_var)
tensor = tf.matmul(tensor, self.nn layerl weights)
tensor = tf.add(tensor, self.nn layerl bias)
tensor = tf. sigmoid (tensor)
Layer2 (hidden layer)
tensor = tf.matmul(tensor, self.nn layer2 weights)
tensor = tf.add(tensor, self.nn layer2 bias)
tensor = tf. sigmoid (tensor)
Layer3 (bottleneck layer and the output layer at the same time)
tensor = tf.matmul(tensor, self.nn_layer3_weights)
tensor = tf.add(tensor, self.nn layer3 bias)

return tensor

L i s t ing 5.1: F F N N implemented using TensorFlow P y t h o n A P I as TensorFlow Module .

TensorFlow Modu le is then saved into the custom_module file i n the SavedModel file

format. The SavedModel file can be loaded back into TensorFlow and can be interpreted.

It is useful to check the output of this model before and after export ing using sample input

(see l is t ing 5.2).

Save custom model
module = CustomModuleQ
tf.saved model.save(module, 'custom module')
Load custom model
loaded = tf.saved model.load('custom module')
Run models

27

module (test tensor). numpy () .round (6)
loaded(test tensor).numpy().round(6)

Lis t ing 5.2: Save and load the custom TensorFlow Module as SavedModel.

If the model outputs meet expected results, the model can be converted into TensorFlow
Li t e binary file using l is t ing 5.3. T h e T F L i t e model cannot be loaded and run under P y t h o n
A P I , so it is necessary to verify the correctness of the TensorFlow model.

converter = tf. lite. TFLiteConverter . from saved model ('custom module')
tflite model = converter.convert()
with open('model.tflite', 'wb') as f:

f. write (tflite model)

Lis t ing 5.3: Convert the TensorFlow model into the TensorFlow L i t e model.

The same code can be implemented using Keras'. Keras is a deep learning A P I wri t ten
in P y t h o n running on top of the machine learning platform TensorFlow. It can combine
matr ix mul t ip ly ing , bias, and activation function (sigmoid) into a Dense layer, see figure
5.4. Layers of the Keras model are defined inside the i n i t function, normalizat ion is applied
in the c a l l function (before the invocation of the Keras model).

self.model = tf.keras. Sequential [
tf.keras.layers.Dense(300, activation= "sigmoid", name="layerl",

weights=[self.nn layerl weights, self.nn layerl bias]),
tf.keras.layers.Dense(300, activation= "sigmoid", name="layer2",

weights= [self.nn layer2 weights, self.nn layer2 bias]),
tf.keras.layers.Dense(30, activation=None, name="layer3",

weights= [self.nn layer3 weights, self.nn layer3 bias])
])

L i s t ing 5.4: The neural network defined as a Keras model inside the i n i t function.

5.3.2 D e p l o y i n g m o d e l

The TensorFlow Li t e interpreter is a l ibrary that loads a model file, then takes input data,
executes the operations defined by the model on input data, and produces the output data,
see figure 5.1. The interpreter works across mult iple platforms and provides a simple A P I
for running TensorFlow L i t e models from Java or K o t l i n , Swift, Object ive-C, C + + , and
Py thon . It can be used on A n d r o i d , i O S or L i n u x platform .

Running T F L i t e interpreter works i n the following steps - loading a . t f l i t e model
into memory, transforming input data, running inference (executing model), interpreting
the output. Input and output tensors are pr imit ive type arrays (float, int, long, byte,
or String). Complex data types like Integer or Float are not supported. Us ing pr imit ive
types as input makes the invoking slow. The interpreter always checks the shape of the
input array and tries to reshape it, which causes a slowdown. The A P I is more efficient
if a direct ByteBuffer (or FloatBuffer, IntBuffer, LongBuffer) is used as the input
data type of interpreter. The input pr imit ive type array can be wrapped into a buffer
using ByteBuffer .wrap () function. Wrapp ing data is fast enough to do not affect the
model execution time. It is not clear whether buffer should be preferred for output as well.
Accord ing to my experiments, using pr imit ive type arrays as output is as fast as using
ByteBuffer.

7 Keras - a deep learning A P I , h t t p s : / / k e r a s . i o
8 TensorFlow Lite inference, h t t p s : / /www. t enso r f low .o rg / l i t e /gu ide / i n f e r ence

28

https://keras.io
https://www.tensorflow.org/lite/guide/inference

Invocation is done by the interpreter, run (input, output) command. The applica
t ion cannot change the behaviour of the binary model . B u t the same model can be invoked
wi th different environment configurations, which can be changed dynamical ly during the
run. TensorFlow Li t e allows running accelerated computat ion. Those accelerators are called
delegates. Using the right delegate for a specific model and device can have a big impact
on execution time.

B y default, TensorFlow Li t e uses C P U kernels opt imized for the A R M Neon instruction
set. However, the C P U is a multi-purpose processor that may not be suitable for the heavy
arithmetic typ ica l i n machine learning models 9 . O r even when there is no suitable delegate,
the model can use parallel computat ion on mult iple C P U cores. Available delegates depend
on the platform, and i n the case of A n d r o i d , even on the A n d r o i d version. Some delegates
support only certain types of model, as shows the table 5.3.

M o d e l Type G P U N N A P I Hexagon C o r e M L
Supported platforms A n d r o i d , i O S A n d r o i d 8.1 + A n d r o i d i O S
Float ing-point (32 bit) Yes Yes N o Yes
Post- t raining float 16 quanti Yes N o N o Yes
zat ion
Post- t raining dynamic Yes Yes N o N o
range quantizat ion
Post- t raining integer quan Yes Yes Yes N o
t izat ion
Quantization-aware t raining Yes Yes Yes N o

Table 5.3: T F L i t e delegates platform and model type support. Delegates suitable for this
project are bold.

5.3.3 P r o f i l i n g

F i n d i n g the best delegate and its configuration, like the number of threads or number of
inputs values, maximises the benefit of the TensorFlow. The achieved results may also
depend on used devices.

Delegates and models

In figure 5.3 you can see the time of different delegates during loading and execution.
Each delegate is w i th the model implemented using T F functions and using Keras model.
Ini t ia l izat ion of G P U variants costs significantly more t ime (G P U 277 ms, N N A P I 5 ms,
and C P U variant only 3 ms). C P U is also slower i n the execution of these models. N N A P I
and C P U variants have similar t ime. The C P U variant is the winner as this variant can be
run on any device wi th the same speed as N N A P I .

We can take into account the times of multiple evaluation. These times are dis
played i n table 5.4. The table compares only times of FFNN. There is no significant speed
improvement w i th the next execution.

9 TensorFlow Lite Delegates, h t tps : / /www. tensor f low.org / l i t e /per formance /de lega tes

29

https://www.tensorflow.org/lite/performance/delegates

TF Lite Delegates

(Keras)
PI
PI (Keras)
1 core
1 core (Keras)

Load Engine Confrg Load Task Config Select Task Segment Execute

Figure 5.3: Execut ion times of T F Li t e delegates on 10 seconds recording.

T F Lite Delegate first run [ms] multiple evaluation [ms]
G P U 1157 1157
G P U (Keras) 1185 1104
N N A P I 362 353
N N A P I (Keras) 385 361
C P U 1 core 362 363
C P U 1 core (Keras) 359 351

Table 5.4: Execute times of FFNN on 10 s recording using different delegates.

The reason why T F L i t e delegates are slower than C P U is the smal l size of the model.
We have a smal l model, which is not worth delegating to either the N N A P I or the G P U .
Accelerators are better for large models w i th high ari thmetic in tens i ty 1 0 .

In the case of G P U , the TensorFlow Lite Interpreter needs to copy data into C P U
before execution and copy output from G P U into C P U memory. The other reason is that
tensor data is sliced into 4-channels for G P U delegate. B u t we have an input vector (I D
data), eventually a 2D mat r ix (in case of processing mult iple frames at once). Input has to
be transformed into 4-channel values, which w i l l affect the final speed 1 1 .

Delegates can be also slowed down by operator incompatibi l i ty. Delegates do not support
a l l operators as T F Li t e . If the model uses not supported operator, the operation has to be
computed on the C P U . This w i l l require synchronization of H W or copy-in/copy-out i n the
case of G P U , which w i l l reduce the speed. A s this behaviour is undesirable, it is disabled
by default, and the delegate would throw an exception instead of execution. O u r models
are compatible w i th a l l these delegates.

The results also depend on the used chipset (C P U , G P U , and various coprocessors).
The following experiment explains when it is better to use G P U or N N A P I than C P U . We

1 0 T F Lite performance best practices, h t tps : / /www. tensor f low.org / l i t e /pe r fo rmance /bes t_prac t i ce
1 1 TensorFlow Lite on G P U , ht tps: / /www.tensorf low.org/ l i te /performance/gpu_advanced

30

https://www.tensorflow.org/lite/performance/best_practice
https://www.tensorflow.org/lite/performance/gpu_advanced

t r ied different models of different size and on different chipsets. In a l l experiments, we use
Samsung Galaxy A40. In this comparison, we use different devices listed i n table 5.5.

Device Samsung Galaxy A40 Samsung Galaxy Tab S6 Lite
Released 2019 2020
Chipset Exynos 7904 (14 nm) Exynos 9611 (lOnm)

8 cores: 8 cores:
C P U 2x1.77 G H z Cor tex-A73 4x2.3 G H z Cor tex-A73

6x1.59 G H z Cor tex-A53 4x1.7 G H z Cor tex-A53
G P U M a l i - G 7 1 M P 2 M a l i - G 7 2 M P 3

Device X i a o m i M i 9 L G G8S T h i n Q
Released 2019 2019

Chipset
Qualcomm SM8150
Snapdragon 855 (7 nm)

Qua lcomm SM8150
Snapdragon 855 (7 nm)

8 cores: 8 cores:

C P U
1x2.84 G H z K r y o 485 1x2.84 G H z K r y o 485

C P U
3x2.42 G H z K r y o 485 3x2.42 G H z K r y o 485
4x1.78 G H z K r y o 485 4x1.78 G H z K r y o 485

G P U Adreno 640 Adreno 640

Table 5.5: Devices used in the experiments w i th bigger models.

The first model i n figure 5.4 is a neural network wi th 6 624 630 parameters (input ma
t r ix enlarged from 1x360 to 32x360, hidden and bottleneck layers contain 32 times more
perceptrons). Th is model produces val id outputs; it computes 32 frames at once. The file
of the compressed T F Li t e model increased from 0.8 M B to 1 M B . O n a l l devices, the C P U
variant was s t i l l sl ightly faster than the N N A P I variant. There is notable that only pre
viously used Samsung Galaxy A40 has s imilar performance wi th N N A P I and C P U . G P U
variant is missing as the T F L i t e was crashing during the execution of this model . G P U
delegate is s t i l l marked as experimental, s imilar bug reports to this problem can be found
on the T F L i t e G i t H u b repository. Th is model does not have sufficient ari thmetic intensity
to run using N N A P I .

The second model is a neural network wi th three duplicated inner layers. The network
has 388 230 parameters, input and output layers are the same. The output is not val id.
Th is model is used only to compare delegates. Dimensions of static data (like weights) are
the same, so the size of the model remained 0.8 M B . Th is model works on the G P U but is
six times to 10 times slower than the C P U variant. Three inner layers are not s t i l l enough
to use the G P U or the N N A P I , which is s t i l l sl ightly slower.

The th i rd model has 1 928 628 000 parameters (input layer is 1200x360, the hidden layer
has 1440000 perceptrons, and the output layer has 36000 perceptrons). Even this model is
not va l id , but model size increased from 0.8 M B to 7.6 M B . In this model, we can see that
G P U speed up is 1.3 to 1.7 against C P U variant. The G P U is the best option i n this case,
and wi th even bigger models, G P U w i l l be more efficient. N N A P I is probably not suitable
for these models (without reinforcement learning and other advanced N N features).

5.3.4 B a t c h process ing

The model can compute mult iple frames at once. Tha t was used in the second model in
figure 5.4. It was not good to delegate this model to the G P U or N N A P I , but it can s t i l l

31

TF Lite model 1 M B
1 000

900

800

700

600

500

400

300

200

100

0
N A

N N API CPU GPU

TF Lite model 3x inner layer (0.8 M B)

I L G G8S ThinQ
I Xiaomi M i 9
Samsung Galaxy Tab S6 Lite

I Samsung Galaxy A40

I L G G8S ThinQ
I Xiaomi M i 9
Samsung Galaxy Tab S6 Lite

I Samsung Galaxy A40

N N API CPU GPU

TF Lite model 1200x1200 inner layer (7.6 M B)

I L G G8S ThinQ
I Xiaomi M i 9
Samsung Galaxy Tab S6 Lite

I Samsung Galaxy A40

N N API CPU GPU

Figure 5.4: Execut ion times of T F L i t e delegates on bigger models.

32

bring some improvement to the C P U . Before execution, the data has to be prepared and
copied into the input buffer. After the execution, T F L i t e copies the output into the output
array. Comput ing mult iple frames at once (batch processing) can reduce this overhead, but
it w i l l require a bigger model and more operation memory for computing. The batch size
cannot be changed i n runtime as changing the input and output shape of the model requires
creating and converting a new model . The workaround would be storing mult iple models,
but it increases the size of the app.

Figure 5.5 displays dependency of Execute t ime on the number of frames computed
i n one invocation of the T F Li t e model . We also tr ied four models on the N N A P I (but
there is s t i l l no benefit of the N N A P I) . There is a notable increase when computing two
frames i n a batch. It requires more array copies, and the handling of model input /output
is complicated. Star t ing from 4 frames per batch, there are significant t ime savings. F r o m
12 frames per batch, the savings are smaller, and from 24 frames the t ime is not decreasing
at a l l but slightly increasing. We chose the model w i th 16 frames per batch. The size of
this model is 895 k B which is acceptable.

Number of frames per batch
1 400

1 300

1 200

1 100

1 000

ID 900
B

800

700

600

500

f
- • - C P U

• N N A P I
f

- • - C P U

• N N A P I

- • - C P U

• N N A P I

I I \

-** -**

0- A o < 0 V 0 V

frames per batch

Figure 5.5: Number of frames in one batch and the t ime of Execute processing.

5.3.5 N u m b e r of threads

B y default, the T F L i t e C P U delegate uses only a single thread, as only some operators
can be parallelized. Mul t i - threading may speed up execution, but it w i l l consume more
resources and power. The speedup is device-dependent and depends on the actual usage of
the C P U by other apps.

A s it is clear i n figure 5.6, using mult i- threading does not come w i t h speed up for a
simple model without computing i n batches, and it does not matter whether Keras version
is used or not. A l l provided devices have only eight cores. Thus it is pointless to t ry

33

more than eight threads. We also t r ied to use mult i- threading i n combination wi th batch
processing. Figure 5.7 compares the t ime of different batch size computed using a single
thread and using eight threads. The single thread variant is slightly faster, as running a
single thread is easier for the scheduler.

Processing with multi-threading
1 400

1 300 1 300

1 200

1 100 1 100

"a1 1 000

900

' a 800

"a1 1 000

900

' a 800

"a1 1 000

900

' a 800

"a1 1 000

900

' a 800

"a1 1 000

900

' a 800

"a1 1 000

900

' a 800

/uu

ouu

500

CPU
CPU (Keras)

4 5
threads

Figure 5.6: Us ing mult iple threads does not speed up Execute processing.

5.3.6 C o n c l u s i o n

C P U delegate best suits our model, but using mult i- threading is useless i n our case. Using
batch computing is a good improvement and computing 16 frames at once seems like a
good choice. Previous charts, and graphs, were measured on 10 seconds recording. Longer
recording means bigger differences. Table 5.6 compares the median of times before and
after implementing T F L i t e bo th on 10 seconds and 5 seconds recording. W i t h 5 seconds
recording, the Execute t ime was reduced from 1.1 seconds to 0.3 seconds, and Load
Engine Config (loading of neural network model) was reduced from 7.6 seconds to 0.8
seconds. Execute done under a second means sufficient t ime from the user's point.

5.4 Parallelization

Speech processing t ime can be more improved. For example, Prepare static data, and
Down-sampling can be done during recording. Tha t would save 12 ms, which is only 3.1 %
of processing t ime. We need to identify parallelizable code and find those parts that prevent
code from parallel ization. Those problematic parts are: using the number of samples, using
the sum of samples, or using samples "from future".

34

Number of frames per batch
1 4 0 0 ^

1 300

800

700

600

500

1 2 3 4 5 6 7 8 9 1011 1213 14151617181920212223 24

frames per batch

Figure 5.7: T ime of Execute processing is slightly faster when using a single thread.

5 s recording before T F Lite [ms] % with T F Lite [ms] %
L o a d Engine Config 7687.6 74.7 7.9 0.4
L o a d Task Config 629.7 6.1 658.2 36.1
Select Task Segment 812.7 7.9 808.9 44.3
Init AudioRecorder 33.0 0.3 33.0 1.8
Execute 1123.3 10.9 316.3 17.3

E 10 253.2 1791.3

10 s recording before T F Lite [ms] % with T F Lite [ms] %
L o a d Engine Config 7677.3 54.7 7.6 0.2
L o a d Task Config 1415.5 10.1 1424.0 34.7
Select Task Segment 2191.8 15.6 1635.1 39.9
Init AudioRecorder 33.0 0.2 33.0 0.8
Execute 2 714.6 19.3 1000.8 24.4

E 13 999.2 4 067.5

Table 5.6: Prof i l ing by comparing elapsed t ime without and w i t h implemented T F Li te .
The evaluation was executed as the first run. The recording is not included as it is almost
the same as the recording duration.

5.4.1 Identify paral le l izable code

Static data has to be prepared when the recording starts and before the first data are
produced by AudioRecorder. The Prepare Static D a t a block can be split into two parts
and make the m a x i m u m of preparing (e.g., in i t ia t ing H a m m i n g window) i n previous loading

— C P U 8 threads

- • - CPU 1 thread

35

Execute ms %
multiple evaluation

Prepare Static D a t a 2.7 0.7
Down-sampling 8.8 2.4
M e l banks 219.5 59.3
F F N N 56.0 15.1
D T W 46.9 12.7
Calculate Score 1.1 0.3
Pr in t J S O N 34.9 9.4

E 369.9

Table 5.7: Prof i l ing w i th T F Li t e by comparing elapsed time. The evaluation was executed
on a 5 s recording. The sum of times i n this table does not match the time i n Execute in
the above table 5.6 as those tables come from different measurement.

phases and m i n i m u m before each processing. A l l global variables have to be checked for
R / W conflicts.

Down-sampling can be parallelized as it s imply takes every n th sample and drops others.
The first challenge comes wi th framing. AudioRecorder produces chunks of samples, that
has to be framed. The last frames w i l l overlap into "future" samples, see figure 3.3. Or ig ina l
code would handle this like end of recording and pad samples by zeros. That would make
the speech regularly interrupted by silence, and it would worsen the final score. The number
of frames has to be rounded down, and samples start ing from the first omit ted frame has
to be copied into the beginning of the next chunk from AudioRecorder, see figure 5.8. The
recording is not distorted dur ing recording, but up to 199 last samples of recording are
dropped (as they are not padded by zeros). Tha t means up to 25ms. Considering the
recorder stops recording ± 2 0 0 ms against the required length, a deviat ion of 25 ms does not
introduce much inaccuracy into the evaluation.

Hamming window and Discrete Fourier transform can be parallelized as well . Mel banks
can be computed except the final normalizat ion. The normalizat ion computes the difference
of the banks mean and actual value. Tha t requires knowing the sum of the bank and number
of frames, as this module uses normalizat ion over a l l frames, so N = num_frames. We can
use Uniform last-N normalization, a floating window of wid th N < num_frames. B u t the
accuracy grows wi th N so the best result w i l l be wi th N = num_frames. Another option is
exponential normalizat ion [5]. In the following experiments, I w i l l keep iV = num_frames
and exclude normalizat ion from Mel banks as normalizat ion itself takes only 3.7 ms.

The feed-forward neural network w i l l not be parallelized at this t ime, as I decided to use
normalizat ion through a l l frames, which stop the parallel part. B u t it can be parallelized.
The only difference is that the neural network uses previous frames as input and works like
mult iple shift registers. Thus, this step (the controller of F F N N) has to preserve the inner
state between each invocation. We can store input data and pointers into the input vector
as a global variable that is reset only at the beginning at Prepare static data phase.

Some parts of Dynamic time warping could be parallelized as well . The cost mat r ix can
be computed piecewise for just computed frames, and the matr ix of the overall score can
be ini t ia ted to Infinity.

Another thing to consider is the approach to parallel ization. We can use pipel ining
known from C P U s or use linear processing on a background thread (see figure 5.9). The
first approach is effective when each phase takes the approximately same time. Otherwise,

36

C h u n k j i

Framing a chunk

j-> Chunk n+1

1000 -

=1

-1000 -

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
samples

Figure 5.8: A chunk of 320 samples. Frame 2 (samples 160 to 299) w i l l be copied into the
next chunk and the current chunk w i l l process samples from 0 to 159 (frame 0 and 1).

the t ime w i l l depend on the slowest part. In our case, the whole processing is faster than
recording (to process 5 seconds of recording, it takes 0.3 s), so threads 2, 3 and 4 would not
be fully ut i l ized (resource wasting). The second approach can be used, as the whole linear
process of thread 2 is faster than recording. The advantage of this approach is using only
two threads, instead of 4. Tha t means one queue and mutex between threads instead of 3.
We w i l l use the second approach and check whether the second thread finishes processing
before new data comes from the recorder.

5.4.2 I m p l e m e n t a t i o n

Background thread (task) is implemented as Kotlin Coroutine (see chapter 4.3). The record
ing thread creates a new asynchronous task and then continues to start recording. It
is a simple "producer-consumer problem". The recording thread is a producer, and the
new asynchronous processing task is a consumer. Tha t can be easily implemented using
Kotlin Channels12. Channels are like queues. It provides two interfaces, SendChannel and
ReceiveChannel. The channel capacity can be 0, which is called the rendezvous queue, and
the sender has to meet w i th the receiver to transfer value. O r the capacity can be l imi ted,
and more values are dropped or the sender is suspended un t i l the queue is free 1 3 . The
capacity can be unl imited, which is used i n this case. The sender is then never suspended.
If there are no values inside the queue, the receiver is suspended. If the sender has no

1 2 K o t l i n Channels, h t t p s : / / k o t l i n l a n g . o r g / d o c s / c h a n n e l s . h t m l
1 3 K o t l i n Channels A P I documentation, h t t p s : / / k o t l i n . g i t h u b . i o / k o t l i n x . c o r o u t i n e s / k o t l i n x -

corout i n e s - c o r e / k o t l i n x . corout ines , channels / -channel

37

https://kotlinlang.org/docs/channels.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-

Linear single-threaded:

thl Recorder

Static Data

3 ms
0.7 %

Downsampl.

9 ms
2.4 %

Mel banks

220 ms
59.3 %

FFNN

56 ms
15.1 %

DTW

47 ms
12.7 %

Score

1 ms
0.3 %

Print

35 ms
9.4 %

Pipeline:

thl

Lh2

th3

lh4

Recorder short []

Static Data bownsampl
float []

3 ms
0.7 %

9 ms
2.4 %

Mel banks

220 ms
59.3 %

Linear with two threads:

float [] [;

FFNN

56 ms
15.1 %

thl Recorder
short []

thl Recorder

> f
Static Data Downsampl. Mel banks FFNN

th2 3 ms -> 9 ms 220 ms 56 ms
0.7 % 2.4 % 59.3 % 15.1 %

Figure 5.9: Baseline and two approaches to parallel ization - pipel ining or linear processing
on background thread.

samples to send, the sender can close the channel, the receiver is resumed and can check
whether the isClosedForReceive is set.

AudioRecorder is filling the internal buffer, and when the buffer is full, it provides an ar
ray of short samples. The buffer size depends on the sampling frequency, the number of au
dio channels and bit depth. This value can be obtained from AudioRecord.getMinBuf f erSize ()
function, and it can be for example 3 528 samples. The recorder puts the values one by one
from the full buffer into the channel. The receiver takes values and fills its buffer. Th is
buffer should have the same wid th as AudioRecorder or its multiples. In that case, the
processing covers the t ime during which the next samples are recorded.

5.4.3 P r o f i l i n g

W h a t mult iple of the buffer size to choose, is part of experiments. Whether the background
thread finishes processing in t ime and the sum of processing times are the values included
in table 5.8.

38

buffer size execution time sum blocks not finished in time
3 528 1 805 986 0-1
7056 1 772 244 0-1
10 584 1 795 072 0

Table 5.8: Sum of parallel execution times (Execute part) using multiple evaluation on
10 s recording. Buffer size means the number of received samples from the recorder before
invocation Execute in the background. It can be considered as a delay.

Based on the table, the size does not impact the sum of execution t ime and the number
of blocks not finished in t ime. Not finished blocks were i n the middle of processing, bo th
in the case of 3 528 and 7 056 block size, and the following blocks were processed i n time.
Bigger blocks mean a longer t ime of processing the last block when the recording is finished.
Thus, a smaller block size means faster processing from the user's point. The block size
of 10 584 samples represent 0.24 ms of recording, and i n the case of sampling frequency
44100 H z , so 5 s recording would be divided only into 21 blocks. We chose the block size
to the buffer size. Bigger size requires more operation memory for computing, which is a
l imi t ing factor for smartphones.

Conclusion and comparison are i n the following tables 5.9 and 5.10. The recording is
not included as it is almost the same as the recording durat ion. The right table is from
the user's point of view, Prepare Static D a t a is done during recording. T i m e of Down-
sampling is computed as the t ime of processing the data left in the buffer after finishing
the recording. M e l banks t ime consists of the t ime of normalizat ion and time of computing
M e l banks for the data left in the buffer after finishing the recording.

5 s recording after T F Lite [ms] % with parallelization [ms] %
L o a d Engine Config 7.9 0.4 8.1 0.9
L o a d Task Config 658.2 36.1 57.9 6.1
Select Task Segment 808.9 44.3 659.6 69.7
Init AudioRecorder 33.0 1.8 34.4 3.6
Execute 316.3 17.3 186.1 19.7

E 1 824.3 946.0

10 s recording after T F Lite [ms] % with parallelization [ms] %
L o a d Engine Config 7.6 0.2 7.5 0.3
L o a d Task Config 1424.0 34.7 61.2 2.8
Select Task Segment 1635.1 39.9 1553.1 70.4
Init AudioRecorder 33.0 0.8 37.1 1.7
Execute 1000.8 24.4 546.1 24.8

E 4100.5 2 205.0

Table 5.9: Prof i l ing by comparing elapsed t ime without and wi th implemented paralleliza
t ion. The evaluation was executed as the first run.

For lack of t ime, the parallel ization was not finished whole. M e l banks normalizat ion
and F F N N can be s t i l l parallelized, which would save another 90 ms. B u t even this solution
reduced processing t ime by 45 % i n the case of 5 s recording and by 55 % i n 10 s recording.

39

Execute 5 s
first run

ms % Execute 10 s
first run

ms %

Prepare Static D a t a - 0.0 Prepare Static D a t a - 0.0
Down-sampling 0.02 0.0 Down-sampling 0.01 0.0
M e l banks 2.81 1.4 M e l banks 3.71 0.7
F F N N 104.49 52.8 F F N N 178.11 31.5
D T W 62.68 31.7 D T W 329.67 58.4
Calculate Score 1.01 0.5 Calculate Score 1.66 0.3
P r in t J S O N 26.91 13.6 P r in t J S O N 51.55 9.1

E 197.92 E 564.72

Table 5.10: Prof i l ing wi th parallel ization by comparing elapsed time. The t ime of a l l
phases was computed after the recording was stopped and the user was wai t ing for results.
Prepare static data is computed during recording. Thus, it does not affect processing
time.

5.5 Improving the UI response time

The speech module was speedup in previous sections, but those changes d id affect the client
site. The user interface displayed the results s t i l l after 3 seconds, al though the results were
available in Logcat much earlier.

It was caused by flooding the bottleneck of React Native called React Native bridge15,
visualized i n figure 5.10. The bridge manages communicat ion between JavaScript app
controller and native modules (e.g., O S callbacks and A P I , SpeechEngine module).

React community is aware of this l imi ta t ion , and they are currently working on the new
architecture of a native module system called Turbo M odules16.

l . event

3. process event 2. serialized payload

JavaScript
Thread Bridge Native

Thread
OS events and API
Native modules

4. serialized response 5. update UI

Figure 5.10: React native bridge wi th visualized event handling.

The actual problem was wi th the frequency of onProgressChange events sent from
the SpeechEngine module into the React Native. The bridge was flooded by those events.
Redrawing and responding to the user's touches became more and more delayed, and the
response to the onResuits event was processed and passed for rendering several seconds
after the event occurred.

The frequency of reporting was reduced. The onProgressChange events were sent after
processing 500 ms of data, then it was reduced to each 2 560 ms. After parallelization, the

1 4 Logca t command-line tool - Android Developers, h t tps: / /developer .android.com/studio/command-
l i n e / l o g c a t

1 5 A n d r o i d Native Modules, h t t p s : / / r e ac tna t i ve .dev /docs /na t i ve -modu le s - and ro id
1 6 TurboModules proposal, h t t p s : / / g i thub .com/ reac t -na t ive -communi ty /d i scuss ions -and-

p roposa l s / i s sues /40

40

https://developer.android.com/studio/command-
https://reactnative.dev/docs/native-modules-android

reporting was removed from background parallel parts and remained only in FFNN and
later phases.

B u t s t i l l , when the recording and player are active at the same time, the U I is slow and
delayed as both of the activities produces events for the U I .

I would not recommend React Native for real-time visualisations that need to be accurate
and up-to-date.

5.6 Conclusion

In previous sections, we applied two main optimizations of the processing pipeline (compu
tat ion closer to H W and parallelization) and one opt imizat ion of G U I rendering response.
The processing pipeline of Execute phase summarizes along wi th processing times figure
5.11.

Recording Down-sampling Mel filter Feed Forward
neural network

Dynamic Time
Warping

f features \ f phonemes \

I I ^ 5 X M L

1 24 Mel banks I I 30 desriptors I 1 Alignment ,
^ ^ e r f r a m ^ ^ ^ ^ e r f r a m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

53.9 ms

62.7 ms

611.1 ms

104.5 ms

Figure 5.11: Compar ison of profiling Execute pipeline before and after optimizations (from
tables 5.1 and 5.10) on 5s recording using the first run methodology.

The first opt imizat ion reduced loading and computing feed-forward neural network using
high-level l ibrary TensorFlow Lite. This reduced Load Engine Config t ime and F F N N
t ime i n Execute phase (see tables 5.11 and 5.12). TF Lite uses C P U kernels opt imized
for the A R M Neon instruct ion set. Even better performance is achieved by computing 16
frames at once. It means that the input and output of this N N are 16 times bigger, but the
N N model is executed 16 times less often.

The second opt imizat ion reduced Prepare Static Data, Down-sampling, and M e l
banks times i n Execute phase. Paral le l izat ion is implemented using Kotlin Coroutines
and Channels from the Kotlin Coroutines l ibrary. Execute phase is invoked each time
when AudioRecorder produces new samples on a background thread. The applicat ion
needs only two threads for recording and processing, as processing is faster than recording.
Figure 5.12 displays the implementat ion of the second approach {Linear with two threads).

The last opt imizat ion is not related to the evaluation module. It reduces the delay of
the U I renderer. The number of state and progress updates sent by the evaluation module
to the React Native U I was reduced more than five times. If progress updates come too
often, React Native queues them, and the results are displayed after a l l previous progress
updates are processed and displayed. W i t h further optimizations, it w i l l be necessary to
further reduce, or even remove, reporting of processing progress.

The final architecture of the evaluation module is displayed i n figure 4.2.

41

Linear with two threads:

th2

closeChannelO
Stop recording

Recorder
short I]

Stop recording
Recorder

>

Static Data

->

Downsampl. Mel banks
,o

Normalize F F N N D T W Score Print

- ms
0.0 %

-> 0.02 ms
0.0 %

0.3 ms
0.2 %

= 2.5 ms
1.2%

104.5 ms
52.7 %

62.7 ms
31.7%

1.0 ms
0.5%

26.9 ms
13.6 %

Figure 5.12: The final scheme of implemented parallel ization. Unl ike to 5.9, the M e l banks
block was split into computing M e l banks and normalizing them. Due to this change, the
F F N N block was not parallelized.

5 s recording before optimizations [ms] after optimizations [ms]
L o a d Engine Config 7687.6 8.1
L o a d Task Config 629.7 57.9
Select Task Segment 812.7 659.6
Init AudioRecorder 33.0 34.4
Execute 1123.3 186.1

E 10 253.2 946.0

10 s recording before optimizations [ms] after optimizations [ms]
L o a d Engine Config 7677.3 7.5
L o a d Task Config 1415.5 61.2
Select Task Segment 2191.8 1553.1
Init AudioRecorder 33.0 37.1
Execute 2 714.6 546.1

E 13 999.2 2 205.0

Table 5.11: Prof i l ing by comparing elapsed t ime before and after implementing opt imiza
tions (from tables 5.7 and 5.10). The evaluation was executed using the first run method
ology. The recording is not included as it is almost the same as the recording durat ion.

42

Execute 5 s before optimizations [ms] after optimizations [ms]
first run

Prepare Static D a t a 4.5 -
Down-sampling 19.2 0.02
M e l banks 223.2 2.81
F F N N 611.1 104.49
D T W 53.9 62.68
Calculate Score 0.9 1.01
P r in t J S O N 10.6 26.91

E 923.4 197.92

Execute 10 s before optimizations [ms] after optimizations [ms]
first run

Prepare Static D a t a 8.3 -
Down-sampling 56.1 0.01
M e l banks 525.7 3.71
F F N N 1451.9 178.11
D T W 329.2 329.67
Calculate Score 3.1 1.66
P r in t J S O N 90.7 51.55

E 2 465.0 564.72

Table 5.12: Prof i l ing by comparing elapsed t ime before and after implementing opt imiza
tions (from tables 5.2 and 5.10). Prepare static data is after the optimizations computed
during recording. Thus , it does not affect the processing time.

43

Chapter 6

Conclusion

A s part of this work, we explained the process of speech processing and comparing two
speech recordings. We introduced, how the processing is used i n the applicat ion and what
is the expected functionality of the applicat ion. The largest part and contr ibution of this
work is identifying parts that can be refactored and opt imized. Those techniques can be
used in similar applications as the presented processing pipeline is quite common in speech
processing.

We used a high-level l ibrary TensorFlow Lite to access low-level functionalities provided
by the hardware of today's smartphones. We tr ied different accelerators but finally, we stick
to the single thread C P U variant as we do not have so complex neural network. We showed
an example of a complex network and speed up achieved by delegating to the device G P U .
Then we gained more speed up by computing more dcttct ctt once and found the opt imal
data size.

A s a second technique, we chose parallelization. We identified problematic blocks for
parallelization and proposed two ways of parallel ization. Implemented parallel ization pre
serves the original accuracy and s t i l l brings 45 % speed up.

The last th ing considered is the user interface. Processing may speed up, but if the user
interface and the rendering is slow, the user cannot feel the acceleration techniques. After
applying the techniques above, there is s t i l l needed 174 ms for processing. We can t r ick ly
hide this t ime into transitions or short animation, so the user cannot note any delay before
the results.

We were able to reduce speech processing of 5 s recording from 928 ms to 174 ms at
the same accuracy. Longer (10 seconds) recording originally takes 2.5 seconds, and at the
end of the work, it takes only 0.5 seconds. Load ing of neural network was reduced from 6
seconds to 8 milliseconds.

However, there are s t i l l opportunities to speed up the program. We can continue wi th
parallelization and use uniform-n normalizat ion (floating window wi th in i t i a l value or value
from previous processing) and experiment w i th the size of windows and in i t i a l value in
the context of accuracy. Dynamic t ime warping uses an algori thm that computes the
whole graph. We can choose windows of l imi ted wid th where we are looking for the best
path. React Nat ive can be s t i l l slowed down when there is mult iple progress reported at
the same t ime. We could t ry to compute the progress on the React side and send only
start /s top/change events. The other opt ion is discovering alternative solutions like Flutter,
Apache Cordova or Fuse.

We are going to integrate this module into a real appl icat ion and then t ry to apply the
same methods on the different app (speech recognizer).

44

45

Bibliography

[1] G O L D S B O R O U G H , P . A Tour of TensorFlow. CoRR. 2016, abs/1610.01178. Available
at: h t t p : / /arxiv.org/abs/1610.01178.

[2] H O N K E L A , A . Mul t i layer perceptrons. Nonlinear Switching State-Space Models. 2001.
[cit. 2021-01-15]. Available at:
h t tps : / / u se r s . i c s . aa l to . f i / a ionke la /d ippa /node41 .h tml .

[3] M Ü L L E R , M . Information Retrieval for Music and Motion. Springer, 2007. I S B N
9783540740476.

[4] S Z O K E , L , S K Á C E L , M . , Č E R N O O K Ý , J . and B Ü R G E T , L. Cop ing wi th Channel
Misma tch in Query -By-Example - B U T Q U E S S T 2014. In: Proceedings of 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing [electronic,
physical medium]. I E E E Signal Processing Society, A p r i l 2015, chap. 119899,
p. 5838-5842. D O I : 10.1109/ICASSP.2015.7179091.

[5] C U B A , E . Implementation of Simple Speech Recognizer in Android. Brno , 2018.
Bachelor's thesis. Brno Universi ty of Technology, Facul ty of Information Technology.
Supervisor Ing. Igor Szöke, P h . D .

46

http://ics.aalto.fi/aionkela/dippa/node41

Appendix A

A P I Documentation

The following list contains functions and properties which can be used from the applicat ion
and messages that are sent to the React Native applicat ion.

• Config options:

— LogVerbosity logVerbosity

• Interface methods:

— loadTaskJSONConfig(jsonData: String)
— initAudioRecorder(length: Int)
— startAudioRecorder()
— stopAudioRecorder()
— selectTaskSegment(taskSegment: String)
— startAudioPlayerRef(wrdld: Int)
— stopAudioPlayerRef()
— startAudioPlayerUsr(wrdld: Int)
— stopAudioPlayerUsr()
— speechEngineExecute()
— saveAudioUsrAsWAV(filename: String)

• Interface events (differs from Interface methods):

— onError(WritableMap payload)
* String payload.error
* Int payload.state

— onProgressChanged(WritableMap payload)
* Double payload.progress
* Int payload.state

— onStateChanged(WritableMap payload)
* Int payload.state

— onStatus(WritableMap payload)

47

* String payload.status
* LogLevel payload.logLevel

— onResults(WritableMap payload)
* String payload.results

— onAudioEnergy(WritableMap payload)
* Double payload.audioEnergy
* Double payload.progress

18

Appendix B

Configuration files

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

The module can be configured through configuration files SpeechEngineConf i g . json and
task specific configuration is stored in TaskConf i g . json of each task. Those files are de
scribed by J S O N Schema Schema_SpeechEngineConf i g . j son and Schema_TaskConf i g . j son.
J S O N Schemas are not included here, as they are too long for a single page.

B . l SpeechEngineConfig.json

{
"SpeechEngine_StatusLevel": "INFO",
" AudioRecorder AudioEnergy Refresh": 0.1,
"AudioRecorder AudioSamplingFrequency": 44100,
"AudioRecorder AudioChannels": " M O N O " ,
"AudioRecorder_AudioSource": "MIC" ,
"AudioRecorder_AudioEncoding": " P C M _ 1 6 B I T " ,
"FeatureExtraction Use": "default",
"FeatureExtraction List": [

{
"Version": "default",
"NeuralNet BinFi le": " / s to rage /emula ted /0 / sewrapperdemo/SpeechEngine /mode l lßx . t f l i t e "

}

B.2 TasklConfig.json

{
"Task Transcript X M L " : "/storage/emulated/0/sewrapperdemo/Taskl/OOOOOOOaudio.xml",
"Task Audio Reference_WAV": "/storage/emulated/0/sewrapperdemo/Taskl/0000000audio.wav"
"Task Audio User W A V " : "/storage/emulated/0/sewrapperdemo/Taskl/user audio.wav",
"Task Features List": [

{
"Version": "default",
"FileName": "/storage/emulated/0/sewrapperdemo/Taskl/OOOOOOOaudio.bnfea"

}
]

}

49

