
BACHELOR THESIS

Visualization of Sorting Algorithms

2019 Mykhailo Klunko
Supervisor: Mgr. Tomáš Kühr,
Ph.D.

Study field: Computer Science, full-
time form

Bibliografické údaje

Autor: Mykhailo Klunko

Název práce: Vizualizace třídicích algoritmů

Typ práce: bakalářská práce

Pracoviště: Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

Rok obhajoby: 2019

Studijní obor: Informatika, prezenční forma

Vedoucí práce: Mgr. Tomáš Kühr, Ph.D.

Počet stran: 30

Přílohy: 1 CD/DVD

Jazyk práce: anglický

Bibliograhic info

Author: Mykhailo Klunko

Title: Visualization of Sorting Algorithms

Thesis type: bachelor thesis

Department: Department of Computer Science, Faculty of Science,
Palacký University Olomouc

Year of defense: 2019

Study field: Computer Science, full-time form

Supervisor: Mgr. Tomáš Kühr, Ph.D.

Page count: 30

Supplements: 1 CD/DVD

Thesis language: English

Anotace

Cílem práce bylo vytvořit software pro podporu výuky třídících algoritmů pomocí
vizualizace průběhu třídění nejznámějšími algoritmy a jejich variantami. Pro-
gram podporuje názornou vizualizaci vybraných algoritmů na zadaném či vygen-
erovaném vstupním poli a krokování průběhu výpočtu se souběžným zobrazením
pseudokódu použitého algoritmu a aktuálních hodnot použitých proměnných.

Synopsis

The main goal of the thesis was to create a teaching support software with visu-
alization of the most known sorting algorithms and their variations. The appli-
cation supports a graphic visualization of selected algorithms on randomly gen-
erated or manually created array, step-by-step execution possibility, pseudocode
and current state of variables.

Klíčová slova: třídící algoritmus; třídění; vizualizace; výukový program

Keywords: sorting algorithm; sorting; visualization; educational software

I would like to acknowledge my sincere gratitude to my supervisor Mgr. Tomáš
Kühr, Ph.D. for his patience and guidance throughout my bachelor thesis. Also,
I would like to thank my parents for constant motivation and support from their
side. Special thanks go to my friends and colleagues.

I hereby declare that I have completed this thesis including its appendices on my
own and used solely the sources cited in the text and included in the bibliography
list.

date of thesis submission author’s signature

Contents
1 Introduction 1

2 About algorithms 2
2.1 What is an algorithm? . 2
2.2 Algorithm description . 2
2.3 Types of algorithms . 4
2.4 Complexity . 4
2.5 Sorting . 6

3 Sorting algorithms included 8
3.1 Insertion Sort . 8
3.2 Selection Sort . 8
3.3 Bubble Sort . 9
3.4 Cocktail Sort . 9
3.5 Quick Sort . 10
3.6 Merge Sort . 11
3.7 Heap Sort . 12
3.8 Counting Sort . 13
3.9 Radix Sort . 13
3.10 Bucket Sort . 14

4 Documentation 16
4.1 Used technologies . 16
4.2 Structure overview . 17

4.2.1 A root package . 17
4.2.2 Constants, Data and Enum packages 17
4.2.3 Controllers package . 18
4.2.4 NodeControllers package 18
4.2.5 UI package . 19
4.2.6 Utilities package . 19
4.2.7 Algorithms package . 19
4.2.8 Resources . 19

5 User Guide 20
5.1 System requirements . 20
5.2 Starting application . 20
5.3 User interface . 20

5.3.1 Visualization panel . 21
5.3.2 Control panel . 22
5.3.3 Information panel . 22
5.3.4 Upper panel . 23

5.4 Interaction . 23
5.4.1 Starting new visualization 23

iv

5.4.2 Visualization control . 24
5.4.3 Information about the application 24
5.4.4 Opening description . 25
5.4.5 Escaping application . 25

5.5 Keyboard shortcuts . 25

Závěr 26

Conclusions 27

A Contents of enclosed CD/DVD 28

Acronyms 29

References 30

v

List of Figures
1 Flowchart example: factorial . 3
2 f(n) in O(g(n)) . 6
3 Insertion Sort: sorted and unsorted parts at the beginning 8
4 Bubble Sort: one pass through the array 9
5 Quick Sort principle . 10
6 Merge Sort principle . 11
7 Max-Heap . 12
8 Children positions in heap . 12
9 Radix Sort principle . 14
10 Bucket Sort principle . 14
11 Node types . 18
12 Main window . 21
13 Visualization panel . 21
14 Control panel . 22
15 Information panel . 22
16 Algorithm selector . 23
17 Window "New sorting" . 23
18 Window "About" . 24
19 Window "Description" . 25

List of Tables
1 Shortcuts . 25

vi

1 Introduction
Nowadays sorting algorithms are widely used in computer software. For example,
if you open file explorer on your PC, you may see files sorted in different ways.
Searching in sorted data is more efficient than in not sorted ones. Students of
computer science start learning different algorithms in the first year of studies
and sorting algorithms are among them.

Since I faced the problems of sorting during the course of algorithm design
in the first year of my studies, there is an understanding that the visual repre-
sentation is a vital part of the studying process. During working on the thesis
it was very exciting to learn different techniques of sorting algorithms into the
depth.

The main goal of the thesis was to create a program which would serve as a
tool for understanding how most known sorting algorithms work. There was an
attempt to make the best possible user experience. The demonstration software
is made in a user-friendly and easy-to-use style. To gain maximal benefit from
learning you can try each sorting algorithm on your data.

The text of the thesis describes principles of the most known sorting algo-
rithms which are demonstrated in the computer program. It might be used as
a source for learning algorithms by students. Also, the program might be easily
used as a demonstration by lecturers and tutors during classes. Besides, there is
programmer documentation and user guide to the provided software.

Readers of this text are expected to have some programming experience to
know basic data structures such as arrays, lists, trees and understand recursive
procedures. Also, knowledge of some simple algorithms and their implementa-
tions could be helpful. In order to understand the topic better, knowledge of
linear algebra and calculus is involved.

1

2 About algorithms

2.1 What is an algorithm?
Before moving on to the main part of the text which describes algorithms and
the software, we need to assure that there is an understanding of the basics. We
shall begin with the algorithm definition.

What is an algorithm? How can we define it? We may say simply that
an algorithm is a sequence of steps or instructions that solves some kind of
problem. Although it may be a bit imprecise because we have not defined what
does problem mean and what does instruction mean.

Problem is a kind of task that we need to solve. We are facing different
problems every day: finding the fastest route to work or home, etc. However,
not all of them are problems that may fit our algorithm definition. A suitable
definition of a problem has some limitations: problem should be specified by its
inputs and all inputs have to be mapped to some outputs. Step or instruction is
some action that is clear to its executor. In our case, it could be a PC. To solve
a problem means to find a solution for each input.

Here is more precise definition by Thomas Cormen: "Informally, an algorithm
is any well-defined computational procedure that takes some value, or set of val-
ues, as input and produces some value, or set of values, as output. An algorithm
is thus a sequence of computational steps that transform the input into the out-
put." [1]

5 features of an algorithm according to D. Knuth[2]:

• finiteness – an algorithm should end in a finite number of steps.

• definiteness – each step of an algorithm should have precise definition. And
it means that for the same inputs we will obtain the same results.

• input – an algorithm may have inputs, they are taken from some set of
objects.

• output – an algorithm may have outputs which should be in some relation
with inputs.

• effectiveness – we may expect an algorithm to be effective. It means "its
operations must all be sufficiently basic that they can in principle be done
exactly and in a finite length of time by someone using pencil and paper."[2]

2.2 Algorithm description
To execute or understand an algorithm, we may need somehow to describe it.
There are several ways of algorithm representation.

2

• Natural language. An algorithm described in the natural language is clear
to everyone. However, it may be imprecise and somehow longer than other
methods here.

• Programming language. This kind of description is unambiguous. It may
be used directly to create a computer program. A programming language
may contain a lot of implementation details.

• Pseudocode looks similar to a programming language, but it is more general,
without deep details. It can be easily rewritten to most of the programming
languages, and it is understandable to all programmers without regard to
the exact language.

• Visual representation. An algorithm may be described by many other meth-
ods, including graphical representation like flowcharts (Figure 1).

As an example, we will consider the algorithm for finding factorial represent-
ing it in pseudocode (Code 1) and by the flowchart (Figure 1).

Start

Read n

i = 1, fact = 1

i ≤ n Print fact

fact = fact ∗ ii = i + 1 end

no

yes

Figure 1: Flowchart example: factorial

3

Algorithm 1 Factorial algorithm
1: procedure Factorial(n)
2: fact← 1
3: for i← 1 to n do
4: fact← fact ∗ i

5: return fact

2.3 Types of algorithms
Nowadays there exist a large number of different algorithms. They are divided
into different groups by different criteria. Often one algorithm may belong to
several groups. Here are some of them [1].

• Recursive algorithms – algorithms that call itself until the limiting condi-
tion is reached.

• Probabilistic algorithms – algorithms that make some random decisions.

• Parallel algorithms – algorithms that divide a task, for example, into
threads or between processors, etc.

• Sequential algorithms – unlike the parallel algorithms, every step of the
task is done in sequence.

• Divide and conquer – algorithms that divide a problem into smaller parts
until they become indivisible. Then merge solutions in some way.

• Greedy algorithms – these algorithms make the best choice in a given situ-
ation. They never change their previous choice.

• Dynamic programming – algorithms that start solving a problem from the
simplest to more complicated parts. They use outcomes from previous
solutions.

• Heuristic algorithms – algorithms which are used for finding solution among
all possible. However, there is no guarantee that a found one will be the
best.

2.4 Complexity
Let us consider some problem that requires a solution. Then, suppose that this
problem is possible to solve by three or more different algorithms. For the most
suitable choice, we compare the algorithms. To compare these algorithms we
need to measure the performance of each. Besides, we might need to measure
the time for an algorithm to run with some input. Finally, we are moving to the
concept of the algorithm complexity [2], [3], [4].

4

There is a time complexity and a space complexity. In general, complexity
gives the amount of time or space needed to run an algorithm. To be more
precise: time complexity is a function f : N → N that maps each input to the
maximum number of steps for this input needed for an algorithm to complete a
task. We will be talking here only about the time complexity and will call it just
complexity.

Analyzing algorithms we might want to investigate different sides of the algo-
rithm performance. Usually, it could be a worst-case analysis or an average-case
analysis. The worst-case analysis implies determining the longest running time
of all inputs with the same length. In the average-case analysis, we take the
average running time of inputs with the same length.

Often complexity of an algorithm is measured on the large inputs. Since
complexity is expressed by a polynomial, we might want to have it in a more
convenient form. This type of estimation is called an asymptotic analysis. Such
form takes only the highest order term of the polynomial.

To be more clear, let us have an example. f(n) = 5n3 + 10n2 + 20n + 4, the
highest degree term here is 5n3. In some cases we can omit the coefficient 5, now
f is asymptotically at most n3.

For such approximations there exist different notations [2], [3]:

1. Asymptotic upper bound (or Big O notation). For the function f(n) with
an input size of n, O(f(n)) means that the running time or complexity
of an algorithm grows as much as the f(n) but may grow more slowly.
Sometimes we may write f(n) = O(g(n)). To be more precise, it means
that there exists some constant c > 0 such that f(n) ≤ c ∗ g(n) for some
large enough n (Figure 2).

2. Asymptotic lower bound (or Big Ω1 notation). If the complexity of some
algorithm is in Ω(f(n)), it means that there exists some large enough n
such that the function f(n) is a lower bound for the algorithm running
time. f(n) = Ω(g(n)) means that there exists some constant c > 0 such
that c ∗ g(n) ≤ f(n) for some large enough n.

3. Asymptotic tight bound (or Big Θ2 notation). This notation combines both
lower and upper bounds.

All the functions that we have here we will assume to take only non-negative
values. Also, there is a small o notation. It slightly differs from the Big O
notation. "Big-O notation says that one function is asymptotically no more than
another. To say that one function is asymptotically less than another we use
small-o notation."[3]

1Omega
2Theta

5

n

c ∗ g(n)

f(n)

n0

Figure 2: f(n) in O(g(n))

Algorithm is considered for practically solvable if its running time is polyno-
mial. It means that the complexity of the algorithm is in O(nc), c is usually a
small constant [1].

Here are some complexities (from the slowest to the fastest growing):

1. O(1) – constant complexity

2. O(log(n)) – logarithmic

3. O(n) – linear

4. O(n log(n)) – linear-logarithmic

5. O(n2) – quadratic

6. O(2n) – exponential

7. O(n!) – factorial

2.5 Sorting
As was already said that sorting is used for solving a wide range of problems. It
may be used for further searching or, for example, as part of different complex
tasks. We were talking about sorting. But what actually sorting is?

Simply said, sorting is a process of rearranging of items, which are possible
to compare, in ascending or descending order. In the text we are meaning only
ascending order if not stated in a different way.

Ascending order means that items in a sequence are arranged from the small-
est to the largest item. On the contrary, descending order means positioning
from the largest to the smallest item.

6

Sorting algorithms are divided into two main types [4]:

1. Algorithms of internal sorting – all the data to sort is stored in the internal
memory during the sorting process. It is used when the amount of data to
sort is known.

2. Algorithms of external sorting – all the data to sort is stored outside the
internal memory (e.g. on a hard disk). These algorithms usually combine
sorting in the internal memory, merging of sorted parts and saving them
to the external memory.

In the text we are talking only about the algorithms of internal sorting. Here
are five main techniques which are usually used with the algorithms which use
these techniques and are included in the software [5]:

1. Sorting by Insertion – single items from the sequence are put into the right
place of the sorted part. Here belongs Insertion Sort.

2. Sorting by Exchanging – swap elements of each pair that are out of order
till no more such pairs exist. Here we have Bubble Sort, Cocktail Sort,
Quick Sort.

3. Sorting by Selection – method that uses repeated selection. Selection Sort
and Heap Sort use this technique.

4. Sorting by Merging – merging smaller parts with the right order. And
Merge Sort uses it.

5. Sorting by Distribution – technique which does not use comparisons to sort.
It works relying on the knowledge about the set from where data to sort
is taken. Data is distributed to some intermediate structures according to
values. Radix Sort, Bucket Sort and Counting Sort belong here.

7

3 Sorting algorithms included
This section describes algorithms included to the software. [1], [4], [5], [6] and
[7] served as sources of information for this section.

3.1 Insertion Sort
Insertion Sort algorithm has a simple idea. Assume an array with items to be
sorted. We divide the array into two parts: sorted one and unsorted one. At
the beginning sorted part consists of the first element (Figure 6). Then, for each
item that we have in the unsorted part, we take element and insert it into the
right place among the sorted items.

Figure 3: Insertion Sort: sorted and unsorted parts at the beginning

In order to insert element into the right place in the sorted part, we compare
selected item from the unsorted part with each item from the sorted part in the
direction from right to left. Comparing continues until smaller or equal element
is found or no elements to compare left. After each comparison, if current item
in the sorted part is greater, we move that current item one position right.
Finally, when the right position is found, we insert an item into the sorted part.
Complexity of Insertion Sort is Θ(n2).

3.2 Selection Sort
Selection Sort algorithm is based on the repeated selection. Here we consider
finding minimal key from the unsorted part and swapping it with the first un-
sorted key. As well as in the Insertion Sort, sorted part grows from the beginning
of the sequence.

Assume an array of items to sort. At the beginning of the sorting process
unsorted part is represented by the whole array. Then, the first item of the
unsorted part is set as the smallest item and is compared with the follow-up
elements. When smaller item is found, it is set as a new smallest key. After the
end of the array is reached the smallest item is swapped with the first element
of the unsorted part and it becomes the sorted part of the array. This step is
repeated till the array is sorted. Complexity of this sorting algorithm is Θ(n2).

8

3.3 Bubble Sort
Bubble Sort is based on the idea of exchanging two adjacent elements if they have
the wrong order. The algorithm works stepping through all elements from left to
right, so the largest elements tend to move or "bubble" to the right (Figure 4).
That is why the algorithm is called Bubble Sort.

Now we are going to the details. Let us have an unsorted array. The algo-
rithm does iterations through the unsorted part which is the whole array at the
beginning. And with each iteration through the array the range of inspected
items is decreased by one till only two elements left. After this two elements are
compared and possibly swapped, the array is considered as sorted. Bubble Sort
complexity is Θ(n2).

Figure 4: Bubble Sort: one pass through the array

3.4 Cocktail Sort
Cocktail Sort or also known as Bidirectional Sort. This algorithm similarly to
the Bubble Sort uses the idea of exchanging unordered adjacent items of array.

Assume array that needs to be sorted in ascending order. Above we described
Bubble Sort and this algorithm has a significant problem. It iterates through
array only in one direction. This way, smaller items which are closer to the end
of array reach its right positions slowly.

The solution is to make Bubble Sort iterate left-to-right and right-to-left.
Cocktail Sort uses two cycles inside a big one. Here a and b are the positions of
the leftmost and the rightmost elements of the array.

9

The way the algorithm works:

1. Iterate from a to b, compare adjacent elements and swap if they are not
ordered.

2. Iterate from b to a + 1 same way as in the step 1

3. Repeat steps 1. and 2. but with a bit different range from a = a + 1 to
b = b− 1

For Cocktail Sort, worst case complexity remains Θ(n2).

3.5 Quick Sort
Quick Sort works on the principle "divide and conquer". It recursively applies
itself on smaller parts of array until it is not sorted.

Algorithm takes one item at unsorted array or its part, usually it is the
leftmost or the rightmost element of array. Then this item, also known as pivot, is
moved to its final position in the array that is should occupy. While determining
pivot’s position, other elements of array are rearranged the way that no bigger
elements are on the right and no smaller elements are on the left.

This way, it is enough to apply Quick Sort on each part of array not including
pivot until array is not sorted.

Figure 5: Quick Sort principle

There are several methods of partitioning of array into two parts, here I want
to describe one that is demonstrated in the software part of this work.

10

Firstly, a pivot and index item are selected on the unsorted array or its part.
Assume pivot is the rightmost item and index is the leftmost. Next, each item
of the array except pivot is compared with the pivot. If a current item is less or
equal to the pivot, it is swapped with the index item, next in order item becomes
an index. Finally, index and pivot are swapped and this way pivot is on its final
position.

Quick Sort is counted as an effective algorithm because its average complexity
is Θ(n log n). However, when array is maximally unbalanced it may show worst
performance. Worst case complexity is Θ(n2).

3.6 Merge Sort
Merge Sort as well as Quick Sort is an algorithm of type "divide and conquer".
Its logic is simple: divide data into two parts, sort the left part, sort the right
part, then "merge" the parts back.

The algorithm works by the recursive application itself on the unsorted parts.
In the beginning, it selects the middle item, which becomes the rightmost element
of the left part. Then, it recursively sorts both parts. Finally, the algorithm
"merges" two sorted parts. Merging procedure itself takes items from each of two
sorted parts one by one, compares them and moves the smallest to the output,
repeats the previous step. Merge Sort complexity is Θ(n log n)

Figure 6: Merge Sort principle

11

3.7 Heap Sort
Heap Sort is a selection based algorithm and it offers another interesting approach
to sorting. In comparison with the Selection Sort it has optimized selection by
using binary heap data structure.

Binary heap is a complete binary tree; it means that all levels of tree, except
the last one, must be completely filled with nodes. Also, this data structure
satisfies the heap condition: each node key is greater than or equal to its child
keys (this heap type is called max-heap).

Figure 7: Max-Heap

Binary heap may be implemented by simple array. Item at position zero is a
root node, items at position one and two are respectively left and right children
of the root. From that representation it is easy to find children of each node (if
they exist). Assume a node at position k then its left child is at 2k + 1 and its
right child is at 2k + 2 (Figure 8).

Figure 8: Children positions in heap

12

Heap Sort itself works as follows:

1. Build max-heap

2. Swap root and the last node, reduce size of heap by one

3. Build max-heap without the nodes on reduced positions

4. Repeat steps 2 and 3 until the range of array is one

To build max-heap from current node we need to assure that right and left
children comprise max-heaps. This way, in the first step procedure for building
max-heap is recursively applied for each node that has at least one child from
bottom to top.

After each swap of the root node and the node at last considered position,
the last node takes its final place. This way it joins the sorted part of an array.
Worst and average case complexity of Heap Sort are both Θ(n log(n)).

3.8 Counting Sort
Counting Sort is usually used for sorting integer keys in the range from 0 to k.
The algorithm is based on counting keys of distinct values. Final positions of
keys are calculated from the previous computations. It means that the position
of some key x depends on the count of keys that are less than x.

For better understanding let us have an example. Assume we have integers
in the range from 0 to k and an empty output array. For this range, we create
helping array that will keep counters for each number from the range. Then all
counters from the helping array are set to 0. To obtain final positions for items
to be sorted we need to make further computations.

Firstly, for each element from the initial array, we increase the respective
counter which is determined from the element value. That means the value of
the element is its counter position in the helping array. Secondly, we need to
sum each counter with previous. Finally, for each item from the initial array, the
respective counter is decreased by one, and the value of counter now is the final
position, we move the item to the output array.

Worst case complexity for Counting Sort is Θ(k + n), where k is number of
items in range and n is size of array to be sorted.

3.9 Radix Sort
The Radix sorting algorithm is based on the idea of using separate digits to
determine final number positions. It works with the help of some stable sort-
ing algorithm, for example Counting Sort, taking digits one by one from least
significant to most significant.

For better understanding let us go to the details. Assume the array of inte-
gers. Let d be the number of digits of the largest item from the array. If there

13

are numbers from the array that have less count of digits than the d is, then
insufficient digits are counted as digits with zero values.

This way, for each digit from least significant to most significant, we sort the
input array according to the current digit (Figure 9). Here we use Counting Sort
or another stable algorithm.

Figure 9: Radix Sort principle

The complexity of Radix Sort depends on three parameters. Assume we have
the array of size n with d digits from 0 to k. If the complexity of the used stable
algorithm is Θ(n + k), the complexity of Radix Sort is Θ(d(n + k)).

3.10 Bucket Sort
Bucket Sort, as well as Counting Sort, requires data in a known range with a
uniform distribution over this range.

Figure 10: Bucket Sort principle

In the beginning, the algorithm creates n intervals of the same size. For each
interval, it creates a dynamic structure which will hold items from the input.
These dynamic structures are called buckets.

14

Firstly, Bucket Sort distributes data to buckets. Then, it sorts each non-
empty bucket. For this task, we can use, for example, Insertion Sort. Finally,
the algorithm moves items from each bucket one by one to the output array.

In case we selected Insertion Sort as the algorithm for sorting buckets, the
worst case complexity for Bucket Sort is Θ(n2). However, the average case com-
plexity is Θ(n).

15

4 Documentation
This section describes the structure of the program and some useful topics from
the programmer’s side.

4.1 Used technologies
Nowadays there are a lot of programming languages, libraries, frameworks. On
the one hand, a software developer has a wide choice. On the other hand, here
comes up a new problem to make the right choice which should fit the best to
the current task.

The main programming language of the thesis software is Java3. To be more
precise, Java Platform, Standard Edition 8. Java is a cross-platform, object-
oriented language. Its motto is "write once, run anywhere". It means that
compiled java application runs on all platforms, that are supported by Java.
Java applications are compiled to the kind of bytecode and may be running on
the Java virtual machine (JVM)4 regardless of the platform.

As for the visual side of the application, Java provides a good JavaFX5 library
which is enough for the purpose. Here JavaFX was used both for the user
interface and algorithms visualization. Also, JavaFX provides the possibility of
using Cascading Style Sheets (CSS). The visualization software uses CSS6 for
styling some elements of the user interface.

The project was created and developed in the NetBeans IDE, although you
may use other IDEs that support importing the NetBeans projects. It was de-
veloped under the Windows operating system and was tested with different res-
olutions and on the macOS. A version control system Git7 in connection with
the GitHub was used. All the working steps of the project you may follow on
the GitHub website.

3Java
4What is JVM
5JavaFX
6About CSS
7Learn and download Git

16

https://github.com/klnmi97/Sorting-Visualization
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://www.geeksforgeeks.org/jvm-works-jvm-architecture/
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm
https://www.w3schools.com/css/default.asp
https://git-scm.com/

4.2 Structure overview
Program source codes are structured into packages:

sortingvisualization

Constants

Controllers

Data

Enums

NodeControllers

UI

Utilities

Algorithms

Each package contains certain classes, which are grouped by the purpose
of use. Next subsections contain some general descriptions of the classes from
packages. More detailed descriptions of the class functions are located directly
in the source codes.

4.2.1 A root package

The root package contains only one class. It is MainUI.java. This class serves
as the main class which starts the application. Although JavaFX provides the
possibility of using XML-based language for creating a user interface, here it is
not used. The MainUI class defines main user interface elements and does the
instantiating of controllers.

4.2.2 Constants, Data and Enum packages

All these three packages work with data and data structures, although a bit
differently. Constants package has only an eponymous class. This class contains
final static variables that are used as default values in the program. Data package
contains classes which serve as definitions for data objects. BindingData class
instance holds binding data for the buttons from the control panel. Results class
defines object that is used for transferring results from the input dialog. Enum
package contains one definition of the enum class. Algorithm enum defines list of
algorithms that are visualized in the program. For example, a list with algorithm
names in the main window is generated from this enum.

17

4.2.3 Controllers package

The package has two Java class files: AnimationController.java and ViewCon-
troller.java. The first one is responsible for the control of animations run. And
the second one controls the graphic part of the application: creation the right
graphic representation of array nodes, control of animation creation, pseudo code
creation control. Both are used in the main class.

4.2.4 NodeControllers package

NodeControllers package includes BrickNode.java, ColorInfoManager.java, Dy-
namicNodes.java, FixedNodes.java, Pseudocode.java, Tree.java and Variables-
Info.java.

BrickNode class defines kind of representation of the key from the array. Af-
ter instantiating it can be styled in many ways. This is done by the different
node managers. We shall talk about them next. Before moving on, we describe
node managers generally. These objects are responsive for creation a visual rep-
resentation from the given data. Also, they may create some additional graphic
items, e.g. buckets for the Bucket Sort. Node managers define animations for
the certain types of nodes and define their own metric system for certain type of
nodes.

The first is DynamicNodes class. DynamicNodes object manages visual nodes
whose height depends on their value (Figure 11a). Then, there is FixedNodes
class. This node manager class defines a manager that controls nodes of fixed
size (Figure 11b). Finally, there is Tree node manager. Tree represents manager
that creates and controls a visual binary heap (Figure 11c) and corresponding
visual array.

(a) Dynamic-size nodes (b) Fixed-size nodes (c) Tree nodes

Figure 11: Node types

Pseudocode class, as it is clear from the title, defines a manager that controls
the creation and animating of the pseudocode that appears on the information
side panel. VariablesInfo, in turn, defines another dynamic part of the infor-
mation side panel, that shows current details during the visualization process

18

and state of some variables. ColorInfoManager represents information about
the meaning of single colors of nodes. Usually, a description is shown for the
dynamic type of nodes which tend to change their colors.

4.2.5 UI package

UI or user interface package includes different additional classes that define ad-
ditional parts of the graphic user interface. There are InfoDialog which repre-
sents dialog that shows short descriptions of individual algorithms. InputDialog
instance accepts user input data. AboutDialog shows information about the ap-
plication. Toast is a help message in Android OS8 style.

4.2.6 Utilities package

The Utilities package contains different kinds of tools. ArrayUtils is a supporting
tool while working with an array. DescriptionReader is a tool for reading algo-
rithm description from a file. Scaling class defines a tool that counts the scaling
factor to fit different screens.

4.2.7 Algorithms package

And the last, but not the least significant, package called Algorithms. It con-
tains classes that actually do animating of the algorithms. Each class that creates
animations is supposed to extend Sorting class and implement the AbstractAlgo-
rithm interface. List of class definitions here corresponds to the list of algorithms
in the Algorithm enum.

4.2.8 Resources

Apart from the source code packages, project has a resource folder inside. This
folder contains images that are used in the program: icons, button images. Also,
it includes CSS files that are used for the styling of the main window (style.css)
and of the input dialog (dialog.css).

In the resource folder exists a subfolder that stores files with descriptions of
the algorithms. File names here correspond to the long names from the Algorithm
enum without spaces. Such name conventions help the reader tool to find the
right description.

8Android web site

19

https://www.android.com/

5 User Guide

5.1 System requirements
Since Java is cross-platform, you may use the application within the most popular
PC operating systems where Java is supported. Here are given minimal system
requirements for several operating systems.
Requirements:

• Operating system: minimum Windows XP SP3 or Mac OS X 10.4.10 or
Ubuntu 8.04

• Java: Java SE 8 with minimum update 40 (8u40) or update 51 (8u51) in
case of Windows 10 operating system

• Processor: Dual-Core processor, 1.8 GHz

• Memory: 512MB of RAM (1GB recommended)

5.2 Starting application
Since Java applications are not native applications to the most popular operating
systems for PC9, you need to have JDK10 or JRE11 installed and configured. In
case it is already done, it is enough to run the file of the application with .jar
extension as simple application.

Also, it is possible to use option "Open with". Here is necessary to select the
right application. For example, in the Windows operating system it is usually
"Java(TM) Platform SE binary" or javaw.exe.

Next opportunity is to run it through the command line. For Windows and
macOS it is done the same way. Type the command from below and add the
right path before the file name.
java −j a r Sort ing−Vi sua l i z a t i o n . j a r

Just after running the application, the main window (Figure 12) shows up
and the application is ready to use.

5.3 User interface
As it was stated above, the main aim of the application is to be as much user-
friendly as possible. This part describes the user interface of the application.

Main window (Figure 12) consists of the visualization panel (1), information
panel (2), control panel (3) and upper panel (4).

9According to netmarketshare.com in May 2019
10Java Development Kit
11Java Runtime Environment

20

https://netmarketshare.com/operating-system-market-share.aspx
https://www.oracle.com/technetwork/java/javase/jdk-8-readme-2095712.html
https://www.w3schools.in/java-tutorial/jre/

Figure 12: Main window

5.3.1 Visualization panel

Visualization panel (Figure 13) is the main space for the visualization of algo-
rithms. It shows different types of nodes which represent array items. Animated
movements of these nodes show individual steps of a sorting algorithm.

For some algorithms, there is a description of the node colors available. It is
located in the bottom left corner.

Figure 13: Visualization panel

21

5.3.2 Control panel

Control panel gives a user the possibility to have full control over the algorithm
visualization process. It is possible to run visualization, to pause it, even to go
through step by step forth and back. If you do not understand what the exact
button means, hover the mouse cursor over some active button and you will see
a tip.

Buttons and other interactive elements on the panel (Figure 14, from left to
right) are "Reset", "Animation speed slider", "Go to start", "Step back", "Play",
"Pause", "Step forth", "Go to end", "New" and "Info".

Figure 14: Control panel

"Reset" action creates a new sorting visualization of the current algorithm
with a randomly generated array. "New" action allows a user possibility to enter
custom data. "Info" opens a window with a description of the current algorithm.

5.3.3 Information panel

The information panel (Figure 15) is located on the right side of the window. It
consists of the header with the name of the current algorithm, the pseudocode
of the selected algorithm and description of the current state.

During the run of the visualization, this information is dynamically updated
according to the current algorithm. Application synchronously highlights used
lines of code and updates the current state line showing the current state of the
algorithm and some values of used variables.

Figure 15: Information panel

22

When the window is resized and the information panel does not fit, it becomes
scrolable. It is possible to hide this panel by clicking on it. In order to restore
the panel, use the button with arrow which is located on the place of the side
panel.

5.3.4 Upper panel

The upper panel includes selector of the algorithms. To see the list of available
algorithms click on the "Algorithms" (Figure 16).

Figure 16: Algorithm selector

5.4 Interaction
This section describes possible interactions between user and the application.

5.4.1 Starting new visualization

To start a new visualization, there are some options. You may either start it by
selecting an algorithm from the algorithm selector on the upper panel or click
"Reset" to initialize new visualization of the current algorithm with random data.
Finally, you can initialize new visualization with custom data.

Figure 17: Window "New sorting"

23

To initialize new visualization with custom data, click the "NEW" button on
the control panel. After it, there appears a window (Figure 17). To select an
algorithm, choose one from the drop-down list. The input field, which is a line
lower, allows a user to enter a sequence of integers. By default, it is filled with
randomly generated numbers. For separation of numbers use space or comma.
The input field accepts numbers from range 0 - 99, except a pair of algorithms.
Counting Sort has range 0 - 9 and Radix Sort accepts numbers from range 0 -
9999.

5.4.2 Visualization control

After setting up a new visualization, it is easy to control sorting visualization.
To run the visualization click on the "Play" button or press R key. "Play" button
may not be available in case visualization is already running or is finished. Also,
"Play" button resumes sorting process after it was paused. The process is paused
by pressing "Pause" button.

Stepping through the sorting process is performed by two buttons. Step back
action is done by clicking the "Step Back" button, which is to the left of the
"Play" button. Step forth is made by clicking the "Step Forth" button, which is
to the right of the "Pause" button. Both actions are not possible during sorting
is running.

In addition, there are buttons that allow go to the beginning and to the end.
"Go to start" returns sorting in the initial state. "Go to end" action is intended
to fast-forward visualization to the "sorted" state.

Finally, the application allows changing the speed of visualization. By default,
there is an optimal speed of animation. To slow down animations, move the knob
to the left. To make the visualization run faster, slide the knob to the right.

5.4.3 Information about the application

To display a window with information about the application (Figure 18) click
the "About" button on the upper panel or press F1 key.

Figure 18: Window "About"

24

5.4.4 Opening description

There is a short description for each algorithm. To show information click "Info"
button on the control panel or press F2. Then a window with the short descrip-
tion will show up (Figure 19). To close the window use standard close button or
press Esc.

Figure 19: Window "Description"

5.4.5 Escaping application

Close application by clicking exit button. Its location depends on the operating
system. Also, you may use the Esc button.

5.5 Keyboard shortcuts
Keyboard shortcuts for Windows and macOS are in the table 1.

Table 1: Shortcuts

Action Windows macOS
Run/pause visualization R R
Step forth Ctrl + D Cmd + D
Step back Ctrl + A Cmd + A
Show description F2 F2
New random sorting F5 F5
New custom sorting F4 F4
About F1 F1
Close application Esc Esc
Close "About" window Esc Esc
Close description Esc Esc

25

Závěr
Pro bakalářskou práci byl vytvořen software pro podporu výuky třídících al-
goritmů pomocí vizualizace průběhu třídění nejznámějšími algoritmy. Aplikace
dovoluje krokování vypočtu dopředu a dozadu pro každý reprezentovaný algo-
ritmus. Je možné spustit vizualizaci na zadaném či vygenerovaném vstupním
poli. Při běhu vizualizace se zobrazují pseudokód použitého algoritmu a aktuální
hodnoty některých proměnných.

Snažil jsem se vytvořit kvalitní software ze snadno ovladatelným uživatelským
rozhraním, které by býlo použitelné pro přednášející, cvičící a studenty. Možným
vylepšením aplikace by mohlo být rozšíření o další algoritmy.

První část textu bakalářské práce je teoretická. Zaměřuje se na obecný po-
pis algoritmů, jejích vlastnosti a popis třídících algoritmů použitých v aplikaci.
Druhá část popisuje samostatnou aplikaci.

26

Conclusions
As the main goal of this bachelor thesis, there was created the teaching support
application which visualizes the most known sorting algorithms. The application
allows stepping forward and backward through each represented algorithm. User
may run sorting on a random or custom array. During the demonstration run, the
application visualizes pseudocode and current information about some variables.

I tried to create high-quality software with a user-friendly and easy-to-use
interface, which could be used by lecturers, tutors, and students. Possible next
improvement of the applications is extension it by other algorithms.

The first part of the thesis text is more theoretical. It tells about algorithms
in general and the algorithms represented in the application. The second part is
focused on the application itself.

27

A Contents of enclosed CD/DVD
On enclosed CD/DVD you will find:

bin/
Contains the entire program.

doc/
This directory contains the text of the thesis in PDF created according to
the KI RřF style for theses. Includes all the attachments and files needed
for generating the text in PDF.

src/
Complete source codes of the program "Sorting Visualizer".

28

Acronyms
CSS A style sheet language.

JVM A virtual machine that enables a computer to run Java programs as well
as programs written in other languages that are also compiled to Java
bytecode.

29

References
[1] CORMEN, T. H.; LEISERSON, C. E.; RIVEST, D. L.; STEIN, C. Introduction

to algorithms. Second Edition. 2001. ISBN 0-262-03293-7.
[2] KNUTH, D. The Art of Computer Programming: Fundamental Algorithms. Third

Edition. 2004. ISBN 0-201-89683-4.
[3] SIPSER, M. Introduction to the Theory of Computation. Boston, MA: PWS

Publishing Company, 1997. ISBN 0-534-94728-X.
[4] BĚLOHLÁVEK, R. Algoritmická matematika 1 : část 2. Available also from:
〈http://belohlavek.inf.upol.cz/vyuka/algoritmicka-matematika-1-2.pdf〉.

[5] KNUTH, D. The Art of Computer Programming: Sorting and Searching. Second
Edition. 2004. ISBN 0-201-89685-0.

[6] SEDGEWIK, R.Algorithms in C: Fundamentals, data structures, sorting, search-
ing. Third Edition. 2007. ISBN 0-201-31452-5.

[7] GeeksforGeeks. Available from: 〈https://www.geeksforgeeks.org/〉.
[8] BĚLOHLÁVEK, R. Algoritmická matematika 1 : část 1. Available also from:
〈http://belohlavek.inf.upol.cz/vyuka/algoritmicka-matematika-1-1.pdf〉.

[9] Stackoverflow. Available from: 〈https://stackoverflow.com/〉.
[10] Java documentation. Available from: 〈https://docs.oracle.com/javase/8/〉.

30

http://belohlavek.inf.upol.cz/vyuka/algoritmicka-matematika-1-2.pdf
https://www.geeksforgeeks.org/
http://belohlavek.inf.upol.cz/vyuka/algoritmicka-matematika-1-1.pdf
https://stackoverflow.com/
https://docs.oracle.com/javase/8/

	Visualization of Sorting Algorithms
	Title page
	Synopsis
	Contents
	1 Introduction
	2 About algorithms
	2.1 What is an algorithm?
	2.2 Algorithm description
	2.3 Types of algorithms
	2.4 Complexity
	2.5 Sorting

	3 Sorting algorithms included
	3.1 Insertion Sort
	3.2 Selection Sort
	3.3 Bubble Sort
	3.4 Cocktail Sort
	3.5 Quick Sort
	3.6 Merge Sort
	3.7 Heap Sort
	3.8 Counting Sort
	3.9 Radix Sort
	3.10 Bucket Sort

	4 Documentation
	4.1 Used technologies
	4.2 Structure overview
	4.2.1 A root package
	4.2.2 Constants, Data and Enum packages
	4.2.3 Controllers package
	4.2.4 NodeControllers package
	4.2.5 UI package
	4.2.6 Utilities package
	4.2.7 Algorithms package
	4.2.8 Resources

	5 User Guide
	5.1 System requirements
	5.2 Starting application
	5.3 User interface
	5.3.1 Visualization panel
	5.3.2 Control panel
	5.3.3 Information panel
	5.3.4 Upper panel

	5.4 Interaction
	5.4.1 Starting new visualization
	5.4.2 Visualization control
	5.4.3 Information about the application
	5.4.4 Opening description
	5.4.5 Escaping application

	5.5 Keyboard shortcuts

	Závěr
	Conclusions
	A Contents of enclosed CD/DVD
	Acronyms
	References

