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Probabilistic Discrete Model of Concrete Fracturing

Introduction

The general focus of researchers in civil engineering is to understand, model and pre-
dict behavior of civil engineering structures. Such ability requires to have strong foun-
dations in understanding the behavior of materials used to build these structures. One
of the most common material in civil engineering practice is concrete and similar sili-
cate composites.

A significant aspect of the behavior of concrete structures is their nonlinear re-
sponse to loading which is, moreover, random due to its heterogeneous nature. An ac-
curate model of concrete that would be able to capture the generation and development
of microcracks and their subsequent interconnection into macrocracks has therefore to
take into the consideration the natural disorder of the inner structure and associated
inherent (natural) variability of the local material parameters that lead into the ran-
dom response of the structural members. The numerical model has to be able also to
describe the post-critical behavior of the material with the development of the zones
of intensive energy release. Such zones are referred to as the fracture process zones
and it is generally agreed that the phenomena defining the member overall strength
take place here. Therefore, precise description and understanding of these zones are
essential for the modern civil engineering.

Numerical modeling combined with laboratory testing is the most common and
most efficient way of detailed investigating of the behavior of materials and members
in engineering today. Correct numerical model can provide a strong tool for inten-
sive virtual testing with wide range of possible test setups (sometimes hardly feasible
in laboratory) while physical experiments ensure the model validity and correctness.
Both methods need to be combined together so that their correctness and applicability
can be proven.

The discrete modeling of materials provides several advantages compared to the
classical continuum models. They offer a convenient tool for modeling the members
made of composites due to their ability to describe the heterogeneous inner structure.
At the same time, by implementation of relatively simple formulation of the constitu-
tive relation, they can simulate the phenomenon such as softening of the material in
the direction orthogonal to the cracks, etc. Such capability is, on the other hand, the
reason for higher computational demand of such models. Despite this fact, discrete
material modeling became a well-known method in the modern engineering.

The dissertation thesis deals with the behavior of concrete as a representant of
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heterogeneous material with a quasi-brittle response to the mechanical loading. It
investigates possibilities of application of a modern computational model of concrete
which is capable of capturing the mechanical behavior on the scale of its grains (meso-
scale modeling). The model chosen for such study is the lattice-particle model which
had been developed by G. Cusatis and collaborators [3, 4, 5] under the name LDPM
(lattice discrete particle model). It describes the material as an assembly of discrete
units. This well-known model has been extended by incorrporation of the spatial vari-
ability of selected model parameters [7]. The parameters that have been considered
as random are the local tensile strength of the contact between two aggregates and the
fracture energy of this bond. These parameters have been defined by means of the mu-
tually correlated random fields. Such an additional source of disorder of the response
could help the model to correspond better to the experimental results. The enhanced
model could also be able to address the natural localization of damage that appears in
the structural models without any strong stress concentrators.

The thesis aims to deliver the robust numerical model combining the probabilis-
tic models with the advanced mechanical model of concrete on its meso-level scale.
Such model is employed in an intensive virtual testing of the concrete members with
different input conditions. Correct behavior of such numerical model is guaranteed by
the validation based on comparison with the real measurement. For that reason, the
results of the computational model are compared to some published experiments.

Objectives

• Application of the discrete model enhanced by the spatial variability considered
in form of random field

• Identification of the model parameters based on the experimental data from wide
series of bent concrete specimens of different sizes and notch depths

• Model validation based on the experimental data

• Study on performance of the basic and enhanced numerical models; evaluation
of the response variability and the study on the influence of the autocorrelation
length of the random field on the overall member response

• Description and evaluation of the nonlinear zone active during the model load-
ing with the main focus on size and shape of such zone at the peak load
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1 State-of-the-Art

Mechanics of fracture and damage of quasibrittle materials such as concrete focuses
on the investigation of the crack propagation occurring in a particular zone around the
crack tip. This zone (fracture process zone, FPZ) of such materials is characterized by
an inelastic phenomena and its size is usually not negligible compared to the structural
size. The classical linear elastic fracture mechanics (LEFM) presumes that the FPZ
is a very small region (almost a point) but that does not correspond to the FPZ of
concrete, unless the structure is extremely large. To study this region, it is necessary
to simulate the FPZ of concrete structures directly.

Numerical modeling of concrete response on mechanical loading is a highly de-
veloped field. However, due to the highly heterogeneous nature of concrete and its
quasibrittle behavior, it is difficult to develop appropriate model that enables the pre-
diction of its response on the mechanical loading. For this purpose, a range of complex
numerical models were developed. These models allow to simulate both the pre- and
post-critical behavior. During the process of failure, the stress is gradually released in
the fracture process zone at the top of the macroscopical crack. This behavior can be
attributed to the material heterogeneity. Therefore, it is reasonable to include the het-
erogeneity directly to the models. Material heterogeneity can be represented in both,
the continuum models, and also in the discrete models. The discrete models describe
the material as an assembly of mutually connected discrete units. The most simple
and also least phenomenological are the classical lattice models [13, 22, 14, 23, 16]
with brittle-elastic elements and a lattice geometry independent of the inner structure
of the material. These models could be computationally inefficient for a simulations
of larger concrete members. Significant reduction of the computational time can be
achieved by creating the discrete cells around every concrete mineral grain. Such mod-
els, often termed the lattice-particle models, can be applied for simulation of larger
material volumes [1, 3, 15, 7]. The lattice-particle models usually utilize more com-
plex and phenomenological contact behavior between particles as they need to mimic
the effects of excluded heterogeneity at lower scale.

One of the advantages of meso-scale models with randomly generated meso-
structure is that a large potion of the spatial variability in the local material properties is
automatically included. It is because specimens modeled with irregular mesostructure
automatically exhibit many features of random quasibrittle behavior. The model offers
the possibility to include also an additional material randomness by considering some
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parameters as random quantities. These random parameters are usually simulated as
spatially varying in a form of stationary random field [25, 10, 11]. The probability
distribution of random fields representing the local material properties, and also its
autocorrelation and cross-correlations (relationships between random variables), need
to be defined. The paper presents such an enhanced lattice-particle model and numer-
ical studies performed with it on a three point bent beams with and without notch.

The presented probabilistic meso-scale models have therefore two sources of the
variability of results. One comes from the random heterogeneity, and the other from
the random fluctuations of parameters. The thesis is aimed to reveal the influence of
the spatial fluctuation of the model parameters on mechanical response of the model.
The version of the model without the additional random variability in parameters is
called here deterministic model, whereas the version enhanced by the spatial fluctua-
tion of parameters is referred to as the probabilistic model.

2 Discrete Model

2.1 Deterministic discrete model

The discrete model is implemented according to papers of Gianluca Cusatis [5, 6]. Ini-
tially, spheres representing mineral grains in concrete are randomly generated inside
the volume of the specimen without overlapping. The radii of spheres are sampled us-
ing the Fuller curve with maximum diameter 10 mm. Based on the position of spheres
and their radii, tessellation is performed and the discrete units associated with the
mineral grains are created. The units are treated as ideally rigid and they are inter-
connected at their contact facets. The connection is realized via three internal forces
(one normal and two tangential) that are calculated according to nonlinear constitutive
equation. The strains for each direction are obtained from discrete displacement jump
at the facet center divided by length of the connection. After the initial elastic regime
(with the strength limit dependent on the direction of straining – i.e. by the ratio be-
tween normal and tangential strains), an exponential softening is implemented based
on a single damage parameter for all three directions. The details about the discrete
model can be found in [7].

The discrete model is applied only in areas where crack is expected to initiate and
propagate. The rest of the specimen is modeled by linear 8-node finite elements. The
connection between the discrete and continuous model is provided by auxiliary grains
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Figure 1: a) Random placement of the grains – simulated meso-structure. b) Rigid
cells created by tessellation. c) Contact between adjacent cells. Figure adopted from
[7].
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Figure 2: Constitutive law according to [5]: the elastic envelope (right) and the expo-
nential softening (left). Figure adopted from [7].

lying on the boundary surface that are “hanged” on the elements, i.e. their translational
degrees of freedom are suppressed and derived directly from the shape functions of
the neighboring element.

2.2 Probabilistic discrete model

In the probabilistic extension of the model, it is considered that local tensile-related
parameters – the tensile strength, ft, the shear strength, fs, the fracture energy in ten-
sion Gt and in shear Gs– vary randomly in space. The relationships for the shear
properties (fs = 3fs and Gs = 16Gs suggested in [5]) are exploited. Therefore, only
two parameters, ft and Gt, are randomized directly. Their spatial variability is as-
sumed in a form of stationary random field. The two spatially varying fields, ft (x)

and Gt (x), are interrelated and both of them are functions of a single underlying ran-
dom field H (x) defined using a random variable h (characterized via its distribution
function) and an autocorrelation function. Entries of the vector x index the spatial
coordinates of a point. The stationarity is meant such that the probabilistic distribu-
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Figure 3: One realization of a random field generated on a regular grid (left) and
projected to the model elements (right). Figure adopted from [7].

tion of the underlying random field H (x) is identical at any point within the domain
considered and the autocorrelation function depends solely on the distance of a pair of
points, not on their absolute positions.

The h variable has Weibull-Gauss distribution [2, 20, 19] with the mean value
E[h] = 1. Based on parameter identification using the experiments [12], its coefficient
of variability was estimated to be about 14 % (CoVh = 0.14).

The autocorrelation of the random fields is given by the following function

ρij = exp

[
−
(‖xi − xj‖

lc

)2
]

(1)

where lc is the correlation length. The random field is generated via series expansion
using the EOLE (expansion optimal linear estimation) method [21]. A linear combi-
nation of eigenfunctions of the covariance function multiplied by uncorrelated Gaus-
sian random variables are used to perform the series expansion of the random field
over grid values using the orthogonal decomposition [24]. The generation of samples
of random field becomes extremely computationally demanding for short correlation
lengths. Therefore, the separability of the correlation function into individual spatial
dimensions has been exploited and the solution of the eigenfunctions has been decom-
posed into three separate 1D problems along each spatial coordinate, see the appendix
of [7].
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3 Identification of the Model Parameters

3.1 Experimental data

Model parameters were identified on a set of experimental data form the Université de
Pau et des Pays de l’Adour, France, published in [12]. In the experiment, three types
of concrete beams with different depth of a notch were tested in three-point bending,
each in four different geometrically similar sizes. Deeply-notched beams (notch-to-
depth ratio of αa = 0.5, referred as half-notched) are marked with lower case letter a,
shallowly-notched beams (notch-to-depth ratio of αb = 0.2, referred as fifth-notched)
with a lower case b and unnotched beams with c. The depth of the beams D was
400, 200, 100 and 50 mm, these size groups are marked with capitals A, B, C and D.
The length of all beams was 3.5D, the supports of the loading machine were located
0.5D from edges (bending span equals to S = 2.5D). All the beams shared the same
thickness of b = 50 mm, the width of the notch was also kept constant and equal to
3 mm. The scheme of the individual specimen geometry is depicted in Fig. 4 for each
size and notch group.

Overall, from 34 tested beams, 13 beams were deeply-notched, 11 shallowly-
notched and 10 were unnotched. The authors of [12] provided the results of the bend-
ing experiments in a form of a load−displacement (F−CMOD, crack-mouth opening
displacement) curves and the values of the peak load Fmax. The mean curve was used
for the identification of material model parameters. The two values presented below
the group name correspond to the average peak load, Fmax [kN], and to the average
area under the curve, A [kN·mm]. These two values served for the identification of
the tensile strength and the fracture energy.

Due to the high demand of the model on the computational power, the discrete
model had been used only in regions where the cracks are most probable to appear to
save the computational time.

3.2 Parameters identification and model validation

The parameters of the deterministic model were found in the first step. The original
model has 12 adjustable parameters, however, only four of them (some of those with
a physical meaning) have been been identified: elastic modulus of matrix, Ec, ten-
sile strength, ft, fracture energy in tension, Gt, and the parameter α determining the
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macroscopic Poisson ratio. The value of the remaining parameters was either calcu-
lated using the relation to the other parameters or taken from [5].

The deterministic parameters (tensile strength, ft, and fracture energy in tension,
Gt) have been identified with help of only a part of the experimental data – the three
largest sizes of beams with a deep and a shallow notch (groups Aa, Ba, Ca, Ab, Bb,
Cb). The rest of the experimental data served for the validation of the model.

αa= 0.5 αc= 0αb= 0.2

D
A
 = 400 mm

DB = 200 mm

D
C
 = 100 mm

D
D

 = 50 mm

A

B

C
D

cba

length: 3.5 D thickness: 50 mm span: 2.5 D
Figure 4: Schematic overview of beam geometries tested in [12].

Once the deterministic model parameters have been found, the parameters of the
probabilistic extension could be identified. To simulate of the loading capacity of
a quasi-brittle solid, the material strength and the fracture energy can be considered as
the most important parameters. Therefore, the spatial variability of these two param-
eters was taken into account when simulating the fracture process by the probabilistic
model. Here, the tensile strength of the material, and the tensile fracture energy, are
considered to be linearly dependent on the random field value, [10]. As an identical
probability distribution and coefficient of variation have been used for all these pa-
rameters, a single random field could be used to generate values for both parameters.

The chosen distribution FH (Gauss distribution with the Weibullian left-hand tail)
is defined by four parameters of the distribution. To find one of them based on the
experimental results – the coefficient of variation of the random field H (the other
two parameters, m and pgr were set according to literature and µ = 1), the following
assumption was exploited: if the strong stress concentrator is present, the influence
of the spatial variability (correlation function) on the mean strength is negligible, as
was shown in [8, 9]. The strength of the beams with a deep notch is dependent mostly
on the material in the closest neighborhood of the notch tip, which is defined only
by the probability distribution FH . By introducing a strong stress concentrator, the
influence of the correlation length becomes negligible and only the local properties of
the random field (distribution FH ) matters. Therefore, the results from the tests on
deeply-notched beams were used to determine CoV.
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Coefficient of variation was identified from the results of the second largest beams
with a deep notch (group Ba) as it had the highes population number of tested spec-
imens. The minimum error (the difference in CoV between the experimental results
and the simulated responses from the probabilistic model with the infinite correla-
tion length) has been searched in an iterative procedure. Based on such optimization
process, the CoV of FH was estimated to be 0.14. Knowing the value of CoV, the
correlation length, lc, could be roughly estimated by matching the peak loads from
experiments on unnotched beams, where the mean peak load strongly depends on the
correlation length, as shown in [8, 9]. The value of correlation length of the random
field of strength and fracture energy was estimated from the largest unnotched spec-
imens (group Ac) to match the average peak load from experiments. The resulting
estimate was lc = 0.1 m.

Once the model parameters were identified, the performance of the model (deter-
ministic and probabilistic) could be validated [17]. Ten simulations with the deter-
ministic model were performed for each of the specimen type and size. The curves
simulated by the deterministic model are in a good agreement with the experimental
results. The model can predict the peak load as well as the post-critical part of loading.
Although the model is deterministic (with constant parameters for all ten simulations),
its response is scattered. The reason is the random location and size of grains which
is different for each simulation. Yet, the scatter of deterministic model is still not suf-
ficient when compared to the experimental one. It is therefore believed that another
source of disorder should be added to simulate more realistic response of concrete
specimens. Such a source can be the random spatial fluctuation of parameters in form
of a random field.

With the probabilistic discrete model which contains both sources of material dis-
order (the heterogeneous random inner structure and the spatially fluctuating random
material parameters), 24 simulations of each test setup were performed. Again, the
simulated responses are in good agreement with the experimental results. Comparing
both types of simulations, it is obvious that after introducing the variability of the in-
put parameters, the scatter in the maximum load as well as in the dissipated energy in-
creased for the notched beams, while the mean value of the maximum force remained
unchanged. For the unnotched beams, besides the increase of the response scatter, the
decrease in the average maximum force is present. The random field helps the inelas-
tic strain to localize into macrocracks. Examples of two different beams simulated by
the probabilistic model can be seen in Fig. 5: one deeply-notched beam (Aa) of the
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Ac_0Aa_10

Figure 5: Examples of two probabilistic simulations. Left: deeply-notched beam Aa.
Right: unnotched beam Ac. First row: realization of the random field H used in
the simulation; second row: damage parameter at the peak load; third row: damage
parameter at the end of the simulation.

largest size and one unnotched beam of the largest size (Ac), both with their random
field H used for the scaling of strength and fracture energy (the first row), the damage
parameter at the peak load (the second row) and the damage parameter at the end of
the simulation (third row). The figure nicely illustrates the localization of damage at
the peak load and macrocrack formed at the end of the simulation.

4 Influence of the Correlation Length

4.1 Determining the correlation length and scaling of fracture
energy

The correlation length, lc, has been roughly estimated in the first step by matching
the maximum load on the largest unnotched beams. Nevertheless, it is interesting to
investigate how the changing value of lc influences the simulations. Therefore, an
effect of changing lc on the overall response has been investigated.
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Figure 6: Experimental (green), deterministic (red) and probabilistic (blue) peak load
[kN] vs. correlation length [m] of the random field from simulations of all sizes of
unnotched beams (groups Ac, Bc, Cc, Dc).

A set of 24 probabilistic simulations was calculated for each size of deeply-
notched (groups a) and unnotched (groups c) beams, repeatedly for different values
of lc. The correlation length varied between “zero” and infinity (overall 14 values of
lc have been considered). The zero correlation length refers to the probabilistic setup
where each contact between particles has independent random value of h, yet all the
values are sampled from the same probability distribution FH . For the infinitely large
correlation length, the random field H(x) degenerates into a single constant (which
is random for each simulation) value h in all its points – simulation with such a field
is identical to the deterministic simulation with parameters multiplied by h. Figure 6
presents the dependency using 24 unnotched simulations in each size group. It can be
observed that simulations with different values of lc did not provide the same mean

11



Doctoral Thesis Statements

0← 0.01 0.1 →∞
1.0

1.1

1.2

1.3

1.4

1.5
a

deterministic probabilistic simulations

correlation length [m]

p
ea

k
lo

ad
[k

N
]

Figure 7: Dependency of the maximum load on the correlation length lc of the random
field for deeply-notched beams (type a).

peak load. Contrary to the unnotched beams, the average peak load of the notched
beams is not influenced by the correlation length lc. The standard deviation of the
peak load seems to be increasing with the value of lc. Surprisingly, the mean peak
load from the probabilistic model did not reach the mean load of the deterministic
model. This fact was caused by the scaling method used to sample the fracture energy.
In these simulations, the linear scaling of fracture energy was applied which results in
nonlinear relation between strength of the probabilistic model with lc = ∞ and the
applied scaling factor h.

For the further simulations, the scaling method was changed: the tensile strength
remains a linear function of the random field H , but the fracture energy has quadratic
dependence onH . Such a nonlinear relationship between ft andGt has the advantage
of preserving the character of the material (ductility vs. brittleness). As a conse-
quence, the peak loads of the whole structure are proportional to the value of h.

4.2 New geometry

To investigate the relation between the structural strength and the correlation length,
a new (more convenient) geometry of the concrete beams is introduced. In this
new simulation series, three types of beams are tested again: deeply-notched (half-
notched, marked a), shallowly-notched (fifth-notched, marked b) and unnotched
beams (marked c). The model parameters have been adopted from the simulations
of the bending experiments [12].
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Figure 8: Dependency of the maximum load on the correlation length lc of the random
field for unnotched beams (type c).

Obtained dependency of the mean maximum load on the correlation length is plot-
ted in Figs. 8 and 7. The blue error-bars show the probabilistic models differing in lc
whereas the red line and the shaded areas show the mean ± one standard deviation
calculated from the peak loads of 100 deterministic simulations. In the graphs, we can
observe some common phenomena.

In the case of infinite correlation length, lc = ∞, the dependence on a spatial
coordinate x vanishes and the random field is defined by a single random variable,
H(x) = h. Therefore, the samples of the random field are random constants over
the specimen domain. This case corresponds to the deterministic simulations with
variable multiples of fracture parameters ft = fth and Gt = Gth

2. The source of
disorder in each simulation is then from the inner structure only. In the thesis, the
derivation of the variation coefficient of the model with lc =∞ is derived.

In the other limit, lc = 0, the random field is just a theoretical construct. This
case is modeled by assigning each contact (facet) in the discrete model a random
value of h independently of the surrounding contacts. Nevertheless, the mean and
standard deviation from probabilistic simulations approximately equal to the mean
and standard deviation from deterministic simulations. This can be observed for all
three beams geometries (notched and unnotched beams).

For the values of the correlation length lying in between zero and infinity, notched
and unnotched beams behave in a different manner: the notched beams do not show
a sensitivity to the value of the correlation length of the random field and their prob-
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Figure 9: Notched beams. Left: Schematic representation of spatial variability of
H(x). Middle: load – gauge opening curves for selected values of lc. Right: Damage
pattern at the peak load and at the end of one simulation.

abilistic mean strength follow the value of the deterministic simulations. For the un-
notched beams, some reduction of the probabilistic mean strength can be observed.

The results of probabilistic and deterministic simulations are also presented in
Fig. 9 for deeply-notched beams and in Fig. 10 for unnotched beams: the determin-
istic simulations (the first row) and the probabilistic simulations with lc equal to ∞,
0.025 m and 0.

By comparing the deterministic and the probabilistic simulations, it can be ob-
served that the incorporation of the spatial variability in the parameters leads, for the
beams with a notch, to an increase in variance of the peak load while the mean values
remain unchanged. The reason for such a behavior is presence of the stress concen-
trator at the tip of the notch. The crack is forced to start from the notch and therefore
the maximum load is dictated by the small volume of the material above the notch
tip only. The amount of this critical volume is determined by the material internal
length and it can be assumed approximately constant for any randomness applied.
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Figure 10: Unnotched beams. Left: Schematic representation of spatial variability of
H(x). Middle: load – gauge opening curves for selected values of lc. Right: Damage
pattern at the peak load and at the end of one simulation.

The shorter the correlation length, the more spatial fluctuations of material properties
are present inside this volume. However, the crack initiating there has to (at least par-
tially) damage most of the bonds inside that critical volume and the strength is dictated
by almost all the values of h there. Some kind of averaging of these fluctuations is
therefore present. The averaging inside the critical volume leads to the decrease in
standard deviation of the peak load as the correlation length decreases. In the limit
case of lc = 0, the averaging is so strong that the standard deviation is about the same
as in the deterministic simulations, i.e. the randomness due to spatial fluctuation com-
pletely diminishes; the variability in parameters due to random h is eclipsed by the
effect of random orientation and size of the facets.

For the unnotched beams, the situation is quite different. The absence of stress
concentrator allows the cracks to choose where to initiate from and where the critical
cluster of damage occurs. Therefore, such a critical volume can be selected anywhere
along the bottom surface. It will naturally choose the worst combination of stress
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and strength. The strength is again given by averaging the fluctuations within the
critical volume (and of course by the grain arrangement there). As the correlation
length decreases, the rate of fluctuations increases and the probability that some weak
area occurs and allows the crack to initiate increases as well. Therefore, the mean
strength decreases with decreasing lc. However, there is a limit dictated by the size
of the critical volume. When the random field H starts to fluctuate inside the critical
volume too much, the averaging effect leads to an increase in the strength of the critical
volume. The more fluctuations within the critical volume, the stronger the averaging.
In a limit case of extremely small lc → 0, the randomness has no effect and the
mean of the peak load should be equal to the mean peak load from the deterministic
simulations [18].

Now, a closer look at the spatial distribution of the energy dissipation inside this
active zone can be taken. The following section will deal with several attitudes how
to evaluate and describe the active zone and its energy release.

5 Spatial Distribution of Energy Dissipation

This chapter of the thesis is focused on the region created during the fracture process
in the discrete model where the most of the damage and the energy release take place.
Such zone of the material is usually referred to as a fracture process zone (FPZ).
The ability to provide information about the FPZ is limited to detailed meso-level
models. The meso-level discrete model used in this work enables tracing the process
of formation and growth of the FPZ and subsequently also describing its size and
shape in different phases of the loading. The FPZ also changes if we employ the
spatial variability (the random field of strength and other parameters), as well as the
test setup (notched and unnotched geometry) [7].

The data obtained during the virtual experiment on three-point bent beams was
used to investigate the active zone. The same hundred simulations from previous
chapter with the deterministic and probabilistic model (for every value of the correla-
tion length of the random field) were used.

To process and evaluate the data from simulations, several strategies are used:
applying a mesh grid and evaluating the information on each cell of the grid (i); ap-
proximating the active zone shape with various geometrical shapes (ii); and using the
outlier and novelty detection tool in Python (iii).
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Figure 11: Mesh grid evaluation of the active zone: contour plot of R̄b (normalized
relative dissipated energy) in bins for three different models.
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5.1 Mesh Grid Procedure

In the mesh grid method, the beam is divided into regular orthogonal grid with a de-
fined cell size and each contact is assigned based on its coordinates to the appropriate
grid cell. Then, the observed quantity is summed up inside each cell and the results
can be presented. The mesh grid was considered as two-dimensional (each cell has
the same thickness as the beam). The results can be plotted for different phases of
the loading (elastic regime, peak, postpeak). For the investigation of the active zone,
we will focus now on the peak of the loading curve, when the beam is loaded by the
maximum force. For this purpose, we are not interested in the total energy released
from the beginning of the test till the peak load but only in the one time step when
the peak load is reached. This allows us to investigate the rate of energy release at the
peak load.

Figure 11 shows the normalized dissipated energy R̄b of the mesh grid bins on the
three different probabilistic models of unnotched (left) and notched (right) beams. The
relative dissipated energy Rb of each bin was normalized with respect to the bin with
the highest value – the dark red color represents the bins with the highest relative dis-
sipated energy while the dark blue corresponds to the regions with energy below 1 %
of the highest value. Comparing the active zones of the notched and unnotched beams,
it can be observed that, for unnotched beams, the region with a low energy dissipation
(R̄b ∈ 〈1%, 5%〉) is much larger than in case of the notched beams. The damage
and energy release happen, in case of unnotched beams, in much larger portion of the
beam. On the contrary, region of high energy dissipation is quite similar, both in size
and shape. When comparing the active zone of different correlation lengths, it seems
that there is no influence in notched case, but some in unnotched case.

Contour plots were evaluated for each of the correlation length lc. Three contours
in elevation corresponding to approx. 20 % (solid line), 40 % (dash line) and 60 %
(dotted line) of the maximum R̄b are plotted in Fig. 12, both for unnotched beams
(top) and notched beams (bottom). Top three diagrams always show the maximum
width of the zone (left), its maximum depth (middle) and the square root of the over-
all area (right) enclosed by the selected contour. The horizontal lines in these plots
represent the results of corresponding deterministic model. From these diagrams, the
dependence of the shape of the active zone on the correlation length of the random
field can be clearly observed.

Looking at the diagrams of the unnotched beams (Fig. 12a), a strong influence

18



Probabilistic Discrete Model of Concrete Fracturing

det 0.0 0.00625 0.0125 0.01875 0.025 0.05 0.1 0.15 0.2 inf
lc [m]

0

5

10

15

20

25

30

35

40

45

y
[m

m
]

0 ∞
lc [m]

0
5

10
15
20
25
30

zo
n

e
w

id
th

[m
m

]

20 % 40 % 60 %

0 ∞
lc [m]

10
15
20
25
30
35
40
45

zo
n

e
d

ep
th

[m
m

]

0 ∞
lc [m]

5

10

15

20

25

zo
n

e
sq

rt
(a

re
a)

[m
m

]

(a) Unnotched beams

det 0.0 0.00625 0.0125 0.01875 0.025 0.05 0.1 0.15 0.2 inf
lc [m]

70

75

80

85

90

95

100

105

y
[m

m
]

0 ∞
lc [m]

6
7
8
9

10
11
12
13
14
15

zo
n

e
w

id
th

[m
m

]

20 % 40 % 60 %

0 ∞
lc [m]

10

15

20

25

30

zo
n

e
d

ep
th

[m
m

]

0 ∞
lc [m]

9
10
11
12
13
14
15
16
17
18

zo
n

e
sq

rt
(a

re
a)

[m
m

]

(b) Notched beams

Figure 12: Mesh grid evaluation of the active zone: Three selected contours and their
dependence on width, depth, area and shape on the correlation length.
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of the correlation length on the size of the active zone can be seen. For the value of
lc = 0.0125 m, the active zone reaches the largest area. With growing or reducing
value of lc, the zone gets smaller. In extremes (lc = ∞ and lc = 0), the zone has
approximately the same size. For the deeply-notched beams, the active zone seems to
have no dependence on the random field and its correlation length. This is shown in
all three top diagrams of Fig. 12b – the zone width, depth and area are constant over
all the values of lc.

5.2 Approximation of Active Zone by Geometrical Shapes

Another way how the shape of the active zone can be displayed is to find the geomet-
rical shape which encloses as much of the specified quantity as possible (generally, it
can be energy or damage but due to reasons mentioned in the thesis, relative energy
difference at the peak was considered). In this procedure, a chosen geometrical shape
of a small size was placed to the point of high stress concentration (the notch/crack tip)
and then the energy dissipated inside the region was calculated. Different geometrical
shapes were used: rectangle, half-ellipse and half-circle with different width-to-depth
ratio (for unnotched beams) and ellipse and rectangle (for notched beams).

Subsequently, the region was scaled by a given constant (Fig. 13) and the relative
energy ∆Ē

(p)
A inside the region A was summed up again. The sum of the overall

relative energy is equal 1.
In following graphs, the dependence of the portion of dissipated energy (the ratio

between the energy inside the region defined by the geometrical shape ∆Ē
(p)
A to the

total released energy ∆Ē(p) over the whole beam) inside the region of area A is
presented. The average curve was found for each of the geometrical shape. These
curves are presented in Fig. 14 for unnotched beams and in Fig. 15 for notched beams.
Again, the results of the deterministic and three probabilistic models differing in their
correlation lengths are plotted.

According to the assumption, the geometrical shape which reaches the certain level
of ∆Ē

(p)
A with the smallest area has the most optimal shape for the approximation of

a d f j k

Figure 13: Examples of scaling of the selected geometrical shapes.
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Figure 14: Portion of the relative energy included in different geometrical shapes vs.
their area (unnotched beams).

the active zone. If we look at the results, different shapes satisfy this assumption for
different values of ∆Ē

(p)
A , nevertheless the results are similar for all four models.

Let us now focus on the results for the unnotched beams in Fig. 14. In the ini-
tial part of the diagrams, the purple curve corresponding to the half-elliptical shape
(d) with width-to-depth ratio of 6:10 performs the best. It wins up to 50 % of the
total energy (for the probabilistic model with lc = 0.025 m it is even till about
70 %). At that point, the wider shape of the red half-ellipse 12:10 (e) starts to be
more convenient till about 80 % of the overall released energy of all simulations
Etot =

∑
sim

∑
h ∆E

(p)
h (for the probabilistic model with lc = 0 about 70 %). Above

this level, the black curve of the half-circle (f) 20:10 becomes the top one till the very
last part (about 98 %). The remaining 2 % of the total energy are again in some wider
region, therefore the widest cyan half-ellipse (g) 40:10 works the best in the final stage
around 100 % of the overall ∆Ē(p).

For the notched beams, the most convenient shape seems to be the rectangle (i)
with width-to-depth ratio of 5:10 which is marked with the dark green color. For all
four models, this shape is the best approximation till the threshold of about 95 % of the
total energy. Above this limit, the wider ellipse B 6:10 (m) shifted 5 mm downwards
from the notch tip seems to approximate the shape of the active zone the best.
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Figure 15: Portion of included relative energy in different geometrical shapes vs. their
area (notched beams).

5.3 Novelty Detection Tool

The third method used to find and describe the active zone at the top of the loading
curve was the use of scikit-learn (machine learning tool) in Python (built on
NumPy, SciPy, and matplotlib). This package contains a simple and efficient tools for
data mining and data analysis, it is open source, commercially usable (BSD license),
and reusable in various contexts. We used the outlier and novelty detection procedure
to find an area of the active zone where the most of the fracture energy releases during
the peak step. Practically, we let the procedure find the best area with defined amount
of the observed quantity (the relative dissipated energy).

Figures 16 and 17 show two results of the analysis by the novelty detection tool
in Python. Only one example of deeply-notched and unnotched beams is presented –
simulations by probabilistic model with the correlation length of lc = 0.025 m.

For the notched beams (Fig. 16), the active zone is concentrated within a relatively
small area above the stress concentrator (the notch). Therefore, the Python tool was
able to find all the contours from 10 % (red line) up to 90 % (dark blue line) and
they are still close to the notch tip and have a simple shape. On the contrary for the
unnotched beams (Fig. 17) only some contours were evaluated (from 10 to 50 %). The
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Figure 16: Notched beams: Relative energy dissipated at individual contacts and bor-
der contours specifying the amount of the dissipated energy (outlier and novelty de-
tection tool).

active zone here is spread into a larger area around the final crack position as visible
from the blue circles in the figure background. However, the most of the energy is
released in a small region around the macrocrack location and is bordered by the red
line in the figure. The turquoise contour corresponding to the 50 % of the overall
dissipated energy already defines an area which is not compact any more. For the
higher contours (above fifty procent), the outlier and novelty detection tool is not able
to find a region that would be compact but is divided into several regions. Due to this
reason, the higher contours are not plotted in the figure.

If we focus now on the shape of the active zone defined by the calculated contours,
we can see that for the notched beams, it changes from an oval shape bordering the
center of the active zone (red curve) to an upturned pear shape (the dark blue line) of
the zone with almost all the dissipated energy. The region with the 50 % of the overall
dissipated energy is about 10 mm wide and 22 mm deep (turquoise line). For the
unnotched beams, the zone looks quite different: the red contour is pear shaped and
the zone grows more in the vertical direction (the contours up to 40 % are elongated),
the last plotted contour shows that the zone would have further on an oblong shape.
The 50% contour has approx. 35 mm in width and 45 mm in depth.
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Figure 17: Unnotched beams: Relative energy dissipated at individual contacts and
border contours specifying the amount of the dissipated energy (outlier and novelty
detection tool).

6 Conclusion

The presented thesis aimed to validate an advanced numerical model of concrete and
to investigate and describe, with the help of the validated model, the fracture process
inside the concrete members subjected to mechanical loading.

The discrete model was adapted and extended with the spatial variability of param-
eters in form of random field. The model in its basic and extended form was validated
based on the experimental results on beams of different size and configuration of the
stress concentrator loaded in three-point bending test.

Two versions of the model were used: the basic (deterministic) one with the ran-
dom arrangement of the particles representing the random inner structure of the mate-
rial and the extended (probabilistic) one introducing an additional source of variability
into the model – the random material parameters defined in form of the random field.
Such an extension aims to improve the response of the model regarding its variability
so that it better corresponds to the real data measured in the laboratory. For the deter-
ministic model, the elementary static and kinematic relations are introduced as well as
the procedure of generation of the topology of the model. For the probabilistic model,
the process of generation of the random fields is briefly described.
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The parameters of the introduced versions of the model are identified based on the
laboratory experiments from literature. Three different test setups of bended beams
were tested (deeply-notched, shallowly-notched and unnotched beams) in four dif-
ferent sizes. With the validated model, a wide series of numerical experiments was
simulated. The influence of the correlation length on the peak load of the probabilistic
model was studied.

A new series of simulations was designed with a focus on its convenience for the
study of the mentioned dependence. Again, three different setups (deeply-notched,
shallowly-notched and unnotched beams) were loaded in three-point bending test. The
response was simulated in the same manner: with the deterministic model and also
with the probabilistic one with ten different values of the correlation length (varying
between zero and infinity).

The results of the new series revealed the following phenomenon: regarding un-
notched beams, the strength evinces a drop around a certain value of the correlation
length. For a given setup, the value was around 19 mm. In such case, the zone of the
lower random local strength corresponds approximately to the size of the zone that has
to be damaged so that the overall failure happens. If the correlation length is changed
towards lower values (zero) or higher values (infinity), the mean probabilistic strength
matches again the deterministic value. This can be explained by the fact that for the
infinitely high value of correlation length, the random field has a constant value in all
its points. This value is different for each simulation, however, their average corre-
sponds to the value of the deterministic model. On the other hand, a random field with
a zero correlation length has a different value in each of its point. To reach the failure,
it is necessary that the material is damaged in a certain volume and the different local
point values are again averaged in this region. Therefore, the deterministic average is
reached again.

For the notched beam setup (deeply as well as shallowly), such trend is not ob-
served. In this case, the path of the crack is more or less known in advance as it is
dictated by the notch. Therefore, the local strength at the top of the notch tip does not
play an important role and the average peak strength can be considered as equal for
any correlation length of the random field (although, a slight drop can be observed for
values around lc = 6 mm.)

Finally, the thesis describes the energy release and the region in which it takes
place. Three different approaches were suggested, evaluated and compared. In the
first one, the beam was spatially divided into regular orthogonal grid and the released
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energy was summed up over the facets in each particular cell of the grid. In the
second suggested method, the zone active during the testing was approximated with
different geometrical shapes (rectangles, ellipses, half-ellipses, half-circles) so that
the region can be described in terms of its shape. For the last method of describing
the active zone with the highest energy release, the scikit-learn package (based
on machine learning procedure) implemented in Python was employed. The novelty
detection tool looks for the region corresponding to the most intensive occurrence of
target event (in our case the released fracture energy).

The above mentioned results gave more detailed insight into the shape and size of
the region with the intensive energy release (active zone) as well as its development
during the loading. The zone is not constant but its shape and size depend on the phase
during the test and also they are influenced by other factors: the geometrical setup of
the specimen (notched/unnotched configuration) or the rate of spatial fluctuation of
the material parameters.
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Probabilistic Discrete Model of Concrete Fracturing

Abstract
The thesis presents results of a numerical study on the performance of 3D discrete
meso–scale lattice–particle model of concrete. The existing model was extended by
introducing the spatial variability of chosen material parameter in form of random
field. An experimental data from bending tests on notched and unnotched beams was
exploited for the identification of model parameters as well as for the subsequent va-
lidation of its performance. With the basic and the extended randomized version of
the model, numerical simulations were calculated so that the influence of the rate
of fluctuation of the random field (governed by the correlation length) could be obser-
ved. The final part of the thesis describes the region in the beam active during the test
in which the most of the fracture energy is released in terms of its size and shape. This
region defines the strength of the whole member and as shown in the thesis, it does not
have a constant size but it is influenced by the geometrical setup and the correlation
length of the random field.

Key words
Concrete, discrete model, meso-scale, lattice-particle model, probability, random field,
experiments, crack, active zone, fracture energy

Abstrakt
Dizertační práce představuje výsledky numerické studie provedené s pomocí 3D dis-
krétního mezo-úrovňového mřížkově-částicového (lattice-particle) modelu betonu. Již
existující model byl rozšířen o prostorovou variabilitu některých materiálových para-
metrů pomocí náhodného pole. Laboratorní experimenty z literatury posloužily jed-
nak k identifikaci parametrů, zároveň také umožnily ověřit správné chování modelu
s určenými parametry. Se základním i rozšířeným modelem byla provedena série nu-
merických simulací zaměřená na popis vlivu míry proměnlivosti náhodného pole defi-
nované korelační délkou na celkovou únosnost prvku. Závěr práce je věnován popisu
oblasti, ve které je během zatěžování uvolněna většina lomové energie, a to z hlediska
její velikosti i tvaru. Tato zóna rozhoduje o celkové pevnosti prvku a jak je ukázáno,
její tvar i velikost nejsou konstantní, ale závisí na typu zatěžování (přítomnost zářezu)
a také na korelační délce náhodného pole.

Klíčová slova
Beton, diskrétní model, mezo-úroveň, mřížkově-částicový model, pravděpodobnost,
náhodné pole, experiment, trhlina, aktivní zóna, lomová energie
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