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Abstract
Blockchain technology is the core of how Bitcoin works. The aim of the theoretical part of
this thesis is to describe the principles on which blockchain technology is based and also
to gather information about how transactions are propagated through the Bitcoin network.
The aim of the practical part is to create a model of a very simplified Bitcoin Core client
that allows to create, send and receive transactions based on the propagation algorithm
used in the Bitcoin network. The model is then run in the simulation environment and the
simulation results are analyzed to identify the possible source node of the transaction.

Abstrakt
Technologie blockchain je stěžejním bodem fungování Bitcoinu. Cílem teoretické části této
práce je popsat principy, na kterých je technologie blockchain založena a zároveň shromáždit
informace o tom, jak jsou transakce šířeny v síti Bitcoin. Cílem praktické části je vytvořit
model velmi zjednodušeného Bitcoin Core klienta, který umožňí vytvářet, posílat a přijímat
transakce na základě propagačního algoritmu využívaného v síti Bitcoin. Model je následně
spouštěn v simulačním prostředí a výsledky simulace jsou analyzovány s cílem určit zdrojový
uzel transakce.
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Rozšířený abstrakt
Práce se zabývá vytvořením zjednodušeného Bitcoin klienta propagujícího zprávy reprezen-
tující Bitcoin transakce, které jsou následně monitorovány. Zachycená komunikace je poté
analyzována s primárním cílem zjistit zdrojový uzel transakce.

Tato práce je rozdělena do dvou hlavních částí obsahující nejdříve kapitoly zaměřené
na teorii a následně v druhé části praktické kapitoly týkající se návrhu, implementace
a analýzi. Cílem teoretických kapitol je poskytnout úvod do technologie blockchain a jejích
hlavních součástí, jako jsou bloky, peer-to-peer sítě, mechanismy konsensu a potenciální
výskyty forků. Dále se práce věnuje první a nejznámější kryptoměně, Bitcoinu, přičemž
se zabývá především strukturou transakce a tím, jak jsou transakce v sítí Bitcoin šířeny.
Cílem praktických kapitol je navrhnout, implementovat a analyzovat simulační model velmi
zjednodušeného Bitcoin klienta, který dokáže šířit zprávy reprezentující Bitcoin transakce
podle algoritmu používaného v reálné Bitcoin síti.

První teoretická kapitola se zabývá technologií blockchain, díky které funguje většina
kryptoměn po celém světě. Kapitola popisuje tři základní stavební kameny blockchainu,
kterými jsou blok, řetězec a peer-to-peer síť. Další probíranou a nedílnou součástí je kon-
sensus mechanismus, který slouží v peer-to-peer sítích k zajištění toho, aby se všechny uzly
v sítí shodly na stejné verzi používaných dat. V poslední řadě jsou zmíněny i různé typy
blockchainů a druhy forků, které mohou v síti nastat.

Druhá teoretická kapitola je zaměřena na celosvětově známou digitální měnu Bitcoin.
V této kapitole je popsáno co jsou to transakce a k čemu v Bitcoin síti slouží. Nadále je
popsána jejich struktura a skripty, které určují za jakých podmínek mohou být bitcoiny
v transakci utraceny. V každém případě platí, že než mohou být utraceny, musí se po síti
rozšířit propagačním algoritmem, který je popsán v předposlední sekci o Bitcoinu. Šíření
zpráv exponenciální funkcí popsané v této sekci je nadále využíváno v praktické části této
práce. Na závěr této kapitoly je uveden princip a příklad náhodně generovaného čísla, které
musí těžaři Bitcoinu uhodnout, aby vytvořili nový blok v blockchainu.

Součástí práce je rovněž stručný popis simulátoru diskrétních událostí OMNeT++.
Hlavním účelem simulátoru je modelovat a simulovat složité počítačové a komunikační
systémy. V praktické částí této práce je simulátor využíván pro simulace Bitcoin sítě.

Implementační část práce spočívá v návrhu zjednodušeného modelu Bitcoin klienta,
který dokáže vytvářet, přijímat a odesílat zprávy reprezentující Bitcoin transakce a následné
simulaci reprezentující Bitcoin síť. Způsob propagace transakcí je implementován algorit-
mem pro šíření inventory zpráv z Bitcoin Core klienta, který je popsán v teoretické části.
Tento klient je nejpoužívanějším Bitcoin klientem na světě a z tohoto důvodu byl také
použit [12]. Na základě návrhu je model implementován v již zmíněném simulátoru OM-
NeT++. Součástí vytvářené Bitcoin sítě je navíc monitorovací uzel, který je připojen ke
všem dostupným uzlům. Monitorovací uzel slouží k ukládání informací o příchozích inven-
tory zprávách od ostatních uzlů, ze kterých po dokončení simulace vytvoří CSV soubor.
Samotnou simulaci je možné pouštět vytvořeným automatizovaným skriptem s volitelnými
parametry určující strukturu a chování sítě, což je popsáno na začátku kapitoly o imple-
mentaci.

V závěrečné částí práce popsané v poslední kapitole je cílem analyzovat zachycené infor-
mace z CSV souboru. Mezi zachycené informace patří číslo běhu simulace, transakční hash
identifikující konkrétní transakci, jméno souseda, od kterého byla daná transakce obdržena
a čas ve kterém byla transakce obdržena monitorovacím uzlem. Z těchto záznamů jsou
následně získány nejrychlejší uzly z pohledu rychlosti propagace transakcí a jejich pořadí.



Hlavním cílem je určit potenciální zdrojový uzel transakce. Vedlejším cílem je celkově
analyzovat chování sítě při různém počtu zadaných parametrů.
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Chapter 1

Introduction

The first and most known cryptocurrency, known as Bitcoin, was publicly shared in 2008
by Satoshi Nakamoto. Today, there are thousands of cryptocurrencies around the world.
Most of them are using blockchain technology for their functioning. In the future, we
can expect blockchain technology to be used even more in other spheres and not only in
cryptocurrencies.

This thesis deals with a theoretical introduction to blockchain technology, where the
major parts of blockchain like block, peer-to-peer network, and consensus mechanism are
described. Furthermore, consideration is given to the various types of blockchain or forks
that may arise when employing blockchain technology.

The third chapter summarizes the Bitcoin cryptocurrency. The main focus here is on
the transaction structure and what happens with the transaction, when a node receives
it. The propagation algorithm and the exponential function used in Bitcoin Core clients
to propagate transactions are also integral parts that are described. Moreover, the most
commonly used scripts in Bitcoin are described together with the addresses whose format is
based on the script that is being used. At the end of the Bitcoin section, the presence and
calculation of the random number that miners use in the Bitcoin mining process is described.
In addition to the theoretical explanation, some of the principles are demonstrated with
concrete examples to better understand the described technology or process.

The practical part describes the implementation of a highly simplified Bitcoin client
model. The model allows to create, receive, and send messages representing Bitcoin trans-
actions based on the propagation algorithm. The model is created in the OMNeT++
simulator, described briefly in the fourth chapter.

The goal of this thesis is to explain and summarize the basic concepts of blockchain
technology and how it works. The second goal is to describe the Bitcoin cryptocurrency,
its transaction structure, and the process of propagating received or newly created transac-
tions. The last goal is to create a simplified Bitcoin client in the OMNeT++ discrete-event
simulator, which will propagate messages that represent Bitcoin transactions using the Bit-
coin Core propagation algorithm. Finally, the transaction propagation is analyzed to find
the fastest nodes in the Bitcoin network and the possible source node of the transaction.

1.1 Structure

• Chapter 2 describes the structure of blockchain technology, types, consensus mecha-
nism, and type of forks.
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• Chapter 3 contains an introduction to Bitcoin cryptocurrency. It mainly focuses on
its transaction structure and the propagation of received transactions. Furthermore,
a description of the scripts and the meaning of Nonce is described.

• Chapter 4 provides a basic overview of the OMNeT++ simulator.

• Chapter 5 describes the design of the Bitcoin simulation network.

• Chapter 6 presents the implementation of the Bitcoin simulation network, the scripts
related to its generation, analysis and the verification and validation of the created
simulation model.

• Chapter 7 reveals the results obtained from the simulation analysis.

• Chapter 8 concludes the thesis with a summary of the most important objectives
and their achievement. The contribution of the developed simulation model and its
possible future improvements are described.
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Chapter 2

Blockchain

Blockchain is a digital ledger that is often publicly accessible to all participants in the
network. In most cases, it is a decentralized system that acts as a distributed database,
which means that there is no central authority that controls the system. The distributed
nature of the blockchain ensures that the network remains operational even if individual
components fail.

The blockchain operates on a peer-to-peer network. A peer-to-peer network is mainly
a decentralized system where participants can share resources directly with each other with-
out the need for a centralized authority. The fundamental components of the blockchain are
blocks. Each block is connected to the previous one, creating a chain of blocks. Three main
elements, Block, Chain, and Peer-to-Peer network, used in the blockchain are described
in Sections 2.1, 2.2, 2.3, and are based on Bitcoin Wiki [2] and Bitcoindeveloper [11, 7].
As a side resource for understanding blockchain technology, the Hyperledger Foundation
White Papers [17] were used.

2.1 Block
In blockchain, a block is a unit of data that represents a collection of transactions, where
each block is cryptographically linked to the previous block. The blocks are verified and
added to the chain through a consensus mechanism, which is described in Section 2.4. Once
a block is added to the chain, it cannot be altered. The only way blocks can be deleted
is when there are more branches in use. This situation can occur when an accidental fork
happens. This process is described in Section 2.6. The very first block in the blockchain
is named the Genesis block. This block is not added by users, but is standardized in the
blockchain protocol.

When creating a block, several pieces of information are included. The specifics may
vary depending on the type of block you are working with, but the general structure of
a block is the following:

• Blocksize - Sets the size limit on the block.

• Block header - Contains information about the block.

• Transaction counter - Number representing how many transactions are stored in
the block.

• Transactions - a list of all transactions within a block.
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The block header contains sub-elements which are:

• Version - The cryptocurrency version that is being used.

• Previous block hash - Contains a hash of the previous block header.

• Hash Merkle root - The final hash is known as the Merkle root of a Merkle tree
in the current block. A Merkle tree is a data structure that is used to efficiently
store and verify large amounts of data in a blockchain. It works by hashing pairs of
data repeatedly until a single hash remains, known as the Merkle root. The structure
of the Merkle tree hashing is shown in Figure 2.1.

• Timestamp - The approximate time when the block was created or mined. The
format can be different for some cryptocurrencies. For example, Bitcoin uses the
timestamp in Unix format, which represents the number of seconds that have elapsed
since January 1, 1970, at 00:00:00 UTC.

• Bits - The difficulty rating of the target hash, signifying the difficulty in solving the
nonce.

• Nonce - Nonce is a 32-bit number and a shortcut for a Number used only once. It
is part of the consensus mechanism that miners use to find valid blocks and earn
rewards. A nonce is a random number that miners add to the block data and then
hash it. The resulting hash must meet specific criteria.

Figure 2.1: Merkle tree system hashing each pair of data until one single hash remains,
known as the Merkle root.

2.2 Chain
A chain is a linked sequence of blocks. Each block contains a cryptographic hash of the
previous block header, creating a chain of blocks. This chain is what allows the blockchain
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to function and create trust through mathematics. The hash is generated from the data that
was present in the previous block, acting as a fingerprint and locking the blocks in order and
time. There are various hashing algorithms used in blockchain technology. One of them is
SHA-256, where SHA stands for Secure Hash Algorithm and 256 means fixed-size 256-bit
hash. This algorithm is used, for example, in Bitcoin. On the contrary, the Ethereum
cryptocurrency uses the Keccak-256 algorithm, which is part of the SHA-3 family [19].

2.3 P2P Network

Peer-to-peer network, also known as P2P, is a type of network architecture model. If
a group of participants share some of their hardware resources such as processing power,
storage, network link capacity, etc., a distributed network architecture can be described
as a peer-to-peer network. Members of a P2P network are called nodes or peers. A node
represents a single computer or device linked with other systems over the Internet. All
nodes are considered to be equal in the peer-to-peer network. P2P network has different
usages compared to the client-server model. The nodes share resources and information
directly without the need for a central server. Each participant acts as both a client and
a server, which makes the network more decentralized and less dependent on a single point
of failure. To demonstrate this, think about a situation where the peer is connected to
another peer, which suddenly disconnects. In that case, the peer can request another peer
for cooperation. Once the connection is established, the peers can continue where the
work ended with the previous peer. This is a significant advantage over the client-server
architecture, where communication is lost after the server disconnects.

There are several types of P2P networks, and some cryptocurrencies use more than
one P2P network. One such example is Ethereum, which uses both structured and hybrid
types. Bitcoin, on the other hand, uses only a structured P2P network. The overview of
P2P network types is described below and is based on [18, 24].

2.3.1 Structured

A structured network employs a specific protocol to organize network nodes into a struc-
tured overlay network. Each node is assigned a unique identifier, which is used to organize
the network nodes into a logical structure, such as a distributed hash table (DHT). This
structured overlay network provides efficient routing and lookup mechanisms for data stored
on the network.

In a structured P2P network, each node maintains a routing table, which contains
information about other nodes in the network. The routing table is organized based on the
identifier space, and each node is responsible for maintaining information about a subset
of the identifier space. As a result, structured P2P networks provide efficient routing and
lookup mechanisms, even in large-scale networks. An example of a structured P2P network
is Ethereum’s consensus layer or Bitcoin.

2.3.2 Unstructured

In an unstructured network, there is no fixed structure or organization. Peers are free to
join or leave the network anytime without affecting its functionality. To communicate with
other peers, they broadcast their queries or messages. They hope to find the desired file or
peer, but they have no information about the location of peers. In this type of network,
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peers maintain a fixed number of connections with their neighbors. An example of an
unstructured P2P network is the first decentralized P2P network Gnutella 1 or the very
first commercial P2P network called Napster 2.

2.3.3 Hybrid

a hybrid P2P network combines structured and unstructured topologies. The peers are
divided into different groups or clusters, based on their characteristics, such as location,
bandwidth, or performance. Each group or cluster has a leader or a super-peer, which
acts as a mini-server or an index for the group or cluster and connects to other leaders
or super-peers in the network. The peers contact their leader or super-peer to search and
route all their queries with other peers within or across groups or clusters.

Ethereum’s execution layer is an example of a hybrid network that consists of two stacks:
the discovery stack and the DevP2P stack. The discovery stack is based on UDP and helps
a new node locate peers to establish connections. On the other hand, the DevP2P stack is
based on TCP and allows the nodes to share information with each other. These two stacks
operate concurrently and complement each other to improve the efficiency of the network
[26].

2.4 Consensus Mechanism

The consensus mechanism plays a vital role in ensuring that all nodes within a network
agree on the same version of a transaction or a piece of data. The consensus ensures
the integrity of the network, but also helps prevent any malicious activities that could
compromise the system. There are various consensus mechanisms in use today, and the
most known are Proof of Work (PoW) and Proof of Stake (PoS). Ultimately, the goal of
any consensus mechanism is to establish trust and provide a reliable network for all nodes.
Once most of these nodes agree on the same, it is noted as truth, and consensus is reached.
Figure 2.2 shows the concept of how blockchains come to an agreement after a user requests
a transaction. This section itself is based on [11, 19, 21].

2.4.1 Proof of Work

The Proof of Work (POW) algorithm was initially intended as a way to combat email spam
and prevent denial-of-service attacks in the Hashcash system. The basic idea behind their
proposal was to require senders to perform a certain amount of computational work before
sending an email [4].

The POW in the blockchain is used to validate transactions and blocks. The validation
depends on the miners who compete to solve the nonce. Once the nonce is correctly guessed,
a new random number is generated, which will be used in the next guessing process. This
cycle repeats itself as miners continue to compete in solving the encrypted numbers to get
rewards.

The process of solving the number is called block mining. This process requires a sub-
stantial amount of computing power and consumes a significant amount of electricity re-
sources. Anyone on the P2P network can actively participate in this block mining process.
Participants can be individual computers, but the rise in mining difficulty led companies

1https://gnutella3.sourceforge.net/
2https://www.napster.com/us/
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Figure 2.2: Process of requesting and verifying a transaction (taken from Blockchain For
Dummies [19]).

to develope specialized computers called Application-Specific Integrated Circuit (ASIC)
machines. ASICs are designed specifically to perform POW computations.

Some of the cryptocurrencies that use POW as a consensus mechanism are Bitcoin,
Litecoin, Dogecoin, and many more.

2.4.2 Proof of Stake

Proof of stake (POS) is an alternative consensus method to verify transactions and add
new blocks to a blockchain. This method is considered to be more energy-efficient than
POW since it does not need that much computing power. The validation of new blocks
depends on the number of coins that are staked. This process is also known as block minting.
The word “minting” implies that you need to have a currency reserve as a backup to mint
your coins. This is similar to how some central banks keep a gold reserve to support their
national currency printing. With PoS, the minters stake their ownership in the system as
a security deposit.

The selection algorithm chooses the validators. Once the validator is selected, they have
the exclusive right to create a block. The other validators that are not currently selected
to create a block are essentially in standby mode. They are not actively participating in
the process of block creation at that time. Instead, they typically monitor the network
to ensure that the selected validators are acting correctly and following the rules of the
protocol. To prevent and punish such actions as breaking the rules, PoS uses a security
function called ”slashing“. If someone breaks the rules, some of the crypto coins they staked
will be destroyed.

Cryptocurrencies that use POS as their consensus mechanism are, for example, Ethereum,
Solana, or Cardano.
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2.5 Types of blockchain
First of all, it is important to define terms such as centralization and decentralization. The
definition of centralization in the book Building Decentralized Blockchain Applications is:

”the act of consolidating authority to one central place“ [25]. For example, the architecture
model client-server is based on centralization because the data are stored only on the server.
The opposite is decentralization, which is based on operating without a central point of
control or authority. The definition in the book says that the decentralized approach
is when: ”there is no central authority involved in the working of Blockchain“ [25]. An
example of decentralized technology is the P2P network.

Blockchain technology can be divided into different types. The first two types to com-
pare based on access are public and private blockchains. In the public blockchain, users
can remain anonymous and each user can have a copy of the ledger. Anyone can join the
public blockchain. In contrast, the private blockchain requires users to provide credentials,
and only authorized users have access to the ledger.

In terms of participation, the blockchain can be further divided into a permissioned and
a permissionless blockchain. The permissioned blockchain does not require PoW to validate
transactions since the institution (e.g. bank) provides the trust. Even without the PoW or
PoS consensus mechanism, the permissioned blockchain still has the following functions:

• Privacy - only members have the right to view the transactions

• Scalability - can be easily scaled up by not using the resource-intensive PoW

• Access Control - the access to the data within the ledger can be restricted as the
owner desires

In summary, the permissioned blockchain is a closed, private blockchain with an owner with
a certain degree of centralization.

For the permissionless blockchain, the situation may be different. It is public, so anyone
can see the transactions in the ledger and there is no single institution that provides the
trust. Trust is gained through consensus mechanisms. An example of a permissionless
blockchain is the Bitcoin or Ethereum cryptocurrencies. This section was based on [21, 25].

2.6 Forking
Blockchain forking is the process of creating two or more separate blockchain networks, each
with its own set of rules and protocols. It may occur due to a variety of factors, including
network upgrades, software updates, community disputes, or attacks on the blockchain
network. There are various types of forks, including hard forks, soft forks, codebase forks,
and accidental forks. This section is based on [11, 23].

2.6.1 Accidental forks

An accidental fork occurs when two or more miners find a block at roughly the same time.
The blockchain is temporarily split, and various nodes may have different copies of the
ledger. The fork is resolved when subsequent blocks are added, and one of the chains
becomes longer than others. Blocks that are dropped by the network because they are not
in the longest chain are called orphaned. Accidental forks typically do not last long and
the impact on the network is negligible. The process is described once more in Figure 2.3.
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Figure 2.3: An accidental fork happened, because the block2 was created by two miners at
the nearly same time, but each with a different structure. In that case, the chain was split
into two chains. Since the second chain became longer than the first one, due to block4,
it is chosen as the winner. The block2 and block3 from the first chain are deleted from
the blockchain database and called orphaned.

Forks can also be used for double-spending attacks. These attacks consist of trying to
spend the same digital currency twice. The steps below outline how this attack, which may
seem like an accidental fork, occurs.

1. An attacker makes a purchase and receives delivery of the purchased item. His trans-
action is now added to the blockchain.

2. The attacker creates a new longer chain, omitting his transaction.

3. If he succeeds, the attacker has the purchased item and the coins he spent on that.

4. The attacker may then spend his coins again.

2.6.2 Hard forks

a hard fork is a modification of the blockchain protocol that is not backward compatible
and requires software updates from all users to continue using the network. Users who do
not update their software will not be able to validate new blocks that follow the updated
rules. A hard fork causes the network to split into two different versions. The original uses
the old rules, and the new uses the new rules.

Example of a Hard fork

An example of a hard fork is a situation that occurred in July 2016, when the Ethereum
blockchain experienced a hard fork. The fork was the result of a disagreement among the
Ethereum community about how to handle a major security breach known as the DAO
attack that resulted in the loss of more than 45 million dollars. The hard fork resulted in
the creation of two separate blockchains: Ethereum (ETH) and Ethereum Classic (ETC).
The new Ethereum blockchain continued with the updated protocol that addressed the
security breach, while the original Ethereum blockchain continued with the old protocol.
Those who supported the new protocol moved their ether to the new blockchain, while those
who opposed the change stayed on the old blockchain, which became known as Ethereum
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Classic. On the Ethereum Classic blockchain, you can clearly see the DAO attack, which
occurred on block 1 757 821 [13].

2.6.3 Soft forks

a soft fork is a change in the blockchain protocol that is backward compatible and allows
the introduction of new rules without requiring all users to update their software. Nodes
that are not up-to-date are still able to process transactions and add new blocks, as long
as they do not break the new rules. An example of a soft fork is SegWit in Bitcoin, where
the transaction format was changed or the introduction of Pay-to-Script-Hash, which will
be described later in this thesis.

2.6.4 Codebase forks

a codebase fork occurs when the entire source code of a blockchain project is copied and
modified to produce a new piece of software or product. The original blockchain network is
not affected by this, but a new one is created with new features and objectives. An example
of a codebase fork is Litecoin, which was created from Bitcoin.
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Chapter 3

Bitcoin

Bitcoin is a digital currency that was released to the world in October 2008 through the
White paper [22] by an anonymous person or group named Satoshi Nakamoto. The genesis
block of Bitcoin was mined in January 2009. From that time, Bitcoin went from the only
cryptocurrency to the most known digital currency in the world. It is a decentralized
permissionless currency. Bitcoin was released at the time of the 2008 financial crisis, which
highlighted the need for a currency that was not dependent on third parties, such as banks.

Bitcoin was originally intended to be used as a payment system, similar to banks but
without the bank itself. However, due to the value of bitcoin changing its price, it became
more popular as an investment product than a daily payment system. The price of a Bitcoin
is determined by the balance between supply and demand. When the demand for bitcoins
increases, the price also increases, and when the demand falls, the price falls as well. Since
there is only a limited number of bitcoins in circulation and new bitcoins are created at
a predictable and decreasing rate, demand must follow this level of inflation to ensure price
stability. The smallest piece of Bitcoin value is Satoshi, named after the founder of Bitcoin.
The frequently used word for Bitcoin value is bitcoin with the shortcut BTC. One BTC is
equal to 100 million Satoshis. In total, there can be up to 21 million BTC available in the
future, which makes Bitcoin limited. The last Bitcoin is expected to be mined around the
year 2140. New bitcoins are added to the Bitcoin supply approximately every 10 minutes,
which is the average amount of time it takes to create a new block of Bitcoin. These blocks
are filled with transactions that are described in the next Section 3.1.

To transfer a certain amount of BTC, a user must create a transaction. These trans-
actions need to be transferred, verified and stored somewhere. That is the moment when
Bitcoin utilizes blockchain technology. As Chapter 2 describes, the blockchain is a dis-
tributed ledger that records all transactions made on the network. All Bitcoin transactions
are stored in this blockchain ledger. The consensus mechanism for Bitcoin, called Proof
of Work, also relies on blockchain technology to achieve agreement among nodes on the
validity of transactions. Bitcoin protocol is running on the Bitcoin P2P network, where
computers are connected around the world. These computers are called Bitcoin nodes.

Bitcoin is a continuously evolving technology that undergoes regular improvement. To
suggest any changes or additions to the Bitcoin protocol, the Bitcoin Improvement Pro-
posals (BIPs) were introduced. BIPs provide a structured way of submitting new ideas or
changes to the Bitcoin community for review and consideration. These proposals can range
from minor technical improvements to significant changes in how Bitcoin operates. The
entire process of submitting a BIP is outlined in BIP 2 [14]. Currently, there are almost
400 published BIPs as of January 2024, which are readily available on the Bitcoin GitHub
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repository1. Since Bitcoin is an open source software, the source code for the Bitcoin client
[5] is also available on GitHub. Anyone can access, review, and contribute to the devel-
opment of Bitcoin software. The code is constantly evolving, with regular updates and
improvements made through the BIPs described above.

The source of information for this introduction to Bitcoin was based on the Bitcoinde-
veloper website [1] and the book Grokking Bitcoin [23].

3.1 Transactions

Transactions allow users to transfer Bitcoin values. They are broadcast to the network and
collected into blocks. All communication is done over the TCP protocol. Transactions are
not encrypted. This makes it possible to browse and view every transaction ever collected
into a block, and everyone can verify them because they are visible.

The standard process of a transaction from the send-to-receive state involves four steps.

1. The sender initiates a Bitcoin transaction by creating a digital signature using their
private key, entering the data from the scriptPubKey (mostly representing the bitcoin
address) that was sent by the recipient and the amount of BTC to be sent.

2. The transaction is then broadcast to the Bitcoin network, which consists of a decen-
tralized network of nodes that verify and process transactions.

3. Bitcoin miners compete to solve complex mathematical puzzles to add the transaction
to a block on the blockchain. Once a miner solves the puzzle, the block is added to
the blockchain, and the transaction is permanently recorded.

4. Once the transaction is confirmed and added to the blockchain, the recipient can
access the Bitcoin sent to their address. They can then choose to hold on to Bitcoin
as an investment or exchange it for another currency.

Example

Before describing the transaction structure, an example of the Bitcoin payment process is
demonstrated. In this example, John wants to send 1 BTC to Thomas. Inspiration for this
example was taken from Grokking Bitcoin [23]. The names John and Thomas are used for
simplicity, but in the real world, Bitcoin does not use any names or personal information.
The payment process can be split into 4 steps.

1. Transactions - The process starts when John requests the network to send 1 BTC
to Thomas. That is done by sending a Bitcoin transaction to the Bitcoin network
through a mobile wallet application. This transaction includes a piece of information
that describes:

• The amount of bitcoins to be transferred.
• Thomas’s Bitcoin address, where the money is sent.
• a digital signature from John to prove that it is him who wants to send the

money.
1https://github.com/bitcoin/bips
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2. The Bitcoin Network - Once John has sent a transaction to the Bitcoin network,
Bitcoin nodes check and verify if the transaction is valid. The verification process
is done by consulting its local copy of the blockchain ledger, checking if the 1 BTC
that John spends exists and if the digital signature is valid. Invalid transactions are
dropped, and the valid ones are forwarded by nodes to their peers. The blockchain
ledger has not been updated yet because it will be done in the next step.

3. The Blockchain - As there can be up to thousands of transactions waiting to be
added to the blockchain, one node must take the lead and send a message to the
network about which transactions he will add to the block. The other nodes verify
the block and update their blockchain copies. John’s transaction is part of this block
and is now part of the blockchain.

4. Wallets - All users who want to participate need a computer program to interact
with the network. This program is called a Bitcoin wallet. Since John’s transaction
is part of the blockchain, the network needs to inform John and Thomas that the
transaction was made. The wallets are connected to some of the nodes, which will
send a notification to both John and Thomas, that the payment was completed.

3.1.1 Transaction structure

The Bitcoin transaction structure is described below, shown in Figure 3.1, and is based on
[1, 2, 11].

• The version number is used for backward compatibility and to distinguish between
different types of transactions. For example, if the format of a transaction changes,
a different version of the transaction may be used to ensure backward compatibility
with previous versions. There are currently versions 1 and 2. Version 2 indicates that
BIP 68 [15] applies. This proposal specifies a new way to control transaction validity.
Essentially, it allows the user to set a time limit for using the transaction based on
the time the previous transaction was created [8].

• Flag indicates the presence of witness data.

• In-counter specifies the number of inputs (also known as UTXO, Unspent Trans-
action Output) in the transaction. It is a variable length integer (VI), which means
that it can be encoded in different ways depending on the number of inputs.

• List of inputs, where each Transaction input (Txin) consists of:

– Previous transaction hash that contains the spendable output.
– Previous txout-index of an array to identify the spendable output.
– The length of the Txin script indicates the size of the locking script.
– Txin scriptSig proves that the sender has the right to spend the bitcoins. Usually

contains a digital signature that matches the locking script of the previous txout
and public key, but that depends on the type of script being used. Script types
are described more in Section 3.2.

– The sequence number is used to determine the order in which transactions are
added to the blockchain. For example, if a transaction has a sequence num-
ber of 0xFFFFFFFF, it can be included in a block as soon as possible, while
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Figure 3.1: Bitcoin transaction format (year 2023).

a transaction with a lower sequence number will be delayed until a specified
block height or time has been reached. Also, with BIP 125, [16] feature Opt-in
Full Replace-by-Fee Signaling was added. It enables spenders to include a signal
in their transaction to indicate that they may want to replace the transaction
with a new one at a later time. This signal gives users the flexibility to adjust
the transaction fee in real-time, allowing them to increase the chances of their
transaction being confirmed quickly.

• Out-counter specifies the number of outputs in the transaction. Like the In-counter,
it is encoded as VI.

• List of outputs, where each Transaction output (Txout) consists of:

– Value shows the amount of bitcoins which is sent to the receiver.
– The length of the Txout script indicates the size of the locking script.
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– Txout scriptPubKey defines the list of instructions that the receiver must follow
to spend the output in the future.

• Witness field is present only in SegWit transactions. It contains the information
needed to verify the spending authorization for the transaction. Basically, it consists
of signature scripts that are described in the following section.

• Locktime specifies the earliest time (in Unix time format) or block height at which
this transaction can be added to the blockchain. Locktime enables signers to generate
transactions that can only be executed in the future. This allows signers to change
their mind until the transaction becomes valid. If any of the signers wish to modify the
transaction, they can create a new transaction that does not use the locktime feature.
The new transaction will use one of the same outputs as the locktime transaction,
making the locktime transaction invalid if the new transaction is included in the
blockchain before the time lock expires.

3.2 Scripts

Bitcoin scripts are used to define the conditions under which a transaction can be spent.
Scripts are written in a simple stack-based language called Bitcoin Script, which is processed
from left to right. They consist of two fields, which are data and opcodes. Data can be
represented by public keys and digital signatures. Opcodes represent different operations,
such as pushing data to the stack, popping data from the stack, performing arithmetic
calculations, checking signatures, and verifying hashes.

Scripts are part of the transactions in the scriptSig and scriptPubKey fields. The
scriptPubKey is the output script responsible for specifying the conditions that must be
met to spend the bitcoins, such as providing a public key and a signature that matches
a certain address. On the other hand, the scriptSig is the input script that provides the
necessary data to satisfy the scriptPubKey, such as the public key and signature of the
sender.

When a transaction is executed, the scriptSig and scriptPubKey are concatenated and
executed by the Bitcoin clients to verify the validity of the transaction. If the execution
results in a true value on the top of the stack, the transaction is considered valid and the
bitcoins can be spent by the receiver. However, if the execution results in a false value,
the transaction is considered invalid and the bitcoins remain unspent. There are different
types of scripts in Bitcoin, each with its format and functionality [2, 11].

Addresses

A Bitcoin address is a unique identifier used to receive Bitcoin payments, similar to an
email address used to receive emails. The address is publicly known to anyone who wants
to send funds to it. The owner of the address is the only person who can access the funds
using the private key associated with the address [21].

There are several address formats, depending on the type of script that is being used.
The beginning of a Bitcoin address can often indicate the type of script it uses. Table 3.1
summarizes the scripts and addresses related to it.

The most common scripts are described below and are based on BIP 16 [3], BIP 141
[20], BIP 341 [29], Bitcoin Wiki [2] and learn me a bitcoin [28].
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Script Address starts with Example
P2PKH 1 1KVzBuzuc28...
P2SH 3 3MxwgJLqN2k...

P2WPKH bc1q bc1q7jc2ql7...
P2WSH bc1q bc1q5laclf7...
P2TR bc1p bc1pey6g6w9...

Table 3.1: Connection between Bitcoin scripts and addresses

3.2.1 Pay-to-Public-Key-Hash (P2PKH)

P2PKH is an improvement over the earlier P2PK (Pay-to-Public-Key) method. In P2PKH
transactions, the recipient’s Bitcoin address is a hashed version of their public key. This
allows for greater security and privacy, as the public key is not revealed until the bitcoins
are spent. The scriptPubKey contains the recipient’s P2PKH address, which is a hashed
version of their public key. The scriptSig contains a signature that proves that the sender has
the private key corresponding to the P2PKH address. When the transaction is validated,
the recipient can then use their private key to sign a message that proves that they have
ownership of the public key corresponding to the P2PKH address. This signature is then
included in the input script of a subsequent transaction to spend the bitcoins. P2PKH was
introduced in the first version of Bitcoin, together with the P2PK script.

3.2.2 Pay-to-Script-Hash (P2SH)

P2SH allows for more complex locking scripts than the standard P2PK or P2PKH trans-
actions. In a P2SH transaction, instead of including the public key hash or script in the
scriptPubKey, a hash of the script is used. This hash is then included in the scriptSig,
along with the full script that can unlock the bitcoins. The complete script that can unlock
the bitcoins is called the redeem script. The redeem script is a script that the recipient
provides, which corresponds to the hash in the scriptPubKey. P2SH was raised in April
2012 via BIP 16 [3].

3.2.3 Pay-to-Witness-Public-Key-Hash (P2WPKH)

P2WPKH was introduced with the Segregated Witness (SegWit) soft fork. The recipient’s
Bitcoin address is a hashed version of their public key, similar to P2PKH. However, the
scriptPubKey contains a witness program instead of the recipient’s P2PKH address. The
witness program is a script that is used to validate the transaction and prove that the
sender has the private key corresponding to the P2WPKH address. The scriptSig contains
the signature that proves that the sender has the private key corresponding to the P2WPKH
address [20].

3.2.4 Pay-to-Witness-Script-Hash (P2WSH)

P2WSH was introduced together with P2WPKH in SegWit. The main principle is the same
as for P2SH, meaning that the hash of the script is included in the scriptPubKey and then
the spender must provide the redeem script and signature to unlock the bitcoins. P2SH
and P2WSH differ in terms of where the scriptSig content was previously placed and how
the scriptPubKey is changed.
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3.2.5 Pay-to-Taproot (P2TR)

P2TR is the newest script that was introduced in Bitcoin. It uses a concept called Merkle
trees to combine multiple possible spending conditions into a single compact script. This
means that a single Taproot output can represent many different types of transaction.

The way it works is that Taproot allows multiple spending conditions to be combined
into a single Merkle tree. Each branch of the tree represents a different spending condition,
such as a specific time delay, a certain signature, or a certain combination of signatures.
When a transaction is made, the sender can choose which branch of the Merkle tree to use,
depending on the specific spending condition they want to fulfill.

Instead of placing spending conditions directly in the scriptSig (like in previous scripts),
these conditions are hashed and placed in a new field called the witness field. This witness
field contains cryptographic proofs that the transaction meets the spending requirements
defined in the scriptPubKey, which remains mostly unchanged.

The witness field includes a Merkle tree, but unlike the Merkle tree used in the script
itself, this tree holds all the possible spending conditions. The entire Merkle tree is then
hashed, and the resulting hash is stored in the witness field.

When validating the transaction, miners use the witness field to verify which specific
spending condition was used to create the transaction. If the chosen branch is valid ac-
cording to the scriptPubKey, the transaction is considered valid and can be added to the
blockchain [29].

3.3 Propagation of transactions

The algorithm for propagating transactions in the Bitcoin network is based on broadcasting
transactions to neighboring nodes in the peer-to-peer network. Then, the neighboring nodes
send it to their peers, and this process repeats. Each node has rules that determine which
transactions are valid and how to verify them. Furthermore, the node stores transactions
in a memory pool (mempool) , which contains all transactions that the node receives.
Transactions in mempool are considered unconfirmed and have not yet been included in
a block. The propagation of transactions, initiated or received by a node, unfolds through
the following process, and the main source of information for this section is based on the
Bitcoin Wiki, Bitcoindeveloper P2P Network webpage and the Bitcoin Core Repository
[2, 5, 9].

1. The node verifies whether the transaction that was received is valid according to its
rules. If the transaction is valid, the node adds it to its mempool and marks it as
unconfirmed. If the transaction is invalid, the node rejects it and does not send it
further.

2. The node then sends the transaction to all its peers in the network using a message of
type inventory INV, which contains the unique identifier of the transaction (txID).

3. When a node receives a message INV from its peer, it checks whether it already
knows the transaction by its txid. If it knows, it ignores the message INV. If it does
not know, it asks the neighbor to send the whole transaction using a message of type
GETDATA.
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4. When a node receives a message GETDATA from its peer, it sends the entire trans-
action using a message of type TX. In this way, the transaction is transferred between
the nodes that have expressed interest in it.

5. When a node receives a message TX from its peer, it repeats the first two steps: it
verifies the validity of the transaction and adds it to its mempool. Then it sends it
to its other neighbors using a message INV.

This algorithm ensures that every node on the network learns about new transactions
that meet its rules. Redundancy and unnecessary communication between peers is mini-
mized, because each node sends only those transactions that other neighbors do not know.
The process of propagating a received transaction is visualized as a Finite State Machine
(FSM) in Figure 3.2.

Figure 3.2: The propagation process of the received transaction by a Bitcoin node repre-
sented by a Finite State Machine.

Transaction propagation is associated with the concepts of outgoing and incoming con-
nections. In the context of Bitcoin, the inbound and outbound connections are separated
based on who initiated the connection between two nodes in the Bitcoin P2P network.
An inbound connection is initiated by a remote peer who wants to connect to a node. In
contrast, a node initiates an outbound connection to connect to a remote peer. Inbound
and outbound connections are used to transmit and receive transactions and blocks.

By default, there is a limit on the number of connections that a Bitcoin node can
maintain. This helps manage bandwidth usage and ensure smooth operation for most users.
Bitcoin Core allows for a maximum of 125 total connections, where 11 can be outbound
and the remaining 114 inbound. The number of inbound connections can be changed from
the default value to a potentially unlimited number compared to outbound connections,
where the default maximum values cannot be changed. Of the 11 outbound connections, a
total of 8 are full-relay, which can be used to receive and transmit all types of data on the
Bitcoin network, including unconfirmed transactions. The remaining three connections are
used for purposes other than the transmission of transactions [6].

Both types of connection use an exponential distribution when it comes to transmitting
the transactions. The exact distribution function GetExponentialRand() from the Bitcoin
Core Repository [5] is shown in Listing 3.1. The difference is in the average relay interval.
Outbound connections use an interval of 2 seconds for broadcasting the transactions, and
inbound connections use 5 seconds.

1 /* Source for the delay:
https://github.com/bitcoin/bitcoin/blob/2b260eadf7960290328e13dbdb029fd506105
ca4/src/net_processing.cpp#L146 */
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2 /* Average delay between trickled inventory transmissions for inbound peers. */
3 static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s};
4 /* Average delay between trickled inventory transmissions for outbound peers. */
5 static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL{2s};
6

7 /* Source for the exp function:
https://github.com/bitcoin/bitcoin/blob/2b260eadf7960290328e13dbdb029fd5061
05ca4/src/random.cpp#L764 */

8 std::chrono::microseconds GetExponentialRand (std::chrono::microseconds now,
std::chrono::seconds average_interval)

9 {
10 double unscaled = -std::log1p(GetRand(uint64_t{1} << 48) *

-0.0000000000000035527136788 /* -1/2^48 */);
11 return now + std::chrono::duration_cast<std::chrono::microseconds>(unscaled *

average_interval + 0.5us);
12 }

Listing 3.1: Bitcoin Core exponential function used by inbound/outbound connections to
broadcast the transactions.

The term outbound/inbound connections can be used in conjunction with reachable/un-
reachable nodes. A node is considered reachable if it is capable of accepting incoming
connections from other peers. Conversely, a node that is unable to accept incoming connec-
tions is deemed unreachable. A node may be considered unreachable due to being behind
a firewall, connecting via a proxy, or hosting in a private network, typically behind a NAT
(Network Address Translation) device.

As mentioned at the beginning of this section, unconfirmed transactions are stored in
the mempool. There are various ways for a transaction to leave the mempool. The reasons
are the following:

1. The transaction was inserted in a block.

2. The transaction expired by timeout. Every node has a mempool expiration time limit,
after which transactions are removed from the mempool. By default, this time limit
is set to 14 days. If a transaction remains unconfirmed for more than 14 days, it will
be removed from the mempool.

3. The transaction was replaced. If a transaction has a low fee and is stuck in the
mempool, it can be replaced with a new transaction that has a higher fee. This is
made possible by the Replace-By-Fee (RBF) implementation. There are two variants
of RBF, Full RBF, and Opt–in Full RBF. The difference between them is that with
Full RBF any new transaction that consumes at least one of the same inputs as the
original can replace it. Whereas Opt–in Full RBF requires the sender to explicitly
mark the transaction as replaceable when creating it. For more information, see
BIP 125 [16].

4. The mempool size has reached its maximum size limit and a new transaction with
a higher fee is accepted. Transactions are sorted by fee per size in the mempool.
Transactions with lower fees are the ones at the bottom of the mempool and can be
evicted from the mempool. This means that the transaction at the bottom of the
mempool will be removed, even if it has not been confirmed yet. This situation is
called a purge.
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3.4 Nonce
While generating a single SHA-256 hash can be computationally intensive, modern comput-
ers are powerful enough to produce such a hash in microseconds. A block can theoretically
be constructed in a fraction of a second, with the speed of construction depending on the
computer’s power. However, the system would not be decentralized if the miner with the
most powerful computer always won the construction of new blocks. Additionally, blocks
would be constructed in seconds instead of the intended 10 minutes, and all 21 million
Bitcoins would be mined in just a few months rather than over decades. To avoid this
issue, Nakamoto introduced the concepts of difficulty and nonce, where difficulty refers to
the amount of work required to build a block.

The difficulty is calculated from the formula:

Difficulty =
GenesisBlockHashValue
CurrentTargetHashValue (3.1)

The difficulty is greater when the target value is smaller (that is, more zeros in the first
digits). An acceptable hash must be smaller than the target. The target value is the same
for all Bitcoin clients. The difficulty adjusts itself every 2 016 blocks, based on the recent
performance of the network, to keep the average time between new blocks at 10 minutes.
When the hash rate of the Bitcoin network increases, the difficulty also increases.

The valid hash must begin with a certain number of zeros and must be lower than the
current target hash value. If the hash does not meet these criteria, the hashing process
continues by changing the Nonce number.

Example

The demonstration of guessing the correct Nonce is described in the following example. In
this case, the required number of zeros at the beginning of the hash will be one, because the
target hash is 0f8868e5a027a30d... The message will be ”This is Bitcoin.“ and starting with
Nonce 00000000. The Nonce is added to the message. The final SHA-256 hash of ”This
is Bitcoin. 00000000“ is ca31863c2cd26b00..., which does not begin with a zero. Then the
nonce is increased by one, and the message is hashed again. It takes 6 loops to generate
a lower hash starting with zero. The entire process is shown in the table 3.2. This section
was based on the book Blockchain, Bitcoin, and the Digital Economy [21].

Table 3.2: Hashing with Nonce
Loop Message Nonce Hash

1 This is Bitcoin. 00000000 ca31863c2cd26b00...
2 This is Bitcoin. 00000001 c9e3f09ca255f231...
3 This is Bitcoin. 00000002 7af606c351f058e9...
4 This is Bitcoin. 00000003 7ccd5a0b22f397a7...
5 This is Bitcoin. 00000004 8dc9f37ed0c77040...
6 This is Bitcoin. 00000005 0b2468e5a027a30d...

The hash generated in the 6th loop is lower than the target hash. In that case, the
Nonce was guessed and a new target hash was created.

0𝑏2468𝑒5𝑎027𝑎30𝑑... < 0𝑓8868𝑒5𝑎027𝑎30𝑑...

𝑁𝑒𝑤𝑇𝑎𝑟𝑔𝑒𝑡𝐻𝑎𝑠ℎ = 0𝑏2468𝑒5𝑎027𝑎30𝑑...
(3.2)
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Chapter 4

OMNeT++

OMNeT++ is a discrete-event simulation environment, and the name itself stands for
the Objective Modular Network Testbed in C++. The main purpose is to model and
simulate complex computer and communication systems. It is an open-source, component-
based modular simulation framework that allows users to create simulations for various
domains such as networking, wireless communication, validation of hardware architectures,
and more. OMNeT++ supports a range of communication protocols and technologies,
including TCP/IP, UDP, IP, Ethernet, and IEEE 802.11 wireless networks. It also supports
the integration of external tools and libraries, such as MATLAB and NS-3. The bridge
between the user and the simulation is provided by a graphical user interface (GUI) or the
command line. The GUI is called the OMNeT++ IDE, which provides a variety of tools
for creating, debugging, and visualizing simulation models. The IDE includes features such
as a code editor, a graphical network editor, and a simulation runtime environment. The
OMNeT++ Simulation Manual [27] serves as a source of information about OMNeT++.

In this thesis, the OMNeT simulator is used to create a model of a simplified Bitcoin
client, that is able to create, send, and receive messages which represent Bitcoin transactions
in the Bitcoin network. The design and the implementation of the model is described in
next chapters.

Modeling

One of the central elements of the OMNeT++ infrastructure is a component architecture
for simulation models. These models are constructed from reusable modules known as
components. Modules at the lowest level of the module hierarchy are called simple modules,
and they are programmed in the C++ language. Simple modules can be grouped into
compound modules, and the whole model is called Network. The structure of a simulation
model is described by the user in the Network Description (NED) language. NED lets
the user specify simple modules and connect and assemble them together into compound
modules.

Modules in an OMNeT++ model exchange messages to communicate. Messages from
simple modules are commonly sent through gates, but can also be sent directly to the
modules for which they are destined. Gates serve as the input and output interfaces of
modules.
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Chapter 5

Design of the simulation network

This chapter describes the three basic building blocks used to create the simulation. The
first is the network topology, the second are the Bitcoin clients that represent the Bitcoin
nodes, and the last are the monitoring nodes. Their purpose and behavior are described in
the following subsections and the way they are implemented in the next Chapter 6.

Topology of the network
The topology consists of an arbitrary number of Bitcoin nodes, monitoring nodes, and the
number of hops from the monitoring node to bitcoinNode0 that generates the transaction.
The topology structure is based on the user inputs given in the command line.

Bitcoin client
The Bitcoin Core client is the most widely used type of Bitcoin client in the world. More
than 93 percent of the Bitcoin network is made up of Bitcoin Core clients, as shown in
Appendix A [12]. However, the user agent is reported by the client, meaning if the client
has its custom implementation, it can still report himself as Bitcoin Core agent but behave
differently. The design of the Bitcoin client in this thesis is very simplified compared to the
real Bitcoin Core client. Clients acting as nodes on the network can create, receive, and
send messages representing Bitcoin transactions. In this thesis scenario, the message is cre-
ated only by a bitcoinNode0. This message represents the transaction ID (txID) which is
a unique identifier of the transaction on the network. The transmission behavior represents
the INV messages from the Bitcoin Core Project [5]. Each client can have an unlimited
number of inbound connections to other clients, and maximum of 8 outbound connections.
Transactions are sent through connections based on the exponential function GetExponen-
tialRand() described in Section 3.3. To remember if the transaction was already received,
each node has its own mempool. The pseudocodes for creating and handling the received
transaction shown in Listings 5.1 and 5.2 are used as a template for implementation.

Monitoring node
The monitoring node function in the topology is to simply collect information on when
the transaction was received together with the neighbor name and txid. This behavior is
ensured by connecting the monitoring node to all reachable Bitcoin nodes. Additionally, the
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monitoring node can also propagate messages as a Bitcoin client with the same propagation
algorithm. The simulation ends when the monitoring node receives the transaction from
all connections. The simulation output is a CSV file that contains all the records collected
by the node. This file is then processed by an analytics script that displays the selected
nodes of the simulation in terms of transaction propagation speed.

1 /* Function that generates a unique txID */
2 generateRandomTxID():
3 /* Logic for creating a unique txID */
4 if nameOfTheNode = bitcoinNode0:
5 txID ← generateRandomTxID()
6 /* Use the propagation algorithm now */

Listing 5.1: Pseudocode for creating a transaction.

1 OUTBOUND_INTERVAL ← 2 seconds
2 INBOUND_INTERVAL ← 5 seconds
3 if mempool.contains(receivedTx): n
4 mempool.add(receivedTx)
5 for all outbound connections:
6 delay ← GetExponentialRand(OUTBOUND_INTERVAL)
7 sendToPeer(delay) /* non-blocking function */
8 delay ← GetExponentialRand(INBOUND_INTERVAL)
9 for all inbound connections:

10 sendToPeer(delay)

Listing 5.2: Pseudocode for the propagation algorithm.
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Chapter 6

Implementation

This chapter describes the implementation and validation of a simulation that was developed
based on the design of the previous Chapter 5. Parts of the programming code described
in the text are highlighted in this way: functions(), variables, structures, etc. The
general objective of the simulation is to monitor the transaction and create a CSV file with
the captured results for later analysis. The simulation involves the propagation of INV
messages from the Bitcoin Core Project [5]. Furthermore, monitoring nodes are present to
track the time at which the transaction propagates from different nodes.

6.1 Simulation
This section dives into the implementation details of the simulation designed for the OM-
NeT++ simulator. The pipeline with the core parts of the simulation is shown in Figure 6.1.
A class diagram representing the code structure for the simulation is shown in Figure 6.2.
The following subsections describe the simulation parameters and its topology, the behavior
of the modules, how the transactions are created and transmitted, the creation of the CSV
file, and deviations from the real Bitcoin network.

Figure 6.1: The pipeline with the core parts of the simulation with their inputs and outputs.

6.1.1 Simulation parameters

Before the simulation is run, the network topology must be specified. The topology is
generated based on the BitcoinNetwork.ned file. This file is created together with the
omnetpp.ini file within the run_sim.py script, which executes the simulation, and its
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implementation is described in more detail in Section 6.2. To run the simulation with all
the mentioned files, the Python script must be run from the /simulations folder.

The execution command sequence is python3 run_sim.py <1> <2> <3> <4> <5> <6>
where the numbers are represented by the following parameters.

1. number of Bitcoin nodes

2. number of monitoring nodes

3. hop distance described in the next paragraph

4. number of simulation runs

5. number indicating the type of simulation where 0 is for GUI and 1 is for com-
mand line interface (CLI) simulation

6. number indicating if monitoring node should propagate messages where
1 means propagate and 0 do not propagate

The hop distance indicates the number of nodes through which the transaction must
pass from the source to reach the destination, where in this scenario the source is bitcoinN-
ode0 and the destination is the monitoringNode0. For example, if the hop distance is 0, the
bitcoinNode0 and the monitoringNode0 are directly connected, because the bitcoinN-
ode0 accepts the inbound connections. If the hop distance is 1, then it means that there
is 1 other node between bitcoinNode0 and the monitoringNode0, because the bitcoinN-
ode0 does not accept any inbound connections and makes only outbound connections. For
clarification, see the generated topology in Figure 6.3, with 5 bitcoin nodes, 1 monitoring
node, and a hop distance of 1.

The number of simulation runs parameter specifies how many times the simulation
will run with the same topology. The seed-set variable is used to achieve different results
even if the topology is the same. This variable is part of the omnetpp.ini file that is
created by the run_sim.py script. The value of the seed-set is based on the repeat loop
counter variable $repetition, which represents the current run number. Seed-set and
$repetition are described in detail in the OMNeT++ manual in Section 10.4.6 named
Repeating Runs with Different Seeds [27].

6.1.2 Creating a transaction

The simulation begins with the initialization of the BitcoinNode class. The bitcoinNode0
instance creates a new cMessage requesting a new transaction to be generated. The mes-
sages are handled by the handleMessage(cMessage *msg) function. There are two types of
messages, self–messages and messages from other nodes. If the message is a self–message,
the function generateAndBroadcastTransaction() is called. This function generates a
transaction and calls the broadcastMessage(cMessage *msg) function of the NodeBase
class to broadcast it to outbound and inbound connections. The transaction is created and
identified by a 64–bit hexadecimal number and does not contain any other information.
The transaction is generated by the generateRandomTxID() function. This function gen-
erates random characters that are concatenated to form a txID. The character is chosen
using a function charset[intuniform(0, charsetSize – 1)], which generates a uniformly
distributed random integer. Finally, the function returns the generated txID string. This
method of generating a txID is not how Bitcoin transaction IDs are actually created on
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Figure 6.2: The BitcoinNode class represents individual nodes in the Bitcoin network simu-
lation. All attributes and methods are used only within the BitcoinNode class and therefore
are implemented as private. The same remains for the MonitoringNode class which is re-
sponsible for monitoring, recording, and exporting message records. The NodeBase class
contains protected methods that provide delay calculation and transaction propagation,
which together form the resulting propagation algorithm. The MonitoringNode and Bit-
coinNode classes inherit from the NodeBase class to access these functions. The cSimple-
Module class is the OMNeT++ built-in class that provides methods for sending messages to
other modules, scheduling events, and performing other simulation-related tasks. It is the
core OMNeT++ class from which other implemented classes inherit to define the specific
simulation behavior.

the Bitcoin network. In practice, txIDs are hash values of transaction data. Once the
transaction is created, it is added to the node mempool and sent out to the neighboring
nodes.
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Figure 6.3: Network topology from the OMNeT++ generated by the number of 5 bitcoin
nodes, 1 monitoring node, and a hop distance of 1. The bitcoinNode0 is an unreachable
node because it is behind NAT in the private network and thus does not accept any inbound
connections. NAT device is between the bitcoinNode0 and bitcoinNode1. The bitcoinN-
ode0 creates outbound connection to random Bitcoin node which is now bitcoinNode1.
The monitoring node on the top of the topology is connected through outbound connections
to all reachable nodes.

6.1.3 Receiving a transaction

When the transaction is received from another node, it first gets the TXID of the trans-
action. Then it checks if the transaction is in the mempool. The mempool is implemented
as a std::set class from the C++ Standard Template Library (STL). The main reason for
choosing the set was that it ensures that each txID is unique within the mempool. The re-
ceivedTxID is inserted into the mempool if it is not already there. Otherwise, receivedTxID
is known and thus ignored. The cMessage *msg containing the unknown transaction is then
passed as a parameter to the broadcastMessage() function of the NodeBase class. This
function is used to broadcast transactions to all inbound and outbound connections. Be-
fore that, the simulation time needs to be converted to microseconds, in which the delay
is calculated. The calculation of delay is performed in two for loops, which iterate based
on the number of outbound/inbound connections. The same exponential distribution and
outbound/inbound intervals are used for the relay with the GetExponentialRand(double
now, std::chrono::seconds average_interval) function as shown in Listing 3.1. The
function is called only once for the inbound connections, but separately for each outbound
connection. After the delay is calculated, it must be converted back to the simulation time
before sending it. The non-blocking sendDelayed() function of OMNeT++ is used to send
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the transaction to other nodes through outbound/inbound connections, where neighboring
nodes can be either Bitcoin nodes or Monitoring nodes.

6.1.4 Monitoring nodes

The monitoring nodes are connected through outbound connections to all Bitcoin nodes
that accept inbound connections (those that are not behind NAT, firewall, or proxy, as
mentioned in Section 3.3). The number of outbound connections is unlimited compared
to the Bitcoin nodes, which can have a maximum of 8 outbound full-relay connections, as
defined in the Bitcoin Core Project [6] and mentioned in previous chapters.

The monitoring node needs to keep track of the current simulation run number, which
is later used in the analysis to distinguish from which run the results are from. The
monitoring node has implemented a MessageRecord structure that stores three basic pieces
of information. Transaction ID, the name of the neighbor from which the transaction was
received, and a timestamp. The MessageRecord is created every time the monitoring node
receives a message and is consequently pushed to the vector containing all records.

As with Bitcoin nodes, the handleMessage(cMessage *msg) function is responsible
for the processing of messages. The behavior of the monitoring nodes can be set in two
ways, either it will propagate transactions like Bitcoin nodes using the broadcastMessage
function or it will not. The behavior is based on the propagateMessages parameter inside
the MonitoringNode.ned file.

6.1.5 CSV file generation

The simulation ends when the instance of monitoringNode0 receives the transaction from
all nodes that propagate the transactions. After this is verified, the writeAllRecordsToCSV-
(”messageRecords.csv“) function is called. This function is responsible for writing all the
accumulated messageRecords to a CSV file named messageRecords.csv. The function
opens a CSV file for writing and if the file is empty (identified by the tellp() function
that returns the current position of the put pointer), the header is written in the CSV
file. The header consists of columns named run, TXID, peer, and timestamp and their
purpose is described in the following.

• run - number of the simulation run. The simulation is repeated several times to
obtain meaningful results. In that case, the run number needs to be tracked to differ
the collected data.

• TXID - Transaction ID representing unique identifier of the transaction in the Bitcoin
network.

• peer - name of the neighbor who sent the transaction to the monitoring node

• timestamp - time in seconds at which the transaction was received by the monitoring
node

After the headers are written, the program iterates through each record stored in the
messageRecords vector and writes its contents to the CSV file. Once all records have
been written, the simulation is complete and ends. The messageRecords.csv file is later
analyzed by the analysis script described in Section 6.3.
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The simulation code must first be compiled using the make command from the btc_-
network folder. The program source files are contained in the /src folder and the generated
messageRecords.csv file can be found in the /simulations folder.

6.1.6 Deviations from real Bitcoin network

It should be taken into account that the simulation was performed on a specific topology,
which may not exactly correspond to the real Bitcoin network, but its main goal was to
implement the most similar transaction propagation behavior of the inventory messages as
its implemented in the Bitcoin Core client. In addition, the real Bitcoin network consists of
multiple client types with different parameters, making a significant portion of the Bitcoin
network behave differently than the simulated one. Another point which must be taken
into consideration is that all Bitcoin nodes in the simulation utilize the maximum number
of connections with other peers, where for outbound connections it is 8 and for inbound it
is unlimited.

6.2 Initialization script
The run_sim.py script is a Python script designed to automate the simulation of a Bitcoin
network using the OMNeT++ discrete-event simulator. It generates .ned and .ini files
for the simulation, executes the simulation using the provided parameters, and displays the
output of the simulation. The script takes command-line arguments as input specifying the
simulation structure as described in the beginning of the previous Section 6.1.1.

The script starts by parsing and checking the arguments provided via the command line.
If the arguments are incorrect, a usage message or an error message is printed to provide the
correct parameters. In order to simulate a network with a lower number of Bitcoin nodes
than occurs in a real Bitcoin network, it is necessary to scale the maximum number of
possible outbound connections accordingly. An equation with exponential behavior is used
for scaling, and the result is obtained through the Newton-Raphson numerical method1.

After initial validation and calculation, the generation of the BitcoinNetwork.ned file
representing the network topology is started. Firstly, the bitcoinNode and monitoringN-
ode submodules are created, where the monitoringNode submodules contains the propa-
gateMessages and monitoringNodes parameters taken from the CLI input. These param-
eters are used in the simulation as described in the previous section. Once the submodules
are created, it is possible to create connections between them to allow bidirectional com-
munication.

The monitoring nodes and the Bitcoin nodes use gates for communication with other
modules of the simulation. Each module has implemented one input gate in[] and two
output gates inbound[] and outbound[]. First, connections between the monitoring nodes
and the Bitcoin nodes are created. The script iterates over each monitoring node (repre-
sented by num_monitoring_nodes variable) and connects it to all bitcoinNodes beyond the
hop distance. All connections from monitoringNode are from an outbound[] gate to the
bitcoinNode in[] gate and bidirectional connections are made through an IdealChannel.
This process is used in a similar way for all other connections. The code with the setup of
the connection between the bitcoinNodes and monitoringNodess is shown in Listing 6.1.

1https://personal.math.ubc.ca/~anstee/math104/newtonmethod.pdf
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1 # Generate connections between MonitoringNodes and BitcoinNodes
2 for i in range(num_monitoring_nodes):
3 for j in range(hop_distance, num_bitcoin_nodes):
4 ned_content += f"""
5 monitoringNode{i}.outbound++ --> IdealChannel --> bitcoinNode{j}.in++;
6 bitcoinNode{j}.inbound++ --> IdealChannel --> monitoringNode{i}.in++;
7 """

Listing 6.1: Connection setup between monitoringNodes and bitcoinNodes.

Next, the outbound/inbound connections are generated between bitcoinNode submod-
ules. It begins by initializing a set() named established_connections, aimed at tracking
already established connections. Iterations are performed for each bitcoinNode based on
the maximum number of outbound connections. For each node, a neighbor number is gen-
erated randomly to which it will establish an outbound connection. This random number
starts at the hop_distance value to avoid creating connections to nodes that are behind
NAT. The next step is to check if the generated number together with the current bit-
coinNode is not already present in the established_connections set to avoid duplicate
connections. If the connection is not there, it is created, added to ned_content and to the
record of established connections.

After setting up connections between Bitcoin clients, the script proceeds to create the
last type of connection, which is between the monitoring nodes. Iteration is performed
on each pair of monitoring nodes and then the establishment of bidirectional connections
between them. After generating all connection definitions, the ned_content is written in
the newly created BitcoinNetwork.ned file and the topology of the network is ready.

The simulation needs to contain the configuration file, which is represented by om-
netpp.ini. This file is generated with the following settings:

• network = BitcoinNetwork: Specifies the network model to be used in the simulation.

• repeat = num_runs: Specifies the number of times the simulation should be repeated.

• seed-set = $repetition: Specifies the seed value for random number generation.

• record-eventlog = false, cmdenv-performance-display = false, cmdenv-express-mode
= true: Settings to speed up the simulation.

Once all files are prepared, the simulation can be run. Execution is based on the simulation
type specified by the user (sim_type variable), according to which the script constructs a
command to execute the simulation. The run() function from the subprocess.py module
is used to run the simulation, capture the output, and print the message if the simulation
was successfully performed or not.

6.3 Analysis script
The main purpose of the analysis script analyze.py located in the /simulations folder is
to find out if some nodes propagate a transaction faster than others in most runs and thus
occur at the top positions of the messageRecords.csv file. Such nodes may be potential
source nodes for the transaction. Another purpose is to determine the average propagation
time of a transaction or to compare two files in this aspect. The results are then visualized
with graphs and saved as a png file. The usage command is python3 analyze.py first_-
file top_nodes [-compare second_file], where both files represent the path to the
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CSV files that should be analyzed and top_nodes parameter indicates the number of nodes
that should be plotted. The second_file parameter is optional.

The script utilizes the pandas library for data manipulation and the matplotlib.pyplot
library for plotting graphs. The argparse library is used for parsing the input parameters.
The script first loads the first_file file into a pandas DataFrame called data. After
loading the data, the code is split into three parts, where the nodes are calculated based
on position, secondly based on timestamp, and in final the transaction propagation time is
calculated.

Calculation based on position

The calculation based on position starts by adding a position number to each peer for
each run in a new column called position in the DataFrame. Then, the calculation of
averagePosition for each peer across all runs is done by grouping the position column
for each peer and applying the mean() function to it. At the end of this part, based on the
number of top_nodes parameter, nodes with the lowest averagePosition are selected for
later plotting.

Calculation based on timestamp

The second part deals with the calculation based on timestamp. Firstly, the computation
of the timestamp_difference between the first and other neighbors for each run are done.
After that, the averagePropagationTimePerNode is calculated by grouping the times-
tamp_difference for each peer and applying the mean() function as in the first part.
Finally, nodes with lowest values are selected. The selected values from both parts are
plotted as a bar graph, displayed, and saved as the fastestNodes.png file.

Calculation of the transaction propagation time

The final part handles the transaction propagation time. The number of simulation runs
are extracted into numberOfRuns variable first. After that, the script selects the highest
timestamp of each run in maxTimestampPerRun which is used as the values and indexes for
the graph. In addition, the averagePropagationTime is calculated simply by summing
up each maximum timestamp for each run and dividing it by the numberOfRuns. The
averagePropagationTime value is displayed together with the transaction propagation
time graph and saved as txPropagationTime.png. If second_file is passed as an input
argument, the same principle is used and the graph is plotted with both selected data.
Graph visualizations are included in Chapter 7.

6.4 Verification and validation
Verification of the simulation model, specifically verification of the exponential function
GetExponentialRand() used to calculate the delay for message propagation, was tested
by calling the function in a loop million times for each outbound and inbound interval.
The average was calculated after the loop ended, giving the results corresponding to both
a five-second inbound interval and a two-second outbound interval. This verification was
performed on a total of 10 nodes with the results shown in Table 6.1.

The validation of the simulation model was based on a pcap file containing captured
events from the Bitcoin network along with a listing of connected peers and their type of con-
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Average result in seconds for
Node outbound inbound

1 2.00084 5.01009
2 2.00177 5.00937
3 1.99826 4.99002
4 1.9976 4.99734
5 1.99733 5.00579
6 1.99826 5.00326
7 2.00013 5.00851
8 1.99694 4.99525
9 2.00037 5.00229
10 2.00001 5.00218

Table 6.1: Verification results of the GetExponentialRand() function performed on a total
of 10 nodes. The results correspond to the inbound and outbound interval values from the
Bitcoin Core Project.

nection towards the source node running the Bitcoin Core client. The pcap originates from
the source node, whose IP address is labeled as ip1. IP addresses of other nodes are labeled
as ip2, ip3, etc. The pcap contains a transaction that was generated by the source node.
The TXID of the generated transaction in reverse byte order that is used externally when
searching for transactions on the internet is 3ceee5608d357b2f8d7f39ab8c441eb688ef54e-
fb8051b49fb141787fe26aa7b. To find the transaction in the pcap, the TXID needs to be in
natural byte order, which is 7baa26fe871714fb491b05b8ef54ef88b61e448cab397f8d2f7b-
358d60e5ee3c. This TXID and the raw transaction data taken from mempool.space2 were
filtered in Wireshark to find the transaction and its propagation. The transaction was sent
to all the inbound nodes at nearly identical times, as shown in Figure 6.4. This validates
the information that for inbound peers, the exponential function is calculated only once for
all of them.

Figure 6.4: Validation that Bitcoin clients use the exponential distribution function only
once for all inbound connections since the time of the propagation from the pcap is almost
identical.

The complete propagation process of the generated transaction for inbound peers from
the captured pcap is shown in the sequence diagram in Figure 6.5. The INV and getdata
messages were found based on the TXID and the tx message by the raw transaction data.

2https://mempool.space/
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Figure 6.5: Sequence diagram of the captured process of the generated transaction for an
inbound connections based on the pcap file containing Bitcoin network traffic.

It was also validated that for outbound connections, the transaction is sent at different
times for each outbound peer. This indicates the use of an exponential function separately
for each peer. The complete captured propagation process of the generated transaction for
outbound peers is visualized in the sequence diagram in Figure 6.6. A comparison of INV
messages for inbound and outbound connections shows that INV messages for outbound
connections are propagated earlier because they have a lower broadcast interval. In the
sequence diagram for outbound connections, it can be seen that some peers received the
tx message even though they did not request it by a getdata message. This behavior
is possible if the source node uses the implementation of the bitcoinj3 library. If such a
node creates a transaction, it can send unsolicited tx messages [10]. This behavior was
noticed in the Bitcoin Core client from the reviewed pcap.

After verification and validation, it can be stated that the implemented Bitcoin client
model works as expected. The implemented algorithm for propagating inventory messages
works the same as in the real Bitcoin network, which has been verified on captured Bitcoin
network traffic. The model lacks the propagation of getdata and tx messages compared
to the real Bitcoin client. However, this missing implementation should not matter for
obtaining results on the propagation of unconfirmed transactions, as the propagation of
INV messages is sufficient. Another difference is that only one and the same node generate
a transaction in the simulation model, whereas in the real Bitcoin network it could be all
nodes, but again this should not affect the results, because each transaction is propagated
by the same algorithm no matter what node generates it.

3https://bitcoinj.org/
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Figure 6.6: Sequence diagram of the captured process of the generated transaction for an
outbound connections based on the pcap file containing Bitcoin network traffic.
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Chapter 7

Analysis

This chapter describes the analysis of the results from the created simulation, specifically,
what the results were and how they were obtained. As described at the end of Section 6.1,
the created simulation differs from the real Bitcoin network in some ways. In other words,
the results cannot be considered identical to those that would be obtained from a real
Bitcoin network.

7.1 Identification of the possible source node of a transaction

The procedure for obtaining the results was to run the simulation multiple times, where the
monitoring node recorded the time it received a transaction from which node. The main
objective of the simulation was to try to identify a possible source node of the transaction.
The analyze.py script described in Section 6.3 was used for this purpose. The possible
source node is considered to be a node that, in most cases, propagates a transaction in a
faster time than others and thus is at the top positions of the messsageRecords.csv file in
most simulation runs. If such a node is identified, the question arises whether it is the source
node of the transaction, but there are also other possibilities to consider. It could be a node
that forwards transactions quickly because it has a custom implementation. Alternatively,
it might be a node that has an inbound connection with the source node, especially when
the source node is behind NAT. Since this thesis only considers honest Bitcoin Core clients
without custom implementations, an identified node will be considered a source node or a
node that is close to it.

Two types of metric were used for the analysis and it was the position and timestamp
at which the monitoring node received the broadcast transaction. The plotted results are
always the average of the captured values from all runs of a given network topology. In
general, the lower the value on the y–axis representing the average position or timestamp,
the higher the probability that the node is the source of the transaction. The bar graphs
generated by the analyze.py script that was executed over the results obtained from the
initialization run_sim.py script are shown in Figure 7.1. The graphs belong to a simulation
that was run with parameters of 2000 Bitcoin nodes, 1 monitoring node, 0 hop distance,
100 simulation runs, CLI simulation, and monitoring node do not propagate messages. The
monitoring node in this scenario is connected to all Bitcoin nodes in the network. The
fastest node identified is bitcoinNode0 and can be considered as a possible source node of
the transaction.
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Figure 7.1: Identification of the possible source nodes based on the position and timestamp
metric. The fastest node is bitcoinNode0, where the difference from the others is relatively
large. In that case, this node can be considered as a possible source node of the transaction.
The results are from simulation where the bitcoinNode0 was directly connected to the
monitoringNode with an inbound connection.

The analysis results are different when the source node is hidden behind NAT. The
graphs in Figure 7.2 belong to a simulation that was run with parameters of 1000 Bit-
coin nodes, 1 monitoring node, 1 hop distance, 1000 simulation runs, CLI simulation, and
monitoring node do not propagate messages. The source of the generated transaction is
bitcoinNode0, but it is behind the NAT device, which means that the monitoring node is
not connected to it. Both graphs point to the same four nodes with approximate results.
In that case, these nodes can be considered as the nodes that are close to the source node
but cannot be considered as possible source nodes.

The simulation was run several times with different numbers of Bitcoin nodes (1000,
2000, 5000, 10000) and other parameters in various combinations. From the results of all
simulations it was possible to determine that it was always possible to identify the source
node if it was not located behind NAT and connected with the monitoringNode through
an inbound connection, which means the simulation parameter of the hop distance was set
to 0. Since the source node that generated the transactions was always bitcoinNode0, it
is possible to state that the fastest identified node in this particular case was always the
correct one. The results do not differ in such a large way from other nodes but in some small
way, which means that it can still be considered as a possible source of a transaction. This
means that if the entire Bitcoin network consisted of honest Bitcoin Core nodes and the
source node of a transaction was not hidden behind NAT, it would be possible to identify
the source node of the transaction. This means that actually, thanks to nodes with custom
or different implementations, more anonymity can be maintained in the Bitcoin network.

Conversely, if the source node is behind NAT and is therefore not connected with the
monitoringNode, the identification of it is essentially impossible. The analysis script is
only able to identify the closest possible nodes to the source node that accepts inbound
connections. This means that if the source node is hidden behind one NAT device, the
script identifies the nodes to which the source node connects via its outbound gate, since
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the monitoring node does not know that the source node even exists when it is not connected
to it.

Figure 7.2: Identification of the possible source nodes based on the position and timestamp
metric. The fastest node is bitcoinNode1, where the difference from the others is relatively
huge. In that case, this node can be considered as a possible source node of the transaction
or at least the node which is close to it.

7.2 Impact of monitoring nodes
Another result obtained is related to the monitoring nodes, specifically to the adjustable
parameter propagateMessages. When the monitoring nodes are set to propagate mes-
sages, the messages spread throughout the network faster, and the entire simulation is
completed in a faster time. This means that monitoring nodes can enable faster propaga-
tion of transactions, and thus can affect the network in some way. The comparison between
the simulation with the monitoring nodes that propagate transactions and the topology
where the monitoring nodes do not propagate them is handled by the analyze.py script.
The output graph in Figure 7.3 shows the time for each simulation run in which the trans-
action was received by the monitoring node from all nodes on the Bitcoin network. The
graph also shows the average transaction propagation time for both files, which is calculated
from all runs. This value proves that transactions are propagated faster in the network if
the monitoring nodes propagate transactions as well as Bitcoin clients. The graph belongs
to a simulation that was run with parameters of 2000 Bitcoin nodes, 1 monitoring node, 0
hop distance, 100 simulation runs, CLI simulation, and monitoring node do not propagate
messages and the same for the second file except the propagate messages parameter was
set. From further running analyzes, it was evaluated that the more monitoring nodes in
the topology, the faster the transaction propagated throughout the network. This fact is
indicated by Table 7.1 containing the number of monitoring nodes that propagated the
transaction along with the average time that the transaction was received from all nodes.
The results are taken from a simulation that was run 100 times with 2000 Bitcoin nodes
and a hop distance of 0.

Another finding is that if there are multiple monitoring nodes in the network that prop-
agate transactions when the source node is behind NAT or even it is not, these monitoring
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nodes appear in the analysis script results, as shown in Figure 7.4 and 7.5. This means that
if any of the monitoring nodes could send transactions immediately and not by the Bitcoin
Core propagation algorithm, it could theoretically pretend to be the possible source node
of the transaction, even though it is not.

Figure 7.3: Comparison between the simulation with the monitoring nodes that propagate
transactions (blue record) and the simulation where the monitoring nodes do not propagate
(orange record) them. The comparison shows a significant speedup in transaction propa-
gation when the monitoring nodes propagate them.

Number of monitoring nodes Average propagation time
1 52.76s
2 50.72s
3 49.09s
4 48.52s

Table 7.1: Indication that monitoring nodes affect the propagation of a transaction in the
Bitcoin network in terms of propagation speed. The more monitoring nodes in the topology,
the faster the transaction propagated throughout the network.

Size of the Bitcoin network

The average number of reachable Bitcoin nodes in the past year was about 17000 [12].
The question related to the number of nodes was whether the network should be simulated
with a similar number of reachable nodes corresponding to the real Bitcoin network or
with only a partial number. The differences between the results of the simulations with a
large number of nodes (15000 and 10000) and partial number of nodes (1000, 2000) were in
the average position values. In the simulation with a large number of nodes, the position
values were higher, but this is due to the calculation of the position value, which is based
on the number of nodes. In contrast, the calculation of the time stamp is not dependent
on the number of nodes and the results are similar in both cases. Moreover, if the values
from different sized simulations are recalculated proportionally, the results are similar. In
addition, the number of outbound connections was exponentially scaled by the number of
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nodes to make the results as accurate as possible. However, the identification of source node
was successful and the overall results were similar to the simulations with a small number
of nodes. For this reason, it was decided that there is no need to simulate the network with
a large number of nodes for this simulation scenario, since there was no effect on the overall
result.

Figure 7.4: Results when there are multiple monitoring nodes in the network that propagate
transactions when the source node is behind NAT.

Figure 7.5: Results when there are multiple monitoring nodes in the network that propagate
transactions when the source node is not behind NAT.
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Chapter 8

Conclusion

A simulation model with the Bitcoin algorithm for propagating inventory messages was
created in the OMNeT++ discrete-event simulator. In addition, the simulation model
includes a monitoring node that connects to all reachable Bitcoin clients and collects a
record of the transaction propagation. Then, this record was analyzed and the results
described in the last chapter.

An automated script was developed to define the simulation parameters, set up the
Bitcoin network topology, and run the whole simulation. The simulation covers situations
where the source node of a transaction is behind NAT device or directly on the public
network.

The main goal of the analysis was to identify the fastest nodes and the possible source
node of the transaction. There are several reasons why a node might be the fastest. It
could be the source node of the transaction, be located near the source, or have a different
implementation that speeds up transaction forwarding. The analysis script was able to
identify fastest nodes and determine the possible source node of the transaction, or atleast
the node that was close to it, in case the source node is behind NAT. Another result
obtained was that monitoring nodes can enable faster propagation of transactions and thus
can affect the network in some way, if they propagate transactions as Bitcoin clients. It was
also found that when scaling outbound connections correctly, there is no need to simulate
a network with a real number of Bitcoin nodes (17 000), but only a partial one (2000).

The simulation model created using OMNeT++ can help understand how inventory
messages propagate in the Bitcoin network. Simulations can be run under a graphical user
interface such as Qtenv, where the entire transaction propagation flow can be seen and all
events described. In addition, the model implements a monitoring node that can be used
to further analyze the behavior of the Bitcoin network.

The implementation aspects of this thesis were presented in poster format at the Ex-
cel@FIT 2024 Student Conference1. In the future, the work could be improved by imple-
menting Bitcoin getdata and tx messages, further analysis, and adding more options for
simulation configuration and Bitcoin network.

In conclusion, this thesis aimed to summarize the theoretical side of blockchain tech-
nology and Bitcoin cryptocurrency while providing practical examples for a better under-
standing of the technologies or processes described. In the implementation part, a highly
simplified Bitcoin client was developed, validated, and analyzed. Bitcoin client can create,

1https://excel.fit.vutbr.cz/

45

https://excel.fit.vutbr.cz/


receive, and send messages representing Bitcoin transactions and operate according to the
Bitcoin Core propagation algorithm.
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Appendix A

Distribution of reachable Bitcoin
nodes across leading user agents.

Figure A.1: The chart shows the number of reachable nodes over the last year, along with
the distribution of different versions of Bitcoin clients. Bitcoin Core clients are the most
widely used type of Bitcoin client in the world. As of March 16, they made up more than
93 percent of the Bitcoin network [12].
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Appendix B

Contents of Included Disk Media

File Description
thesis.pdf Copy of this thesis in PDF format.

btc_network.zip Zip file containing the source codes for the implementation part.
thesis_latex.zip Zip file containing the source code for the generated PDF.
README.md Instructions on how to set up the environment and run the simulation.

Table B.1: Contents of the included disk media.
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