
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

D I S C R E T E M O D E L I N G O F T R A N S A C T I O N P R O P A G A ­
T I O N I N B I T C O I N
DISKRÉTNÍ M O D E L O V Á N Í ŠÍŘENÍ T R A N S A K C Í V S Í T Í B ITCOIN

BACHELOR'S THESIS
B A K A L Á Ř S K Á PRÁCE

AUTHOR TOMÁŠ MAREK
A U T O R PRÁCE

SUPERVISOR Ing. JAN ZAVŘEL
V E D O U C Í PRÁCE

BRNO 2024

B a c h e l o r ' s T h e s i s A s s i g n m e n t

Institut:

Student :

P rogramme:

Tit le:

Category:

Depar tment of Informat ion Sys tems (DIFS)
M a r e k T o m a s
Informat ion Techno logy

D i s c r e t e m o d e l i n g o f t r a n s a c t i o n p r o p a g a t i o n in B i t c o i n

Model l ing and Simulat ion

156737

Academic year: 2023/24

Ass ignment :

1. S tudy b lockchain technology, focus on aspects speci f ic to Bi tcoin.

2. Study how the Bitcoin network works . Def ine and ana lyse the a lgor i thm used to propagate created
or received t ransact ions. Cons ider the latest avai lable vers ion of the Bitcoin reference cl ient.

3. Become famil iar w i th d iscrete event s imulator O M N e T + + .

4 . Create a des ign for a highly simpl i f ied Bitcoin cl ient that can create, receive, and send messages
represent ing Bitcoin t ransact ions and that operates accord ing to the a lgor i thm f rom point 2.

5. As recommended by the superv isor , create a s imulat ion model in O M N e T + + .
6. Test the created s imulat ion model and d iscuss the obta ined results.

Li terature:

1. N A K A M O T O , Satosh i . Bitcoin: A Peer-to-Peer Electronic Cash System [onl ine]. 2008 , 1-9 [cit. 2023 -
10-23]. Ava i lab le f rom: ht tp: / /b i tcoin.org/bi tcoin.pdf

2. Main Page. Bitcoin Wiki [onl ine]. 2010 , 2021 [cit. 2023-10-23] . Ava i lab le f rom:
ht tps: / /en.b i tcoin. i t /wik i /Main_Page

3. Bitcoin Core Reposi tory. Github [onl ine]. 2009 , 2023 [cit. 2023-10-23] . Ava i lab le f rom:
ht tps: / /g i thub.com/bi tcoin/bi tcoin

4 . Learn Bitcoin and start bui lding Bi tco in-based appl icat ions. Bitcoindeveloper [onl ine]. 2009 , 2020
[cit. 2023-10-23] . Ava i lab le f rom: ht tps: / /developer.b i tcoin.org/ index.html

Requ i rements for the semest ra l de fence :
Points 1, 2 and 3.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : Z a v ř e l J a n , Ing .

Head of Depar tment : Kolář Dušan , doc. Dr. Ing.

Beginning of work : 1.11.2023

Submiss ion deadl ine: 9.5.2024

Approva l date: 30.10.2023

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Božetěchova 1/2 / 612 66 / Brno

http://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Main_Page
https://github.com/bitcoin/bitcoin
https://developer.bitcoin.org/index.html
https://www.fit.vut.cz/study/theses/

Abstract
Blockchain technology is the core of how B i t co in works. The a im of the theoretical part of
this thesis is to describe the principles on which blockchain technology is based and also
to gather information about how transactions are propagated through the B i t co in network.
The a im of the pract ical part is to create a model of a very simplified B i t co in Core client
that allows to create, send and receive transactions based on the propagation algori thm
used i n the B i t co in network. The model is then run i n the s imulat ion environment and the
simulation results are analyzed to identify the possible source node of the transaction.

Abstrakt
Technologie blockchain je s těže jn ím bodem fungování Bi tco inu . C í lem teore t ické čás t i t é t o
p ráce je popsat principy, na k t e rých je technologie blockchain za ložena a zá roveň s h r o m á ž d i t
informace o tom, jak jsou transakce š í řeny v sít i B i t co in . C í lem p rak t i cké čás t i je vy tvoř i t
model velmi z j ednodušeného B i t co in Core klienta, k t e r ý u m o ž n í v y t v á ř e t , pos í la t a p ř i j íma t
transakce na zák ladě p r o p a g a č n í h o algori tmu využ ívaného v sít i B i t co in . M o d e l je ná s l edně
s p o u š t ě n v s i m u l a č n í m p r o s t ř e d í a výs ledky simulace jsou ana lyzovány s c í lem urč i t zdro jový
uzel transakce.

Keywords
blockchain, B i t co in , B i t co in Core project, peer-to-peer, transaction propagation, OMNeT+-1- ,
s imulation

Klíčová slova
blockchain, B i t co in , B i t co in Core projekt, peer-to-peer, š í ření t r ansakc í , OMNeT+-1- , s im­
ulace

Reference
M A R E K , T o m á š . Discrete modeling of transaction propagation in Bitcoin. Brno , 2024.
Bachelor's thesis. Brno Universi ty of Technology, Facul ty of Information Technology. Su­
pervisor Ing. Jan Zavřel

Rozšířený abstrakt
P r á c e se zabývá v y t v o ř e n í m z j ednodušeného B i t co in kl ienta p ropaguj íc ího z p r á v y reprezen­
tuj ící B i t co in transakce, k t e r é jsou nás l edně mon i to rovány . Zachycená komunikace je p o t é
a n a l y z o v á n a s p r i m á r n í m cí lem zjistit zdro jový uzel transakce.

Tato p r á c e je rozdě lena do dvou h lavn ích čás t í obsahuj íc í ne jdř íve kapi toly z a m ě ř e n é
na teorii a ná s l edně v d r u h é čás t i p rak t i cké kapi toly týkaj íc í se n á v r h u , implementace
a ana lýz i . C í lem teo re t i ckých kapi to l je poskytnout ú v o d do technologie blockchain a jejích
h lavních součás t í , jako jsou bloky, peer-to-peer s í tě , mechanismy konsensu a po tenc i á ln í
v ý s k y t y forků. Dá le se p r á c e věnuje p r v n í a ne jznámějš í k r y p t o m ě n ě , Bi tco inu , p ř ičemž
se zabývá p ř e d e v š í m strukturou transakce a t í m , jak jsou transakce v sí t í B i t co in šířeny.
Cí lem p r a k t i c k ý c h kapi to l je navrhnout, implementovat a analyzovat s imulačn í model velmi
z j ednodušeného B i t co in klienta, k t e r ý dokáže šíři t z p r á v y reprezentu j íc í B i t co in transakce
podle algori tmu p o u ž í v a n é h o v reá lné B i t co in sít i .

P r v n í t eo re t i cká kapi tola se zabývá technologi í blockchain, d íky k t e r é funguje vě t š ina
k r y p t o m ě n po ce lém svě tě . K a p i t o l a popisuje t ř i z á k l a d n í s t avebn í kameny blockchainu,
k t e r ý m i jsou blok, ře tězec a peer-to-peer síť. Dalš í p r o b í r a n o u a ned í lnou součás t í je kon­
sensus mechanismus, k t e r ý slouží v peer-to-peer s í t ích k zaj iš tění toho, aby se všechny uzly
v s í t í shodly na s te jné verzi použ ívaných dat. V pos ledn í ř a d ě jsou z m í n ě n y i r ů z n é typy
blockchainu a druhy forků, k t e r é mohou v sít i nastat.

D r u h á t eo re t i cká kapi tola je z a m ě ř e n a na celosvětově z n á m o u d ig i t á ln í m ě n u Bi tco in .
V t é t o kapitole je p o p s á n o co jsou to transakce a k č e m u v B i t co in sít i slouží. N a d á l e je
p o p s á n a jejich s t ruktura a skripty, k t e r é určuj í za j a k ý c h p o d m í n e k mohou bý t bi tcoiny
v transakci utraceny. V k a ž d é m p ř í p a d ě p la t í , že než mohou bý t utraceny, m u s í se po síti
rozšíř i t p r o p a g a č n í m algoritmem, k t e r ý je p o p s á n v p ř e d p o s l e d n í sekci o Bi tco inu . Síření
zp ráv exponenc iá ln í funkcí p o p s a n é v t é t o sekci je n a d á l e využ íváno v p rak t i cké čás t i t é t o
p ráce . N a závěr t é t o kapi toly je uveden pr incip a p ř ík l ad n á h o d n ě gene rovaného čísla, k t e ré
mus í t ěža ř i B i t co inu uhodnout, aby vytvoř i l i nový blok v blockchainu.

Součás t í p r á c e je rovněž s t r u č n ý popis s i m u l á t o r u d i sk ré tn ích udá los t í O M N e T + + .
H l a v n í m úče lem s i m u l á t o r u je modelovat a simulovat s loži té poč í t ačové a k o m u n i k a č n í
sys témy. V p rak t i cké čás t í t é t o p r á c e je s imu lá to r využ íván pro simulace B i t co in sí tě .

I m p l e m e n t a č n í čás t p r á c e spočívá v n á v r h u z j ednodušeného modelu B i t co in klienta,
k t e r ý dokáže v y t v á ř e t , p ř i j íma t a odes í la t z p r á v y reprezentu j íc í B i t co in transakce a nás l edné
simulaci reprezentu j íc í B i t co in síť. Z p ů s o b propagace t r a n s a k c í je i m p l e m e n t o v á n algorit­
mem pro š í ření inventory z p r á v z B i t co in Core klienta, k t e r ý je p o p s á n v teore t ické čás t i .
Tento klient je nej použ ívaně j š ím B i t co in kl ientem na světě a z tohoto d ů v o d u b y l t aké
použ i t [12]. N a zák ladě n á v r h u je model i m p l e m e n t o v á n v j iž z m í n ě n é m s i m u l á t o r u O M -
N e T + + . Součás t í v y t v á ř e n é B i t co in s í tě je nav íc mon i to rovac í uzel, k t e r ý je p ř i p o j e n ke
v š e m d o s t u p n ý m u z l ů m . Moni to rovac í uzel s louží k u k l á d á n í informací o př íchozích inven­
tory zprávách od o s t a t n í c h uzlů , ze k t e r ý c h po dokončen í simulace vy tvo ř í C S V soubor.
Samotnou simulaci je m o ž n é p o u š t ě t v y t v o ř e n ý m a u t o m a t i z o v a n ý m skriptem s vol i te lnými
parametry určuj ící s t rukturu a chování s í tě , což je p o p s á n o na z a č á t k u kapi toly o imple­
mentaci.

V závěrečné čás t í p r á c e p o p s a n é v pos ledn í kapitole je c í lem analyzovat zachycené infor­
mace z C S V souboru. M e z i zachycené informace p a t ř í číslo b ě h u simulace, t r a n s a k č n í hash
identifikující k o n k r é t n í transakci, j m é n o souseda, od k t e r é h o byla d a n á transakce o b d r ž e n a
a čas ve k t e r é m byla transakce o b d r ž e n a m o n i t o r o v a c í m uzlem. Z t ěch to z á z n a m ů jsou
nás l edně z í skány nejrychlejší uzly z pohledu rychlosti propagace t r a n s a k c í a jejich p o ř a d í .

H l a v n í m cí lem je u rč i t po t enc i á ln í zdro jový uzel transakce. Vedlejším cí lem je celkově
analyzovat chování s í tě př i r ů z n é m p o č t u z a d a n ý c h p a r a m e t r ů .

D i s c r e t e m o d e l i n g o f t r a n s a c t i o n p r o p a g a t i o n i n

B i t c o i n

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Jan Zavfel . I have listed a l l the l i terary sources, publications
and other sources, which were used during the preparation of this thesis.

T o m á š Marek
M a y 5, 2024

Acknowledgements
I would like to express my sincere gratitude to my supervisor, Ing. Jan Zavfel , for his
guidance, support, valuable feedback, and expertise throughout my research process. I also
want to thank my girlfriend Barca , for her love and support, which kept me motivated and
focused, even during the most challenging times, and also for understanding that I had to
spend a lot of t ime si t t ing i n front of a computer.

Contents

1 Introduction 3
1.1 Structure 3

2 Blockchain 5
2.1 B lock 5
2.2 C h a i n 6
2.3 P 2 P Network 7

2.3.1 Structured 7
2.3.2 Unstructured 7
2.3.3 H y b r i d 8

2.4 Consensus Mechanism 8
2.4.1 Proof of Work 8
2.4.2 P roof of Stake 9

2.5 Types of blockchain 10
2.6 Forking 10

2.6.1 Accidenta l forks 10
2.6.2 H a r d forks 11
2.6.3 Soft forks 12
2.6.4 Codebase forks 12

3 Bi tco in 13
3.1 Transactions 14

3.1.1 Transaction structure 15
3.2 Scripts 17

3.2.1 Pay- to -Pub l i c -Key-Hash (P 2 P K H) 18
3.2.2 Pay- to-Scr ipt-Hash (P2SH) 18
3.2.3 Pay- to-Witness -Publ ic -Key-Hash (P 2 W P K H) 18
3.2.4 Pay-to-Witness-Script-Hash (P 2 W S H) 18
3.2.5 Pay-to-Taproot (P 2 T R) 19

3.3 Propagat ion of transactions 19
3.4 Nonce 22

4 O M N e T + + 23

5 Design of the simulation network 25

6 Implementation 27
6.1 Simulat ion 27

1

6.1.1 Simulat ion parameters 27
6.1.2 Creat ing a transaction 28
6.1.3 Receiving a transaction 30
6.1.4 Moni to r ing nodes 31
6.1.5 C S V file generation 31
6.1.6 Deviat ions from real B i t c o i n network 32

6.2 Ini t ia l izat ion script 32
6.3 Analys is script 33
6.4 Verification and val idat ion 34

7 Analysis 39
7.1 Identification of the possible source node of a transaction 39

7.2 Impact of monitor ing nodes 41

8 Conclusion 45

Bibl iography 47

A Distr ibut ion of reachable Bi tco in nodes across leading user agents. 49

B Contents of Included Disk M e d i a 50

2

Chapter 1

Introduction

The first and most known cryptocurrency, known as B i t co in , was publ ic ly shared i n 2008
by Satoshi Nakamoto. Today, there are thousands of cryptocurrencies around the world.
Mos t of them are using blockchain technology for their functioning. In the future, we
can expect blockchain technology to be used even more i n other spheres and not only i n
cryptocurrencies.

Th is thesis deals w i th a theoretical introduct ion to blockchain technology, where the
major parts of blockchain like block, peer-to-peer network, and consensus mechanism are
described. Furthermore, consideration is given to the various types of blockchain or forks
that may arise when employing blockchain technology.

The th i rd chapter summarizes the B i t co in cryptocurrency. The main focus here is on
the transaction structure and what happens w i t h the transaction, when a node receives
it . The propagation algori thm and the exponential function used in B i t co in Core clients
to propagate transactions are also integral parts that are described. Moreover, the most
commonly used scripts i n B i t co in are described together w i th the addresses whose format is
based on the script that is being used. A t the end of the B i t c o i n section, the presence and
calculation of the random number that miners use i n the B i t co in mining process is described.
In addi t ion to the theoretical explanation, some of the principles are demonstrated w i t h
concrete examples to better understand the described technology or process.

The pract ical part describes the implementat ion of a highly simplified B i t co in client
model. The model allows to create, receive, and send messages representing B i t co in trans­
actions based on the propagation algori thm. The model is created i n the O M N e T + +
simulator, described briefly i n the fourth chapter.

The goal of this thesis is to explain and summarize the basic concepts of blockchain
technology and how it works. The second goal is to describe the B i t co in cryptocurrency,
its transaction structure, and the process of propagating received or newly created transac­
tions. The last goal is to create a simplified B i t co in client in the OMNeT+-1- discrete-event
simulator, which w i l l propagate messages that represent B i t co in transactions using the B i t -
coin Core propagation algori thm. Fina l ly , the transaction propagation is analyzed to find
the fastest nodes in the B i t co in network and the possible source node of the transaction.

1.1 Structure

• Chapter 2 describes the structure of blockchain technology, types, consensus mecha­
nism, and type of forks.

3

• Chapter 3 contains an introduct ion to B i t co in cryptocurrency. It mainly focuses on
its transaction structure and the propagation of received transactions. Furthermore,
a description of the scripts and the meaning of Nonce is described.

• Chapter 4 provides a basic overview of the O M N e T + + simulator.

• Chapter 5 describes the design of the B i t co in s imulat ion network.

• Chapter 6 presents the implementat ion of the B i t co in s imulat ion network, the scripts
related to its generation, analysis and the verification and validat ion of the created
simulation model.

• Chapter 7 reveals the results obtained from the simulat ion analysis.

• Chapter 8 concludes the thesis w i t h a summary of the most important objectives
and their achievement. The contr ibution of the developed simulation model and its
possible future improvements are described.

4

Chapter 2

Blockchain

Blockchain is a d ig i ta l ledger that is often publ ic ly accessible to a l l participants i n the
network. In most cases, it is a decentralized system that acts as a distr ibuted database,
which means that there is no central authori ty that controls the system. The distr ibuted
nature of the blockchain ensures that the network remains operational even i f ind iv idual
components fail.

The blockchain operates on a peer-to-peer network. A peer-to-peer network is mainly
a decentralized system where participants can share resources direct ly w i th each other wi th­
out the need for a centralized authority. The fundamental components of the blockchain are
blocks. E a c h block is connected to the previous one, creating a chain of blocks. Three ma in
elements, Block, Cha in , and Peer-to-Peer network, used i n the blockchain are described
in Sections 2.1, 2.2, 2.3, and are based on B i t co in W i k i [2] and Bitcoindeveloper [11, 7].
A s a side resource for understanding blockchain technology, the Hyperledger Foundat ion
W h i t e Papers [17] were used.

2.1 Block

In blockchain, a block is a unit of data that represents a collection of transactions, where
each block is cryptographical ly l inked to the previous block. The blocks are verified and
added to the chain through a consensus mechanism, which is described in Section 2.4. Once
a block is added to the chain, it cannot be altered. The only way blocks can be deleted
is when there are more branches i n use. Th is s i tuat ion can occur when an accidental fork
happens. Th is process is described i n Section 2.6. The very first block in the blockchain
is named the Genesis block. This block is not added by users, but is standardized in the
blockchain protocol.

W h e n creating a block, several pieces of information are included. The specifics may
vary depending on the type of block you are working w i t h , but the general structure of
a block is the following:

• Blocksize - Sets the size l imi t on the block.

• Block header - Contains information about the block.

• Transaction counter - Number representing how many transactions are stored i n
the block.

• Transactions - a list of a l l transactions wi th in a block.

5

The block header contains sub-elements which are:

Version - The cryptocurrency version that is being used.

Previous block hash - Contains a hash of the previous block header.

Hash Merkle root - The final hash is known as the Merkle root of a Merkle tree
in the current block. A Merkle tree is a data structure that is used to efficiently
store and verify large amounts of data in a blockchain. It works by hashing pairs of
data repeatedly unt i l a single hash remains, known as the Merk le root. The structure
of the Merkle tree hashing is shown in Figure 2.1.

Timestamp - The approximate t ime when the block was created or mined. The
format can be different for some cryptocurrencies. For example, B i t co in uses the
t imestamp i n U n i x format, which represents the number of seconds that have elapsed
since January 1, 1970, at 00:00:00 U T C .

Bits - The difficulty rat ing of the target hash, signifying the difficulty i n solving the
nonce.

Nonce - Nonce is a 32-bit number and a shortcut for a Number used only once. It
is part of the consensus mechanism that miners use to find val id blocks and earn
rewards. A nonce is a random number that miners add to the block data and then
hash i t . The resulting hash must meet specific criteria.

M e r k l e t r e e Hash Merk l e root

H a s h 0 1 2 3

Hash01 Hash23

HashO H a s h ! H a s h 2 H a s h 3

TxO Tx1 Tx2 Tx3

T ransac t i ons , Data b locks

Figure 2.1: Merkle tree system hashing each pair of data unt i l one single hash remains,
known as the Merkle root.

2.2 Chain

A chain is a l inked sequence of blocks. E a c h block contains a cryptographic hash of the
previous block header, creating a chain of blocks. Th is chain is what allows the blockchain

6

to function and create trust through mathematics. The hash is generated from the data that
was present i n the previous block, acting as a fingerprint and locking the blocks in order and
t ime. There are various hashing algorithms used in blockchain technology. One of them is
SHA-256 , where S H A stands for Secure Hash Algorithm and 256 means fixed-size 256-bit
hash. This a lgor i thm is used, for example, in B i t co in . O n the contrary, the Ethereum
cryptocurrency uses the Keccak-256 algori thm, which is part of the S H A - 3 family [19].

2.3 P 2 P Network

Peer-to-peer network, also known as P 2 P , is a type of network architecture model . If
a group of participants share some of their hardware resources such as processing power,
storage, network l ink capacity, etc., a distr ibuted network architecture can be described
as a peer-to-peer network. Members of a P 2 P network are called nodes or peers. A node
represents a single computer or device l inked wi th other systems over the Internet. A l l
nodes are considered to be equal i n the peer-to-peer network. P 2 P network has different
usages compared to the client-server model . The nodes share resources and information
directly without the need for a central server. E a c h participant acts as both a client and
a server, which makes the network more decentralized and less dependent on a single point
of failure. To demonstrate this, th ink about a s i tuat ion where the peer is connected to
another peer, which suddenly disconnects. In that case, the peer can request another peer
for cooperation. Once the connection is established, the peers can continue where the
work ended wi th the previous peer. Th is is a significant advantage over the client-server
architecture, where communicat ion is lost after the server disconnects.

There are several types of P 2 P networks, and some cryptocurrencies use more than
one P 2 P network. One such example is Ethereum, which uses both structured and hybr id
types. B i t co in , on the other hand, uses only a structured P 2 P network. The overview of
P 2 P network types is described below and is based on [18, 24].

2.3.1 Structured

A structured network employs a specific protocol to organize network nodes into a struc­
tured overlay network. E a c h node is assigned a unique identifier, which is used to organize
the network nodes into a logical structure, such as a dis tr ibuted hash table (D H T) . Th is
structured overlay network provides efficient rout ing and lookup mechanisms for data stored
on the network.

In a structured P 2 P network, each node maintains a routing table, which contains
information about other nodes i n the network. The routing table is organized based on the
identifier space, and each node is responsible for maintaining information about a subset
of the identifier space. A s a result, structured P 2 P networks provide efficient rout ing and
lookup mechanisms, even i n large-scale networks. A n example of a structured P 2 P network
is Ethereum's consensus layer or B i t co in .

2.3.2 Unstructured

In an unstructured network, there is no fixed structure or organization. Peers are free to
jo in or leave the network anytime without affecting its functionality. To communicate w i t h
other peers, they broadcast their queries or messages. They hope to find the desired file or
peer, but they have no information about the location of peers. In this type of network,

7

peers mainta in a fixed number of connections wi th their neighbors. A n example of an
unstructured P 2 P network is the first decentralized P 2 P network Gnute l la 1 or the very
first commercial P 2 P network called Napster 2 .

2.3.3 H y b r i d

a hybr id P 2 P network combines structured and unstructured topologies. The peers are
divided into different groups or clusters, based on their characteristics, such as location,
bandwidth, or performance. Each group or cluster has a leader or a super-peer, which
acts as a mini-server or an index for the group or cluster and connects to other leaders
or super-peers in the network. The peers contact their leader or super-peer to search and
route a l l their queries w i th other peers wi th in or across groups or clusters.

Ethereum's execution layer is an example of a hybr id network that consists of two stacks:
the discovery stack and the D e v P 2 P stack. The discovery stack is based on U D P and helps
a new node locate peers to establish connections. O n the other hand, the D e v P 2 P stack is
based on T C P and allows the nodes to share information wi th each other. These two stacks
operate concurrently and complement each other to improve the efficiency of the network
[26].

2.4 Consensus Mechanism

The consensus mechanism plays a v i t a l role in ensuring that a l l nodes wi th in a network
agree on the same version of a transaction or a piece of data. The consensus ensures
the integrity of the network, but also helps prevent any malicious activities that could
compromise the system. There are various consensus mechanisms i n use today, and the
most known are Proof of Work (P o W) and Proof of Stake (PoS). Ul t imately , the goal of
any consensus mechanism is to establish trust and provide a reliable network for a l l nodes.
Once most of these nodes agree on the same, it is noted as t ruth , and consensus is reached.
Figure 2.2 shows the concept of how blockchains come to an agreement after a user requests
a transaction. This section itself is based on [11, 19, 21].

2.4.1 Proof of Work

The P roof of Work (P O W) algori thm was in i t ia l ly intended as a way to combat email spam
and prevent denial-of-service attacks i n the Hashcash system. The basic idea behind their
proposal was to require senders to perform a certain amount of computat ional work before
sending an email [4].

The P O W in the blockchain is used to validate transactions and blocks. The validat ion
depends on the miners who compete to solve the nonce. Once the nonce is correctly guessed,
a new random number is generated, which w i l l be used i n the next guessing process. Th is
cycle repeats itself as miners continue to compete i n solving the encrypted numbers to get
rewards.

The process of solving the number is called block mining. T h i s process requires a sub­
stantial amount of computing power and consumes a significant amount of electricity re­
sources. Anyone on the P 2 P network can actively participate i n this block min ing process.
Part icipants can be ind iv idua l computers, but the rise i n min ing difficulty led companies

xhttps://gnutella3.sourceforge.net/
2https://www.napster.com/us/

8

https://gnutella3.sourceforge.net/
https://www.napster.com/us/

A user requests
a transaction

The request is
transmitted to
the network.

CD/
The network
validates the
transaction.

The transaction is
added to the current

"block" of transactions,

or
The transaction

is kicked out.

The transaction
is confirmed.

The block of transactions
is then "chained" to the

older blocks of transactions.

Figure 2.2: Process of requesting and verifying a transaction (taken from Blockchain For
Dummies [19]).

to develope specialized computers called Applicat ion-Specif ic Integrated Ci rcu i t (A S I C)
machines. A S I C s are designed specifically to perform P O W computations.

Some of the cryptocurrencies that use P O W as a consensus mechanism are Bi t co in ,
Li tecoin , Dogecoin, and many more.

2.4.2 Proof of Stake

Proof of stake (POS) is an alternative consensus method to verify transactions and add
new blocks to a blockchain. This method is considered to be more energy-efficient than
P O W since it does not need that much computing power. The validat ion of new blocks
depends on the number of coins that are staked. This process is also known as block minting.
The word "mint ing" implies that you need to have a currency reserve as a backup to mint
your coins. Th is is s imilar to how some central banks keep a gold reserve to support their
national currency pr int ing. W i t h PoS , the minters stake their ownership i n the system as
a security deposit.

The selection algori thm chooses the validators. Once the validator is selected, they have
the exclusive right to create a block. The other validators that are not currently selected
to create a block are essentially in standby mode. They are not actively par t ic ipat ing i n
the process of block creation at that t ime. Instead, they typical ly monitor the network
to ensure that the selected validators are act ing correctly and following the rules of the
protocol. To prevent and punish such actions as breaking the rules, PoS uses a security
function called „s lashing". If someone breaks the rules, some of the crypto coins they staked
w i l l be destroyed.

Cryptocurrencies that use P O S as their consensus mechanism are, for example, Ethereum,
Solana, or Cardano.

9

2.5 Types of blockchain

Firs t of a l l , it is important to define terms such as centralization and decentralization. The
definition of centralization in the book Bu i ld ing Decentralized Blockchain Appl ica t ions is:
,jthe act of consolidating authority to one central place" [25]. For example, the architecture

model client-server is based on centralization because the data are stored only on the server.
The opposite is decentralization, which is based on operating without a central point of
control or authority. The definition i n the book says that the decentralized approach
is when: ,fhere is no central authority involved in the working of Blockchain" [25]. A n
example of decentralized technology is the P 2 P network.

Blockchain technology can be divided into different types. The first two types to com­
pare based on access are public and private blockchains. In the public blockchain, users
can remain anonymous and each user can have a copy of the ledger. Anyone can jo in the
public blockchain. In contrast, the private blockchain requires users to provide credentials,
and only authorized users have access to the ledger.

In terms of part icipat ion, the blockchain can be further divided into a permissioned and
a permissionless blockchain. The permissioned blockchain does not require P o W to validate
transactions since the inst i tut ion (e.g. bank) provides the trust. Even without the P o W or
PoS consensus mechanism, the permissioned blockchain s t i l l has the following functions:

• P r ivacy - only members have the right to view the transactions

• Scalabil i ty - can be easily scaled up by not using the resource-intensive P o W

• Access Con t ro l - the access to the data wi th in the ledger can be restricted as the
owner desires

In summary, the permissioned blockchain is a closed, private blockchain wi th an owner wi th
a certain degree of centralization.

For the permissionless blockchain, the si tuation may be different. It is public, so anyone
can see the transactions i n the ledger and there is no single ins t i tut ion that provides the
trust. Trust is gained through consensus mechanisms. A n example of a permissionless
blockchain is the B i t co in or E thereum cryptocurrencies. Th is section was based on [21, 25].

2.6 Forking

Blockchain forking is the process of creating two or more separate blockchain networks, each
wi th its own set of rules and protocols. It may occur due to a variety of factors, including
network upgrades, software updates, community disputes, or attacks on the blockchain
network. There are various types of forks, including hard forks, soft forks, codebase forks,
and accidental forks. Th is section is based on [11, 23].

2.6.1 Accidental forks

A n accidental fork occurs when two or more miners find a block at roughly the same time.
The blockchain is temporari ly split, and various nodes may have different copies of the
ledger. The fork is resolved when subsequent blocks are added, and one of the chains
becomes longer than others. Blocks that are dropped by the network because they are not
in the longest chain are called orphaned. Accidenta l forks typical ly do not last long and
the impact on the network is negligible. The process is described once more i n Figure 2.3.

10

time ^—>
to t i t2 t3 t4

Figure 2.3: A n accidental fork happened, because the block2 was created by two miners at
the nearly same time, but each wi th a different structure. In that case, the chain was split
into two chains. Since the second chain became longer than the first one, due to block4,
it is chosen as the winner. The block2 and block3 from the first chain are deleted from
the blockchain database and called orphaned.

Forks can also be used for double-spending attacks. These attacks consist of t ry ing to
spend the same digi ta l currency twice. The steps below outline how this attack, which may
seem like an accidental fork, occurs.

1. A n attacker makes a purchase and receives delivery of the purchased i tem. His trans­
action is now added to the blockchain.

2. The attacker creates a new longer chain, omi t t ing his transaction.

3. If he succeeds, the attacker has the purchased i tem and the coins he spent on that.

4. The attacker may then spend his coins again.

2.6.2 H a r d forks

a hard fork is a modification of the blockchain protocol that is not backward compatible
and requires software updates from a l l users to continue using the network. Users who do
not update their software w i l l not be able to validate new blocks that follow the updated
rules. A hard fork causes the network to split into two different versions. The original uses
the old rules, and the new uses the new rules.

Example of a H a r d fork

A n example of a hard fork is a si tuation that occurred in Ju ly 2016, when the Ethereum
blockchain experienced a hard fork. The fork was the result of a disagreement among the
Ethereum community about how to handle a major security breach known as the D A O
attack that resulted in the loss of more than 45 mi l l ion dollars. The hard fork resulted i n
the creation of two separate blockchains: Ethereum (E T H) and Ethereum Classic (E T C) .
The new Ethereum blockchain continued w i t h the updated protocol that addressed the
security breach, while the original Ethereum blockchain continued wi th the old protocol.
Those who supported the new protocol moved their ether to the new blockchain, while those
who opposed the change stayed on the o ld blockchain, which became known as Ethereum

11

Classic. O n the Ethereum Classic blockchain, you can clearly see the D A O attack, which
occurred on block 1 757 821 [13].

2.6.3 Soft forks

a soft fork is a change i n the blockchain protocol that is backward compatible and allows
the in t roduct ion of new rules without requiring a l l users to update their software. Nodes
that are not up-to-date are s t i l l able to process transactions and add new blocks, as long
as they do not break the new rules. A n example of a soft fork is SegWit i n B i t co in , where
the transaction format was changed or the introduct ion of Pay-to-Script-Hash, which w i l l
be described later i n this thesis.

2.6.4 Codebase forks

a codebase fork occurs when the entire source code of a blockchain project is copied and
modified to produce a new piece of software or product. The original blockchain network is
not affected by this, but a new one is created wi th new features and objectives. A n example
of a codebase fork is Li tecoin , which was created from Bi tco in .

12

Chapter 3

Bitcoin

Bi t co in is a d ig i ta l currency that was released to the world i n October 2008 through the
W h i t e paper [22] by an anonymous person or group named Satoshi Nakamoto. The genesis
block of B i t co in was mined i n January 2009. F r o m that time, B i t co in went from the only
cryptocurrency to the most known digi ta l currency i n the world. It is a decentralized
permissionless currency. B i t co in was released at the t ime of the 2008 financial crisis, which
highlighted the need for a currency that was not dependent on th i rd parties, such as banks.

B i t co in was originally intended to be used as a payment system, similar to banks but
without the bank itself. However, due to the value of bi tcoin changing its price, it became
more popular as an investment product than a dai ly payment system. The price of a B i t co in
is determined by the balance between supply and demand. W h e n the demand for bitcoins
increases, the price also increases, and when the demand falls, the price falls as well . Since
there is only a l imi ted number of bitcoins i n circulat ion and new bitcoins are created at
a predictable and decreasing rate, demand must follow this level of inflation to ensure price
stability. The smallest piece of B i t co in value is Satoshi, named after the founder of B i t co in .
The frequently used word for B i t co in value is bi tcoin wi th the shortcut B T C . One B T C is
equal to 100 mi l l ion Satoshis. In total , there can be up to 21 mi l l ion B T C available in the
future, which makes B i t co in l imi ted . The last B i t co in is expected to be mined around the
year 2140. New bitcoins are added to the B i t co in supply approximately every 10 minutes,
which is the average amount of t ime it takes to create a new block of B i t co in . These blocks
are filled w i th transactions that are described in the next Section 3.1.

To transfer a certain amount of B T C , a user must create a transaction. These trans­
actions need to be transferred, verified and stored somewhere. Tha t is the moment when
B i t co in utilizes blockchain technology. A s Chapter 2 describes, the blockchain is a dis­
t r ibuted ledger that records a l l transactions made on the network. A l l B i t co in transactions
are stored i n this blockchain ledger. The consensus mechanism for B i t co in , called Proof
of Work , also relies on blockchain technology to achieve agreement among nodes on the
val idi ty of transactions. B i t co in protocol is running on the B i t co in P 2 P network, where
computers are connected around the world. These computers are called B i t co in nodes.

B i t co in is a continuously evolving technology that undergoes regular improvement. To
suggest any changes or additions to the B i t co in protocol, the B i t co in Improvement P ro ­
posals (BIPs) were introduced. B I P s provide a structured way of submit t ing new ideas or
changes to the B i t co in community for review and consideration. These proposals can range
from minor technical improvements to significant changes i n how Bi t co in operates. The
entire process of submit t ing a B I P is outl ined i n B I P 2 [14]. Currently, there are almost
400 published B I P s as of January 2024, which are readily available on the B i t co in G i t H u b

13

repository . Since B i t co in is an open source software, the source code for the B i t co in client
[5] is also available on G i t H u b . Anyone can access, review, and contribute to the devel­
opment of B i t co in software. The code is constantly evolving, w i t h regular updates and
improvements made through the B I P s described above.

The source of information for this introduct ion to B i t co in was based on the Bitcoinde-
veloper website [1] and the book G r o k k i n g B i t co in [23].

3.1 Transactions

Transactions allow users to transfer B i t co in values. They are broadcast to the network and
collected into blocks. A l l communicat ion is done over the T C P protocol. Transactions are
not encrypted. This makes it possible to browse and view every transaction ever collected
into a block, and everyone can verify them because they are visible.

The standard process of a transaction from the send-to-receive state involves four steps.

1. The sender initiates a B i t co in transaction by creating a digi ta l signature using their
private key, entering the data from the s c r i p t P u b K e y (mostly representing the bi tcoin
address) that was sent by the recipient and the amount of B T C to be sent.

2. The transaction is then broadcast to the B i t co in network, which consists of a decen­
tral ized network of nodes that verify and process transactions.

3. B i t co in miners compete to solve complex mathematical puzzles to add the transaction
to a block on the blockchain. Once a miner solves the puzzle, the block is added to
the blockchain, and the transaction is permanently recorded.

4. Once the transaction is confirmed and added to the blockchain, the recipient can
access the B i t co in sent to their address. They can then choose to hold on to B i t co in
as an investment or exchange it for another currency.

Example

Before describing the transaction structure, an example of the B i t co in payment process is
demonstrated. In this example, John wants to send 1 B T C to Thomas. Inspiration for this
example was taken from G r o k k i n g B i t co in [23]. The names John and Thomas are used for
simplicity, but in the real world, B i t co in does not use any names or personal information.
The payment process can be split into 4 steps.

1. Transactions - The process starts when John requests the network to send 1 B T C
to Thomas. Tha t is done by sending a B i t co in transaction to the B i t co in network
through a mobile wallet applicat ion. This transaction includes a piece of information
that describes:

• The amount of bitcoins to be transferred.

• Thomas's B i t co in address, where the money is sent.

• a d ig i ta l signature from John to prove that it is h i m who wants to send the
money.

xhttps://github.com/bitcoin/bips

14

https://github.com/bitcoin/bips

2. T h e Bitcoin Network - Once John has sent a transaction to the B i t co in network,
B i t co in nodes check and verify i f the transaction is val id . The verification process
is done by consulting its local copy of the blockchain ledger, checking i f the 1 B T C
that John spends exists and if the digi ta l signature is val id . Invalid transactions are
dropped, and the val id ones are forwarded by nodes to their peers. The blockchain
ledger has not been updated yet because it w i l l be done i n the next step.

3. T h e Blockchain - A s there can be up to thousands of transactions wait ing to be
added to the blockchain, one node must take the lead and send a message to the
network about which transactions he w i l l add to the block. The other nodes verify
the block and update their blockchain copies. John's transaction is part of this block
and is now part of the blockchain.

4. Wallets - A l l users who want to participate need a computer program to interact
w i t h the network. This program is called a B i t co in wallet. Since John's transaction
is part of the blockchain, the network needs to inform John and Thomas that the
transaction was made. The wallets are connected to some of the nodes, which w i l l
send a notification to both John and Thomas, that the payment was completed.

3.1.1 Transaction structure

The B i t co in transaction structure is described below, shown i n Figure 3.1, and is based on
[1, 2, 11].

• The version number is used for backward compat ibi l i ty and to dist inguish between
different types of transactions. For example, i f the format of a transaction changes,
a different version of the transaction may be used to ensure backward compat ibi l i ty
wi th previous versions. There are currently versions 1 and 2. Version 2 indicates that
B I P 68 [15] applies. Th is proposal specifies a new way to control transaction validity.
Essentially, it allows the user to set a t ime l imi t for using the transaction based on
the t ime the previous transaction was created [8].

• F lag indicates the presence of witness data.

• In-counter specifies the number of inputs (also known as U T X O , Unspent Trans­
action Output) i n the transaction. It is a variable length integer (VI) , which means
that it can be encoded i n different ways depending on the number of inputs.

• List of inputs, where each Transaction input (Txin) consists of:

— Previous transaction hash that contains the spendable output.

— Previous txout-index of an array to identify the spendable output.

— The length of the T x i n script indicates the size of the locking script.

— T x i n scriptSig proves that the sender has the right to spend the bitcoins. Usual ly
contains a digi ta l signature that matches the locking script of the previous txout
and public key, but that depends on the type of script being used. Script types
are described more in Section 3.2.

— The sequence number is used to determine the order in which transactions are
added to the blockchain. For example, i f a transaction has a sequence num­
ber of O x F F F F F F F F , it can be included i n a block as soon as possible, while

15

0 1 2 3
0 1 2 3 4 5 6 7 3 9 0 1 2 3 4 5 6 7 3 9 0 1 2 3 4 5 6 7 8 9 0 1

+ - +
V e r s i o n

+ - +
| F l a g | I n - c o u n t e r (1 t o 9B) |
+-+
I
: L i s t o f i n p u t s (v a r i a b l e l e n g t h) :

I
+ - +
| O u t - c o u n t e r (1 t o 9B) |
+-+
I
: L i s t o f o u t p u t s (v a r i a b l e l e n g t h) :

I

I
: W i t n e s s e s (v a r i a b l e l e n g t h) :

I
+-+

Lock t ime
+-+

One t i c k mark r e p r e s e n t s one b i t p o s i t i o n , i f t h e r e i s n o t t h e
l e n g t h s p e c i f i e d i n t h e b r a c k e t s .

T r a n s a c t i o n i n p u t - T x i n T r a n s a c t i o n o u t p u t - Txou t
+ + + + + + + + + +

| P r e v i o u s T r a n s a c t i o n Hash (32B) | | V a l j e (83) |
+ + + + + + + + + +

P r e v i o u s T x o u t - i n d e x Txou t s c r i p t l e n g t h (1 t o 9B)
+ + + + + + + + + +

T x i n s c r i p t l e n g t h (1 t o 9B) Txou t s c r i p t P u b K e y (v a r . l e n g t h) |
+ + + + + + + + + +

T x i n s c r i p t S i g (v a r i a b l e l e n g t h) |
+ + + + +

Sequence number
+ + + + +

Figure 3.1: B i t co in transaction format (year 2023).

a transaction wi th a lower sequence number w i l l be delayed un t i l a specified
block height or t ime has been reached. Also , w i th B I P 125, [16] feature Op t - in
F u l l Replace-by-Fee Signaling was added. It enables spenders to include a signal
in their transaction to indicate that they may want to replace the transaction
wi th a new one at a later t ime. This signal gives users the flexibili ty to adjust
the transaction fee i n real-time, al lowing them to increase the chances of their
transaction being confirmed quickly.

Out-counter specifies the number of outputs in the transaction. L ike the In-counter,
it is encoded as V I .

List of outputs, where each Transaction output (Txout) consists of:

— Value shows the amount of bitcoins which is sent to the receiver.

— The length of the Txout script indicates the size of the locking script.

16

— Txout s c r i p t P u b K e y defines the list of instructions that the receiver must follow
to spend the output i n the future.

• Witness field is present only i n SegWit transactions. It contains the information
needed to verify the spending authorizat ion for the transaction. Basically, it consists
of signature scripts that are described in the following section.

• Lockt ime specifies the earliest t ime (in U n i x t ime format) or block height at which
this transaction can be added to the blockchain. Lock t ime enables signers to generate
transactions that can only be executed i n the future. Th is allows signers to change
their m i n d un t i l the transaction becomes val id . If any of the signers wish to modify the
transaction, they can create a new transaction that does not use the locktime feature.
The new transaction w i l l use one of the same outputs as the locktime transaction,
making the locktime transaction inval id i f the new transaction is included i n the
blockchain before the t ime lock expires.

3.2 Scripts

Bi t co in scripts are used to define the conditions under which a transaction can be spent.
Scripts are wri t ten i n a simple stack-based language called B i t co in Script , which is processed
from left to right. They consist of two fields, which are data and opcodes. D a t a can be
represented by public keys and digi ta l signatures. Opcodes represent different operations,
such as pushing data to the stack, popping data from the stack, performing ari thmetic
calculations, checking signatures, and verifying hashes.

Scripts are part of the transactions in the scriptSig and s c r i p t P u b K e y fields. The
s c r ip tPubKey is the output script responsible for specifying the conditions that must be
met to spend the bitcoins, such as providing a public key and a signature that matches
a certain address. O n the other hand, the scr iptSig is the input script that provides the
necessary data to satisfy the sc r ip tPubKey, such as the public key and signature of the
sender.

W h e n a transaction is executed, the scriptSig and s c r i p tPubKey are concatenated and
executed by the B i t co in clients to verify the val idi ty of the transaction. If the execution
results i n a true value on the top of the stack, the transaction is considered val id and the
bitcoins can be spent by the receiver. However, i f the execution results i n a false value,
the transaction is considered inval id and the bitcoins remain unspent. There are different
types of scripts in B i t co in , each wi th its format and functionality [2, 11].

Addresses

A Bi t co in address is a unique identifier used to receive B i t co in payments, similar to an
email address used to receive emails. The address is publ ic ly known to anyone who wants
to send funds to i t . The owner of the address is the only person who can access the funds
using the private key associated wi th the address [21].

There are several address formats, depending on the type of script that is being used.
The beginning of a B i t co in address can often indicate the type of script it uses. Table 3.1
summarizes the scripts and addresses related to i t .

The most common scripts are described below and are based on B I P 16 [3], B I P 141
[20], B I P 341 [29], B i t co in W i k i [2] and learn me a bi tcoin [28].

17

Script Address starts w i th Example
P 2 P K H 1 1 KVzBu z u c 2 8 . . .

P 2 S H 3 3 M x w g J L q N 2 k . . .
P 2 W P K H b c l q bc lq7 j c2q l7 . . .

P 2 W S H b c l q bclq51aclf7. . .
P 2 T R b c l p bc lpey6g6w9 . . .

Table 3.1: Connect ion between B i t co in scripts and addresses

3.2.1 Pay-to-Public-Key-Hash (P 2 P K H)

P 2 P K H is an improvement over the earlier P 2 P K (Pay- to-Publ ic-Key) method. In P 2 P K H
transactions, the recipient's B i t co in address is a hashed version of their public key. This
allows for greater security and privacy, as the public key is not revealed unt i l the bitcoins
are spent. The s c r i p tPubKey contains the recipient's P 2 P K H address, which is a hashed
version of their public key. The scriptSig contains a signature that proves that the sender has
the private key corresponding to the P 2 P K H address. W h e n the transaction is validated,
the recipient can then use their private key to sign a message that proves that they have
ownership of the public key corresponding to the P 2 P K H address. Th is signature is then
included i n the input script of a subsequent transaction to spend the bitcoins. P 2 P K H was
introduced in the first version of B i t co in , together w i th the P 2 P K script.

3.2.2 Pay-to-Script-Hash (P2SH)

P 2 S H allows for more complex locking scripts than the standard P 2 P K or P 2 P K H trans­
actions. In a P 2 S H transaction, instead of including the public key hash or script i n the
scr ip tPubKey, a hash of the script is used. This hash is then included i n the scriptSig,
along wi th the full script that can unlock the bitcoins. The complete script that can unlock
the bitcoins is called the redeem script. The redeem script is a script that the recipient
provides, which corresponds to the hash i n the sc r ip tPubKey. P 2 S H was raised i n A p r i l
2012 v i a B I P 16 [3].

3.2.3 Pay-to-Witness-Public-Key-Hash (P 2 W P K H)

P 2 W P K H was introduced wi th the Segregated Witness (SegWit) soft fork. The recipient's
B i t co in address is a hashed version of their public key, s imilar to P 2 P K H . However, the
s c r i p tPubKey contains a witness program instead of the recipient's P 2 P K H address. The
witness program is a script that is used to validate the transaction and prove that the
sender has the private key corresponding to the P 2 W P K H address. The scriptSig contains
the signature that proves that the sender has the private key corresponding to the P 2 W P K H
address [20].

3.2.4 Pay-to-Witness-Script-Hash (P 2 W S H)

P 2 W S H was introduced together w i th P 2 W P K H i n SegWit . The main principle is the same
as for P 2 S H , meaning that the hash of the script is included i n the s c r i p t P u b K e y and then
the spender must provide the redeem script and signature to unlock the bitcoins. P 2 S H
and P 2 W S H differ i n terms of where the scriptSig content was previously placed and how
the s c r i p t P u b K e y is changed.

18

3.2.5 Pay-to-Taproot (P2TR)

P 2 T R is the newest script that was introduced in B i t co in . It uses a concept called Merkle
trees to combine mult iple possible spending conditions into a single compact script. Th is
means that a single Taproot output can represent many different types of transaction.

The way it works is that Taproot allows mult iple spending conditions to be combined
into a single Merkle tree. Each branch of the tree represents a different spending condit ion,
such as a specific t ime delay, a certain signature, or a certain combination of signatures.
W h e n a transaction is made, the sender can choose which branch of the Merk le tree to use,
depending on the specific spending condit ion they want to fulfill.

Instead of placing spending conditions directly in the scriptSig (like in previous scripts),
these conditions are hashed and placed i n a new field called the witness field. Th is witness
field contains cryptographic proofs that the transaction meets the spending requirements
defined i n the sc r ip tPubKey, which remains mostly unchanged.

The witness field includes a Merk le tree, but unlike the Merkle tree used i n the script
itself, this tree holds a l l the possible spending conditions. The entire Merk le tree is then
hashed, and the resulting hash is stored i n the witness field.

W h e n val idat ing the transaction, miners use the witness field to verify which specific
spending condit ion was used to create the transaction. If the chosen branch is val id ac­
cording to the sc r ip tPubKey, the transaction is considered val id and can be added to the
blockchain [29].

3.3 Propagation of transactions

The a lgori thm for propagating transactions i n the B i t co in network is based on broadcasting
transactions to neighboring nodes i n the peer-to-peer network. Then, the neighboring nodes
send it to their peers, and this process repeats. E a c h node has rules that determine which
transactions are val id and how to verify them. Furthermore, the node stores transactions
in a memory pool (mempool) , which contains a l l transactions that the node receives.
Transactions i n mempool are considered unconfirmed and have not yet been included i n
a block. The propagation of transactions, ini t ia ted or received by a node, unfolds through
the following process, and the main source of information for this section is based on the
B i t co in W i k i , Bitcoindeveloper P 2 P Network webpage and the B i t co in Core Reposi tory
[2, 5, 9].

1. The node verifies whether the transaction that was received is val id according to its
rules. If the transaction is valid, the node adds it to its mempool and marks it as
unconfirmed. If the transaction is inval id, the node rejects it and does not send it
further.

2. The node then sends the transaction to a l l its peers in the network using a message of
type inventory I N V , which contains the unique identifier of the transaction (txID).

3. W h e n a node receives a message I N V from its peer, it checks whether it already
knows the transaction by its t x id . If it knows, it ignores the message I N V . If it does
not know, it asks the neighbor to send the whole transaction using a message of type
G E T D A T A .

19

4. W h e n a node receives a message G E T D A T A from its peer, it sends the entire trans­
action using a message of type T X . In this way, the transaction is transferred between
the nodes that have expressed interest i n it.

5. W h e n a node receives a message T X from its peer, it repeats the first two steps: it
verifies the val idi ty of the transaction and adds it to its mempool . Then it sends it
to its other neighbors using a message I N V .

This a lgori thm ensures that every node on the network learns about new transactions
that meet its rules. Redundancy and unnecessary communicat ion between peers is min i ­
mized, because each node sends only those transactions that other neighbors do not know.
The process of propagating a received transaction is visualized as a F in i t e State Machine
(F S M) i n Figure 3.2.

Unconfirmed 8.
added to
IT it rn pool

0-,

f o r e a c h p e e r

Send INV • INV Sent 1 Received GETDATA •

V
GFTDATA
received

w

^^—Transaction known by peer >

Figure 3.2: The propagation process of the received transaction by a B i t co in node repre­
sented by a F in i te State Machine.

Transaction propagation is associated wi th the concepts of outgoing and incoming con­
nections. In the context of B i t co in , the inbound and outbound connections are separated
based on who ini t ia ted the connection between two nodes i n the B i t co in P 2 P network.
A n inbound connection is ini t ia ted by a remote peer who wants to connect to a node. In
contrast, a node initiates an outbound connection to connect to a remote peer. Inbound
and outbound connections are used to transmit and receive transactions and blocks.

B y default, there is a l imi t on the number of connections that a B i t co in node can
maintain. Th is helps manage bandwidth usage and ensure smooth operation for most users.
B i t co in Core allows for a m a x i m u m of 125 total connections, where 11 can be outbound
and the remaining 114 inbound. The number of inbound connections can be changed from
the default value to a potential ly unl imi ted number compared to outbound connections,
where the default m a x i m u m values cannot be changed. O f the 11 outbound connections, a
to ta l of 8 are full-relay, which can be used to receive and transmit a l l types of data on the
B i t co in network, including unconfirmed transactions. The remaining three connections are
used for purposes other than the transmission of transactions [6].

B o t h types of connection use an exponential dis t r ibut ion when it comes to t ransmit t ing
the transactions. The exact dis t r ibut ion function G e t E x p o n e n t i a l R a n d O from the B i t co in
Core Reposi tory [5] is shown i n L i s t i ng 3.1. The difference is i n the average relay interval.
Ou tbound connections use an interval of 2 seconds for broadcasting the transactions, and
inbound connections use 5 seconds.

i /* Source for the delay:
https://github.com/bitcoin/bitcoin/blob/2b260eadf7960290328el3dbdb029fd506105
ca4/src/net_processing.cpp#L146 */

20

https://github.com/bitcoin/bitcoin/blob/2b260eadf7960290328el3dbdb029fd506105

/* Average delay between trickled inventory transmissions for inbound peers. */
static constexpr auto INB0UND_INVENT0RY_BR0ADCAST_INTERVAL{5s};
/* Average delay between trickled inventory transmissions for outbound peers. */
static constexpr auto 0UTB0UND_INVENT0RY_BR0ADCAST_INTERVAL{2s};

/* Source for the exp function:
https://github.com/bitcoin/bitcoin/blob/2b260eadf7960290328el3dbdb029fd5061
05ca4/src/random.cpp#L764 */

std::chrono::microseconds GetExponentialRand (std::chrono::microseconds now,
std::chrono::seconds average_interval)

{
double unsealed = -std::loglp(GetRand(uint64_t{l} « 48) *

-0.0000000000000035527136788 /* -l/2~48 * /) ;
return now + std::chrono::duration_cast<std::chrono::microseconds>(unsealed *

average_interval + 0.5us);
}

Lis t ing 3.1: B i t co in Core exponential function used by inbound/outbound connections to
broadcast the transactions.

The term outbound/ inbound connections can be used i n conjunction wi th reachable/un­
reachable nodes. A node is considered reachable i f it is capable of accepting incoming
connections from other peers. Conversely, a node that is unable to accept incoming connec­
tions is deemed unreachable. A node may be considered unreachable due to being behind
a firewall, connecting v i a a proxy, or hosting i n a private network, typical ly behind a N A T
(Network Address Translation) device.

A s mentioned at the beginning of this section, unconfirmed transactions are stored i n
the mempool . There are various ways for a transaction to leave the mempool . The reasons
are the following:

1. The transaction was inserted i n a block.

2. The transaction expired by timeout. Every node has a mempool expirat ion t ime l imi t ,
after which transactions are removed from the mempool . B y default, this t ime l imi t
is set to 14 days. If a transaction remains unconfirmed for more than 14 days, it w i l l
be removed from the mempool .

3. The transaction was replaced. If a transaction has a low fee and is stuck i n the
mempool, it can be replaced wi th a new transaction that has a higher fee. This is
made possible by the Replace-By-Fee (R B F) implementat ion. There are two variants
of R B F , F u l l R B F , and O p t - i n F u l l R B F . The difference between them is that w i th
F u l l R B F any new transaction that consumes at least one of the same inputs as the
original can replace i t . Whereas O p t - i n F u l l R B F requires the sender to expl ic i t ly
mark the transaction as replaceable when creating i t . For more information, see
B I P 125 [16].

4. The mempool size has reached its m a x i m u m size l imi t and a new transaction w i t h
a higher fee is accepted. Transactions are sorted by fee per size i n the mempool .
Transactions wi th lower fees are the ones at the bo t tom of the mempool and can be
evicted from the mempool . Th is means that the transaction at the bo t tom of the
mempool w i l l be removed, even if it has not been confirmed yet. Th is si tuation is
called a purge.

21

https://github.com/bitcoin/bitcoin/blob/2b260eadf7960290328el3dbdb029fd5061

3.4 Nonce

W h i l e generating a single SHA-256 hash can be computat ional ly intensive, modern comput­
ers are powerful enough to produce such a hash i n microseconds. A block can theoretically
be constructed i n a fraction of a second, w i th the speed of construction depending on the
computer's power. However, the system would not be decentralized i f the miner w i t h the
most powerful computer always won the construction of new blocks. Addi t ional ly , blocks
would be constructed i n seconds instead of the intended 10 minutes, and a l l 21 mi l l ion
Bitcoins would be mined i n just a few months rather than over decades. To avoid this
issue, Nakamoto introduced the concepts of difficulty and nonce, where difficulty refers to
the amount of work required to bu i ld a block.

The difficulty is calculated from the formula:

^ „, , GenesisBlockHashValue
Difficulty = —— (3.1)

C ur rent Tar get HashValue

The difficulty is greater when the target value is smaller (that is, more zeros i n the first
digits). A n acceptable hash must be smaller than the target. The target value is the same
for a l l B i t co in clients. The difficulty adjusts itself every 2 016 blocks, based on the recent
performance of the network, to keep the average t ime between new blocks at 10 minutes.
W h e n the hash rate of the B i t co in network increases, the difficulty also increases.

The val id hash must begin wi th a certain number of zeros and must be lower than the
current target hash value. If the hash does not meet these criteria, the hashing process
continues by changing the Nonce number.

Example

The demonstration of guessing the correct Nonce is described in the following example. In
this case, the required number of zeros at the beginning of the hash w i l l be one, because the
target hash is 0f8868e5a027a30d... The message w i l l be „This is B i t co in . " and start ing wi th
Nonce 00000000. The Nonce is added to the message. The final SHA-256 hash of „This
is B i t co in . 00000000" is ca31863c2cd26b00..., which does not begin w i t h a zero. T h e n the
nonce is increased by one, and the message is hashed again. It takes 6 loops to generate
a lower hash start ing wi th zero. The entire process is shown i n the table 3.2. Th is section
was based on the book Blockchain, B i t co in , and the D i g i t a l Economy [21].

Table 3 2: Hashing wi th Nonce
Loop Message Nonce Hash

1 This is B i t co in . 00000000 ca31863c2cd26b00...
2 Th is is B i t co in . 00000001 c9e3f09ca255f231...
3 This is B i t co in . 00000002 7af606c351f058e9...
4 This is B i t co in . 00000003 7ccd5a0b22f397a7...
5 This is B i t co in . 00000004 8dc9f37ed0c77040...
6 This is B i t co in . 00000005 0b2468e5a027a30d...

The hash generated i n the 6th loop is lower than the target hash. In that case, the
Nonce was guessed and a new target hash was created.

062468e5o027a30d... < 0/8868e5a027a30d...

NewTargetHash = 062468e5a027a30d...
(3.2)

22

Chapter 4

OMNeT++

OMNeT+-1- is a discrete-event s imulat ion environment, and the name itself stands for
the Objective M o d u l a r Network Testbed in C + + . The main purpose is to model and
simulate complex computer and communicat ion systems. It is an open-source, component-
based modular simulation framework that allows users to create simulations for various
domains such as networking, wireless communication, val idat ion of hardware architectures,
and more. O M N e T + + supports a range of communicat ion protocols and technologies,
including T C P / I P , U D P , IP, Ethernet, and I E E E 802.11 wireless networks. It also supports
the integration of external tools and libraries, such as M A T L A B and NS-3 . The bridge
between the user and the simulation is provided by a graphical user interface (GUI) or the
command line. The G U I is called the O M N e T + + I D E , which provides a variety of tools
for creating, debugging, and visual izing s imulat ion models. The I D E includes features such
as a code editor, a graphical network editor, and a s imulat ion runtime environment. The
O M N e T + + Simulat ion M a n u a l [27] serves as a source of information about O M N e T + + .

In this thesis, the O M N e T simulator is used to create a model of a simplified B i t co in
client, that is able to create, send, and receive messages which represent B i t co in transactions
in the B i t co in network. The design and the implementation of the model is described i n
next chapters.

Modeling

One of the central elements of the O M N e T + + infrastructure is a component architecture
for s imulat ion models. These models are constructed from reusable modules known as
components. Modules at the lowest level of the module hierarchy are called simple modules,
and they are programmed in the C + + language. Simple modules can be grouped into
compound modules, and the whole model is called Network. The structure of a s imulat ion
model is described by the user in the Network Descript ion (N E D) language. N E D lets
the user specify simple modules and connect and assemble them together into compound
modules.

Modules i n an O M N e T + + model exchange messages to communicate. Messages from
simple modules are commonly sent through gates, but can also be sent directly to the
modules for which they are destined. Gates serve as the input and output interfaces of
modules.

23

24

Chapter 5

Design of the simulation network

This chapter describes the three basic bui ld ing blocks used to create the simulat ion. The
first is the network topology, the second are the B i t co in clients that represent the B i t co in
nodes, and the last are the monitor ing nodes. The i r purpose and behavior are described i n
the following subsections and the way they are implemented i n the next Chapter 6.

Topology of the network

The topology consists of an arbi t rary number of B i t co in nodes, moni tor ing nodes, and the
number of hops from the monitor ing node to b i t c o i n N o d e O that generates the transaction.
The topology structure is based on the user inputs given i n the command line.

Bitcoin client

The B i t c o i n Core client is the most widely used type of B i t co in client i n the world. More
than 93 percent of the B i t co in network is made up of B i t co in Core clients, as shown i n
Append ix A [12]. However, the user agent is reported by the client, meaning if the client
has its custom implementation, it can s t i l l report himself as B i t co in Core agent but behave
differently. The design of the B i t co in client i n this thesis is very simplified compared to the
real B i t c o i n Core client. Clients acting as nodes on the network can create, receive, and
send messages representing B i t co in transactions. In this thesis scenario, the message is cre­
ated only by a b i t c o i n N o d e O . This message represents the transaction ID (txID) which is
a unique identifier of the transaction on the network. The transmission behavior represents
the I N V messages from the B i t co in Core Project [5]. Each client can have an unl imited
number of inbound connections to other clients, and m a x i m u m of 8 outbound connections.
Transactions are sent through connections based on the exponential function GetExponen-
t i a l R a n d O described in Section 3.3. To remember i f the transaction was already received,
each node has its own mempool . The pseudocodes for creating and handling the received
transaction shown i n List ings 5.1 and 5.2 are used as a template for implementation.

Monitoring node

The monitor ing node function i n the topology is to s imply collect information on when
the transaction was received together w i th the neighbor name and t x i d . T h i s behavior is
ensured by connecting the monitor ing node to a l l reachable B i t co in nodes. Addi t iona l ly , the

25

monitor ing node can also propagate messages as a B i t co in client w i th the same propagation
algori thm. The simulat ion ends when the moni tor ing node receives the transaction from
a l l connections. The simulation output is a C S V file that contains a l l the records collected
by the node. T h i s file is then processed by an analytics script that displays the selected
nodes of the s imulat ion i n terms of transaction propagation speed.

/* Function that generates a unique txID */
generateRandomTxIDO :

/* Logic for creating a unique txID */
i f nameOfTheNode = bitcoinNodeO:

txID 4— generateRandomTxIDO
/* Use the propagation algorithm now */

Lis t ing 5.1: Pseudocode for creating a transaction.

0UTB0UND_INTERVAL <- 2 seconds
INBOUND_INTERVAL <- 5 seconds
i f mempool.contains(receivedTx): n

mempool.add(receivedTx)
for a l l outbound connections:

delay <- GetExponentialRand(OUTBOUND_INTERVAL)
sendToPeer(delay) /* non-blocking function */

delay <- GetExponentialRand(INB0UND_INTERVAL)
for a l l inbound connections:

sendToPeer(delay)
Lis t ing 5.2: Pseudocode for the propagation algori thm.

26

Chapter 6

Implementation

This chapter describes the implementat ion and validat ion of a s imulat ion that was developed
based on the design of the previous Chapter 5. Parts of the programming code described
in the text are highlighted in this way: functions(), variables, structures, etc. The
general objective of the simulation is to monitor the transaction and create a C S V file w i t h
the captured results for later analysis. The simulation involves the propagation of I N V
messages from the B i t co in Core Project [5]. Furthermore, moni tor ing nodes are present to
track the t ime at which the transaction propagates from different nodes.

6.1 Simulation

This section dives into the implementat ion details of the s imulat ion designed for the O M -
N e T + + simulator. The pipeline wi th the core parts of the s imulat ion is shown in Figure 6.1.
A class diagram representing the code structure for the s imulat ion is shown in Figure 6.2.
The following subsections describe the s imulat ion parameters and its topology, the behavior
of the modules, how the transactions are created and transmitted, the creation of the C S V
file, and deviations from the real B i t co in network.

Legend
tx = transaction
INV = cMessage with tx representing
the Bitcoin INV message

Figure 6.1: The pipeline wi th the core parts of the s imulat ion wi th their inputs and outputs.

6.1.1 Simulation parameters

Before the s imulat ion is run, the network topology must be specified. The topology is
generated based on the BitcoinNetwork.ned file. Th is file is created together w i th the
omnetpp.ini file wi th in the run_sim.py script, which executes the simulation, and its

OMNeT++ simulation

J .CSV file

27

implementation is described i n more detai l i n Section 6.2. To run the simulation wi th a l l
the mentioned files, the P y t h o n script must be run from the /simulations folder.

The execution command sequence is python3 run_sim.py <1> <2> <3> <4> <5> <6>
where the numbers are represented by the following parameters.

1. number of Bitcoin nodes

2. number of monitoring nodes

3. hop distance described i n the next paragraph

4. number of simulation runs

5. number indicating the type of simulation where 0 is for G U I and 1 is for com­
mand line interface (CLI) s imulat ion

6. number indicating i f monitoring node should propagate messages where
1 means propagate and 0 do not propagate

The hop distance indicates the number of nodes through which the transaction must
pass from the source to reach the destination, where i n this scenario the source is bitcoinN-
odeO and the destination is the monitoringNodeO. For example, if the hop distance is 0, the
bitcoinNodeO and the monitoringNodeO are direct ly connected, because the bitcoinN-
odeO accepts the inbound connections. If the hop distance is 1, then it means that there
is 1 other node between bitcoinNodeO and the monitoringNodeO, because the bitcoinN­
odeO does not accept any inbound connections and makes only outbound connections. For
clarification, see the generated topology i n Figure 6.3, w i t h 5 bi tcoin nodes, 1 monitor ing
node, and a hop distance of 1.

The number of simulation runs parameter specifies how many times the simulation
w i l l run wi th the same topology. The seed-set variable is used to achieve different results
even i f the topology is the same. This variable is part of the omnetpp.ini file that is
created by the run_sim.py script. The value of the seed-set is based on the repeat loop
counter variable $repetition, which represents the current run number. Seed-set and
$repetition are described in detail in the O M N e T + + manual i n Section 10.4.6 named
Repeat ing Runs w i t h Different Seeds [27].

6.1.2 Creating a transaction

The simulat ion begins wi th the ini t ia l izat ion of the BitcoinNode class. The bitcoinNodeO
instance creates a new cMessage requesting a new transaction to be generated. The mes­
sages are handled by the handleMessage (cMessage *msg) function. There are two types of
messages, self-messages and messages from other nodes. If the message is a self-message,
the function generateAndBroadcastTransactionO is called. This function generates a
transaction and calls the broadcastMessage (cMessage *msg) function of the NodeBase
class to broadcast it to outbound and inbound connections. The transaction is created and
identified by a 64-bit hexadecimal number and does not contain any other information.
The transaction is generated by the generateRandomTxIDO function. This function gen­
erates random characters that are concatenated to form a t x I D . The character is chosen
using a function cha r se t f i n tun i f orm(0, charsetSize - 1)], which generates a uniformly
distr ibuted random integer. Final ly , the function returns the generated txID string. This
method of generating a t x I D is not how Bi t co in transaction IDs are actually created on

28

cSimpleModule

initial ze()

handleMessage(cMessage *msg)

+ sendDelayed{cMessage *msg, simtime t delay, int gateid)

+ scheduleAt(sirrrtime_tt, cMessage *msg)

5
I

NodeBase

GetExponentialRand(double now,
std::chrono::seconds averagejnterva l) : double

broadcastMessage(cMessage *msg)

I

MonitoringNode BitcoinNode

- expectedTransactionCount: int - mempool: std::set<std::string>

- qeneratedTx: cMessaae - currentRunNumber: int

- messageRecords: std::vector<MessageRecord>

- monitoring Pool: std::set<std::string>

- mempool: std::set<std::string>

- qeneratedTx: cMessaae - currentRunNumber: int

- messageRecords: std::vector<MessageRecord>

- monitoring Pool: std::set<std::string>

- initialize()

- handleMessage(cMessage *msg)

- generateAndBroadcastTransaction()

- generateRandomTxlD(): std::string

- initialize()

- handleMessagefcMessage *msg)

- writeAIIRecordsToCSV(const std::string& fileName)

- initialize()

- handleMessage(cMessage *msg)

- generateAndBroadcastTransaction()

- generateRandomTxlD(): std::string

- initialize()

- handleMessagefcMessage *msg)

- writeAIIRecordsToCSV(const std::string& fileName)

Figure 6.2: The BitcoinNode class represents ind iv idua l nodes i n the B i t co in network simu­
lat ion. A l l attributes and methods are used only wi th in the BitcoinNode class and therefore
are implemented as private. The same remains for the MonitoringNode class which is re­
sponsible for monitoring, recording, and export ing message records. The NodeBase class
contains protected methods that provide delay calculation and transaction propagation,
which together form the resulting propagation algori thm. The MonitoringNode and B i t ­
coinNode classes inherit from the NodeBase class to access these functions. The cSimple­
Module class is the OMNeT+-1- bui l t - in class that provides methods for sending messages to
other modules, scheduling events, and performing other simulation-related tasks. It is the
core OMNeT+-1- class from which other implemented classes inherit to define the specific
simulation behavior.

the B i t co in network. In practice, txIDs are hash values of transaction data. Once the
transaction is created, it is added to the node mempool and sent out to the neighboring
nodes.

29

- U n r e a c h a b l e n o d e (b e h i n d N A T)

- R e a c h a b l e n o d e - M o n i t o r i n g n o d e
v
 v — '
* monitorineNodeO

p u b l i c n e t w o r k

p r i v a t e n e t w o r k \

brtcoinNodeO
, w ,

f j í \ ^ 1
, w , M w P

bit coin Nod e4

bi1coinNode2 bi1coinNode3

Figure 6.3: Network topology from the OMNeT+-1- generated by the number of 5 bi tcoin
nodes, 1 monitor ing node, and a hop distance of 1. The bitcoinNodeO is an unreachable
node because it is behind N A T i n the private network and thus does not accept any inbound
connections. N A T device is between the bitcoinNodeO and bitcoinNodel. The bitcoinN­
odeO creates outbound connection to random Bi t co in node which is now bitcoinNodel.
The moni tor ing node on the top of the topology is connected through outbound connections
to a l l reachable nodes.

6.1.3 Receiving a transaction

W h e n the transaction is received from another node, it first gets the T X I D of the trans­
action. Then it checks if the transaction is in the mempool. The mempool is implemented
as a std::set class from the C + + Standard Template L ib ra ry (S T L) . The main reason for
choosing the set was that it ensures that each t x I D is unique wi th in the mempool . The re-
ceivedTxID is inserted into the mempool if it is not already there. Otherwise, receivedTxID
is known and thus ignored. The cMessage *msg containing the unknown transaction is then
passed as a parameter to the broadcastMessage () function of the NodeBase class. Th is
function is used to broadcast transactions to a l l inbound and outbound connections. Be­
fore that, the s imulat ion t ime needs to be converted to microseconds, in which the delay
is calculated. The calculation of delay is performed i n two for loops, which iterate based
on the number of ou tbound/ inbound connections. The same exponential dis t r ibut ion and
outbound/ inbound intervals are used for the relay wi th the GetExponentialRand (double
now, std: :chrono: :seconds average_interval) function as shown in L i s t i ng 3.1. The
function is called only once for the inbound connections, but separately for each outbound
connection. After the delay is calculated, it must be converted back to the s imulat ion time
before sending it . The non-blocking sendDelayedQ function of O M N e T + + is used to send

30

the transaction to other nodes through outbound/ inbound connections, where neighboring
nodes can be either B i t co in nodes or Moni to r ing nodes.

6.1.4 Monitoring nodes

The monitor ing nodes are connected through outbound connections to a l l B i t co in nodes
that accept inbound connections (those that are not behind N A T , firewall, or proxy, as
mentioned i n Section 3.3). The number of outbound connections is unl imi ted compared
to the B i t co in nodes, which can have a m a x i m u m of 8 outbound full-relay connections, as
defined i n the B i t co in Core Project [6] and mentioned i n previous chapters.

The monitor ing node needs to keep track of the current s imulat ion run number, which
is later used in the analysis to dist inguish from which run the results are from. The
monitor ing node has implemented a MessageRecord structure that stores three basic pieces
of information. Transaction ID , the name of the neighbor from which the transaction was
received, and a t imestamp. The MessageRecord is created every t ime the moni tor ing node
receives a message and is consequently pushed to the vector containing a l l records.

A s w i th B i t co in nodes, the handleMessage (cMessage *msg) function is responsible
for the processing of messages. The behavior of the monitor ing nodes can be set i n two
ways, either it w i l l propagate transactions like B i t co in nodes using the broadcastMessage
function or it w i l l not. The behavior is based on the propagateMessages parameter inside
the MonitoringNode .ned file.

6.1.5 C S V file generation

The s imulat ion ends when the instance of monitoringNodeO receives the transaction from
al l nodes that propagate the transactions. After this is verified, the writeAHRecordsToCSV-
(„messageRecords. csv") function is called. Th is function is responsible for wr i t ing a l l the
accumulated messageRecords to a C S V file named messageRecords. csv. The function
opens a C S V file for wr i t ing and if the file is empty (identified by the t e l l p O function
that returns the current posit ion of the put pointer), the header is wri t ten i n the C S V
file. The header consists of columns named run, TXID, peer, and timestamp and their
purpose is described i n the following.

• run - number of the s imulat ion run. The simulation is repeated several times to
obtain meaningful results. In that case, the run number needs to be tracked to differ
the collected data.

• TXID - Transaction ID representing unique identifier of the transaction i n the B i t co in
network.

• peer - name of the neighbor who sent the transaction to the moni tor ing node

• timestamp - t ime in seconds at which the transaction was received by the monitoring
node

After the headers are wri t ten, the program iterates through each record stored i n the
messageRecords vector and writes its contents to the C S V file. Once a l l records have
been wri t ten, the simulation is complete and ends. The messageRecords. csv file is later
analyzed by the analysis script described i n Section 6.3.

31

The simulat ion code must first be compiled using the make command from the btc_-
network folder. The program source files are contained i n the / s r c folder and the generated
messageRecords. csv file can be found in the /simulations folder.

6.1.6 Deviations from real Bitcoin network

It should be taken into account that the simulation was performed on a specific topology,
which may not exactly correspond to the real B i t co in network, but its main goal was to
implement the most similar transaction propagation behavior of the inventory messages as
its implemented i n the B i t co in Core client. In addi t ion, the real B i t co in network consists of
mult iple client types wi th different parameters, making a significant por t ion of the B i t co in
network behave differently than the simulated one. Another point which must be taken
into consideration is that a l l B i t co in nodes in the s imulat ion uti l ize the m a x i m u m number
of connections w i th other peers, where for outbound connections it is 8 and for inbound it
is unl imited.

6.2 Initialization script

The run_sim.py script is a P y t h o n script designed to automate the s imulat ion of a B i t co in
network using the OMNeT+-1- discrete-event simulator. It generates .ned and . i n i files
for the simulation, executes the s imulat ion using the provided parameters, and displays the
output of the simulat ion. The script takes command-line arguments as input specifying the
simulation structure as described i n the beginning of the previous Section 6 . 1 . 1 .

The script starts by parsing and checking the arguments provided v i a the command line.
If the arguments are incorrect, a usage message or an error message is printed to provide the
correct parameters. In order to simulate a network wi th a lower number of B i t co in nodes
than occurs i n a real B i t co in network, it is necessary to scale the m a x i m u m number of
possible outbound connections accordingly. A n equation wi th exponential behavior is used
for scaling, and the result is obtained through the Newton-Raphson numerical me thod 1 .

After in i t i a l val idat ion and calculation, the generation of the BitcoinNetwork.ned file
representing the network topology is started. Firs t ly , the bitcoinNode and monitoringN-
ode submodules are created, where the monitoringNode submodules contains the propa-
gateMessages and monitoringNodes parameters taken from the C L I input . These param­
eters are used i n the s imulat ion as described in the previous section. Once the submodules
are created, it is possible to create connections between them to allow bidirect ional com­
munication.

The monitor ing nodes and the B i t co in nodes use gates for communicat ion w i t h other
modules of the simulat ion. E a c h module has implemented one input gate i n [] and two
output gates inbound [] and outbound [] . F i r s t , connections between the monitor ing nodes
and the B i t co in nodes are created. The script iterates over each moni tor ing node (repre­
sented by num_monitoring_nodes variable) and connects it to a l l bitcoinNodes beyond the
hop distance. A l l connections from monitoringNode are from an outbound [] gate to the
bitcoinNode in[] gate and bidirectional connections are made through an IdealChannel.
Th is process is used i n a similar way for a l l other connections. The code wi th the setup of
the connection between the bitcoinNodes and monitoringNodess is shown i n L i s t i ng 6 . 1 .

xhttps://personal.math.ubc.ca/-anstee/mathl04/newtonmethod.pdf

32

https://personal.math.ubc.ca/-anstee/mathl04/newtonmethod.pdf

Generate connections between MonitoringNodes and BitcoinNodes
for i in range(num_monitoring_nodes):

for j in range(hop_distance, num_bitcoin_nodes):
ned_content += f
monitoringNode{i}.outbound++ —> IdealChannel —> bitcoinNode{j}.in++;
bitcoinNode{j}.inbound++ —> IdealChannel —> monitoringNode{i}.in++;

n n n

L i s t ing 6.1: Connect ion setup between monitoringNodes and bitcoinNodes.

Next , the ou tbound/ inbound connections are generated between bitcoinNode submod-
ules. It begins by in i t ia l iz ing a set() named established_connections, a imed at tracking
already established connections. Iterations are performed for each bitcoinNode based on
the m a x i m u m number of outbound connections. For each node, a neighbor number is gen­
erated randomly to which it w i l l establish an outbound connection. This random number
starts at the hop_distance value to avoid creating connections to nodes that are behind
N A T . The next step is to check if the generated number together w i t h the current b i t ­
coinNode is not already present in the established_connections set to avoid duplicate
connections. If the connection is not there, it is created, added to ned_content and to the
record of established connections.

After setting up connections between B i t co in clients, the script proceeds to create the
last type of connection, which is between the monitor ing nodes. Iteration is performed
on each pair of monitor ing nodes and then the establishment of bidirect ional connections
between them. After generating a l l connection definitions, the ned_content is wri t ten i n
the newly created BitcoinNetwork.ned file and the topology of the network is ready.

The simulation needs to contain the configuration file, which is represented by om-
netpp.ini. Th is file is generated wi th the following settings:

• network = Bi tcoinNetwork: Specifies the network model to be used in the simulation.

• repeat = num_runs: Specifies the number of times the s imulat ion should be repeated.

• seed-set = $repetition: Specifies the seed value for random number generation.

• record-eventlog = false, cmdenv-performance-display = false, cmdenv-express-mode
= true: Settings to speed up the simulation.

Once a l l files are prepared, the simulation can be run. Execut ion is based on the s imulat ion
type specified by the user (sim_type variable), according to which the script constructs a
command to execute the simulat ion. The run() function from the subprocess .py module
is used to run the simulation, capture the output, and print the message if the s imulat ion
was successfully performed or not.

6.3 Analysis script

The main purpose of the analysis script analyze .py located i n the /simulations folder is
to find out if some nodes propagate a transaction faster than others in most runs and thus
occur at the top positions of the messageRecords. csv file. Such nodes may be potential
source nodes for the transaction. Another purpose is to determine the average propagation
t ime of a transaction or to compare two files i n this aspect. The results are then visualized
w i t h graphs and saved as a png file. The usage command is python3 analyze .py f i r s t _ -
f i l e top_nodes [-compare second_f i l e] , where both files represent the path to the

33

C S V files that should be analyzed and top_nodes parameter indicates the number of nodes
that should be plotted. The second_f i l e parameter is optional.

The script utilizes the pandas l ibrary for data manipulat ion and the matplot l ib.pyplot
l ibrary for plot t ing graphs. The argparse l ibrary is used for parsing the input parameters.
The script first loads the f i r s t _ f i l e file into a pandas DataFrame called data. After
loading the data, the code is split into three parts, where the nodes are calculated based
on posit ion, secondly based on t imestamp, and in final the transaction propagation t ime is
calculated.

Calculation based on position

The calculat ion based on posit ion starts by adding a posit ion number to each peer for
each run i n a new column called position in the DataFrame. Then , the calculation of
averagePosition for each peer across a l l runs is done by grouping the position column
for each peer and applying the mean() function to i t . A t the end of this part, based on the
number of top_nodes parameter, nodes w i t h the lowest averagePosition are selected for
later plot t ing.

Calculation based on timestamp

The second part deals w i t h the calculat ion based on t imestamp. Firs t ly , the computat ion
of the timestamp_dif f erence between the first and other neighbors for each run are done.
After that, the averagePropagationTimePerNode is calculated by grouping the times-
tamp_difference for each peer and applying the mean() function as i n the first part.
Final ly , nodes w i t h lowest values are selected. The selected values from both parts are
plotted as a bar graph, displayed, and saved as the f astestNodes .png file.

Calculation of the transaction propagation time

The final part handles the transaction propagation time. The number of s imulat ion runs
are extracted into numberOfRuns variable first. After that, the script selects the highest
t imestamp of each run i n maxTimestampPerRun which is used as the values and indexes for
the graph. In addit ion, the averagePropagationTime is calculated s imply by summing
up each m a x i m u m timestamp for each run and d iv id ing it by the numberOf Runs. The
averagePropagationTime value is displayed together w i t h the transaction propagation
t ime graph and saved as txPropagationTime.png. If second_file is passed as an input
argument, the same principle is used and the graph is plotted w i t h both selected data.
G r a p h visualizations are included in Chapter 7.

6.4 Verification and validation

Verification of the s imulat ion model, specifically verification of the exponential function
GetExponentialRandO used to calculate the delay for message propagation, was tested
by cal l ing the function in a loop mi l l ion times for each outbound and inbound interval.
The average was calculated after the loop ended, giving the results corresponding to both
a five-second inbound interval and a two-second outbound interval. Th is verification was
performed on a total of 10 nodes wi th the results shown i n Table 6 . 1 .

The val idat ion of the s imulat ion model was based on a pcap file containing captured
events from the B i t co in network along wi th a l is t ing of connected peers and their type of con-

34

Node
Average result in seconds for

Node outbound inbound
1 2.00084 5.01009
2 2.00177 5.00937
3 1.99826 4.99002
4 1.9976 4.99734
5 1.99733 5.00579
6 1.99826 5.00326
7 2.00013 5.00851
8 1.99694 4.99525
9 2.00037 5.00229
10 2.00001 5.00218

Table 6.1: Verification results of the GetExponentialRandO function performed on a total
of 10 nodes. The results correspond to the inbound and outbound interval values from the
B i t co in Core Project.

nection towards the source node running the B i t co in Core client. The pcap originates from
the source node, whose IP address is labeled as i p l . IP addresses of other nodes are labeled
as ip2, ip3, e tc . The pcap contains a transaction that was generated by the source node.
The T X I D of the generated transaction i n reverse byte order that is used externally when
searching for transactions on the internet is 3ceee5608d357b2f 8d7f 39ab8c441eb688ef 54e-
f b8051b49fbl41787f e26aa7b. To find the transaction i n the pcap, the T X I D needs to be i n
natural byte order, which is 7baa26fe871714fb491b05b8ef54ef88b61e448cab397f8d2f7b-
358d60e5ee3c. Th is T X I D and the raw transaction data taken from mempool.space 2 were
filtered i n Wireshark to find the transaction and its propagation. The transaction was sent
to a l l the inbound nodes at nearly identical times, as shown i n Figure 6.4. Th is validates
the information that for inbound peers, the exponential function is calculated only once for
a l l of them.

M m a # • j = ^ Q . ^ H t x i t I
bitcoin,inv.hash = = |?b a a Z6f eS71714f b491 b 05b Sef 54ef SSb 61 e44Sc a b 3 97f Sd 2f7b 3 5Sd 60e5ee3 c I

Time Source Destination Protocol Lengtr Info
170.305502 i p l ip2 B i t c o i n 1219 i n v
170.305717 i p l ip3 B i t c o i n 1219 i n v
170.396045 i p l ip4 B i t c o i n 1219 i n v I>~Y
170.306258 i p l ip5 B i t c o i n 1219 i n v message
170.306461 i p l tp6 B i t c o i n 1219 i n v

Figure 6.4: Va l ida t ion that B i t co in clients use the exponential dis t r ibut ion function only
once for a l l inbound connections since the t ime of the propagation from the pcap is almost
identical.

The complete propagation process of the generated transaction for inbound peers from
the captured pcap is shown in the sequence diagram i n Figure 6.5. The INV and getdata
messages were found based on the T X I D and the tx message by the raw transaction data.

2https://mempool.space/

35

https://mempool.space/

ID1 ip2 INB ip3 INB ip4 INB ip5 INB ipB INB

T

inv 170,30s |
:

T

1

inv 170,30s
— • I

I I
inv 170.30s I

T T
I i

inv 170.30s
I
inv 170.30s
1
l

getdata 170.63s

I
tx 170,63s

Figure 6.5: Sequence diagram of the captured process of the generated transaction for an
inbound connections based on the pcap file containing B i t co in network traffic.

It was also validated that for outbound connections, the transaction is sent at different
times for each outbound peer. Th is indicates the use of an exponential function separately
for each peer. The complete captured propagation process of the generated transaction for
outbound peers is visualized i n the sequence diagram in Figure 6.6. A comparison of INV
messages for inbound and outbound connections shows that INV messages for outbound
connections are propagated earlier because they have a lower broadcast interval. In the
sequence diagram for outbound connections, it can be seen that some peers received the
tx message even though they d id not request it by a getdata message. This behavior
is possible i f the source node uses the implementat ion of the b i t co in j 3 l ibrary. If such a
node creates a transaction, it can send unsolicited tx messages [10]. Th is behavior was
noticed i n the B i t co in Core client from the reviewed pcap.

After verification and validation, it can be stated that the implemented B i t co in client
model works as expected. The implemented algori thm for propagating inventory messages
works the same as i n the real B i t co in network, which has been verified on captured B i t co in
network traffic. The model lacks the propagation of getdata and tx messages compared
to the real B i t co in client. However, this missing implementat ion should not matter for
obtaining results on the propagation of unconfirmed transactions, as the propagation of
INV messages is sufficient. Another difference is that only one and the same node generate
a transaction i n the s imulat ion model, whereas i n the real B i t co in network it could be a l l
nodes, but again this should not affect the results, because each transaction is propagated
by the same algori thm no matter what node generates it.

3 h t t p s : / / b i t coinj.org/

36

https://bit

T
ip7 OUTB
"T

ip8 OUTB

I
I inv 163,47s I

i — h inv 163.87s

ip9 OUTB iplOOUTB

I I
I inv 163,97s I

inv 164,74s

inv 165.77s
I I
I tx 166,00s I

I
tx 16678s

I

I I
| getdata 167,B1s

inv 168,61 |

ip11 OUTB ip12 OUTB

I I 1 1 I
I
\t I

[getdata 16945s
l^ 1
1
1 1

I I
I tx 169.45s

1 1
1
U 1

I I

j j getdata 170.71s

i n
i

1
1 1

I I
I I tx 170,71s

i i
i J

ip13 OUTB

Figure 6.6: Sequence diagram of the captured process of the generated transaction for an
outbound connections based on the pcap file containing B i t co in network traffic.

37

38

Chapter 7

Analysis

This chapter describes the analysis of the results from the created simulation, specifically,
what the results were and how they were obtained. A s described at the end of Section 6.1,
the created simulat ion differs from the real B i t co in network in some ways. In other words,
the results cannot be considered identical to those that would be obtained from a real
B i t co in network.

7.1 Identification of the possible source node of a transaction

The procedure for obtaining the results was to run the s imulat ion mult iple times, where the
monitor ing node recorded the t ime it received a transaction from which node. The ma in
objective of the s imulat ion was to t ry to identify a possible source node of the transaction.
The analyze.py script described i n Section 6.3 was used for this purpose. The possible
source node is considered to be a node that, in most cases, propagates a transaction i n a
faster t ime than others and thus is at the top positions of the messsageRecords. csv file i n
most s imulat ion runs. If such a node is identified, the question arises whether it is the source
node of the transaction, but there are also other possibilities to consider. It could be a node
that forwards transactions quickly because it has a custom implementation. Alternat ively,
it might be a node that has an inbound connection wi th the source node, especially when
the source node is behind N A T . Since this thesis only considers honest B i t co in Core clients
without custom implementations, an identified node w i l l be considered a source node or a
node that is close to it.

Two types of metric were used for the analysis and it was the posit ion and t imestamp
at which the moni tor ing node received the broadcast transaction. The plotted results are
always the average of the captured values from a l l runs of a given network topology. In
general, the lower the value on the y-ax is representing the average posi t ion or t imestamp,
the higher the probabi l i ty that the node is the source of the transaction. The bar graphs
generated by the analyze. py script that was executed over the results obtained from the
ini t ia l izat ion run_sim.py script are shown in Figure 7.1. The graphs belong to a s imulat ion
that was run wi th parameters of 2000 B i t co in nodes, 1 monitor ing node, 0 hop distance,
100 s imulat ion runs, C L I simulation, and monitor ing node do not propagate messages. The
monitor ing node in this scenario is connected to a l l B i t co in nodes in the network. The
fastest node identified is bitcoinNodeO and can be considered as a possible source node of
the transaction.

39

Average position for the fastest nodes Average t imestamp for the fastest nodes

ICO

20

-Ú

Figure 7.1: Identification of the possible source nodes based on the posit ion and timestamp
metric. The fastest node is bitcoinNodeO, where the difference from the others is relatively
large. In that case, this node can be considered as a possible source node of the transaction.
The results are from simulation where the bitcoinNodeO was directly connected to the
monitoringNode w i th an inbound connection.

The analysis results are different when the source node is hidden behind N A T . The
graphs i n Figure 7.2 belong to a s imulat ion that was run w i t h parameters of 1000 B i t -
coin nodes, 1 moni tor ing node, 1 hop distance, 1000 simulat ion runs, C L I simulation, and
monitor ing node do not propagate messages. The source of the generated transaction is
bitcoinNodeO, but it is behind the N A T device, which means that the moni tor ing node is
not connected to i t . B o t h graphs point to the same four nodes wi th approximate results.
In that case, these nodes can be considered as the nodes that are close to the source node
but cannot be considered as possible source nodes.

The simulat ion was run several times w i t h different numbers of B i t co in nodes (1000,
2000, 5000, 10000) and other parameters i n various combinations. F r o m the results of a l l
simulations it was possible to determine that it was always possible to identify the source
node if it was not located behind N A T and connected wi th the monitoringNode through
an inbound connection, which means the s imulat ion parameter of the hop distance was set
to 0. Since the source node that generated the transactions was always bitcoinNodeO, it
is possible to state that the fastest identified node i n this part icular case was always the
correct one. The results do not differ in such a large way from other nodes but i n some small
way, which means that it can s t i l l be considered as a possible source of a transaction. This
means that if the entire B i t co in network consisted of honest B i t co in Core nodes and the
source node of a transaction was not hidden behind N A T , it would be possible to identify
the source node of the transaction. This means that actually, thanks to nodes wi th custom
or different implementations, more anonymity can be maintained in the B i t co in network.

Conversely, if the source node is behind N A T and is therefore not connected wi th the
monitoringNode, the identification of it is essentially impossible. The analysis script is
only able to identify the closest possible nodes to the source node that accepts inbound
connections. This means that i f the source node is hidden behind one N A T device, the
script identifies the nodes to which the source node connects v i a its outbound gate, since

40

the moni tor ing node does not know that the source node even exists when it is not connected
to it.

Average position for the fastest nodes Average t imestamp for the fastest nodes

Figure 7.2: Identification of the possible source nodes based on the posit ion and t imestamp
metric. The fastest node is bitcoinNodel, where the difference from the others is relatively
huge. In that case, this node can be considered as a possible source node of the transaction
or at least the node which is close to it.

7.2 Impact of monitoring nodes

Another result obtained is related to the moni tor ing nodes, specifically to the adjustable
parameter propagateMessages. W h e n the moni tor ing nodes are set to propagate mes­
sages, the messages spread throughout the network faster, and the entire s imulat ion is
completed i n a faster t ime. This means that monitor ing nodes can enable faster propaga­
t ion of transactions, and thus can affect the network i n some way. The comparison between
the s imulat ion w i t h the moni tor ing nodes that propagate transactions and the topology
where the monitor ing nodes do not propagate them is handled by the analyze.py script.
The output graph i n Figure 7.3 shows the t ime for each simulation run i n which the trans­
action was received by the moni tor ing node from a l l nodes on the B i t co in network. The
graph also shows the average transaction propagation t ime for both files, which is calculated
from a l l runs. This value proves that transactions are propagated faster i n the network i f
the monitor ing nodes propagate transactions as well as B i t co in clients. The graph belongs
to a s imulat ion that was run wi th parameters of 2000 B i t co in nodes, 1 moni tor ing node, 0
hop distance, 100 simulation runs, C L I simulation, and monitor ing node do not propagate
messages and the same for the second file except the propagate messages parameter was
set. F r o m further running analyzes, it was evaluated that the more monitor ing nodes i n
the topology, the faster the transaction propagated throughout the network. This fact is
indicated by Table 7.1 containing the number of monitor ing nodes that propagated the
transaction along wi th the average t ime that the transaction was received from a l l nodes.
The results are taken from a simulation that was run 100 times wi th 2000 B i t co in nodes
and a hop distance of 0.

Another finding is that i f there are mult iple monitor ing nodes in the network that prop­
agate transactions when the source node is behind N A T or even it is not, these monitoring

41

nodes appear i n the analysis script results, as shown in Figure 7.4 and 7.5. This means that
if any of the moni tor ing nodes could send transactions immediately and not by the B i t co in
Core propagation algori thm, it could theoretically pretend to be the possible source node
of the transaction, even though it is not.

Average propagation Time: 91.9&5

Transaction propagation t ime for each run Average Propagation Time: 52.76s

FUjn

Figure 7.3: Compar ison between the simulat ion wi th the moni tor ing nodes that propagate
transactions (blue record) and the simulation where the moni tor ing nodes do not propagate
(orange record) them. The comparison shows a significant speedup i n transaction propa­
gation when the monitor ing nodes propagate them.

N u m b e r of monitoring nodes Average propagation time
1 52.76s
2 50.72s
3 49.09s
4 48.52s

Table 7.1: Indication that moni tor ing nodes affect the propagation of a transaction i n the
B i t co in network in terms of propagation speed. The more monitor ing nodes in the topology,
the faster the transaction propagated throughout the network.

Size of the Bitcoin network

The average number of reachable B i t co in nodes in the past year was about 17000 [12].
The question related to the number of nodes was whether the network should be simulated
wi th a similar number of reachable nodes corresponding to the real B i t co in network or
wi th only a par t ia l number. The differences between the results of the simulations w i t h a
large number of nodes (15000 and 10000) and par t ia l number of nodes (1000, 2000) were in
the average posit ion values. In the simulation w i t h a large number of nodes, the posit ion
values were higher, but this is due to the calculation of the posit ion value, which is based
on the number of nodes. In contrast, the calculat ion of the time stamp is not dependent
on the number of nodes and the results are similar i n both cases. Moreover, if the values
from different sized simulations are recalculated proportionally, the results are similar. In
addit ion, the number of outbound connections was exponentially scaled by the number of

42

nodes to make the results as accurate as possible. However, the identification of source node
was successful and the overall results were similar to the simulations wi th a smal l number
of nodes. For this reason, it was decided that there is no need to simulate the network w i t h
a large number of nodes for this s imulat ion scenario, since there was no effect on the overall
result.

Average position for the fastest nodes Average t imestamp for the fastest nodes

MMM
Figure 7.4: Results when there are mult iple moni tor ing nodes in the network that propagate
transactions when the source node is behind N A T .

Average position for the fastest nodes Average t imestamp for the fastest nodes

Figure 7.5: Results when there are mult iple moni tor ing nodes in the network that propagate
transactions when the source node is not behind N A T .

43

44

Chapter 8

Conclusion

A simulation model w i th the B i t co in a lgori thm for propagating inventory messages was
created i n the O M N e T + + discrete-event simulator. In addit ion, the s imulat ion model
includes a moni tor ing node that connects to a l l reachable B i t co in clients and collects a
record of the transaction propagation. Then , this record was analyzed and the results
described i n the last chapter.

A n automated script was developed to define the s imulat ion parameters, set up the
B i t co in network topology, and run the whole simulat ion. The simulat ion covers situations
where the source node of a transaction is behind N A T device or directly on the public
network.

The ma in goal of the analysis was to identify the fastest nodes and the possible source
node of the transaction. There are several reasons why a node might be the fastest. It
could be the source node of the transaction, be located near the source, or have a different
implementation that speeds up transaction forwarding. The analysis script was able to
identify fastest nodes and determine the possible source node of the transaction, or atleast
the node that was close to it , i n case the source node is behind N A T . Another result
obtained was that monitor ing nodes can enable faster propagation of transactions and thus
can affect the network i n some way, i f they propagate transactions as B i t co in clients. It was
also found that when scaling outbound connections correctly, there is no need to simulate
a network wi th a real number of B i t co in nodes (17 000), but only a par t ia l one (2000).

The s imulat ion model created using O M N e T + + can help understand how inventory
messages propagate in the B i t co in network. Simulations can be run under a graphical user
interface such as Qtenv, where the entire transaction propagation flow can be seen and al l
events described. In addit ion, the model implements a moni tor ing node that can be used
to further analyze the behavior of the B i t co in network.

The implementat ion aspects of this thesis were presented in poster format at the E x -
ce l@FIT 2024 Student Conference 1 . In the future, the work could be improved by imple­
menting B i t co in getdata and tx messages, further analysis, and adding more options for
simulation configuration and B i t co in network.

In conclusion, this thesis aimed to summarize the theoretical side of blockchain tech­
nology and B i t co in cryptocurrency while providing pract ical examples for a better under­
standing of the technologies or processes described. In the implementat ion part, a highly
simplified B i t co in client was developed, validated, and analyzed. B i t co in client can create,

x h t t p s : / / e x c e l . f i t . v u t b r . c z /

45

https://excel.fit.vutbr.cz/

receive, and send messages representing B i t co in transactions and operate according to the
B i t co in Core propagation algori thm.

46

Bibliography

[1] Bitcoin - Open source P2P money [online], [cit. 2023-09-27] . Available at:
h t t p s : / / b i t c o i n . o r g / .

[2] Bitcoin Wiki [online], [cit. 2023-09-27] . Available at:
h t tps : / / en .b i tco in . i t /wik i/Main_Page.

[3] A N D R E S E N , G . Pay to Script Hash [online]. 2 0 1 2 [cit. 2023-12-09] . Available at:
h t t p s : / / e n . b i t c o i n . i t / w i k i/BIP _ 0 0 1 6 .

[4] B A C K , A . Hashcash [online], [cit. 2023-10-22] . Available at:
ht tp: / /www.hashcash.org/ .

[5] B I T C O I N C O R E R E P O S I T O R Y . Github [online]. 2 0 0 9 , 2 0 2 4 [cit. 2024-01-05] . Available

at: h t t p s : / / g i t h u b . c o m / b i t c o i n / b i t c o i n .

[6] B I T C O I N C O R E R E P O S I T O R Y . Reduce Traffic [online]. 2 0 1 5 , 2 0 2 3 [cit. 2024-01-05] .

Available at:
h t t p s : / / g i t h u b . c o m / b i t c o i n / b i t c o i n / b l o b / m a s t e r / d o c / r e d u c e - t r a f f i c . m d .

[7] B I T C O I N P R O J E C T . B lock Cha in . Bitcoindeveloper [online], [cit. 2023-12-20] . Available
at: h t t p s : / / d e v e l o p e r . b i t c o i n . o r g / r e f e r e n c e / b l o c k _ c h a i n . h t m l .

[8] B I T C O I N P R O J E C T . Transactions. Bitcoindeveloper [online], [cit. 2023-12-20] .
Available at: h t t p s : / / d e v e l o p e r . b i t c o i n . o r g / r e f e r e n c e / t r a n s a c t i o n s . h t m l .

[9] B I T C O I N P R O J E C T . P 2 P Network. Bitcoindeveloper [online]. [cit. 2023-12-20] .
Available at: h t tps : / /developer .b i tcoin .org /devguide/p2p_network .h tml .

[10] B I T C O I N P R O J E C T . P 2 P Network. Bitcoindeveloper [online]. [cit. 2024-04-18] .
Available at: h t tps : / /developer .b i tcoin .org/ reference/p2p_networking.h tml#tx .

[11] B I T C O I N P R O J E C T . Bitcoindeveloper [online]. 2 0 0 9 , 2 0 2 0 [cit. 2023-09-12] . Available

at: h t t p s : / / d e v e l o p e r . b i t c o i n . o r g / d e v g u i d e / i n d e x . h t m l .

[12] B I T N O D E S . Bitcoin Network 1 Year Chart [online]. 2 0 2 4 [cit. 2024-03-18] . Available
at: h t t p s : / / b i t n o d e s . i o / d a s h b o a r d / l y / .

[13] C O I N D E S K . Understanding the DAO attack [online]. 2 0 1 6 [cit. 2023-11-22] . Available
at: h t tps : / /www.coindesk.com/learn/unders tanding- the-dao-a t tack/ .

[14] D A S H J R , L . BIP process, revised [online]. 2 0 1 6 [cit. 2024-01-05] . Available at:
h t tps : / / en .b i t co in . i t /wik i/BIP_0002.

4 7

https://bitcoin.org/
https://en.bitcoin.it/wiki/Main_Page
https://en.bitcoin.it/wiki/BIP_0016
http://www.hashcash.org/
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md
https://developer.bitcoin.org/reference/block_chain.html
https://developer.bitcoin.org/reference/transactions.html
https://developer.bitcoin.org/devguide/p2p_network.html
https://developer.bitcoin.org/reference/p2p_networking.html%23tx
https://developer.bitcoin.org/devguide/index.html
https://bitnodes.io/dashboard/ly/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://en.bitcoin.it/wiki/BIP_0002

[15] F R I E D E N B A C H , M . Relative lock-time using consensus-enforced sequence numbers
[online]. B t cDrak , Nicolas Dorier , kinoshitajona. 2015 [cit. 2023-12-18]. Available at:
h t t p s : / / e n . b i t c o i n . i t / w i k i / B I P_0068.

[16] H A R D I N G , D . A . Opt-in Full Replace-by-Fee Signaling [online]. Peter Todd . 2015 [cit.
2023-12-20]. Available at: h t t p s : / / e n . b i t c o i n . i t / w i k i / B I P_0125.

[17] H Y P E R L E D G E R F O U N D A T I O N . White Papers [online], [cit. 2023-11-27]. Available at:
h t tps : / /www.hyper ledger .org / learn /whi te -papers .

[18] J A F A R I N A V I M I P O U R , N . and S H A R I F I M I L A N I , F . A comprehensive study of the

resource discovery techniques i n Peer-to-Peer networks. Peer-to-Peer Networking and
Applications. M a y 2015, vol . 8, no. 3, p. 474-492. D O I : 10.1007/sl2083-014-0271-5.
I S S N 1936-6450. Available at: https://doi.org/10.1007/sl2083-014-0271-5.

[19] L A U R E N C E , T . Blockchain For Dummies. 3rd ed. John W i l e y & Sons, Inc., 2023.
I S B N 978-1-394-15966-6.

[20] L O M B R O Z O , E . Segregated Witness (Consensus layer) [online]. Johnson L a u , Pieter
Wui l le . 2015 [cit. 2023-12-24]. Available at: h t t p s : / / e n . b i t c o i n . i t / w i k i / B I P_0141.

[21] M E I , L . Blockchain, Bitcoin, and the Digital Economy. Mercury Learning and
Information, 2022. I S B N 978-1-68392-835-5.

[22] N A K A M O T O , S. Bitcoin: A peer-to-peer electronic cash system [online]. 2008 [cit.
2023-11-28]. Available at: h t t p s : / / n a k a m o t o i n s t i t u t e . o r g / b i t c o i n / .

[23] R O S E N B A U M , K . Grokking Bitcoin. M a n n i n g Publicat ions, 2019. I S B N
978-1617294648.

[24] S C H O L L M E I E R , R . A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proceedings First International
Conference on Peer-to-Peer Computing. I E E E , 2001, p. 101-102. D O I :
10.1109/P2P.2001.990434.

[25] S H A I K H , S. Building Decentralized Blockchain Applications: Learn How to Use
Blockchain as the Foundation for Next-Gen Apps. B P B Publ icat ions, 2021. I S B N
978-93-89898-620.

[26] S M I T H , C . NETWORKING LAYER [online]. 29. march 2022. Revised 7.4.2023 [cit.
2023-12-26]. Available at:
h t tps : / / e thereum.org /en /deve lopers /docs /ne twork ing- layer /#execut ion- layer .

[27] V A R G A , A . OMNeT++ Simulation Manual [online]. 6th ed. OpenS im L t d .
O M N e T + + Community , 2023. Available at:
ht tps: / /doc.omnetpp.org/omnetpp/Simulat ionManual .pdf.

[28] W A L K E R , G . Learn me a bitcoin [online]. 2018. 2023-10-09 [cit. 2023-12-09]. Available
at: h t t p s : / / l e a r n m e a b i t c o i n . c o m / t e c h n i c a l / s c r i p t .

[29] W U I L L E , P . Taproot: SegWit version 1 spending rules [online]. Jonas Nick , An thony
Towns. 2020 [cit. 2023-12-20]. Available at: h t t p s : / / e n . b i t c o i n . i t / w i k i / B I P_0341.

18

https://en.bitcoin.it/wiki/BIP_0068
https://en.bitcoin.it/wiki/BIP_0125
https://www.hyperledger.org/learn/white-papers
https://doi.org/10.1007/sl2083-014-0271-5
https://en.bitcoin.it/wiki/BIP_0141
https://nakamotoinstitute.org/bitcoin/
https://ethereum.org/en/developers/docs/networking-layer/%23execution-layer
https://doc.omnetpp.org/omnetpp/SimulationManual.pdf
https://learnmeabitcoin.com/technical/script
https://en.bitcoin.it/wiki/BIP_0341

Appendix A

Distribution of reachable Bitcoin
nodes across leading user agents.

Figure A . l : The chart shows the number of reachable nodes over the last year, along w i t h
the dis t r ibut ion of different versions of B i t co in clients. B i t co in Core clients are the most
widely used type of B i t co in client i n the world. A s of M a r c h 16, they made up more than
93 percent of the B i t co in network [12].

49

Appendix B

Contents of Included Disk Media

File Description
thesis.pdf Copy of this thesis i n P D F format.

b tc_network.z ip Z i p file containing the source codes for the implementat ion part.
thesis_latex.zip Z ip file containing the source code for the generated P D F .
R E A D M E . m d Instructions on how to set up the environment and run the simulat ion.

Table B . l : Contents of the included disk media.

50

