
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DIGITAL FORENSICS:

THE ACCELERATION OF PASSWORD CRACKING

DIGITÁLNÍ FORENZNÍ ANALÝZA: ZRYCHLENÍ LÁMÁNÍ HESEL

PHD THESIS

DISERTAČNÍ PRÁCE

AUTHOR Ing. RADEK HRANICKÝ

AUTOR PRÁCE

SUPERVISOR Doc. Ing. ONDŘEJ RYŠAVÝ, Ph.D.

ŠKOLITEL

BRNO 2021

Abstract
Cryptographic protection of sensitive data is one of the biggest challenges in digital foren-
sics. A password is both a traditional way of authentication and a pivotal input for creating
encryption keys. Therefore, they frequently protect devices, systems, documents, and disks.
Forensic experts know that a single password may notably complicate the entire investi-
gation. With suspects unwilling to comply, the only way the investigators can break the
protection is password cracking. While its basic principle is relatively simple, the complex-
ity of a single cracking session may be enormous. Serious tasks require to verify billions of
candidate passwords and may take days and months to solve. The purpose of the thesis is
thereby to explore how to accelerate the cracking process.

I studied methods of distributing the workload across multiple nodes. This way, if done
correctly, one can achieve higher cracking performance and shorten the time necessary to
resolve a task. To answer what “correctly” means, I analyzed the aspects that influence the
actual acceleration of cracking sessions. My research revealed that a distributed attack’s
efficiency relies upon the attack mode - i.e., how we guess the passwords, cryptographic
algorithms involved, concrete technology, and distribution strategy. Therefore, the thesis
compares available frameworks for distributed processing and possible schemes of assigning
work. For different attack modes, it discusses potential distribution strategies and suggests
the most convenient one. I demonstrate the proposed techniques on a proof-of-concept
password cracking system, the Fitcrack - built upon the BOINC framework, and using
the hashcat tool as a “cracking engine.” A series of experiments aim to study the time,
performance, and efficiency properties of distributed attacks with Fitcrack. Moreover, they
compare the solution with an existing hashcat-based distributed tool - the Hashtopolis.

Another way to accelerate the cracking process is by reducing the number of candidate
passwords. Since users prefer strings that are easy to remember, they unwittingly follow
a series of common password-creation patterns. Automated processing of leaked user cre-
dentials can create a mathematical model of these patterns. Forensic investigators may
use such a model to guess passwords more precisely and limit tested candidates’ set to the
most probable ones. Cracking with probabilistic context-free grammars represents a smart
alternative to traditional brute-force and dictionary password guessing. The thesis con-
tributes with a series of enhancements to grammar-based cracking, including the proposal
of a novelty parallel and distributed solution. The idea is to distribute sentential forms
of partially-generated passwords, which reduces the amount of data necessary to transfer
through the network. Solving tasks is thus more efficient and takes less amount of time.
A proof-of-concept implementation and a series of practical experiments demonstrate the
usability of the proposed techniques.

Keywords
Forensics, password, cracking, acceleration, GPGPU, BOINC, hashcat, PCFG

Reference
HRANICKÝ, Radek. Digital Forensics: The Acceleration of Password Cracking. Brno,
2021. PhD thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Doc. Ing. Ondřej Ryšavý, Ph.D.

Abstrakt
Kryptografické zabezpečení patří v oblasti forenzní analýzy digitálních dat mezi největší
výzvy. Hesla představují jednak tradiční způsob autentizace, jednak z nich jsou tvořeny
šifrovacích klíče. Zabezpečují tak často různá zařízení, systémy, dokumenty, disky, apod.
Jediné heslo tak může tvořit zásadní překážku při zkoumání digitálního obsahu. A pokud
vlastník tohoto obsahu heslo odmítne poskytnout, je pro forenzní experty jedinou možností
heslo prolomit. Byť je lámání hesel principielně jednoduché, jeho výpočetní náročnost
je mnohdy extrémní. Při složitějších úlohách je často nutné zkoušet miliardy různých
kandidátních hesel, což může trvat dny či měsíce. A proto je cílem této disertační práce
prozkoumat způsoby, jak proces lámání hesel urychlit.

Prostudoval jsem metody distribuce úloh mezi více výpočetních uzlů. Při vhodně zv-
oleném postupu lze dosáhnout vyššího výpočetního výkonu a snížit čas potřebný k řešení
úlohy. Pro zodopovězení otázky, jaké postupy jsou „vhodné“ , jsem analyzoval aspekty,
které ovlivňují zrychlení úloh. Můj výzkum ukázal, že efektivita distribuovaného útoku
závisí na typu realizovaného útoku, tedy, jak hesla tvoříme, použitých kryptografických
algoritmech, technologii a strategii distribuce. Práce proto srovnává existující řešení pro
distribované zpracování a představuje možná schémata rozdělení výpočtu. Pro každý typ
útoku práce diskutuje použitelné distribuční strategie a vysvětluje, které z nich je vhodné
použít a proč. Navržené techniky jsou demonstrovány na prototypu ukázkového řešení
- systému Fitcrack, který využívá technologie BOINC a nástroje hashcat jako „lámacího
motoru.“ Přínos navržených řešení je demonstrován na řadě experimentů, které zkoumají
zejména čas, výkon a efektivitu distribuovaných útoků. Součástí je také srovnání s dis-
tribuovaným systémem Hashtopolis, který také využívá nástroje hashcat.

Dalším způsobem, jak dobu výpočtu zkrátit, je snížit počet zkoušených hesel. Výzkumy
ukazují, že uživatelé, pokud mohou, často volí taková hesla, která si lze snadno pama-
tovat a nevědomky tak následují množství společných vzorů. Ty je pak možné popsat
matematicky. Matematický model může vycházet například z dat získaných automatickým
zpracováním existujících sad hesel z nejrůznějších bezpečnostních úniků. Vytvořený model
pak lze použít k přesnějšímu cílení útoků. Počet zkoušených kandidátních hesel tak můžeme
zredukovat pouze na ta nejpravděpodobnější. Lámání hesel pomocí pravděpodobnostních
bezkontextových gramatik tak představuje chytrou alternativu ke klasickému útoku hrubou
silou, či slovníkovým útokům. Práce vysvětluje principy použití gramatik pro tyto účely
a přináší řadu zlepšení existujících metod. Součástí je také návrh paralelního a distribuo-
vaného řešení. Práce popisuje techniku, kdy distribuujeme větné formy v podobě částečně
rozgenerovaných hesel, což snižuje množství přenášených dat. Díky toho můžeme úlohy řešit
efektivněji a v kratším čase. Navržené řešení je demonstrováno prostřednictvím ukázkového
nástroje a přiložené experimenty ukazují jeho použitelnost.

Klíčová slova
Forenzní analýza, heslo, lámání, zrychlení, GPGPU, BOINC, hashcat, PCFG

Citace
HRANICKÝ, Radek. Digital Forensics: The Acceleration of Password Cracking. Brno,
2021. Disertační práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
Školitel Doc. Ing. Ondřej Ryšavý, Ph.D.

Digital Forensics: The Acceleration of Password
Cracking

Declaration
Hereby I declare that this Ph.D. thesis was prepared as an original author’s work under the
supervision of Doc. Ing. Ondřej Ryšavý, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Radek Hranický

April 26, 2021

Acknowledgements
After seven years of my Ph.D. study and twelve years at the university in total, I consider
my thesis finished. As this student chapter of my life is getting to an end, I want to give
credit to all the admirable people who supported this intention. Thus, the names here
cover not only my fellow researchers but also family and friends that encouraged me over
the years. I feel they deserve some lines here.

I want to thank all members of the NES@FIT research group for being a great society
of enthusiasts who helped and inspired me during my Ph.D. study. Let me accentuate some
concrete names. Firstly, thanks to Ondřej Ryšavý for supervising my dissertation. Many
times he gave me new ideas and always helped when necessary. Secondly, thanks to Petr
Matoušek, the head of two research projects under which I conducted work that formed this
thesis. Big thanks to Libor Polčák, who supervised my bachelor and master theses, offered
me a research contract, and finally, convinced me to try the Ph.D. study. Next, thanks
to Vladimír Veselý, a great neighbor and man who initially brought me to the password
cracking area. Vladimír offered me to follow the work of his former student Jan Schmied.
To finish up this office of three, I need to thank Matěj Grégr, a Linux guru with whom
I was cooperating for some time. All these men were also teaching great Cisco academy
courses that I attended and will never forget.

Let me now proceed to us, youngsters. Thanks to Martin Holkovič, a great friend who
helped me create the original version of the Fitcrack system. In addition to Martin, I would
like to thank Barbora Franková and Stanislav Bárta, co-researchers and friends from the old
times of the Sec6Net project. Thanks to Jan Pluskal, originally a classmate, later the main
coffee-master of NES@FIT. Thanks to Ondrej Lichtner, former classmate, Red Hatian, and
sports enthusiast who runs like a pro. Big thanks to Kamil Jeřábek, a great buddy from the
northern-Moravian region with whom I was teaching forensic courses and inspired me with
the ultimate thesis-writing music. I also need to mention Marcel Marek, Filip Karpíšek,
and Martin Kmeť, with who I spent some time in the office during my studies. Finally,
thanks to newbie Ph.D. candidates Viliam Letavay, Michal Koutenský, and Martin Bednář.
You all formed a fantastic community of researchers that I was happy to work with. Also,
thanks to my friends outside our group: David Grochol, Ondřej Kanich, and others.

Next, I would like to thank all Fitcrack team members who joined me in creating
a state-of-the-art password cracking system. Thanks to Lukáš Zobal, a Ph.D. student from
NES@FIT, and my “right hand” in this team, who dedicated an outstanding amount of
time to help me move Fitcrack to the current state. Thanks to Adam Horák, a VueJS guru,
for redesigning the front-end of the WebAdmin. Thanks to Dávid Bolvanský for helping me
implementing new attack modes. Thanks to Jiří Veverka, Jan Polišenský, Kristýna Jandová,
and Michal Eisner for cooperation on bug fixing, creating various improvements, and being
great friends. Finally, big thanks to former developers Matúš Múčka and Vojtěch Večeřa for
helping me lay the foundation stones of the hashcat-based version of Fitcrack. Also, thanks
to other contributors whose list is on the Fitcrack website. Besides Fitcrack, I give special
thanks to Dávid Mikuš and Filip Lištiak, my former students who became co-researchers
of the grammar-based cracking area and co-authors of some of my publications.

To conclude my alma mater, I need to thank the Department of Information Systems,
supervised by Dušan Kolář, for being an umbrella for our research group. Thanks to Sylva
Sadovská and Svatava Nunvářová from the Scientific Department for the guidance and
opportunity to be the Ph.D. study ambassador. Finally, thanks to dean Pavel Zemčík and
his collegium for the excellent cooperation.

Next, I would like to thank my mates from the original composition of the Student’s
chamber of the Academic Senate of BUT for being great friends and supporters: Pavel
Maxera, Anna Kruljacová, Daniel Janík, Tereza Konečná, Kristína Šintajová, and Eliška
Jarmerová. And I wish good luck to Viktor Konupčík, the president of SU FIT, who is
taking my seat as the new representative of FIT BUT students, as my student days are
getting to an end. Also, big thanks to David Sedlák for being the head of students in the
faculty senate.

Let me now proceed to the names outside academia. First of all, I want to thank my
family for all the love and support over the years of my study. Concretely, to my mother,
Ivana, who always stayed with me in both good and bad times. During the lockdown period,
she supported me with food and coffee when I was writing the final chapters. Thanks to my
father, Radovan, who took me into sports and supported me over the years. As a medical
doctor who flies the helicopter with the rescue service, I always saw him as a hero. Thanks
to my younger sister, Monika, for support and all the adventures we experienced together.
Big thanks to my younger brother, Michal, who is currently finishing his Ph.D. as well, and
to my little brother Václav for wishing me good luck.

I want to express thanks to Zdeněk Brynda for introducing me to IT before my university
study. Big thanks to Michal Myška, a former classmate, friend, and sparring partner in the
gym. Thanks to Lucie Pavlásková for supplying me with Yerba Maté tea that stimulated my
brain during the writing. Thanks to Martin Řezáč, a professional photographer, classmate,
friend, and roommate for the university’s first years. Also thanks to other droogies from
these times: Martin Kunčík, Martin Lokvenc, Martin Klusoň, Lubomír Luža, and others.
As conducting research requires other activities to refresh the mind, I would like to thank my
buddies from our airsoft and military reenacting team: Martin Pohludka, Robert Hlavica,
Jiří Lapka, and others. Since my other big hobby is dancing, I would like to give big thanks
to my partners: Nela Kašparová, Brigita Arnoštová, Adéla Šoborová, and Jana Čapková
for ballroom dancing. Silvia Mišáková for being my follower in Lindy Hop swing dance,
academic senate colleague, and friend. And finally, Kristína Šintajová, a queen of BUT that
introduced me to Salsa. Special thanks to Michaela Hantáková, an IT project manager who
was always into great trips and hiking. And I would also like to thank Alicia Lozano,
a post-doc researcher from Madrid, for being the best roommate ever.

The research contained in the thesis was supported by the following projects:

• Modern Tools for Detection and Mitigation of Cyber Criminality on the New Gener-
ation Internet, no. VG20102015022 granted by Ministry of the Interior of the Czech
Republic,

• Research and application of advanced methods in ICT, no. FIT-S-14-2299 granted by
Brno University of Technology,

• Integrated platform for analysis of digital data from security incidents project, no.
VI20172020062 granted by Ministry of the Interior of the Czech Republic,

• ICT tools, methods and technologies for smart cities, no. FIT-S-17-3964 granted by
Brno University of Technology,

• National Programme of Sustainability (NPU II) project IT4Innovations excellence in
science, no. LQ1602 granted by Ministry of Education, Youth and Sports of the Czech
Republic.

Contents

1 Introduction 5
1.1 Background . 7

1.1.1 Early Password Protection . 7
1.1.2 DES and Password Hashing . 8
1.1.3 The First Cracking Tools . 8
1.1.4 The Revolution in Symmetric Cryptography 9
1.1.5 Modern Password Cracking . 10
1.1.6 Advances in Cryptographic Protection 12
1.1.7 Possibilities for Further Acceleration 12

1.2 Research Goals . 13
1.3 Contribution . 13
1.4 Structure of the Thesis . 14

2 Password cracking essentials 15
2.1 The Password Cracking Process . 15
2.2 Password Generation . 16

2.2.1 Exhaustive Search . 16
2.2.2 Dictionary-based Attacks . 16
2.2.3 Probabilistic Methods . 17

2.3 Password Verification . 17
2.3.1 Hash-based Password Verification . 17
2.3.2 Decryption-based Password Verification 18
2.3.3 Checksum-based Password Verification 19

2.4 Existing tools . 20
2.4.1 John the Ripper . 20
2.4.2 Cain & Abel . 21
2.4.3 L0phtcrack . 22
2.4.4 Hashcat . 22
2.4.5 Elcomsoft Password Recovery . 24
2.4.6 AccessData Password Recovery Toolkit 24
2.4.7 Passware Kit . 25
2.4.8 Ophcrack . 25
2.4.9 RainbowCrack . 26

3 Distributed Password Cracking 27
3.1 Motivation and Parallel Cracking Sessions 28

3.1.1 Parallel Cracking . 28
3.1.2 Utilization of GPGPU . 30

1

3.1.3 The Limits of a Single Machine . 32
3.2 Related Work . 34

3.2.1 Early Work . 34
3.2.2 Cracking in HPC Clusters . 34
3.2.3 Non-HPC Solutions . 35
3.2.4 Commercial Distributed Password Crackers 37
3.2.5 Hashcat-based Solutions . 38

3.3 Requirements for a Distributed Cracking Solution 40
3.4 Frameworks for Distributed Computing . 41

3.4.1 MPI . 41
3.4.2 Apache Hadoop . 42
3.4.3 VirtualCL . 43
3.4.4 CLara . 44
3.4.5 BOINC . 45
3.4.6 Summary . 46

3.5 The Choice for the Cracking Engine . 47
3.6 Workload Distribution in Cracking Tasks 50

3.6.1 Essentials . 50
3.6.2 Distribution Schemes . 51
3.6.3 Workunits in Fitcrack . 53
3.6.4 The Keyspace in Hashcat . 53
3.6.5 Adaptive Scheduling . 54

3.7 The Architecture of Fitcrack . 59
3.7.1 Generator . 60
3.7.2 Validator . 62
3.7.3 Assimilator . 63
3.7.4 Trickler . 64
3.7.5 BOINC Server Subsystems . 65
3.7.6 WebAdmin . 65
3.7.7 PCFG Monitor and PCFG Manager 69
3.7.8 MySQL Database . 69
3.7.9 BOINC Client . 69
3.7.10 BOINC Manager . 70
3.7.11 Runner . 70
3.7.12 Hashcat . 70
3.7.13 Princeprocessor . 70

3.8 Attack Modes and Proposed Distribution Strategies 71
3.8.1 Dictionary Attack . 72
3.8.2 Combination Attack . 75
3.8.3 Brute-force Attack . 78
3.8.4 Hybrid Attacks . 85
3.8.5 PCFG Attack . 89
3.8.6 PRINCE Attack . 92

3.9 Experimental Results . 96
3.9.1 The Time and Efficiency . 96
3.9.2 Adaptive Scheduling . 103
3.9.3 Distributed Dictionary Attack . 108
3.9.4 Distributed Brute-force Attack . 110

2

3.9.5 Distributed Combination and PRINCE Attacks 112
3.9.6 Summary . 116

4 Probabilistic Password Models 118
4.1 Motivation for Smart Password Guessing . 118

4.1.1 The Downside of Traditional Methods 118
4.1.2 The Potential of Probabilistic Models 119

4.2 Related Work . 119
4.2.1 Early Work . 119
4.2.2 Markovian Models . 120
4.2.3 Probabilistic Grammars . 121
4.2.4 The PCFG Cracker . 122
4.2.5 Motivation for Improvement . 123

4.3 The Scope of Improvements . 124
4.4 Probabilistic Context-free Grammars (PCFG) 124

4.4.1 Creating Grammars from Dictionaries 125
4.4.2 Letter Capitalization . 127
4.4.3 Sequential Password Guessing . 128
4.4.4 Probability Groups . 129
4.4.5 The Next Function . 129
4.4.6 The Deadbeat Dad Algorithm . 133

4.5 Key Observations . 136
4.6 Parallel PCFG Cracking . 137
4.7 Grammar Filtering . 139

4.7.1 Long Base Structures . 139
4.7.2 Calculating the Number of Password Guesses 140
4.7.3 Rule Filtering . 141

4.8 Distributed PCFG Cracking . 143
4.8.1 Communication Protocol . 144
4.8.2 Server . 145
4.8.3 Client . 147

4.9 Experimental Results . 149
4.9.1 Parallel PCFG Cracking . 149
4.9.2 Grammar Filtering . 151
4.9.3 Distributed PCFG Cracking . 153
4.9.4 Summary . 159

5 Conclusion 160
5.1 Achievements in Distributed Password Cracking 160
5.2 Achievements in Probabilistic Methods . 161
5.3 Overall Summary . 162
5.4 Future Work . 162

Bibliography 163

A An overview of password-protected formats 182
A.1 Documents . 182

A.1.1 Portable Document Format . 182
A.1.2 Microsoft Office - up to 2003 . 184

3

A.1.3 Microsoft Office - Office Open XML 185
A.1.4 OpenDocument . 187

A.2 Archives . 188
A.2.1 ZIP . 188
A.2.2 7z . 190
A.2.3 RAR . 192

A.3 Disk volumes . 193
A.3.1 TrueCrypt . 193
A.3.2 VeraCrypt . 194
A.3.3 CipherShed . 195
A.3.4 BitLocker . 195
A.3.5 PGP . 197
A.3.6 Mac Disk Utility . 197
A.3.7 FileVault . 197

A.4 Portable devices . 197
A.4.1 Android . 197
A.4.2 Apple iOS . 199

B The contents of the attached storage medium 202

4

Chapter 1

Introduction

Forensics is no more just lurking around the crime scene with a magnifier glass, taking
fingerprints using a brush and powder. Over the years, the area evolved and introduced
revolutionary methods like striation mark analysis or DNA profiling [197]. Alongside the
technological revolution, digital forensics became a new branch of forensic science. The early
attempts focused mainly on analyzing the contents of computer hard drives. Soon, the aim
of interest extended from computers only to cellphones, digital music players, tablets, thumb
drives, memory cards, and network traffic. Nowadays, digital forensics contains many
sub-branches, including mobile device forensics, network forensics, or malware forensics
[147, 39]. Moreover, it is not just “the police stuff” anymore. The importance of collecting
and analyzing digital evidence is used in the industry as well, often connected to incident
response and improving defense against cyber-attacks. Companies need to secure their
computer systems and networks from both internal and external threats [11].

With the spread of digital devices, forensic experts face new challenges while seeking
evidence. It is not just the growing amount of data and the popularity of cloud computing
that complicates investigations [101]. There is another bogeyman in the area of digital
forensics, and this bogeyman is cryptographic protection [11, 64, 65, 40]. A single pass-
word is often the only obstacle that prevents access to the most crucial pieces of evidence.
Nevertheless, removing this obstacle is not always easy.

Investigators may try to obtain the password from its creator. Some countries even
employ the “key disclosure law,” which, under certain conditions, requires individuals to
surrender cryptographic keys to law enforcement. In the United Kingdom, Part III of the
Regulation of Investigatory Powers Act (RIPA) [201] requires the person to either decrypt
the content or provide the encryption keys. The disclosure is mandatory even without
a court order, which makes this law slightly controversial [41]. Many countries, however, do
not use such legislation or have the exact opposite. The Fifth Amendment to the United
States Constitution protects witnesses from being forced to incriminate themselves [200].
In the Czech Republic, the Criminal Procedure Act No. 141/1961 Coll. guarantees self-
incrimination protection by defining the right to refuse testimony [46]. Either way, the
investigators never have a guarantee the suspects eventually disclose the password.

Therefore, in many cases, the only suitable option is to obtain the password by force.
Such a way of password recovery is often referred to as cracking. The principle is simple:
guessing and verification. Imagine a child trying to open a common 4-digit mechanical lock,
like the one shown in Figure 1.1. In our case, guessing is the physical movement of the digit
wheels, while verification is the mechanical pulling of the shackle. Assume the child needs
approximately two seconds to change the digits and a second to verify the combination.

5

Figure 1.1: A 4-digit mechanical lock

Then, checking all 10,000 options takes about 8 hours and a half. Yet, the child may be
lucky and find the correct password in the first ten attempts. Guessing the correct password
is like “looking for a needle in a haystack,” and we often have no clue how close we are.

In digital cryptography, instead of mechanical locks, we have encryption functions like
AES [50] and hash functions like SHA-3 [88]. Verification of a single password using “pencil
and paper” may take a long time. Using a computer, the process is much faster. However,
instead of 10 thousand, we may need to check billions of possibilities. With the complexity
of today’s algorithms, the process may take years if the password is strong enough. For-
tunately, there are ways how to make the checking faster, and the aim of this thesis to
accelerate the password cracking.

An approach that is not possible with a mechanical lock is to verify multiple passwords
at the same time. Parallel processing brings substantial benefits, especially with the use
of General-purpose computing on graphics processing units (GPGPU) [17, 221, 83]. And
where the single-machine approach ends comes the distributed computing. Therefore, I de-
scribe and compare different options on how to distribute password cracking tasks between
multiple nodes. The research covers scheduling, applying different attack strategies, and
centralized control of a cracking network.

Secondly, checking all possible combinations is not always necessary. Let us return for
a while to the example with the mechanical lock. If the child knows any clue like “there is
number one in the first position” or “the combination contains number 7”, he or she may
finish much faster. If the lock is configurable and a particular person chose the combination,
the child may take this as a benefit. Research shows that human beings choose passwords
that are easy to remember [30, 63], and often use the same password for multiple purposes
[52]. In our use case, trying combinations like “1234” or “4444” could be a smart strategy.
The child may also utilize knowledge about the password’s creator. Using passwords with
the owner’s favorite numbers, year of birth, and other likely combinations may have a higher
probability of success than just a mechanic guessing. Computer cracking may benefit from
the same principles. Therefore, the thesis also aims at “smart” password guessing methods
based on formal models like grammars and Markovian chains. Employing statistical analysis
and mathematical probability allows guessing passwords more precisely [136, 213, 114]. In
the thesis, I show various improvements to existing techniques and propose how to use them
in a parallel and distributed password cracking trial.

6

1.1 Background
The need to deal with cryptographic protection is undisputable. To identify the most sig-
nificant challenges in digital forensics, Al Fahdi et al. performed a survey undertaken by 42
forensic experts from law enforcement, industry, and academia. The 3 top identified issues
included anti-forensics and encryption [11]. In a survey from Harichandran et al. with 99
participants, mostly from North America and Europe, encryption was identified as one of
the three most crucial challenges. The growing importance of encryption is noticeable from
the surveys performed by Forensic Focus that asked about the biggest challenge forensic
investigators face today. In 2015’s survey with five hundred respondents, encryption was
the second most frequent answer [64]. Three years later, encryption and anti-forensics tech-
niques moved to the top [65]. Luciano et al. report similar observations after analyzing both
qualitative and quantitative data from twenty-four cyber forensics expert panel members
at the 2017’s National Workshop of Redefining Cyber Forensics (NWRCF) [113]. Garfinkel
also mentions a growing interest in anti-forensic methods involving cryptographic file sys-
tems, encrypted network protocols, and program packers [68]. Roussev discusses pervasive
encryption as one of the six major issues in today’s forensics [176]. Casey et al. report
the increasing use of full disk encryption (FDE) and mention concrete cases where the en-
cryption blocked further investigation [40]. Apparently, cryptographic protection creates
a significant obstacle in forensic investigations. I assume such an obstacle should not be
contemned and requires further attention.

1.1.1 Early Password Protection

The first documented use of password protection on computers dates back to the 1960s.
MIT used passwords for securing user accounts in the Compatible Time-Sharing System
(CTSS). The same system also encountered the first security breach. In 1966, Allan Scherr
used a loophole in the system to print out the contents of the password file. Since the
passwords were stored in a plaintext form, Scherr gained access to all user accounts [122].

MIT Bell Labs’ Multiplexed Information and Computing Service (MULTICS) secured
the stored passwords through a one-way transformation. The square root of a password was
modified by the “AND” operation with a pre-defined mask to discard some bits. In 1972–
1974, Paul Karger and his team from the US Air Force performed a security assessment
and breached 90 percent of user accounts because their owners never changed the default
password [204].

Robert Morris wrote the “crypt” program for encrypting files in UNIX systems. The
file encrypter first appeared in the 3rd Edition of UNIX, and its improved versions are still
used today. McIlroy states that the explicit intention was to stimulate code-breaking ex-
periments, and Morris himself was able to break crypt by hand [121]. From the 6th Edition
of UNIX, the crypt application encrypted user passwords. The implementation simulated
the M-209 cipher machine from World War II. To eliminate its known weakness, creators
used an inverted design. Instead of using the password as the plaintext, the password
served as the encryption key. In 1978, Robert Morris published a study of possible attacks
with a PDP-11/70 computer. A brute-force attack on a 5-character alphanumeric password
would take a maximum of 318 hours. However, the same attack on a 6-character one could
take over two years. Morris also suggested using a dictionary attack and proposed multiple
hints like checking “a list of first names” or “all valid license plate numbers in your state”
[131].

7

1.1.2 DES and Password Hashing

In 1976, the US National Bureau of Standards approved DES cipher as a federal standard
authorized for encrypting all unclassified data [202]. Despite its original purpose being
encryption, it is possible to employ DES for one-way hashing [123]. The 7th Edition of
UNIX supported two implementations of the crypt. The first, inspired by the German
Enigma machine, but in a simplified, single-rotor version. And the second based on DES
[69]. In the DES-based version, the first eight characters of the user’s password serve as
the encryption key, and the algorithm encrypts a constant. The encryption is performed 25
times, and the resulting 64 bits are repacked to become a string of 11 printable characters.
The password entry application was also modified to force users to choose less-predictable
passwords. Morris also proposed using cryptographic salt as a 12-bit pseudorandom value
obtained by the real-time clock [131]. At the time, hardware chips for computing DES
became commercially available. Unfortunately for potential attackers, the “E bit selection
table” [202] was wired into the chip. To prevent hardware-accelerated attacks, Morris
proposed changing the table according to the 12-bit random number [131]. In 1980, Martin
Hellman introduced the possible chosen-plaintext attack on DES using the precomputation
of data [78]. It is the first known time-space tradeoff attack. In 1982, Ron Rivest improved
the concept with the method of distinguished points that reduced the number of necessary
lookup operations [174]. In System V and BSD 4.3 in 1988, developers introduced password
shadowing, which restricted standard users from accessing password hashes [69].

Microsoft also used DES for calculating Lan Manager (LM) hashes. Passwords were
converted to uppercase and filled in by zeroes to have 14 characters. The result was split
into two chunks, each used as a DES key to encrypt a specific string. Such protection
was very easy to crack since the attacker can exclude all lowercase characters. Moreover,
passwords longer than eight characters can be cracked in two separate chunks [125]. In
1996, Windows NT 4 introduced the successor of LM, the NTLM, which uses the MD4
hash algorithm [171]. The new version uses Unicode encoding, but in contrast to UNIX,
does not employ salt or multiple iterations [179, 125]. The LM or NTLM password hashes
reside inside a Security Account Manager (SAM) database. The database is a hive file
of the Windows Registry [56]. Windows NT 4.0 introduced the optional Syskey function
[210, 89] for encrypting the SAM file. In Windows 2000, XP and newer, the function is
enabled by default [128], and the entire hive is encrypted using the RC4 stream cipher [89].

1.1.3 The First Cracking Tools

The first publicly available password cracking tools were released in the early 1990s. Dan
Farmer proposed the Computer Oracle and Password System (COPS) [62], the first vul-
nerability scanner for Unix systems. COPS contained the ”pwc“ utility for cracking weak
user passwords. Alec Muffett decided to improve its memory management to increase per-
formance and released the legendary Crack program [205]. Its 1991’s version contained
a programmable dictionary generator and even supported network distributed password
cracking [133]. An alternative UNIX password cracker created for DOS and OS/2 was
Cracker Jack, named after the author, Jackal. Both Crack and Cracker Jack were able to
use values from the GECOS field in the password file [93].

To prevent cracking attacks, in the early 1990s, BSD Unix extended the crypt program
with the support for longer passwords, multiple iterations up to 275, and the salt of 24
bits instead of 12. In 1994, FreeBSD’s crypt was the first operating system to use the
MD5 algorithm [172] for password hashing. The implementation used 1000 iterations and

8

a 48-bit salt. In the following years, most Linux distributions and the Cisco IOS adopted
the same concept of iterated MD5 [160].

The AccessData Corporation, founded in 1987, is probably the first distributor of com-
mercial password cracking software [129]. In 1995, the company offered five utilities for
recovering document passwords [3]: WRDPASS for WordPerfect, DataPerfect, and Profes-
sional Write, LTPASS for Lotus 1 to 3, Symphony, and Quattro Pro passwords, PXPASS
for Paradox and Symantec’s Q&A, WDPASS for MS Word, and XLSPASS for MS Excel
and MS Money. The utilities were running under a DOS or Windows environment. Each
was available for $185 [2].

The year 1996 showed even more tools for cracking DES. The PaceCrack95 was created
as a Windows 95 replacement for Cracker Jack. Qcrack published by the “Crypt Keeper”
was probably the first available tool that supported the precomputing of hashes [160]. The
tool offered high performance but required a lot of space for precomputed tables since each
candidate password was hashed with 212 possible salts. For each password, it was necessary
to store an additional 4 kB of data. Therefore, 5000 precomputed passwords took about
20 MB of disk space [92].

In the same year, Alexander Peslyak, better known as the ”Solar Designer,“ created
John the Ripper tool as a replacement for Cracker Jack that was not maintained anymore
and missed optimizations for x86 CPUs newer than 386. Peslyak completely redesigned
the single crack attack mode. In addition to Cracker Jack’s features, John the Ripper
had an incremental brute-force attack mode [159]. In 1997, Peiter Zatko, better known as

”Mudge“ released L0phtcrack for Windows under L0pht Heavy Industries. It was the first
tool capable of cracking NTLM hashes. Unlike John the Ripper, L0phtcrack had a graphical
user interface [111].

1.1.4 The Revolution in Symmetric Cryptography

In 1998, The Electronic Frontier Foundation (EFF) presented a machine called EFF DES
Cracker, nicknamed “Deep Crack,” based on ASIC chips. In the same year, EFF broke DES
cracking record in the RSA-sponsored DES Challenge II-2 by decrypting a DES-encrypted
message after 56 hours of work. Six months later, in collaboration with distributed.net, the
EFF won DES Challenge III by decrypting another message in 22 hours and 15 minutes.
The main weakness of the DES is a short 56-bit key [203, 179]. As a response, in 1998, NIST
proposed Triple DES (3DES), a block cipher that applies the DES cipher algorithm three
times to each data block, supporting longer keys [102]. In the following year, however,
Daemen and Rijmen proposed the Rijndael cipher [49] that, in 2001, NIST approved as
Advanced Encryption Standard (AES) [50]. The new standard supporting encryption keys
of 128, 192, or 256 bits quickly replaced DES and 3DES and is probably today’s most
widely used algorithm for symmetric cryptography. In 2018, NIST eventually deprecated
using 3DES [22].

Today, AES is probably the most widely used algorithm for symmetric cryptography.
The Windows 10’s Anniversary Update finally changed the encryption of SAM files with
NTLM user password hashes [89]. AES replaced the previously-used weak RC4 stream
cipher. Operating system user passwords are not the only domain. Encryption is often
used to secure documents, archives, disk volumes, and other media with sensitive content.
In Microsoft Office 2007, AES replaced RC4 as well [214]. The same happened to Portable
Document Format (PDF), starting from version 1.6 and Adobe Acrobat 7 [7]. The algorithm
is also necessary for password verification and decryption of ZIP archives created by both

9

WinZIP [45] and PKWARE’s SecureZIP [163]. AES replaced the original PKZIP stream
cipher that was cracked by Biham et al. in 1995 [29]. AES is used for encrypting both
RAR v3 [6] and v5 archives [175]. Another use is for disk encryption with BitLocker or
Mac Disk Utility [183]. TrueCrypt and VeraCrypt also support AES as one of the multiple
encryption options [218].

While AES serves for encryption of data, storing and verifying passwords is usually per-
formed via one-way hash functions. In 1995, NIST published the Secure Hash Algorithm 1
(SHA-1), a more secure alternative to the existing MD5 [137]. The new function produces
a 160-bit hash value in contrast with the MD5’s 128 bits. In 1999, Provos et al. proposed
bcrypt, a hash algorithm based on the Blowfish cipher. The function uses built-in crypto-
graphic salting to prevent rainbow table attacks. Moreover, it provides a variable number
of iterations, which allows to strengthen it over time to remain resistant against attacks
[167]. Some Linux distributions like SUSE Linux started to use it by default for hashing
user passwords [48]. In 2001, NIST published SHA-2, a family of hash algorithm standards
developed by the NSA. The SHA-2 functions are much more secure than the original SHA-1
and produce digests from 224 to 512 bits in length [138]. After discovering vulnerabilities
for collision attacks in 2008, MD5 is considered cryptographically broken and unsuitable
for future use [55].

We can also observe advances in the process of key derivation, i.e., the process of making
a fixed-size encryption key from a password. Formerly, the widely used method was the same
DES-based scheme that Morris proposed for hashing UNIX passwords [131]. A noticeable
change occurred when RSA Laboratories released the Public-Key Cryptography Standards
(PKCS) #5 v2.0, also published by IETF, with PBKDF1 and PBKDF2 key derivation
functions. To produce an encryption key from a password, the function needs five inputs:
a two-input pseudorandom function, the password, cryptographic salt, the desired number
of iterations, and the desired length of the derived key [98]. An official example of the two-
input pseudorandom function is the Hash Message Authentication Code (HMAC), which
requires a message, a key, and a cryptographic hash function like SHA-1 or SHA-2 [76]. The
MD5-based HMAC is not recommended [199]. For the salt, NIST recommends a randomly
generated value of at least 128 bits [198].

1.1.5 Modern Password Cracking

With the forensic experts’ need for recovering password-protected content, commercial dis-
tributors started to develop cracking software. The tools mostly provide a user-friendly
graphical interface and focus on the document, archive, and application passwords. The
AccessData Corporation merged all their password recovery utilities into a single Password
Recovery Toolkit (PRTK, see Section 2.4.6). The version from 2002 was able to crack
multiple encrypted media formats, categorized into three levels by difficulty. The easy re-
covery within minutes was possible for Microsoft Office 95 and older documents, plus a few
other applications like Lotus 123 Organizer or Ascend QuickBooks. Paradox and WordPer-
fect passwords had moderate difficulty that was crackable in hours or two days maximally.
The most difficult yet supported formats were Office 97 and 2000, PKZIP, and PGP. The
tool contained various dictionaries and customized suspect profiles for guessing passwords
[129, 38]. Another password cracking pioneer is an Estonian company called Passware.
Their Password Recovery Kit (see Section 2.4.7) from 1998 was capable of cracking Office
95 and 97 documents. An improved version available in 2002 was also capable of decrypt-
ing PDF documents, WinZip archives, and Windows NT/NTLM passwords [67]. In 2006,

10

a Russian company named Elcomsoft applied for two US patents: Fast cryptographic key
recovery system and method [116], and Password recovery system and method [99].

A game-changer in hash cracking arrived in 2003 when Philippe Oeschlinn presented
rainbow tables, inspired by the cryptanalytic time-memory tradeoff from Hellman and
Rivest. Unlike classic lookup tables used in Qcrack, rainbow tables use the concept of
chains and hash reduction that decreased the necessary storage space dramatically [142].
In the same year, Zhu Shuanglei started Project RainbowCrack [184]. The goal is the devel-
opment of a general-purpose implementation of Oechslin’s technique, precomputing hashes
and maintaining a publicly available rainbow table repository. The project is still active
today (see Section 2.4.9) [185].

In 2009, Jens Steube, known as “atom”, decided to fix the missing multi-threading
support in John the Ripper’s dictionary attack mode. Therefore, Steube created the hashcat
tool, originally called “atomcrack.” The initial version was a simple yet very fast dictionary
cracker [191]. At the same time, Peslyak and his team continued with the development of the
John the Ripper tool and released new versions with enhanced features and optimizations
for various architectures [158].

The release of NVIDIA CUDA [141] in 2007 and OpenCL [134] from the Khronos
Group in 2009 allowed using GPU units for general-purpose computing. General-purpose
computing on graphics processing units (GPGPU) brought a revolution to the password
area and following years revealed its true potential. In 2008, Elcomsoft company, a commer-
cial creator of password cracking solutions (see Section 2.4.5), introduced GPU accelerated
computing of some of the supported algorithms. The same year, Graves proposed a solution
for cracking NTLM and MD4 hashes with rainbow tables on GPU. The proof-of-concept
tool was named IseCrack [72]. In 2009, Kipper et al. presented an implementation of
AES for GPU [106]. In the same year, Zonenberg created a distributed CUDA-based MD5
cracker [221]. The first wave of GPU crackers included other, mostly free but later aban-
doned, projects: GPU md5 Crack, Multihash CUDA bruteforcer, Extreme GPU Brute-
forcer, ISHASHGPU, and Bars WF Bruteforce. All supported MD5, and most of them
also NTLM hashes or other algorithms. Bakker et al. compared the performance of Ex-
treme GPU Bruteforcer, ISHASHGPU, Bars WF Bruteforce, and the commercial solution
from Elcomsoft. All four tools showed a massive speedup on GPU in comparison to CPU
cracking. The difference in performance between the tools was minimal [20].

In 2010, Steube released cudaHashcat that provided CUDA kernels for GPU-accelerated
hash cracking on NVIDIA cards. In the same year, he created oclHashcat, an alternative
with OpenCL kernels instead of CUDA. The main advantage of OpenCL is that it was
supported by GPUs from both NVIDIA and ATI/AMD. The tool offered GPU-accelerated
cracking of MD4, MD5, SHA-1, SHA-256, and NTLM hashes, Domain Cached Credentials,
and passwords for MySQL and vBulletin applications. The oclHashcat offered advanced
dictionary-based attacks like the rule-based attack, toggle-case attack, or combinator attack.
Unlike Cracker Jack and John the Ripper, the new tool applied word-mangling rules on
GPU kernel, which dramatically reduced the number of necessary PCI-E transfers [193].
The in-kernel rule engine is a unique feature, and I have not found any other password
cracker with this capability.

In 2011, Sprengers presented a CUDA-based MD5 cracker. It was 104 times faster
than John the Ripper that was still CPU-only [187]. The situation changed in the same
year. Peslyak added CUDA kernels to John the Ripper. In 2012, he also added support
for OpenCL [158]. For more about John the Ripper, see Section 2.4.1. In the same year,
AccessData added support for GPU acceleration to their PRTK 7.0 and DNA 7.0 tools [34].

11

Later, Steube abandoned CUDA and merged the original tool’s features with oclHash-
cat, creating a unified OpenCL CPU/GPU named simply hashcat. In the past years, Team
hashcat won several years of DEFCON and DerbyCon Crack Me If You Can (CMYIC)
contests [220]. The tool is the self-proclaimed ”world’s fastest password cracker“. For more
about hashcat, see Section 2.4.4.

1.1.6 Advances in Cryptographic Protection

Despite the revolutionary GPU acceleration and massive improvements in password crack-
ing performance, attacking state-of-the-art cryptographic protection is still very difficult.
Novelty algorithms and the increasing difficulty of password verification procedures com-
plicate the cracking. Hashing with many iterations is costly for attackers. Due to the
configurable cost factor, the bcrypt algorithm from 1999 is still in the game. Cracking
bcrypt hashes with a higher number of iterations is extremely challenging. The obstacle
made by high iteration counts is noticeable with other algorithms as well. Verification of
a single password for an encrypted Office 2013 and 2016 document requires to compute
100,000 iterations of SHA-512 [126, 214]. For non-system partitions, TrueCrypt used 2,000
for RIPEMD-160 [54], and 1,000 for SHA-512 or Whirlpool [188] algorithms. However, its
successor, the VeraCrypt, employs 655,331 iterations of RIPEMD-160 and 500,000 itera-
tions of SHA-2 [218, 196].

A noticeable obstacle for attackers is the spread of PBKDF2 key derivation scheme [98],
especially when combined with a strong hash algorithm like bcrypt or SHA-512. The use
of salt eliminates possible rainbow table attacks, and every iteration is costly. PBKDF2
is not only used in the above-mentioned VeraCrypt, but also in WinZIP [45], SecureZIP
[163], RAR v5 [175], or for full disk encryption on Android systems [195]. In 2017, IETF
recommended using PBKF2 for password hashing [130].

In 2015, NIST released SHA-3, a novelty family of hash algorithms, internally different
from its predecessors [139]. SHA-3 is based on the Keccak [27] concept of cryptographic
primitives and uses a sponge construction where the input is “absorbed” into the sponge,
and the result is “squeezed out” [139]. In 2016, Percival et al. released the scrypt algo-
rithm for hashing and key derivation. The algorithm was intentionally designed to have
high memory requirements to prevent massively parallel attacks. Like bcrypt, scrypt is
also configurable. Three parameters control the complexity of hashing: 𝑁 sets the CPU
difficulty, 𝑟 controls the memory difficulty, and 𝑝 defines the parallelization difficulty [157].

1.1.7 Possibilities for Further Acceleration

With the increasingly complex cryptographic algorithms [139, 167, 157, 130], higher it-
eration counts [126, 218, 175], and stricter password-creation policies [166, 207], forensic
investigators often reach a dead end. Even a multi-GPU machine with state-of-the-art tools
and optimized algorithms may not be enough.

To move from this point-of-failure, I see two possible pathways. One solution is to put
together a grid or cluster of machines to achieve the desired performance. The related work
on the distributed password cracking is summarized in Section 3.2. The second way is to
reduce the number of password guesses. We may only verify the candidate passwords that
are likely to be correct. The question is how to determine such a subset of passwords. The
answer may lie in probabilistic passwords models. Thereby, I present the work related to
this subject in Section 4.2.

12

1.2 Research Goals
The scope of my research is exploring ways to accelerate password cracking tasks. In other
words, proposing techniques that allow finding passwords in a smaller amount of time. The
related research shows two possible pathways: a) parallel and distributed processing, and b)
smarter guessing techniques using existing knowledge and time-space tradeoff to decrease
the number of candidate passwords. Therefore, the objectives of this work are to:

• Study the characteristics of existing cracking tools, supported attack modes, and
features. Focus on the use of GPGPU-based solutions. Explore the possible techniques
to distribute the workload amongst multiple nodes. Analyze existing frameworks for
distributed computing in terms of their suitability for password cracking. Define the
requirements for a general-purpose distributed password cracking solution.

• Use the observations to propose algorithms and strategies that allow the distributed
processing of cracking tasks. Focus on the performance, efficiency, and scalability
of attacks. The solution should work with existing computer networks without re-
quirements for specialized hardware. Create a proof-of-concept cracking system that
implements the proposed methods.

• Experimentally evaluate the solution by performing a series of experiments under
various settings. Check if the results match the initial requirements. If possible,
compare the novelty cracking system with existing software.

• Study the methods for the time-space tradeoff attacks and utilizing the knowledge
about existing passwords. Explore the use of statistical analysis and mathematical
probability to model users’ password creation habits. Choose a method and ana-
lyze the possibilities for its parallel use. Identify the weak spots and obstacles that
complicate practical use.

• Propose improvements that eliminate the identified obstacles. Design a way to use
the method in a multi-node GPGPU-based network. Create a proof-of-concept tool
to demonstrate the proposed principles and experimentally verify its usability.

1.3 Contribution
The thesis describes different frameworks for distributed computing and discusses their us-
ability in the area of password cracking. I analyze and evaluate possible ways for workload
distribution in a multi-node computing network. I propose a technique based on the dy-
namic assignment of work chunks and an algorithm for adaptive scheduling of workunits.
The algorithm reflects the current state of the network and withstands abrupt changes
in computing nodes’ performance [81, 87]. Moreover, I introduce pipeline processing of
workunits that minimizes the overhead for network transfer and delays for switching be-
tween individual pieces of work [84].

While there are multiple commonly-used attack modes, it is necessary to take their
properties and requirements into account. Inspired by the arsenal of attack modes provided
by the hashcat tool, I propose a convenient task distribution strategy for each of them
[84, 87]. Moreover, I present distribution techniques for two additional modes with external
password generators: the PRINCE and the PCFG attacks. All strategies aim to divide the

13

problem efficiently between the computation nodes to minimize the overhead and utilize
the maximum of available hardware resources.

I utilize the above-shown methods to create a general-purpose high-efficiency GPGPU
password cracking system called Fitcrack [87]. The proof-of-concept solution uses hash-
cat tool as a client-side computing engine, and the BOINC framework [15] to handle host
management, network communication, and work assignment. The design reflects the re-
quirements denoted in Section 3.3. I experimentally verify that the new solution is capable
of performing distributed attacks reliably and efficiently. Moreover, I compare the software
with the Hashtopolis tool, underlying pros, and cons of each solution [84].

The thesis further contains a detailed study of the ”smart“ cracking methods based on
time-space tradeoff and formal models. The principle is to utilize the knowledge of users’
password creation habits. Inspired by the research from Weir et al., I concretely focus on
cracking with Probabilistic context-free grammars (PCFG) [213]. Motivated to make the
technique more utilizable for practical use, I identified factors that influence the time of
generating password guesses.

Firstly, the thesis shows that removing specific rewrite rules leads to a massive speedup
of password guessing without having a considerable impact on the success rate. Secondly,
I propose methods of parallel and distributed password guessing. The concept uses preter-
minal structures as basic units for creating work and supports parallel generating of strings.
I demonstrate the idea by creating a proof-of-concept tool that also natively supports direct
cracking with hashcat. Similarly to Fitcrack, the solution uses adaptive work scheduling to
reflect the performance of available computing nodes. I evaluate the techniques in a series
of experiments by cracking different hash algorithms using different grammars, network
speeds, and numbers of computing nodes. By comparison with the naive solution, I illus-
trate the advantages of the new concept [82, 85].

1.4 Structure of the Thesis
The thesis is structured as follows. Chapter 2 summarizes the essential principles of pass-
word cracking, including the methods for password guessing and verification. Chapter 3
focuses on distributed processing. It analyzes possible ways of utilizing multiple nodes
concerning different tasks and attack modes. The chapter contains a design of a novelty
distributed password cracker and its experimental evaluation. Chapter 4 aims at “smart”
password guessing methods. It describes multiple enhancements to the state-of-the-art
cracking with probabilistic context-free grammars, including a parallel and distributed so-
lution. Finally, Chapter 5 concludes the thesis. Appendix A provides an overview of the
most common password-protected formats and describes concrete procedures for password
verification. Appendix B describes the contents of the attached storage medium.

14

Chapter 2

Password cracking essentials

Password recovery is a process of obtaining passwords for accessing protected content.
When performed by force, the procedure is commonly referred to as password cracking
[117]. This chapter describes the basic cracking workflow, shows different schemes for
verifying password candidates, and mentions existing software solutions.

2.1 The Password Cracking Process
In a nutshell, password cracking consists of two phases: a) password generation and b) pass-
word verification. These two phases repeat in a cycle with a finite number of iterations.
Figure 2.1 describes the workflow of the process.

Figure 2.1: An illustration of the password cracking process

There are two types of password cracking attacks:

• Online attack - when attacking a live system, the attacker creates the candidate
passwords, and the system serves as an oracle for password verification. The use-
cases include attacking a website, a computer account, breaking electronic locks, or

15

guessing an ATM’s PIN. The main drawback of such an attack is that the defender’s
security features can be active, e.g., the verification is temporarily disabled after
reaching several attempts, etc.

• Offline attack - when the attacker has direct access to password hash or encrypted
content, there is no need to communicate with the live system. Attackers can generate
and verify the passwords on their own machines, e.g., using a GPU-equipped HPC
cluster. An example is the password recovery of documents and archives found on
a disk seized within a criminal investigation.

Both attacks have different strategies that could be employed, and in this thesis, I will focus
mainly on offline attacks.

2.2 Password Generation
Password cracking examines a series of candidate passwords, also referred to as password
guesses. An attack mode or attack type defines how these passwords are created. The
password generation may utilize both existing string fragments or build entirely new ones
from a pre-defined set of characters. The two approaches may also be combined. Smarter
methods also introduce the use of mathematical probability and statistics to guess passwords
more precisely. The attack configuration further specifies the guessing process. It may limit
the length of strings, used alphabet, wordlists, and other details. The choice of attack
mode depends on the attacker’s decision and should reflect the situation. Is the password
human-created or machine-generated? Was the password created to respect some policies:
minimal length, at least one number, and special symbol, etc.? Do we know anything about
the identity of the password owner, which may give us a hint? The attacker shall answer
these questions before launching the attack.

2.2.1 Exhaustive Search

The exhaustive search is the core principle of brute-force attacks. The configuration contains
one or more alphabets and a series of rules that define how to build strings from them. An
alphabet is an ordered set of characters used for creating passwords. The classic incremental
brute-force attack uses a single alphabet and creates every possible sequence of characters of
a given length range. More advanced alternatives may utilize additional rules for specifying
what characters are allowed in which position, etc. The main advantage of the exhaustive
search is that, if appropriately configured, it eventually finds the correct password. The
main drawback is usually the enormous number of candidate passwords. A more detailed
overview of commonly-used techniques is in Section 3.8.3.

2.2.2 Dictionary-based Attacks

Dictionary-based attacks utilize existing wordlists of strings. The classic dictionary attack
employs a single wordlist where each line represents a candidate password. In other words,
generating password guesses is just reading a text file line by line. Some tools also support
additional password-mangling rules that modify the strings before use, e.g., capitalize the
first letter, swap or substitute some characters, etc. Concrete techniques are discussed
in Section 3.8.1. Advanced approaches combine multiple strings. The combination may
use fixed-position placements (see Section 3.8.2) or employ letter chains like the PRINCE

16

attack (see Section 3.8.6). Hybrid methods combine the dictionary-based approaches with
exhaustive search. For example, a part of the password is from a dictionary while the other
is generated using the brute-force technique. The hybrid attacks are described in Section
3.8.4.

2.2.3 Probabilistic Methods

Advanced state-of-the-art password guessing techniques often employ mathematical proba-
bility and use results of statistical analysis. Related algorithms are mostly based on formal
models like Markovian chains or probabilistic grammars. Such methods are extremely effi-
cient against human-created passwords since they can reflect the users’ password-creating
habits. They may utilize the knowledge obtained from previously-known passwords, the
creator’s country of origin, language, personal information, and other useful details. The
entire Chapter 4 of this thesis is dedicated to probabilistic models and their improvements.

2.3 Password Verification
Once we get a candidate password, it is necessary to verify it for correctness. The verification
procedure depends on the target of the attack. Cracking a root password to a MySQL1

database requires an entirely different approach than breaking into an encrypted RAR
archive [6, 175]. While proprietary applications often hide the internal implementation
of password handling, open formats are usually well-documented, and the specification
of necessary password verification steps are mostly publicly available. After analyzing
dozens of password protection formats, I propose a classification into three commonly-used
password verification schemes.

2.3.1 Hash-based Password Verification

The hash-based password verification is the most straightforward way in all scenarios where
we can access the cryptographic hash of the correct password. Operating systems and
web applications often store passwords in a hashed form instead of plaintext [10]. The
motivation is to minimize the impact of a possible security breach so that the attacker does
not instantly pick up passwords of all users. Once a user enters a password to authenticate,
the application calculates its cryptographic hash and compares it with the stored one. If
they match, the system grants the user access to given resources.

For password cracking, we can use the same verification procedure. Figure 2.2 illustrates
the principle. The input candidate password serves as an input for cryptographic hashing.
The calculation may require to compute one or more iterations of a single hash function or
a combination of hash functions. Once we get an output, we compare it with the known
hash, also referred to as the verification value. If they match, the password is considered
correct.

This verification scheme is not limited to applications and operating systems only. En-
crypted PDF and newer versions of MS Office documents (see Section A.1) and encrypted
version 5 RAR (see Section A.2) archives also store the verification value. Therefore, for
password verification, we do not need to decrypt the contents.

For cracking raw hashes easier, one may use the time-space tradeoff methods with pre-
computed hashes. In the case of shorter passwords, the lookup table [174] or rainbow

1https://dev.mysql.com/doc/refman/5.6/en/password-hashing.html

17

https://dev.mysql.com/doc/refman/5.6/en/password-hashing.html

table [142] attacks allow for cracking the hashes almost instantly. Therefore, many formats
employ cryptographic salt - a pseudorandom high-entropy value added to the password
before calculating the hash. The salt makes the password longer so that there is a very low
probability that it matches any pre-computed table. The salt needs to be stored together
with the hash since it is necessary for the verification. NIST recommends the salt to be at
least 32 bits long and arbitrarily chosen to minimize collisions among stored hashes [71].

A cryptographic pepper is another extra high-entropy value added to the password
before hashing by some applications. Unlike salt, the pepper is stored secretly, separately
from the hashes, typically inside the application that uses it. The use of pepper follows the
NIST recommendations to use a secret value known only to the verifier. The recommended
length is at least 112 bits [71].

Password-
protected
content

Hash function(s)

+
Salt Pepper

Verification vaue
(stored hash)

=

?

Password hash

Salted password

Candidate
password

Figure 2.2: Hash-based password verification scheme

2.3.2 Decryption-based Password Verification

In many cases, there is no verification value with the stored password hash. In such a
situation, the option we can perform a known-plaintext attack. First, we need to get an
encryption key. The process is defined by the protected media format’s manufacturer.
A common practice is to use commonly-known key derivation functions like PBKDF2 [98,
130] that performs multiple iterations of a pseudorandom function. The key derivation
function also often uses cryptographic salt or pepper. As the pseudorandom function,
HMAC is typically used together with a hash function like SHA-2 or other [132]. Once we get
the encryption key, we may decrypt the encrypted content. To perform the decryption-based
verification automatically, we need to know a part of the plaintext. After the decryption,
we check if there is the string we are looking for. If so, the password is correct. Where
possible, we may decrypt only a part of the ciphertext. For example, with a block cipher

18

like AES [33], we can decrypt just the first block if we know what it should contain. The
principle of the decryption-based password verification is illustrated in Figure 2.3.

An example of the decryption-based password verification is cracking disk volumes en-
crypted by TrueCrypt. For a candidate password, we generate an encryption key and
decrypt the partition’s header. Then, we check if the positions from 64th to 67th byte
contain the word “TRUE” [219]. With VeraCrypt, the process is similar, but we look for
the string “VERA” (see Section A.3.2).

Password-
protected
content

Key derivation function

Salt Pepper

Ciphertext

(Partial) decryption

?

Encryption key

Known
(part of the)

plaintext

Candidate
password

(Part of the) plaintext

=

Figure 2.3: Decryption-based password verification scheme

2.3.3 Checksum-based Password Verification

In some cases, we have neither verification value nor a known part of the plaintext. Yet
the protected media may include a checksum of its content or its part. In such a case,
we use a checksum-based password verification, as illustrated in Figure 2.4. Like in the
previous scheme, we first generate an encryption key. Then, we decrypt the content or its
part. From the plaintext, we calculate a checksum using CRC or other error correcting
code function [161]. The result is compared to the known checksum. If they match, the
password is correct.

A typical example is a ZIP container encrypted with the original PKZIP stream cipher
[163]. For each file inside the archive, there is a header with a CRC checksum of the file.
For recovery, it is necessary to decrypt and decompress the data of at least one of the files
inside the archive. Then, we need to compute a CRC checksum from it. For verification, we
compare the computed checksum with the archive’s checksum. If they match, the password
is more likely correct. In this concrete case, there is, however, a risk of false positive

19

passwords (see Section A.2.1) since the checksum is relatively short and thus two different
inputs may produce the same CRC code.

Password-
protected
content

Key derivation function

Salt Pepper

Ciphertext

(Partial) decryption

?

Encryption key

Checksum calculation

Stored
checksum

Candidate
password

(Part of the) plaintext

=

Plaintext checksum

Figure 2.4: Checksum-based password verification scheme

2.4 Existing tools
This section lists some of the most popular solutions for password cracking. While few of
the mentioned tools support distributed computing, the discussion on distributed cracking,
including related work and existing solutions, is in Chapter 3. As mentioned above, I focus
on offline cracking, so that I do not discuss popular tools for online attacks like THC Hydra2

or NCrack3.

2.4.1 John the Ripper

John the Ripper4 (JtR) is a classic password cracking tool created by Alexander Peslyak5,
better known under the nickname “Solar Designer”. Peslyak released the first version

2https://github.com/vanhauser-thc/thc-hydra
3https://nmap.org/ncrack/
4https://www.openwall.com/john/
5https://openwall.info/wiki/people/solar/bio

20

https://github.com/vanhauser-thc/thc-hydra
https://nmap.org/ncrack/
https://www.openwall.com/john/
https://openwall.info/wiki/people/solar/bio

in 1996 as a drop-in replacement for the old Cracker Jack [93] tool for MS-DOS. John the
Ripper supports four6 attack modes: the wordlist mode, the single crack mode, incremental
mode, and external mode [159].

The wordlist mode represents a classic dictionary attack that reads candidate passwords
from a given wordlist. For this attack mode, John the Ripper provides the use of password-
mangling rules that extend the repertoire of password guesses by modifications like letter
capitalization, character swapping, and others. The mangling rules became so popular
that they were adopted by other password cracking tools, including hashcat. The Fitcrack
system, proposed in this thesis, also supports all of the JtR’s mangling rules. The single
crack mode builds password guesses from user names, GECOS / Full name fields from UNIX
passwd files, and user home directory names. It also applies a large set of mangling rules.
Successfully guessed passwords are also tried against all loaded password hashes just if
more users have the same password. The authors suggest that ”this is the mode you should
start cracking with.“ The incremental mode is a brute-force attack that creates candidate
passwords from frequency-sorted lists of characters. In the configuration, a user can define
what character sets to use and the minimal and maximal password length. Finally, the
external mode reads passwords from the standard input. Therefore, the user may employ
an external password generator, connect it via a pipe, and use JtR as a backend cracker
to verify password guesses. The tool is also frequently referenced in many scientific studies
from the password cracking area [66, 109, 213, 211].

Starting from 2011, JtR provides GPU acceleration for a still increasing number of
supported algorithms [158]. The 2019’s version 1.9.0 jumbo can crack 287 different formats.
Those include raw hashes, OS passwords, passwords for archives, documents, applications,
and network protocols. From all supported formats, 88 utilize GPU-accelerated cracking.

John the Ripper is an open-source solution maintained by the Openwall Project. The
source code is freely available on GitHub OpenWall repository7 under a modified GNU GPL
license. In addition to the freely-available distribution, there is a commercial Pro version
with extended upgrades and enterprise support. It also contains a large multilingual wordlist
for dictionary attacks. The Linux and MacOS versions of John the Ripper Pro are pre-built
and distributed in native OS packages.

2.4.2 Cain & Abel

Cain & Abel is a popular free password cracking tool for Microsoft Windows OS with a user-
friendly graphical user interface. The tool can recover passwords by sniffing on the network
or performing dictionary, brute-force, and cryptoanalysis (rainbow table [142]) attacks. It
can crack 26 different formats, including raw hashes like MD5 or SHA-2, Windows password
hashes from LM to NTLMv2, passwords for network protocols like Kerberos or RADIUS,
and various application passwords. Moreover, Cain & Abel incorporates many other ex-
isting tools into it. Therefore, other functionalities include recording VoIP conversations,
performing an ARP cache poisoning attack and several man-in-the-middle attacks, decod-
ing scrambled passwords, revealing password boxes, uncovering cached passwords, and even
analyzing routing protocols. Thanks to these features and ease-of-use on Windows systems,
the tool is supported by a relatively large fan-base [211].

Cain & Abel is not only a password cracking program but is also highly effective at
collecting passwords and password hashes from targets on the local network. Despite the

6https://www.openwall.com/john/doc/MODES.shtml
7https://github.com/openwall/john

21

https://www.openwall.com/john/doc/MODES.shtml
https://github.com/openwall/john

extra functionality, the actual cracking capabilities are too limited to withstand today’s
challenges. First, there is no GPU acceleration. Next, while the tool supports password-
mangling rules, the only available modifications are case mangling, swapping characters,
and appending characters to the end of each candidate password. The attacks based on
frequency analysis, e.g., based on Markovian models, are not supported. On the other
hand, it supports features that many other tools do not, r.g. creating rainbow tables [142],
submitting password hashes to online lookup databases, etc.

The tool is distributed as closed-source freeware. The latest release 4.9.56 was published
in 2014. Sadly, the project nowadays seems to be abandoned. The official website is empty,
however the software is still publicly available8.

2.4.3 L0phtcrack

L0phtcrack9 is a commercial password auditing and recovery tool with a user-friendly graph-
ical interface. The tool is designed mainly for penetration testers to perform security audits
on company networks. It gained popularity in 2000 as the first password cracking tool ca-
pable of cracking MS Windows NTLM password hashes, but it also cracks Unix password
files. The tool can retrieve the password hashes locally, remotely from a domain controller,
or sniffing passwords off the network.

The initial release from L0pht Heavy Industries dates back to 1997 [111]. In 2000,
the original manufacturer merged with ATstake, Inc. company. In 2004, the project was
purchased10 by Symantec Corporation, shut down, re-purchased by the original creators,
and re-released.

L0phtcrack 6 supported a dictionary attack, brute-force attack, and substitution-based
hybrid attack. For LM and NTLM hashes, the application also offered to use precomputed
password tables. The included HashGen utility could calculate new hashes to extend the
default set [165, 111] While the built-in cracking rules are more sophisticated than in Cain
& Abel, L0phtcrack lacks the ability to define custom word mangling rules [211].

In 2020, Terrahash the L0pthrack was purchased11 by Terrahash LLC, a company cre-
ated by inventors of the popular hashcat tool and the creators of Hashstack, an enterprise
distributed password cracking solution.

In L0pthcrack 7, released in 2019, the original cracking engine was replaced by the
JTRDLL12 fork of John the Ripper. Thanks to this change, the tool now supports GPU
acceleration and the User info attack that corresponds to JtR’s Single crack mode [110].

2.4.4 Hashcat

Hashcat13 tool, initially created by Jens “atom” Steube in 2009, started as a high-speed
freeware cracking solution with proprietary code. In 2015, the code was made publicly
available under the MIT license, and it is nowadays an open-source project with a large
fan base and a community of contributors. Originally, there were three tools: the legacy
hashcat for CPU-based cracking, the oclHashcat with the OpenCL cracking kernels for
NVIDIA/AMD cards, and the cudaHashcat dedicated for NVIDIA only. Very early versions

8https://github.com/xchwarze/Cain
9https://www.l0phtcrack.com/

10https://www.eweek.com/security/symantec-buys-security-consulting-pioneer-stake
11https://terahash.com/news/terahash-acquires-l0phtcrack.htm
12https://github.com/L0phtCrack/jtrdll
13https://hashcat.net/

22

https://github.com/xchwarze/Cain
https://www.l0phtcrack.com/
https://www.eweek.com/security/symantec-buys-security-consulting-pioneer-stake
https://terahash.com/news/terahash-acquires-l0phtcrack.htm
https://github.com/L0phtCrack/jtrdll
https://hashcat.net/

of the oclHashcat also had two branches: oclHashcat-lite and oclHashcat-plus. The lite
version was optimized for performance and supported only attack modes based on brute
force. The plus version, on the other hand, was designed mainly for dictionary-based
attacks. This changed14 in 2016 when all three tools were merged into a single hashcat
tool, version 3. The early versions are now considered deprecated and have been have
removed from the official website. The cracking kernels are purely OpenCL-based and can
be run on almost any OpenCL-compatible CPUs, GPUs, and even FPGAs, DSPs, and
co-processors.

Unlike many other tools, hashcat does not have a graphical user interface and is therefore
designed for advanced users. The only exception was “hashcat-gui” for the old 2010 to
2012 versions. While commercial tools regularly accept encrypted documents and archives
as a direct input, hashcat does not. The tool is just for hashes and supports over 300
different algorithms. While hashcat can crack Office documents, ZIP, 7z, and RAR archives,
encrypted disk volumes, or even cryptocurrency wallets, the user needs first to employ
external utilities or “scraper” scripts to extract all necessary metadata from the password-
protected medium. The extracted so-called “hash” has a common format and, in addition
to the raw hash, may also contain other values like iteration count, cryptographic salt,
version, key length, or even part of the encrypted and/or compressed content [95]. This
is probably the main difference from out-of-the-box commercial password solutions where
the user can just drag and drop the encrypted file and let it crack. With hashcat, you first
need to extract the hash. Many of hashcat’s hash formats are also compatible with John
the Ripper tool.

The main advantage of the tool is its cracking performance. Hashcat is a self-proclaimed
“World’s fastest password cracker” and team hashcat won 7 of 11 of Crack me if you can.
(CMIYC) contests15 in the past 10 years [220]. Hashcat supports the following attack
modes: the straight mode - a classic dictionary attack, the combination attack, the brute
force attack, and hybrid attacks. In Section 3.8, I discuss each of these attack modes in
detail. If a user chooses the straight mode and does not specify a concrete wordlist, the
tool reads password. guesses from the standard input. This feature allows hashcat to
use an external password generator. For dictionary attacks, hashcat supports password-
mangling rules that are fully compatible with JtR [192]. Nevertheless, there is a difference
in their application. While JtR modified the dictionary words on the host machine’s CPU,
hashcat’s rule engine is implemented inside the GPU kernels. This way, hashcat can offer
significantly higher performance for rule-based attacks. The performance and the range
of supported formats motivated me to use hashcat as the “cracking engine” for Fitcrack
distributed password cracking system that I propose in this thesis. Fitcrack supports all
the hashcat’s above-mentioned attack modes. For details, see Section 3.8. In 2020, hashcat
developers announced a new mode called “association attack,” which should be similar to
JtR’s single crack mode.

Hashcat is currently developed on GitHub, and the repository16 has over 70 contributors.
In addition to the source code, hashcat developers provide pre-compiled binaries for both
Linux and Windows systems.

14https://hashcat.net/forum/thread-5559.html
15https://contest.korelogic.com/
16https://github.com/hashcat

23

https://hashcat.net/forum/thread-5559.html
https://contest.korelogic.com/
https://github.com/hashcat

2.4.5 Elcomsoft Password Recovery

ElcomSoft17 Co. Ltd. is a manufacturer of password recovery solutions, mainly for gov-
ernments, military and law enforcement customers. The company offers over 15 different
tools for MS Windows. Each tool is dedicated to a single purpose: recovering Office pass-
words, cracking encrypted archives, PDF documents, and others. In addition to the set of
single-purpose tools, Elcomsoft Distributed Password Recovery (EDPR), released in 2006,
is an all-in-one solution for distributed cracking [59]. The company claims EDPR to have
“linear scalability with low bandwidth requirements and zero overhead on up to 10,000
computers.”

The tools support exhaustive search and dictionary-based attacks. For dictionary-based
attacks, Elcomsoft supports several password-mangling rules like case mangling, letter re-
placement, or appending strings. The rules are partially compatible with John the Ripper
tool [61]. Yet, it is not possible to define custom rules. The tools can perform brute-
force attacks based on letter frequencies but do not support Markovian models or targeted
brute-force attacks [211].

The main advantage of the Elcomsoft password recovery tools is a very user-friendly
graphical interface. A high level of automation makes tools easy-to-use. Most of the crackers
provide GPU acceleration, but not all of them. And also, not all support both NVIDIA
and AMD cards. The benchmarks, however, show noticeably lower performance than with
the hashcat tool [60]. In my early research, I tested three Elcomsoft tools. With my older
OpenCL-based cracking tool, the Wrathion, I achieved higher performance for cracking
Office, PDF, and AES-encrypted ZIP archives [83].

2.4.6 AccessData Password Recovery Toolkit

The AccessData18 Group, Inc., founded in 1987, is mainly known for its Forensics Toolkit
(FTK). The company, however, offers the password cracking solutions as well. The Pass-
word Recovery Toolkit (PRTK) contains dozens of modules for cracking different formats,
including NTLM, Lotus, and Office password hashes. A Windows NT password recovery
module can also reset password protection and secure boot options. AccessData is probably
the first company to introduce distributed password cracking. In 2000, they released the
Distributed Network Attack (DNA) for cracking Office Documents [1]. Newer versions pro-
vided hardware acceleration, originally FPGA-based. Since version 7, released in 2014, the
software offers GPU acceleration using NVIDIA CUDA [34]. The software now supports
over 70 different password-protected media formats. The GPU acceleration is, however,
currently available only for MS Office and WinZIP [5].

The PRTK offers a detailed wizard for creating dictionary attacks and exhaustive search,
including a targeted brute-force with Markovian models. It supports a wide and highly-
customizable variety of password-creation rules. For creating word fragments, it offers
multiple language profiles: European, Arabic, Russian, etc. Unfortunately, the PRTK can
not use an external password generator [5].

17https://www.elcomsoft.com/
18https://accessdata.com/

24

https://www.elcomsoft.com/
https://accessdata.com/

2.4.7 Passware Kit

Passware Kit19 is a commercial solution for the discovery and recovery of encrypted con-
tent. An early version from 1998 was capable of cracking MS Office 95 and 97 passwords
[150]. The company later added support for other formats. In 2002, the solution was ref-
erence by Scott Gardener in IT World Canada [67]. The software provides a user-friendly
graphical interface and is easy to use. It can perform a deep scan of the system to locate
password-protected items and attempt to crack their passwords. For disk volumes encrypted
by BitLocker, FileVault, or VeraCrypt, it can search through the operating memory and
hibernation files for encryption keys.

Passware supports20 six attack modes. First, it has a dictionary attack with advanced
features like patterns and case modifications. The brute-force attack also supports patterns
that resemble regular expressions. The proprietary Xieve attack is an optimized brute-force
that uses letter frequency combinations and skips nonsensical sequences of characters. The
mask attack is similar to hashcat’s brute-force and allows specifying what characters to use
at each position. “Known Password/Part attack” can be used in combination with other
modes if the user knows part of the guessed password. Finally, “Previous Passwords attack”
is simply a lookup for previously-cracked passwords [148].

There are multiple editions from Passware Kit Basic to Passware Kit Forensic with
different pricing, capabilities, and supported formats. The most expensive edition supports
over 280 different password-protected formats, including ZIP and RAR archives. Approxi-
mately half of them are crackable with GPU acceleration, while the rest is CPU-only. The
Business and Forensic editions also support distributed computing where for each comput-
ing node called Agent, the user must buy a license. The Passware Kit also supports the
rainbow table attack, but only for MS Office documents up to version 2003. Since 2010,
Passware support distributed cracking with multiple machines. The main workstation runs
the classic Passware Kit and the other stations connect using an application called Passware
Kit Agent [151].

2.4.8 Ophcrack

Ophcrack21 is an open-source password cracker from Phillipe Oechslin, the inventor of
rainbow tables [142]. The tool can perform a rainbow table attack on Windows Lan Manager
(LM) and NTLM hashes. It also offers a brute-force module for cracking simple passwords.
From the tool’s website, a user may download rainbow tables for Windows XP, Windows
Vista, and Windows 7. As of September 2019, all tables are available free of charge.

The tool can dump and load hashes from encrypted Windows SAM files, perform an
audit of passwords, and export the data into CSV. Moreover, the tool offers a graphical user
interface with real-time graphs to analyze passwords. The graphs visualize the distribution
of password complexity based on character sets, the distribution of password lengths, and
overall cracking progress [143].

The sources are freely available under the GNU GPL license. Ophcrack runs Windows,
Linux/Unix, and Mac OS X. It is available either as a standalone application or as a live CD

19https://www.passware.com/
20https://support.passware.com/hc/en-us/articles/115002145927-What-Password-Recovery-

Attacks-can-I-use-
21https://ophcrack.sourceforge.io/

25

https://www.passware.com/
https://support.passware.com/hc/en-us/articles/115002145927-What-Password-Recovery-Attacks-can-I-use-
https://support.passware.com/hc/en-us/articles/115002145927-What-Password-Recovery-Attacks-can-I-use-
https://ophcrack.sourceforge.io/

based on SliTaz22 GNU/Linux. In contrast to RainbowCrack, Ophcrack does not support
GPU acceleration.

2.4.9 RainbowCrack

Project RainbowCrack23 was started in 2003 by Zhu Shuanglei, who created a general-
purpose implementation of the rainbow table time-memory trade-off attack proposed by
Phillipe Oschslin [142]. The project develops and maintains a series of tools and a large
repository of rainbow tables.

The initial version supported only Microsoft Lan Manager (LM) hashes and contained
three tools for 32-bit Windows: rtgen, rtsort, and rcrack. The rtgen serves for precomputing
hash chains and generating rainbow tables. The rtsort tool can sort the tables. Finally, the
rcrack is the cracker that can perform a lookup for a given hash [184].

Later releases introduced native support for NTLM, MD5, SHA-1, and SHA-256 hashes,
computing on multicore processors, tables larger than 2 GB, and more compact .rtc format
that reduced the required size by 50 % to 56.25 %. Shuanglei also provides utilities for
converting the original tables to the new format. The tool also introduced support for
64-bit systems, not only Windows but also Linux. Users may either calculate rainbow
tables on their own or buy precomputed tables for NTLM, MD5, or SHA-1. For both
Windows and Linux, Rainbow Crack now supports GPU acceleration with NVIDIA CUDA
and AMD OpenCL. Nevertheless, calculating on GPU only works with purchased tables.
The Windows version also provides an optional graphical user interface [185].

Recent versions also allow for extending the range of supported hash formats. Users
may create custom plugins for new algorithms. In the documentation, Schuanglei provides
a simple tutorial and example sources [186].

22https://www.slitaz.org
23http://project-rainbowcrack.com/

26

https://www.slitaz.org
http://project-rainbowcrack.com/

Chapter 3

Distributed Password Cracking

Even with the most optimized cryptographic algorithms, password cracking with a single
machine always has a boundary for achievable performance. Once we reach that boundary,
the only way of getting over is by utilizing more nodes. As there are many options for
distributed processing, it is necessary to choose methods that meet the requirements of
a given task. Cracking passwords in a distributed environment requires a suitable strategy
for distributing the workload and proper algorithms for controlling and scheduling the
computing process.

The chapter starts with a brief introduction to parallel cracking that is essential to
explain workload distribution principles. I discuss the limits of a single-machine approach
to show the motivation for distributed processing. Next, the chapter contains an overview of
related work from academia, hacker communities, and the commercial sector. I then define
the requirements that a distributed password cracking solution should meet to withstand the
current challenges. I study the usability of available frameworks for distributed computing,
existing cracking tools, and possible techniques for the decomposition of cracking tasks.

Following the results of the analysis, I propose a method for task distribution and
algorithms for scheduling work in a multi-node environment. I apply the novelty methods
to design a distributed password cracking system called Fitcrack, based on the Berkeley
Open Infrastructure for Network Computing (BOINC) framework and hashcat tool. The
decision for BOINC is motivated by its flexibility, robustness, and automation of various
tasks like updating client-side files or negotiation of system capabilities. The hashcat tool as
the “cracking engine” is selected mainly for its performance, the range of supported formats,
attack modes, and the portability to different platforms. I present the system’s architecture,
necessary server daemons to work with BOINC, client modules, communication between
nodes, and others. Moreover, the chapter focuses on various attack modes and options.
For each attack mode, I propose a unique distribution strategy that allows controlling and
utilizing available resources efficiently.

Finally, I verify the usability of the proposed methods by performing a series of practical
experiments with a proof-of-concept implementation of Fitcrack. The experiments focus
on efficiency, overhead, scalability, and overall cracking time achieved in different scenarios.
Moreover, I compare my solution to another existing hashcat-based distributed cracker, the
Hashtopolis.

27

3.1 Motivation and Parallel Cracking Sessions
Password cracking is one of the most computationally-extensive problems in the area of
digital forensics. The amount of time required depends on the algorithms involved, the
strength of the password itself, and the available computational power. For instance, using
an exhaustive search (brute-force attack), the maximum time in seconds (𝑡𝑚𝑎𝑥) to find
a password can be computed by Equation 3.1. The 𝑚𝑖𝑛 is the minimum password length,
𝑚𝑎𝑥 is the maximum password length, 𝐴 is the alphabet used, and 𝑝 is the cracking
performance in passwords per second (p/s). For cracking hashes, 𝑝 is often in hashes per
second (h/s).

𝑡𝑚𝑎𝑥 =

𝑚𝑎𝑥∑︀
𝑙=𝑚𝑖𝑛

|𝐴|𝑙

𝑝
(3.1)

For instance, let us consider cracking a password for a WinZIP archive encrypted by AES.
As discussed in Section A.2.1, verifying every single password candidate requires calcu-
lating 1,000 iterations of salted HMAC-SHA1 [45]. The cracking performance I measured
using Elcomsoft Advanced Archive Password Recovery 4.54 (see Section 2.4.5) and a single
Intel(R) Core i7 CPU 920 was 𝑝=8, 102 p/s [83]. In the worst case, finding an alphanu-
meric password made of 7 characters, i.e., 𝑚𝑖𝑛=1, 𝑚𝑎𝑥=7, and 𝐴={𝑎..𝑧, 𝐴..𝑍, 0..9} can
take almost 14 years. For a forensic investigator, after such a long time, the information
stored inside the archive could be useless. However, if we improve the cracking performance
(𝑝), the worst-case time necessary for finding the correct password is decreased. Therefore,
I show how parallel and distributed computing can increase the overall performance and
help obtain results in an acceptable time.

3.1.1 Parallel Cracking

The entire idea behind password cracking is to take several password candidates and verify
each one of them. As described in Chapter 2, the password verification algorithm represents
a finite sequence of operations defined by the type of protected content. For different
formats, the procedure consists of different steps and requires different inputs like the
number of hash function iterations, cryptographic salt or pepper, padding, etc. However,
for a single cracking session, the only parameter that changes is the password itself. All
other input values remain the same. Since there is no mutual dependence between different
password candidates, we can verify them separately. This way, it is possible to divide
a complex cracking problem into smaller subtasks that can be resolved simultaneously.

Imagine a protected content with a verification value in the form of hash derived from the
correct password and salt. Figure 3.1 shows how the password cracking can be performed in
parallel using 𝑁 processor cores. In the beginning, we store the verification value and salt
in the memory of each processor core. In every run, each processor core loads a password
and concatenates it with the salt. Then, it calculates the hash of the salted password and
compares the result with the verification value. If they match, the password is considered
correct, and the cracking task ends. If not, the process continues until all passwords are
examined.

Let 𝑐 be the number of processor cycles required for verifying a single password, in-
cluding loading of the password, returning result, and synchronization. Then, for 𝑁 cores
with frequency 𝑓 , the theoretical cracking performance 𝑝𝑡 in passwords per second can be
calculated as described by Equation 3.2.

28

Core NCore 2

Hash function

+

Password 1
Protected
content

=
?

Password 2 Password n

Hash function

+

Hash function

+

=
?

=
?

SaltVerification
value

Core 1

Figure 3.1: Parallel password cracking

𝑝𝑡 =
𝑓

𝑐
·𝑁 (3.2)

Please note that the calculation only represents a rough estimation since many other
factors influence the actual performance. Those include the amount of memory, cache size,
and others. While cracking raw hashes usually does not have high memory requirements, for
formats where we need to decrypt part of the protected content (e.g., VeraCrypt, PKZIP,
or RAR 3.0), the amount of available memory may become a bottleneck in the password
cracking process.

Forensic investigators often face multiple cracking tasks at a time. In such a case, it
may be helpful to use hashlists. A hashlist is simply a text containing a hash on each line
while all hashes are of the same type (e.g., SHA-1). Many cracking tools accept hashlists
as input and allow to perform a single attack on all the hashes inside. This approach is
most beneficial if cryptographic salt is not in use. An example of parallel hashlist cracking
is illustrated by Figure 3.2. For each password, the hash only needs to be calculated once.
The result is then compared with every hash from the hashlist. Since the hash function’s
computation is typically the most complex part of the entire process, this technique may
reduce the cracking time dramatically.

Unfortunately, with cryptographic salt, the solution is not that simple. For every hash,
the hashlist contains a separate salt. Before the final comparison, we need to apply each
salt to the password and recompute the hash function again.

29

Core NCore 2

Password 1

Hashlist

=

Password 2 Password n

Core 1

47bce5c74f59f

08f8e0260c641

71d27475b04a2

=

=

=

=

=

=

=

=

Hash function Hash function Hash function

Figure 3.2: Parallel cracking of a password hashlist

3.1.2 Utilization of GPGPU

Using parallel cracking, we can theoretically verify one password per each core at a time.
Neglecting the impact of memory and caching, from Equation 3.2, we can state that the two
main factors influencing the theoretical performance are the number of cores and processor
clock frequency. Such observations may help forensic investigators choose a proper hardware
solution for password cracking tasks.

Central processing units (CPU), designed to carry out instructions of an operating sys-
tem and applications, usually contain few very fast cores. Today’s desktop CPUs usually
have 2 to 18 cores, while for server and high-end workstations, the number may be higher.
Manycore processors like Intel® Xeon Phi™ have up to 721 cores. To boost up paral-
lelization, some CPUs employ a multithreading technology like Intel Hyper-Threading. By
duplicating registers that store the processor’s architectural state, a single core may act like
two virtual (or logical) ones, allowing to run two threads simultaneously [119]. In the past
few years, the operating frequency of CPUs flew between 2 to 5 GHz and did not increase
dramatically due to energy and thermal constraints [107].

Graphics processing units (GPU), on the other hand, were designed to render graphics,
which requires to perform operations on large vectors and matrixes of values. Thus, GPUs
have a lower operating frequency but contain thousands of cores. For example, the base

1https://ark.intel.com/content/www/us/en/ark/products/series/123588/intel-core-x-series-
processors.html

30

https://ark.intel.com/content/www/us/en/ark/products/series/123588/intel-core-x-series-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/123588/intel-core-x-series-processors.html

Control
ALU ALU

ALU ALU

Cache

DRAM

(a) CPU

DRAM

(b) GPU

Figure 3.3: The difference between CPU and GPU

clock of popular NVIDIA GTX 1080 Ti2 is 1,481 Mhz. However, the card is equipped
with 3,584 CUDA cores. The architecture of a GPU allows performing parallel operations
on large sets of data. Thus, despite their generally lower clock rates, GPUs may provide
incomparably higher performance for specific tasks. Since a GPU is programmable, its use
is not limited to graphics only. NVIDIA CUDA and OpenCL frameworks allow General-
purpose computing on graphics processing units (GPGPU) [141, 134]. Employing GPGPU
helps accelerate the computation of complex problems in various areas from linear algebra
[115], through machine learning [190], to cryptographic algorithms [135, 14, 17].

Figure 3.3 shows the difference in the architecture of a CPU and a GPU. A typical
CPU core, shown in Figure 3.3(a), communicates with DRAM through one or more cache
layers, contains a controller, and a set of arithmetic logic units. In the case of a multicore
CPU, each core has its own controller and can work independently. A GPU, depicted
in Figure 3.3(b), is a programmable parallel multiprocessor, where groups of cores share
the same controller. Each group can solve only a single task at the moment, creating a
Single instruction, multiple data (SIMD) architecture. The group is called a CUDA Core
on NVIDIA GPUs, or SIMD unit in AMD/OpenCL terminology [141, 134].

For password cracking, the number of cores richly compensates the slightly lower oper-
ating frequency of a GPU. Using the principles described in Section 3.1.1, we can benefit
from the architecture of a GPU to verify masses of passwords in parallel.

In my preliminary research between 2014 and 2016, I evaluated CPU and GPU password
cracking performance using different software [83]. The experimental machine contained
Intel(R) Core i7 CPU 920 @ 2.67Ghz processor, 16 GB of DDR3 RAM, and two AMD Tri-X
R9 290x GPU cards. The experiments show cracking of a WinZIP archive encrypted by 256-
bit AES cipher [45], a MS Word 97/2000 document [127], a PDF document under security
revision 4 [8], and a PDF document using security revision 5 [7]. I used the following tools:
Wrathion3, oclHashcat4, John the Ripper 1.8.0 - jumbo 1 (John), Advanced Office Password
Recovery 6.10 (AOPR), Elcomsoft Advanced PDF Password Recovery 5.06 (APPR), and
Elcomsoft Advanced Archive Password Recovery 4.54 (AAPR). As oclHashcat does not
have a non-OpenCL implementation of the cracking algorithms, I did not test the CPU

2https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1080-ti/specifications
3https://wrathion.fit.vutbr.cz/
4https://hashcat.net/wiki/doku.php?id=oclhashcat

31

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1080-ti/specifications
https://wrathion.fit.vutbr.cz/
https://hashcat.net/wiki/doku.php?id=oclhashcat

cracking. Since the used version of AAPR has only CUDA-based acceleration, for this case,
I used NVIDIA GeForce GTX 660Ti instead.

The experimental results are displayed in Table 3.1. As we can see, in every case, the
GPU provided higher performance than the CPU. The difference is most noticeable with
the ZIP format. For Wrathion, a single-GPU cracking was 30.28 times faster than using the
CPU method. With the dual-GPU deployment, the cracking was 60.56 times faster than
with the CPU. For John the Ripper, the GPU cracking was 39.38 times faster in comparison
with the CPU. We can also notice the potential for scalability, especially with oclHashcat.
After adding a second GPU, the performance almost doubled.

Tool Processor ZIP AES-256 DOC 97/2000 PDF Rev 4 PDF Rev 5
Wrathion CPU 4,329 2,985,065 142,787 7,424,962
Wrathion 1x GPU 131,082 18,547,791 2,621,864 82,735,294
Wrathion 2x GPU 262,190 35,262,422 4,522,481 136,913,101
oclHashcat GPU n/a 7,766,401 2,596,223 144,074,187
oclHashcat 2x GPU n/a 15,377,279 5,121,015 286,340,421
John the Ripper CPU 376 114,740 n/a n/a
John the Ripper 1x GPU 14,805 861,320 n/a n/a
Elcomsoft CPU 8,102 19,452 32,951 28,861,149
Elcomsoft 1x GPU n/a 25,543 69,419 n/a

Table 3.1: Cracking performance in passwords per second and GPU acceleration using
different tools on ZIP, DOC, and PDF [83]

In Section 3.1, there was an example of a WinZIP archive with a 7-character alphanu-
meric password that required 14 years to be cracked using brute-force. Using two GPUs and
Wrathion tool, the same password can be cracked within 185 days, assuming the values in
Table 3.1. The original measurement was performed in 2015. Through time, both hardware
and cracking tools got improved. For instance, oclHashcat and cudaHashcat applications
were merged into a single Hashcat tool, now containing the missing WinZIP support as
well. Companies like Terrahash5 LLC started to offer multi-GPU cracking solutions. The
Brutalis™ appliance with 8x NVIDIA GTX 1080 Ti and hashcat 3.5.0 can crack over 13 mil-
lions of WinZIP passwords per second [96]. The same 7-character password can thus be
found in 3 days.

3.1.3 The Limits of a Single Machine

While GPGPU shows the potential to accelerate password cracking massively, it resolves
only a single part of the problem. No matter how powerful processors we employ, using
a single machine always limits the achievable computational power. For a multi-GPU
password cracking machine, we need to consider multiple factors, including:

• The PCI-Express bus - Every motherboard supports a limited maximum number
of connected PCI-e devices. High-end workstations and gaming boards may offer four
or more x16 slots. The phenomenon of cryptocurrency mining lead manufacturers like
ASUS to create many-slot motherboards, e.g. H370 MINING MASTER6 containing
20 PCIe slots. Through riser cards, we can connect GPUs to PCI-e x1 slots in

5https://terahash.com/
6https://www.asus.com/us/Motherboards/H370-MINING-MASTER/

32

https://terahash.com/
https://www.asus.com/us/Motherboards/H370-MINING-MASTER/

exchange for lower bandwidth. Such solutions are cheap and feasible for cases where
throughput is not critical. For HPC computing and professional GPGPU applications,
manufacturers provide enterprise GPU servers. For example, Supermicro offers7 GPU
Systems with up to 20 GPUs per machine. Nevertheless, PCI-e slots cannot be
extended infinitely. There is a maximum number of PCI-e lanes supported by the
CPU. Even with additional PCI-e bridges, the (UEFI) BIOS has a 64 kB IOSPACE.
Therefore, we can theoretically use the maximum od 16 bridges [77].

• Size - High-end GPUs are relatively big in dimensions, mainly due to the coolers.
Building a multi-GPU cracking rig requires proper casing. Enterprise GPU servers
from SuperMicro or Dell have cases and backplanes designed precisely for the cards
to fit. An exception from size is processors installed directly to the board sockets like
notebook graphics Mobile PCI Express Module (MXM) or NVIDIA HPC accelerators
with the SXM form factor. They, however, require external cooling.

• Heat - With a higher workload, the GPUs produce a high amount of heat. Proper
cooling is crucial, especially if the cards are close to each other. Enterprise server
solutions have unified systems that allow using even GPUs with passive coolers. Water
cooling can also be used as a quiet alternative.

• Power supply unit (PSU) - A multi-GPU system needs enough power to supply
all cards. Servers from SuperMicro, HP, ASUS, or Dell employ modular architectures
with up to 3,000 W per unit. Desktop-based solutions are more limited. First, the
most powerful commonly-manufactured PSUs offer 1,600 W (Corsair, EVGA). Ex-
ceptions like 2,000 W (Super Flower) or 2,500 W (Spire Corp) are very rare. Desktop
motherboards support only a single PSU, which is not enough for machines with six
or more high-end GPUs. Enthusiasts thus often use third-party workarounds like
Add2Psu8 enabling to stack up to 4 PSUs together.

• Price - It is always to consider if investing in a multi-GPU single-machine solution is
more advantageous than using multiple nodes. Moreover, a distributed solution may
utilize existing computers.

For the sake of completeness, it is necessary to mention that some manufacturers specialize
in designing hardware solutions dedicated to GPGPU password cracking. Terahash9 offers
5 to 10-GPU apppliances from $15,949 to $31,699. All are two-CPU machines based on
SuperMicro server boards with full PCIe-x16 support. Decryptum10, powered by Passware,
offers cracking rig withs with up to 12 water-cooled NVIDIA RTX 2080 Ti for $35,600. In
constrast to Terahash, Decryptum machines are based on desktop motherboards, currently
the H370 MINING MASTER, and thus the GPU connection is limited to PCI-e x1.

Based on the observations mentioned above, it is clear that there is always a limit to
the performance that a single machine can provide. For reaching values beyond that limit,
the only feasible way is to distribute the task between multiple physical nodes.

7https://www.supermicro.com/en/products/gpu
8http://www.add2psu.com/
9https://terahash.com/#appliances

10https://www.decryptum.com/

33

https://www.supermicro.com/en/products/gpu
http://www.add2psu.com/
https://terahash.com/#appliances
https://www.decryptum.com/

3.2 Related Work
Distributed password cracking is mostly the phenomenon of the last two decades. Sadly,
there are only a few “bigger” currently-developed projects. Most related solutions are either
abandoned, proof-of-concept academic research tools, or commercial applications. The first
group contains innovative but mostly single-purpose programs that demonstrate concrete
principles on a limited set of use-cases. The enterprise applications, on the other hand,
are “black box” solutions. We may read the specification or buy and try them, but that’s
all. The detailed specification, their architecture, and employed algorithms are proprietary
company know-how that is purposedly hidden from the public.

3.2.1 Early Work

The first known password cracking software that supported distributed processing was ver-
sion 4.0a of the legendary Crack program, released by Alec Muffet in 1991 [205]. Crack
was written for Unix systems, using the combination of Perl, C, and Bourne Shell. With
the -network parameter, the tool allowed employing a network of heterogeneous worksta-
tions in a single cracking task. A distributed cracking session had a single master machine
and multiple hosts, communicating via Remote Shell (RSH), Remote Copy (RCP), and
optionally Network File System (NFS) [140]. In the network.conf configuration file, the
administrator configured what host machines to utilize. For each computer, the configu-
ration contained its hostname, the relative processing power, and a few other parameters.
The workload was divided accordingly to the performance of nodes. The latest release of
the Crack tool was version 5.0a from 2000 [133].

In 2001, Steiggner and Wilke showed a distributed password cracking use case to demon-
strate the CoSMoS performance monitoring tool. The demonstration showed a distributed
dictionary attack on UNIX password hashes. The proof-of-concept tool followed a master-
worker scheme. The master process called, cpw (crack passwords), spawned a set of worker
processes cow (check one word). At the start, the master received a password dictionary.
During the cracking session, it supplied the workers with passwords, one at a time. Each
worker checked the received passwords against the accounts in a given UNIX password file
[189].

3.2.2 Cracking in HPC Clusters

Much of the related work is based on the famous John the Ripper (JtR) tool, described in
Section 2.4.1. Up to this day, John’s wiki enlists 15 different approaches on parallel and
distributed processing with the tool. Some of them were later abandoned [12]. The first
published academic work on the case was performed by Lim, who modified the sources
by adding MPI support for the Incremental brute-force attack (see Section 3.8.3) mode
[112]. The solution used a master processor and a fixed number of slave processors. The
master processor divided the keyspace (the number of possible candidate passwords [180])
into a pre-defined number of chunks, while each slave processor received an equal chunk to
solve. The principle of keyspace division was, with various alterations, adopted to many
subsequent solutions. Due to the equality of chunks Lim’s original technique is only feasible
for a stable homogenous cluster environment [112].

Pippin et al. proposed a technique for the parallel dictionary attack on multiple hashes
[162]. Instead of dividing keyspace, they assigned different hashes to each node while all
nodes used the same password dictionary. Nevertheless, I consider the approach efficient for

34

large hashlists and simple cryptographic algorithms only. In my previous work [83], I found
the biggest influence on the cracking time has the calculation of the hash from candidate
passwords. The rest is a simple byte array comparison. Thus, if we crack multiple hashes
of the same type, we can calculate the hash from each password only once and compare the
result with all the hashes we are trying to crack. There is no need to recompute the hash
of a single password twice, especially with complex algorithms like bcrypt [167] or SHA-3
[139].

Bengtsson showed the practical use of MPI-based brute-force and dictionary attacks
using the Beowulf high-performance computing (HPC) cluster for cracking MD5-based Unix
shadow files. Similar to Steiggner and Wilke’s approach [189], both attacks were based on
simple password-by-password keyspace division and demonstrated using a proof-of-concept
application called brutest. The cracking network consisted of a root node responsible for
creating and distributing work, and a set of slave nodes used for the actual cracking. Each
task was defined by an assignment vector made of three parts: a string base, a UID, and
a passwd. The string base told the node where it should start. For dictionary attacks, it
contained the next word or phrase. For brute-force attacks, it was the initial sequence of
characters used for generating passwords. The UID represented the username of the Unix
user, while the passwd contained the password hash and the cryptographic salt used [26].

Apostal et al. introduced another enhancement to HPC-based password cracking. The
Divided dictionary algorithm evenly split dictionary words between MPI nodes equipped
with GPUs. Using CUDA, GPUs on each node locally calculated the hashes and compared
them with the ones that should be cracked [17].

Marks et al. designed a hybrid CPU/GPU cluster of devices from different vendors
(Intel, AMD, NVIDIA) [118]. The design included both hardware and software solutions.
The distributed network consisted of Management/storage nodes that control the calcu-
lation and handle user inputs, and Computation nodes responsible for the cryptographic
work. For interconnection, Marks used three different lines: 10 Gb/s Ethernet for data
transfer, 1 Gb/s Ethernet, and InfiniBand for controlling the computation process. Marks
also proposed a software framework called Hybrid GPU/CPU Cluster (HGPC) utilizing
a master-slave communication model using an XML-based protocol over a TCP/IP net-
work. A proof-of-concept implementation was able to crack MD5, SHA-1, and four versions
of SHA-2 hashes. Experimental results of cracking on up to 24 nodes showed great power
and scalability. However, I suppose using an optimized tool like hashcat of JtR could in-
crease the performance even more. While cracking MD5 hashes on NVIDIA Tesla M2050,
Marks achieved the speed of around 800 Mh/s, while hashcat users report11 cracking over
1200 Mh/s using the same GPU.

3.2.3 Non-HPC Solutions

Previous solutions work well for a “classic HPC” system of a homogenous cluster with
a static set of nodes. Since my use-case also covers grid computing with existing computers
and employing heterogeneous networks of a possibly changing set of nodes, I would like to
present existing related non-HPC solutions.

Using a simple text-based protocol, loosely modeled on HTTP, Zonenberg created a dis-
tributed solution for cracking MD5 hashes using a brute-force attack [221]. The architecture
consisted of a master server and a set of compute nodes, which were either CPU-based or
used GPU acceleration based on CUDA.

11https://hashcat.net/forum/thread-2084.html

35

https://hashcat.net/forum/thread-2084.html

Crumpacker [47] came with the idea of using the BOINC framework [15] to distribute
work and implemented a proof-of-concept tool for distributed cracking of operating system
hashes with JtR. Since Crumpacker uses BOINC, there are similarities to my solution, the
Fitcrack. For instance, Crumpacker also had to create a custom design of the BOINC
daemons, namely the Work generator, the Assimilator, and the Validator. Similarly to my
proposal, he decided to standardize the size of the workunit (a BOINC term for a chunk) by
counting out the number of passwords that one computer could check in the desired amount
of time. Nevertheless, both systems are different in concept. While Fitcrack uses the idea
of independent jobs, each having one or more input hashes, Crumpacker’s server backend
employs the JtR database as unified hash storage. Using the command line, users can load
new password hashes to the database. Whenever the Work generator creates workunits, it
loads the hashes from this database. The most significant difference is the use case. Fitcrack
serves as the general-purpose cracking system and allows for cracking over 300 hashcat-
supported hash formats using eight different attack modes. It can even automatically
extract hashes from headers of encrypted documents and archives. Crumpacker’s tool, on
the other hand, is purely an OS password cracker. It supports three JtR’s attack modes:
single cracking mode, wordlist mode, and incremental attack mode. There are no additional
features like integrated hash scrapers, user account management, or even a graphical user
interface. The tool supports six password storage schemes: traditional DES-based secheme
[202] and its extended BSDi version, MD5-based scheme [172], Blowfish-based bcrypt [167],
Andrew File system (AFS), and LanMan (LM) [125].

Crumpacker also reports he could not properly distribute the Incremental crack mode
since JtR did not track the starting and ending position of the generated password seg-
ments. He resolved the issue by modifying the JtR database, but at the cost of efficiency.
Crumpacker later introduced the batch concept which divides passwords into groups called
batches and tracks them during the entire cracking process, possibly using different hash
types, and attack modes [47]. While Crumpacker’s proof-of-concept tool offers only basic
features, it shows BOINC’s suitability for password cracking, supporting my choice for the
framework.

Despite hashcat’s performance, JtR still offers some advantages over hashcat. For in-
stance, it supports some formats which hashcat does not, e.g., encrypted RAR3 archives
with an unprotected header. Such formats use the decryption-based or checksum-based
password verification procedures described in Section 2.3. They require a large piece of
work performed on the CPU of the host machine. Still, hashcat’s cracking password veri-
fication is mostly OpenCL-based. As described in Section 3.5, I studied the possibilities of
JtR integration to Fitcrack and encountered similar problems with distributing incremental
mode as Crumpacker reported [47]. Therefore, I postponed these efforts to future work and
decided to focus on hashcat in this work.

Kasabov et al. performed research on password cracking methods in a distributed envi-
ronment. The resulting technical report compares existing frameworks and describes differ-
ent architectures and technologies for workload distribution [103]. Kasabov considers MPI
combined with OpenCL as the best practical approach for setting up a password cracking
GPU cluster, underlying the possibility to use a combination of MPI and OpenMP12 to gain
fine-grained parallelism [215]. However, the research is merely theoretical and provides no
proof-of-concept tool or experimental results to support the conclusions. Kasabov mentions
Zonenberg’s Distributed Hash Cracker [221], but Crumpacker’s BOINC-based solution [47]

12https://www.openmp.org/

36

https://www.openmp.org/

is not discussed. Still, the report includes a brief study of BOINC, emphasizing its advan-
tages in automation, including integrity checks, workunit replication, checkpointing, and
other features that my Fitcrack system [87, 84, 81] and Crumpacker’s JtR-based solution
take advantage of [47]. I agree with Kasabov that BOINC is not an “out-of-the-box” solu-
tion for password cracking. However, I do not consider the actual creation13 of a password
cracking project to be an as difficult task as Kasabov describes. Moreover, the statement
“BOINC API lacks functions for managing projects” [103] is, at the time of writing this
thesis, not entirely true. Every BOINC project contains a project management website,
allowing the administrator to observe and control the project’s tasks, users, and other op-
tions. The rest can be added by writing a custom interface, e.g., the Fitcrack WebAdmin
described in Section 3.7.6.

Veerman et al. aimed to create a scalable, modular, and extensible solution for password
cracking using existing cracking tools [154]. Their preliminary research compares existing
password cracking tools and discusses the possible use of BOINC or MPI for task distribu-
tion. Veerman does not consider BOINC to be an optimal choice due to “large deployment
overhead and complexity”, referring to Kasabov’s research [103]. As Veerman states [154],
the use of MPI requires the cracking tool to either support MPI or be modifiable for adding
the MPI support. Since Veerman wants the solution to support both closed-source cracking
software, such modification may not always be possible. The work describes the architec-
ture of the proposed system consisting of three parts: the Node Controller which handles
user requests, stores cracking-related data, and schedules work; the Worker Node responsi-
ble for cracking; and the Website serving as a user interface. Generally, the design is similar
to the Fitcrack system’s architecture, described in Section 3.7. The assignments entered by
the user are divided into subjobs analogous to workunits in Fitcrack. The software output
represents a proof-of-concept system based on PHP, MySQL, Apache, and SQLite. From
all discussed cracking tools, the proposed PHP-based system could only use JtR with the
default cracking configuration (first dictionary, then brute-force attack), and the cracking
is limited to MD5 hashes only [154]. I consider the proposed architecture well-designed.
Nevertheless, the software is no more than a proof-of-concept tool due to the limited func-
tionality. Sadly, the project now seems to be abandoned, and the repository with the
software is empty.

Kim et al. proposed a protocol for distributed password cracking, based on the distri-
bution of password indexes, i.e., starting points and keyspaces of each workunit [105]. The
paper clarifies the principle used in various existing tools, including my Fitcrack system
[87]. Kim’s specification is, however, very shallow and limited to a brute-force attack on
a single hash.

3.2.4 Commercial Distributed Password Crackers

While the above-shown work is mostly from academic research and hacker enthusiasts,
I would like to cover existing enterprise distributed cracking solutions from the commercial
sphere as well.

In 2000, AccessData Corporation released the Distributed Network Attack (DNA) for
CPU-based exhaustive key search on encrypted MS Office 97 and Office 2000 documents.
The cracking network contained a DNA Supervisor and DNA Worker nodes [1]. The 2010’s
version supported Office XP, PDF, PKZIP, WinZIP, and RAR up to version 2.9 of WinRAR.
The 2020’s version 8.2.1 supports over 70 different types of password-protected media.

13https://boinc.berkeley.edu/trac/wiki/CreateProjectCookbook

37

https://boinc.berkeley.edu/trac/wiki/CreateProjectCookbook

The Worker application runs on Windows, Linux, Mac OS X, and even PS3. The GPU
acceleration, however, is only for Microsoft Office and WinZIP formats. Unlike hashcat and
JtR, the DNA is for cracking concrete media formats and application passwords. While it
supports MD5 and SHA-based crypt, the solution is not designed for cracking raw hashes
and ciphers [5].

On the 7th of February 2006, Elcomsoft announced a new product: Elcomsoft Dis-
tributed Password Recovery (EDPR). The initial version supported cracking passwords for
decryption of MS Office 97 to 2003 documents. A cracking network has three main actors:
a server, a console, and agents. Each of them may run on a different computer. Users
create cracking tasks using the console. The console sends each task to the server that
distributes it to the machines with installed agents. The agents work on the assignment
and periodically report their status to the server [59]. In the following years, Elcomsoft
extended the EDPR with the features of their other password recovery tools. Like hashcat
and JtR, and unlike AccessData or Passware, EDPR supports cracking raw and salted MD5
and SHA-2 hashes. Nevertheless, both the range of supported formats and the performance
[59] is noticeably lower than hashcat’s [96]. And there is no native support for complex
algorithms like bcrypt [167], scrypt [157], or SHA-3 [139].

In February 2010, Passware released a beta version of the Distributed Password Re-
covery extension. The new feature, available for the Enterprise and Forensic editions of
the Passware Kit, allowed to increase the cracking performance by utilizing multiple ma-
chines. On each additional node, the administrator installs an application called Passware
Kit Agent. Each agent is a cracking client connected to a workstation with the Passware
kit that acts as a server for assigning work [151]. The Passware Agent application runs on
both Windows and Linux systems, 64-bit only. Passware Kit Forensic 2020 v3 supports
over 280 different formats. The company shows the performance of cracking five selected
formats with NVIDIA RTX 2080 Ti [153]. The measured values are comparable to hashcat
on the same GPU [145]. From all supported formats, only 80 provide GPU acceleration.
For instance, PDF does not support GPU at all. Unlike hashcat and JtR, Passware Kit
also does not support cracking raw hashes and ciphertexts [152].

3.2.5 Hashcat-based Solutions

Since I decided to use hashcat as a cracking engine because of its performance and variety
of supported algorithms (see Section 3.5), it is necessary to mention existing work, despite
being out of the academic sphere.

Hashstack14 is an enterprise solution from Sagitta HPC, a subsidiary of Terahash LLC
founded by J. Gosney, a core member of Hashcat development team. The authors refer to
the solution as the “hashcat on catnip” and claim it provides extreme scalability. It should
support 375+ highly-optimized hash formats, six attack modes, multi-user support with
granular access control lists, and API to automate workflows. Nevertheless, the solution
is closed-source except for a few plugins available15 on GitHub and distributed exclusively
with Sagitta’s GPU cracking appliances.

McAtee et al. presented the Cracklord16, a system for hardware resource management,
which supports creating job queues and contains a simple hashcat plugin. The plugin
allows to remotely run a dictionary or a brute-force attack with a limited set of options

14https://web.archive.org/web/20201108092329if_/https://terahash.com/#hashstack
15https://github.com/stricture
16http://jmmcatee.github.io/cracklord/

38

https://web.archive.org/web/20201108092329if_/https://terahash.com/#hashstack
https://github.com/stricture
http://jmmcatee.github.io/cracklord/

[120]. However, the project seems to be updated very rarely, and the last supported version
is hashcat 3.

In 2014, a Github user cURLy bOi from Prague, Czech republic created Hashtopus17,
an open-source distributed wrapper around oclHashcat, a predecessor of the current hashcat
tool. In 2015, Jakub Samek, a student from Czech Technical University in Prague, used
Hashtopolis system with cudaHashcat to create a virtual GPU cluster for his bachelor’s
thesis [178]. Sadly, the Hashtopus project ended in 2017, when the author announced
leaving the hash cracking scene. Since most of the code was still usable, Sein Coray created
a fork called Hashtopussy, later rebranded to Hashtopolis in 2018.

Hashtopolis18 uses a network with a server, and one or more agents – machines used
as cracking nodes. The server is a web application written purely in PHP. It provides
a user-friendly administration interface and agent connection point. The user interface
allows to create and manage cracking tasks, hashlist, and others. The tool uses a MySQL
or MariaDB database as data storage. Computing nodes contain a Hashtopolis Agent,
a client application in C#, or Python implementation. The communication uses a custom
protocol based on JSON over HTTP(S).

Many of the features of Fitcrack and Hashtopolis are similar. Fitcrack and Hashtopolis
offer many similar features. However, the philosophy of the system and the concept of
cracking tasks are entirely different. Hashtopolis runs solely on an HTTP server and does
not employ any other actively running server daemons. While Fitcrack’s WebAdmin has
a separate frontend and backend connected via a REST API, Hashtopolis is a monolithic
application. Without modification, the only control of Hashtopolis is via the graphical
user interface. In contrast, Fitcrack’s backend API allows controlling the system even
from an external application. Fitcrack distinguishes between different attack modes and
offers a unique distribution strategy (see Section 3.8) for each one. Hashtopolis treats all
attacks the same, and the configuration is up to the user who needs to specify hashcat’s
command-line arguments manually. The control of cracking sessions is thus more low-
level, and the system does not provide that high level of abstraction as Fitcrack. For
each task, the user selects a hashlist, one or more files (e.g., password dictionaries) to be
transferred to the client, and an attack command in the form of hashcat program options.
In contrast to Fitcrack, the user needs to define most attack-based hashcat options by hand.
Like Fitcrack, Hashtopolis handles benchmarking, keyspace distribution into chunks, and
automated download of hashcat binaries and other files necessary for cracking. Being
the only well-known maintained open-source solution for distributed computing with the
current version of hashcat, I consider Hashtopolis a state-of-the-art tool in my research
area. Therefore, my experiments in this thesis also compare the proposed Fitcrack system
with Hashtopolis under different attack options.

17https://github.com/curlyboi/hashtopus
18https://github.com/s3inlc/hashtopolis

39

https://github.com/curlyboi/hashtopus
https://github.com/s3inlc/hashtopolis

3.3 Requirements for a Distributed Cracking Solution
Following the research goals stated in Section 1.2, I decided to propose a distributed pass-
word cracking system with the focus on the following aspects:

• Performance - The overall performance of the system is the most crucial factor. The
tool should utilize GPGPU technologies like OpenCL [134] or CUDA [141] to accel-
erate cryptographic algorithms and acquire as high cracking performance as possible.

• Efficiency - In an ideal state, all available processors are utilized all the time during
the entire task. Naturally, such a goal is impossible to be achieved in real situations.
In distributed computing, there is always an overhead that computing nodes require
for communication, i.e., the interchange of commands and data, synchronization,
etc. Operations like benchmarking or performing database transactions add another
overhead as well. The efficiency is defined as the percentage of the time that processors
actually spend processing rather than communicating or idling [146]. In other words,
describes how well the processors are utilized. The lower the overhead, the higher the
efficiency.

• Scalability - For achieving higher performance, the user may increase the number
of computing nodes. The scalability describes how the performance develops if new
nodes are added [13]. In an ideal state, the scalability of a distributed system is linear.
Assume that all nodes have the same performance. If the scalability is linear, then
doubling the number of nodes doubles the performance as well. The closer to the
linear scalability, the better.

• Adaptability - For the purpose of my research, I assume a potentially changing
computing environment. Especially in computer grids, the nodes do not necessarily
have to be dedicated to the password cracking task only. Another applications may
occupy the processor and temporarily decrease the performance. Parts of the network
may even go offline as well as new nodes may appear during the computation process.
The adaptability describes how well the system can withstand such changes and adjust
the scheduling strategy properly.

• Robustness - Solving a task may take hours and days. If the computation of a partial
result fails, the system should recover from the failure and arrange the continuance
of the process.

• Security - While data exchanged between computational nodes may contain confi-
dential information, the transfers have to be secure, and in some cases, only trusted
nodes may be allowed to join the network.

• Compatibility with commonly-available systems - Computing nodes should not
necessarily require specialized hardware. They do not have to be a part of a dedicated
HPC cluster. The system should run on personal computers with consumer-grade
GPUs and commonly used operating systems like Microsoft Windows or Linux.

• Open-source code - For research purposes and further development, all parts of the
system should be publicly available under open-source licenses. Meeting this condition
allows smooth reproduction of experimental results and enables any enthusiast to
contribute to the system by creating additional modules and improvements.

40

3.4 Frameworks for Distributed Computing
With the limits of the single-machine approach, described in Section 3.1.3, distributed com-
puting is often the only way to achieve higher raw cracking performance. The basic idea is
to make multiple physical or virtual machines cooperate on a common problem by putting
their computational power together. Different models describe the conceptual design of
distributed systems. We can categorize them by the network topology (centralized/de-
centralized, star, ring, hierarchical, etc.), by the type of communication (synchronous vs.
asynchronous), and other aspects [108].

Following the requirements from Section 3.3, I decide to design a distributed system
that is not limited to HPC clusters but can use existing computer networks, including the
Internet. Cracking tasks may run not only in local area networks (LAN) but also in larger
computer grids with nodes in different locations. The system may utilize both dedicated
GPU servers and personal computers. For instance, a company may use the computers
for office work during the daytime, and at night, they automatically switch to password
cracking mode. While it is possible to create a custom protocol from scratch, existing
solutions cover various underlying operations and simplify creating new applications. In
the following sections, I analyze different frameworks for distributed computing and their
usability for password cracking tasks.

The selection of frameworks is inspired by the previous work of Kasabov et al., who
compared BOINC with MPI and CLara [103]. In addition to these three frameworks, I also
discuss VirtualCL and Apache Hadoop. Naturally, there are other existing solutions that
are not included in the comparison for various reasons. Concretely, Apache also offers
Spark19 and Flink20 frameworks. Both are conceptually close to Hadoop but use different
computing and data flow models. Spark is part of the Hadoop ecosystem and is based
on micro-batch processing. Flink uses a continuous flow, operator-based streaming model.
Like Hadoop, both systems aim at Big data processing, which is far different from password
cracking. Hadoop supports porting to many languages, including C and C++, that allow for
creating compiled and highly-optimized applications. Spark and Flink support only Java,
Scala, Python, and R. Microsoft Orleans21 is another robust and scalable framework for
distributed computing. Nevertheless, it is not designed for tasks whose processing lasts long
as there is a limit in seconds for each function call. Moreover, it only supports programming
in .NET languages. Another framework for creating concurrent and distributed systems is
Akka22. The computing model uses actors and streams. Actors are computing nodes that
do work, while streams serve for communication between individual actors. The portability
is, however, limited since Akka only supports Java and Scala languages.

3.4.1 MPI

Message Passing Interface (MPI) is a protocol specification and a library providing an
efficient way of coarsely dividing work between different processes. Depending on the con-
figuration, an MPI application may run on multiple processor cores or multiple physical
machines. The MPI was standardized by the MPI Forum in cooperation with researchers
from various organizations, mainly from the United States and Europe, including the major
vendors of concurrent computers, universities, and government laboratories [208].

19https://spark.apache.org/
20https://flink.apache.org/
21https://dotnet.github.io/orleans/
22https://akka.io/

41

https://spark.apache.org/
https://flink.apache.org/
https://dotnet.github.io/orleans/
https://akka.io/

The computing model uses the concept of communicators. A communicator is an object
describing a group of processes that can communicate with each other by sending messages.
Message passing is performed by calling functions named MPI routines. Every call must
correspond to a specific communicator. MPI includes routines for both point-to-point as
well as for collective communication. The routines exist in both blocking and non-blocking
versions so that the programmer can select a proper variant depending on the desired use
case [209]. The current MPI-3 standard supports shared, distributed, and hybrid memory
models [124].

Kang et al. claimed MPI shows an excellent performance for computational-intensive
tasks with a moderate amount of data [100]. Password cracking fits well into this class of
problems as it uses relatively little data but may require high computational power. This
property may be why some researchers eventually decided for MPI as the framework for
their distributed cracking solutions. For instance, Apostal et al. employed the MPI in the
CUDA-based password cracker [17]. Bengtsson also used MPI for cracking MD5-hashes
of user passwords on the Beowulf HPC cluster [26]. However, it seems the MPI may not
be an obstacle even for larger amounts of data. Reyez-Ortiz et al. used MPI on Beowulf
cluster for supervised learning processing big datasets. They declared MPI showed great
scalability and was ten times more powerful than Apache Hadoop on Spark23 cluster [170].

There are multiple existing implementations of MPI, both open-source like OpenMPI24

or MPICH25, and commercial, e.g., Intel MPI26. OpenMPI includes various fault-tolerance
techniques: local or distributed checkpoints, network failure detection, etc. In Section 3.3,
I defined the proposed cracking system should support adding new computing nodes during
runtime. The original design of MPI did not consider such an option. However, version
2.0 introduced the MPI_Comm_spawn() function that starts a new process, even on a new
node. Unfortunately, new nodes are not detected automatically, so the programmer needs
to create an extra process that detects new connections.

Although MPI implementations support distributed computing over the Internet, MPI-
over-Internet is still a challenge today due to its volume and complexity [74]. Programming
of interconnected cluster applications with MPI often requires advanced communication
paradigms that increase the programming effort for code writing. Moreover, MPI is a low-
level solution and does not natively support encryption or authentication. All such security
mechanisms would have to be implemented manually by the application programmer.

3.4.2 Apache Hadoop

Apache Hadoop27 is a distributed computing framework, primarily designed for processing
big data in a cluster-based environment. Individual problems are described with simple
programming models, mainly using the MapReduce model. The paradigm works as follows.
The input data is processed by the Map() function, which provides filtering and sorting.
Concretely, it transforms couples (𝐾1, 𝑣𝑎𝑙𝑢𝑒1) to (𝐾2, 𝑣𝑎𝑙𝑢𝑒2) where 𝐾1 and 𝐾2 are keys.
The Reduce() function then merges all values from the result which have the same 𝐾2.
Finally, the system collects all results of the Reduce() operation, optionally sorts them by
𝐾2, and produces the final result.

23https://spark.apache.org/
24https://www.open-mpi.org/
25https://www.mpich.org/
26https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-

library.html
27http://hadoop.apache.org/

42

https://spark.apache.org/
https://www.open-mpi.org/
https://www.mpich.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
http://hadoop.apache.org/

The framework is distributed as open-source software under Apache License 2.0 with
the code mostly written in Java programming language. Hadoop-based projects should
scale well, even on thousands of machines, while each node can use its local computation
storage. The framework uses its own Hadoop Distributed File System (HDFS), supporting
encryption and data replication. It also offers failure-recovery, useful analysis tools, and
adding new nodes when the process is already running28.

Apache Hadoop is also used in the area of digital forensics. Using Hadoop, Chen et
al. designed and implemented the Collaborative Network Security Management System
(CNSMS), a network forensics solution for collecting and analyzing high amounts of net-
work data in parallel. The system can detect, find, and trace evidence of malicious activity
like phishing attacks, spam scattering, and network worms in real-time. Chen et al. claim
CNSMS can make a network resistant even to a DDoS attack [42]. Cho et al. also recom-
mend Hadoop for forensic purposes and even proposed guidelines for Hadoop-based cloud
forensics [43].

On the other hand, Roussev et al. found weaknesses when comparing Apache Hadoop
with the MPI MapReduce29 (MMR) which is an open implementation of MapReduce pro-
cessing model. They reported MMR having better scalability and performance than Apache
Hadoop [177]. Reyez-Ortiz et al. also criticized Hadoop for showing much lower perfor-
mance than MPI-based solutions. However, they admit that Hadoop is easier-to-use and
could be preferred because of the included features. The main discussed advantages contain
the distributed file system with integrated data replication management, adding new nodes
on-the-fly, and a set of useful tools for data analysis and management [170].

Even though showing noticeably lower performance than MPI, Apache Hadoop is an
excellent solution for problems on which we can apply the MapReduce processing. It is
easy-to-use, well-designed for working with Big Data, and offers a set of useful integrated
tools for data analysis and system management. Moreover, it natively supports encryption,
data replication, and is robust thanks to integrated fault-tolerance routines. In contrast to
MPI, Hadoop allows adding new nodes at runtime. Although there were approaches30 on
distributed computing of hashing algorithms using Hadoop and MapReduce, I do not the
password cracking process an appropriate candidate for the MapReduce model.

3.4.3 VirtualCL

The philosophy of VirtualCL (VCL) is completely different from the previously-discussed
frameworks. VCL works as a wrapper over OpenCL. It allows applications to use OpenCL
devices located on different computing nodes in the same way as they were connected locally
to the computer. Such use does not require any additional modifications to the native
OpenCL application [21]. VCL uses a custom protocol over TCP/IP, and the network
latency is the main limiting factor. A set of SHOC benchmarking tests showed that the
overhead of VCL is nonnegligible, especially with bigger chunks of input data [51]. The
latest version 1.25 of VCL was released in 2017, and the project does not seem to be develop
anymore.

Nevertheless, I intended to experimentally evaluate its potential benefits to distributed
password cracking. Therefore, I decided to test VCL with the hashcat tool, even though the

28http://hadoop.apache.org/docs/
29http://mapreduce.sandia.gov/
30http://en.cnki.com.cn/Article_en/CJFDTOTAL-TXBM201111026.htm

43

http://hadoop.apache.org/docs/
http://mapreduce.sandia.gov/
http://en.cnki.com.cn/Article_en/CJFDTOTAL-TXBM201111026.htm

authors state31 that “VCL is no longer recommended for oclHashcat clustering, and most
likely will not work if you attempt to do it anyway”. I deployed VCL 1.25 to a computer
network of nodes equipped NVIDIA GTX 1050 Ti. However, the NVIDIA drivers did not
seem to be supported anymore since the cards were not visible from the host machine. After
switching to AMD R9 290X, the remote GPU became accessible from the host machine,
but it was impossible to use the device with hashcat version 2 or higher. I consider the only
option is to use an old deprecated oclHashcat-plus-0.15 or choose a different solution.

In addition to the compatibility issues, password cracking with VirtualCL adds an un-
desirable amount of overhead compared to running a standalone password cracker remotely.
Assume a network with a main controlling node that supervises the cracking task and a se-
ries of GPU-equipped working nodes. Utilizing a tool like hashcat or JtR only requires
the controlling node to specify the attack settings, e.g., in the form of command-line ar-
guments. The working node may then work independently, and the only other necessary
communication is at the end of the task when the worker reports the result to the con-
troller. VirtualCL, on the other hand, performs all OpenCL calls over the network [21].
As I detected, practically all existing GPU-supported password crackers require a periodi-
cal low-latency host-to-GPU communication to synchronize the work, monitor the device,
verify the success of password verification, etc. Even the Wrathion that I proposed in my
preliminary research [81] works in iterations, each verifying a vector of candidate passwords.
The cycle is controlled by the host machine that actively checks the previous iteration re-
sults and defines the instructions for the next one. Hashcat uses a similar concept with two
nested cycles, where the base loop (see Section 3.6.4) runs on the host’s CPU, while the
modifier loop is implemented within the OpenCL GPU kernels. Performing host-to-GPU
communications over the network instead of the PCI-e bus increases the latency dramati-
cally and introduces a significant overhead.

3.4.4 CLara

Similar to VirtualCL, CLara is a framework that allows accessing graphic processors over IP
networks. Compared to VCL, the concept of CLara is more general as it uses the “many-to-
many” communication paradigm where any computer in the network may access an OpenCL
device to any other computer. The central point of the system is a reverse proxy server
called clarad. Computers connected to the server are providers and consumers. A provider
is a computer that offers its OpenCL devices, e.g., one or more GPUs. With the OpenCL
platform provider application clarac, the machine connects to the proxy server. Finally, a
consumer is a computer with an OpenCL application linked to the libclara library. Through
the proxy server, the library provides access to the connected OpenCL devices [31].

I assume a password cracking system built over CLara could potentially run multiple
cracking sessions initiated at different points of the network. Sadly, the project has been
abandoned since 2015, and the last version is compatible only with the obsolete OpenCL
1.0 standard.

Nevertheless, even cracking with the old 1.0 standard faces the same issues described
in Section 3.4.3 for VirtualCL. All OpenCL-related calls are transferred over the network
instead of a fast, low-latency PCI-e bus. For cracking tasks, this adds a significant overhead
that is neither wanted nor necessary.

31https://hashcat.net/wiki/doku.php?id=vcl_cluster_howto_original

44

https://hashcat.net/wiki/doku.php?id=vcl_cluster_howto_original

3.4.5 BOINC

Berkeley Open Infrastructure for Network Computing (BOINC) is a platform for distributed
computing that natively supports a dynamic number of nodes connected over the Internet
[15]. It is an open-source project developed by U.C. Berkeley Space Sciences Laboratory.
The primary use-case of BOINC is public-resource computing. Volunteers participate in
solving various scientific problems, including the analysis of RNA molecules, simulation of
proteins, weather prediction, and many others. Though the original purpose of BOINC is
public-resource sharing, it offers excellent options for grid computing.

The architecture resembles a client-server model where the network consists of a server
and one or more hosts. The server is responsible for the management, planning, and
scheduling of tasks. Hosts represent computing nodes that perform the actual work. Each
host contributes to the process by providing its computational power.

A problem or a set of problems is described as a project. Within the project, the server
creates chunks of work called workunits. A workunit is the smallest piece of work that can
be processed by a host. Once a project is created, hosts can connect and participate in the
computing process by sharing their power for solving the project’s workunits. The project
server is responsible for creating and scheduling tasks, keeping track of clients, maintaining
data storage, etc.

Figure 3.4: Solving a single workunit using BOINC

Figure 3.4 illustrates the communication between the project server and a client that is
required for solving a single workunit. At first, the client receives instructions describing the
task. Task assignment is client-specific, i.e., the server takes client architecture, operating
system (OS), and hardware specification into account. BOINC allows the scheduler to
create a task tailored precisely to the client’s abilities.

For solving the task, a client may need one or more applications. BOINC supports
automatic distribution and update of application binaries with respect to the client’s archi-
tecture and OS. It also distributes input data of workunits. Once the client receives all the
necessary data, it starts computing, which may take minutes, hours, or days. When the
client completes its task, the output files and the task report are sent back to the server.
After reporting the result, the client may then ask for a new workunit.

With BOINC, it is possible to run literally any application on the host machine as
long as it is supported by the architecture and OS. The framework provides two options
for running client-side programs: i) using BOINC Wrapper, ii) using BOINC API. The
wrapper32 is an application supplied by BOINC that allows executing any program on the
host machine. Using BOINC Wrapper is easy, straightforward, and does not require the
modification of any code. The communication is possible via redirecting the program’s input

32https://boinc.berkeley.edu/trac/wiki/WrapperApp

45

https://boinc.berkeley.edu/trac/wiki/WrapperApp

and output or reading its return value once the program ends. BOINC API, on the other
hand, is an application interface proposed by Anderson et al. that allows programmers to
create “native” BOINC applications using the runtime BOINC Client Library (libboinc).
The communication between the BOINC core client and the app uses shared memory and
message passing. Compared with the wrapper, the API provides many advanced features
like progress reporting, checkpointing, critical section handling, atomic operations, pausing,
or using time handlers [16].

Unlike MPI or VCL, BOINC is designed to distribute tasks over the Internet. It provides
the optional use of built-in security mechanisms for untrusted environments: authentica-
tion, user account management, digital signatures, and public-key encryption. Clients can
dynamically connect to and disconnect from a running project. Users can even specify the
percentage of CPU or GPU power assigned to a BOINC task, network upload or download
limits, disk, and memory size utilization assigned to the computing. It is also possible to
define at which time the computing should start, restrict the computing to concrete days
in week, etc.

Crumpacker et al. showed BOINC can be used for password cracking and created a sim-
ple proof-of-concept tool for distributing attack with John the Ripper tool [47]. Kasabov
et al. emphasized BOINC’s reliability and robustness and suggested the possible use for
password cracking if a proper server software is developed and a GPU-accelerated client
application is used [103]. Apart from the password cracking, DistrRTgen33 was a volunteer
BOINC-based project created for distributed computing of freely-available rainbow tables
[142]. However, the official website appears to be defunct, and the project is currently
marked as private.

3.4.6 Summary

Inspired by Kasabov et al. [103], I provide a table-based feature comparison of all the
discussed frameworks. Table 3.2 compares the above-described solutions based on criteria
that I consider crucial for distributed password cracking to meet the requirements from
Section 3.3.

While the MPI shows outstanding performance and scalability, the use in dynamic non-
HPC environments is problematic due to many missing features. These include authentica-
tion, encryption, and detection of new nodes. Hadoop, on the other hand, provides native
support for computing over the Internet, contains failure-recovery routines, and much more.
The primary advantages are working with big data and the MapReduce model, which is not
the case. VirtualCL and CLara are low-level solutions for sharing OpenCL devices over the
network. However, the projects are abandoned and mostly are not compatible with today’s
hardware and software. Moreover, VCL and CLara introduce high overhead for cracking
tasks, as discussed above.

I eventually decided to use BOINC since it fits my needs the most. The framework offers
auto-negotiation of hardware and software specifications, downloading and updating client
binaries, failure recovery, authentication, and encryption, and much more. The only slight
drawback of BOINC was the communication overhead and delays between reassignment of
workunits. In the Fitcrack system, I later managed to resolve the issue using the concept
of pipeline processing described in Section 3.6.5 that practically eliminated the overhead.

33http://boinc.berkeley.edu/wiki/DistrRTgen

46

http://boinc.berkeley.edu/wiki/DistrRTgen

- MPI Hadoop VirtualCL CLara BOINC
overhead low moderate high high moderate

cracking without additional app. ∙ ∙
non-LAN support ∙ ∙ ∙ ∙ ∙

adding new nodes on-the-fly ∙ ∙
fault-tolerance routines ∙ ∙ ∙

native support for authentication ∙ ∙
native support for encryption ∙ ∙

maintained and updated ∙ ∙ ∙

Table 3.2: Comparison of cracking-related properties of the analyzed frameworks

3.5 The Choice for the Cracking Engine
A mechanism for computing the cryptographic algorithms is likely the most critical part
of every password cracker. To achieve high performance, hardware acceleration based on
GPGPU was a clear choice. Solutions based on OpenCL [134] or NVIDIA CUDA [141]
technologies should provide broad support for commodity hardware with consumer graphic
cards, as required in Section 3.3. Designing custom GPU kernels from scratch, as I did for
the Wrathion tool, is unnecessary since there already are existing tools with well-optimized
implementations of the password verification routines. For choosing a proper cracking
engine, I focus on the following criteria:

• Multi-OS support - The solution should support at least both Windows and Linux

• Support for integration into external software - The solution should provide an
interface over which the password cracking system can control it. Concretely, to run
and manage a cracking session over an API, over a CLI with arguments that specify
the attack settings or offer an externally-editable configuration file.

• Performance - The solution must provide GPU acceleration.

• Format support - The solution must cover a wide-enough range of data encryp-
tion and hashing algorithms. Those include cracking raw hashes, OS passwords, or
password that secure encrypted archives and documents.

• Attack modes - The solution should support not only the dictionary and brute-
force attack but should also cover advanced attack with password-mangling rules,
word combinations, etc.

• Maintenance and distribution - The solution should be maintained and updated
by the creator. Licensing terms should allow integration of the tool into a larger
password cracking system. Open-source free-of-charge licensing is preferred.

In Section 2.4, I described existing password cracking tools. Table 3.3 compares their
features. Those include OS and integration support, GPU acceleration, supported formats
and algorithms, attack modes, development, and licensing. The comparison does not include
L0phtcrack since it uses John the Ripper (JtR) as the cracking engine. I also omit Ophcrack
because it is a single-purpose tool for LM and NTLM hashes only. Note, the number of
supported algorithms is based on the list published by the software’s creator.

47

- JtR Cain hashcat Elcomsoft AccessData Passware RBcrack
Version 1.9.0 j 2.0 6.1.1 EDPR 4.40 PRTK 8.2.1 2021 v1 1.8.0

Windows support ∙ ∙ ∙ ∙ ∙ ∙ ∙
Linux support ∙ - ∙ - ∘* ∘* ∘**

Integration support ∙ - ∙ - - ∙ ∙
* – only for agent (worker), ** – without GUI

Cracking support
GPU acceleration ∘ - ∙ ∘ ∘ ∘ ∘

Algorithms 287 26 323 69 64 289 5
Algorithms (GPU) 88 - 323 44 10 79 4

Raw hashes ∙ ∙ ∙ ∙ - - ∙
OS passwords ∙ ∙ ∙ ∙ ∙ ∙ ∙

Network protocols ∙ ∙ ∙ ∙ - ∙ -
Archives ∙ - ∙ ∙ ∙ ∙ -

Documents ∙ - ∙ ∙ ∙ ∙ -
Applications ∙ ∙ ∙ ∙ ∙ ∙ -

Attack modes
Brute-force ∙ ∙ ∙ ∙ ∙ ∙ -
Dictionary ∙ ∙ ∙ ∙ ∙ ∙ -

(Word mangling) ∙ ∘* ∙ ∙ ∙ ∙ -
Word combination - - ∙ ∙ ∙ ∙ -

Hybrid attacks - - ∙ ∙ ∙ ∙ -
Rainbow table - ∘ - ∘ ∘ ∘ ∙

* – only reverse, case mangling, two-digit appending
Development and distribution

Maintained ∙ - ∙ ∙ ∙ ∙ ∙
Latest release 2019 2014 2020 2020 2018 2021 2020

License GNU GPL* Freeware MIT commercial commercial commercial BSD
∙ - full support, ∘ - partial support, * - modified license with relaxed terms

Table 3.3: Comparison of password crackers

Cain & Abel and commercial tools like Elcomsoft or AccessData software are monolithic
applications with proprietary API and communication protocols. Their source code is not
publicly available, and the only way of controlling their operations is via the provided
graphical user interface. The only exception is Passware Kit Forensic that offers a .NET
SDK that allows integration of the Kit into third-party applications. Another obstacle is
licensing issues. The license agreements of AccessData, Elcomsoft, and Passware forbid the
creation of any derivative works based on the licensed software [4, 58, 149]. From the open-
source software discussed, the only feasible candidates are JtR, hashcat, or RainbowCrack.
Since RainbowCrack is a single-purpose application purely for rainbow table attacks, the
final choice lies between JtR and hashcat.

Both tools are powerful and provide excellent features and performance. Hashcat offers a
broader range of supported formats. Moreover, it is the only tool from the list that offers full
GPU support. Recent versions of hashcat have all cryptographic algorithms implemented
within OpenCL kernels, allowing GPU-accelerated cracking but does not restrict using
OpenCL-compatible CPUs. The rule engine for mangling dictionary words is, unlike in any
other tool, implemented for GPU as well. John has the OpenCL support for many formats,
but not for all of them. On the other hand, John still offers some features that hashcat did
not have in the current 6.1.1 release: the Single crack attack mode or support for RAR 3
archives without an encrypted header. It seems, however, hashcat’s developers are already

48

working on improvement. The newly-announced Association34 attack mode is inspired
directly by John’s Single crack mode. The development version already includes support
for RAR3-p hash mode for cracking both compressed and uncompressed RAR version 3
archives without the encrypted header [95]. Moreover, hashcat has a native support for
GPU-based combination and hybrid attack modes. Performing the same with JtR requires
an external password generator.

The final criterium for selecting the cracking engine is the support for the decomposition
of cracking sessions. Sadly, JtR does not track the starting and ending positions of generated
password segments, and thus the options for workload distribution are very limited. It is
necessary to either use the internal MPI support, define the keyspace splitting manually
in the configuration file, or use an external password generator [12]. Crumpacker reported
the same issue and had to modify the JtR’s database to distribute the incremental attack
mode correctly, but at the cost of efficiency [47].

In contrast, hashcat’s --skip and --limit parameters allow to precisely define the
range of candidate passwords that are verified within a given task. This integrated feature
allows to easily create chunks of work and distribute them between the computing nodes.
The only obstacle is hashcat’s optimization of several attack modes, where the keyspace
numbers do not directly correspond to the password guess count. I further discuss this
phenomenon in Section 3.6.4. Fortunately, the distribution strategies that I propose in
Section 3.8 resolve this issue [47].

All hashcat’s features work on both Windows and Linux. The tool is maintained and
improved over time, well-documented, and is surrounded by a large community of supporters
that frequently discuss its features on web forums35. Hashcat is open-source and distributed
under the MIT license. Therefore, integration into the password cracking system is possible
without any limitations.

For the reasons discussed above, I eventually decided to use the hashcat tool as the
cracking engine of my distributed password cracking solution. The following sections doc-
ument the concrete techniques, algorithms, and strategies to perform cracking sessions in
a distributed environment.

34https://hashcat.net/forum/thread-9534.html
35https://hashcat.net/forum/

49

https://hashcat.net/forum/thread-9534.html
https://hashcat.net/forum/

3.6 Workload Distribution in Cracking Tasks
This section discusses the principles of dividing workload amongst multiple cracking nodes.
First, I describe the general principles and unify the terminology. Then, I propose a clas-
sification of distribution options into three schemes. Finally, I contribute with a proposal
of job processing with BOINC and hashcat utilized in the Fitcrack system. My concept
covers benchmarking of hosts, scheduling jobs with an adaptive calculation of processing
time, and optimizations like pipeline processing.

3.6.1 Essentials

Let 𝑃 be a finite ordered set of all candidate passwords for a given attack. Assume that
every candidate password 𝑝 ∈ 𝑃 is a string over Σ alphabet, thus 𝑝 ∈ Σ*. Naturally,
𝑃 ⊂ Σ*. The total number of candidate passwords within a cracking job is called keyspace.
The National Institute of Standards and Technology (NIST) defines keyspace as “the total
number of possible values that a key, such a password, can have” [180]. Therefore, the
keyspace of an attack equals the cardinality |𝑃 | of 𝑃 .

Definition 1 (Keyspace) A keyspace is the number of all password candidates for a given
attack. Keyspace 𝑘 = |𝑃 | where 𝑃 is the set of all password candidates.

Based on the definitions above, It is possible to define a password generator function 𝑔(𝑖) :
𝑁 ↦→ 𝑃 , where 𝑖 ∈ ⟨0, |𝑃 | − 1⟩ and 𝑖 is called a password index. The function maps every
single index from 0 to keyspace − 1 to a concrete password candidate. What candidate
passwords 𝑃 contains and wow the indexes are mapped is defined by an attack mode.

Let us consider a simple incremental incremental brute-force attack (see Section 3.8.3),
where we want to generate all password of lenghts between 1 and 3 over alphabet Σ =
{𝑎, 𝑏, 𝑐, . . . , 𝑧}. Then:

𝑔(0) = 𝑎, . . . , 𝑔(25) = 𝑧,

𝑔(26) = 𝑎𝑎, . . . , 𝑔(701) = 𝑧𝑧,

𝑔(702) = 𝑎𝑎𝑎, . . . , 𝑔(18277) = 𝑧𝑧𝑧.

(3.3)

We can see, the domain of 𝑔 corresponds to the keyspace 𝑘 = |𝑃 | of the attack. For
a dictionary attack (see Section 3.8.1) with a wordlist containing “alpha”, “bravo”, “charlie”,
the 𝑔(𝑖) is defined as follows:

𝑔(𝑖) =

⎧⎪⎨⎪⎩
alpha if 𝑖 = 0,

bravo if 𝑖 = 1,

charlie if 𝑖 = 2.

(3.4)

Definition 2 (Attack mode) An attack mode is the technique how candidate passwords
are created. Every attack mode may have additional parameters (settings) that need to be
specified. Together with all necessary parameters, the attack mode defines the set of all
password candidates 𝑃 , the password generator function 𝑔(𝑖), and the keyspace 𝑘.

Definition 3 (Password index) A password index is an integer that uniquely identifies
a candidate password for a given attack mode and settings. Every password index i belongs
to the domain of the password generator function g: 𝑖 ∈ 𝐷𝑜𝑚(𝑔) ⊂ N0.

50

3.6.2 Distribution Schemes

In the terminology of Fitcrack, a job represents a single cracking task added by the ad-
ministrator. Each job is defined by an attack mode (see Section 3.8), attack settings (e.g.,
which dictionary should be used), and one or more password hashes of the same type (e.g.,
SHA-1). The type of the hash algorithm is sometimes called the hash mode. After studying
related work and analyzing possibilities, I see three common ways of distributing a password
cracking job over multiple nodes. I define these approaches as follows:

• Hash distribution described by Pippin et. al. [162] uses the same candidate pass-
words on all nodes, however each node is cracking a different hash. The calculation
of the password hash is usually the most computationally complex part. Since tools
like hashcat or John the Ripper are capable of cracking multiple hashes for each can-
didate password while the candidate hash is only generated once, I do not consider
hash distribution to be an efficient method for dividing the workload. I suppose it
only makes sense if cryptographic salt is used or if one deals with exceptionally large
hashlists. Otherwise, there is no need to calculate the hash more than once from each
candidate password. An example of hash distribution is shown in Figure 3.5(a). In
the model situation, three computers receive the entire set of candidate passwords,
but each computer has different hashes assigned.

• Static chunk distribution introduced by Lim et. al [112] divides the set of all
candidate passwords into a number of chunks and assignes a chunk to each client.
The division is done only once at the beginning. The method has low overhead, but
cannot handle changes in cracking network. If a chunk is lost, it has to be recomputed
from the beginning, if no method of checkpointing is implemented. Figure 3.5(b)
shows the same attack with static chunk distribution. In contrast with the previous
case, every computer receives the entire hashlist. The set of password candidates
is, however, split into three chunks with sizes set accordingly to the performance of
each computer. In the example, yellow and red computers have higher computing
capacities than the blue one, so they receive bigger chunks.

• Dynamic chunk distribution does not divide the entire set of candidate passwords
at start. Instead, it generates and assigns smaller chunks called workunits progres-
sively. This method is used in Fitcrack since it better handles dynamic and unstable
environment. The dynamic approach allow to create workunits which are fine-tailored
for the current client speed. Moreover, losing the result of a workunit has lower im-
pact due to its size. A similar method with different scheduling algorithm is used by
the Hashtopolis tool that also divides each task into smaller chunks. An example is
illustrated in Figure 3.5(c). First, the blue computer receive a little chunk taken from
the beginning of the set. Then, the yellow computer gets a next chunk of passwords.
The chunk is bigger since the yellow computer has a higher performance than the
blue one. Next, the chunk is assigned to the red one. When the blue one is finished
with “chunk 0”, it receives another one. The same follows until eventually the entire
set is processed.

51

the set of all candidate passwords

0 k-1

7815696fa a434b89db
8797a5424

d1825a772

(a) Hash distribution

the set of all candidate passwords

chunk 0 chunk 1 chunk 2

0 k-1

0 imax0 imin1 imax1 imin2 k-1

7815696fa
a434b89db
8797a5424
d1825a772

7815696fa
a434b89db
8797a5424
d1825a772

7815696fa
a434b89db
8797a5424
d1825a772

(b) Static chunk distribution

the set of all candidate passwords

chunk 0 chunk 1 chunk 2 chunk n-1

0 k-1

0 imax0 imin1 imax1 imin2 imax2 imin(n-1) k-1

chunk 3

imax3imin3

7815696fa
a434b89db
8797a5424
d1825a772

7815696fa
a434b89db
8797a5424
d1825a772

7815696fa
a434b89db
8797a5424
d1825a772

(c) Dynamic chunk distribution

Figure 3.5: Common workload distribution schemes

52

3.6.3 Workunits in Fitcrack

In BOINC, the chunks of work assigned to computing nodes are called workunits, and the
computers that process them are called hosts. Fitcrack adopts the same terminology. As
mentioned above, the system uses the dynamic chunk distribution scheme. The division
of the candidate password set is based on password indexes. Therefore, each workunit is
defined by the range of indexes: 𝑖𝑚𝑖𝑛 a 𝑖𝑚𝑎𝑥 while

0 ≤ 𝑖𝑚𝑖𝑛 ≤ 𝑖𝑚𝑎𝑥 ≤ (|𝑃 | − 1). (3.5)

The index ranges are also denoted in Figure 3.5. Each workunit (chunk) has the minimal
and maximal password index. The first one (chunk 0) begins with index 0 and the last
workunit (chunk n-1) ends with index 𝑘 − 1 where 𝑘 is the keyspace of the attack.

The actual work lies in trying ever possible passwords given by the generator function
𝑔(𝑖) where 𝑖 ∈ ⟨𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥⟩. The workunit may end in two ways:

• One of candidate passwords is correct (or more, if we crack multiple hashes) -
the client informs the server that it has found the correct password. If all hashes are
cracked, the client stops.

• No candidate password is correct - client tried every password within the range,
but none of them was correct.

The entire job may end in two possible ways:

• Sucess, if the correct password was found within a workunit.

• No sucess, if all workunits were processed, however the correct password was not
found.

In Fitcrack, the creation of workunits is handled by the Generator module (see Section
3.7.1) which specifies the range of indexes for each workunit. The size of the workunit is
calculated using the adaptive scheduling algorithm described in section 3.6.5.

3.6.4 The Keyspace in Hashcat

Since Fitcrack uses the hashcat tool as the internal cracking engine, it is necessary to
consider its design and properties. Theoretically, the index-based distribution described
in Section 3.6.1 should work with any password guessing subsystem that allows defining
where to start and how many password candidates to generate. In hashcat, however,
the understanding of a password index is slightly different from other tools. To design
distribution strategies, I consider it necessary to emphasize this unique property.

Hashcat tool used for the actual cracking is controlled by Runner subsystem on the client
side. The range of indexes defined above can be set by --skip and --limit parameters.
While --skip corresponds to 𝑖𝑚𝑖𝑛, --limit defines the keyspace to be processed within
a workunit, i.e. should be equal to 𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛.

Whereas for a dictionary attack without the use of password-mangling rules (see Section
3.8.1), hashcat’s keyspace equals the actual number of candidate passwords, for other attack
modes, it may not match. This unexpected behavior is used by the internal optimization
of hashcat. The hashcat’s cracking process is implemented as two nested loops: i) the base
loop and ii.) the modifier loop. While the base loop is compute on host machine’s CPU, the

53

modifier loop is implemented within OpenCL GPU kernels. Hashcat’s keyspace is equal to
the number of iterations of the base loop and could be different from the actual
number of password guesses.

For example, assume a brute-force attack using mask (see Section 3.8.3) ?d?d which
stands for two digits. We can generate 10 different digits on each position, so the keyspace
of the mask should be 10 * 10 = 100, however in hashcat, it is only 10 since it computes
10 iterations within the base loop, and the other 10 within the nested modifier loop. In
that case, running hashcat with --limit 1 causes to try 10 passwords, not only one. To
overcome this obstacle, we let hashcat calculate the keyspace on the server before the
actual work is assigned to the clients. And in our database (see Section 3.7.8), we store
both hashcat’s keyspace which is used for distributing work, and the actual keyspace, to
inform the user about the actual number of passwords processed.

Moreover, the calculation also depends on the concrete cryptographic algorithms calcu-
lated with OpenCL kernels. For instance, mask ?d?d?d?d?d?d defines all passwords made
of 6 digits. The actual number of password guesses is thus 106. For cracking encrypted MS
Office 2013 documents (hash mode 9600), hashcat’s keyspace is 105, while for MS Office
older than 2003 (hash mode 9700), hashcat’s keyspace is 104. See the command line output:
./hashcat64.bin -a 3 ?d?d?d?d?d?d --keyspace -m 9600
100000
./hashcat64.bin -a 3 ?d?d?d?d?d?d --keyspace -m 9700
10000

I assume the optimization is integrated to reflect different time and space complexities of
the algorithms involved. Older MS Office versions used the RC4 stream cipher and MD5
[172] or SHA-1 hash algorithms [97]. MS Office 2013 uses AES [50] cipher and SHA-2
hashing [138]. For details see Section A.1.2 and Section A.1.3.

Password-mangling rules even complicate the situation since the actual guess count is
multiplied by the number of applied rules. Other deviations occur with combination and
hybrid attacks, described in Section 3.8.2 and Section 3.8.4. Hashcat creates candidate
passwords from two parts: left and right. Each is either a dictionary word or a string
generated from the mask. The --skip and --limit parameters only allow to control the
left side. Hashcat may thus generate hundreds of password guesses even with --limit 1.
For better or worse, these deviations from a traditional password index concept should be
taken into account. In Section 3.8, I propose distribution strategies that work even with
the above-described optimizations.

3.6.5 Adaptive Scheduling

In previous sections, I described the essentials of dynamic chunk distribution usable for
performance-based scheduling of workunits. This section shows how to utilize this principle
in BOINC and calculate the proper size of workunits. One of the main reasons for choosing
BOINC is the integrated technique called targeting that defines which workunit is assigned
to which host. The framework supports two types of workunits:

• non-targeted - the workunit is created without targeting, and will be assigned to
any host who asks the server for work;

• targeted - the workunit is created for a specific host, and will be assigned to this
host only. This approach is used in Fitcrack, and will be described in the following
paragraphs.

54

In a dynamic heterogeneous environment, working nodes may have different performance,
based on their hardware. They can also dynamically join and leave the computing. In
addition, the performance of a node can change over time. My goal is to propose a distri-
bution technique that maximizes efficiency of the computing process. Concretely, to fulfill
the following objectives:

• Utilize as many available hosts as possible — ideally, all of them.

• Make all hosts utilized most of the time — ideally, all the time.

• Adjust the size of each workunit equally to hosts’ current performance.

• Preserve some work for newly connected hosts.

Therefore, I use the targeted workunits and propose an algorithm [81] for adaptive calcu-
lation of workunit size. The algorithm’s idea is to estimate how much time it would take
to verify the remaining candidate passwords on all the active clients. From such estimation
(and various other settings), it chooses the desired processing time for a workunit. Based
on this time, we assign an appropriate part of remaining keyspace to a host asking for work.
Its size depends on the node’s current performance (cracking speed). This means that the
higher-performance clients receive larger workunits than the lower-performance clients.

Let 𝑃𝑅 ⊆ 𝑃 be the set of all remaining password candidates that need to be verified.
Next, let 𝑡𝑝 be the desired workunit processing time in seconds described above. Finally, let
𝑣𝑖 be the current performance (cracking speed) of node 𝑖 in passwords per second. Then,
the size 𝑠𝑖 of a new workunit assigned to node 𝑖 is calculated as 𝑠𝑖 = 𝑚𝑖𝑛(𝑡𝑝 · 𝑣𝑖, |𝑃𝑅|).
Speed 𝑣𝑖 is determined from previously solved workunit as 𝑣𝑖 =

𝑠𝑝𝑟𝑒𝑣
𝑡𝑝𝑟𝑒𝑣

where 𝑠𝑝𝑟𝑒𝑣 is the size
of a previous workunit assigned to the node, and 𝑡𝑝𝑟𝑒𝑣 is the time spent by its processing.
The problem is how to choose 𝑣𝑖 for a newly connected client. The solution used in Fitcrack
and Hashtopolis is to run a benchmark on the client to calculate its performance.

Workunit Processing Time

The above-shown description purposedly omits an important step — choosing the workunit
processing time 𝑡𝑝. This critical variable affects the distribution’s granularity. By specifying
𝑡𝑝, we define how long we want a host to process a workunit. Concretely:

• Lower 𝑡𝑝 means more smaller workunits. Such a setting is more suitable for an unsta-
ble environment where clients are more likely to fail, frequently disconnect or change
their performance. And thus, the impact of a lost workunit is lower, and the task can
be assigned to another client. On the other hand, lower 𝑡𝑝 implies higher overhead
because more communication between the server and clients.

• Higher 𝑡𝑝 results in a less number of larger workunits. It decreases communication
overhead and clients spend more time by computing. In case of lost connection,
recovery is longer. Higher 𝑡𝑝 also causes less effective task distribution, namely at the
end of the project. E.g., suppose 20 clients where only 10 nodes are computing. These
active nodes will be computing for another hour while others stop working since there
is no more task assigned to them.

In Hashtopolis, the 𝑡𝑝 is defined purely by a user and is constant throughout an entire task.
The setting is called the chunk size. Having a fixed workunit size may, however, cause
a series of undesirable phenomenons.

55

(a) End of a job without ramp-down

(b) End of a job with the ramp-down

Figure 3.6: Illustration of the ramp-down

Firstly, the initial benchmark is often inaccurate. As I experimentally detected, Hash-
cat’s measurement with the --benchmark option gives a theoretically achievable cracking
speed. The actual performance is lower and depends on the attack mode and other settings.
We can get more precise values using the --speed-only parameter. An alternative, cur-
rently used in Fitcrack, is running a live cracking session for a short time. This approach
also respects the use of cryptographic salt. Both alternatives, however, require to specify
additional settings, some of which are not known. The workunits are created on-demand
so that the system can not predict the future. For example, we do not know what exact
masks or dictionary fragments will be assigned to what nodes. Having smaller-than-desired
workunits is not a big obstacle since the system gets precise performance info and quickly
adapts. Creating enormously large workunits is a much more significant problem. Imagine
a user specifies 30-minute workunits, and the system creates a 10-hour one. Not only the
user may get annoyed, but the system may also terminate the process due to an exceeded
deadline that is set for each workunit. Therefore, Fitcrack’s scheduling algorithm creates
smaller workunits at the start of each job to ensure the system adapts appropriately. The
technique is called ramp-up. The technique also serves as a fail-safe mechanism to minimize
the implications of unexpected host behavior. Potential failures range from GPU overheat-
ing, lack of memory, through network problems up to possibly compromised nodes. This

”suspicious“ property of the algorithm does not let the host process full-sized workunits
before it proves the ability to resolve smaller ones.

Secondly, if the hosts are not assigned to another running job simultaneously, they may
not be utilized well at the end. An example is described in Figure 3.6(a), which illustrates
the keyspace distribution. There is a total of five hosts, each having assigned a workunit
of its color. Hosts 4 and 5 finish their workunits before the others. Since there is no more
keyspace left to distribute, they do not receive any work. Even if it takes hours for hosts
1 and 3 to finish, the other nodes are not employed. The computing resources of hosts 4
and 5 remain idle. Fitcrack’s scheduling algorithm creates progressively smaller workunits
at the end of the job. The solution is called ramp-down, and the goal is to ensure all hosts
compute most of the time. The solution is illustrated in Figure 3.6(b) and allows for more
efficient utilization of network resources.

When a user creates a new job in Fitcrack, the user specifies the seconds per workunit
value. This number has a similar meaning as the chunk size in Hashtopolis. The adaptive

56

scheduling algorithm, however, applies the principles of ramp-up and ramp-down described
above.
To properly choose 𝑡𝐽 for each workunit, I define function 𝑝𝑟𝑜𝑐𝑡𝑖𝑚𝑒(𝑡𝐽 , |𝑃𝑅|, 𝑘) that adap-
tively computes expected process time 𝑡𝑝 till. The parameters are defined as follows: 𝑡𝐽
is the elapsed time of current job, |𝑃𝑅| is the number remaining passwords guesses, and
𝑘 is the number of active hosts that participate on the computing. Parameters 𝑡𝐽 , 𝑠𝑅 and
𝑘 change over time. The function 𝑝𝑟𝑜𝑐𝑡𝑖𝑚𝑒 is computed using Algorithm 1. Based on
remaining time 𝑡𝑝, each node will be assigned appropriate keyspace 𝑠𝑖 = 𝑚𝑖𝑛(𝑡𝑝 · 𝑣𝑖, |𝑃𝑅|).
Therefore, the remaining keyspace will be distributed among working nodes according to
their performance. In an optimal case, all nodes complete their tasks in 𝑡𝑝 as estimated.

Algorithm 1: Adaptive calculation of 𝑡𝑝
Input: 𝑡𝐽 , |𝑃𝑅|, 𝑘
Output: 𝑡𝑝

1: 𝑣𝑠𝑢𝑚 = 0
2: forall 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ∈ {0, . . . , 𝑘} do
3: if 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 is active then
4: 𝑣𝑖 =

𝑠𝑝𝑟𝑒𝑣
𝑡𝑝𝑟𝑒𝑣

5: 𝑣𝑠𝑢𝑚 = 𝑣𝑠𝑢𝑚 + 𝑣𝑖

6: 𝑡𝑝 = |𝑃𝑅|
𝑣𝑠𝑢𝑚

· 𝛼
7: if 𝑡𝑝 < 𝑡𝑝𝑚𝑖𝑛 then
8: 𝑡𝑝 = 𝑡𝑝𝑚𝑖𝑛 ; // minimal workunit time
9: else if 𝑡𝐽 > 𝑡𝑝𝑚𝑎𝑥 then

10: 𝑡𝑝 = 𝑚𝑖𝑛(𝑡𝑝, 𝑡𝑝𝑚𝑎𝑥) ; // maximal workunit time
11: else
12: 𝑡𝑝 = 𝑚𝑖𝑛(𝑡𝑝, 𝑡𝐽) ; // ramp-up

13: return 𝑡𝑝

Lines 2 to 5 of the algorithm compute the entire speed of all active nodes. Line 6 is a bit
tricky. Normally, we would have calculated 𝑡𝑝 as 𝑡𝑝 = |𝑃𝑅|

𝑣𝑠𝑢𝑚
. Here, I multiply the value by

parameter 𝛼 called distribution coefficient that ranges from 0 to 1. This parameter ensures
that only a fraction of the remaining keyspace is assigned each time. E.g., 𝛼 = 0.1 means
that maximally 10% of the remaining keyspace |𝑃𝑅| is assigned. Firstly, it guarantees that if
additional hosts connect to the network, there is always a piece of work for them. Secondly,
it assures the ramp-down of workunit size. The workunits get progressively smaller as we
are close to the end of the job. The motivation for the ramp-down was discussed above and
illustrated in Figure 3.6.

The value of 𝑡𝑝 is also limited by 𝑡𝑝𝑚𝑖𝑛 and 𝑡𝑝𝑚𝑎𝑥. Parameter 𝑡𝑝𝑚𝑖𝑛 states, that the
computing shorter than this value is ineffective in distributed environment, so the minimal
task time is 𝑡𝑝𝑚𝑖𝑛. Similarly, 𝑡𝑝𝑚𝑎𝑥 defines the maximal task time so that also slower
nodes can participate in the computing. Based on my experiments, I recommend 𝑡𝑝𝑚𝑖𝑛

to be at least one minute and 𝑡𝑝𝑚𝑎𝑥 to be about 1 hour. When creating a new job in
Fitcrack WebAdmin (see Section 3.7.6), the administator can specify 𝑡𝑝𝑚𝑎𝑥 as the seconds
per workunit option. The 𝑡𝑝𝑚𝑖𝑛 and 𝛼 are system-wide parameters and can be modified
through WebAdmin’s system settings via the “System preferences” tab. Finally, line 12
performs the ramp-up in an initial stage of the job. This stage is defined as the period

57

before the elapsed time reaches the desired workunit time. For example, the desired time
for a single workunit is 15 minutes. But the full-size workunits are not created in the first
15 minutes of the job. The algorithm reserves this time for stabilization to withstand any
benchmark inaccuracies or unexpected host reactions. The actual impact of the algorithm
is shown by experiments in Section 3.9.2.

Improved Benchmarking

As described above, the performance obtained by hashcat using the benchmark mode are
often far different from the actual cracking performance. The reason is that it only calculates
a theoretically achievable number of calculated hashes per second. Yet, there are many other
factors in the game that influence the actual performance. Those include the settings of
the attack, disk i/o speed, amount of available memory, utilization by different running
processes, and others.

Therefore, the newer versions of Fitcrack come with a redesigned benchmarking scheme.
Instead of specifying just an algorithm or attack mode only, the system runs an actual
cracking session for a short time. With dictionary-based attacks, the actual performance
also depends on the length of passwords in a given fragment. At the beginning of the
job, we do not know what particular dictionary fragments will the hosts receive. Therefore,
Fitcrack introduces the pwd_dist utility that calculates the distribution of password lengths
when users upload the dictionary. For the benchmark session, the host creates a dummy
dictionary that matches the given distribution, as described in [87]. Experiments in Section
3.9.2 show that the modified solution provides far more accurate results.

Pipeline Processing

During the experiments with dictionary attacks (see Section 3.9.3), I detected that wordlist
distribution has high requirements for network bandwidth. Especially with larger wordlists
and less complex hash algorithms, the overhead is extensive. The hosts literally wait for
new candidate passwords so that they can verify them. The efficiency of such attacks is
very low [86, 84].

I found a solution in the form of pipeline workunit processing. The concept is quite
simple. Setting the max_wus_in_progress parameter in the BOINC project configuration
to 2 makes the server send not one, but two workunits to every host. At the time the host
is processing a workunit, it can be downloading another one. Once the host finishes the
first one, it can immediately switch to the next one without waiting. The only challenge
was to prevent the BOINC client from starting more than one instance of the Runner and
hashcat. The first solution was to specify the max_concurrent value in app_config.xml file
and set it to 1. This configuration file is, however, created automatically after connecting
to a project’s server. Therefore, this is not an out-of-the-box solution. The user either
has to configure the client manually, or Fitcrack would need to use a modified version
of the BOINC client. In 2020, together with my fellow researchers, I later discovered an
alternative solution. A new global mutex introduced to the Runner application prevented
to start another instance of hashcat. Even if multiple Runner processes are started, there
is maximally one hashcat process.

The most recent version of Fitcrack has the pipeline processing on by default since it
almost eliminates the overhead for workunit distribution. To see the comparison of the
original and improved versions, visit Section 3.9.3.

58

3.7 The Architecture of Fitcrack
This section briefly describes the architecture of Fitcrack36 - a BOINC-based distributed
password cracking system that I originally proposed in 2016 [81]. The initial release37

utilized custom OpenCL and CUDA kernels for cracking PDF, ZIP, 7z, RAR, and MS
Office up to version 2003. For the reasons discussed in Section 3.5, I later decided to
replace my kernels with the hashcat tool. Therefore, I redesigned the system completely,
and the new proof-of-concept implementation was made by the Fitcrack team38 under my
supervision. In this section, I focus on the novelty hashcat-based solution. Due to the
system’s complexity, I use a high level of abstraction. Detailed documentation of Fitcrack
is available in a separate technical report that I will refer to [87].

Figure 3.7 illustrates the architecture of the Fitcrack system. Similarly to other related
projects [221, 47, 105, 154], the solution consists of a server and a client part. The server
and clients are interconnected by a TCP/IP network, not necessarily only LAN which
makes it possible to run a cracking task over-the-Internet on nodes in geographically distant
locations. Clients communicate with the server using an RPC-based BOINC scheduling
server protocol39 over HTTP(S) [87, 84]. The two sides of the system play the following
roles:

• Server - The server is responsible for managing cracking jobs and assigning work
to clients. In our terminology, a job represents a single cracking task added by the
administrator. Each job is defined by an attack mode (see Section 3.8), attack set-
tings (e.g., which dictionary should be used), and one or more password hashes of the
same type (e.g., SHA-1). Once the job is running, Fitcrack progressively partitions
the keyspace into smaller chunks called workunits. In terms of the client-server ar-
chitecture, the server provides a workunit assignment service since hosts actively ask
for new work. Using the adaptive scheduling algorithm described in Section 3.6.5, the
keyspace of each workunit is calculated to fit the performance of a host that should
compute it.

• Client - The clients in BOINC are called hosts. In Fitcrack, hosts represent the
actual cracking nodes. A Fitcrack host can be any machine with Windows or Linux
OS, and at least one OpenCL-compatible device with proper drivers installed. The
only piece of software that needs to be installed is the BOINC Client (see Section
3.7.9), and optionally the BOINC Manager (see Section 3.7.10) providing a graphical
user interface to the BOINC Client. Once a host connects and authenticates to the
server, it automatically downloads all necessary binaries before the actual work is
assigned. The binaries involve two applications: hashcat as the “cracking engine”
(see Section 3.7.12), and the Runner (see Section 3.7.11) which serves as a wrapper
encapsulating and controlling operations with hashcat. Besides, the host may also
download an external password generator if necessary for the given attack mode.

The following sections describe the essential subsystems of both server and client sides.
36https://fitcrack.fit.vutbr.cz/
37https://fitcrack.fit.vutbr.cz/download/download-archive/
38https://fitcrack.fit.vutbr.cz/team/
39https://boinc.berkeley.edu/trac/wiki/RpcProtocol

59

https://fitcrack.fit.vutbr.cz/
https://fitcrack.fit.vutbr.cz/download/download-archive/
https://fitcrack.fit.vutbr.cz/team/
https://boinc.berkeley.edu/trac/wiki/RpcProtocol

Server

WebAdmin frontend

REST API

Assimilator

Transitioner

Scheduler

File deleter

Feeder

BOINC server built-in subsystems

hashcat
BOINC client

BOINC manager

Runner

OpenCL kernel

CoreCLI

TCP/IP + HTTP(S) + BOINC RPC

MySQL

Client(s)

Fitcrack-specific Related to hashcat BOINC

TCP/IP
+

HTTP(S)

GUI

Local
administrator

System
administrator

Trickler

PCFG Manager server #1

Matt Weir's work

princeprocessorExternal password
generators

PCFG Manager client
PIPE

passwords

Validator

hashcat

WebAdmin backend

PCFG Monitor

XtoHashcat hcstat2gen princeprocessor PCFG Trainer

Generator

Figure 3.7: The architecture of Fitcrack server and client

3.7.1 Generator

The Generator is a server daemon responsible for creating new workunits and assigning
them to hosts. To achieve an efficient use of network’s resources, it employs the Adaptive
scheduling algorithm [81] described in Section 3.6.5. The algorithm tailors each workunit to
fit the client’s computational capabilities based on the current cracking performance, which
could change over time. To get the initial speed, at the beginning of each cracking job,
the clients receive a benchmark job which measures their cracking speed for a given hash
type. For the attack modes, the Generator implements the distribution strategies described
in Section 3.8. For example, it performs the fragmentation of dictionaries, calculates the
appropriate password index boundaries, loads the preterminal structures for the PCFG
attack, etc.

There are three types of workunits: a) regular cracking tasks, b) benchmark workunits,
and c) a complete benchmark. Regular workunits are used to verify a set of candidate
passwords. For each such workunit, the Generator calculates an appropriate keyspace and
prepares all necessary input data and files [87]. The benchmark workunits are created at
the start of a job. The goal is to measure each host’s actual performance for a given
cryptographic algorithm and attack mode. The complete benchmark is an optional feature

60

that can be turned on or of in Fitcrack’s settings. It is performed automatically at the
time a completely new host connects. The complete benchmark is run only once for the
entire existence of the host in the system. It measures the achievable performance for all
supported hash algorithms. The results serve, above all, for estimating the cracking time
of a new job.

status name description
0 ready Job is ready to be started.
1 finished Job is finished, one or more hashes cracked.
2 exhausted Job is finished, no password found.
3 malformed Malformed due to incorrect input.
4 timeout Job was stopped due to exceeded time schedule.
10 running Computation is in progress.
12 finishing All keyspace assigned, some hosts still compute.

Table 3.4: Job status codes in Fitcrack

status name description
0 benchmark The host is waiting for, or working on a benchmark.
1 normal The hosts is working on a cracking job.
3 done The host has finished all work on the given job.
4 error The host encountered an error during the computation.

Table 3.5: Host status codes within a job

Each job in Fitcrack goes through a series of states. All possible states are enlisted
in Table 3.4, while each has a unique numeric identifier from 0 to 12. Numbers above 10
mean the job is not running. Historically, not all are numbers are used; some are reserved
for future use. The lifetime of a job is illustrated in Figure 3.8. Once created, the job is
in the Ready state. Clicking the start button changes the state to Running. The following
transitions depend on the conditions. If there is at least one non-cracked hash and no error
or user action occurs, the job eventually proceeds to the Finishing state. In this state, the
entire keyspace is distributed, but some hosts are still processing. Once all hosts are done,
the job switches to either Finished or Exhausted state, depending on the results. A user
may optionally specify a deadline for the job. If exceeded, the job ends in the Timeout
state. In case of a non-recoverable error (e.g., the database gets corrupted), the job switches
to the Malformed state.

In Fitcrack, three subsystems are allowed to change the state of the job: the Generator,
when a host asks for a new workunit, the Assimilator if a workunit result is received, and
the Webadmin at an event of user’s action. Every job starts in the ready state, created by
a user, and added to the database by the WebAdmin backend. Once the user launches it,
the job switches to the running state. All hosts assigned to a job also have status codes
defining the stage of their participation. The host codes are shown in Table 3.5.

The Generator daemon runs in a loop illustrated by Algorithm 2. It takes care that for
each running job, there is always at least a single workunit assigned. And if possible, all
participating hosts have a workunit. Each participating host needs to perform a benchmark
workunit first. Once benchmarked, the host may receive regular workunits. If possible, there

61

Figure 3.8: State diagram of a job in Fitcrack system

are always two cracking workunits ready for each host within the job. One is sent to the
host. The second one is generated beforehand, so the host can start working on it right after
the first one is completed. The goal is to reduce the overhead for creating new workunits.
Moreover, Fitcrack supports the pipeline workunit processing. If the max_wus_in_progress
parameter of the BOINC Server is 2, two workunits are sent to the client. After completing
the first one, the BOINC Client switches to the second one immediately. At the time the
second workunit is processed, another one can be transferred over the network.

The daemon also deals with disconnected hosts and computation errors. When a host
delivers an incorrect workunit result, or when the processing reaches a pre-defined deadline,
the workunit is tagged with retry flag, and a the Generator reassigns it by creating a copy
of the original workunit. Another feature is job purging. When the user chooses to purge
the job, revert all the work done, and delete the progress, the Generator sends a special
signal to all connected clients to abort the current task. When the purged job is running,
the Generator also reverts its state back to ready.

3.7.2 Validator

The Validator40 is a tool that verifies the syntax of all incoming workunit results from
clients before they are passed to the Assimilator. The subsystem also checks if each result
contains all necessary output files. If the job replication is active, i.e., a single workunit
is assigned to more than one host, the Validator verifies if the replicated results match.
The technique helps in an untrusted network where we expect hosts may be compromised
produce intentionally incorrect results. In Fitcrack, the replication is by default disabled
since it reduces the computational power by 50% or more, as discussed in [81].

40https://boinc.berkeley.edu/trac/wiki/ValidationIntro

62

https://boinc.berkeley.edu/trac/wiki/ValidationIntro

Algorithm 2: Generator daemon algorithm
1 while (1) do
2 // Iniciatization
3 if Any Jobs reached deadline then
4 Set them to Finishing status (12).
5 foreach Running Job (status ≥ 10) do
6 Process the purge requests. Load all corresponding masks or dictionaries.
7 // Benchmark
8 foreach Host in Benchmark status (0) do
9 if Benchmark is not planned then

10 Plan a benchmark.

11 // Cracking
12 foreach Host in Normal status (1) do
13 if Number of planned workunits ≥ 2 then
14 Continue to next Host.
15 if Job is in Running status (10) then
16 Generate a new workunit or reassing a retry workunit.
17 if No workunits could be generated then
18 Set Job to Finishing status (12)

19 if Job is in Finishing status (12) then
20 Reassign a retry workunit if exists. Otherwise, set Host to Done (3).

21 // Job finished
22 if Job status is Finishing (12) and no Jobs are generated then
23 Check the end conditions and set job to

Finished/Exhausted/Timeout/Paused.

24 Wait a short time interval before the next iteration

3.7.3 Assimilator

The Assimilator41 is a server daemon that parses the workunit results sent by hosts and
checked by the Validator. It decides what to do when a host completes a workunit. De-
pending on the result, the Assimilator can modify the database or even cancel running
workunits. Algorithm 3 describes a simplified functionality of the Assimilator. There are
three options, how a workunit could end:

• Successful benchmark of a node - The Assimilator saves the node’s cracking per-
formance to the database.

• Finished regular job - The Assimilator updates the job progress. If the host cracked
one or more hashes, the passwords are saved to the database. If all hashes are cracked,
the entire job is considered done, and all ongoing workunits are terminated. If the
whole keyspace is processed, the Assimilator changes the job’s status to either finished
or exhausted.

41https://boinc.berkeley.edu/trac/wiki/AssimilateIntro

63

https://boinc.berkeley.edu/trac/wiki/AssimilateIntro

• Computation error - The Assimilator sets the retry flag to the workunit to perform
the failure-recovery process, as described in [81].

Algorithm 3: Assimilator daemon algorithm
1 while (1) do
2 Read the result type
3 switch type do
4 case benchmark do
5 if Result is OK (code 0) then
6 Read the power and save it to database
7 else
8 Plan a new benchmark

9 case normal do
10 if One or more passwords found (code 0)) then
11 Read the password(s) and save them to database
12 if Any hashes remaining to be cracked then
13 Switch the Job state to Finished (1)
14 Cancel all running Workunits of the Job
15 Set finished flag to all Workunits
16 Read the cracking time and save it
17 else
18 if No passwords found (code 1) then
19 Modify the workunit size according to Algorithm 1.
20 Update the current index used for planning
21 else
22 // Computation error
23 Cancel host workunints
24 Set Host status to Benchmark (0)

25 case bench_all do
26 if Result is OK (code 0) then
27 Read the power list and save it to database
28 else
29 Plan a new benchmark

3.7.4 Trickler

With the Generator, Validator, and Assimilator, the server knows what host has which
workunit assigned. However, the only information about the workunit’s progress the server
obtains when the host finishes its work and sends a report. To provide the administrator
with a more detailed overview, the Runner (see Section 3.7.11) uses BOINC Trickle mes-
sage API42. Via this API, each host periodically sends XML-based Trickle messages that

42https://boinc.berkeley.edu/trac/wiki/TrickleApi

64

https://boinc.berkeley.edu/trac/wiki/TrickleApi

inform the server about partial progress. The goal of the Trickler daemon is to process
these messages and updates the information in the database. The administrator may then
visualize it in the WebAdmin application. This way, the server knows the state of cracking
even with several hours long workunits.

3.7.5 BOINC Server Subsystems

Besides the previously denoted applications, Fitcrack uses the following subsystems43 which
are part of the BOINC:

• Transitioner - controls the state transitions of workunits and their results in order
to keep the database synchronized.

• Scheduler - is a CGI [173] application running over the HTTP server. It handles
the requests of all clients. The Scheduler communicates with the BOINC Client (see
Section 3.7.9) using the XML-based BOINC scheduling server protocol39.

• Feeder - allocates blocks of shared memory for saving all workunit-related data. It
maintains a cache of jobs for the Scheduler.

• File deleter - deletes all unnecessary files remaining from older workunits.

3.7.6 WebAdmin

The WebAdmin is a web application for remote management of Fitcrack. It consists of
two parts: frontend and backend connected interconnected via a REST API. The frontend,
written in Vue.js, provides a graphical user interface for direct interaction with the person-
nel authorized to operate the system. Figure 3.9 shows a screenshot of the frontend user
interface. The backend, written in Python 3, is based on Flask44 microframework and com-
municates with Apache or NGINX HTTP server using the Web Server Gateway Interface
(WSGI). The backend operates a MySQL database, which serves as a storage facility for all
cracking-related data. Note, a complete user guide with screenshots is available on Fitcrack
GitHub pages45.

Features of WebAdmin

The WebAdmin consists of multiple sections that control various functions of the system.
For each one, the frontend offers graphical components for user interaction, while the back-
end provides a series of endpoints that communicate with the database and implement the
underlying operations. Fitcrack WebAdmin contains the following sections:

• Job Creator - provides a wizard for creating new jobs. Figure 3.10 shows how the
user interface works. At first, the user enters the input hashes. For this purpose, the
WebAdmin provides three options: a) manual entry, b) uploading an existing hashlist,
or c) automated extraction from an encrypted file. Fitcrack can extract hashes from
Microsoft Office and PDF documents, and ZIP, RAR, or 7z archives. The second
step is the selection of an attack mode and attack options. While in the Hashtopolis
tool, the attack settings need to be specified manually as hashcat’s command line

43https://boinc.berkeley.edu/trac/wiki/BackendPrograms
44http://flask.pocoo.org/
45https://nesfit.github.io/fitcrack/#/

65

https://boinc.berkeley.edu/trac/wiki/BackendPrograms
http://flask.pocoo.org/
https://nesfit.github.io/fitcrack/#/

Figure 3.9: The interface of the Fitcrack WebAdmin

arguments, Fitcrack provides a unique set of configurable settings for each of the
seven attack modes (see Section 3.8). The settings cover the selection of wordlists for
dictionary-based attacks, password-mangling rules, masks for brute-force and hybrid
attacks, custom character sets, Markov model parameters, and much more. As the
user creates the job, the WebAdmin in real-time notifies the user about the current
keyspace and estimated worst-case cracking time. Once the attack is configured, the
user assigns one or more hosts to perform the attack. The final step allows specifying
the desired workunit cracking time, choosing between an immediate or delayed start,
and setting the job’s deadline.

• Job Management - allows the user to observe, operate, and modify cracking jobs.
For each job, the user sees the current progress and various statistics. Fitcrack allows
assigning new hosts to already running jobs, changing the job’s deadline, or displaying
detailed information about individual workunits.

• Job Batches - represent a way of stacking multiple jobs together so that the user
can control them as an individual job. A batch resembles a queue that starts with the
first assigned job and continues with the others. Every time a job finishes, the next
one starts automatically. Moreover, the WebAdmin displays batch-wide statistics like
host contribution or workload distribution.

• Job Bins - help organize cracking jobs. The user may assign each job to one or
more bins. For instance, the bins may refer to individual cases in terms of forensic
investigation. The WebAdmin also allows creating a batch from a bin. Moreover, the
entire bin can be exported for server-to-server data transfer.

• Job Templates - allow saving attack configuration for later use. Instead of creating
a job from scratch, the user may select an existing template.

66

• Hashes - this section represents a system-wide hashlist. Each record contains the
algorithm type, hash, timestamp, plaintext password (for already-cracked hashes),
and a link to the corresponding job. This hashlist also serves as a lookup table. The
lookup is conducted at job creation time. Users are notified if they attempt to create
a job with hash that was already cracked.

• Dictionaries - provide an interface to manage and add password dictionaries. They
serve for wordlist-based attacks: dictionary, combination, hybrid, and PRINCE (see
Section 3.8) and optionally to create PCFGs or Markov chains [136]. Fitcrack supports
three ways of adding new dictionaries: a) importing directly from the server; b)
uploading new via HTTP; c) uploading using SFTP/SCP, if configured.

• PCFG - contains the repository of probabilistic context-free grammars [213, 80, 82,
85] for PCFG attacks (see Section 3.8.5). For each grammar, the system displays the
achievable keyspace of all possible candidate passwords. The user may also browse
all rewrite rules and their probabilities. To add a new grammar, the user may either
upload an archive with existing rewrite rules or choose a training dictionary, and the
system creates the grammar automatically.

• Rules - this section allows the user to manage *.rule files with the password-mangling
rules (see Section 3.8.1). The rules describe string transformations and allow to extend
the number of candidate passwords for dictionary-based attacks.

• Charsets - extend the classic substitute symbols in password masks. The brute-force
attack mode allows the user to utilize up to four user-defined character sets. This
section allows the user to browse existing and add new ones.

• Masks - can be saved as text files and managed using this section. When users create
new jobs, they may load the already-saved masks instead of manual typing.

• Markov Chains - are stochastic models that satisfy the Markov property [136].
They define the character creation order in the brute-force attack (see Section 3.8.3).
For this purpose, the system uses *.hcstat2 files with per-position character statistics.
This section allows the user to add a *.hcstat2 file either by uploading an existing one,
or by generating a new one. The second option stands for an automated processing
of a password dictionary using the hcstatgen tool.

• Encrypted Files - this section enlists the names of encrypted files that users up-
loaded as job input. Each record displays file name and the extracted hash.

• Hosts - this section contains an overview of all hosts connected to the system. For
each host, the user may see its hardware and OS specifications. The WebAdmin also
displays all jobs and workunits assigned to the host.

• User Management - allows to create, modify, and delete user accounts. Each
account has assigned a role that defines permissions.

• Server Monitor - provides an overview of the entire system. It displays the status
of all server daemons and the utilization of the server’s resources.

• Settings - this section contains system-wide settings from appearance through bench-
marking to advanced configuration of the scheduling algorithm (see Section 3.6.5).

67

• Data Transfer - this feature allows transferring jobs between two servers. The user
may assign one or more jobs to an export. From these jobs the server creates a package
with all necessary input data. The package can then be imported to another Fitcrack
server.

Figure 3.10: Job creation in Fitcrack WebAdmin

Utilities Used by WebAdmin

For some operations, the WebAdmin backend uses a set of external utilities:

• Hashcat is used on the server as well. The backend uses it to verify the format of
input hashes and to calculate the keyspace of masks. This is important since hashcat’s
keyspace may not always correspond to the actual number of candidate passwords,
as discussed in Section 3.6.4.

• XtoHashcat is a tool created for Fitcrack to detect the format of input media and
automatically extract all necessary metadata, including cryptographic hashes, salts,

68

etc. For the media formats, where it is possible (e.g., ZIP and RAR archives, or
Office documents), it detects the signature and contents of the file and calls one of
the existing scraper scripts (e.g., office2hashcat.py) which extracts the hash.

• Hcstat2gen from the hashcat-utils46 repository is used for generating *.hcstat2 files
from existing password dictionaries. The files contains character statistics used for
Markov-based password guessing in brute-force attacks, as described in Section 3.8.3.

• Princeprocessor on the server is used for calculating the keyspace of PRINCE at-
tacks, described in Section 3.8.6.

• PCFG Trainer is a tool from Matt Weir that server for creating probabilistic
context-free grammars [213, 211] from password dictionaries. The grammars are used
in PCFG attacks, described in Section 3.8.5.

3.7.7 PCFG Monitor and PCFG Manager

For PCFG attacks, Fitcrack uses the distributed PCFG Manager proposed in Chapter 4.
For each running attack, the server employs a single instance of the PCFG Manager server
that creates preterminal structures [213] from the desired grammar. As described in Sec-
tion 3.8.5, each workunit contains a chunk of these structures. Each assigned host runs
the PCFG Manager client as an external password generator. The client creates the can-
didate passwords from the obtained preterminal structures. For the management of server
instances, Fitcrack uses a daemon called PCFG Monitor. This tool ensures there is always
a running instance of the PCFG Manager server for each running PCFG attack job.

3.7.8 MySQL Database

The MySQL database serves as the primary storage facility for all essential system data.
The 2020’s version 2.3.0 of Fitcrack uses over 70 different tables. About half consists of the
BOINC framework’s internal tables for storing data about hosts, client-side applications,
data templates, and many others. The rest are tables of Fitcrack with all cracking-related
data like jobs, workunit, masks, dictionaries, and others. The detailed specification of the
database structure is available in the related technical report [87].

3.7.9 BOINC Client

The BOINC Client, also referred to as a core client, is an application that handles the
communication between the client and the server. It is the only application that needs to
be installed manually to a newly-connected host. The rest of the software is downloaded
automatically from the server. Using the BOINC Scheduling server protocol39, the client
actively asks the server for work. Once a workunit assignment is received, it downloads all
necessary input and output data. Besides that, the client also handles downloading and
updating of all executable binaries required: Runner, hashcat, and all hashcat’s OpenCL
kernels and files that are needed. Depending on how the BOINC client is installed, it may
run: a) in the background as a daemon; or b) start when an individual user logs in and
stop when the user logs out.

46https://hashcat.net/wiki/doku.php?id=hashcat_utils

69

https://hashcat.net/wiki/doku.php?id=hashcat_utils

3.7.10 BOINC Manager

The BOINC Manager is an optional part of the client. It provides a graphical user interface
for the administration of the core client. It allows the user to choose a project server, review
progress on workunits, and configure various client settings. In BOINC Manager, the user
can set “when to compute” by defining certain conditions, including times and days of the
week, limits on CPU, memory, disk usage, etc.

3.7.11 Runner

The Runner is a wrapper of hashcat responsible for processing workunits. It communicates
with the rest of the system using the BOINC API47. The Runner provides an abstraction
layer for all Fitcrack workunits. It takes care of benchmarking as well as the regular cracking
tasks. After each cracking session, it creates the report for the Fitcrack server. The Runner
can optionally use a local configuration file, where the user can specify which OpenCL
devices to use for computation, their workload profile, etc. The Runner also reports partial
workunit progress using the Trickle messages processed by the server’s Trickler daemon,
described in Section 3.7.4.

3.7.12 Hashcat

Hashcat tool is the cracking engine of the Fitcrack system. It employs various OpenCL
kernels that implement a GPGPU-based cracking of more than 300 different cryptographic
algorithms supported by Fitcrack. Depending on the attack mode, it either uses an internal
password generator or reads the candidate passwords from the standard input. From each
candidate password, it calculates the cryptographic hash and compares it with the input
hashlist. The hashcat is controlled entirely by the Runner application. In case of failure
(e.g., GPU overheating, computation error), the Runner generates a report for the server.
For more about hashcat, see Section 2.4.4.

3.7.13 Princeprocessor

Princeprocessor48 is a standalone password generator created by Jens Steube, the author of
hashcat. Fitcrack utilizes it for PRINCE attacks. The princeprocessor is located on both
the client and server sides. On the server, the WebAdmin uses it to calculate keyspace. On
hosts, the Runner uses it as an external password generator.

47https://boinc.berkeley.edu/trac/wiki/BasicApi
48https://github.com/hashcat/princeprocessor

70

https://boinc.berkeley.edu/trac/wiki/BasicApi
https://github.com/hashcat/princeprocessor

3.8 Attack Modes and Proposed Distribution Strategies
As introduced in Section 2.2, an attack mode represents how candidate passwords are cre-
ated. The two most commonly known attack modes are a dictionary attack and a brute-force
attack. Other modes are mostly enhanced derivatives of these two attacks. Some advanced
techniques employ the use of probability to guess passwords more precisely. For instance,
by generating character sequences that resemble words from a given natural language.

The arsenal of available attack modes depends on the concrete cracking tool. While there
is no unified naming convention, each software uses its unique terminology. Sometimes, such
a situation may be confusing for a user. For example, a “hybrid attack” in Elcomoft tools
[61] is a synonym for a wordlist mode with password-mangling rules in hashcat [192] or John
the Ripper (JtR) [159]. The same term “hybrid attack mode” does exist in hashcat but with
a completely different meaning, concretely, as a conjunction of a brute-force attack with
a dictionary attack [192]. In addition to the integrated password generating mechanisms,
some tools can read candidate passwords directly from standard input. This option allows
the user to employ an external password generator and perform attacks that are not natively
supported by the tool. In hashcat, this regime is called “stdin” mode [192]. JtR uses the
term “external mode” [159].

In this section, I describe the principles and application of the attack modes included in
the Fitcrack system [87]. Those include all attack modes provided by the hashcat tool plus
a PCFG attack and a PRINCE attack. Whereas the described attacks are known, available
tools like hashcat or princeprocessor exist only as single-machine solutions. Therefore, my
contribution lies in the utilization of these methods in a distributed password cracking
network. For each attack mode, I discuss possible strategies for work distribution and
explain which one is used in Fitcrack and why. By distribution strategy, I concretely mean:

• How a password cracking job is decomposed into workunits. What data does the
server send within each workunit.

• How hosts handle the workunits and how they control the hashcat.

For the design of the strategies, I focus on the following aspects:

• Correctness – The system must generate all candidate passwords that can be created
with the attack’s configuration. All generated passwords must be eventually verified.
This condition is strict and must be met.

• Precision – The system should be able to specify workunit sizes as precisely as
possible, ideally, in the units of individual passwords. This is crucial for the adaptive
scheduling algorithm, described in Section 3.6.5.

• Sensible network utilization – With each workunit, the system should only trans-
fer data that is necessary.

• Server-friendly computing – Complex computing operations should be performed
by hosts, not the server. High utilization of server processors and memory is undesir-
able. Creating large temporary files on the server is also not optimal.

• Fast start – Ideally, the attack should start immediately at the moment the user
launches it. Initial delays for precomputing, etc., are unwanted.

71

3.8.1 Dictionary Attack

A dictionary attack, also referred to as a wordlist attack or a straight attack, uses a text file
called the password dictionary. The dictionary contains candidate passwords, each placed
on a separate line. The cracking tool (hashcat) successively reads the candidate passwords,
calculates their hashes, and compares the results with the input hashes, i.e., those we are
trying to crack.

Such dictionaries may contain words from a native language or real passwords obtained
from various web service security leaks49. One of the biggest well-known leaked dictionaries
is rockyou.txt containing over 15 million passwords. The dataset origins from the end of
2009 when user account information from the RockYou portal leaked due to an attack50.

Fitcrack supports the use of one or multiple password dictionaries. If more than a single
dictionary is in use, the system processes them one by one sequentially. Once we get
through all passwords from one dictionary, the processing of the next one begins. From
the mathematical perspective, we can consider each dictionary as an ordered set 𝐷 of
strings, where the order is defined by the arrangement of passwords in the dictionary. For
𝑛 password dictionaries, the keyspace 𝑘 can be calculated as the sum of their cardinalities:

𝑘 =
𝑛∑︁

𝑖=1

|𝐷𝑖|

where 𝐷𝑖 is the 𝑖-th used dictionary.

Password-mangling Rules

The attack can be enhanced by the use of password-mangling rules. The technique was first
introduced in John the Ripper tool, and further extended in hashcat. Password-mangling
rules define various modifications of candidate passwords. Such alterations include replacing
and swapping of characters and substrings, password truncation, padding, etc. Hashcat
currently supports over 7051 different rules. Table 3.6 illustrates their practical use on
a few examples.

To use password-mangling rules, the user needs to specify a text file called ruleset.
Several pre-defined rulesets are also present in hashcat’s repository. Each line of the file
contains one or more mangling rules separated by whitespace. Rulesets may also contain
comments. The presence of multiple rules on a single line means that they should be used
all together in a single mangling step.

The rules are applied to all candidate passwords in the following way: the first candi-
date password is modified by the rules on the first line of the ruleset; the result is used.
Subsequently, the original password is modified by the rules on the next line of the ruleset.
Eventually, the entire ruleset is processed. The number of lines in the ruleset signifies how
many mangling steps will be performed on each password. The same password-mangling
principle is applied to the next candidate password until we eventually reach the end of the
password dictionary.

Using rules can rapidly enhance the repertoire of password guesses and provide a higher
chance for success. On the other hand, the total keyspace of the job is multiplied by the
number of rules. This is because every rule from the rule file is applied to each dictionary

49https://wiki.skullsecurity.org/Passwords
50https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
51https://hashcat.net/wiki/doku.php?id=rule_based_attack

72

https://wiki.skullsecurity.org/Passwords
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://hashcat.net/wiki/doku.php?id=rule_based_attack

Rule Description Input Output
l Converts A–Z to lowercase p@SSw0rd p@ssw0rd
u Converts a–z to uppercase p@SSw0rd P@SSW0RD
C Uppercases first letter, lowercases rest p@SSw0rd P@ssw0rd
t Makes lowercase uppercase and vice versa p@SSw0rd P@ssW0RD
r Reverses all characters p@SSw0rd dr0wSS@p
o2X Overwrites character at position 2 with X p@SSw0rd pXSSw0rd
$! Appends character “!” to the end p@SSw0rd p@SSw0rd!
{ Rotates left by one position p@SSw0rd @SSw0rp
] Deletes the last character p@SSw0rd p@SSw0r
k Swaps last two characters p@SSw0rd p@SSw0dr
z2 Duplicates first character p@SSw0rd pp@SSw0rd

Table 3.6: Examples of password-mangling rules and their application

password. The total keyspace 𝑘 is calculated as the sum of dictionary keyspaces multiplied
by the number of rules in the rule file:

𝑘 =
𝑛∑︁

𝑖=1

(𝑟 * |𝐷𝑖|)

where 𝑟 is the number of lines in the ruleset.

Distribution Strategies for Dictionary Attacks

If the dictionary is pre-loaded on all nodes, the workload distribution is possible by setting
different offset and guess limits to different nodes. An alternative may be a dictionary
accessible via a shared network drive. Such a solution may work for HPC clusters with
nodes interconnected by high-speed links. However, this is not always the case. In general,
it is necessary to distribute the password candidates from the server to clients, i.e., the
computing nodes. Unfortunately, this effort has significant overhead, and for less-complex
hash algorithms could lead to an inefficient distributed attack [86, 84].

Hashtopolis tool lets the user specify files that are necessary for solving the given task.
Before the attack starts, each client checks the presence of every file. If it does not exist
locally, the client downloads it from the server via HTTP. The advantage is a simple and
straightforward implementation. The main drawback is the time and space overhead since
all nodes download and store all passwords, even if they need only a tiny portion. While
there is no broadcast in HTTP, the server needs to send the same file multiple times using
different connections. As shown in the experiments (see Section 3.9), for attacks with larger
dictionaries, the overhead is enormous, and the scalability is very limited. There are use
cases where this strategy may be beneficial. For instance, if the dictionaries are pre-loaded
on all nodes or saved on network storage accessible via high-speed links in a computer
cluster. But these are exceptions, and the strategy is not optimal in general.

To eliminate the overhead, yet make workunit size adjustments possible, Fitcrack uses
a different strategy. For each host and each workunit, it only distributes a fragment of the
original dictionary. The size of the fragment depends on the host’s current computing power.
The bigger fragment we create, the higher is the keyspace of the workunit. Moreover, the
fragment size is not fixed and may vary in time, reflecting each hosts’ performance changes.

73

Figure 3.11: Example of dictionary attack distribution

With each workunit, hashcat is started normally in the wordlist attack mode and processes
the entire fragment. A simplified scheme of this strategy is shown in Figure 3.11.

In this example, we have a dictionary with 1000 different candidate passwords. The
computing network has multiple hosts. Client #1 can verify ten passwords per time unit
(defined by the administrator), while Client #2 has five times higher performance. Hence,
in the initial workunit, Client #1 receives a fragment with the first 10 passwords of the
dictionary, while Client #2 gets the next 50 passwords. Both nodes shall process the
assigned password in the same time interval.

Another challenge is the use of password-mangling rules. Its developers proclaim, hash-
cat has the “world’s first and only in-kernel rule engine.” On the one hand, this property
brings significantly higher performance in contrast with other tool. On the other hand, it
requires a modification of the distribution strategy. The use of rules increase the actual
number of password guesses, but hashcat applies them in the modifier loop, and therefore
hashcat’s keyspace remains the same as if no rules were used. For a single keyspace unit,
hashcat uses one word from the dictionary and consequently applies all existing rules to
that word.

As mentioned in Section 3.6.4, Fitcrack distinguishes between hashcat’s keyspace that is
used for setting the program parameters and the actual keyspace that is used for calculating
the size of a workunit for a concrete client. If password-mangling rules are applied, Fitcrack
multiplies the real keyspace by the number of rules used. The estimation of computing
time thus uses the actual number of password guesses. Such a correction prevents creating
unequally large workunits.

For example, a host can verify 1,000 hashes of a given algorithm per second using
hashcat’s dictionary attack mode. The plan is to create a workunit for an hour. Therefore,
Fitcrack would generate a workunit of keyspace 3,600,000. A user, however, decided to use
password-mangling rules and selected a ruleset with 100 rules. From each dictionary word,
hashcat creates 100 passwords. The hash algorithm thus needs to be calculated 100 times.
Without the correction, resolving the workunit would require more than 4 days. With the
correction applied, the final keyspace of the workunit is downgraded to 36,000, which is
optimal for an hour.

74

3.8.2 Combination Attack

A combination attack, also referred to as a combinator attack, uses two separate password
dictionaries: a left dictionary, and a right dictionary. Candidate passwords are crafted
using a string concatenation: passwords from the left dictionary are extended by passwords
from the right one. The goal is to verify combinations of all passwords in the two input
dictionaries. An example of a combination attack is shown in Figure 3.12. Let 𝐷1 be the
left dictionary, and 𝐷2 the right dictionary. The keyspace 𝑘 can be calculated as:

𝑘 = |𝐷1| * |𝐷2|.

The combination attack in hashcat supports a single password-mangling rule for the left
and right sides. Their syntax and semantics are the same as with the classic dictionary
attack. Applying multiple rules is not supported, and thus the rules do not affect the
resulting keyspace.

Figure 3.12: An illustration of a combination attack

Advanced Combination Attacks

Note, in addition to the basic combination attack, enhanced alternatives exist. The hashcat-
utils toolkit contains a combinator3 utility that can combine three dictionaries. If necessary,
it can serve as an external password generator. For chaining multiple dictionary words, there
is also an advanced combination attack called PRINCE that is decribed in Section 3.8.6.

Distribution Strategies for Combination Attacks

For combination attacks, hashcat’s keyspace calculation does not consider the second dic-
tionary. When asked to verify a single password using the combination attack, hashcat
actually verifies 1×𝑛 passwords. For the example dictionaries in Figure 3.12, hashcat with
--limit=1 parameter generates two passwords instead of one: “helloworld” and “hello123”.
This property prevents creating workunits of the desired size. If the second dictionary
contained hundreds or thousands of passwords, such behavior would represent a serious
problem. Attacks with large dictionaries would be virtually uncontrollable.

75

Algorithm 4: Limiting the combination attack to the desired keyspace
Input: 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑, 𝑘𝑙𝑒𝑓𝑡, 𝑘𝑟𝑖𝑔ℎ𝑡, 𝑖𝑙𝑒𝑓𝑡, 𝑖𝑟𝑖𝑔ℎ𝑡
Output: 𝑖𝑙𝑒𝑓𝑡, 𝑖𝑟𝑖𝑔ℎ𝑡,

1: if 𝑖𝑙𝑒𝑓𝑡 > 0 then
2: send 𝑖𝑟𝑖𝑔ℎ𝑡th password from the right dictionary
3: send --skip parameter with 𝑖𝑙𝑒𝑓𝑡 as the value
4: if 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑 < 𝑘𝑙𝑒𝑓𝑡 − 𝑖𝑙𝑒𝑓𝑡 then
5: send --limit parameter with 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑 as the value
6: 𝑖𝑙𝑒𝑓𝑡 = 𝑖𝑙𝑒𝑓𝑡 + 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑
7: else
8: 𝑖𝑙𝑒𝑓𝑡 = 0
9: 𝑖𝑟𝑖𝑔ℎ𝑡 += 1

10: else if 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑 > 𝑘𝑙𝑒𝑓𝑡/2 then
11: send 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑/𝑘𝑙𝑒𝑓𝑡 passwords from the right dictionary, starting with the

𝑖𝑟𝑖𝑔ℎ𝑡th.
12: 𝑖𝑟𝑖𝑔ℎ𝑡 = 𝑖𝑟𝑖𝑔ℎ𝑡 + 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑/𝑘𝑙𝑒𝑓𝑡
13: else
14: send 𝑖𝑟𝑖𝑔ℎ𝑡th password from the right dictionary
15: send --limit parameter with 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑 as the value
16: 𝑖𝑙𝑒𝑓𝑡 = 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑

A naive solution for this problem is to generate all possible combinations, save them into a
single dictionary, and perform a classic dictionary attack. I do not consider this an ideal way
for a couple of reasons. First, generating such a emporary dictionary requires a noticeable
amount of processor time and disk space. The larger the input dictionaries we have, the
higher is the initial overhead. Second, it increases the amount of data that needs to be
transferred over the network. Let 𝑚 be the size of the left dictionary and 𝑛 the size of the
right dictionary. The space complexity in the sense of the transmitted passwords changes
from linear, ideally 𝑚+𝑛 passwords, to polynomial, 𝑚×𝑛. This may also rapidly increase
the time required for transferring the data to all hosts.

To deal with this issue, Fitcrack uses a different solution. With the first workunit of
a job, the entire left dictionary is distributed to all computing nodes. With each next
workunit, it only distributes a fragment of the second dictionary. By modifying the size
of this fragment, Fitcrack can control the number of right-hand strings applied within the
workunit. Moreover, it may utilize the “skip/limit” arguments to reduce the number of
left-hand strings if necessary. This strategy allows precise control of workunit sizes and
keeps the linear complexity of data transfer over the entire attack.

Algorithm 4 describes the process of calculating workunit size. In a nutshell, it decides
how many passwords from the right dictionary to send and whether to use the --skip and
--limit parameters. The algorithm uses five inputs: 𝑘𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired keyspace of the
workunit, 𝑘𝑙𝑒𝑓𝑡 and 𝑘𝑟𝑖𝑔ℎ𝑡 is the keyspace of the left and the right dictionary, respectively. To
indicate the current position in both dictionaries, it uses two indexes: 𝑖𝑙𝑒𝑓𝑡 and 𝑖𝑟𝑖𝑔ℎ𝑡. The
condition o line 10 is a heuristic that adds some tolerance to prevent over-fragmenting. For
example, if the desired keyspace is 100 and there are 101 passwords remaining, it assigns
the host all 101 in a single workunit instead of creating two workunits with 100 and 1
password. Essentially, there are three possible situations:

76

• The left dictionary is partially processed (𝑖𝑙𝑒𝑓𝑡 > 0). The algorithm uses the --skip
parameter to skip already-processed passwords.

• The left dictionary is small enough to be processed entirely. Only the right dictionary
is potentially fragmented.

• The left dictionary is too big for the desired keyspace. Then the algorithm uses
the --limit parameter to specify the number of passwords to process from the left
dictionary. From the right dictionary, it takes only a single password.

See that the proposed strategy iterates through the left dictionary over and over until all
passwords from the right one are processed. With each workunit, the left dictionary is
either processed entirely or partially, but when we reach its end, we start over by setting
𝑖𝑙𝑒𝑓𝑡 to 0.

Client	#1

Client	#2

.	.	.

Administrator Server

pass
#1–10

fragment
#1

dict2.txt

dict1.txt
(1st	WU)

size
100

fragment
#2

dict1.txt
(1st	WU)

size
100

pass
#11–60

size
1000

POWER
1000

POWER
5000

size
100

dict1.txt

Figure 3.13: An example of combination attack distribution

Figure 3.13 illustrates an example of distribution with the proposed strategy. In this exam-
ple, we have two dictionaries, the left dictionary contains 100 passwords, while the right one
contains 1000 passwords. The first one is distributed to all nodes, while for the second one,
Fitcrack uses fragmentation. Client #1 can verify 1000 passwords per time unit, and thus
with the first chunk, the client receives the first 10 passwords from the second dictionary
since 10 · 100 = 1000. Client #2 has five times higher performance and can verify 500 pass-
words per time unit. Therefore, it receives the following 50 passwords since 50 ·100 = 5000.
In this case, everything was solved by fragmenting just the right dictionary. The --skip
and --limit parameters were not necessary.

In contrast, assume the same dictionaries but the desired keyspace of 40 passwords.
This is less than half of the left dictionary’s keyspace, so that the algorithm: a) sends
only a single-password fragment of the right dictionary; b) sets the --limit 40 hashcat
argument; and c) moves the 𝑖𝑙𝑒𝑓𝑡 to 40. The next workunit is for a more powerful host
and should have 1050 passwords. Since the left dictionary is fragmented, the host receives
one password from the right dictionary along with hashcat argument --skip 40, the 𝑖𝑟𝑖𝑔ℎ𝑡
increases to 1, and 𝑖𝑙𝑒𝑓𝑡 is reset to 0. Assume the following workunit should contain 1020
passwords. The left dictionary is not fragmented so that this host can receive multiple
passwords from the right dictionary (for a total of 1000 candidate passwords). The host
gets the second through eleventh passwords from the right dictionary, and the 𝑖𝑟𝑖𝑔ℎ𝑡 is set
to 11. This way, Fitcrack eventually verifies the combinations of every password from the
left dictionary with every password from the right dictionary.

77

3.8.3 Brute-force Attack

A brute-force attack is an exhaustive search for correct password(s) trying every possible
password candidate that can be made from given characters.

Incremental Brute-force Attack

An incremental attack is a classic version of the brute-force attack with three parameters:
the minimal password length, the maximal password length, and the alphabet, also referred
to as the character set, or charset. The alphabet is an ordered set of characters that are used
for generating candidate passwords. The order may be alphabetical, based on an ASCII
value, or any other ordering. The order of password candidates may also be implementation-
specific. The most straightforward way is to first generate all possible passwords for the
minimal length and then consequently proceed through longer ones. Listings 3.1 to 3.3
show a classic incremental brute-force attack using lowercase Latin letters in alphabetical
order with passwords length from 5 to 7 characters.

aaaaa
aaaab
.....
aaaaz
aaaba
aaabb
.....
aaazz
aabaa
aabab
.....
zzzzz

Listing 3.1: Length 5

aaaaaa
aaaaab
......
aaaaaz
aaaaba
aaaabb
......
aaaazz
aaabaa
aaabab
......
zzzzzz

Listing 3.2: Length 6

aaaaaaa
aaaaaab
.......
aaaaaaz
aaaaaba
aaaaabb
.......
aaaaazz
aaaabaa
aaaabab
.......
zzzzzzz

Listing 3.3: Length 7

The name “incremental” comes from the behavior of password guessing. In every step, we
increment the value of a character at the last position. After trying everything from “a”
to “z”, we also increment the character at the last but one position and start over. Gen-
erating passwords in the incremental mode resembles incrementing numbers in a numeral
set with symbols from the alphabet. The above-shown example is only one of the possible
implementations. We may also start from the first character, or use a completely different
logic.

The incremental attack mode is supported by many cracking tools, including John the
Ripper tool, or Wrathion - the predecessor of Fitcrack that I used in my early research [83].
As mentioned above, different tools use different modifications of the password-guessing
algorithm. More advanced techniques involve Markovian models (see Section 4.2.2) and
the use of probability to generate certain sequences of characters first. For example, the
Incremental attack mode of John the Ripper tool uses a modified Markov model based on
3-grams [57]. The keyspace 𝑘 of an incremental attack can be calculated as:

𝑘 =

𝑚𝑎𝑥∑︁
𝑙=𝑚𝑖𝑛

|𝐴|𝑙

78

where 𝑚𝑖𝑛 is the minimal password length, 𝑚𝑎𝑥 is the maximal password length, and 𝐴 is
the alphabet.

Mask Attack

In hashcat, the brute-force attack is based entirely on password masks. Later versions of
John the Ripper contain a “mask attack mode” as well, in addition to the classic incremental
mode. Masks are patterns that describe the allowed syntax of candidate passwords, i.e., how
candidate passwords “may look like”. A user may define one or more masks for the attack.
The cracking process then consist of generating every possible sequence of characters upon
each mask.

A password mask is a template defining allowed characters for each position in the
password. Masks have the form of strings containing one or more symbols. A password
mask 𝑚 of length 𝑛 is defined as:

𝑚 = 𝑠1𝑠2...𝑠𝑛

where 𝑠𝑖 is the 𝑖-th symbol of the mask, and 𝑖 ∈ [1, 𝑛]. Such a mask can be used to generate
candidate passwords in the form of 𝑐1𝑐2...𝑐𝑛 where 𝑐𝑖 is the 𝑖-th symbol of the candidate
password. Obviously, the candidate passwords have the same length 𝑛 as the mask. For all
𝑖, the 𝑠𝑖 symbol in the mask is:

• a concrete character (𝑐𝑖) - which is directly used in generated candidate passwords
at position 𝑖, or

• a substitute symbol (𝑆𝑖) for a character set (𝐶𝑖) - which defines the allowed
characters at position 𝑖 in the generated candidate passwords.

Symbol Description Characters in set
?l lowercase Latin letters abcdefghijklmnopqrstuvwxyz
?u uppercase Latin letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
?d digits 0123456789

?s special characters (space)!"#$%&’()*+,-./
:;<=>?@[\]^_‘{|}~

?h hexadecimal digits with small letters 0123456789abcdef
?H hexadecimal digits with big letters 0123456789ABCDEF
?a all standard ASCII characters: ?l, ?u, ?d, ?s
?b binary - all bytes of values between 0x00 and 0xFF
?1 user-defined character set no. 1
?2 user-defined character set no. 2
?3 user-defined character set no. 3
?4 user-defined character set no. 4

Table 3.7: The substitute symbols and corresponding character sets

A character set (or simply charset) is an order set of characters. In masks, we use substitute
symbols, each corresponding to a different character set. Table 3.7 lists the substitute
symbols supported by hashcat with corresponding character sets. Besides the standard
character sets (?l, ?u, ?d, ?s, ?h, ?H, ?a, ?b), hashcat supports up to four user-defined

79

character sets (?1, ?2, ?3, ?4). Custom character sets may contain both ASCII and non-
ASCII characters - i.e., may be used in combination with various national encodings.

An example of generating passwords using a mask is illustrated by Figure 3.14. If there
are concrete characters in a mask, the same characters at the same positions are used in
the generated candidate passwords – i.e., if for all 𝑖 ∈ [1, 𝑛], if 𝑠𝑖 = 𝑐𝑖, character 𝑐𝑖 is
used at the 𝑖-th position in all generated passwords. For substitute symbols, all possible
characters from corresponding character sets are eventually used. If there is more than one
one substitute symbol, candidate passwords are generated as a cartesian product of all used
corresponding character sets.

For example, in mask Hi?u?d?d, the first two symbols are concrete characters 𝑐1 = 𝐻
and 𝑐2 = 𝑖. The rest is made of substitute symbols: 𝑆3 = ?u which substitutes 𝐶𝑢 =
{𝐴, ..., 𝑍}, and 𝑆4 = 𝑆5 = ?d which substitutes 𝐶𝑑 = {0, ..., 9}. Therefore, the prefix of
candidate passwords is fixed (Hi), the rest is generated as 𝐶𝑢 × 𝐶𝑑 × 𝐶𝑑 or {𝐴, ..., 𝑍} ×
{0, ..., 9}×{0, ..., 9}. So that, the mask generates the following candidate passwords: HiA00,
HiA01, ... HiA09, HiA10, HiA11, ... HiA99, HiB00, HiB01, ..., HiZ99. In a brute-force attack,
the number of possible candidate passwords can be calculated as:

𝑘 =

𝑛𝑠∏︁
𝑖=1

|𝐶𝑖|

where 𝑛𝑠 is the number of substitute symbols in the mask, and 𝐶𝑖 is the character set
substituted by symbol 𝑆𝑖. For the previous mask Hi?u?d?d:

𝑘 =
3∏︁

𝑖=1

|𝐶𝑖| = |𝐶𝑢| * |𝐶𝑑| * |𝐶𝑑| = 26 * 10 * 10 = 2600

we have 2600 possible password candidates.

Figure 3.14: Illustration of a brute-force mask attack

Markov Chains

The principles of Markovian models and the history of their use for password cracking are
narrowly discussed in Section 4.2.2. This section primarily focuses on the two models that
are used in the hashcat tool since it serves at the cracking engine of the Fitcrack system.

In hashcat’s brute-force attack mode, the candidate passwords are not generated by the
lexicographic order of characters. Instead, it uses an algorithm based on Markov chains
[136, 169]. The entire idea behind Markov chains is to use knowledge obtained by learning

80

Figure 3.15: Candidate password order using Markov chains

Figure 3.16: Markov chain probability matrix

on existing wordlists to generate more probable sequences of characters first. To illustrate
the difference, Figure 3.15 shows an example of candidate passwords generated using the
classic incremental approach and Markov chains. Hashcat uses a first-order Markovian
model where the choice of a character depends on a previous one. Generating characters
is based on conditional probability 𝑃 (𝐴|𝐵) that character 𝐴 will follow after character 𝐵.
The implementation does not calculate the raw probabilities. Instead, it uses a matrix of
characters ordered by their probability. The matrix with these statistics is saved inside
a .hcstat file. Starting from hashcat 4.0.0, hashcat uses52 LZMA53 compression and the
extension changed from .hcstat to .hcstat2. With the --markov-hcstat option the user
can specify what file to use. The default statistics files used for brute-force attack are
hashcat.hcstat and hashcat.hcstat2, respectively.

Figure 3.16 shows an example of a Markov chain matrix. In each row, the matrix lists
characters from the character set in order from the most probable, to the least probable.
The first row entitled with 𝜀 shows characters on the first position in the password. In the
example, the most probable character on the first position is “n”, the second most probable
is “p”, etc. The other rows show characters which will most probably succeed after a certain
character (entitling the row). In the example, “a” will be most probably followed by “y”.
The second most probable successor of “a” is “a”, the third one is “e”, etc.

52https://hashcat.net/forum/thread-6965.html
53https://www.7-zip.org/sdk.html

81

https://hashcat.net/forum/thread-6965.html
https://www.7-zip.org/sdk.html

𝜀
𝑎
𝑏
𝑐
𝑑
𝑒
...

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏 𝑛 𝑒 𝑔 𝑎 𝑢 . . .
𝑑 𝑡 𝑟 𝑛 𝑑 𝑣 . . .
𝑒 𝑎 𝑟 𝑢 𝑜 𝑖 . . .
𝑘 𝑖 𝑒 𝑜 𝑢 𝑎 . . .
𝑜 𝑚 𝑎 𝑦 𝑟 𝑝 . . .
𝑑 𝑐 𝑡 𝑧 𝑑 𝑛 . . .
...

...
...

...
...

... . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 3.17: Example of Markov matrix with threshold set to 3

The matrix defines how the candidate passwords are generated. At the first position,
characters from 𝜀 row are used. The order is defined by position in the matrix. In the
matrix from Figure 3.16, the first sequence of candidate passwords would start with letter
“n”. Once all passwords starting with n are generated, the next sequence contains passwords
starting with letter “p”, etc. For each character “c” generated, the algorithm looks at the
row entitled by “c”, and the next character will be generated from that row.

In standard case, on each position, all possible characters are used, and the keyspace is
calculated as shown in Section 3.8.3. In hashcat, however, it is possible to define a threshold
value which can be used to limit the depth of character lookup. The threshold says how
many characters from each row are used. Naturally, using the treshold affects the keyspace.
If threshold is used, the least probable passwords are not generated. If many cases, thresh-
olding can save processor time without bigger influence on success rate [136, 169].

For now, let us ignore the keyspace optimization used by hashcat, described in section
3.6.2 – i.e., assume the keyspace is the actual number of password candidates. Figure 3.17
shows a matrix with threshold set to 3. In case of mask ?l?l?l, the keyspace would be
26 * 26 * 26 = 17576, since |𝐶𝑙| = 26. However, which threshold set to 3, the keyspace is
3 * 3 * 3 = 27, since on each position, only three characters are used.
The candidate passwords for mask ?l?l?l and threshold 3 are generated in the following
order: bed, bec, bet, bad, bat, bar, ... Note that password bez is not generated since z is
on the position 4 in e-row, and 4 > 3. In hashcat, the threshold can be specified using the
--markov-threshold option. For brute-force attack with Markov chains, hashcat supports
two different models:

• 2D Markov model (classic) - uses a classic first-order Markovian model with a single
matrix for a character set, and works as described above. The technique is used if
hashcat is run with --markov-classic option.

• 3D Markov model (per-position) - a modified version that is used by default in
hashcat’s brute-force attack. It utilizes the idea that character probability is influ-
enced not only by the previously generated character, but also by the position in
the password. The model uses multiple matrices, one per each password position. If
the first character is generated, the first matrix is used, for the second chracter, the
second matrix is used, etc. Such an enhancement makes sense because users often
follow specific password-creation patterns, e.g., numbers will more likely be at the
end of the password than at the beginning [35, 212].

82

Distribution Strategies for Brute-force Attacks

The distribution of a brute-force attack highly depends on the implementation of the pass-
word guessing algorithm, concretely, how it represents its state. For example, commercial
tools from Elcomsoft54 employ the classic incremental brute-force (see Section 3.8.3) and
provide the “Start from” and “End at” columns where a user can specify the range using
concrete passwords. John the Ripper, on the other hand, does not track the starting and
ending position of password segments at all [47]. In such a case, without modification of
the program, the options are very limited55, e.g., letting different nodes generate passwords
of different lengths, etc.

Luckily, hashcat natively supports defining the starting and ending position using the
--skip and --limit parameters. Thus, with each workunit, Fitcrack only distributes the
mask, the range of indexes, plus the user-defined character sets if used. This strategy
makes a brute-force attack, in contrast with the previously described attacks, very efficient
in a distributed environment. The overhead to the attack is minimal since there is no need
to transfer strings via the network. Moreover, hashcat’s password generating algorithm is
highly optimized and partially computed on-GPU.

Paradoxically, the optimizations also introduce other issues that complicate the work-
load distribution. One of the biggest challenges of distributing the mask attack in hashcat
is the way hashcat computes the keyspace of each mask, described in Section 3.6.4. In the
brute-force attack mode, part of the mask is processed on GPU and cannot be managed
by users. Using command-line arguments, users can only control the part of the mask that
is generated in the base loop on a CPU. In other words, the user may specify how many
iterations of the base loop are calculated. The rest, processed in the modifier loop on GPU,
cannot be changed externally. What specific part of the mask is processed in the base loop
depends on multiple factors. Those include the syntax of the mask, the version of hashcat,
and even the type of hash algorithm used. Practically, this means that with --limit 1,
hashcat performs a single base loop iteration but may produce multiple password guesses.
The keyspace reported by hashcat is thus always lower or equal to the number of password
guesses.

To overcome this obstacle, Fitcrack lets hashcat on the server calculate its optimized
keyspace. This value is used to determine the range of allowed password indexes. Moreover,
this solution provides forward compatibility with future versions of hashcat. If the keyspace
calculation changes for any hash format, Fitcrack will still receive correct values. In addi-
tion to hashcat’s normalized keyspace, Fitcrack calculates the actual number of password
guesses. This value serves for estimation of the cracking time, specifying workunit sizes, and
informing the user. Both numbers are calculated before the attack even starts. Dividing
the real keyspace by the hashcat’s keyspace, we can determine how many real passwords
are represented by a single hashcat index. With this knowledge, sending the mask with the
corresponding index range to verify is no longer a problem.

For example, assume the cracking of SHA-3-512 hashes with mask ?l?l?l?l?l?l?l?l.
The real keyspace is 26·26·26·26·26·26·26·26 = 268 = 208, 827, 064, 576 passwords. In hash-
cat, the SHA-3-512 algorithm corresponds to hash mode 17600. Running ./hashcat64.bin
-m 17600 -a 3 ?l?l?l?l?l?l?l?l --keyspace returns 11,881,376. Fitcrack calculates
208,827,064,576

11,881,376 = 17, 576 so that a single unit of hashcat’s keyspace corresponds to 17,576
candidate passwords. Assume a host with GTX 1050 Ti having the brute-force attack

54https://www.elcomsoft.com/
55https://openwall.info/wiki/john/parallelization

83

https://www.elcomsoft.com/
https://openwall.info/wiki/john/parallelization

performance of 250 MH/s. A 1-minute workunit thus represents 250, 000, 000 · 60 =
15, 000, 000, 000 passwords. Hence, Fitcrack uses 15,000,000,000

17,576 ≈ 853, 437 as the --limit
parameter for hashcat. To demonstrate that this principle works, I made a brief live test
with by running the following command:

time ./hashcat64.bin -m 17600 -a 3 sha3-512.hash ?l?l?l?l?l?l?l?l \
--limit 853437

The -a 3 parameter corresponds to the brute-force attack mode, while the time utility is
used to measure real time of running. The experiment was conducted on a system with the
above mentioned GPU, Intel(R) Core(TM) i7-8700 CPU, and 16 GB RAM. The operating
system was Debian GNU Linux 9. The commands produced the following output (the very
beginning is omitted):

Session..........: hashcat
Status...........: Exhausted
Hash.Type........: SHA3-512
Hash.Target......: 9ece086e9bac491fac5c1d1046ca11d737b92a2b2ebd93f005d...
Time.Started.....: Sun May 10 15:28:11 2020 (1 min, 0 secs)
Time.Estimated...: Sun May 10 15:29:11 2020 (0 secs)
Guess.Mask.......: ?l?l?l?l?l?l?l?l [8]
Guess.Queue......: 1/1 (100.00%)
Speed.#1.........: 248.1 MH/s (6.94ms) @ Accel:32 Loops:16 Thr:640 Vec:1
Recovered........: 0/1 (0.00%) Digests, 0/1 (0.00%) Salts
Progress.........: 15000008712/15000008712 (100.00%)
Rejected.........: 0/15000008712 (0.00%)
Restore.Point....: 853437/11881376 (7.18%)
Restore.Sub.#1...: Salt:0 Amplifier:17568-17576 Iteration:0-16
Candidates.#1....: wzvxrxba -> xqxmrbpe
Hardware.Mon.#1..: Temp: 69c Fan: 49% Util: 91% Core:1733MHz Mem:3504MHz

Started: Sun May 10 15:28:10 2020
Stopped: Sun May 10 15:29:13 2020

real 1m2.491s
user 0m4.364s
sys 0m1.448s

As we can see, the cracking session took exactly 1 minute. The remaining 2.491 seconds rep-
resented the overhead for the initialization of hashcat and its OpenCL kernels. Depending
on a concrete network, there is additional overhead for network communication, BOINC,
and other factors. The scheduling algorithm employed in Fitcrack, however, adapts to
such impacts without problems since it measures the overall time between assigning each
workunit and receiving its result. All additional delays are thus taken into account.

84

3.8.4 Hybrid Attacks

Hybrid attacks combine the dictionary attack (see Section 3.8.1) with the brute-force attack
(see Section 3.8.3). Hashcat supports two variations of hybrid attacks. The first combines
a dictionary on the left side with a mask on the right side. The second hybrid attack
works the opposite way, with the mask on the left and dictionary on the right side. Both
cases are illustrated in Figure 3.18. For the dictionary-based part, passwords are taken
from a password dictionary. For the mask-based part, the passwords are generated using
the brute-force technique. The generated candidate passwords are created using string
concatenation over the two parts. The resulting keyspace is:

𝑝 = |𝐷| *
𝑛𝑠∏︁
𝑖=1

|𝐶𝑖|

where 𝐷 is the dictionary used, 𝑛𝑠 is the number of substitute symbols in the mask, and 𝐶𝑖

is the character set substituted by 𝑖-th symbol of the mask. So that, the complexity equals
to 𝑚×𝑛, where 𝑚 represents the size of the dictionary while 𝑛 is the number of passwords
generated by the mask.

Figure 3.18: The principle of hybrid attacks

SSimilar to the combination attack, hashcat does not allow to control the keyspace of the
whole attack. With instructed to verify a single password using --limit 1, hashcat checks
the combination of one string from the left side and all strings from the right side. How
many actual candidate password correspond to a single unit of hashcat’s keyspace depends
on the variation of the hybrid attack:

• hybrid wordlist+mask - a single word from the dictionary concatenated with every
possible string created from the mask. The number of actual passwords equals the
keyspace of the mask.

• hybrid mask+wordlist - a single string generated from the mask concatenated with
every word from the dictionary.

85

Assume the examples from Figure 3.18 and hashcat started with --skip=0, --limit=1,
and --markov-disable that disables markov-based guessing (see Section 3.8.3). In the
first case, hashcat generates all possible candidate passwords with “Mary” on the left side,
i.e., “Mary1900” to “Mary1999”. In the second case, hashcat generates the first string
from the mask and combines it with all dictionary passwords. Therefore, it generates three
passwords: “000hello”, “000password”, and “000iloveyou”.

Distribution Strategies for Hybrid Attacks

Distributing hashcat-based hybrid attacks efficiently and precisely is a true challenge. Sim-
ilarly to the combination attack, we need to combine every left-hand password with every
right-hand one. Nevertheless, hashcat only applies the skip and limit parameters to the left
side. If there is a dictionary, the parameters control the number of dictionary passwords.
Vice versa, for a mask on the left side, the parameters limit the number of candidate pass-
words generated from the mask. Sadly, when the mask is on the right, it is always processed
entirely. There is no way to generate only part of the mask-created strings. Therefore, the
same strategy as with the combination attack cannot be used.

A naive solution is to generate all passwords beforehand and use a classic dictionary
attack. This approach allows to precisely control the size of each workunit, but at the
cost of efficiency. The overhead for generating and transmitting password guesses would be
enormous.

The early hashcat-based versions of Fitcrack used a compromise solution. With the
high-performance maskprocessor56 utility, the server created a dictionary of all possible
strings from the given masks. Then, the attack was transformed into a combination attack,
and the distribution followed the same strategy as proposed in Section 3.8.2. With the
two dictionaries, it was possible to control the size of workunits relatively precisely. Figure
3.19 shows an example of the original distribution of hybrid attacks. In the example, we
see the server first transforms the mask into a dictionary and then does the fragmenting
in the combination-like way. An advantage of the solution was that Fitcrack could the
use the left and right password-mangling rules (see Section 3.8.1) in the same way as with
the combination attack, although rules are normally not supported in hybrid attacks. The
solution worked well with smaller masks. However, with complex high-keyspace masks, the
initial overhead and the space requirements were not acceptable.

Figure 3.19: The original distribution strategy for hybrid attacks
56https://github.com/hashcat/maskprocessor

86

https://github.com/hashcat/maskprocessor

To allow using more complex masks and eliminate the overhead, starting from version
2.2.0, Fitcrack uses an entirely different strategy. Hashcat runs in the native hybrid attack
mode, and there is no need for the maskprocessor utility since no strings are pre-generated
anymore. The workunits are created as follows:

• For the hybrid mask + wordlist attack, the dictionary on the right side is frag-
mented in the same manner as in the combination attack. If necessary, the mask is
limited using the --skip and --limit parameters using Algorithm 4. This is entirely
safe since, for the hybrid attack mode, hashcat does not use the keyspace optimiza-
tion described in Section 3.6.4. The limit parameter thus precisely specifies the exact
number of strings generated from the mask. An example of the workunit distribution
is shown in Figure 3.20.

• For the hybrid wordlist + mask, the mask on the right is transformed into multiple
masks with lower keyspace using the newly-proposed Algorithm 6. To allow precise
control of the keyspace, Fitcrack creates custom character sets on-the-fly using the
GetCharsetSlice() function defined by Algorithm 5. If necessary, the dictionary on
the left is limited using the --skip and --limit parameters using Algorithm 4. An
example of workunit distribution with mask slicing is shown in Figure 3.21.

Client	#1

Client	#2

.	.	.

mask
Operator Server

fragment	#1

dict2.txt

mask

?d?d

fragment	#2

mask

?d?d
pass

#11–60

?d?d

POWER
1000

POWER
5000

size
1000

pass
#1–10

Figure 3.20: An example of the improved hybrid (mask+wordlist) attack distribution

Client	#1

Client	#2

.	.	.

maskOperator Server
dict1.txt

mask
fragment	#1

?d00

mask
fragment	#2

?d?10

?d?d?d

POWER
5000

size
100

dict1.txt
(with	1st
WU)

size
100

dict1.txt
(with	1st
WU)

size
100 POWER

1000

Figure 3.21: An example of the improved hybrid (wordlist+mask) attack distribution

87

Algorithm 5: The GetCharsetSlice() function for limiting character sets

Input: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 𝑐ℎ𝑎𝑟𝑠𝑒𝑡
Output: 𝑐ℎ𝑎𝑟𝑠𝑒𝑡𝑆𝑙𝑖𝑐𝑒

1: if 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 > |𝑐ℎ𝑎𝑟𝑠𝑒𝑡| * 0.75 then
2: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 = |𝑐ℎ𝑎𝑟𝑠𝑒𝑡|
3: else if 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑠𝑖𝑧𝑒 > |𝑐ℎ𝑎𝑟𝑠𝑒𝑡|/2 then
4: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 = |𝑐ℎ𝑎𝑟𝑠𝑒𝑡|/2
5: if 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 ≤ 1 then
6: return charset[0]
7: else
8: return charset[0:desiredSize]

Algorithm 6: Building a password mask with close to the desired keyspace.
Input: 𝑚𝑎𝑠𝑘, 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒
Output: 𝑚𝑎𝑠𝑘𝑆𝑙𝑖𝑐𝑒

1: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥
2: 𝑟𝑒𝑠𝑢𝑙𝑡𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 = 1
3: 𝑚𝑎𝑠𝑘𝑆𝑙𝑖𝑐𝑒 = []
4: forall 𝑠𝑦𝑚𝑏𝑜𝑙 ∈ 𝑚𝑎𝑠𝑘 do
5: if ¬𝐼𝑠𝐶ℎ𝑎𝑟𝑠𝑒𝑡(𝑠𝑦𝑚𝑏𝑜𝑙) then
6: continue
7: 𝑐ℎ𝑎𝑟𝑠𝑒𝑡 = 𝑠𝑦𝑚𝑏𝑜𝑙
8: 𝑐ℎ𝑎𝑟𝐼𝑛𝑑𝑒𝑥 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 mod |𝑐ℎ𝑎𝑟𝑠𝑒𝑡|
9: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 /= |𝑐ℎ𝑎𝑟𝑠𝑒𝑡|

10: if 𝑐ℎ𝑎𝑟𝐼𝑛𝑑𝑒𝑥 > 0 then
11: 𝑐ℎ𝑎𝑟𝑠𝑒𝑡 = 𝑐ℎ𝑎𝑟𝑠𝑒𝑡[𝑐ℎ𝑎𝑟𝐼𝑛𝑑𝑒𝑥 :] // Forced split
12: if 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 ≤ 𝑟𝑒𝑠𝑢𝑙𝑡𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 then // Desired keyspace reached
13: 𝑚𝑎𝑠𝑘𝑆𝑙𝑖𝑐𝑒 += 𝑐ℎ𝑎𝑟𝑠𝑒𝑡[0] // Add a single character
14: continue
15: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒/𝑟𝑒𝑠𝑢𝑙𝑡𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒
16: if 𝑐ℎ𝑎𝑟𝐼𝑛𝑑𝑒𝑥 == 0 && 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 ≥ |𝑐ℎ𝑎𝑟𝑠𝑒𝑡| then
17: 𝑚𝑎𝑠𝑘𝑆𝑙𝑖𝑐𝑒 += 𝑠𝑦𝑚𝑏𝑜𝑙
18: 𝑟𝑒𝑠𝑢𝑙𝑡𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 *= |𝑐ℎ𝑎𝑟𝑠𝑒𝑡|
19: else // Only a slice of charset should be added
20: 𝑚𝑎𝑠𝑘𝑆𝑙𝑖𝑐𝑒 += 𝐺𝑒𝑡𝐶ℎ𝑎𝑟𝑠𝑒𝑡𝑆𝑙𝑖𝑐𝑒(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒, 𝑐ℎ𝑎𝑟𝑠𝑒𝑡)
21: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 = 𝑟𝑒𝑠𝑢𝑙𝑡𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 // Do not add any more

22: return 𝑚𝑎𝑠𝑘𝑆𝑙𝑖𝑐𝑒

88

The example from Figure 3.20 is relatively simple. The mask produces 100 different strings,
and the dictionary has 1000 passwords. The first host needs 1000 passwords. Therefore, it
receives a workunit with the mask ?d?d without limiting, and the first ten passwords from
the right dictionary: 100 × 10 = 1000. The second host needs 5000 passwords, so it gets
the same unlimited mask and 50 dictionary passwords: 100× 50 = 5000.

The hybrid wordlist + mask attacks, on the other hand, use the mask slicing. I illustrate
the principle using two examples. Consider a hybrid attack with mask ?d?h?l on the right
side. Suppose that we want to send a mask with 20 passwords. The first substitute symbol
𝐶1 is ?d with 10 different possibilities for the first character: |𝐶1| = 10. The desired keyspace
is two times higher, so we leave the first symbol intact and proceed to the second one. The
second symbol is 𝐶2 = ?h, which stands for the character set containing 0123456789abcdef.
Thus |𝐶2| = 16 options. Nevertheless, the current keyspace is 10, and to get 20, we only
want to multiply the keyspace by 2. Therefore, we take the first two characters from ?h and
create a custom character set ?1 containing 01. After that, we reached the desired keyspace
of 20. Hence, no more multiplication is needed. Therefore, from the next substitute symbol
𝐶3 = ?l we take only the first character a. The slicing is completed, and we send the mask
?d?1a.

For the next workunit, suppose that we want a mask with keyspace 150. We already
processed 20 passwords from the mask because we used the first substitute symbol ?d with
keyspace 10 with the first two characters of ?h. From the ?h, 14 characters are remaining.
To avoid unnecessary complexity, the heuristic from Algorithm 5 forces Fitcrack to finish
the fragmented character set first. Therefore, the resulting mask is ?d?1a with the custom
character set ?1 containing 23456789abcdef. The workunit has a keyspace of 140, which
is as close to 150 as allowed in the current case.

Assume the third workunit should have the keyspace of 160. Therefore, we leave the
first two symbols ?d?h intact because they produce exactly the desired number. Since the
first 160 strings were already generated, we only need to change a for b as the next symbol
from the ?l character set. In this case, no custom character is necessary, and the resulting
mask is ?d?hb.

The second example follows the situation in Figure 3.21. Both the dictionary and mask
have a keyspace of 100. In this case, there are two options: either fragmenting the left
dictionary or slicing the mask. The illustration shows the slicing option. The first host
needs a workunit of 1000 passwords. Therefore, it receives the entire dictionary of 100
words and the slice ?d00 of the mask that produces ten strings: 100 × 10 = 1000. The
second host needs 5000 passwords. The sliced mask is ?d?10 where ?1 is the custom
character set containing 12345: 100× 50 = 5000.

3.8.5 PCFG Attack

The use of probabilistic context-free grammars (PCFG) for password cracking was originally
proposed by Weir et al. [213] The attack is based on the previous knowledge of user pass-
words whose structure is represented by a grammar. The grammar is a mathematical model
that describes the allowed forms of candidate passwords. Rewrite rules have probability
values assigned to denote what fragments of symbols will more occur in candidate pass-
words. The goal is to create more probable passwords first. Such probabilistic attacks offer
a time-space trade-off and high efficiency against human-created passwords. The keyspace
is usually much lower than with a brute-force attack, but higher than with a simple dic-
tionary attack with the original wordlist. The technique allows creating completely new

89

passwords that do not exist in the original dictionary. Chapter 4 describes the PCFG-based
attacks in detail.

An example of a PCFG attack is displayed in Figure 3.22. The input wordlist called
training dictionary contains two passwords. By an automated processing of the password,
we create a probabilistic grammar. Each rewrite rule has a probability value assigned. One
can see that rule “𝐴4→ 𝑙𝑜𝑣𝑒” has a higher probability value than rules “𝐴4→ 𝑝𝑎𝑠𝑠” and
“𝐴4→ 𝑤𝑜𝑟𝑑”. This is because “love” occurred twice in the training dictionary, while “pass”
and “word” only once. In the cracking session. Using the algorithms described in Chapter
4, we use different sequences of rules to rewrite the start nonterminal 𝑆 to obtain the strings
generated by the grammar - the candidate passwords (password guesses). We can calculate
the probability of each password as a product of probabilities of all applied rewrite rules.
The algorithms ensure that all possible passwords are eventually created. Moreover, they
are generated in the non-increasing probability order, so that more probable passwords are
produced first. The keyspace 𝑘 of a PCFG attack with grammar 𝐺 can be calculated as:

𝑘 =
∑︁
𝐵∈𝐺

𝑐𝑛𝑡_𝑏𝑎𝑠𝑒(𝐵). (3.6)

where the 𝐵 = 𝑁1𝑁2 . . . 𝑁𝑛 is a base structure, i.e., a sentential form created directly
from the start nonterminal. The 𝑐𝑛𝑡_𝑏𝑎𝑠𝑒(𝐵) calculates the number of possible password
guesses for that base structure. The detailed description of keyspace calculation is described
in Section 4.7.2.

love@love	(12.500%)
love!love	(12.500%)
love@word		(6.250%)
love!word		(6.250%)
love@pass		(6.250%)
love!pass		(6.250%)
word@love		(6.250%)
word!love		(6.250%)
pass@love		(6.250%)

pass!word
love@love

Input wordlist
(training dictionary)

Probabilistic context-free
grammar (PCFG)

OUTPUT: candidate passwords (password guesses)
in non-increasing probability order

S		-->	A4O1A4	(100%)
A4	-->	pass				(25%)
A4	-->	word				(25%)
A4	-->	love				(50%)
O1	-->	@							(50%)
O1	-->	!							(50%)

pass!love		(6.250%)
word@word		(3.125%)
word!word		(3.125%)
word@pass		(3.125%)
word!pass		(3.125%)
pass@word		(3.125%)
pass!word		(3.125%)
pass@pass		(3.125%)
pass!pass		(3.125%)

Figure 3.22: An example of PCFG password cracking

Distribution Strategies for PCFG Attacks

Similarly to the other attack modes, we need to deliver the passwords to the cracking nodes
somehow. A naive solution is to generate all candidate passwords on the server and use the
distribution scheme as with the dictionary attack. However, with the dictionary attack,
wordlists of passwords are prepared before the attack even starts. In the PCFG attack, the
input is a probabilistic grammar, not a wordlist. As discussed in Section 4.2.5, generating
password guesses is computationally complex and has high memory requirements [82]. The
process may take a significant amount of time, and often the grammar cannot be processed
entirely. Moreover, transferring the passwords in their final form has high requirements
on the network bandwidth, as I experimentally prove in Section 4.9.3. The experiments
also show that another drawback of the naive solution is limited scalability. Since all the
passwords are generated on a single node, the server may easily become a bottleneck of the
entire network.

90

Therefore, Fitcrack uses the distribution of preterminal structures (see Section 4.4.3),
i.e., sentential forms representing partially generated passwords. The idea utilizes the fact
that each preterminal structure produces passwords with the same probability. The server
only generates the preterminal structures (PT), while the terminal structures, i.e., the
candidate passwords, are produced by the cracking nodes.

To perform a PCFG attack, Fitcrack needs a probabilistic grammar in the format used
by Weir’s PCFG Trainer4. Fitcrack supports two ways of obtaining the grammar. The
WebAdmin either allows the user to upload a ZIP archive containing an already-created
grammar, or to select a password dictionary while the WebAdmin will let the PCFG Trainer
process it and create a grammar automatically.

To generate preterminal structures and password guesses, Fitcrack uses the enhanced
version of PCFG Manager10 proposed in Chapter 4. For distributed computing, the PCFG
Manager can be run either as a standalone server that generates PTs, or as a client that
generates the final password guesses. Both sides can communicate via gRPC13 and Protocol
buffers14, as described in Section 4.8.1. The concept is utilized in Fitcrack as well with
slight modifications since the client-server communication in BOINC is based on passing
input/output files. With each workunit of a PCFG attack job, two extra files are sent:

• preterminals - the file contains one or more preterminal structures that are used for
generating password guesses within the workunit.

• grammar - the PCFG grammar in a marshalled (serialized) form. The serialization
is performed by the Pcfg endpoint in WebAdmin backend (see Section 3.7.6) at the
time the grammar is created. The file is intentionally marked as sticky which implies
that BOINC will only send it once - with the first workunit.

When a user launches a PCFG attack, the PCFG Monitor daemon (see Section 3.7.7) starts
the PCFG Manager server to listen at a TCP port calculated as:

50050 + (𝑗𝑜𝑏𝐼𝑑 % 1000)

where 𝐽𝑜𝑏𝐼𝑑 is the ID of the corresponding job. This allows to run multiple PCFG attack at
the same time. Using the Connect() call, the Generator (see Section 3.7.1) then connects
to the running instance of the PCFG Manager server.

When creating a workunit, the Generator invokes GetNextItems() call to obtain one or
more preterminal structures. With the call, the Generator also specifies a keyspace value
that is necessary to enable the adaptive scheduling (see Section 3.6.5). In response, the
PCFG Manager server will then give the Generator a chunk of as many PTs as necessary to
generate as least the desired amount of password, and no more. An example is illustrated
in Figure 3.23. The exact match can not be guaranteed because different PTs may generate
different number of password guesses. The generator creates a preterminals file with all
obtained PTs. The preterminals file together with the grammar file represent the input
data for the new workunit.

On the client side, the Runner (see Section 3.7.11) launches an instance of PCFG Man-
ager client (see Section 3.7.7) and passes it the grammar and preterminals file. Using
a pipe, the Runner then connects standard output of the PCFG Manager to the standard
input of hashcat. The hashcat is started in wordlist attack mode without the specification
of a concrete dictionary, so that it reads all the passwords guesses directly from the pipe.
For cracking more complex hash algorithms, the PCFG Manager may generate guesses
faster than the hashcat manager to verify them. Thus, the Runner sets the pipe as buffered
and blocking to make the PCFG Manager wait if necessary.

91

Client	#1

Client	#2

.	.	.

Operator

Server

chunk	of	PTs

PCFG

POWER
1000

POWER
5000

PCFG Manager server

PCFG chunk	of	PTs
(keyspace	5000)

chunk	of	PTs
(keyspace	1000)

PCFG

PCFG

.	.	.

#1

#2

#1

chunk	of	PTs

#2

PT with keyspace 1500
PT with keyspace 3000
PT with keyspace 500

Figure 3.23: Example of PCFG attack distribution

3.8.6 PRINCE Attack

PRINCE (PRobability INfinite Chained Elements) is a modern password generation algo-
rithm that can be used for advanced combination attacks. Jens Steube designed this al-
gorithm to use only one vocabulary instead of two different dictionaries and then generate
chains of combined words. These chains can contain one to N words derived from the input
dictionary and concatenated together. The reference implementation of the algorithm, the
princeprocessor tool, is available57 under the MIT license.

Basic Components

The PRINCE algorithm is based on following components: elements, chains, and keyspace.

• Element - An element is the smallest entity representing a single unmodified word
from the input dictionary. All elements are sorted by their relevance (occurrence
frequencies), grouped by the length, and saved into the database of elements. The
database contains several tables, one for elements of each length. Table 3.8 shows
an example of elements and the table they are stored in.

Word Table
123456 6
password 8
1 1
qwerty 6
.

Table 3.8: Examples of elements

• Chain - A chain of length L is a sorted sequence of element lengths whose sum is L.
For example, a chain with its length 8 can be (1, 6, 1) or (8). For the length 𝐿 there
are 2(𝐿−1) different chains.

57https://github.com/hashcat/princeprocessor

92

https://github.com/hashcat/princeprocessor

Example: chain with length 4 can be created by the following elements:

– 4 letter word,
– 2 letter word + 2 letter word,
– 1 letter word + 3 letter word,
– 1 letter word + 1 letter word + 2 letter word,
– 1 letter word + 2 letter word + 1 letter word,
– 1 letter word + 1 letter word + 1 letter word + 1 letter word,
– . . .

• Keyspace - A keyspace is the number of all candidate passwords obtained by com-
bining all available elements. The algorithm combines the elements according to the
sorted sequence of lengths in the processed chain. For example, if we have X elements
of length 2 and Y elements of length 6 in our input dictionary, then the keyspace of
chain (6, 2) is 𝑋 * 𝑌 . Keyspaces of some chains from the RockYou dictionary are
shown in Table 3.9.

Chain Elements Keyspace
3 + 1 335 * 45 15 075
1 + 3 45 * 335 15 075
4 17889 17889
2 + 2 335 * 335 112 225
2 + 1 + 1 335 * 45 * 45 678 375
1 + 2 + 1 45 * 335 * 45 678 375
1 + 1 + 2 45 * 45 * 335 678 375
1 + 1 + 1 + 1 45 * 45 * 45 * 45 4 100 625

Table 3.9: Keyspace of chains with length 4 (passwords from rockyyou)

Algorithm 7 shows how the PRINCE algorithm works. The essential input is the dictio-
nary (D) from which the words are taken. The following inputs set the boundaries on gen-
erating passwords from word chains and ensure that the guessing process eventually ends.
The EMIN and EMAX parameters define the minimal and maximal number of words in a chain.
By setting both to 1, we get a classic dictionary attack without combinations. The other
two boundaries are PASSMIN and PASSMAX that represent the minimal and maximal number
of characters in generated passwords. Naturally, the EMAX and PASSMAX parameters have
a dramatic impact on the resulting keyspace. The last parameter is a boolean CASEPERM
that allows case permutation of the first letter in words. If enabled (when CASEPERM is
1), each word from D that begins with a letter is used twice: with a lowercase first let-
ter and with an uppercase first letter. This technique allows generating passwords like
“helloHowAreYou” from a dictionary 𝐷 = {𝑎𝑟𝑒, ℎ𝑜𝑤, 𝑌 𝑜𝑢,𝐻𝑒𝑙𝑙𝑜}, for instance.

If used with the princeprocessor tool, the only required input is D. Other parameters
are optional. If not defined, the application uses default values. At the time of writing this
thesis, the latest release of princeprocessor is version 0.22. Here, the default EMIN and EMAX
are 1 and 8. For password length settings, the default PASSMIN and PASSMAX are 1 and 16.
Case permutation is disabled by default. Besides, the tool provides some additional options
like calculating output password length distribution, eliminating duplicate words, saving
state, or storing the output into a pre-defined text file.

93

Algorithm 7: Pseudocode of PRINCE algorithm
Input: input dictionary (D), minimal number of elements in chain (EMIN),

maximal number of elements in chain (EMAX), minimal length of
passwords (PASSMIN), maximal length of passwords (PASSMAX), case
permutation (CASEPERM)

Output: password candidates
1 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑟𝑒𝑎𝑑_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐷);
2 𝑐ℎ𝑎𝑖𝑛𝑠 = [];
3 𝑐ℎ𝑎𝑖𝑛_𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒𝑠 = [];
4 while new_chain = combine_new_chain(elements, EMIN, EMAX, PASSMIN,

PASSMAX, CASEPERM) do
5 𝑐ℎ𝑎𝑖𝑛𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑤_𝑐ℎ𝑎𝑖𝑛);
6 for 𝑖← 0 to size(chains) by 1 do
7 𝑐ℎ𝑎𝑖𝑛_𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒𝑠[𝑖] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒(𝑐ℎ𝑎𝑖𝑛𝑠[𝑖]);
8 𝑠𝑜𝑟𝑡𝑒𝑑_𝑐ℎ𝑎𝑖𝑛𝑠 = 𝑠𝑜𝑟𝑡_𝑐ℎ𝑎𝑖𝑛𝑠_𝑏𝑦_𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒(𝑐ℎ𝑎𝑖𝑛𝑠, 𝑐ℎ𝑎𝑖𝑛_𝑘𝑒𝑦𝑠𝑝𝑎𝑐𝑒𝑠);
9 𝑝𝑟𝑖𝑛𝑡(𝑠𝑜𝑟𝑡𝑒𝑑_𝑐ℎ𝑎𝑖𝑛𝑠, 𝑠𝑡𝑑𝑜𝑢𝑡);

Distribution Strategies for the PRINCE Attacks

The PRINCE is another attack mode of Fitcrack that employs an external password gen-
erator. The input of the attack is a password dictionary and a set of options. For workload
distribution, there are few possible strategies. Similarly to the naive PCFG attack, it is pos-
sible to generate all candidate passwords on the server and send them through the network,
resembling a classic dictionary attack. Such a strategy, however, puts a significant load on
the server and creates a massive overhead for network communication. Another approach
is to divide the password creation by length, e.g., let one node generate passwords of one
length and another node passwords of another length, etc. Nevertheless, the length-based
distribution would create chunks of significantly different keyspaces. Such a method could
not be used for fine-grained workunit tailoring.

Luckily, the princeprocessor utility supports the --skip and --limit parameters, so
it is possible to use a strategy similar to the mask attack. Therefore, Fitcrack runs the
princeprocessor utility on the client and supplies hashcat with passwords using a pipe, as
illustrated in Figure 3.7. The key idea behind the PRINCE attack distribution is controlling
the tool by with the two options. With --skip=X, it skips the first 𝑋 candidate passwords
from the start. With --limit=Y, it generates exactly 𝑌 candidate passwords. No additional
optimizations from Section 3.6.4 are used by the princeprocessor tool.

With each workunit, Fitcrack assigns a password range of password indexes to all active
hosts according to their performance. This information about the password range is a part of
the configuration file of every PRINCE attack workunit. To determine the total keyspace
of a job, the WebAdmin backend asks the princeprocessor tool. Based on the selected
dictionary and options, it calculates the actual keyspace of the attack.

An example of attack distribution is shown in Figure 3.24. A user creates new PRINCE
attack job. The server receives the configuration of the job together with the user-specified
dictionary. Then, the Generator on the server side assigns a keyspace range to every active
client according to the benchmarked “power” of the client. This range info is a part of the
config of every workunit.

94

Client	#1

Client	#2

.	.	.
dict.txtAdministrator

Server

PRINCE
config,
keyspace
range

#101–600

size
100	000

POWER
50

POWER
10

PRINCE
config

princeprocessor

dict.txt,
PRINCE
config

PRINCE
config,
keyspace
range
#1–100 princeprocessor

PRINCE
config,
keyspace
range
#1–100

PRINCE
config,
keyspace
range

#101–600

candidate	passwords

candidate	passwords

com
puted	keyspace

Figure 3.24: Scheme of PRINCE attack distribution

The Runner on the client launches the princeprocessor tool with options --skip and
--limit to generate assigned range of candidate passwords using the PRINCE algorithm.
Runner internally connects princeprocessor to hashcat using a pipe, so that hashcat can
verify the candidate passwords as soon as they are available as the output of princeprocessor.

95

3.9 Experimental Results
This section aims to verify the usability of the proposed Fitcrack system, related principles,
and techniques. Using different scenarios, I illustrate the practical impact of the algorithms
integrated to Fitcrack’s subsystems. Moreover, I present a series of comparisons with the
Hashtopolis tool. At the time of writing this thesis, Hashtopolis is most likely the only
other maintained open-source hashcat-based distributed password cracking solution.

The experiments are structured into multiple sections that analyze different aspects
of the system. Section 3.9.1 studies the general properties of workload distribution for
password cracking tasks. It analyzes both CPU and GPU-based networks and answers
what kind of assignments are worth distributing. The large-scale experiments with up
to 55 physical computers also examine the efficiency and overhead of distributed attacks.
Section 3.9.2 illustrates the practical impacts of the adaptive scheduling algorithm proposed
in Section 3.6.5. It discusses the problem of benchmark accuracy and its impacts. The
included experiments also compare the old and new method for benchmarking. The rest
of the sections study the distribution strategies for different attack modes, described in
Section 3.8. The examined metrics involve not only the absolute cracking time, but also
the performance, efficiency, scalability, and other aspects. I compare different attack modes
in terms of password guessing complexity, the overhead for network transfer, and feasibility
for cracking simple and complex hash algorithms.

3.9.1 The Time and Efficiency

Before proceeding to the actual scheduling algorithms and distribution strategies, I want
to study the efficiency and other properties of distributed cracking in general. The goal is
to analyze if and when the attack is worth distribution, the difference between CPU and
GPU nodes, and the scalability of such attacks.

This section describes a series of large-scale experiments on up to 55 physical comput-
ers. I performed these early experiments in 2016 using the original non-hashcat version
of Fitcrack with custom-made OpenCL cracking kernels [81]. Unfortunately, at that time,
I did not have access to that high number of GPU nodes. Therefore, most of the hosts
are CPU-based. Nevertheless, it does not matter since the principles are still the same.
Later experiments showed me that GPU-based networks have similar behavior; only the
performance is generally higher.

Computing Network

The experiments were performed using 2, 4, 8, 16, 37, and 55 CPU hosts and using 1, 2,
and 4 GPUs on a single GPU host. Table 3.10 shows the hardware configuration of the
nodes. The last line shows the password cracking performance of a single GPU. Each line of
the table describes one group of nodes involved in computing. The displayed performance
corresponds to the benchmark tests on a given processor. The employment of CPU nodes
was from top to bottom, e.g., A 37-node attack used 16 nodes with Intel i5-4460, and 21
with Intel i3-4340, etc. We can also see that the benchmarked performance of the GPU
node is much higher. A single AMD Radeon R9 Fury X unit is “strong” as 15 individual
Intel i5-4460 processors (15 * 8 M = 120 M).

96

Nodes Processor Performance [p/s]
1–16 Intel i5-4460, 3.2 GHz ~ 8,000,000
17–37 Intel i3-4340, 3,6 GHz ~ 5,000,000
38–55 Intel E8400, 3,0 GHz ~ 2,700,000
GPU AMD Gigabyte R9 Fury X, 4 GB ~ 120,000,000

Table 3.10: The configuration of working nodes

Processing the Entire Keyspace

All experiments used the classic incremental brute-force attack on an encrypted PDF 1.7
revision 5 file. In the first scenario, I tested the worst-case cracking time, i.e., the time
required to generate and verify all candidate passwords. The alphabet contained lowercase
Latin letters. For each configuration of the cracking network, I created five jobs. Each with
a different maximum password length: 5, 6, 7, 8, and 9. Table 3.11 shows the total keyspace
of all jobs. For example, with a maximum length of 5, we need to test 26 + 262 + 263 +
264 +265 = 12, 356, 630 different passwords. The complexity grows exponentially with each
extra position. I ran these five jobs using the following network configurations: a server +
2, 4, 8, 16, 27, and 55 CPU nodes; and a single node with 1, 2, and 4 GPUs.

Maximum length Keyspace
5 12,356,630
6 321,272,406
7 8,353,082,582
8 217,180,147,158
9 5,646,683,826,134

Table 3.11: The keyspace of worst-case cracking jobs

Table 3.12 displays the absolute cracking time in seconds. The most time-exhausting
experiment was the maximum length of 9 on 8 CPU hosts, which took over 23 hours.
Therefore, I made an exception and have not tried this job on 2 and 4 nodes because it
would take more than a day. See also the opposite extreme. The values measured for the
easiest job do not even correlate with the available computational power. The assignment
is simply too easy to be computed on multiple devices. Cracking with four GPUs was even
longer than with one or two since the computer spent time with a pointless initialization
of another two cards.

Maximum Number of nodes
pass. length 2 4 8 16 27 55 1 GPU 2 GPU 4 GPU

5 100 101 93 104 60 100 3 3 4
6 130 132 132 134 87 99 6 4 4
7 714 415 236 167 186 184 74 39 21
8 13 125 7 051 3 679 2 025 1 177 1045 1 885 961 475
9 – – 82 962 45 567 24 011 19 779 49 196 25 120 12 379

Table 3.12: Time (in seconds) of distributed CPU and GPU-based password cracking

First, I analyze the distributed CPU-based approach. Figure 3.25(a) shows the cracking
time in seconds of jobs of the maximum password length between 5 and 8. For passwords

97

up to the maximum length of 6, the cracking is so quick that adding new nodes does not add
any substantial acceleration. For 7-character passwords, the distribution was still profitable
with a 16-host network, but increasing the number of hosts to 27 and 55 did not bring any
good. The added overhead for communication with the redundant nodes only extended
the overall time. The 8-character job, however, employed 27 hosts without any problem.
Figure 3.25(b) shows the same for lengths 8 and 9 with 8+ nodes. We see very similar
progress only with a different scale of the Y-axis. For 9-character passwords, the advantage
of distributed computing is evident. Cracking on two or four CPU nodes is impossible to
perform within a day. Eight nodes could find the password in 82 962 seconds (approx. 23
hours) while 55 nodes in 19 779 seconds (5.5 hours). Overall, more complex jobs scaled
well, even with a higher number of hosts. Also, do not forget that nodes 17–37 had a lower
performance than the first 16, and 38–55 even lower, as described in Table 3.10. If all nodes
had the same performance, I assume, the scalability would be much closer to linear.

(a) 5 to 8 characters (b) 9-character password compared with 8-character

Figure 3.25: Worst-case cracking time on CPU nodes

It is interesting to compare these results with the GPU-based version. For jobs up to the
length of 8, Figure 3.26(a) shows the cracking time, but this time on GPU. On the X-Axis,
we see the number of employed GPU units. The 5 and 6-character passwords were cracked
almost instantly, even with a single GPU. Similarly to the distributed solution, multi-GPU
cracking was advantageous for passwords of 7 characters and longer. The absolute cracking
time of 8-character passwords on one GPU processor corresponds was close to the result
obtained with 16 CPU nodes. Figure 3.26(b) displays the results for 8 and 9-character
jobs. We see the scalability is almost linear. 9-character passwords can be processed within
49 196 secs (13.6 hours) on 1 GPU and in 12 379 secs (3.4 hours) on 4 GPUs.

While the measured cracking times provide a basic overview of the cracking networks’
capabilities, they do not directly document the actual utilization. Therefore, I measured
the actual processing times of individual workunits or all nodes to calculate the cracking
efficiency. Page et al. define the efficiency of distributed computing as “the percentage of
the time that processors actually spend processing rather than communicating or idling”
[146]. For example, assume that a job that lasts 100 minutes has an efficiency of 70 %. In
this case, 1 hour and 10 minutes are spent by actual cracking, and the remaining 30 minutes
are the overhead for communication and synchronization. The efficiency 𝐸ff is computed

98

(a) 5 to 8 characters (b) 9-character password compared with 8-character

Figure 3.26: Worst-case time of GPU-accelerated cracking

using the following formula:

𝐸ff =

∑︀𝑁
𝑥=1 𝑡𝑥

𝑁 * 𝑇𝑓𝑖𝑛

where 𝑁 is the number of nodes that participated in the computing, 𝑡𝑥 is the the real time
node 𝑥 spend by processing, and 𝑇𝑓𝑖𝑛 is the wall clock time of the entire job from start to
the end. Naturally, 1−𝐸ff is the overhead. The efficiency of all previously described jobs is
displayed in Figure 3.27. The X-axis represents the maximum password length that defines
the complexity of the job. The Y-axis shows the efficiency. Each color line is a different
configuration of the cracking network.

The graph shows that the longer the maximum password is, the more efficient cracking
we can achieve. The efficiency of cracking short passwords is low since the jobs are too easy
and employ more resources than needed. Therefore, the overhead for the initial benchmark-
ing, sending workunit assignments, and reporting results, is much higher in terms of the
entire job. In contrast, in a job that lasts multiple hours, several seconds of a benchmark
is neglectable. Also, the single-machine GPU approach is more efficient because there is
no overhead for intra-node communication. We can see, no matter what cracking network
we have, the trend is ascending in all cases. With the increasing complexity of the job,
the efficiency gets closer to 100 %. In other words, for every cracking network, we can
find a task difficult enough to employ it efficiently. If a job is too easy to utilize all nodes
efficiently, we can use only some of them.

Undoubtedly, the experiment showed that distributed cracking is efficient and advan-
tageous if the cracking network is selected adequately to the job’s complexity. We also see
the high potential of GPUs. In this case, a single powerful GPU node could beat an entire
network of CPU nodes. However, this experiment purposedly employed a relatively simple
algorithm and had an alphabet limited to lowercase letters. For more complex algorithms or
stronger passwords, we would need to use multiple GPU nodes. Down below in this chapter,
I also show various experiments with the actual distributed cracking on GPU nodes using
different attack modes. Nevertheless, the principles of the relation between the network
size, job complexity, cracking time, and efficiency, described in this section, are still the
same.

99

Figure 3.27: Efficiency of the distributed computing

Random Password Cracking

The previous scenario analyzed the worst-case time that is required to process the entire
keyspace. In real cases, this is often not necessary since the correct password could be
found much earlier. To simulate the real situations more precisely and study the dispersion
of different possible cracking sessions, I decided to perform another series of experiments.
The next scenario uses the same PDF format with the same 2, 4, 8, 16, 37, and 55 hosts.
The difference is that the passwords are random. For each host configuration and password
length, I generated ten different random passwords. Then, I measured how long it takes
for the system to crack them. Like in the previous experiments, the password generating
started from one-character passwords and subsequently continued to longer ones.

Figure 3.28(a) shows the results of cracking random 6-character passwords. All jobs
were too simple to be even worth distributed computing. Hence, there is no correlation
between the number of hosts and cracking time. Cracking 5-character passwords produced
a similar outcome. The actual benefit of distributed computing came with cracking 7 and
8-character passwords. Figure 3.28(b) shows the times for the 8-character ones. Increasing
the number of nodes up to 4, 8, and 16 reduced the cracking time dramatically. Additional
nodes, however, brought no further speedup. This expected trend is very similar to the
previous experiment. The results further validate the principles described above. Above
all, the size of the cracking network should match the complexity of the given task.

The Cost Model

An important question of forensic experts is what the cost of the password cracking is?
Therefore, this section compares the cost models for cracking networks used in previous
experiments. Concretely, CPU nodes 1 to 16 and a host with GPUs from Table 3.10. For
each node, I calculated the total price of its hardware. Table 3.13 provides an overview
of the cost of working nodes based on 2015 prices. The unit price is a price of processing
1,000,000 PDF 1.7 passwords per second on the given hardware. The unit price is constant
for distributed computing on nodes with the same configuration. In our case, it is $79. The

100

(a) Password length up to 6 characters (b) Password length up to 8 characters

Figure 3.28: Random password cracking

unit price of GPU solutions is lower when inserting additional GPU cards. Please note that
the price considers the entire computer, not only the processors. The motherboard, disks,
RAM, PSU, and other parts are taken into account as well.

The table shows that the GPU-based solutions are much cheaper than CPU-based crack-
ing, even using a cluster. If the cluster is already available, then the distributed solution
can provide an alternative to the high-performance multi-GPU node with high initial costs.
Also note, with a change of PSU and RAM, each CPU node from the cluster is upgradeable
to a GPU one. The investment of about $1000 could change the power from 8 to 120 million
passwords per second.

Node(s) Speed Price Unit price
(pwd / sec) (USD) USD

1 8,000,000 639 79
2 16,000,000 1278 79
4 32,000,000 2556 79
8 64,000,000 5 112 79
16 128,000,000 10 224 79

1 GPU 120,353,069 2 337 19
2 GPU 240,706,138 3 151 13
4 GPU 481,412,276 4 440 9

Table 3.13: Relative cost of the solution

Another important factor connected with the cost model is energy consumption, dis-
played in Table 3.14. The first two columns show the power consumption (in Watts) of
working nodes during an idle state and processing (load state). The next two columns
represent the real costs of cracking the PDF 1.7 secured by passwords of lengths 8 and 9
with the unit price of $0.12 per kWh. The table shows that the power consumption of the
16-node cluster is similar to a 4-GPU node. However, the prices of energy consumed to
perform the jobs are lower on GPU because of faster computing. The jobs can be processed
there in a much shorter time.

101

Node(s) Idle Load Price L8 Price L9
(W) (W) (USD) (USD)

1 31 58 - -
2 62 116 0.0493 -
4 124 232 0.0518 -
8 248 464 0.0531 1.2678
16 496 928 0.0561 1.3437

1 GPU 182 370 0.0232 0.6067
2 GPU 182 541 0.0173 0.4530
4 GPU 182 856 0.0135 0.3532

Table 3.14: Power consumption and the cost

The overall power consumption (in watt-hours) is calculated as the electrical power
consumed during the effective computing (𝑃𝐿𝑜𝑎𝑑) and the power consumed during the idle
time (𝑃𝐼𝑑𝑙𝑒): 𝑃𝑇𝑜𝑡𝑎𝑙 = (𝑁*𝑇𝑓𝑖𝑛*(𝐸ff*𝑃𝐿𝑜𝑎𝑑+(1−𝐸ff)*𝑃𝐼𝑑𝑙𝑒)) / 3600, where 𝑁 is the number
of nodes, 𝑇𝑓𝑖𝑛 is the wall clock time of the entire job, 𝐸ff is the efficiency, 𝑃𝐿𝑜𝑎𝑑 and 𝑃𝐼𝑑𝑙𝑒

are the power consumption during the password cracking and the idle state, respectively.
The total power consumption spent on cracking password of length 5 to 8 on CPU and
GPU nodes is shown in Figure 3.29.

Figure 3.29: Power consumption of the computing

In terms of power consumption, the password cracking is generally more efficient on
GPU cards than CPU units. An interesting observation is that when we add new CPU
nodes, the total power consumption 𝑃𝑡𝑜𝑡𝑎𝑙 softly rises. On the GPU machine, adding new
units decreases the total consumption. The reason is that the job is over much earlier, even
though the peak power consumption is higher. Another cause is that in the experiments,
GPU units shared the same motherboard and PSUs. Adding a new GPU did not require
starting another computer.

102

3.9.2 Adaptive Scheduling

This section shows how the proposed adaptive scheduling algorithm [81, 84] affects generat-
ing workunits. Firstly, it illustrates the impact of the algorithm in different phases of a job.
Secondly, we explore how the system reacts to a sudden change in a host’s performance.
Finally, it compares the original solution for benchmarking with the improved one.

Fitcrack’s Scheduling Algorithm

Fitcrack and Hashtopolis tools allow the user to specify the chunk size as the desired num-
ber of seconds for processing each workunit. In Fitcrack, the setting is called seconds per
workunit. Based on the benchmark of hosts, performed at the start of each cracking job,
both systems try to create fine-tailored workunits to fit the defined chunk size. While Hash-
topolis strictly respects the user-entered chunk size and uses the same tailoring mechanism
from the very start till the end, Fitcrack utilizes the ramp-up and ramp-down techniques.
The details and motivation are described in Section 3.6.5.

Figure 3.30 illustrates the practical impact of the original scheduling algorithm using
an experiment with a brute-force attack on SHA-1 hash. The attack employed 8 hosts with
NVIDIA GTX 1050 Ti GPU and a password mask made of 10 lowercase letters (10x ?l).
The seconds per workunit was 10 minutes, i.e., 𝑡𝑝𝑚𝑎𝑥 = 600. The system-wide settings were
𝛼 = 0.1 and 𝑡𝑝𝑚𝑖𝑛 = 60.

(a) Workunit size in job phases (b) Job progress

Figure 3.30: Illustration of adaptive workunit scheduling

The chart in Figure 3.30(a) illustrates how workunit size changes over time. It displays
8 concurrent progresses with a different color for each node, however, we can see they
precisely overlap. This is an anticipated result since all nodes had the same GPUs and
no link outage, or computation error occured. According to the algorithm’s specification,
two changing variables modify the workunit size: the elapsed time from start (𝑡𝐽), and
the remaining keyspace (|𝑃𝑅|). The cracking took the interval of 5 hours and 35 minutes,
and the job progress chart is divided into three distinguishable parts. The initial phase,
where 𝑡𝐽 ≤ 𝑡𝑝𝑚𝑎𝑥, showed the ramp-up and took approximately the first 10 minutes. At
that time, the Generator did not create full-size workunits. Next, the main phase displays
workunits of the same size being assigned in 10-minute intervals, which correlates with the

103

user-entered chunk size (𝑡𝑝𝑚𝑎𝑥). Thanks to the distribution coefficient alpha, no more than
10 % of the remaining keyspace was distributed in any workunit. Therefore, in the final
phase, we can see the ramp-down. The workunits shrank progressively, as expected. They,
however, did not shrink infinitely. Once they reached the 𝑡𝑝𝑚𝑖𝑛, the ramp-down stopped.
Figure 3.30(b) displays the job progress over time. We can see, the trend is, more or less,
linear. The behavior of the scheduling algorithm meets its goals. After the initial ramp-up,
the workunit size stabilizes. Workunits get smaller again at the end of the job to utilize all
hosts by all means.

Adaptability

In an unstable environment, a host’s performance may change over time. If another process
utilizes the computer, the cracking speed may suddenly drop. In this experiment, I illustrate
that the system can react appropriately to such an event. Moreover, I want to show that
the ramp-up correctly converges to a stable state for nodes where no unexpected event
occurs.

Therefore, I purposely chose hosts of different types and performance. To make the
results comparable, I used faster CPUs and a slower GPU. The job was cracking an en-
crypted PDF 1.7 revision 5 (see Section A.1.1) using a brute-force attack. The reason for
brute-force was to eliminate a possible impact of transferring dictionary passwords over the
network. The cracking network consisted of four hosts, described in Table 3.15. The table
also shows their performance measured by a benchmark.

Name Processing unit Performance [p/s]
Node A Intel(R) Core(TM) i5-4200U @ 1.60 Ghz ~ 2,700,000
Node B Intel(R) Core(TM) i7-5930K @ 3.50 Ghz ~ 14,800,000
Node C Intel(R) Core(TM) i5-3570K @ 3.40 Ghz ~ 9,270,000
Node D AMD Radeon R5 M255 ~ 8,800,000

Table 3.15: Processing units and performance of hosts

Figure 3.31 displays the time points where workunits began and ended. The value of the
Y-axis is the workunit size. We can see that despite the high potential of GPGPU, cracking
on high-end CPU like Core i7-5930K can be faster than on low-end notebook graphics like
Radeon R5 M255. I analyzed the workunit assignment at the beginning of the cracking.

At a marked time point, I intentionally added extra load to CPU threads of node B,
causing its performance to go down. The sudden drop in cracking speed increased the
processing time of the third workunit. We may see that after the initial ramp-up, the size
of the workunits assigned to hosts A, C, and D became stable. Fore node B, the situation is
different. Since the server received its result later than expected, it recalculated its 𝑣𝑖 and
made the following workunits smaller to match the desired processing time 𝑡𝐽 . Once the
load was removed, the algorithm reacted again by increasing the size of the next workunits
for host B. In contrast, the keyspace of workunits assigned to nodes A, C, and D was
relatively fixed.

The experiment showed that the algorithm behaves as expected. It calculates the worku-
nit size accordingly to the performance of nodes. Moreover, it quickly adapts to a sudden
change.

104

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

4.5E+09

0 400 800 1200 1600 2000 2400

W
or

ku
ni

t s
iz

e
[p

as
sw

or
ds

]

Time [s]

Host A Host B Host C Host D

Load added to host B Load removed from host B

Figure 3.31: Fitcrack’s reaction to an additional load

Improved Benchmarking

As discussed in Section 3.6.5, the baseline for workunit scheduling is the initial benchmark
that is often inaccurate. To make a clear image, I performed a series of tests using different
GPUs (NVIDIA, AMD) and hash algorithms (MD5 [172], SHA-1 [97], SHA-512 [76], and
Whirlpool [188]) of a different computing complexity.

Table 3.16 shows the graphic cards used for the experiment. For each GPU, it shows
the core clock, number of stream processors, effective memory clock, memory bandwidth,
and the total memory capacity. I intentionally chose different classes of cards from both
manufacturers to provide a clearer image of how the GPU selection affects the cracking
sessions. NVIDIA GTX 1050 Ti and AMD Radeon RX 460 are low-end cards whose main
advantage is value. The NVIDIA GTX 1080 Ti, AMD Radeon RX Vega, and AMD Radeon
Fury X are high-end cards representing the best what the companies offered at the year of
release.

The experiment compares the performance obtained using Hashcat’s benchmark option
with the actual performance of real cracking. Concretely, with a brute-force attack using
7x?a mask, and a dictionary attack using a 1.1 GB wordlist. The measured cracking
performances are shown in Table 3.17. For a brute-force attack, the actual cracking is
significantly slower than the benchmark reports. For the dictionary attack, the measured
speed is only a small fraction of the benchmark result. This result makes sense since
hashcat needs to load and cache dictionary passwords, making the cracking operations much
slower. Empty columns stand for OpenCL “CL_OUT_OF_RESOURCES” error, which
occurred due to insufficient memory on the given GPU. It seems hashcat’s implementation
of Whirlpool cracking kernel has a high space complexity. I encountered this problem when
trying to compute Whirlpool on AMD Radeon RX 460 and AMD Radeon R9 Fury X.

105

GPU
Stream processors Memory
Clock Amount Eff. clock Bandw. Cap.
[Mhz] [units] [Mhz] [Gb/s] [MB]

NVIDIA GTX 1050 Ti 1,291 768 7,008 112 4,096
NVIDIA GTX 1080 Ti 1,480 3,584 11,008 484 11,264
AMD Radeon RX 460 1,090 896 7,000 112 2,048

AMD Radeon RX Vega 64 1,247 4,096 1,890 485 8,192
AMD Radeon R9 Fury X 1,050 4,096 1,000 512 4,096

Table 3.16: Comparison of hardware specifications of used GPUs

Performance [Mh/s]
GPU Algorithm Benchmark Brute-force Dictionary

NVIDIA GTX 1050 Ti

MD5 6310 2425 21.00
SHA-1 2022 1540 9.10

SHA-512 302 47 14.00
Whirlpool 66 58 16.00

NVIDIA GTX 1080 Ti

MD5 35401.5 11267.3 29.40
SHA-1 11872.3 7263.8 29.10

SHA-512 1416.9 192.3 25.50
Whirlpool 338.9 306.3 26.70

AMD Radeon RX 460

MD5 4186 1277 7.00
SHA-1 1400 800 7.70

SHA-512 155 41 4.56
Whirlpool - - -

AMD Radeon RX Vega 64

MD5 26479 8134 41.46
SHA-1 9260 5664 45.92

SHA-512 1212 751 40.49
Whirlpool 699 332 39.57

AMD Radeon R9 Fury X

MD5 17752 5548 9.40
SHA-1 17754 3785 9.30

SHA-512 534 75 7.90
Whirlpool 527 257 -

Table 3.17: Difference between hashcat’s benchmark and real attacks

106

The observed differences motivated me to change the benchmarking in Fitcrack. The
classic benchmark option was too inaccurate. An alternative --speed-only, used in Hash-
topolis, does not consider salted hashes. Therefore, Fitcrack’s Runner subsystem starts an
actual cracking session for a short time, as described in Section 3.6.

To compare the old and new benchmarking methods, I conducted another series of ex-
periments that show the practical impact on actual cracking tasks. The goal here was to
let Fitcrack create workunits whose processing will take as close to 300 seconds as possible.
The experiments use a dictionary attack, a PCFG attack with an external password genera-
tor, and variations of a mask brute-force attack. The first one is without the Markov-based
(see Section 3.8.3) guessing, the other two use a 3D Markovian model with the default
hashcat.hcstat file. The experiments employ three different formats and also explore the
impact of a cryptographic salt. The 7z format is computationally the most complex. The
moderate SHA-512 was supplemented with a cryptographic salt. Finally, MD5 is easiest-to-
compute, but the attack was performed on 20 hashes, each with a unique salt. The ramp-up
was intentionally disabled to ensure Fitcrack calculates the first workunit’s keyspace from
the benchmarked performance only. For the purpose of this experiment, the ramp-up was
intentionally disabled to let the scheduling system create full-sized workunits from the very
beginning.

Table 3.18 shows the results. Both versions display the processing time of the first
workunit and its percentual difference from the desired 300 seconds. The last column shows
the difference between the old and the new version. All experiments show a noticetable
improvement. We can see a dramatic change in the dictionary attack. As discussed, above
the actual performance of the dictionary attack in the old version was very inaccurate
from the benchmark. The greatest improvement was achieved in the last measurement.
Every cryptographic salt means that the hash needs to be recomputed again. The reason
is discussed and illustrated in Section 3.1.1. Since we have 20 different salts, the initial
workunit could have been up to 20 times longer than the server estimated. Based on the
results, I state that the improved benchmarking technique is definitely far more accurate.

Job Old version New version Change
Attack Format Time [s] Diff Time [s] Diff Diff

dictionary 7z 1445 +482% 360.45 +20% 462%

PCFG 7z 355.57 +19% 291.71 −3% 16%

mask SHA-512+salt 97.796 −67% 316.48 +5% 62%

mask+markov SHA-512+salt 124.93 −58% 315.64 +5% 53%

mask+markov 20x MD5+salt 3570 +1090% 323.98 +8% 1082%

Table 3.18: Old and improved benchmarking for 𝑡𝑝𝑚𝑖𝑛 = 300

107

3.9.3 Distributed Dictionary Attack

In this section, I analyze the distribution strategies for the dictionary attack. This attack
mode is the most extensive to network transfer. There is no mask or grammar, neither any
special algorithm for generating guesses. The server sends the actual candidate passwords
in their final form, and the hosts use them directly to compute hashes. As described in
Section 3.8.1, there are two basic strategies. The first method, used in the Hashtopolis tool,
is to send the entire dictionary to all nodes. Then, the nodes receive ranges of password
indexes, which serve as dictionary offsets. The other one, used in Fitcrack, is to distribute
smaller dictionary fragments. To test both, I compare the two tools on a series of distributed
GPU experiments. The computing network consisted of a server and 8 nodes equipped with
NVIDIA GTX 1050 Ti, interconnected using a switch and 1 Gb/s Ethernet links.

To obtain comparable results in fair conditions, I measured the total time consisting
of the: a) the benchmarking, b) data transfer, and c) the actual cracking. Fitcrack’s
total cracking time displayed in WebAdmin includes all these phases, while Hashtopolis
displays only the last one. Moreover, Hashtopolis does not have a “start button”. The
cracking in Hashtopolis starts immediately once a task (equivalent to a job) has any agents
(equivalent to hosts) assigned to it, and the agents are active. Therefore, I created an
extra PHP extension that assigns and activates all agents at once. From that moment, it
measures the time until the result of the last chunk is reported to the server [84]. Another
metric used is the number of chunks generated and assigned to hosts. While Hashtopolis
performs the benchmarking separately from the actual chunks, Fitcrack uses special zero-
keyspace workunits. Thus, for comparison, I define that a chunk in Fitcrack equals to
a non-benchmarking workunit.

It makes no sense to use small dictionaries for a distributed attack since a single ma-
chine can usually process them immediately. Therefore, I decided to use larger ones. The
distributed dictionary attack was done using four dictionaries with sizes from 1.1 GB to
8.3 GB, and the chunk size set to 60 seconds. The correct password was, in all cases,
intentionally placed at the end of each dictionary to force Fitcrack process it entirely. The
experimental results are shown in Table 3.19, where for each attack, I show the total time,
and the number of chunks generated. The hash algorithms used were SHA-1 [97], which is
easier-to-calculate, and Whirlpool [188], which is more complex. The experiments compare
three versions of Fitcrack. Their implementation details are narrowly described in Section
3.6.5. The naming of the versions is following:

• Fitcrack-1 — the original version with the old benchmarking,

• Fitcrack-2 — Fitcrack with the improved benchmarking, and

• Fitcrack-3 — Fitcrack with the improved benchmarking and pipeline processing.

See that in the first approach, marked as Fitcrack-1, the Generator created a single big
chunk. Therefore, only one node from the entire network was actually cracking. The
reason for such behavior is the inaccuracy of the hashcat’s default benchmark mode. The
measured performance is much higher than is possibly achievable with a real attack. This
phenomenon is discussed and experimentally tested in Section 3.9.2, concretely Table 3.17.
Despite there was only a single node working, Fitcrack was still faster except using the
smallest dictionary. Hashtopolis wasted a lot of time by sending the entire dictionary to all
eight nodes, even though the smallest one could be processed relatively quickly using just
a single node.

108

SHA-1
Dictionary Fitcrack-1 Fitcrack-2 Fitcrack-3 Hashtopolis

size keyspace time ch. time ch. time ch. time ch.
1.1 GB 114,076,081 3m 15s 1 3m 18s 2 2m 40s 2 2m 22s 10
2.1 GB 228,152,161 4m 27s 1 3m 20s 4 3m 28s 4 4m 52s 20
4.2 GB 456,304,321 6m 5s 1 4m 34s 8 4m 2s 8 11m 14s 40
8.3 GB 912,608,641 12m 49s 1 10m 1s 13 4m 58s 16 32m 6s 80

Whirlpool
Dictionary Fitcrack-1 Fitcrack-2 Fitcrack-3 Hashtopolis

size keyspace time ch. time ch. time ch. time ch.
1.1 GB 114,076,081 3m 15s 1 3m 36s 2 3m 11s 2 2m 39s 26
2.1 GB 228,152,161 4m 36s 1 3m 25s 4 3m 14s 4 5m 56s 52
4.2 GB 456,304,321 8m 0s 1 4m 0s 8 4m 17s 8 12m 13s 105
8.3 GB 912,608,641 17m 31s 1 8m 42s 15 5m 2s 16 46m 47s 208

Table 3.19: Dictionary attack using 8 nodes, chunk size = 60s

With Fitcrack-2, the improved benchmarking technique allowed the scheduling algo-
rithm worked with a much more precise value. Fitcrack was thus able to distribute the
work appropriately to the performance of hosts. Naturally, more chunks are created as the
benchmarked values were not so high as in the previous case. There was also a significant
speedup for bigger dictionaries thanks to better utilization of resources.

The pipeline processing introduced in Fitcrack-3 helped to eliminate the overhead for
wordlist transfer. With the 8.3 GB dictionary, the hosts were processing the first chunk and
downloading the next one simultaneously. As a result, the total time required to complete
the job became much shorter.

To illustrate the influence of the wordlist size on the overall cracking time, I depicted
the results in graphs. Figure 3.32 displays the total time based on the dictionary size for
the SHA-1 algorithm. Figure 3.33 shows the same for the Whirpool case. The trends of
both charts are similar.

dictionary size [GB]

to
ta

l t
im

e

0:00:00

0:10:00

0:20:00

0:30:00

0:40:00

2 4 6 8

Fitcrack(1) Fitcrack(2) Fitcrack(3) Hashtopolis

SHA-1

Figure 3.32: Total time of dictionary attack on SHA-1

109

dictionary size [GB]

to
ta

l t
im

e

0:00:00

0:15:00

0:30:00

0:45:00

1:00:00

2 4 6 8

Fitcrack(1) Fitcrack(2) Fitcrack(3) Hashtopolis

Whirlpool

Figure 3.33: Total time of dictionary attack on Whirlpool

The above-described upgrades of Fitcrack’s Generator reduced the overhead dramatically.
Since HTTP(S) has no broadcast by design, all server-host data transfers are performed
using one unicast connection per host. With the increasing dictionary size (𝑑𝑠), the link to
the server soon becomes a bottleneck. In Fitcrack, this is solved by fragmentation which
ensures each candidate password is transferred only once. So that the required amount
of data to transfer equals to 𝑑𝑠. Hashtopolis, however, sends the entire dictionary to all
hosts. For 𝑁 cracking nodes, we need to transfer 𝑁 * 𝑑𝑠 bytes of useful data plus the
overhead of network protocols. In our case, 𝑁 equals 8. So that, for 4.2 GB dictionary, it
is necessary to transmit 8 * 4.2 GB = 33.6 GB of data. For 8.3 GB dictionary, the amount
of transferred data equals 8 * 8.3 GB = 66.4 GB, etc. Thus, cracking with the 4.2 GB
dictionary took around 4 minutes for Fitcrack, while Hashtopolis required between 11-12
minutes. For the 8.3 GB dictionary, the difference is even more significant – 5 minutes for
Fitcrack and 32-47 minutes for Hashtopolis where most of the time is spent by data transfer.
The distribution strategy used has a vast impact on scalability since lim𝑁→∞(𝑑𝑠) = 𝑑𝑠,
but lim𝑁→∞(𝑁 * 𝑑𝑠) = ∞ which makes the naive approach practicaly unusable for larger
networks and bigger dictionaries.

3.9.4 Distributed Brute-force Attack

While dictionary attacks may have high requirements for data transfers between nodes, the
brute-force attack is not traffic-extensive at all. With each workunit, we only need to send
hosts an attack configuration [87], and the indexes of candidate passwords. To analyze how
the proposed scheduling strategy behaves in comparison with Hashtopolis, I performed
a series of brute-force attacks on SHA-1 [97] using masks from 8 lowercase Latin letters
(?l?l?l?l?l?l?l?l) to 10 letters (?l?l?l?l?l?l?l?l?l?l). The chunk size was set to
the following values: 60s, 600s, 1200s, and 1800s. To get comparable results, I let both
tools get through the entire keyspace. This was ensured by using two input hashes – one
which was crackable using the mask, and another uncrackable one. Table 3.20 shows the
total time and the number of generated chunks.

We can see again the behavior of the scheduling algorithm described in Section 3.6.5.
Due to the workunit shrinking in the initial and final phases, Fitcrack generated significantly
more chunks than Hashtopolis. Obviously, this behavior is not contributive if we use very

110

Configuration Fitcrack Hashtopolis
Chunk size Mask Keyspace Time Ch. Time Ch.

60s
8x?l 208,827,064,576 4m 38s 5 2m 37s 3
9x?l 5,429,503,678,976 21m 26s 147 16m 52s 59
10x?l 141,167,095,653,376 9h 4m 49s 5122 6h 36s 41s 1654

600s
8x?l 208,827,064,576 4m 19s 5 4m 46s 1
9x?l 5,429,503,678,976 20m 12s 103 20m 7s 6
10x?l 141,167,095,653,376 5h 24m 25s 480 6h 53m 43s 152

1200s
8x?l 208,827,064,576 4m 23s 5 4m 40s 1
9x?l 5,429,503,678,976 20m 0s 101 40m 8s 3
10x?l 141,167,095,653,376 5h 20m 37s 402 6h 25m 45s 76

1800s
8x?l 208,827,064,576 3m 12s 1 4m 41s 1
9x?l 5,429,503,678,976 19m 26s 100 58m 26s 2
10x?l 141,167,095,653,376 5h 24m 46s 388 6h 43m 34s 51

Table 3.20: Brute-force attack on SHA-1 using 8 nodes, different chunk sizes

small chunks – for 60s, Hashtopolis was always faster. However, with larger chunk sizes,
Fitcrack achieved better distribution. The workunit distribution progress for the attack
with 600s chunks and the 10-letter mask is displayed in Figure 3.30. In the main phase,
the workunit assignment is standard, however, in the final phase, the count is increased,
and the sizes are smaller, ensuring all nodes are utilized in every moment. Especially
for chunk sizes of 1200 and 1800 seconds, the cracking times using Fitcrack were much
lower. Figure 3.34 displays the comparison. What also helped make Fitcrack faster was
the pipeline workunit processing, described in Section 3.6.5, which almost eliminated the
communication overhead. The hosts were thus able to start the next workunit immediately
after the previous was finished.

(a) chunk size: 1200s (b) chunk size: 1800s

Figure 3.34: Mask attack on SHA-1 on 8 nodes

While in dictionary attacks, the password inputs of hashcat are processed, cached, and
loaded to GPU, in a brute-force attack, such operations are not required. The passwords are
generated directly on the GPU, and thus it is possible to achieve much higher cracking speed.
The network bandwidth is not limiting since we only transfer a range of password indexes
together with additional options. The communication overhead can be, again, reduced by

111

the pipeline workunit assignment. However, to utilize hardware resources well, it is required
to choose the keyspace of workunits wisely. Both Fitcrack and Hashtopolis calculate the
keyspace from a cracking performance obtained by the benchmark and a user-defined chunk
size. Hashtopolis preserves the similar keyspace to all workunits, which, as I detected, leads
to shorter cracking times of less-complex jobs if the chunk size is set to a smaller value.
Fitcrack, on the other hand, employs the adaptive scheduling algorithm, which modifies the
keyspace of workunits depending on the current progress. If the user-defined chunk size is
big enough, the strategy used in Fitcrack helps reduce the total cracking time even if the
total number of chunks is higher than in Hashtopolis.

3.9.5 Distributed Combination and PRINCE Attacks

This section covers a series of experiments with the classic combination attack and advanced
combination attack called PRINCE. The classic combination attack described in Section
3.8.2 combines passwords from two dictionaries: left and right. Their concatenation is the
resulting password. Probability infinite chained elements or PRINCE, on the other hand,
uses only a single dictionary. Depending on the desired length of the output, it constructs
chains - sequences of word lengths. Using various additional settings, it substitutes positions
in these chains with the dictionary passwords, which generates password guesses. The
details of PRINCE are described in Section 3.8.6.

Input Hashes

The experiments in this section purposedly use two algorithms with different computing
complexity: BCrypt [167] and SHA-1 [97]. The target hashlist comprises the top 100 most
used passwords from the LinkedIn leak hashed by BCrypt or SHA-1, respectively. To pro-
vide an overview of their complexity, I performed a series of performance measurements
using just hashcat, version 5.1.0, which is the same as used with Fitcrack for this series
of experiments. The results are shown in Table 3.21. I compare the values gathered from
hashcat’s benchmarking mode using the --benchmark option with actual attacks’ perfor-
mance. For BCrypt, the benchmarking mode does not allow to specify the cost factor. The
fixed value is 5, which corresponds to 25 = 32 iterations. In the experiments, I also use
the cost factor of 12 as it is the default value in several libraries. The number iterations
is thus 212 = 4, 096, which is much more difficult to crack. In the experiments, the SHA-1
is unsalted. For each password, the hash only needs to be computed once, and testing the
100 different hashes is just string comparison. Therefore, testing the entire hashlist is not
significantly more difficult than testing a single hash. The BCrypt, on the other hand,
uses cryptographic salt, so that the entire algorithm needs to be computed 100 times for
each candidate password. I did a short test with a brute-force attack with ?l?l mask on
NVIDIA GTX 1050 Ti. Testing the 676 possible password guesses against a single hash
requires about 1 minute and 20 seconds. Testing the same amount of passwords against all
100 hashes takes about 2 hours.

Algorithm Benchmark Brute-force Dictionary Combination PRINCE
BCrypt(05) 4,121 3,790 3,829 3,730 3,541
BCrypt(12) - 32 32 32 32

SHA-1 2,530·106 1,580·106 13·106 1,285·106 2·106

Table 3.21: The performance of hashcat on BCrypt and SHA-1

112

Moreover, the results discover an interesting phenomenon. While for SHA-1, the crack-
ing performance highly depends on the attack mode, for BCrypt with cost 12, it is the same
in all cases. As discussed and experimentally verified in Section 3.9.2, the benchmarking
mode provides only the maximal theoretically achievable performance and does not take
generating password guesses into account. Since SHA-1 is relatively easy-to-compute, the
bottleneck is the password input. Therefore, the brute-force attack is more than 100 times
faster than the dictionary attack. The combination attack is also very fast since it only
needs to load passwords only once. The slowest attack mode was PRINCE, as it requires
an external password generator. BCrypt(12), on the other hand, is so computationally
complex that it does not matter how the passwords are created. With all attack modes,
the GPU was not able to crack more than 32 hashes per second.

Attacks on the BCrypt Algorithm

The first series of experiments compare the cracking time and the efficiency of dictionary,
combination, and PRINCE attacks on the computationally complex BCrypt algorithm with
the cost factor of 12. As written above, the hashlist contained 100 unique salted hashes.
The keyspace of all jobs was 10,000 password guesses based on combinations of strings from
the adobe100.txt dictionary from Daniel Meissler’s SecLists58 repository. The PRINCE
attack used the original dictionary with 100 passwords, the maximum password length of
30 characters, and the maximum of 2 elements in a chain (see Section 3.8.6). For the
combination attack, the adobe100.txt dictionary was on both left and right. Therefore,
the total number of combinations was 100 · 100 = 10, 000. The dictionary attack used
a specially-created wordlist made of all these left-right combinations. All three jobs were
performed on 1, 2, and 4 hosts with a single NVIDIA GTX 1050 Ti GPU. The goal was to
measure the attack efficiency and the time Fitcrack needs to process the entire keyspace.

Dictionary Combination PRINCE
Hosts Efficiency Time Efficiency Time Efficiency Time

1 99 % 13h 1m 99 % 20h 6m 93 % 9h 48m
2 94 % 5h 9m 98 % 10h 53m 93 % 5h 18m
4 91 % 2h 41m 91 % 4h 41m 90 % 2h 43m

Table 3.22: Dictionary, Combination, and PRINCE attacks on BCrypt

Table 3.22 shows the experimental results. Since BCrypt is a very complex algorithm,
the hosts were highly utilized most of the time. No host was noticeably being blocked
by waiting for new passwords. Therefore, the efficiency of all attacks was above 90 %.
The cracking time, also illustrated by the chart in Figure 3.35, scaled pretty well with the
number of nodes. We see the trend is close to linear. The only higher-than-expected time
is for the dictionary attack on a single node. An interesting observation is the influence
of the password order in the dictionary. The experiment used an unsorted wordlist. After
sorting the input dictionary, the cracking time was reduced from 13 hours and 1 minute to
9 hours and 42 minutes.

58https://github.com/danielmiessler/SecLists/tree/master/Passwords/Leaked-Databases

113

https://github.com/danielmiessler/SecLists/tree/master/Passwords/Leaked-Databases

Figure 3.35: Cracking time of different attacks on BCrypt

Attacks on the SHA-1 Algorithm

The following series of experiments aim at the less computationally-complex SHA-1 algo-
rithm. Since we can crack much more SHA-1 hashes than BCrypt hashes per second, the
jobs have higher keyspace. The input dictionary for the PRINCE attack was phpbb.txt
concatenated with honeynet.txt from the same repository. The maximum password length
was again set to 30 characters with the maximum of 2 elements in a chain. For the com-
bination attack, the same dictionary was on both left and right, as in the previous case.
However, since the total keyspace of combined passwords is about 168 ·109, the experiments
do not test the dictionary attack because the prepared dictionary would have over 1 TB of
size. The jobs were performed on 1, 2, 4, and 8 hosts with NVIDIA GTX 1050 Ti GPU.

Table 3.23 shows the results. The cracking speed was much higher in comparison with
BCrypt. Therefore, supplying hosts with enough passwords was more time-critical than the
actual cracking. For the combination attack, the password transfer became a bottleneck.
And thus, the efficiency is much lower than with BCrypt.

Combination PRINCE
Hosts Efficiency Time Efficiency Time

1 53 % 3h 46m 99 % 1d 0h 2m
2 38 % 2h 35m 98 % 11h 37m
4 28 % 2h 31m 96 % 6h 56m
8 22 % 2h 28m 74 % 3h 38m

Table 3.23: Combination and PRINCE attacks on SHA-1

The Scalability of PRINCE

Unlike the classic dictionary and combination attacks, the PRINCE attack’s efficiency is
not influenced by real-time dictionary transfers. Therefore, PRINCE is highly efficient even
with less complex cryptographic algorithms. We can clearly see this in Table 3.23, showing
the results of the previous scenario. I guess the only loss of efficiency may occur if we assign
to many nodes for a task, as discussed in Section 3.9.1. Another measurement shown in

114

Table 3.24 further validates my assumptions. The attack on the complex BCrypt algorithm
used the adobe100.txt dictionary of 100 passwords, resulting in 10 · 103 password guesses.
The attack on SHA-1 used the rockyou.txt with 14 · 106 passwords, and the total number
of password guesses was thus 33 · 109. The maximum password length of both jobs was
24 characters for BCrypt and 30 characters for SHA-1. Both jobs had the minimum and
maximum of 2 elements in chain. The desired workunit processing time was 3600 seconds.
We see that in most cases, the efficiency was above 90 %. It started to drop (indicated
by *) with four hosts on the first job and eight hosts on the second job. We also see the
decrease in the total cracking time is much lower here. From this point, adding another
nodes makes no extra benefit. A very similar case is seen with the brute-force attack in
Figure 3.28(b), where the “scalability cap” for efficient computing was 16 nodes.

1 Host 2 Hosts 4 Hosts 8 Hosts
Algo Keys. Eff Time Eff Time Eff Time Eff Time

BCrypt 10 · 103 99 % 9h 41m 93 % 5h 18m 55 %* 4h 25m - -
SHA-1 33 · 109 99 % 5h 26m 94 % 2h 44m 90 % 1h 27m 74 %* 54m

Table 3.24: The “scalability cap” of PRINCE attacks

While the previous experiment explains there is always a limit on node count, it raises
another question: What is the influence of the desired workunit processing time? Theo-
retically, for a task complex enough, the value should not dramatically impact efficiency,
especially with the pipeline processing enabled (see Section 3.6.5). Table 3.25 shows two
jobs with the desired workunit times set to 600, 1800, 3600, and 7200 seconds. The first
one with BCrypt used the adobe100.txt dictionary and the maximum password length
of 17 with 1 to 4 elements in a chain. The total keyspace was 81 · 103. The attack on
the SHA-1 used the maximum password length of 8 and 1 to 4 elements in a chain. The
resulting keyspace was 579 · 109. The jobs were processed on 8 hosts with NVIDIA GTX
1050 Ti GPU. Both assignments took about 9 hours to complete. For all configurations, the
efficiency was between 97 to 99 %, which proves my hypothesis, as changing the workunit
time configuration had no adverse effect in such a complex task.

Workunit time: 600 s 1800 s 3600 s 7200 s
Algo. Keysp. Eff Time Eff Time Eff Time Eff Time

BCrypt 81 · 103 99 % 9h 46m 98 % 9h 44m 97 % 9h 48m 98 % 9h 49m
SHA-1 579 · 109 99 % 8h 45m 98 % 8h 40m 97 % 8h 47m 98 % 8h 42m

Table 3.25: 8 hosts, different workunit processing times

PRINCE Comparison with Hashtopolis

Finally, Table 3.26 compares the PRINCE’s performance with Fitcrack and Hashtopolis.
The first three jobs aimed to test a network with the server and only a single host. The last
job employed ten nodes with NVIDIA GTX 1050 Ti. The first column shows the algorithm.
The following describe the attack’s configuration: the used dictionary, the minimal and
maximal length of passwords, and the minimal and maximal number of elements in a chain.
Next columns display the resulting total keyspace and the number of hosts that participate
on the job. Finally, last two columns display the the total processing time using Fitcrack
and Hashtopolis, respectively. Apparently, Fitcrack is slightly more efficient. I assume this

115

is because the Fitcrack has native support and optimizations for the PRINCE attack, while
the Hashtopolis uses the general “external password generator” mode.

Algo. Dictionary Pass. Chain Keysp. Hosts Fitcrack Hashtopolis
SHA-1 rockyou.txt 1–6 1–4 2 · 109 1 29m 22s 29m 25s
SHA-1 rockyou.txt 1–9 1–2 24 · 109 1 4h 9m 4h 12m
BCrypt adobe100.txt 1–24 2–2 10 · 103 1 5h 56m 6h 36m
SHA-1 rockyou.txt 1–8 1–4 579 · 109 10 8h 47m 8h 53m

Table 3.26: PRINCE attack using Fitcrack and Hashtopolis

3.9.6 Summary

Distributed computing undoubtedly has its place in the area of password cracking. The
performance achievable with a single machine is always limited, even we equip it with
multiple GPUs. As the experiments showed, not every cracking task is, however, worth
distribution. Yet, if it is, there is always a reasonable number of computing nodes we
should employ to complete the job at the desired time. While underestimating the task’s
complexity results in delays, utilizing more machines than necessary may cause needless
overhead and efficiency loss. The final decision is up to the system’s operator, who needs
to consider the complexity of algorithms, attack mode, network characteristics, and other
aspects. The choice, however, does not need to be based on manual calculations. Smart
systems should provide a hint to help users create an assignment that is appropriate to their
needs. Therefore, the Fitcrack system provides an estimation of the maximum cracking time
when a job is created.

The workload distribution can use multiple schemes. Fitcrack uses dynamic chunk dis-
tribution with the progressive assignment of keyspace. The system employs the adaptive
scheduling algorithm to create fine-tailored workunits that match each hosts’ current per-
formance. As experimentally verified, the mechanism allows the computers to process tasks
efficiently and handles unexpected events like a sudden change in a node’s performance.
The most tricky part is to choose an appropriate size for the first workunit. The calculation
relies on the accuracy of benchmarking. While the original version was very imprecise, the
new benchmarking technique is far more accurate.

The proposed distribution strategies for different attack modes work as intended and
allow the system to precisely control the keyspace’s distribution between computing nodes.
Yet, there are differences since each attack mode has specific properties. The influence of
the attack mode on the overall efficiency and scalability depends on the concrete algorithm.
For complex hashes like BCrypt, the cryptographic calculations are so complex that attack
mode has almost no influence. For easier-to-compute algorithms, the situation is different,
and the speed of password creation is the main bottleneck. The faster we get new passwords,
the higher the cracking speed.

The brute-force attack provides the best performance since we generate the passwords
directly on the GPU. The network utilization is low because there is no need to transfer
additional data. The situation is rather different in dictionary-based attacks. The classic
dictionary attack is only worth distribution if the input wordlist has enough passwords. But
if so, we need to transfer a large amount of data from the server to hosts. Therefore, network
bandwidth plays an essential role in overall efficiency. Hashtopolis uses a simple strategy to
transfer the entire dictionary to all clients before the cracking even starts. Such a method

116

is easy-to-implement, but since there is no broadcast in HTTP, it may require a lot of time,
and the scalability is terrible. The bigger the dictionary, the higher the overhead. The
link to the server becomes the bottleneck, and the more nodes we have, the longer we need
to wait. Fitcrack, on the other hand, sends only fragments of the dictionary so that each
node receives only the passwords it needs. While it was required to put additional logic
to the system, the initial overhead is much lower, and the cracking session in Fitcrack can
start sooner. Adding the support fork pipeline processing eliminated the communication
overhead almost entirely.

While Fitcrack supports three different dictionary-based attack modes, the PRINCE
seems to be the most low-cost one in terms of network utilization. The main advantage
is that it does not require a real-time dictionary transfer. The input dictionary sent with
the first workunit is usually small, and all the combinations are created on the client-side.
Like with the brute-force attack mode, the server controls the distribution process just by
defining the index ranges for each workunit. The classic dictionary attack, if performed in
a distributed way, is beneficial for complex cryptographic algorithms. For simple algorithms,
a single-machine session may be faster if the dictionary is not exceptionally big. In terms
of efficiency, the combination attack is in the middle between the dictionary and PRINCE.
The amount of data that needs to be transferred to hosts is lower than with the classic
dictionary attack but higher than with PRINCE. The combination attack may become
efficient for moderate as well as for complex algorithms. In all cases, I suggest that the
decision about the employed solution to use should reflect the algorithm’s complexity.

117

Chapter 4

Probabilistic Password Models

While machine-generated passwords are more or less random, if the choice is up to a human
being, the situation is different. Years of research on leaked datasets of passwords showed
they provide a valuable source of knowledge. Probabilistic methods utilize that knowledge
to allow a better targeting of password cracking attacks.

This chapter analyzes existing probabilistic password models and discusses their charac-
teristics. The core of the chapter focuses on probabilistic context-free grammars and their
employment in password cracking tasks. In the following sections, I describe the properties
of state-of-the-art methods for grammar-based cracking and identify weak spots that com-
plicate their use from the practical point of view. I introduce a series of enhancements that
improve existing concepts and allow guessing more passwords for the same time. Moreover,
I show how to reduce the total number of password guesses without significantly impact-
ing the success rate. I also propose a methodology for distributed password cracking with
probabilistic grammars. Together with my fellow researchers, I created two proof-of-concept
tools that demonstrate the discussed principles. Last but not least, I show the benefits of
the proposed methods in a series of practical experiments.

4.1 Motivation for Smart Password Guessing
Confidential data and user accounts for various systems and services are protected by
passwords. Though a password is usually the only piece that separates a potential attacker
from accessing the privileged data, users tend to choose weak passwords which are easy
to remember [30]. In reaction, system administrators and software developers introduce
mandatory rules for password composition, e.g., “use at least one special character.” While
password-creation policies force users to create stronger passwords [166, 207], recent leaks of
credentials from various websites showed the reality is much more bitter. People widely craft
passwords from existing words [63] and often reuse the same password between multiple
sites [52]. This fact may be utilized by both malicious attackers and forensic investigators
who seek for evidence in password-protected data.

4.1.1 The Downside of Traditional Methods

Traditional ways of password cracking contain a brute-force attack where one tries every
possible sequence of characters upon a given alphabet, and a dictionary attack where one
uses a list of existing passwords and tries each of them. The main drawback of the brute-
force attack is a big keyspace (a number of all possible password candidates), which grows

118

exponentially with the length of the password, and one does not need to “try everything”
to crack the password. The dictionary attack, on the other hand, usually checks a limited
number of commonly-used or previously-leaked passwords.

With the complexity of today’s algorithms, it is often impossible to crack a hash of
a stronger password in an acceptable time using the tradidional methods. For instance,
verifying a single password for a document created in MS Office 2013 or newer requires
100,000 iterations of SHA-512 algorithm. Even with the use of the popular hashcat tool and
a machine with 11 NVIDIA GTX 1080 Ti1 units, brute-forcing an 8-character alphanumeric
password may take over 48 years. Even the most critical pieces of forensic evidence lose
value over such a time.

4.1.2 The Potential of Probabilistic Models

Over the years, the use of probability and statistics showed the potential for a rapid im-
provement of attacks against human-created passwords [136, 213, 114]. Various leaks of
credentials from websites and services provide an essential source of knowledge about user
password creation habits [35, 212], including the use of existing words [63] or reusing the
same credentials between multiple services [52]. Therefore, the ever-present users’ effort
to simplify work is also their major weakness. People across the world unwittingly follow
common password-creation patterns over and over.

One approach is the use of Markov chains which consider probabilities that a certain
character will follow after another one. The probabilities are learned from an existing
password dictionary and then reused for generating password guesses [136]. The method,
however, only works with individual characters and does not consider digraphs or trigraphs.
To work with larger password fragments, Weir et al. proposed the use of probabilistic
context-free grammars (PCFG) that can describe the structure of passwords in an existing
(training) dictionary. Fragments described by PCFG represent finite sequences of letters,
digits, and special characters. Then, by derivation using rewriting rules of the grammar,
one can not only generate all passwords from the original dictionary, but produce many
new ones that still respect password-creation patterns learned from the dictionary [213].

4.2 Related Work
For a long time, probability and statistics have been applied to measure password strength
[166, 207, 104] and generate guesses in password cracking [136, 213, 114, 80]. Major pass-
word leaks allowed to make a clearer image of how user create their passwords [35]. Such
knowledge has been utilized in multiple password cracking principles and adopted to exist-
ing tools.

4.2.1 Early Work

The use of probabilistic methods for computer-based password cracking dates back to 1980.
Martin Hellman introduced a time-memory trade-off method for cracking DES cipher [78].
This chosen-plaintext attack used a precomputation of data stored in memory to reduce
the time required to find the encryption key. With a method of distinguished points, Ron
Rivest reduced the necessary amount of lookup operations [174]. Phillipe Oechslin improved
the original concept and invented rainbow tables as a compromise between the brute-force

1https://onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti

119

https://onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti

attack and a simple lookup table. For the cost of space and precomputation, the rainbow
table attack reduces the cracking time of non-salted hashes dramatically [142].

4.2.2 Markovian Models

The origin of passwords provides another hint. Whereas a machine-generated password may
be more or less random, human beings follow specific patterns we can describe mathemat-
ically. Markov chains are stochastic models frequently used in natural language processing
[169]. Narayanan et al. showed the profit of using zero-order and first-order Markovian
models based on the phonetical similarity of passwords to existing words [136]. While in
the classic incremental brute-force attack, all characters in the alphabet are equal to each
other, the Markovian model assigns probability values to different characters.

Mathematically, we can describe the models using probabilistic finite automata [168].
In a zero-order model, future states rely neither on the current nor on the previous states.
Password guessing based on a zero-order model means we use more probable characters
first, but do not look at the already-generated ones. A first-order model meets the Markov
property: the next state depends only on the current state. Higher-order models utilize one
or more previous states as well [169, 136].

For Markov-based password cracking, commonly-used is the first-order model. The
method uses conditional probability 𝑃 (𝐴|𝐵) that character 𝐴 will follow after character 𝐵.
The probabilities for all characters 𝐴, 𝐵 are stored in a matrix obtained by the analysis of
an existing password dictionary [136]. The technique was utilized in Hashcat tool which uses
Markov chains for brute-force attacks by default. The probability matrix can be generated
automatically using Hcstatgen2 utility and is stored in a .hcstat file. Recent versions of
Hashcat use LZMA compression which is indicated by .hcstat2 file extension. A modified
model based on 3-grams is also employed in the Incremental attack mode of John the Ripper
tool [57].

One can also define a threshold value that limits the depth of character lookup. The
threshold can be a probability value or just an integer specifying how many most probable
passwords to use at each position. Thresholding rapidly decreases the keyspace of the attack
because we only use a part of all possible password guesses. In hashcat, the threshold can
be specified using the --markov-threshold option.

There is also an extended three-dimensional model where the next character relies not
only on the current state but also on the position in the password. The technique uses a 3D
matrix created by putting multiple 2D matrices together - one for each position. Hashcat
uses the per-position 3D Markov by default. A user can switch to classic 2D Markov
guessing by specifying the --markov-classic option.

For practical cracking, the probability order of characters is more than the actual prob-
ability values. We can thus omit the actual values and create a matrix by placing characters
from the most probable to the least probable one. Figure 4.1 shows an example of a matrix
with threshold set to 3. In case of mask ?l?l?l, the keyspace would be 26*26*26 = 17576,
since there are 26 lowercase letters in the latin alphabet. However, which threshold set to
3, the keyspace is 3 * 3 * 3 = 27, since on each position, only three characters are used.
The candidate passwords for mask ?l?l?l and threshold 3 (indicated by the vertical line)
are generated in the following order: bed, bec, bet, bad, bat, bar, ... Note that password
bez is not generated since z is on the position 4 in e-row, and 4 > 3. In hashcat, the
threshold can be specified using the --markov-threshold option.

2https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstatgen

120

https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstatgen

𝜀
𝑎
𝑏
𝑐
𝑑
𝑒
...

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏 𝑛 𝑒 𝑔 𝑎 𝑢 . . .
𝑑 𝑡 𝑟 𝑛 𝑑 𝑣 . . .
𝑒 𝑎 𝑟 𝑢 𝑜 𝑖 . . .
𝑘 𝑖 𝑒 𝑜 𝑢 𝑎 . . .
𝑜 𝑚 𝑎 𝑦 𝑟 𝑝 . . .
𝑑 𝑐 𝑡 𝑧 𝑑 𝑛 . . .
...

...
...

...
...

... . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 4.1: Example of Markov matrix with threshold set to 3

In 2015, Duermuth et al. presented Ordered Markov ENumerator (OMEN), a password
guessing algorithm they claim to outperform all previous publicly available Markov-based
password guessers. The algorithm discretizes all probabilites into a number of bins, and
iterates over the bins in an order of decreasing likelihood. For each bin, it generates all
passwords that match the associated probability. Duermuth et al. state that unlike existing
algorithms, the “OMEN can output guesses in order of (approximate) decreasing frequency”
[57]. While in hashcat, the brute-force attack is always related to a fixed password length
defined by the mask, OMEN incorporates the probability of password length as well.

4.2.3 Probabilistic Grammars

Weir et al. introduced password cracking using probabilistic context-free grammars (PCFG)
[213]. The mathematical model is based on classic context-free grammars [70] with the only
difference that each rewrite rule is assigned a probability value [19, 94]. The grammar is
created by training on an existing password dictionary. Each password is divided into
continuous fragments of letters (L), digits (D), and special characters (S). For fragment of
length 𝑛, a rewrite rule of the following form is created: 𝑇𝑛 → 𝑓 : 𝑝, where 𝑇 is a type of
the character group (L, D, S), 𝑓 is the fragment itself, and 𝑝 is the probability obtained by
dividing the number of occurrences of the fragment by the number of all fragments of the
same type and length. In addition, we add rules that rewrite the starting symbol (𝑆) to base
structures which are non-terminal sentential forms describing the structure of the password
[213]. For example, password “p@per73” is described by base structure 𝐿1𝑆1𝐿3𝐷2 since
it consist from a single letter followed by a single special character, three letters, and two
digits. Table 4.1 shows rewrite rules of a PCFG generated by training on two passwords:
“pass!word” and “love@love”. Fragment “love” has a higher probability value than “pass”
or “word” because it occurred twice in the training dictionary, whereas the others only once.
There is only one rule that rewrites 𝑆 since both passwords are described by the same base
structure. By using PCFG on MySpace dataset (split to training and testing part), Weir et
al. were able to crack 28% to 128% more passwords in comparison with the default ruleset
from John the Ripper (JtR) tool3 using the same number of guesses.

The proposed approach, however, does not distinguish between lowercase and uppercase
letters. Weir extended the original generator by adding capitalization rules like “UULL” or
“ULLL” where “U” means uppercase and “L” lowercase. The rules are applied to all letter
fragments which increases the number of generated guesses [211]. After adding capitaliza-

3https://www.openwall.com/john/

121

https://www.openwall.com/john/

left → right probability
𝑆 → 𝐿4𝑆1𝐿4 1
𝐿4 → pass 0.25
𝐿4 → word 0.25
𝐿4 → love 0.5
𝑆1 → @ 0.5
𝑆1 → ! 0.5

Table 4.1: An example of PCFG rewrite rules

tion, the notation for letter non-terminals were changed from 𝐿𝑛 to 𝐴𝑛 (as alphabetical or
“alpha” characters) since 𝐿 now stands for lowercase.

While the previous techniques consider only the syntax of passwords, Veras et al. de-
signed a semantics-based approach which divides password fragments into categories by
semantic topics like names, numbers, love, sports, etc. With JtR in stdin mode feeded by
a semantic-based password generator, Veras achieved better success rates than using Weir’s
approach or the default JtR wordlist [206].

Ma et al. showed how normalization and smoothing can increase the success rate of
Markov models. By training and testing on a huge number of datasets, Ma showed that
the improved Markov-based guessing could bring better results than PCFGs [114].

Weir’s PCFG-based technique encountered extensions as well. Houshmand et al. intro-
duced keyboard patterns represented by additional rewrite rules that helped improve the
success rate by up to 22%, proposed the use of Laplace probability smoothing, and cre-
ated guidelines for choosing appropriate attack dictionaries [80]. After that, Houshmand
also introduced targeted grammars that utilize information about a user who created the
password [79].

The research presented in this thesis is based on the late 2018’s PCFG Cracker (version
3) that was moved to the Github repository called “legacy-pcfg”4. The proof-of-concept
parallel and distributed tool I describe in this chapter is compatible with the PCFG Trainer
from this exact repository. To prove the contribution of the proposed improvements, I de-
cided not to mix PCFG with Markovian models, and thus when one creates a grammar,
they need to set the --coverage 1.0 option of the PCFG Trainer.

After publishing a part of my research related to the PCFG [82], Weir replaced released
a new5 version 4 of the PCFG Cracker. He replaced the original Markov guessing algorithm
by OMEN [57], added the Password scorer tool that calculates the strength of existing
passwords, and Prince-Ling Wordlist Generator that creates customized wordlists for use
in attacks based on the PRINCE algorithm.

4.2.4 The PCFG Cracker

The current version of Weir’s PCFG Cracker consists of two separate tools: PCFG Trainer
and PCFG Manager. While PCFG Trainer is used to create a grammar from an existing
password dictionary, PCFG Manager generates new password guesses from the grammar -
i.e., gradually applies rewrite rules to the starting symbol and derived sentential forms.

At the time of writing this thesis, both tools include the support for letter capitalization
rules [211], keyboard patterns [80], as well as the ability to generate new password segments

4https://github.com/lakiw/legacy-pcfg
5https://github.com/lakiw/pcfg_cracker

122

https://github.com/lakiw/legacy-pcfg
https://github.com/lakiw/pcfg_cracker

using Markov chains [136] described in Section 4.2.2. In the training phase, a user can set
a coverage value which defines the portion of guesses to be generated using rewrite rules
only while the rest is generated using Markov-based brute-force. A smoothing parameter
allows the user to apply probability smoothing as described in [80]. Moreover, the tools
contain the support for context-sensitive character sequences like “<3” or “#1” that, if
present in the training data, form a separate set of rewrite rules. Such replacements can be
used to describe special strings like smileys, arrows, and others.

4.2.5 Motivation for Improvement

Despite numerous improvements made by Houshmand [80], users still have to face slow
password guessing speed which is currently the bottleneck of the entire process. Besides,
the generating of password guesses gets progressively slower as the time goes on and, as
I detected, has high memory requirements.

While the creation of a probabilistic grammar is fast and straightforward (see Section
4.4.1), the application of rewriting rules takes a significant amount of processor time, and
the number of generated passwords is overwhelming in comparison with the original dictio-
nary. Creating a complete wordlist of possible password candidates using PCFGs trained
on leaked datasets may take many hours or even days. For example, using Weir’s tool4
with a PCFG trained on 6.5 kB elitehacker6 dataset (895 passwords) generates a 12 MB
dictionary with 1.8 million passwords. However, using 73 kB faithwriters dataset (8,347
passwords) generates a 28 GB dictionary with over 3 billion passwords. Even more unpleas-
ant is the time required to generate such datasets. The first 10 and first 100 passwords of
darkweb2017 7 dataset and darkweb2017-top100 can be both used for training and gener-
ating within 1 minute on Core(TM) i7-7700K CPU. Taking first 1000 passwords requires
more than a day to generate guesses on the same processor.

Moreover, the version 3 of the PCFG Manager tools did not provide information about
the keyspace, i.e., the number of possible password candidates, and thus the user had no clue
about how long the guessing took. Thus, I decided to make PCFG-based password cracking
suitable for practical use and propose methods how to guess password faster, transform
PCFGs to more compact ones, and calculate an exact number of possible password guesses,
aka the keyspace. It is, however, necessary to mention, that later, Weir extended the tool
with status reports that contain an approximate calculation of keyspace.

In 2019, Weir also released8 a compiled PCFG password guesser to achieve faster crack-
ing and easier interconnection with existing tools like hashcat and JtR. Making the password
guessing faster, however, resolves only a part of the problem. Serious cracking tasks often
require to use distributed computing. But how to efficiently deliver the password guesses
to different nodes? Weir et al. suggested the possible use of preterminal structures directly
in a distributed password cracking trial [213]. To verify the idea, I decided to analyze the
possibilities for distributed PCFG guessing, create a concrete design of intra-node commu-
nication mechanisms, and experimentally test its usability.

6https://wiki.skullsecurity.org/index.php?title=Passwords
7https://github.com/danielmiessler/SecLists/tree/master/Passwords
8https://github.com/lakiw/compiled-pcfg

123

https://wiki.skullsecurity.org/index.php?title=Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/lakiw/compiled-pcfg

4.3 The Scope of Improvements
Motivated by the findings mentioned above, I focus on making PCFG-based password
cracking suitable for practical use. Concretely, to allow the user to create a probabilistic
grammar, generate a wordlist of password guesses in a short time, and start cracking im-
mediately. Alternatively, to allow generating guesses and calculating cryptographic hashes
simultaneously. To achieve this:

• I created a faster “password generator” that produces more guesses in the same
amount of time using the same hardware.

• I automated the calculation of keyspace for a given PCFG. Knowing the keyspace
helps to estimate the size of an output dictionary and the time required to generate
all password guesses.

• I analyzed and showed how modification of an existing grammar could help the pass-
word guessing. Concretely, I described how it accelerates the process and allows it to
end in the desired maximum amount of time.

• I designed, created, and evaluated a solution for PCFG-based cracking in a distributed
environment.

To verify the success of my efforts, I study the following metrics: a) the number of guesses
per time unit, b) the total time of password guessing, c) the number of generated passwords,
d) the success rate for testing datasets, i.e., how many newly-generated passwords are
present in existing password dictionaries.

4.4 Probabilistic Context-free Grammars (PCFG)
As mentioned in Section 4.2, the mathematical model is based on classic formal context-free
grammars [70] with the only difference that each rewriting rule is assigned a probability
value [19, 94]. A probabilistic context-free grammar 𝐺 is defined as:

𝐺 = (𝑁,Σ, 𝑅, 𝑆, 𝑃), (4.1)

where:

• 𝑁 is a finite set of nonterminal symbols,

• Σ is a finite set of terminal symbols, 𝑁 ∩ Σ = ∅,

• 𝑅 a finite set of rewriting (or production) rules 𝐴→ 𝛾, where: 𝐴 ∈ 𝑁, 𝛾 ∈ (𝑁 ∪ Σ)*,

• 𝑆 ∈ 𝑁 is the start symbol of the grammar,

• 𝑃 is a probability function defined as 𝑃 : 𝑅→ [0, 1], i.e. every rewrite rule is assigned
a probability value from 0 to 1. Besides, the sum of probabilites of all rewrite rules
𝐴→ 𝛾 ∈ 𝑅 with the same left side 𝐴 is 1: ∀𝐴 ∈ 𝑁,

∑︀
𝐴→𝛾∈𝑅(𝑃 (𝐴→ 𝛾)) = 1.

The grammar is called probabilistic because of the probability function 𝑃 that assigns each
rewriting rule a probability value. The grammar is called context-free because we can
substitute nonterminal 𝐴 with the right side 𝛾 regardless of the context where 𝐴 is.

124

4.4.1 Creating Grammars from Dictionaries

In the password cracking method proposed by Weir et al., the grammar is created from
an existing (“training”) dictionary. In the original design, every password is divided into
continuous fragments od letters (L), digits (D), and special characters (S) [213, 211]. In
newer versions of the PCFG Cracker tool, the notation changed to alpha (A), digits (D),
and others (O). A probabilistic context-free grammar is created from a password dictionary
using the following steps:

• Divide each password to A, D, O fragments. Fragments may have different length.
Each fragment is unique; i.e., there are no duplicities. If you receive a fragment that
was already created from the current or previous password, do not save it for the
second time.

• For each fragment of length 𝑛, construct a rewrite rule 𝑇𝑛 → 𝑓 , where 𝑇 ∈ {𝐴,𝐷,𝑂}
is the type of the character set, 𝑓 is the fragment itself.

• Calculate and set probability of 𝑃 (𝑇𝑛 → 𝑓) of each rule 𝑇𝑛 → 𝑓 as:

𝑃 (𝑇𝑛 → 𝑓) =
𝑐𝑓
𝑐𝑇𝑛

, (4.2)

where 𝑐𝑓 is the total occurrence count of fragment 𝑓 in the training dictionary, and
𝑐𝑇𝑛 is the total occurence count of all fragments of type 𝑇 and length 𝑛 [211].

• From each password in the dictionary, create base structure 𝐵 as the sequence of
nonterminals 𝑇 1

𝑛1 . . . 𝑇
𝑘
𝑛𝑘 , where 𝑘 is the number of nonterminals in this structure.

A base structure is a sequence of nonterminals 𝑇𝑛 that describe from which fragments
(tydog and lengths) the password consists. For example, the base structure for pass-
word “hello!44mike” is “𝐴5𝑂1𝐷2𝐴4” since the password starts with five letters - alpha
symbols (𝐴5), followed by the exclamation mark (𝑂1), two digits (𝐷2), and four more
alpha symbols (𝐴4).

• For each base structure 𝐵, construct a rewrite rule: 𝑆 → 𝐵. If the rule already exists,
do not add it to the grammar.

• Calculate and set probability 𝑃 (𝑆 → 𝐵) as:

𝑃 (𝑆 → 𝐵) =
𝑐𝐵
𝑐𝑇𝐵

, (4.3)

where 𝑐𝐵 is the total number of password that match the base structure 𝐵, and 𝑐𝑇𝐵

is the total number number of all base structures [211].

An example of grammar creation The above shown algorithm is demonstrated on an
example. Assume a dictionary containing the following three passwords:

pa$$word42
12mike15
oscar42!!xx

From this dictionary, we construct grammar 𝐺1 using the following steps:

125

• At first, we split the password into fragments. Password “pa$$word42” creates four
fragments: “pa” (type: alpha, length: 2), “$$” (type: others, length: 2), “word”
(type: alpha, length: 4), and “42” (type: digit, length: 2). Similar splitting goes for
the other two passwords. In total, we receive 10 unique password fragments.

• For each unique fragment, we construct a rewrite rule. From “pa” we crete rewriting
rule “𝐴2 → pa”, “$$” creates “𝑂2 → $$”, etc.

• For each rewrite rule, we calculate the probability. For rule “𝐴2→ pa”, the probability
is 0.5 since it occurred once and the only other 𝐴2 fragment is “xx” which also occurred
once. The same calculation goes for other rules, e.g. 𝑃 (𝐷2 → 42) = 2/4 = 0.5, etc.

• We create base structures from all three passwords: “pa$$word42” gives “𝐴2𝑂2𝐴4𝐷2”,
“12mike15” gives “𝐷2𝐴4𝐷2”, and “oscar42!!xx” gives “𝐴5𝐷2𝑂2𝐴2”.

• For each unique base structure, we construct and add a rewrite rule. For our grammar,
we get three rules: “𝑆 → 𝐴2𝑂2𝐴4𝐷2” , “𝑆 → 𝐷2𝐴4𝐷2”, and “𝑆 → 𝐴5𝐷2𝑂2𝐴2”.

• We calculate probabilities for rules that rewrite the start nonterminal to base struc-
tures. In our case, each of the three base structures occurs only once, so that their
probability is 1/3 = 0.33 (rounded-off to two decimal places).

In the resulting grammar 𝐺1 = (𝑁,Σ, 𝑅, 𝑆, 𝑃),

• 𝑁 = {𝑆,𝐴2, 𝐴4, 𝐴5, 𝐷2, 𝑂2},

• Σ = {𝑝𝑎, 𝑥𝑥,𝑤𝑜𝑟𝑑,𝑚𝑖𝑘𝑒, 𝑜𝑠𝑐𝑎𝑟, 42, 15, 12, $$, !!},

• 𝑅 and 𝑃 shows Table 4.2.

𝑅 𝑃

𝐴 → 𝛾 𝑃 (𝐴→ 𝛾)

𝑆 → 𝐴2𝑂2𝐴4𝐷2 0.33
𝑆 → 𝐷2𝐴4𝐷2 0.33
𝑆 → 𝐴5𝐷2𝑂2𝐴2 0.33
𝐴2 → pa 0.5
𝐴2 → xx 0.5
𝐴4 → word 0.5
𝐴4 → mike 0.5
𝐴5 → oscar 1.0
𝐷2 → 42 0.5
𝐷2 → 15 0.25
𝐷2 → 12 0.25
𝑂2 → $$ 0.5
𝑂2 → !! 0.5

Table 4.2: The rewrite rules and the probability function of an example PCFG created from
three passwords: pa$$word42, 12mike15, and oscar42!!xx

126

4.4.2 Letter Capitalization

The method of creating a PCFG described in Section 4.4.1 does not distinguish between
lowercase and uppercase letters. By analyzing existing leaked passwords, I detected users
most often createpasswords just from lowercase letters. If an uppercase letter is used, it is
usually at the beginning of the password or of a word contained within it [83], e.g. passwords
like “Golf-Mike” or “HelloKitty!” from RockYou9 dataset. We can utilize the knowledge
by mangling the capitalization of letters in existing fragments.

Weir extended the original concept by adding capitalization masks [211]. When creating
rewrite rules for alpha fragments 𝐴𝑛 → 𝑓 , we convert all letters in fragment 𝑓 to lowercase.
For fragment length 𝑛, we define one or more capitalization masks. A capitalization mask
𝑀𝑛 for 𝐴𝑛 is a string of length 𝑛 made of characters 𝑈 and 𝐿. Their position indicates
which letters should be uppercase and which lowercase. If 𝑈 is on position 𝑝 in the mask,
the 𝑝-th character in the fragment is an uppercase letter. If 𝐿 is on position 𝑝 in the mask,
the 𝑝-th character in the fragment is a lowercase letter. For every capitalization mask 𝑀𝑛,
we the probability 𝑃 (𝑀𝑛) of its use as:

𝑃 (𝑀𝑛) =
𝑐𝑀𝑛

𝑐𝐴𝑛

, (4.4)

where 𝑐𝑀𝑛 is the occurence count of all alpha fragments where the capitalization of letters
match mask 𝑀𝑛, and 𝑐𝐴𝑛 is the total occurence count of all alpha fragments of length
𝑛. The sum of 𝑃 (𝑀𝑛) for all 𝑀𝑛 of length 𝑛 equals 1. Table 4.3 shows an example of
capitalization masks and their probabilities for 𝐴5. For each mask, the table also displays
a shortened version that is sometimes used in the literature [211].

capitalization mask shortened version probability
LLLLL 𝐿5 0.928421

UUUUU 𝑈5 0.041223
ULLLL 𝑈1𝐿4 0.021047
UULLL 𝑈2𝐿3 0.006215
ULULU 𝑈1𝐿1𝑈1𝐿1𝑈1 0.003094

Table 4.3: An example of capitalization rules for letter fragments of length 5

It is essential to distinguish between the implementation of the methodology in existing
tools and the mathematical basis behind it. In the PCFG Cracker tool, data structures
that represent alpha nonterminals are first “rewritten” to sequences of letters, and the
capitalization from existing masks is applied after. From the mathematical point of view,
we want to preserve the property of a context-free grammar [70]. Thus, we need to consider
every letter fragment a nonterminal. For every mask 𝑀𝑛 we construct a rewrite rule with
probability 𝑃 (𝑀𝑛) that rewrites the nonterminal to a sequence of letters with capitalization
given by mask 𝑀𝑛. As a result, the total number of rewrite rules increases, we get the ability
to create currently previously non-existing sequences of letters while still respecting users’
habits for choosing small and big letters.

9http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2

127

http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2

4.4.3 Sequential Password Guessing

To gather access to password-protected content, we can generate password guesses directly
from an existing PCFG. For this purpose, a candidate password (or password guess) is
a string generated by the grammar. The string may serve as an input of a cracking tool,
or as a part of a new password dictionary for later use. For grammar G, the set of all
candidate passwords is the language generated by the grammar [70]:

𝐿(𝐺) = {𝑤 | 𝑆 ⇒* 𝑤 ∧ 𝑤 ∈ Σ*}. (4.5)

Therefore, every password 𝑝 ∈ 𝐿(𝐺) is derived from the start nonterminal 𝑆 using a se-
quence of derivation steps:

𝑆 ⇒ ... ⇒ 𝑝 (4.6)

with an application of a finite sequence of rewrite rules 𝑟1, 𝑟2, . . . , 𝑟𝑛 ∈ 𝑅. Let 𝑅𝑝 =
{𝑟1, 𝑟2, . . . , 𝑟𝑛} ⊆ 𝑅 be the set of rewrite rules used for generating password 𝑝. Then the
probability 𝑃 (𝑝) of password 𝑝 can be calculated as:

𝑃 (𝑝) =
∏︁
𝑟∈𝑅𝑝

𝑃 (𝑟). (4.7)

The probability of a password is thus a product of probabilities of all rewrite rules used for
its creation.

For PCFGs created from large training dictionaries, it may be computationally impos-
sible to generate and verify all possible candidate passwords in an acceptable time [82].
Therefore, we need to limit the guessing to 𝑛 most probable passwords. The goal is to find
an algorithm that can generate them.

A naive solution is to generate all possible password guesses together with their proba-
bilities, sort them by probability, and select 𝑛 most probable ones. Though such a solution
is possible, it faces the same problem it is trying to resolve.

Preterminal structures

When we perform a series of derivation steps from the start nonterminal, sooner or later,
we get a sentential form where all possible derivation steps lead to passwords of the same
probability. If this sentential form contains nonterminals, each is rewritable by the rules of
an equal probability.

Definition 4 (Preterminal structure) A preterminal structure is a sentential form for
which all further possible derivation steps produce strings of the same probability.

For each preterminal structure, the probability of all derivable passwords is the same.
Its value can be calculated using the 𝑃 function. Such a fact can be utilized to divide the
guessing process into two separates steps. First, we can generate the preterminal structures.
After that, we can create password guesses from the structures.

The easiest way is to generate all preterminal structures together with their probabilities,
sort them in a probability order, and take a number of the most probable ones to generate
password guesses. This approach, however, requires performing many computing steps and

128

processing a large amount of input data before we can even create the first password. Using
this method, it is also not possible to generate preterminal structures and password guesses
consequently.

Another approach is to use the technique proposed by Narayanan et al., where we only
generate preterminal structures with probability values above a pre-defined limit. A similar
principle is in by the John the Ripper tool in “Markov” attack mode. This alternative ap-
proach, however, does not guarantee that the password guesses are printed out in decreasing
probability order. It only ensures that their probability lies above a defined limit [136].

Alternatively, it is possible to use the Depth-first search algorithm. However, it is nec-
essary to process all nodes of the derivation tree eventually [194]. Taking into consideration
the sizes of derivation trees of PCFGs created from real password datasets, the number of
required backtracking operations would be enormous. Therefore, the method is not feasible
for practical use with PCFG-based cracking [211].

4.4.4 Probability Groups

Creating a grammar from an existing password dictionary using the algorithm from Section
4.4.1 produces a number of rewrite rules represented by set 𝑅. Except for rules that rewrite
the start nonterminal to base structures, we can determine the type 𝑇 ∈ {𝐴,𝐷,𝑂} of
nonterminal 𝑇𝑛 on the left side of the rule 𝑟 = 𝑇𝑛 → 𝛾. The type 𝑇 defines if the rule is to
create fragments of letters (A), digits (D), or other (O) characters. The 𝑛 represents the
length of the created fragments. By analyzing PCFGs created from bigger dictionaries, we
can detect the number of rules 𝑟 with the same left side 𝑇𝑛 have equal probability 𝑃 (𝑟).

Definition 5 (Group of preterminal rules) Let group of preterminal rules 𝑅𝑇𝑛 ∈ 𝑅 be
a set of rewrite rules 𝑇𝑛 → 𝛾 with equal left side 𝑇𝑛 and 𝛾 ∈ Σ*, i.e., the right side consists
of terminal symbols only: 𝑅𝑇𝑛 = {𝑇𝑛 → 𝛾 | 𝑇𝑛 → 𝛾 ∈ 𝑅 ∧ 𝛾 ∈ Σ*}.

Definition 6 (Probability group) Let probability group 𝑅𝑝
𝑇𝑛
⊆ 𝑅𝑇𝑛 be a group of preter-

minal rules where all have same probility 𝑝: 𝑅𝑝
𝑇𝑛

= {𝑟 | 𝑟 ∈ 𝑅𝑇𝑛 ∧ 𝑃 (𝑟) = 𝑝}.

Table 4.4 shows an example of rewrite rules for nonterminal 𝐴14. One can see, the rules
create groups with an equal probability. For simplicity, I do not assume rules for letter
capitalization in this example. The existence of probability groups in grammars is the core
assumption for the Next algorithm described in the following section.

4.4.5 The Next Function

Weir et al. implemented the Next function that creates preterminal structures in decreasing
probability order. The implementation uses a priority queue where the probability defines
the priority. The queue serves to store the preterminal structures temporarily when they are
processed. Its implementation ensures that the structures are ordered by their probability
automatically. The pop() method thus takes a stored preterminal structure with the highest
probability value.

An element of the priority queue stores not only the preterminal structure, but also its
probability, the base structure of its origin, the size of the base structure in nonterminals
A, D, O, and a pivot value. The pivot ensures that we do not generate any preterminal
structure more than once and that each password guess belongs to a single derivation tree.

129

𝑅 𝑃

𝑇𝑛 → 𝛾 𝑃 (𝑇𝑛 → 𝛾) group
𝐴14 → siempreteamare 0.002379693

𝑅0.002379693
𝐴14

𝐴14 → backstreetboy 0.002379693
𝐴14 → elamordemivida 0.002379693
𝐴14 → threedaysgrace 0.001322052

𝑅0.001322052
𝐴14

𝐴14 → paralelepipedo 0.001322052
𝐴14 → glasgowrangers 0.001322052
𝐴14 → loveisintheair 0.001322052
𝐴14 → showmethemoney 0.001322052
𝐴14 → lordoftherings 0.001057641

𝑅0.001057641
𝐴14

𝐴14 → iloveyousomuch 0.001057641
𝐴14 → jessemccartney 0.001057641
𝐴14 → ilovechocolate 0.001057641
...

Table 4.4: An example of probability groups of rewrite rules

The input of the algorithm is a probabilistic context-free grammar. In the input repre-
sentation of the grammar, the rewrite rules for A, D, O nonterminals are sorted in proba-
bility order.

As a starting point for creating preterminal structures, the algorithm uses the bases
structures. Then, it rewrites their nonterminals using the rewrite rules from the most prob-
able to the least probable ones. If multiple rules with the same probability are applicable,
the algorithm “substitutes” the entire probability group. Concretely, it denotes that in
the password guessing phase, the given nonterminal will be gradually modified by all rules
from the given probability group (see Section 4.4.4). For demonstration purposes, I will
illustrate this by displaying terminals that can be substituted, e.g., instead of 4𝐴3$$, we
write 4{𝑐𝑎𝑡, 𝑑𝑜𝑔}$$. This notation defines that in the password guessing phase, 𝐴3 will be
replaced by “cat” and “dog”.

The functionality of the Next function is illustrated by algorithm 8. The PT identi-
fier denotes a preterminal structure. The algorithm gradually inserts the PT-containing
elements to the priority queue, pops existing ones out, and creates new from them. Cre-
ating new preterminals structures from existing ones is achieved by applying different, less
probable, rewrite rules to the original base structure. The algorithm uses three support
functions:

• calculate_probability(PT) calculates the probability of passwords that can be created
from the PT;

• generate_passwords(PT) represents the “second phase”: generates all possible pass-
word guesses from the PT;

• decrement(PT, i) creates a new preterminal structure from PT by applying a next
(less probable) rewrite rule at position 𝑖, or denotes the use of a next (less probable)
probability group at position 𝑖.

The functionality of the Next algorithm is illustrated in an example. Assume the PCFG
with rewrite rules from Table 4.5. In the initial phase, for each base structure, the algorithm

130

Algorithm 8: The algorithm of the Next function [211]
Data: queue, PCFG

1 // For each base structure, get PT with the highest probability
2 foreach base in PCFG do
3 element.structure = the highest probability PT from base
4 element.pivot = 0
5 element.num_strings = the size of base
6 element.p = calculate_probability(element.structure)
7 push(queue, element)
8 element = pop(queue)
9 while element != NULL do

10 generate_passwords(element) // all passwords from PT
11 for i = element.pivot; i < element.num_strings; i++ do
12 // Use next rule at position i
13 new.structure = decrement(element.structure, i)
14 if new.structure != NULL then
15 new.p = calculate_probability(new.structure)
16 new.pivot = i
17 new.num_strings = element.num_strings
18 push(queue, new)

19 element = pop(queue)

creates the most probable PT and pushes it to the priority queue together with its size and
probability. Initially, the pivot value is set to 0. After the initial phase, the number of
elements in the priority queue equals the number of base structures in the grammar.

The example grammar contains two base structures, and thus after the initial phase,
the priority queue contains two elements, as illustrated in Table 4.6. Since the rewrite rules
𝐴3 → 𝑐𝑎𝑡 and 𝐴3 → 𝑑𝑜𝑔 have the same probability, the entire probability group {𝑐𝑎𝑡, 𝑑𝑜𝑔}
is used as a replacement. The rewriting to final passwords will be performed later by the
generate_passwords() function.

At first, we mark individual positions of nonterminals in each base structure with indexes
from left to right, starting from 0. For 𝐴3𝐷1𝑂1, the nonterminal 𝐴3 has index 0, 𝐷1 has
index 1, and 𝑂1 has index 2.

Then, we progressively pop elements from the queue and create new ones from them
by applying yet un-used (groups of) rewrite rules to the corresponding base structure.
However, we only replace nonterminals whose indexes are higher than the current pivot
value.

Assume an example of the priority queue from Table 4.6. Callint the pop() operation
withdraws the element with the higest probability: 4{𝑐𝑎𝑡, 𝑑𝑜𝑔}$$. This element generates
passwords “4cat$$” and “4dog$$”. Then, two new elements with pivot values 0 and 2
are created and pushed into the queue. The contents of the queue after this operation is
illustrated by Table 4.7. Note, two different rewrite rules were applied to the base structures
for nonterminals 𝐷1 and 𝑂2. Since rules 𝐷1 → 5 and 𝐷1 → 6 have the same probability, the
entire probability group was used again. The process continues by following the algorithm
8, as long as we can generate new elements and the correct password is not found.

131

𝑅 𝑃

𝐴 → 𝛾 𝑃 (𝐴→ 𝛾)

𝑆 → 𝐷1𝐴3𝑂2𝐷1 0.75
𝑆 → 𝐴3𝐷1𝑂1 0.25
𝐴3 → cat 0.5
𝐴3 → dog 0.5
𝐷1 → 4 0.6
𝐷1 → 5 0.2
𝐷1 → 6 0.2
𝑂1 → ! 0.65
𝑂1 → % 0.3
𝑂1 → # 0.05
𝑂2 → $$ 0.7
𝑂2 → ** 0.3

Table 4.5: An example of PCFG rewrite rules for illustration of the Next function

base structure preterminal structure probability pivot
𝐷1𝐴3𝑂2 4{𝑐𝑎𝑡, 𝑑𝑜𝑔}$$ 0.1575 0
𝐴3𝐷1𝑂1 {𝑐𝑎𝑡, 𝑑𝑜𝑔}4! 0.04875 0

Table 4.6: The contents of the priority queue contents at the beginning of computation

base structure preterminal structure probability pivot
𝐷1𝐴3𝑂2 4{𝑐𝑎𝑡, 𝑑𝑜𝑔} * * 0.1575 2
𝐷1𝐴3𝑂2 {5, 6}{𝑐𝑎𝑡, 𝑑𝑜𝑔}$$ 0.1575 0
𝐴3𝐷1𝑂1 {𝑐𝑎𝑡, 𝑑𝑜𝑔}4! 0.04875 0

Table 4.7: The contents of the priority queue after processing the first element

Weir et al. provide proof of the correctness of the Next algorithm [213]. The proof gives
the following conslusions:

• All possible preterminal structures that can be created from a PCFG are eventually
created.

• No preterminal structure is created more than once.

• Preterminal structures at the output are in non-increasing probability order.

For each PCFG, the algorithm of the Next function produces a single unique derivation
tree. And thus, for each string generated by the grammar, there is only one subset of the
set of rewrite rules that produces it. This is ensured by the pivot value.

132

4.4.6 The Deadbeat Dad Algorithm

Despite the Next algorithm being feasible for creating preterminal structures, generating
from more complex PCFGs has enormously high memory requirements. Such a problem
is solved by the Deadbeat dad algorithm that uses the same priority queue but requires
a significantly lower amount of memory [211].

The reason why the original Next function has high memory requirements is illustrated
in an example. For simplicity, assume a preterminal structure made of three nonterminals.
At each position, there are three possible replacements: 1, 2, and 3. Figure 4.2 displays all
the possibilities generated by the Next function. Each node represents a single preterminal
structure. For simplicity, the probability values are neglected. After the initial phase, node
(1,1,1) is pushed to the priority queue as the first entry. After its popped out, nodes (2,1,1),
(1,2,1), and (1,1,2) are generated from it and pushed back to the queue. Every time, the
algorithm pops the node with the highest probability. In the Next function, the pivot value
ensures that every child node has only one parent. However, the problem is that the size
of the priority queue grows enormously.

1,1,1

2,1,1 1,2,1 1,1,2

3,1,1

3,2,1

2,2,1 2,1,2

2,1,3

1,3,1

1,3,2

1,2,2

1,3,3

3,1,2 1,2,3

1,1,3

2,3,1 2,2,2

3,3,1 3,2,2 3,1,3 2,3,2 2,2,3

3,3,2

3,3,3

3,2,3 2,3,3

Figure 4.2: Illustration of the nodes generated by the Next function

As illustrated in Figure 4.3, when the Next function pops node 1 from the priority queue,
it generates nodes 2 and 3 from it and pushes both to the priority queue. Next, node 2 is
popped because it has a higher probability than node 3. Then, the function creates node
4 and pushes it into the priority queue, because node 4 is node 2’s child, as illustrated in
Figure 4.2. See that node 3 has a higher probability than node 4. That means that node 4
needlessly occupies the queue and is never popped out before node 3 is popped. And thus,
it would make sense to have node 3, instead of node 2, responsible for creating node 4.

The idea behind the Deadbeat dad algorithm proposed by Matt Weir is to postpone
pushing nodes to the priority queue as long as possible. The design of the algorithm is
motivated by two facts:

• No child nodes are popped before their parents are popped.

• The parent nodes are popped in probability order.

133

(1,1,1)

1

50%

(1,2,1)

2

25% (1,1,2)

3

15%

(1,2,2)

4

10%

Figure 4.3: Multiple parents for node no. 4

The Deadbeat dad algorithm uses the same priority queue as the Next function but ensures
that every child node is inserted by the parent node with the lowest probability. How it
works is illustrated in Figure 4.4. Node (1,2,2) has three possible children: (2,2,2), (1,3,2),
and (1,2,3). For each of them, the algorithm generates all possible parents and checks if
any of them have a lower probability then the currently popped parent. In this case, the
probability of the currently popped parent (1,2,2) is 10%. Both node (2,2,2) and node
(1,2,3) have other parents whose probability is lower. Therefore, the other parents will take
care of them in the future, and the only child that is inserted into the priority queue is
(1,3,2).

1,2,2

2,2,2 1,3,2 1,2,3

2,1,1 1,3,1 1,1,32,2,1

1,3,2

10 %

1 % 3 % 4 %

2 % 12 % 5 % 11 %

1) Node (1,2,2) is popped

2) All possible children are generated

3) Generate other parents of the children
 and check if their probability is < 10 %

4) Only node (1,3,2) is pushed into the
 queue since it does not have any other
 parent with probability lower than 10 %

Figure 4.4: A demonstration of the Deadbeat Dad algorithm

134

Algorithm 9 shows the pseudo-code of the Deadbeat dad algorithm. The code uses
an additional function called lowest_probability_parent() whose functionality is il-
lustrated by Algorithm 10. The function returns true if, for the given node, the given
parent is the one with the lowest probability. In the Python PCFG Cracker, it is imple-
mented inside the dd_is_my_parent() function, to which I refer in Section 4.7.1. The
get_parent_probability() function returns the probability of the 𝑖-th other parent.

In the example from Figure 8, the popped node is (1,2,2) with a probability of 10 %. For
all three children, the Deadbeat dad algorithm calls the lowest_probability_parent()
function. For nodes (2,2,2) and (1,1,3), it returns false since they have other parents with
probabilities 2 % and 5 %. For node (1,3,2), it returns true, because the popped node
(1,2,2) is its parent with the lowest probability. In contrast to the Next function, the
elements inside the probability queue do not have the pivot values. The pivot 𝑖 serves only
as a temporary variable that is used locally in the algorithm.

Algorithm 9: The Deadbeat dad algorithm [211]
Data: queue, PCFG

1 // For each base structure, get PT with the highest probability
2 foreach base in PCFG do
3 element.structure = the highest probability PT from base
4 element.num_strings = the size of base
5 element.p = calculate_probability(element.structure)
6 push(queue, element)
7 element = pop(queue)
8 while element != NULL do
9 generate_passwords(element) // all passwords from PT

10 for i = 0; i < element.num_strings; i++ do
11 // Use next rule at position i
12 child.structure = decrement(element.structure, i)
13 child.num_strings = element.num_strings
14 if child.structure != NULL
15 and lowest_probability_parent(child, element, i) then
16 child.p = calculate_probability(new.structure)
17 push(queue, child)

18 element = pop(queue)

Figure 4.5 displays the size of the priority queue with the increasing number of password
guesses. The grammar used is trained on the MySpace dataset. In the experiment, the
grammar used letter capitalization, and probability smoothing was applied. We can see
that the Deadbeat dad algorithm reduces the necessary amount of space dramatically in
contrast to the original Next function. The saved space is, however, redeemed by higher
computational complexity. As I detected, the biggest obstacle represents the high number
of iterations of the lowest_probability_parent() function. The number increases with
the number of probability groups. In this chapter, I propose a solution that reduces the
number of required computing operations by filtering out long base structures. The idea is
described in Section 4.7.1.

135

Algorithm 10: The pseudo-code of the lowest_probability_parent() function
used by the Deadbeat dad algorithm [211]

Input : child, element, parent_pivot
Data: PCFG
Output: boolean

1 for i = 0; i < child.num_strings; i++ do
2 if i != parent_pivot then
3 // not the parent node // find the probability of the other parent

other_parent_probability = get_parent_probability(child, i)
4 if other_parent_probability < element.probability then
5 // some other parent will take care of the child
6 return false
7 else if other_parent_probability == element.probability then
8 // the location of the pivot is used
9 if i > parent_pivot then

10 return false

11 return true

Figure 4.5: Size of the priority queue with the Next function and the Deadbeat dad algo-
rithm (Source: Matt Weir’s dissertation [211])

4.5 Key Observations
By analyzing the existing methods and the behavior of Weir’s proof-of-concept PCFG
Cracker on various leaked password datasets, I observed the following:

• The Python implementation of PCFG Manager uses a priority queue and three pro-
cesses: one that fills the queue with pre-terminal structures [213], one that creates
terminal structures (password guesses), and one for storage backup. No other paral-
lelization is supported. Thus, the processor cores are not utilized well.

136

• Processing long base structures like 𝐴1𝐷1𝐴2𝐷2𝐴3𝐷3𝐴4𝐷4𝐴5𝐷5 is computationally
complex and wastes a lot of time even if their probabilities are insignificant.

• Rewrite rules for alpha characters (A), digits (D), and other symbols (O) have all
similar probability, while rewrite rules for base structures differ more between each
other.

• For capitalization of letter fragments, a grammar usually contains few (1 to 4) rules
with higher probabilities while the rest have probability below 0.1 and only little
impact on success rate.

• The PCFG Manager is a utility that generates and prints out the password guesses.
While it is possible to perform a live cracking by redirecting the output directly
to a password cracking tool like hashcat, the existing solution is by design a single-
machine one. Without additional implementation, the only way of employing multiple
nodes is to generate a password wordlist offline using Weir’s tool, split it to smaller
ones and use each to perform a dictionary attack on a particular computing node.
Such a solution, however, requires a lot of user effort. Moreover, the efficiency of the
attack would be low since it prevents generating and verifying passwords at the same
time. Performing a live distributed cracking session instead would require:

– an external software that transfers the generated password guesses to other com-
puting nodes, or

– a modification of the existing solution.

4.6 Parallel PCFG Cracking
As mentioned in Section 4.5, the downside of the PCFG Manager proposed by Weir et al.
[213, 211] is a relatively low password guessing performance. As I detected, the reasons
are both in the design and implementation. Concretely, lacking parallelization and missing
option for compilation into the native code. Therefore, I propose an enhanced design
that supports parallel and distributed (see Section 4.8) computing to improve the use of
available resources. In the following paragraphs, I describe the changes step-by-step and
directly propose an alternative proof-concept implemantation10.

First of all, I wanted to eliminate the infulence of using an interpreted language. There-
fore, the first step was a simple transcription of the original Python sources to Go11 pro-
gramming language that was chosen because of its speed, simplicity, and compilation to
machine language. Early experiments showed that the Go-based alternative using the same
algorithms was about four times faster than the original solution. However, there was still
enough space for optimization.

Within all operations performed by the PCFG Manager, generating password guesses
from preterminal structures [213, 211] was the most computationally complex part. Since
there is no mutual dependence between the preterminals, I decided to modify the program
and parallelize this part of the process. The new design uses a single goroutine (a lightweight
thread) for filling the priority queue [213] with preterminal structures, and one to 𝑛 gor-
outines for generating terminals in parallel. The 𝑛 can be set by a user to reflect the
processor’s capabilities. Moreover, the new tool provides a parameter which allows the

10https://github.com/nesfit/pcfg-manager
11https://golang.org/

137

https://github.com/nesfit/pcfg-manager
https://golang.org/

getNext

send... PT

Process 1

Priority queue

Process 2

listPT T1
...
Ti

(a) Python PCFG Manager

... PT

Goroutine M

Priority queue
PT1 ... PTN

Buffered channel

send

Goroutine 1

list
PT T1

...
Ti

...
Goroutine N

list
PT T1

...
Ti

Wordlist
flush

flush

receive

receive

flush

flush

flush

flush

(b) Go PCFG Manager

... PT

Goroutine M

Priority queue
PT1 ... PTN

Buffered channel

send

Goroutine 1

list
PT T1

...
Ti

...
Goroutine N

list
PT T1

...
Ti

receive

flush

Output buffer

flush

Output buffer

Wordlist

receive

(c) Go PCFG Manager with buffered output

Figure 4.6: The architecture of PCFG Manager in Python and Go
(PT - preterminal structure, T - terminal)

user to limit the number of generated password guesses. I illustrate both approaches by
simplified schematics that display goroutines and data transfer operations. While Figure
4.6(a) shows the original design of Weir’s PCFG Manager, the parallel version is depicted
in Figure 4.6(b).

For synchronization and mutual communication, goroutines use a mechanism called
channels that act as FIFO queues. A goroutine can send values to a channel or receive values
from it. By default, channels are not buffered and both send and receive operations are
blocking. The proposed solution uses a buffered channel of size 𝑛 where the sender is blocked
only if the channel contains 𝑛 values in the queue. Each value represents a preterminal

138

structure. The main goroutine (M) implements the Deadbeat dad algorithm [211] filling
the priority queue with preterminals. Every time a preterminal is created, it is sent to the
buffered channel if there is enough space. Every time the channel is full, the main goroutine
is suspended automatically by the send operation. There is no need to generate more
preterminals at the time they cannot be processed. In contrast to the original version, the
proposed design allows to process multiple preterminals and generate passwords in parallel
if 𝑛 > 1. In that case, the only apparent drawback is the possible slight change of the
password order at the output. This behavior could be resolved by adding a supplementary
synchronization mechanism at the output, however, at the cost of performance loss. For
practical use, I do not consider this as a large obstacle since for millions of password, the
changes are insignificant because the order of larger password blocks is preserved. Moreover,
if the user does not set the guess limit explicitly, or if the limit is set in the PCFG Mower (see
Section 4.7) instead of PCFG Manager, the output dictionary contains the same passwords,
and the success rate would be intact.

Additional profiling, revealed that even though the parallelization accelerated generating
terminal structures, the new bottleneck was at the output, where simple I/O text opera-
tions slowed down the entire process. Eventually, this obstacle was removed by adding
extra output buffers to goroutines that generate terminal structures. The buffers store the
terminal structures and are flushed to output after the entire preterminal is processed. The
final design is illustrated in Figure 4.6(c) and the experimental results in Section 4.9.1.

4.7 Grammar Filtering
Grammars created from real datasets of passwords often have a high number of rewriting
rules. Performing a PCFG-based attack in an acceptable time requires to limit the number
of password guesses. If such a limit is specified, many of the rules are never used. And
as I have experimentally detected, the presence of some even complicate the computation
process and make password guessing slower.

Therefore, in this section, I propose methods of grammar filtering that remove selected
rules from the grammar to: a) make guessing faster, b) obtain a compact grammar that
can be processed entirely without defining a “hard limit” for password guesses.

4.7.1 Long Base Structures

For every PCFG, possible sentential forms create a tree structure where the starting symbol
represents the root node, and terminal structures are leaves. Every edge stands for the
application of a rewriting rule that transforms a parent node to a child node. In terms
of probabilistic password cracking, terminal structures are password candidates, and base
structures (e.g., 𝐴4𝐷2𝑂1) are located on the second level of the tree.

In PCFG Manager, every base structure is processed by Deadbeat dad algorithm [211].
The goal of this algorithm is to create new children from the current node and ensure that
these child nodes are inserted into the priority queue in the correct order. Deadbeat dad
replaced the original Next function [213] and significantly reduced the size of the priority
queue at the expense of computing operations [211].

I analyzed the algorithm and observed that the most expensive task is to find every
possible parent of every node which is being inserted into the priority queue. In Weir’s
PCFG Manager, the task is resolved by a function called dd_is_my_parent that runs in it-
erations whose count is potentially increased by every non-terminal present in the processed

139

base structure. The deciding factor is the number of different probabilities assigned to the
rewriting rules applicable to the non-terminal. This behavior bears on the use of probability
groups described in Section 4.4.3. If all usable rules have the same probability value, the
number of iterations is not increased. The more different probabilities are present, the more
rapidly the iteration count grows, if the non-terminal is added to the base structure.

Table 4.8 shows the number of dd_is_my_parent iterations under different settings.
For 𝐷3 non-terminal, all rules have the same probability, and thus 𝐷3 has no impact on the
iteration count. For 𝐴1, rewriting rules have 26 to 29 different probability values (𝐴𝑝

1). As
a capitalization rule for 𝐴1, only ”L“ is used. One can see, the number of iterations grows
almost exponentially each time 𝐴1 is added to the base structure.

base structure 𝐴𝑝
1 = 26 𝐴𝑝

1 = 27 𝐴𝑝
1 = 28 𝐴𝑝

1 = 29

𝐴1 103 107 111 115
𝐴1𝐷3 103 107 111 115
𝐴1𝐷3𝐴1 15,811 17,067 18,371 19,723
𝐴1𝐷3𝐴1𝐷3 15,811 17,067 18,371 19,723
𝐴1𝐷3𝐴1𝐷3𝐴1 1,506,286 1,688,528 1,884,906 2,095,948
𝐴1𝐷3𝐴1𝐷3𝐴1𝐷3 1,506,286 1,688,528 1,884,906 2,095,948
𝐴1𝐷3𝐴1𝐷3𝐴1𝐷3𝐴1 120,939,106 140,790,314 162,990,446 187,717,930

Table 4.8: The number of iterations of dd_is_my_parent function

In PCFGs trained on leaked password datasets, the variedness between rule probabil-
ities is usually high, especially for shorter character fragments. For long base structures,
the dd_is_my_parent function may iterate millions of times which significantly slows the
password guessing process. Such structures usually have low probability values since they
are in most cases created from randomly generated strings, not created by users. As I as-
sume and experimentaly prove in Section 4.9.2, removing such structures from the grammar
speeds up password generation several times and does not noticeably decrease success rate
at cracking sessions. Experiments with

4.7.2 Calculating the Number of Password Guesses

The exact calculation of possible password guesses from a PCFG is a currently missing
feature that is, however, essential for tools presented in this chapter. Let 𝑠𝑖𝑧𝑒(𝑁) be the
number of terminal structures that can be created by applying rewrite rules on non-terminal
𝑁 . For base structure 𝐵 = 𝑁1𝑁2 . . . 𝑁𝑛, the number of possible password candidates can
be calculated as:

𝑐𝑛𝑡_𝑏𝑎𝑠𝑒(𝐵) =
𝑛∏︁

𝑖=1

𝑠𝑖𝑧𝑒(𝑁𝑛). (4.8)

For grammar 𝐺, the total number of possible password candidates is the sum of 𝑐𝑛𝑡_𝑏𝑎𝑠𝑒(𝐵)
for all base structures 𝐵 ∈ 𝐺:

𝑐𝑛𝑡_𝑡𝑜𝑡𝑎𝑙(𝐺) =
∑︁
𝐵∈𝐺

𝑐𝑛𝑡_𝑏𝑎𝑠𝑒(𝐵). (4.9)

The file and directory structure of Weir’s PCFG considers a single rewriting rule per line.
All rewriting rules have non-zero probability, and thus, all are used. Therefore, 𝑠𝑖𝑧𝑒(𝑁) for

140

non-terminal 𝑁 = 𝑇𝑛 (see Section 4.4) is, in most cases, the number of lines in n.txt file
located in a directory for fragments of type 𝑇 . For example, 𝑠𝑖𝑧𝑒(𝐷3) equals the number
of lines in Digits/3.txt file. Since letter capitalization rules have been introduced, it
is necessary to take them into consideration. Thus, 𝑠𝑖𝑧𝑒(𝐴𝑛) is the number of lines in
Alpha/n.txt file multiplied by the number of lines in Capitalization/n.txt file.

The calculation shown above is usable for classical PCFG-based approach only, i.e., with
the --coverage parameter of PCFG Trainer set to 1. Otherwise, Weir’s PCFG Manager
would create additional character fragments using brute-force and Markov chains. Com-
bining PCFGs with these attack methods is out of the scope of this research.

4.7.3 Rule Filtering

To increase speed even more, I experimented with various modifications of already-trained
grammars. I noticed that removing rules which rewrite the starting symbol into long base
structures brings a significant speedup without higher impact on a success rate. The moti-
vation for such filtering was discussed in Section 4.7.1. I automated the process by creating
a simple script that automatically filters out all base structures longer than a user-defined
maximum.

At this point, I was able to generate much more passwords per time unit. However,
without a manually-defined limit for password guesses, the total amount of time required
for generating was still extensive. From a practical perspective, any limit to guess count
means that there is always a part of the grammar that is never used and unnecessarily
wastes memory during the guess generation. Such a consideration led me to speculate
about reducing the size of the grammar instead of limiting guesses in PCFG Manager.

I came with an idea to remove the least significant rewriting rules from the grammar.
I am aware of the fact that any removal of rules from already-created PCFG without
adjusting probability values results in a mathematically incorrect grammar where the total
probability of rules that rewrite some non-terminals may be lower than one – and thus,
such a grammar is not purely probabilistic. The correctness of the grammar could be fixed
by additional correction of the probability function 𝑃 (𝑟) for all rules 𝑟 = 𝐴→ 𝛾 where any
other rule with the same left side 𝐴 was removed by the filtering. The correction can make
the formula ∀𝐴 ∈ 𝑁,

∑︀
𝐴→𝛾∈𝑅(𝑃 (𝐴→ 𝛾)) = 1 valid again.

From a practical standpoint, such a correction is not necessary since the implementation
of the PCFG Manager can produce password guesses even if some rules are missing. The
goal of the filtering is to make the output dictionary more compact and to ensure that
generating passwords will end in an acceptable time. Besides, having a reduced grammar
that can be processed entirely, ensures that even the parallel run of PCFG Manager gen-
erates the same passwords every time. Nevertheless, the strongest motivation for grammar
filtering is a potentially massive saving of processor time. Putting a limit before the guess-
ing even starts prevents the Deadbeat dad algorithm [211] from performing many useless
derivation steps on trees that never form terminal passwords due to a low probability.

As denoted above, rules for alpha characters, digits, and special symbols usually have
similar probabilities, thus removing them leads to a considerable loss of information which
decreases the success rate. Rulesets for base structures and capitalization, on the other
hand, contain many insignificant rewriting rules that can be removed safely.
To verify my assumptions, I created a draft of a simple PCFG reduction algorithm that is
implemented in the PCFG Mower. Algorithm 11 shows its pseudocode. The goal of the
algorithm is not to provide a universal solution, but to validate or disprove that system-

141

atic PCFG filtering brings a possible benefit to password cracking. Besides the original
grammar, it takes the following input parameters: 𝑙𝑖𝑚𝑖𝑡 defining the maximum number of
password guesses to be generated, and probability values 𝑏𝑠, 𝑐𝑠. While 𝑏𝑠 allows to set how
rapidly should the algorithm remove base structures, 𝑐𝑠 sets the same for capitalization
rules. The output of the algorithm represents a PCFG which generates the maximum of
𝑙𝑖𝑚𝑖𝑡 password guesses.

Algorithm 11: PCFG reduction algorithm
Input : 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑔𝑟𝑎𝑚𝑚𝑎𝑟, 𝑙𝑖𝑚𝑖𝑡, 𝑏𝑠, 𝑐𝑠
Output: 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑔𝑟𝑎𝑚𝑚𝑎𝑟

1 𝑟𝑒𝑑𝑢𝑐𝑒 = true, 𝑖 = 0, 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑔𝑟𝑎𝑚𝑚𝑎𝑟
2 repeat
3 𝑖++
4 𝑐𝑜𝑢𝑛𝑡 = password_count()
5 if 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡 then
6 𝑟𝑒𝑑𝑢𝑐𝑒 = false
7 if 𝑟𝑒𝑑𝑢𝑐𝑒 then
8 Remove as many base structures from the 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 as required to reduce

their total probability by 𝑏𝑠.
9 Remove all capitalization rules from the 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 that have probability

lower than 𝑖× 𝑐𝑠.
10 until not 𝑟𝑒𝑑𝑢𝑐𝑒;
11 return 𝑔𝑟𝑎𝑚𝑚𝑎𝑟

It is essential to state that the proposed PCFG reduction algorithm represents a naive
solution created for experimental purposes. The algorithm removes the least significant
rewrite rules. Still, it is based on heuristics and does not guarantee that the filtering only
prevents generating the least significant password guesses since the probability of every
password guess depends on the probabilities of all applied rules.

To experimentally evaluate the technique’s benefits, I propose a proof-of-concept tool
called the PCFG Mower12 which can:

• Calculate the total number of possible password guesses from a PCFG and inform
the user about achievable keyspace. Moreover, if the user knows an average speed of
password guessing, it is possible to estimate the total time required for generating all
password candidates.

• Filter a PCFG by performing an automatic removal of rewriting rules based on a set
of options entered by the user.

If the results show that such filtering brings advantages and can serve as an alternative
to a password guess count limit, it is possible to use a more systematic way. I assume
advanced filtering solutions can calculate with the preterminal or terminal probability for
a more precise choice of what rules to remove.

12https://github.com/nesfit/pcfg_mower

142

https://github.com/nesfit/pcfg_mower

4.8 Distributed PCFG Cracking
For distributed cracking, I assume a network consisting of a server and a set of clients,
as illustrated in Figure 4.7. The server is responsible for handling client requests and
assigning work. Clients represent the cracking stations equipped with one or more OpenCL-
compatible devices like GPU, hardware coprocessors, etc. In the proposal, I talk about
a client-server architecture since the clients are actively asking for work, whereas the server
is offering a “work assignment service.”

Server

Clients

GPUs

Figure 4.7: An example of a cracking network

In PCFG-based attacks, a probabilistic context-free grammar represents the source of
all password guesses, also referred to as candidate passwords. Each guess represents a string
generated by the grammar, also known as a terminal structure [213, 211]. In a distributed
environment, we need to deliver the passwords to the cracking nodes somehow. A naive
solution is to generate all password candidates on the server and distribute them to clients.
However, such a method has high requirements on the network bandwidth, and as I de-
tected in my previous research, also high memory requirements to the server [82]. Another
drawback of the naive solution is limited scalability. Since all the passwords are generated
on a single node, the server may easily become a bottleneck of the entire network.

And thus, I propose a new distributed solution that is inspired by the parallel one
described in Section 4.6. In the following paragraphs, I describe the design and communi-
cation protocol of the distributed PCFG Manager. To verify the usability of the concept, the
proof-of-concept parallel PCFG Manager10 was extended with the support for distributed
computing.

The general idea is to divide the password generation across the computing nodes. The
server only generates the preterminal structures (PT), while the terminal structures (T) are
produced by the cracking nodes. The work is assigned progressively in smaller pieces called
chunks. Each chunk produced by the server contains one or more preterminal structures,
from which the clients generate the password guesses. To every created chunk, the server

143

assigns a unique identifier called the sequence number. The keyspace, i.e., the number of
possible passwords, of each chunk is calculated adaptively to fit the computational capa-
bilities of a node that will be processing it. Besides that, the design allows direct cracking
with hashcat tool. I chose hashcat as a cracking engine for the same reasons as I did for the
Fitcrack distributed password cracking system [84], mainly because of its speed and range
of supported hash formats. The proposed tool supports two different modes of operation:

• Generating mode - the PCFG Manager generates all possible password guesses and
prints them to the standard output. A user can choose to save them into a password
dictionary for later use or to pass them to another process on the client-side.

• Cracking mode - With each chunk, the PCFG Manager runs hashcat in stdin mode
with the specified hashlist and hash algoritm. By using a pipe, it feeds it with all
password guesses generatable from the chunk. Once hashcat processes all possible
guesses, the PCFG Manager returns a result of the cracking process, specifying which
hashes were cracked within the chunk and what passwords were found.

4.8.1 Communication Protocol

The proposed solution uses remote procedure calls with the gRPC13 framework. For de-
scribing the structure of transferred data and automated serialization of payload, it uses
the Protocol buffers14 technology.

The server listens on a specified port and handles requests from client nodes. The
behavior is similar to the function of Gouroutine M from the parallel version (see Section
4.6) - it generates PT and tailors workunits for client nodes. Each workunit, called chunk,
contains one or more PTs. As shown in listing 4.1, the server provides clients an API
consisting of four methods. Listing 4.2 shows an overview of input/output messages that
are transferred with the calls of API methods.

1 service PCFG {
2 rpc Connect (Empty) returns (ConnectResponse) {}
3 rpc Disconnect(Empty) returns (Empty);
4 rpc GetNextItems(Empty) returns (Items) {}
5 rpc SendResult(CrackingResponse) returns (ResultResponse);
6 }

Listing 4.1: Server API

When a client node starts, it connects to the server using the Connect() method.
The server responds with the ConnectResponse message containing a PCFG in a compact
serialized form. If the desire is to perform an attack on a concrete list of hashes using
hashcat, the ConnectResponse message also contains a hashlist (the list of hashes intended
to crack) and a number defining the hash mode15, i.e., cryptographic algorithms used.

1 message ConnectResponse {
2 Grammar grammar = 1;
3 repeated string hashList = 2;

13https://grpc.io/
14https://developers.google.com/protocol-buffers
15https://hashcat.net/wiki/doku.php?id=example_hashes

144

https://grpc.io/
https://developers.google.com/protocol-buffers
https://hashcat.net/wiki/doku.php?id=example_hashes

4 string hashcatMode = 3;
5 }
6

7 message Items {
8 repeated TreeItem preTerminals = 1;
9 }

10

11 message ResultResponse {
12 bool end = 1;
13 }
14

15 message CrackingResponse {
16 map<string, string> hashes = 1;
17 }

Listing 4.2: Messages transferred between the server and clients

Once connected, the client asks for a new chunk of preterminal structures using the
GetNextItems() method. In response, the server assigns the client a chunk of 1 to N
preterminal structures, represented by the Items message. After the client generates and
processes all possible passwords from the chunk, using the SendResult() call, it submits the
result in the CrackingResponse message. In cracking mode, the message contains a map
(an associative array) of cracked hashes together with corresponding plaintext passwords. If
no hash is cracked within the chunk or if the PCFG Manager runs in generating mode, the
map is empty. With the ResultResponse message, the server then informs the client, if the
cracking is over or if the client should ask for a new chunk by calling the GetNextItems()
method.

The last message is Disconnect() that clients use to indicate the end of their par-
ticipation, so that the server can react adequately. For instance, if a client had a chunk
assigned, but disconnected without calling the SendResult() method, the server may re-
assign the chunk to a different client. The flow of messages between the server and a client
is illustrated in Figure 4.8.

4.8.2 Server

The server represents the controlling point of the computation network. As displayed in
Figure 4.9, i maintains the following essential data structures:

• Priority queue - the queue is used internally by the Deadbeat dad algorithm [211]
for generating pre-terminal structures. In the figure, the priority queue is part of the
“Generator” block.

• Buffered channel - the channel represents a memory buffer for storing already
generated PTs from which the server creates chunks of work.

• Client information - for each connected client, the server maintains its IP ad-
dress, current performance, the total number of password guesses performed by the
client, and information about the last chunk that the client completed: its keyspace
and timestamps describing when the processing started and ended. If the client has
a chunk assigned, the server also stores its sequence number, PTs, and the keyspace
of the chunk.

145

Figure 4.8: The proposed communication protocol

• List of incomplete chunks - the structure is essential for a failure-recovery mech-
anism I added to the server. If any client with a chunk assigned disconnects before
reporting its result, the chunk is added to the list to be reassigned to a different client.

• List of non-cracked hashes (cracking mode only) - the list contains all input hashes
that have not been cracked yet.

• List of cracked hashes (cracking mode only) - The list contains all hashes that
have already been cracked, together with corresponding passwords.

Once started, the server loads an input grammar in the format used by Weir’s PCFG
Trainer16. Next, it checks the desired mode of operation and other configuration options –
the complete description is available via the tool’s help. In cracking mode, the server loads
all input hashes to the list of non-cracked hashes. In generating mode, all hashlists remain
empty. The server then allocates memory for the buffered channel, where the channel size
can be specified by the user.

As soon as all necessary data structures get initialized, the server starts to generate PTs
using the Deadbeat dad algorithm, and with each PT, it calculates and stores its keyspace.
Generated PTs are sent to the buffered channel. The process continues as long as there is
free space in the channel, and the grammar allows new PTs to be created. If the buffer
infills, generating new PTs is suspended until the positions in the channel get free again.

When a client connects, the server adds a new record to the client information structure.
In the ConnectResponse message, the client receives the grammar that should be used for
generating passwords guesses. In cracking mode, the server also sends the hashlist and hash
mode identifying the algorithm that should be used, as illustrated in Figure 4.8.

16https:
//github.com/lakiw/legacy-pcfg/blob/master/python_pcfg_cracker_version3/pcfg_trainer.py

146

https://github.com/lakiw/legacy-pcfg/blob/master/python_pcfg_cracker_version3/pcfg_trainer.py
https://github.com/lakiw/legacy-pcfg/blob/master/python_pcfg_cracker_version3/pcfg_trainer.py

Upon receiving the GetNextItems() call, the server prepares a new assignment for the
client. The flow if information is displayed in Figure 4.9. The the server pops one or more
PTs from the buffered channel and sends them to the client as a new chunk. Besides, the
server updates the client information structure to denote what chunk is currently assigned
to the client. The number of PTs taken depends on their keyspace. Like in Fitcrack [81, 84],
the system schedules work adaptively to the performance of each client. In the distributed
PCFG Manager, the performance of a client (𝑝𝑐) in passwords per second is calculated from
the keyspace (𝑘𝑙𝑎𝑠𝑡) and computing time (∆𝑡𝑙𝑎𝑠𝑡) of the last assigned chunk. The keyspace
of a new chunk (𝑘𝑛𝑒𝑤) assigned to the client depends on the client’s performance and the
chunk_duration parameter that the user can specify:

𝑝𝑐 =
𝑘𝑙𝑎𝑠𝑡

∆𝑡𝑙𝑎𝑠𝑡
, (4.10)

𝑘𝑛𝑒𝑤 = 𝑝𝑐 * 𝑐ℎ𝑢𝑛𝑘_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. (4.11)

The server removes as many PTs from the channel as needed to make the total keyspace of
the new chunk at least equal to 𝑘𝑛𝑒𝑤. If the client has not solved any chunk yet, we have no
clue to find 𝑝𝑐. Therefore, for the very first chunk, the 𝑘𝑛𝑒𝑤 is set to a pre-defined constant.

An exception occurs if a client with a chunk assigned disconnects before reporting its
result. In such a case, the server saves the assignment to the list of incomplete chunks. If
the list is not empty, chunks in it have an absolute priority over the newly created ones.
And thus, upon the following GetNextItems() call from any client, the server uses the
previously stored chunk.

Once a client submits a result via the SendResult() call, the server updates the infor-
mation about the last completed chunk inside the client information structure. For each
cracked hash, the server removes it from the list of non-cracked hashes and adds it to the
list of cracked hashes together with the resulting password. If all hashes are cracked, the
server prints each of them with the correct password and ends. In generating mode, the
server continues as long as new password guesses are possible. The same happens in the
cracking mode in case there is a non-cracked hash.

Finally, if a client calls the Disconnect() method, the server removes its record from
the client information structure. As described above, if the client had a chunk assigned,
the server will save it for later use.

4.8.3 Client

After calling the Connect() method, a client receives the ConnectResponse message con-
taining a grammar. In cracking mode, the message also include a hashlist and a hash mode.
Then it calls the GetNextItems() method to obtain a chunk assigned by the server. Like
in the parallel version (see Section 4.6), the client then subsequently takes one PT after an-
other and uses the generating goroutines to create passwords from them. In the generating
mode, all password guesses are printed to the standard output.

For the cracking mode, it is necessary to have a compiled executable of hashcat on the
client node. The user can define the path using the program parameters. The PCFG Man-
ager then starts hashcat in the dictionary attack mode with the hashlist and hash mode
parameters based on the information obtained from the ConnectResponse message. Since
no dictionary is specified, hashcat automatically reads passwords from the standard input.
And thus, the client creates a pipe with the end connected to the hashcat’s input. All pass-
word guesses are sent to the pipe. From each password, hashcat calculates a cryptographic

147

Adresa
Rýchlosť

Celkový počet terminálov
Štartovací čas
Koncoví čas

Id
Preterminály

Počet terminálov

...

Informácie o pripojených klientských uzlov

7.

...PT1 PTN

3.
úlohu

6. 4.

8.

Úloha #42 Úloha #2

Zoznam vrátených úloh

5.

1.

2. 9.

Preterminal
structure

Generator

List of incomplete chunks

Client information

Client #1

Performance calculation
Start time update

Keyspace calculation

List of
non-cracked

hashes

List of

hashes

 Chunk
creation

- IP address
- current performance
- total guesses
- last chunk start
- last chunk end

- ID
- PTs
- keyspace

Chunk #42 Chunk #2

Request for
a new chunkCurrent chunk

Buffered channel

 List of
cracked
 hashes

Figure 4.9: The architecture of the server and information flow when asked for a new chunk

hash and compares it to the hashes in the hashlist. After generating all password guesses
within the chunk, the client closes the pipe and waits for hashcat to end and reads its return
value. On success, the client loads the cracked hashes.

In the end, the client eventually informs the server about the chunk completion using
the SendResult() call. If any hashes are cracked successfully, the client adds them to
the CrackingResponse message that is sent with the call. The architecture of the PCFG
Manager client is displayed in Figure 4.10.

Figure 4.10: The architecture of the client side

148

4.9 Experimental Results
In this section, I demonstrate the practical benefits of the proposed enhancements to PCFG-
based Password cracking. Section 4.9.1 compares the parallel version of the PCFG Manager
to the original solution proposed by Weir et al. [213, 211]. Section 4.9.2 shows the advan-
tages of grammar filtering. Finally, Section 4.9.3 experimentally proves the benefits of the
proposed solution for distributed PCFG password cracking

4.9.1 Parallel PCFG Cracking

In this section, I measure the performance of the proposed parallel PCFG Manager. To
evaluate its benefits, I compare the results with the original solution.

Experimental Setup

For experimental purposes, I work with both original and modified datasets from real
password leaks. The wordlist used for experiments are obtained from SkullSecurity6 pages
and SecLists7 repository. All employed datasets are enlisted in table 4.9. For shorter
notation, I assign each a unique identifier (ID). The last row (def) represents the default
PCFG from Weir’s PCFG Cracker4, which is said to be trained on a random sample of
million passwords from RockYou dataset.

The table shows the number of passwords in the dataset (pw count), its size, and the
average password length (avg). The other columns illustrate how a PCFG trained on the
dataset looks like. Moreover, I show the number of rewriting rules for alpha characters (A),
digits (D), other characters (O) as well as the number of rewriting rules for base structures
(base) and capitalization (cap).

The first experiment measures the acceleration achieved using the new parallel PCFG
Manager in contrast with the original one from Weir et al. [213]. Table 4.10 shows experi-
mental results of generating password guesses using PCFG trained on Darkweb2017-10000
dataset (dw), RockYou-75 dataset (ru75), and the default PCFG (def) used in Weir’s
cracker. All three experiments were performed using a computer with Intel(R) Core(TM)
i7-4700HQ CPU with 8 GB RAM. I also decided to study the influence of disk I/O speed,
so that I measured everything using HDD and then using SSD. In all cases, I measured how
many password guesses it it possible to generate within 3 minutes.

dataset PCFG
ID name pw count size avg A D O base cap
dw Darkweb2017-10000.txt 10,000 82.6 kB 7 5,244 947 30 323 83
r65 rockyou-65.txt 30,290 344.5 kB 7 17,845 4,213 35 256 39
r75 rockyou-75.txt 59,187 478.9 kB 7 30,670 10,601 51 351 51
ms myspace.txt 37,126 354.2 kB 8 22,587 4,273 133 1,574 179
tl tuscl.txt 38,820 324.7 kB 7 26,806 6,518 71 1,290 242
pr probab-v2-top12000.txt 12,645 100.2 kB 6 11,117 534 1 125 23
def Random million passwords from RockYou 330,343 145,510 906 84,307 950

Table 4.9: Password datasets used for experiments

149

The Results of Parallel Cracking

The proposed solution was from 8 to 40 times faster than the original one. Using Darkweb
dataset (see Figure 4.11) resulted in lowest acceleration since it contains long and complex
base structures. With the default PCFG (see Figure 4.12) and Rockyou-75 dataset (see
Figure 4.13), It was possible to generate much more password guesses, and the difference
between HDD and SSD is more noticeable.

training manager HDD SSD

dw
Python 3,022,923 2,948,532

Go 24,592,908 24,609,579
acceleration 8.14 x 8.35 x

def
Python 29,613,726 32,402,490

Go 405,819,926 485,244,534
acceleration 13.70 x 14.98 x

r75
Python 18,418,684 20,843,491

Go 490,635,443 842,695,475
acceleration 26.64 x 40.43 x

Table 4.10: No. of guesses and acceleration of the parallel PCFG Manager

0

5000000

10000000

15000000

20000000

25000000

Python Go

HDD SSD

Darkweb-trained PCFG

Figure 4.11: No. of guesses within 3 minutes using Darkweb-trained PCFG

0

100000000

200000000

300000000

400000000

500000000

Python Go

HDD SSD

Default PCFG

Figure 4.12: No. of guesses within 3 minutes using Default PCFG

150

0

250000000

500000000

750000000

1000000000

Python Go

HDD SSD

Rockyou-75-trained PCFG

Figure 4.13: No. of guesses within 3 minutes using Rockyou-75-trained PCFG

Evaluation

The parallelization unambiguously showed the potential to make cracking faster. The re-
sults prove that the concept presented in Section 4.6 is usable and works well. Dividing
the generation of password guesses from preterminal structures into multiple goroutines
was a step forward. The experiment showed the chosen method brings a massive accel-
eration on a multi-core CPU since all cores can be utilized. What also helped to achieve
higher performance was compilation into machine language instead of using an interpreter.
Finally, the obtainable speedup highly depends on concrete grammar. The more simple
base structures the grammar contains, the higher acceleration can be achieved with parallel
computing.

4.9.2 Grammar Filtering

The second set of experiments aim to examine the effects of grammar filtering. Table
4.11 shows the results of training, modification, generating password guesses, and checking
success rate using multiple datasets.

Experimental Setup

The experiments were performed using Intel(R) Core(TM) i7-7700K CPU with 32 GB
RAM and an SSD. Since generating password guesses using non-modified PCFGs would
take hours and days, a time limit of 10 minutes was set to all measurements - every time
the PCFG manager exceeded the 10-minute interval, it was stopped.

The first column (tr) shows which dataset was used for training to create the PCFG. For
all training datasets, the first line represents generating password guesses using the original
grammar - i.e., without any modification. The longbase modification stands for the grammar
where base structures longer than 10 characters (5 non-terminals) were removed. Other
measurements use a grammar with already-removed long base structures and then filtered
by the PCFG Mower. The mow-n modification means that longbase is performed first and
then the 𝑙𝑖𝑚𝑖𝑡 of the PCFG reduction algorithm is 𝑛 passwords. The experiment evaluate
the following 𝑙𝑖𝑚𝑖𝑡 values: 1,000,000,000 (1000M), 500,000,000 (500M), and 20,000,000
(20M) passwords. In all cases, the 𝑏𝑠 and 𝑐𝑠 constants were set to 0.001 to achieve fine-
grained filtering. Since the algorithm removes selected rules, the table illustrates the changes
done to the grammars in each step. For every modification, it displays the preserved number
of rewriting rules for base structures (base) and capitalization (cap).

151

Next columns inform about password guessing. We display the amount of time required
to generate the output dictionary (time), (or 10𝑚* if it reached the time 10-minute limit),
the size of the output dictionary (out size) and the number of its passwords in millions
(mop). The rest displays the success rate of password guessing on testing datasets - i.e.,
the percentage telling how many generated password guesses were included in different
testing datasets. The last column displays the average success rate impact (ASRI) which
is calculated as:

𝐴𝑆𝑅𝐼 =

∑︀𝑛
𝑖=1(𝑆𝑅

𝑚𝑜𝑑
𝑖 − 𝑆𝑅𝑜𝑟𝑖𝑔

𝑖)

𝑛

where 𝑆𝑅𝑜𝑟𝑖𝑔
𝑖 is the success rate on testing dataset number 𝑖 before the modification of the

PCFG, and 𝑆𝑅𝑚𝑜𝑑
𝑖 is the success rate on testing dataset number 𝑖 after the modification of

the PCFG, and 𝑛 is the total number of testing datasets. In the experiments, 𝑛 = 4. I use
ASRI to analyze the influence of the modifications. Positive ASRI means that the success
rate was improved while negative stands for decrease.

Removing Long Base Structures

As we can see from results, removing long base structures resulted in a massive increase
of password guessing speed which enabled to generate much more passwords within 10
minutes. The highest acceleration was achieved on dw and r65 since they contain very
complex passwords that create enormously long base structures. After the modification, it
was possible to generate over 14 times more password guesses. In contrast, training on ms
and tl creates more simple grammars, and thus the speedup was not as rapid. Removing long
base structures showed almost no impact on the success rate which confirms my assumption
that their importance is negligible. From 16 testings, only 8 led to decrease by a maximum
of 0.06 %. To my surprise, the ASRI was mostly positive since in 6 cases, removing long base
structures improved the success rate by up to 0.7 % thanks to more passwords generated
within the same time.

Rule Filtering

Next measurements analyzed grammars filtered by PCFG Mower to verify if the removal
of low-probability rewriting rules brings any benefit. In all cases, the mow modification
allowed the PCFG Manager to process the entire grammar in less than 4 minutes, showing
that it can provide a suitable alternative to a “hard” limit for password guessing. More
compact PCFGs produced smaller dictionaries. With more compact PCFGs, the generated
dictionaries were smaller as well. Again, we achieved the best results with dw and r65
datasets, where we were able to reduce the size from 12 GB (longbase) to 112 MB dictionary,
and from 25 GB to 130 MB with a loss of success rate below 4 % in all cases. For ms and tl,
filtering the grammar spared time and space as well, however, the mow-20M limit was too
strict to provide satisfactory results. For dw, the mow-1000M and mow-500M modifications
produced the same results since the grammar remained the same. The dw-trained grammar
contains a high number of base structures with similar probabilities. Thus, a lot of them
was removed by mow-1000M modification, and no further filtering was necessary.

Evaluation

Long base structures originate at the time of grammar creation. Their presence is caused
by the existence of complex passwords in the training dictionary. In the leaked datasets

152

grammar password guesses success rate
tr modification base cap time out size mop pr ms dw r65 ASRI

dw

original 323 83 10m* 731 MB 78 45.03 % 26.83 % 98.27 % 41.39 %
longbase 288 83 10m* 12 GB 1,110 45.01 % 26.91 % 98.35 % 41.40 % +0.04 %

mow-1000M 106 40 25s 3.3 GB 373 44.54 % 24.47 % 96.42 % 38.36 % -1.93 %
mow-500M 106 40 25s 3.3 GB 373 44.54 % 24.47 % 96.42 % 38.36 % -1.93 %
mow-20M 86 32 2s 77 MB 9 44.18 % 24.12 % 95.65 % 38.00 % -2.39 %

r65

original 256 39 10m* 1.5 GB 151 72.34 % 37.63 % 88.25 % 99.84 %
longbase 223 39 10m* 25 GB 2,210 72.30 % 37.63 % 88.14 % 99.81 % -0.05 %

mow-1000M 161 36 3m 31s 11 GB 980 72.17 % 37.17 % 87.73 % 99.61 % -0.35 %
mow-500M 123 31 1m 31s 4.5 GB 409 72.01 % 36.62 % 87.23 % 99.35 % -0.71 %
mow-20M 79 20 3.5s 130 MB 13.8 70.98 % 34.26 % 85.80 % 97.16 % -2.47 %

ms

original 1574 179 10m* 5.7 GB 616 47.47 % 93.68 % 69.14 % 46.42 %
longbase 1430 179 10m* 9.5 GB 1,030 47.45 % 94.38 % 69.07 % 46.42 % +0.15 %

mow-1000M 110 25 3m 9.2 GB 941 46.37 % 82.40 % 66.74 % 43.04 % -4.54 %
mow-500M 78 20 1m 3.1 GB 334 45.13 % 79.67 % 64.71 % 42.62 % -6.15 %
mow-20M 21 20 2s 126 MB 15 33.25 % 61.17 % 54.28 % 35.58 % -18.11 %

tl

original 1290 242 10m* 4.5 GB 520 55.27 % 36.87 % 69.85 % 43.86 %
longbase 1158 242 10m* 7.6 GB 870 55.23 % 37.15 % 69.79 % 43.87 % +0.05 %

mow-1000M 91 20 2m 43s 7.5 GB 884 54.06 % 30.94 % 66.08 % 40.37 % -3.60 %
mow-500M 48 19 1m 8s 1.8 GB 200 53.77 % 29.05 % 64.19 % 39.39 % -4.86 %
mow-20M 24 18 2s 133 MB 17 52.08 % 22.27 % 55.61 % 35.64 % -10.07 %

Table 4.11: Success rates of original and modified PCFGs (* - reached the time limit)

used, such passwords occur only barely. Moreover, it is unlikely to have multiple complex
passwords that belong to the same base structure. Usually, every long base structure only
refers to a single password or a few passwords. Therefore, the rules for these structures
have low probability values and are not actually used if the user sets a limit on password
guessing. Their presence in a grammar, thus only complicates the process since the number
of necessary computing operations within the Deadbeat dad algorithm [213, 211] is much
higher. The experiments showed that removing long base structures simplifies generating
preterminal structures dramatically, and thus bring a rapid speedup of password guessing.
Without long base structures, it is possible to generate many more passwords for the same
time interval.

With larger grammars, generating every possible password guess is not possible in an ac-
ceptable time. And thus, the guessing needs to be limited somehow. A limit on guess count
or generating time resolves the issue but wastes space and processor time for loading rewrite
rules that are never actually used. Rule filtering, on the other hand, removes these unnec-
essary rules and produces a grammar that can be processed entirely in minutes or even
seconds without the need to set any limitation. Despite the PCFG filtering algorithm be-
ing heuristical and very simple, the experiments show that the filtering can serve as an
alternative to classic guess or time limit. If used in practice, however, I suggest it would be
appropriate to use a more systematic way of filtering that takes the probability of preter-
minal structures into account as well. It would also be advisable to perform additional
correction of the probability function to renew the correctness of the grammar, as discussed
in Section 4.7.3.

4.9.3 Distributed PCFG Cracking

I conduct a number of experiments in order to prove several points. First, I want to show the
proposed solution results in a higher cracking performance and lower network usage. I also
demonstrate that while the naive terminal distribution quickly reaches the speed limit by

153

Dictionary Statistics PCFG Statistics
name pw-cnt avg-len pw-cnt base-cnt avg-base-len max-base-len
myspace 37,145 8.59 6E+1874 1,788 4.50 600
cain 306,707 9.27 3.17E+15 167 2.59 8
john 3,108 6.06 1.32E+09 72 2.14 8
phpbb 184,390 7.54 2.84E+37 3,131 4.11 16
singles 12,235 7.74 6.67E+11 227 3.07 8
dw1718 10,000 7.26 2.92E+15 106 2.40 12

Table 4.12: Grammars used in the distributed cracking experiments

filling the network bandwidth, the new solution scales well across multiple nodes. I discuss
the differences among different grammars and the impact of scrambling the chunks during
the computation. In the experiments, I use up to 16 computing nodes for the cracking tasks
and one server node distributing the chunks. All nodes have the following configuration:

• CentOS 7.7 operating system,

• NVIDIA GeForce GTX1050 Ti GPU,

• Intel(R) Core(TM) i5-3570K CPU,

• 8GB RAM.

The nodes are in a local area network connected with links of 10, 100, and 1000 Mbps
bandwidth. During the experiments, I incrementally change the network speed to observe
the changes. Furthermore, To analyze the influence of task size on overall results, the
number of generated passwords is limited to 1, 10, and 100 million.

With this setup, I perform a number of cracking tasks on different hash types and
grammars. As the hash cracking speed has a significant impact on results, I chose bcrypt
with five iterations, a computationally difficult hash type, and SHA3-512, an easier, yet
modern hash algorithm. Table 4.12 displays all chosen grammars with description. The
columns cover statistics of the source dictionary: password count (pw-cnt) and average
password length (avg-len), as well as statistics of the generated grammar: the number
of possible passwords guesses (pw-cnt), the number of base structures (base-cnt), their
average length (avg-base-len) and the maximum length of base structures (max-base-len), in
nonterminals. One can also notice the enormous number of generated passwords, especially
with the myspace grammar. Such a high number is caused only by few base structures with
many nonterminals. I discussed the complexity added by long base structure in Section
4.7.1. If not stated otherwise, the grammars are generated from password lists found
on SkullSecurity wiki page17. For each combination of described parameters, I run two
experiments – first, with the naive terminal distribution (terminal), and second using our
solution with the preterminal distribution (preterminals).

Computation Speedup and Scaling

The primary goal is to show that the proposed solution provides faster cracking with PCFG-
based password guessing. In Figure 4.14, one can see the average cracking speed of SHA3-
512 hash with myspace grammar, with different task sizes and network bandwidths.

17https://wiki.skullsecurity.org/Passwords

154

https://wiki.skullsecurity.org/Passwords

Figure 4.14: Average cracking speed with different bandwidths and password count (SHA3-
512 / myspace grammar / 4 nodes)

Figure 4.15: Detail of 10Mbps network bandwidth experiment (SHA3-512 / myspace gram-
mar / 4 nodes)

Figure 4.16: Comparison of network activity (SHA3-512 / myspace grammar / 100 million
hashes / 10 Mbps network bandwidth / 16 nodes)

155

Apart from the proposed solution being generally faster, there is a significant difference
in speeds with the lower network bandwidths. This is well seen in the detailed graph
in Figure 4.15 which shows the cracking speed of SHA3-512 in a 10Mbps network with
different task sizes. The impact of the network bandwidth limit is expected as the naive
terminal distribution requires a significant amount of data in the form of a dictionary to be
transmitted. In the naive solution, network links become the main bottleneck that prevents
achieving higher cracking performance. In the newly proposed solution, the preterminal
distribution reduces data transfers dramatically, which removes the obstacle and allow for
achieving higher cracking speeds.

Figure 4.16 illustrates the network activity using both solutions. The graph compares
the data transferred from the server to clients in the SHA3-512 cracking task on a 10Mbps
network. Both runs use almost all of the bandwidth for the entire experiment. Nevertheless,
we may see that cracking with the naive terminal distribution took much longer and required
the transfer of more than a 14 times larger amount of data.

Figure 4.17: Average cracking speed with different bandwidths and password count (bcrypt
/ myspace grammar)

The difference between the two solutions disappears if we crack very complex hash
algorithms. Figure 4.17 shows the results of cracking bcrypt hashes with myspace grammar.
The average cracking speeds are multiple times lower than with SHA3. In this case, the
two solutions do not differ because the transferred chunks have much lower keyspace since
clients can not verify as many hashes as was possible for SHA3. Most of the experiment
time is used by hashcat itself, cracking the hashes.

In the previous graphs, one could also notice the cracking speed increases with more
hashes. This happens since smaller tasks cannot fully leverage the whole distributed net-
work as the smallest task took only several seconds to crack.

Figure 4.18 shows that the average cracking speed is influenced by the number of con-
nected cracking nodes. While for the smallest task, there is almost no difference with the
increasing node count, for the largest task, the speed rises even between 8 and 16 nodes.
As this task only takes several minutes, we expect larger tasks would visualize this even
better. One can also observe the naive solution using terminal distribution does not scale
well. Even though we notice a slight speedup up to 4 nodes, the speed is capped after that
even in the largest task because of the network bottleneck mentioned above.

156

Figure 4.18: Scaling across multiple cracking nodes (SHA3-512 / myspace grammar / 100
Mbps network bandwidth)

Figure 4.19: Differences in cracking speed among grammars

Grammar Differences

Next, I measure how the choice of a grammar influence the cracking speed. In Figure
4.19, we can see the differences are significant. While the cracking speed of the naive
solution is capped by the network bandwidth, results from the proposed solution show
generating passwords using some grammars is slower than with others – a phenomenon
that is connected with the base structures lengths [82].

Generating passwords from the Darkweb2017 (dw17) grammar is also very memory
demanding because of the long base structures at the beginning of the grammar, and 8GB
RAM is not enough for the largest cracking task using the naive solution. With the proposed
preterminal-based solution, we encounter no such problem.

157

Workunit Scrambling

The Deadbeat dad algorithm [211] ran on the server ensures the preterminal structures are
generated in a probability order. The same holds for passwords, if generated sequentially.
However, in a distributed environment, the order of outgoing chunks and incoming results
may scramble due to the non-deterministic behavior of the network. Such a property
could be removed by adding an extra intra-node synchronization to the proposed protocol.
However, I do not consider that necessary if the goal is to verify all generated passwords in
the shortest possible time.

Moreover, the scrambling does not affect the result as a whole. The goal of generating
and verifying 𝑛 most probable passwords is fulfilled. For example, for an assignment of
generating and verifying 1 million most probable passwords from a PCFG, our solution
generates and verifies 1 million most probable passwords, despite the incoming results
might be received in a different order.

Though the scrambling has no impact on the final results, I study the extent of chunk
scrambling in our setup. I observe the average difference between the expected and real
order of chunks arriving at the server, calling it a scramble factor 𝑆𝑓 . In the following
equation, 𝑛 is the number of chunks, and 𝑟𝑘 is the index where 𝑘-th chunk was received:

𝑆𝑓 =
1

𝑛

𝑛∑︁
𝑘=1

|(𝑘 − 𝑟𝑘)|. (4.12)

Figure 4.20: Average scramble factor, bcrypt myspace grammar capped at 10 milion hashes

I identified two key features affecting the scramble factor – the number of the computing
nodes in the system and the number of chunks distributed. In Figure 4.20, one can see that
the scramble factor is increasing with the increasing number of chunks and computing nodes.
This particular graph represents experiments with bcrypt algorithm, myspace grammar,
capped at 10 million hashes. Other experiments resulted in a similar pattern. We conclude
that the scrambling is relatively low in comparison with the number of chunks and nodes.

Evaluation

The design of the proposed method and the communication protocol was experimentally
verified using the proof-of-concept tool with a native hashcat support. I showed that dis-

158

tributing preterminal structures instead of the final passwords reduces the bandwith require-
ments dramatically, and in many cases, brings a significant speedup. This fact confirms
the hypothesis of Weir et al., who suggested preterminal distribution may be helpful in
a distributed password cracking trial [213]. Moreover, I showed how different parameters,
such as the hash algorithm, network bandwidth, or the choice of concrete grammar, affect
the cracking process.

4.9.4 Summary

The proposed modification of the existing method allowed parallel generating of candidate
passwords. As the experiments show, the new parallel solution provides a massive speedup
in the password guessing performance. In contrast to the original tool, the new concept
can efficiently utilize all available processors. The actual acceleration, however, depends on
the concrete grammar. In general, simple base structures parallelize better than complex
ones. Therefore, the more simple passwords the training dictionary contains, the higher
acceleration we can possibly achieve. Using a faster SSD is potentially beneficial since it
allows potentially faster generating of password guesses. Nevertheless, a training dictionary
with many complex passwords that create very long base structures complicates the effort.
Experiments showed processing these structures creates a bottleneck, in which case there
is no advantage of using SSD over HDD.

The second series of experiments analyzed the consequences of grammar filtering. These
experimental techniques have two implications: a) the increase in performance, b) the de-
crease of the total guess count. If configured carefully, the success rate can remain similar
to the original. If anyone decides to follow the same way, I suggest starting with remov-
ing long base structures. The password guessing performance is much higher when the
algorithm does not have to process complex sentential forms. With larger grammars, gen-
erating every possible password guess is not possible in an acceptable time. Further filtering
of rules is a working alternative to a ”hard guess limit.“ It is, however, arguable what rules
are ”unnecessary.“ While my experiments with the trivial algorithm indicate a possible
way, I suppose practical use would require more profound research to find more systematic
techniques. For a more advanced approach, I suggest taking preterminal structures into ac-
count as well. It would also be advisable to perform additional correction of the probability
function to preserve the correctness of the grammar.

Finally, the distributed solution showed to produce excellent results. Breaking the pass-
word guessing algorithm into multiple parts computed by different nodes produced many
more password guesses per second. Moreover, live cracking with hashcat tool use the avail-
able resources efficiently. While the GPU computes cryptographic algorithms, the CPU
takes care of generating new candidate passwords, and the TCP/IP stack communicates
with the server. The experiments showed that the proposed preterminal distribution saves
a lot of network bandwidth, achieves much higher cracking performance, and better scala-
bility over the naive solution.

159

Chapter 5

Conclusion

While password cracking calculates with relatively little data, it is one of the most computa-
tionally complex tasks ever. Deep inside, the security of systems and encrypted media relies
upon cryptographic hash functions and encryption algorithms. The more password guesses
we make, the more effort we need to put forth for their verification. Another important
aspect is the complexity of the verification procedure. Passwords hashed by the obsolete
MD5 algorithm or older Microsoft Office documents encrypted by the RC4 cipher are very
easy-to-crack. Today’s graphical processors can break even longer passwords within a day.
Dealing with bcrypt hashes, VeraCrypt-secured disks, or newer Microsoft Office documents
using the Agile Encryption is an entirely different story. With serious tasks, cracking ses-
sions may take even years. Luckily, there are ways to accelerate the process, and in the
thesis, I described some of them.

5.1 Achievements in Distributed Password Cracking
One direction is verifying multiple password guesses simultaneously. Parallel processing
with GPGPU brought a revolution to the password cracking area. Buying a collection
of high-end graphics cards is the number one option for a long-term password cracking
solution. Yet, there is always a limit to the performance we can achieve with a single
computer. And where the single-machine approach fails comes the distributed computing.

Therefore, I studied existing solutions for distributed processing and possible techniques
to employ multiple nodes in a single cracking task. Based on my observations, I proposed
the design of a general-purpose distributed password cracking system called Fitcrack. The
solution uses the BOINC framework that is robust, secure, proven in even world-scale
networks. It provides a high level of automation, like the native support for downloading
and updating client files. As the cracking engine, Fitcrack uses the open-source hashcat
tool because of its ultimate performance, a large scale of supported formats, and various
community-driven enhancements. For work assignment, I proposed and experimentally
tested a method based on the dynamic distribution of the keyspace and adaptive scheduling
algorithm. I also presented the pipeline processing of workunits that reduces the overhead
of attacks. Finally, I provided a deep insight into different attack modes. Those include the
default ones supported by hashcat, plus the PRINCE and the PCFG attack. For each attack
mode, I proposed possible strategies for distributed processing and picked the one that fits
my needs the most. The goal was to efficiently divide the job’s keyspace into chunks of the
desired granularity and allow their fine-grained control over time with minimal overhead.

160

The experiments showed the proposed strategies work as intended and that the system
meets the pre-defined requirements. Moreover, the results bring valuable findings to the
password cracking area. I mapped the influence of the hash algorithms and attack modes
on the overall efficiency of the task. I studied the scalability of the attacks and the practical
implications of different attack configurations. In general, the more complex the crypto-
graphic algorithm, the less matter the choice of attack mode. For instance, the brute-force
and dictionary attacks have the same achievable performance on the complex BCrypt with
a high number of iterations. However, for MD5 or SHA-1, the brute-force is much more
efficient since it generates passwords directly on GPU. Logically, the more we can pre-load
to the GPU, the less we need to provide on-the-fly. Therefore, the combination attack is
more efficient than the classic dictionary attack, where we need to feed the GPU with new
passwords continually.

Moreover, I compared my solution with the Hashtopolis tool. The Hashtopolis is, by
design, more low-level and closer to hashcat. The system is, however, not easy to use.
I suggest Hashtopolis could be an excellent choice for advanced users who have previous
experience with hashcat. It offers a lot of flexibility and allows the user to craft attack com-
mands directly. The Fitcrack is much more user-friendly and usable without any knowledge
of hashcat. It provides a high level of abstraction and a lot of automation. For each attack
mode, Fitcrack employs a unique strategy that is optimized and fine-tailored for this exact
use-case. If appropriately configured, the Fitcrack can utilize the resources more efficiently.
For example, the dictionary attack with bigger dictionaries is far more efficient in Fitcrack.
Hashtopolis, on the other hand, treats all attack modes the same way and distribute the
range of password indexes. While this may not be optimal in all cases, it is much easier to
add a completely new attack mode to Hashtopolis.

5.2 Achievements in Probabilistic Methods
Another way to accelerate the cracking process is by reducing the number of password
guesses. Instead of all possibilities, we may only check those candidate passwords that are
more likely to be correct. Probabilistic methods undisputedly have the potential to help
with cracking human-created passwords. In the thesis, I mapped the history from the early
time-memory trade-off attack by Martin Hellman, through Markovian models employed in
hashcat and John the Ripper tools, to probabilistic context-free grammars (PCFG). In my
research, I decided to focus on grammar-based cracking, initially proposed by Matt Weir.
The technique benefits from the knowledge obtained by an automated analysis of existing
passwords. The analysis creates a mathematical model of users’ password creation habits
represented by a grammar. Rewrite rules from the grammar serve directly for generating
password guesses. This “smart” method generates more probable candidate passwords first
and allows for better targeting of attacks. Despite numerous improvements, including the
Deadbeat dad algorithm, state-of-the-art solutions were hardly usable for real attacks due
to the low performance and missing solution for a parallel or distributed cracking.

The analysis of existing solutions revealed multiple weak spots that created a bottle-
neck for achieving higher performance. Based on my observations, I proposed a series
of improvements. A modification of the existing method allowed parallel processing and
therefore utilizing all available processor cores efficiently. An experimental technique of
grammar filtering enabled to transform a grammar into a more compact form that is easy-
to-process. Finally, I introduced methods that allow distributed grammar-based cracking
on multiple nodes. The solution uses the distribution of preterminal structures and allows

161

running direct cracking sessions with hashcat or other tools. The new ideas were trans-
formed into a proof-of-concept implementation. A series of experiments showed that the
proposed improvements introduced a massive speedup in password guessing performance.
While the state-of-the-art tools were strictly single-machine, the new distributed solution
allows employing a larger network of multiple GPU-equipped nodes. The newly-created
tools also serve as modules for Fitcrack’s PCFG attack.

5.3 Overall Summary
In the end, I assess parallelization and distribution are the only ways of increasing raw
cracking performance today. Due to the laws of physics, further increases in processor
frequency are hardly expectable. Quantum computers may one day bring a revolution to
the password cracking area, but their practical use is beyond the reach of technology in
the foreseeable future. An alternative is employing ASIC chips like in the 1990s EFF DES
cracker or the Antminer for bitcoin mining with SHA-256. Such solutions are, however,
strictly single-purpose. In contrast, building a large grid or cluster of GPU nodes is rela-
tively easy, and only a matter of funding. With the hardware, it is only about a proper
software solution for the distributed cracking, and in my thesis, I showed a series of ways
to go. Besides, there is no need to “brute-force everything” when cracking user passwords.
Publicly-available datasets of leaked credentials provide an excellent source of knowledge.
Password guessing with Markovian chains, PRINCE, and PCFG, are only a few examples
of utilizing such knowledge.

5.4 Future Work
I hope the presented work will inspire other researchers and developers in the future. The
area of password cracking offers a much larger space for enhancements and new ideas than
can fit into a single thesis. The proposed distributed cracking system uses strategies and
attacks that are fixed and only applied to individual jobs. It should be possible to create
a cracking system that learns over time and uses the findings from previously completed
tasks to improve attacks. Moreover, Fitcrack may incorporate a subsystem for rainbow
table attack, at least for most common algorithms like MD5, SHA1, or NTLM. Before
an actual job starts, the system would perform a fast lookup first. In case of a match, it
can crack the password almost immediately. In case a company utilizes multiple Fitcrack
servers, one might create an interface that allows for mutual synchronization, e.g., sharing
the cache of cracked passwords, dictionaries, Markovian statistics, grammars, and others.
The discussed PCFG-based cracking is a powerful method. However, there is still space for
improvements. A significant drawback of the technique is that a series of letters is always
handled as a single fragment, i.e., represented by one nonterminal. Users often create pass-
words from multiple words that follow each other without any separator, e.g., “Ilikeapples”
that would be handled as a whole. With a knowledge of the individual words, a possible
improvement may distinguish between the three parts and allow for generating passwords
like “Ilikebananas”, “Ilikecars”, and others. Another approach may break down the words
into syllables and perform substitutions of that level. Last but not least, current proba-
bilistic methods are extremely powerful but mostly focus on the syntax of the password.
Semantical-based approaches are extremely rare and could be a subject of future research.

162

Bibliography

[1] AccessData Corporation: Distributed network attack. [Online; Archived page from:
2000-08-15].
Retrieved from: https://web.archive.org/web/20000815082113/http:
//www.accessdata.com/dna/index.html

[2] AccessData Corporation: Description of Product: Password Recovery Utilities.
October 1996. [Online; Archived page from: 1996-10-23].
Retrieved from:
https://web.archive.org/web/19961023160223/http://www.accessdata.com:80/

[3] AccessData Corporation: Password Recovery Demo. October 1996. [Online;
Archived page from: 1996-10-23].
Retrieved from: https://web.archive.org/web/19961023160255/http:
//www.accessdata.com/datademo.zip

[4] AccessData Group, Inc.: Terms and Conditions. [Online; Accessed: 2020-11-25].
Retrieved from: https://accessdata.com/legal/terms

[5] AccessData Group, Inc.: AccessData Password Recovery Toolkit and Distributed
Network Attack 8.2.1: User Guide. 2017.
Retrieved from:
https://ad-pdf.s3.amazonaws.com/dna/8.2.1/PRTK_DNA%20User%20Guide.pdf

[6] Acritum software, win.rar GmbH and RARLAB: RAR file format, version 3.93 –
Technical information. [Online; Accessed: 2017-01-03].
Retrieved from: http://acritum.com/winrar/rar-format

[7] Adobe Systems Incorporated: Adobe Supplement to the ISO 32000, BaseVersion:
1.7, ExtensionLevel: 3. June 2008.

[8] Adobe Systems Incorporated: Document management - Portable document format -
Part 1: PDF 1.7. Standard ISO 32000-1:2008. International Organization for
Standardization. Geneva, Switzerland. July 2008.

[9] Agostini, E.; Bernaschi, M.: BitCracker: BitLocker meets GPUs. ArXiv
preprint:1901.01337, Cornell University. 2019.

[10] Ah Kioon, M. C.; Wang, Z. S.; Deb Das, S.: Security analysis of MD5 algorithm in
password storage. Applied Mechanics and Materials. vol. 347. 2013: pp. 2706–2711.
ISSN 1662-7482.

163

https://web.archive.org/web/20000815082113/http://www.accessdata.com/dna/index.html
https://web.archive.org/web/20000815082113/http://www.accessdata.com/dna/index.html
https://web.archive.org/web/19961023160223/http://www.accessdata.com:80/
https://web.archive.org/web/19961023160255/http://www.accessdata.com/datademo.zip
https://web.archive.org/web/19961023160255/http://www.accessdata.com/datademo.zip
https://accessdata.com/legal/terms
https://ad-pdf.s3.amazonaws.com/dna/8.2.1/PRTK_DNA%20User%20Guide.pdf
http://acritum.com/winrar/rar-format

[11] Al Fahdi, M.; Clarke, N. L.; Furnell, S. M.: Challenges to digital forensics: A survey
of researchers practitioners attitudes and opinions. In Proceedings of the 12th
Information Security for South Africa (ISSA) Conference. Johannesburg, South
Africa. August 2013. ISBN 978-1-4799-2678-7. pp. 1–8.
doi:10.1109/ISSA.2013.6641058.

[12] Alexander Peslyak: Parallel and distributed processing with John the Ripper.
[Online; Accessed: 2020-11-25].
Retrieved from: https://openwall.info/wiki/john/parallelization

[13] Almasi, G.; Gottlieb, A.: Highly parallel computing. Benjamin/Cummings Series in
computer science and engineering. January 1988. ISBN 978-0805301779.

[14] An, X.; Jia, H.; Zhang, Y.: Optimized Password Recovery for Encrypted RAR on
GPUs. In Proceedings of the 17th IEEE International Conference on High
Performance Computing and Communications. New York, NY, USA. April 2015.
ISBN 978-1-4799-8937-9. pp. 591–598. doi:10.1109/HPCC-CSS-ICESS.2015.270.

[15] Anderson, D. P.: BOINC: A system for public-resource computing and storage. In
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing.
Pittsburgh, PA, USA. November 2004. ISBN 0-7695-2256-4. pp. 4–10.
doi:10.1109/GRID.2004.14.

[16] Anderson, D. P.; Christensen, C.; Allen, B.: Designing a runtime system for
volunteer computing. In Proceedings of the 1st ACM/IEEE conference on
Supercomputing. Tampa, FL, USA. November 2006. ISBN 978-0-7695-2700-0. pp.
126–136. doi:10.1109/SC.2006.24.

[17] Apostal, D.; Foerster, K.; Chatterjee, A.; et al.: Password recovery using MPI and
CUDA. In Proceedings of the 19th International Conference on High Performance
Computing. Pune, India. December 2012. ISBN 978-1-4673-2372-7. pp. 1–9.
doi:10.1109/HiPC.2012.6507505.

[18] Aron, L.; Hanáček, P.: Introduction to Android 5 Security. In Proceedings of the
41st International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM) 2015. Pec pod Snezkou, CZ. 2015. ISBN
978-80-87136-20-1. pp. 103–112.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php.en?id=10806

[19] Baker, J. K.: Trainable grammars for speech recognition. The Journal of the
Acoustical Society of America. vol. 65, no. S1. 1979: pp. S132–S132. ISSN 0001-4966.

[20] Bakker, M.; Van Der Jagt, R.: GPU-based password cracking. University of
Amsterdam, System and Network Engineering, Amsterdam, Research. 2010.
Master’s thesis.
Retrieved from:
https://homepages.staff.os3.nl/~delaat/rp/2009-2010/p34/report.pdf

[21] Barak, A.; Shiloh, A.: The Virtual OpenCL (VCL) Cluster Platform. In Proceedings
of 4th Intel European Research and Innovation Conference (ERIC). Leixlip, Ireland.
2011. pp. 1–5.

164

https://openwall.info/wiki/john/parallelization
http://www.fit.vutbr.cz/research/view_pub.php.en?id=10806
https://homepages.staff.os3.nl/~delaat/rp/2009-2010/p34/report.pdf

[22] Barker, E.; Roginsky, A.: Transitioning the use of cryptographic algorithms and key
lengths. Technical Report SP 800-131A Rev. 2. National Institute of Standards and
Technology. 2018.

[23] Bédrune, J.-B.; Sigwald, J.: iPhone data protection in depth. Presentation at the
9th annual Hack in The Box Security Conference, Kuala Lumpur, Malaysia. 2011.

[24] Belenko, A.: Overcoming iOS data protection to re-enable iPhone forensics
(Elcomsoft Co. Ltd.). Presentation at the 15th Black Hat USA Briefings, Last
Vegas, NV, USA. 2011.

[25] Belenko, A.; Sklyarov, D.: Evolution of iOS Data Protection and iPhone
Forensics:from iPhone OS to iOS 5. Presentation at Black Hat Abu Dhabi. 2011.

[26] Bengtsson, J.: Parallel Password Cracker: A Feasibility Study of Using Linux
Clustering Technique in Computer Forensics. In Proceedings of the 2nd International
Workshop on Digital Forensics and Incident Analysis (WDFIA). Samos, Greece.
August 2007. ISBN 978-0-7695-2941-7. pp. 75–82. doi:10.1109/WDFIA.2007.10.
Retrieved from: doi.ieeecomputersociety.org/10.1109/WDFIA.2007.10

[27] Bertoni, G.; Daemen, J.; Peeters, M.; et al.: Keccak. In Advances in Cryptology -
EUROCRYPT 2013, edited by T. Johansson; P. Q. Nguyen. Berlin, Heidelberg:
Springer Berlin Heidelberg. 2013. ISBN 978-3-642-38348-9. pp. 313–314.

[28] Biham, E.; Anderson, R. J.; Knudsen, L. R.: Serpent: A New Block Cipher
Proposal. In Proceedings of the 5th International Workshop on Fast Software
Encryption. FSE ’98. London, UK, UK: Springer-Verlag. 1998. ISBN
978-3-540-64265-7. pp. 222–238.
Retrieved from: http://dl.acm.org/citation.cfm?id=647933.740889

[29] Biham, E.; Kocher, P. C.: A known plaintext attack on the PKZIP stream cipher.
In Proceedings of the 2nd International Workshop on Fast Software Encryption
(FSE), edited by B. Preneel. Leuven, Belgium: Springer Berlin Heidelberg. 1994.
ISBN 978-3-540-47809-6. pp. 144–153.

[30] Bishop, M.; Klein, D. V.: Improving system security via proactive password
checking. Computers & Security. vol. 14, no. 3. 1995: pp. 233–249. ISSN 0167-4048.

[31] Björn König: CLara - OpenCL across the net. [Online; Accessed: 2020-11-28].
Retrieved from: https://sourceforge.net/projects/clara/

[32] Bläsing, T.; Batyuk, L.; Schmidt, A. D.; et al.: An Android Application Sandbox
system for suspicious software detection. In Proceedings of the 5th International
Conference on Malicious and Unwanted Software. Nancy, Lorraine, France. October
2010. ISBN 978-1-4244-9353-1. pp. 55–62. doi:10.1109/MALWARE.2010.5665792.

[33] Blumenthal, U.; Maino, F.; McCloghrie, K.: The Advanced Encryption Standard
(AES) Cipher Algorithm in the SNMP User-based Security Model. Request for
Comments (RFC) 3826. Internet Engineering Task Force (IETF). June 2004.
Retrieved from: http://www.ietf.org/rfc/rfc3826.txt

165

doi.ieeecomputersociety.org/10.1109/WDFIA.2007.10
http://dl.acm.org/citation.cfm?id=647933.740889
https://sourceforge.net/projects/clara/
http://www.ietf.org/rfc/rfc3826.txt

[34] Bone, B.: GPU Acceleration In PRTK/DNA. April 2015. [Online; Accessed:
2020-11-16].
Retrieved from: https://support.accessdata.com/hc/en-us/articles/
204785138-GPU-acceleration-in-PRTK-DNA

[35] Bonneau, J.: The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy. San Francisco, CA, USA. May 2012. ISBN 978-1-4673-1244-8. pp. 538–552.
doi:10.1109/SP.2012.49.

[36] Brauer, M.; Durusau, P.; Oppermann, L.: Open Document Format for Office
Applications (OpenDocument v1.1). OASIS Open. February 2007. OASIS Standard.

[37] Callas, J.; Donnerhacke, L.; Finney, H.; et al.: OpenPGP Message Format. Request
for Comments (RFC) 4880. Internet Engineering Task Force (IETF). November
2007. updated by RFC 5581.
Retrieved from: http://www.ietf.org/rfc/rfc4880.txt

[38] Casey, E.: Confronting Encryption in Computer Investigations. In Proceedings of
the 2nd annual Digital Forensic Research Workshop (DFRWS). Syracuse, New York,
USA. August 2002. pp. 1–27.

[39] Casey, E.: Handbook of digital forensics and investigation. Elsevier Academic Press.
2010. ISBN 978-0-12-374267-4.

[40] Casey, E.; Fellows, G.; Geiger, M.; et al.: The growing impact of full disk encryption
on digital forensics. Digital Investigation. vol. 8, no. 2. 2011: pp. 129–134. ISSN
1742-2876.

[41] Chatterjee, B. B.: New but not improved: a critical examination of revisions to the
Regulation of Investigatory Powers Act 2000 encryption provisions. International
Journal of Law and Information Technology. vol. 19, no. 3. October 2011: pp.
264–284. ISSN 0967-0769. doi:10.1093/ijlit/ear008.
Retrieved from:
https://academic.oup.com/ijlit/article-pdf/19/3/264/2047140/ear008.pdf

[42] Chen, Z.; Han, F.; Cao, J.; et al.: Cloud computing-based forensic analysis for
collaborative network security management system. Tsinghua Science and
Technology. vol. 18, no. 1. February 2013: pp. 40–50. ISSN 1007-0214.
doi:10.1109/TST.2013.6449406.

[43] Cho, C.; Chin, S.; Chung, K. S.: Cyber forensic for hadoop based cloud system.
International Journal of Security and its Applications. vol. 6, no. 3. 2012: pp. 83–90.
ISSN 2207-9629.

[44] Choudary, O.; Grobert, F.; Metz, J.: Security Analysis and Decryption of FileVault
2. In Proceedings of the 9th IFIP WG 11.9 International Conference on Digital
Forensics. Orlando, FL, USA: Springer Berlin Heidelberg. January 2013. ISBN
978-3-642-41148-9. pp. 349–363. doi:10.1007/978-3-642-41148-9_23.

[45] Corel Corporation: WinZIP - AES Encryption Information: Encryption
Specification AE-1 an AE-2. January 2009. [Online; Accessed: 2021-01-08].
Retrieved from: https://www.winzip.com/win/en/aes_info.html

166

https://support.accessdata.com/hc/en-us/articles/204785138-GPU-acceleration-in-PRTK-DNA
https://support.accessdata.com/hc/en-us/articles/204785138-GPU-acceleration-in-PRTK-DNA
http://www.ietf.org/rfc/rfc4880.txt
https://academic.oup.com/ijlit/article-pdf/19/3/264/2047140/ear008.pdf
https://www.winzip.com/win/en/aes_info.html

[46] The Criminal Procedure Act No. 141/1961 Coll. Trestní řád, zák. č. 141/1961 Sb.
Retrieved from:
http://aplikace.mvcr.cz/sbirka-zakonu/ViewFile.aspx?type=c&id=1101

[47] Crumpacker, J. R.: Distributed password cracking. Master’s Thesis. Naval
Postgraduate School, Monterey, California, USA. 2009.

[48] crypt(3) - Linux manual page. April 2018. [Online; Accessed: 2020-11-16].
Retrieved from: https://www.man7.org/linux/man-pages/man3/crypt.3.html

[49] Daemen, J.; Rijmen, V.: AES proposal: Rijndael. October 1999.

[50] Daemen, J.; Rijmen, V.: Announcing the Advanced Encryption Standard (AES).
National Institute of Standards and Technology (NIST). November 2001.
doi:10.6028/NIST.FIPS.197.
Retrieved from:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[51] Danalis, A.; Marin, G.; McCurdy, C.; et al.: The Scalable Heterogeneous Computing
(SHOC) benchmark suite. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. Pittsburgh, Pennsylvania, USA. March
2010. ISBN 978-1-60558-935-0. pp. 63–74. doi:10.1145/1735688.1735702.

[52] Das, A.; Bonneau, J.; Caesar, M.; et al.: The Tangled Web of Password Reuse. In
Proceedings of the 21st Network and Distributed System Security (NDSS)
Symposium, vol. 14. San Diego, California. 2014. ISBN 978-1-7138-2071-0. pp. 23–26.

[53] Deutsch, P.: DEFLATE Compressed Data Format Specification version 1.3. Request
for Comments (RFC) 1951. Internet Engineering Task Force (IETF). May 1996.
Retrieved from: http://www.ietf.org/rfc/rfc1951.txt

[54] Dobbertin, H.; Bosselaers, A.; Preneel, B.: RIPEMD-160: A Strengthened Version
of RIPEMD. In Proceedings of the Third International Workshop on Fast Software
Encryption. London, UK, UK: Springer-Verlag. 1996. ISBN 3-540-60865-6. pp.
71–82.
Retrieved from: http://dl.acm.org/citation.cfm?id=647931.740583

[55] Dougherty, C. R.: Vulnerability Note VU# 836068: MD5 vulnerable to collision
attacks. CERT/CC Vulnerability Notes Database, Carnegie Mellon University,
Pittsburgh, PA, USA. December 2009.

[56] Du, J.; Li, J.: Analysis the Structure of SAM and Cracking Password Base on
Windows Operating System. International Journal of Future Computer and
Communication. vol. 5, no. 2. 2016: page 112. ISSN 2010-3751.

[57] Duermuth, M.; Angelstorf, F.; Castelluccia, C.; et al.: OMEN: Faster password
guessing using an ordered markov enumerator. In Proceedings of the 7th
International Symposium on Engineering Secure Software and Systems (ESSoS).
Milan, Italy: Springer. 2015. ISBN 978-3-319-15618-7. pp. 119–132.

[58] Elcomsoft Co. Ltd.: Elcomsoft End User License Agreement. [Online; Accessed:
2020-11-25].
Retrieved from: https://www.elcomsoft.com/Elcomsoft_EULA.pdf

167

http://aplikace.mvcr.cz/sbirka-zakonu/ViewFile.aspx?type=c&id=1101
https://www.man7.org/linux/man-pages/man3/crypt.3.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ietf.org/rfc/rfc1951.txt
http://dl.acm.org/citation.cfm?id=647931.740583
https://www.elcomsoft.com/Elcomsoft_EULA.pdf

[59] Elcomsoft Co. Ltd.: Elcomsoft Distributed Password Recovery 1.0.19
Documentation. February 2006.
Retrieved from: https://web.archive.org/web/20060314183747/http:
//www.elcomsoft.com/help/edpr/index.html

[60] Elcomsoft Co. Ltd.: Distributed Password Recovery: Benchmarks. April 2020.
[Online; Archived page from: 2020-04-06].
Retrieved from: https://web.archive.org/web/20200426111158/https:
//www.elcomsoft.com/edpr.html#tab_3

[61] Elcomsoft Co. Ltd.: Knowledgebase: Password recovery, How to use Elcomsoft
Advanced Attacks. October 2020. [Online; Accessed: 2021-03-02].
Retrieved from: https://support.elcomsoft.com/index.php?/Knowledgebase/
Article/View/19/2/how-to-use-elcomsoft-advanced-attacks

[62] Farmer, D.; Spafford, E. H.: The COPS security checker system. In Proceedings of
the Summer Usenix Conference, Anaheim CA. 1990. pp. 165–170.

[63] Florencio, D.; Herley, C.: A Large-scale Study of Web Password Habits. In
Proceedings of the 16th International Conference on World Wide Web. WWW ’07.
New York, NY, USA: ACM. 2007. ISBN 978-1-59593-654-7. pp. 657–666.
doi:10.1145/1242572.1242661.

[64] Forensic Focus: Current Challenges In Digital Forensics. May 2016. [Online;
Accessed: 2020-11-04].
Retrieved from: https://www.forensicfocus.com/articles/current-
challenges-in-digital-forensics/

[65] Forensic Focus: Findings From The Forensic Focus 2018 Survey. October 2018.
[Online; Accessed: 2020-11-04].
Retrieved from: https://www.forensicfocus.com/articles/findings-from-the-
forensic-focus-2018-survey/

[66] Forget, A.; Chiasson, S.; Van Oorschot, P. C.; et al.: Improving text passwords
through persuasion. In Proceedings of the 4th symposium on Usable privacy and
security. 2008. pp. 1–12.

[67] Gardner, S.: New tool unlocks passwords. IT World Canada. vol. 12, no. 1. 2002:
page 14.

[68] Garfinkel, S.: Anti-forensics: Techniques, detection and countermeasures. In
Proceedings of the 2nd International Conference on i-Warfare and Security (ICIW).
Naval Postgraduate School, Monterey, California, USA. 2007. ISBN
978-1-905305-41-4. pp. 77–84.

[69] Garfinkel, S.; Spafford, G.: Practical UNIX & Internet Security. O’Reilly &
Associates, Inc.. 1999. ISBN 1-56592-148-8.

[70] Ginsburg, S.: The Mathematical Theory of Context Free Languages. Journal of
Symbolic Logic. vol. 33, no. 2. 1968: pp. 300–301. ISSN 0022-4812.
doi:10.2307/2269905.

168

https://web.archive.org/web/20060314183747/http://www.elcomsoft.com/help/edpr/index.html
https://web.archive.org/web/20060314183747/http://www.elcomsoft.com/help/edpr/index.html
https://web.archive.org/web/20200426111158/https://www.elcomsoft.com/edpr.html#tab_3
https://web.archive.org/web/20200426111158/https://www.elcomsoft.com/edpr.html#tab_3
https://support.elcomsoft.com/index.php?/Knowledgebase/Article/View/19/2/how-to-use-elcomsoft-advanced-attacks
https://support.elcomsoft.com/index.php?/Knowledgebase/Article/View/19/2/how-to-use-elcomsoft-advanced-attacks
https://www.forensicfocus.com/articles/current-challenges-in-digital-forensics/
https://www.forensicfocus.com/articles/current-challenges-in-digital-forensics/
https://www.forensicfocus.com/articles/findings-from-the-forensic-focus-2018-survey/
https://www.forensicfocus.com/articles/findings-from-the-forensic-focus-2018-survey/

[71] Grassi, P. A.; Fenton, J. L.; Newton, E.; et al.: NIST special publication 800-63b:
digital identity guidelines. Enrollment and Identity Proofing Requirements. 2017.
Retrieved from: https://pages.nist.gov/800-63-3/sp800-63a.html

[72] Graves, R. E.: High performance password cracking by implementing rainbow tables
on nVidia graphics cards (IseCrack). Master’s Thesis. Iowa State University,
Edinburgh, UK. 2008.
Retrieved from:
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2860&context=etd

[73] Guillaume, Sogeti ESEC Lab: The undocumented password validation algorithm of
Adobe Reader X. September 2011. Online; Accessed 2016-12-29].
Retrieved from: https://sogeti33.rssing.com/chan-61982469/all_p12.html

[74] Hafeez, M.; Asghar, S.; Malik, U.; et al.: Survey of MPI Implementations. In
Proceedings of the 1st Digital Information and Communication Technology and Its
Applications (DICTAP), Part II. Dijon, France. 2011. ISBN 978-3-642-22027-2. pp.
206–220.

[75] Hansen, T.: US Secure Hash Algorithms (SHA and HMAC-SHA). Request for
Comments (RFC) 4634. Internet Engineering Task Force (IETF). July 2006.
obsoleted by RFC 6234.
Retrieved from: http://www.ietf.org/rfc/rfc4634.txt

[76] Hansen, T.: US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF).
Request for Comments (RFC) 6234. Internet Engineering Task Force (IETF). May
2011.
Retrieved from: http://www.ietf.org/rfc/rfc6234.txt

[77] Hartley, B.: PCI Express Expansion Limitations. Technical report. Concurrent
Computer Corporation. February 2013.
Retrieved from: https://www.concurrent-rt.com/wp-content/uploads/2016/11/
pci-express-expansion-limitations.pdf

[78] Hellman, M.: A cryptanalytic time-memory trade-off. IEEE transactions on
Information Theory. vol. 26, no. 4. 1980: pp. 401–406. ISSN 0018-9448.

[79] Houshmand, S.; Aggarwal, S.: Using Personal Information in Targeted
Grammar-Based Probabilistic Password Attacks. In Proceedings of the 13th IFIP
WG 11.9 International Conference on Digital Forensics. Springer. 2017. ISBN
978-3-319-67208-3. pp. 285–303.

[80] Houshmand, S.; Aggarwal, S.; Flood, R.: Next Gen PCFG Password Cracking.
IEEE Transactions on Information Forensics and Security. vol. 10, no. 8. 2015: pp.
1776–1791.

[81] Hranický, R.; Holkovič, M.; Matoušek, P.; et al.: On Efficiency of Distributed
Password Recovery. The Journal of Digital Forensics, Security and Law. vol. 11,
no. 2. 2016: pp. 79–96. ISSN 1558-7215.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=11276

169

https://pages.nist.gov/800-63-3/sp800-63a.html
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2860&context=etd
https://sogeti33.rssing.com/chan-61982469/all_p12.html
http://www.ietf.org/rfc/rfc4634.txt
http://www.ietf.org/rfc/rfc6234.txt
https://www.concurrent-rt.com/wp-content/uploads/2016/11/pci-express-expansion-limitations.pdf
https://www.concurrent-rt.com/wp-content/uploads/2016/11/pci-express-expansion-limitations.pdf
http://www.fit.vutbr.cz/research/view_pub.php?id=11276

[82] Hranický, R.; Lištiak, F.; Mikuš, D.; et al.: On Practical Aspects of PCFG
Password Cracking. In Proceedings of the 33rd IFIP WG 11.3 Annual Conference on
Data and Applications Security and Privacy (DBSec). Charleston, South Carolina,
USA: Springer International Publishing. 2019. ISBN 978-3-030-22479-0. pp. 43–60.

[83] Hranický, R.; and; Ondřej Ryšavý, P. M.; Veselý, V.: Experimental Evaluation of
Password Recovery in Encrypted Documents. In Proceedings of the 2nd
International Conference on Information Systems Security and Privacy (ICISSP).
SciTePress - Science and Technology Publications. 2016. ISBN 978-989-758-167-0.
pp. 299–306.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11052

[84] Hranický, R.; Zobal, L.; Ryšavý, O.; et al.: Distributed password cracking with
BOINC and hashcat. Digital Investigation. vol. 2019, no. 30. 2019: pp. 161–172.
ISSN 1742-2876. doi:10.1016/j.diin.2019.08.001.
Retrieved from: https://www.fit.vut.cz/research/publication/11961

[85] Hranický, R.; Zobal, L.; Ryšavý, O.; et al.: Distributed PCFG Password Cracking.
In Computer Security - ESORICS 2020. Lecture notes in Computer Science.
Springer Nature Switzerland AG. 2020. ISBN 978-3-030-58950-9. pp. 701–719.
Retrieved from: https://www.fit.vut.cz/research/publication/12183

[86] Hranický, R.; Zobal, L.; Večeřa, V.; et al.: Distributed Password Cracking in a
Hybrid Environment. In Proceedings of the 9th International Scientific Conference
on Security and Protection of Information (SPI). University of Defence in Brno.
2017. ISBN 978-80-7231-414-0. pp. 75–90.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=11358

[87] Hranický, R.; Zobal, L.; Večeřa, V.; et al.: The architecture of Fitcrack distributed
password cracking system, version 2. Technical report. Faculty of Information
Technology BUT. 2020.
Retrieved from: https://www.fit.vut.cz/research/publication/12300

[88] Huawei: Additional XML Security Uniform Resource Identifiers (URIs). Request for
Comments (RFC) 6931. Internet Engineering Task Force (IETF). April 2013.
Retrieved from: http://www.ietf.org/rfc/rfc6931.txt

[89] Industrial Security Research Group: Retrieving NTLM Hashes and what changed in
Windows 10. Services & Research UGent-Howest. January 2018. [Online; Accessed:
2020-11-14].
Retrieved from: https://www.insecurity.be/blog/2018/01/21/retrieving-
ntlm-hashes-and-what-changed-technical-writeup/

[90] ISO: Information technology - Open Document Format for Office Applications
(OpenDocument) v1.0. Standard ISO/IEC 26300:2006. International Organization
for Standardization. December 2006.

[91] ISO: Information technology - Document Container File - Part 1: Core. Standard
ISO/IEC 21320-1:2015. International Organization for Standardization. 2015.
Retrieved from: https://www.iso.org/obp/ui/#iso:std:60101:en

170

http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11052
https://www.fit.vut.cz/research/publication/11961
https://www.fit.vut.cz/research/publication/12183
http://www.fit.vutbr.cz/research/view_pub.php?id=11358
https://www.fit.vut.cz/research/publication/12300
http://www.ietf.org/rfc/rfc6931.txt
https://www.insecurity.be/blog/2018/01/21/retrieving-ntlm-hashes-and-what-changed-technical-writeup/
https://www.insecurity.be/blog/2018/01/21/retrieving-ntlm-hashes-and-what-changed-technical-writeup/
https://www.iso.org/obp/ui/#iso:std:60101:en

[92] IWS - The Information Warfare Site: Password Crackers. [Online; Accessed:
2020-11-16].
Retrieved from:
http://www.iwar.org.uk/hackers/resources/digital%20rebels/passwd.htm

[93] Jackal: Cracker Jack, THE Unix Password Cracker [Read Me]. Doc’s for Cracker
Jack v 1.4. June 1993.
Retrieved from: http:
//justinakapaste.com/cracker-jack-the-unix-password-cracker-read-me/

[94] Jelinek, F.; Lafferty, J. D.; Mercer, R. L.: Basic methods of probabilistic context free
grammars. In Speech Recognition and Understanding. Springer. 1992. pp. 345–360.

[95] Jens Steube: Hashcat: Example hashes. [Online; Accessed: 2020-11-25].
Retrieved from: https://hashcat.net/wiki/doku.php?id=example_hashes

[96] Jeremi M Gosney: 8x NVIDIA GTX 1080 Ti Hashcat Benchmarks, Hashcat
3.5.0-22-gef6467b, NVIDIA Driver 381.09. April 2017. [Online; Accessed:
2020-04-06].
Retrieved from:
https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505

[97] Jones, P.: US Secure Hash Algorithm 1 (SHA1). Request for Comments (RFC)
3174. Internet Engineering Task Force (IETF). September 2001. updated by RFCs
4634, 6234.
Retrieved from: http://www.ietf.org/rfc/rfc3174.txt

[98] Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
Request for Comments (RFC) 2898. Internet Engineering Task Force (IETF).
September 2000.
Retrieved from: http://www.ietf.org/rfc/rfc2898.txt

[99] Kalyadin, O. A.; Ivanov, A. G.; Belenko, A. V.: Password recovery system and
method. October 2006. U.S. Patent 7,809,130.

[100] Kang, S. J.; Lee, S. Y.; Lee, K. M.: Performance Comparison of OpenMP, MPI, and
MapReduce in Practical Problems. Advances in Multimedia. August 2015: page 9.

[101] Karie, N. M.; Venter, H. S.: Taxonomy of challenges for digital forensics. Journal of
forensic sciences. vol. 60, no. 4. 2015: pp. 885–893. ISSN 1556-4029.

[102] Karn, P.; Metzger, P.; Simpson, W.: The ESP Triple DES Transform. Request for
Comments (RFC) 1851. Internet Engineering Task Force (IETF). September 1995.
Retrieved from: http://www.ietf.org/rfc/rfc1851.txt

[103] Kasabov, A.; van Kerkwijk, J.: Distributed GPU Password Cracking. Universiteit
Van Amsterdam. May 2011. Research Project 1. Final version rev. 2. Technical
report.

[104] Kelley, P. G.; Komanduri, S.; Mazurek, M. L.; et al.: Guess again (and again and
again): Measuring password strength by simulating password-cracking algorithms.
In Proceedings of the 33rd IEEE Symposium on Security and Privacy. San
Fransisco, CA, USA: IEEE. 2012. pp. 523–537.

171

http://www.iwar.org.uk/hackers/resources/digital%20rebels/passwd.htm
http://justinakapaste.com/cracker-jack-the-unix-password-cracker-read-me/
http://justinakapaste.com/cracker-jack-the-unix-password-cracker-read-me/
https://hashcat.net/wiki/doku.php?id=example_hashes
https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505
http://www.ietf.org/rfc/rfc3174.txt
http://www.ietf.org/rfc/rfc2898.txt
http://www.ietf.org/rfc/rfc1851.txt

[105] Kim, K.: Distributed password cracking on GPU nodes. In Proceedings of the 7th
International Conference on Computing and Convergence Technology (ICCCT).
Piscataway, NJ, USA: IEEE. December 2012. pp. 647–650.

[106] Kipper, M.; Slavkin, J.; Denisenko, D.: Implementing AES on GPU - Final report.
University of Toronto, Toronto, Canada. 2009. Technical report.
Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.447.5356&rep=rep1&type=pdf

[107] Klemm, M.; Dahnken, C.: Recent Processor Technologies and Co-Scheduling.
Co-Scheduling of HPC Applications. vol. 28. 2017: page 12. Advances in Parallel
Computing series.

[108] Kshemkalyani, A. D.; Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. New York, NY, USA: Cambridge University Press. 2008. ISBN
978-0-52-187634-6. First edition.

[109] Kuo, C.; Romanosky, S.; Cranor, L. F.: Human selection of mnemonic phrase-based
passwords. In Proceedings of the second symposium on Usable privacy and security.
2006. pp. 67–78.

[110] L0pht Holdings LLC: L0phtCrack Password Auditor v7: Documentation. 2019.
[Online; Accessed: 2021-02-19].
Retrieved from: https://www.l0phtcrack.com/doc/

[111] Lange, L.: Hackers keep the heat on Windows NT Security. EE Times. April 1997.
[Online; Archived page from: 1998-12-05].
Retrieved from: https://web.archive.org/web/19981205132055/http:
//pubs.cmpnet.com/eet/news/97/950news/hackers.html

[112] Lim, R.: Parallelization of John the Ripper (JtR) using MPI. Nebraska: University
of Nebraska. 2004. Technical report.

[113] Luciano, L.; Baggili, I.; Topor, M.; et al.: Digital forensics in the next five years. In
Proceedings of the 13th International Conference on Availability, Reliability and
Security. 2018. pp. 1–14.

[114] Ma, J.; Yang, W.; Luo, M.; et al.: A Study of Probabilistic Password Models. In
Proceedings of the 35th IEEE Symposium on Security and Privacy. May 2014. ISSN
1081-6011. pp. 689–704. doi:10.1109/SP.2014.50.

[115] Maia, J. D. C.; Urquiza Carvalho, G. A.; Mangueira Jr, C. P.; et al.: GPU linear
algebra libraries and GPGPU programming for accelerating MOPAC semiempirical
quantum chemistry calculations. Journal of chemical theory and computation. vol. 8,
no. 9. 2012: pp. 3072–3081. ISSN 1549-9618.

[116] Malyshev, A. E.; Sklyarov, D. V.; Katalov, V. Y.; et al.: Fast cryptographic key
recovery system and method. October 2006. U.S. Patent 7,599,492.

[117] Marechal, S.: Advances in password cracking. Journal in computer virology and
hacking techniques. vol. 4, no. 1. 2008: pp. 73–81. ISSN 2263-8733. Springer.

172

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.5356&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.5356&rep=rep1&type=pdf
https://www.l0phtcrack.com/doc/
https://web.archive.org/web/19981205132055/http://pubs.cmpnet.com/eet/news/97/950news/hackers.html
https://web.archive.org/web/19981205132055/http://pubs.cmpnet.com/eet/news/97/950news/hackers.html

[118] Marks, M.; Niewiadomska-Szynkiewicz, E.: Hybrid CPU/GPU Platform For High
Performance Computing. In Proceedings of the 28th European Conference on
Modelling and Simulation. rescia, Italy: European Council for Modelling and
Simulation (ECMS). May 2014. pp. 523–537. doi:10.7148/2014-0508.

[119] Marr, D. T.; Binns, F.; Hill, D. L.; et al.: Hyper-Threading Technology Architecture
and Microarchitecture. Intel Technology Journal. vol. 6, no. 1. 2002: page 1. ISSN
1535-864X.

[120] McAtee, M.; Morris, L.: CrackLord: Maximizing Computing Resources.
Presentation the 18th Black Hat USA conference, Mandalay Bay, Las Vegas NV,
USA. August 2015.

[121] McIlroy, M. D.: A Research Unix reader: annotated excerpts from the Programmer’s
Manual, 1971-1986. AT&T Bell Laboratories. 1987.

[122] McMillan, R.: The World’s First Computer Password? It Was Useless Too. Wired.
January 2012.
Retrieved from: https://www.wired.com/2012/01/computer-password/

[123] Merkle, R. C.: One way hash functions and DES. In Proceedings of the 6th
Conference on the Theory and Application of Cryptology (CRYPTO). Springer.
1989. pp. 428–446.

[124] Message Passing Interface Forum: A Message-Passing Interface Standard, Version
3.0. Technical report. University of Tennessee, Knoxville, Tennessee, USA.
September 2012. Technical report.

[125] Microsoft Corporation: Chapter 3 - Operating System Installation. Microsoft
Windows 2000 Security Hardening Guide. March 2009. [Online; Accessed:
2020-11-16].
Retrieved from: https://docs.microsoft.com/en-us/previous-versions/tn-
archive/dd277300(v=technet.10)?redirectedfrom=MSDN

[126] Microsoft Corporation: Cryptography and encryption in Office 2016. December
2016. [Online; Accessed: 2020-11-16].
Retrieved from: https://docs.microsoft.com/en-us/DeployOffice/security/
cryptography-and-encryption-in-office

[127] Microsoft Corporation: [MS-DOC]: Word (.doc) Binary File Format. December
2019. [Online; Accessed: 2020-11-16].
Retrieved from:
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/

[128] Microsoft Corporation: How to use the SysKey utility to secure the Windows
Security Accounts Manager database. August 2020. [Online; Accessed: 2020-11-15].
Retrieved from: https://support.microsoft.com/cs-cz/help/310105/how-to-
use-the-syskey-utility-to-secure-the-windows-security-accounts

[129] Middleton, B.: Cyber crime investigator’s field guide. CRC Press. 2001. ISBN
978-0849327681.

173

https://www.wired.com/2012/01/computer-password/
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd277300(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd277300(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/DeployOffice/security/cryptography-and-encryption-in-office
https://docs.microsoft.com/en-us/DeployOffice/security/cryptography-and-encryption-in-office
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-doc/
https://support.microsoft.com/cs-cz/help/310105/how-to-use-the-syskey-utility-to-secure-the-windows-security-accounts
https://support.microsoft.com/cs-cz/help/310105/how-to-use-the-syskey-utility-to-secure-the-windows-security-accounts

[130] Moriarty, K.; Kaliski, B.; Rusch, A.: PKCS# 5: Password-Based Cryptography
Specification Version 2.1. Request for Comments (RFC) 8018. Internet Engineering
Task Force (IETF). 2017.
Retrieved from: https://tools.ietf.org/html/rfc8018

[131] Morris, R.; Thompson, K.: Password security: A case history. Communications of
the ACM. vol. 22, no. 11. 1979: pp. 594–597. ISSN 0001-0782.
Retrieved from:
https://rist.tech.cornell.edu/6431papers/MorrisThompson1979.pdf

[132] Motorola Laboratories: HMAC SHA (Hashed Message Authentication Code, Secure
Hash Algorithm) TSIG Algorithm Identifiers. Request for Comments (RFC) 4635.
Internet Engineering Task Force (IETF). August 2006.
Retrieved from: http://www.ietf.org/rfc/rfc4635.txt

[133] Muffett, A.: Crack Version v5.0 User Manual. December 1996.
Retrieved from:
https://www.techsolvency.com/pub/src/crack-5.0a/c50a/manual.html

[134] Munshi, A.: The OpenCL specification. In Proceedings of the 21st IEEE Hot Chips
Symposium (HCS). Standford, CA, USA. August 2009. pp. 1–314.

[135] Murakami, T.; Kasahara, R.; Saito, T.: An implementation and its evaluation of
password cracking tool parallelized on GPGPU. In Proceedings of the 10th
International Symposium on Communications and Information Technologies
(SoICT). Hanoi, Vietnam. October 2010. pp. 534–538.
doi:10.1109/ISCIT.2010.5665047.

[136] Narayanan, A.; Shmatikov, V.: Fast Dictionary Attacks on Passwords Using
Time-space Tradeoff. In Proceedings of the 12th ACM Conference on Computer and
Communications Security. CCS ’05. New York, NY, USA: ACM. 2005. ISBN
1-59593-226-7. pp. 364–372. doi:10.1145/1102120.1102168.

[137] NIST: FIPS Pub 180-1: Secure Hash Standard. 1995.
Retrieved from:
https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/NIST.FIPS.180.pdf

[138] NIST: FIPS Pub 180-2: Secure Hash Standard. August 1995.
Retrieved from: https://csrc.nist.gov/csrc/media/publications/fips/180/2/
archive/2002-08-01/documents/fips180-2.pdf

[139] NIST: FIPS Pub 202. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. August 2015.
Retrieved from: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[140] Nowicki, B.: NFS: Network File System Protocol specification. Request for
Comments (RFC) 1094. Internet Engineering Task Force (IETF). March 1989.
Retrieved from: http://www.ietf.org/rfc/rfc1094.txt

[141] NVIDIA Corporation: CUDA Toolkit documentation v10.1.243. 2019.

174

https://tools.ietf.org/html/rfc8018
https://rist.tech.cornell.edu/6431papers/MorrisThompson1979.pdf
http://www.ietf.org/rfc/rfc4635.txt
https://www.techsolvency.com/pub/src/crack-5.0a/c50a/manual.html
https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/NIST.FIPS.180.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://www.ietf.org/rfc/rfc1094.txt

[142] Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In Advances in
Cryptology: Proceedings of the 23rd Annual International Cryptology (CRYPTO)
Conference. Santa Barbara, CA, USA: Springer. 2003. pp. 617–630.

[143] Oechslin, P.; Tissieres, C.; Mesot, B.: Ophcrack website. [Online; Accessed:
2021-02-19].
Retrieved from: https://ophcrack.sourceforge.io/

[144] Oleg Afonin: Unlocking BitLocker: Can You Break That Password? Elcomsoft blog.
May 2020. [Online; Accessed: 2021-04-13].
Retrieved from: https://blog.elcomsoft.com/2020/05/unlocking-bitlocker-
can-you-break-that-password/

[145] OnlineHashCrack: Hashcat Benchmarks on NVIDIA RTX 2080 Ti, Hashcat 6.1.1 ,
NVIDIA Driver 450.51.06. [Online; Accessed: 2020-11-23].
Retrieved from: https://www.onlinehashcrack.com/tools-benchmark-hashcat-
nvidia-rtx-2080-ti.php

[146] Page, A. J.; Naughton, T. J.: Dynamic task scheduling using genetic algorithms for
heterogeneous distributed computing. In Proceedings of the 19th IEEE international
parallel and distributed processing symposium (IPDPS). Denver, CO, USA: IEEE.
April 2005. ISBN 0-7695-2312-9. pp. 189.1–189.8. doi:10.1109/IPDPS.2005.184.

[147] Palmer, G. L.: A Road Map for Digital Forensic Research. Technical report. First
Digital Forensic Research Workshop (DFRWS). 2001.

[148] Passware: Passware Kit Forensic 2020: Quck Start Guide. [Online; Accessed:
2020-11-16].
Retrieved from: https://files.passware.com/resources/quickstart/
PasswareKit2020-QuickStartGuide.pdf

[149] Passware, Inc.: Software License Agreement for Passware Software. [Online;
Accessed: 2020-11-25].
Retrieved from: https://www.passware.com/files/Passware-EULA.pdf

[150] Passware, Inc.: Password Recovery Software. December 1998. [Online; Archived
page from: 1998-12-12].
Retrieved from: https://web.archive.org/web/19981212030639/http:
//www.lostpassword.com:80/

[151] Passware, Inc.: Distributed Password Recovery. February 2010. [Online; Archived
page from 2010-02-06].
Retrieved from: https://web.archive.org/web/20100206114223/http:
//www.lostpassword.com:80/distributed-password-recovery.htm

[152] Passware, Inc.: Passware Kit Forensic 2020 v3: File Types. 2020. [Online; Archived
page from: 2020-08-05].
Retrieved from: https://web.archive.org/web/20200805132554/https:
//www.passware.com/kit-forensic/filetypes/

[153] Passware, Inc.: Passware Kit Forensic 2020 v3: Performance. 2020. [Online;
Archived page from: 2020-08-05].

175

https://ophcrack.sourceforge.io/
https://blog.elcomsoft.com/2020/05/unlocking-bitlocker-can-you-break-that-password/
https://blog.elcomsoft.com/2020/05/unlocking-bitlocker-can-you-break-that-password/
https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-2080-ti.php
https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-2080-ti.php
https://files.passware.com/resources/quickstart/PasswareKit2020-QuickStartGuide.pdf
https://files.passware.com/resources/quickstart/PasswareKit2020-QuickStartGuide.pdf
https://www.passware.com/files/Passware-EULA.pdf
https://web.archive.org/web/19981212030639/http://www.lostpassword.com:80/
https://web.archive.org/web/19981212030639/http://www.lostpassword.com:80/
https://web.archive.org/web/20100206114223/http://www.lostpassword.com:80/distributed-password-recovery.htm
https://web.archive.org/web/20100206114223/http://www.lostpassword.com:80/distributed-password-recovery.htm
https://web.archive.org/web/20200805132554/https://www.passware.com/kit-forensic/filetypes/
https://web.archive.org/web/20200805132554/https://www.passware.com/kit-forensic/filetypes/

Retrieved from: https://web.archive.org/web/20200805135531/https:
//www.passware.com/kit-forensic/performance/

[154] Pavlov, D.; Veerman, G.: Distributed Password Cracking Platform. Univeriteit van
Amsterdam, System & Network Engineering. February 2012. Technical report.
Retrieved from:
https://www.os3.nl/_media/2011-2012/courses/rp1/p13_report.pdf

[155] Pavlov, I.: 7-Zip method IDs for 7z and xz archives. June 2015. [Online; Accessed:
2017-01-03].
Retrieved from: http://cpansearch.perl.org/src/BJOERN/Compress-Deflate7-
1.0/7zip/DOC/Methods.txt

[156] Pavlov, I.: 7z Format. 2015. [Online; Accessed: 2016-12-20].
Retrieved from: http://www.7-zip.org/7z.html

[157] Percival, C.; Josefsson, S.: The scrypt password-based key derivation function.
Request for Comments (RFC) 7914. Internet Engineering Task Force (IETF). 2016.
Retrieved from: https://tools.ietf.org/html/rfc7914.html

[158] Peslyak, A.: John the Ripper Changelog. [Online; Accessed: 2020-11-16].
Retrieved from: https://www.openwall.com/john/doc/CHANGES.shtml

[159] Peslyak, A.: John users: When was John created? [Online; Accessed: 2020-11-16].
Retrieved from: https://www.openwall.com/lists/john-users/2015/09/10/4

[160] Peslyak, A.; Marechal, S.: Password security: past, present, future. Presentation at
Passwords 12: International Conference on Password Security, Oslo, Norway. 2012.
Retrieved from: https:
//www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/

[161] Peterson, W. W.; Weldon, E. J.: Error-correcting codes. MIT press. 1972. ISBN
978-0-26-216039-1.

[162] Pippin, A.; Hall, B.; Chen, W.: Parallelization of John the Ripper Using MPI (Final
Report). University of California, Santa Barbara, CA, USA. 2006. Technical report
CS240A.

[163] PKWARE, Inc.: APPNOTE.TXT - .ZIP File Format Specification. September
2014. [Online; Accessed 2015-11-17].
Retrieved from:
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

[164] Popov, A.: Prohibiting RC4 Cipher Suites. Request for Comments (RFC) 7465.
Internet Engineering Task Force (IETF). February 2015.
Retrieved from: http://www.ietf.org/rfc/rfc7465.txt

[165] Potter, B.: A review of L0phtCrack 6. Network security. vol. 2009, no. 7. 2009: pp.
14–17. ISSN 1353-4858. doi:10.1016/S1353-4858(09)70089-3. Elsevier.

[166] Proctor, R. W.; Lien, M.-C.; Vu, K.-P. L.; et al.: Improving computer security for
authentication of users: Influence of proactive password restrictions. Behavior
Research Methods, Instruments, & Computers. vol. 34, no. 2. 2002: pp. 163–169.

176

https://web.archive.org/web/20200805135531/https://www.passware.com/kit-forensic/performance/
https://web.archive.org/web/20200805135531/https://www.passware.com/kit-forensic/performance/
https://www.os3.nl/_media/2011-2012/courses/rp1/p13_report.pdf
http://cpansearch.perl.org/src/BJOERN/Compress-Deflate7-1.0/7zip/DOC/Methods.txt
http://cpansearch.perl.org/src/BJOERN/Compress-Deflate7-1.0/7zip/DOC/Methods.txt
http://www.7-zip.org/7z.html
https://tools.ietf.org/html/rfc7914.html
https://www.openwall.com/john/doc/CHANGES.shtml
https://www.openwall.com/lists/john-users/2015/09/10/4
https://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/
https://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
http://www.ietf.org/rfc/rfc7465.txt

[167] Provos, N.; Mazieres, D.: A Future-Adaptable Password Scheme. In Proceedings of
the 5th USENIX Annual Technical Conference (ATC), FREENIX Track. Monterey,
CA, USA. 1999. ISBN 1-880446-33-2. pp. 81–91.

[168] Rabin, M. O.: Probabilistic automata. Information and control. vol. 6, no. 3. 1963:
pp. 230–245. ISSN 0019-9958. doi:10.1016/S0019-9958(63)90290-0.

[169] Rabiner, L. R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE. vol. 77, no. 2. February 1989: pp.
257–286. ISSN 0018-9219. doi:10.1109/5.18626.

[170] Reyes-Ortiz, J. L.; Oneto, L.; Anguita, D.: Big Data Analytics in the Cloud: Spark
on Hadoop vs MPI/OpenMP on Beowulf. Procedia Computer Science. vol. 53. 2015:
pp. 121 – 130. ISSN 1877-0509. doi:0.1016/j.procs.2015.07.286.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S1877050915017895

[171] Rivest, R.: The MD4 Message-Digest Algorithm. Request for Comments (RFC)
1320. Internet Engineering Task Force (IETF). April 1992. obsoleted by RFC 6150.
Retrieved from: http://www.ietf.org/rfc/rfc1320.txt

[172] Rivest, R.: The MD5 Message-Digest Algorithm. Request for Comments (RFC)
1321. Internet Engineering Task Force (IETF). April 1992. updated by RFC 6151.
Retrieved from: http://www.ietf.org/rfc/rfc1321.txt

[173] Robinson, D.; Coar, K.: The Common Gateway Interface (CGI) Version 1.1.
Request for Comments (RFC) 3875. Internet Engineering Task Force (IETF).
October 2004.
Retrieved from: http://www.ietf.org/rfc/rfc3875.txt

[174] Robling Denning, D. E.: Cryptography and data security. Addison-Wesley Longman
Publishing Co., Inc.. 1982. ISBN 978-0-201-10150-8.

[175] Roshal, A.: RAR 5.0 archive format. Technical report. RARLab. 2001. [Online;
Accessed: 2017-01-03].
Retrieved from: http://www.rarlab.com/technote.htm

[176] Roussev, V.: Digital forensic science: issues, methods, and challenges. Synthesis
Lectures on Information Security, Privacy, & Trust. vol. 8, no. 5. 2016: pp. 1–155.
ISSN 1945-9742. Morgan & Claypool Publishers.

[177] Roussev, V.; Wang, L.; Richard, G.; et al.: A Cloud Computing Platform for
Large-Scale Forensic Computing. In Proceedings of the 5th IFIP WG 11.9
International Conference on Digital Forensics. Orlando, Florida, USA: Springer
Berlin Heidelberg. January 2009. ISBN 978-3-642-04155-6. pp. 201–214.
doi:10.1007/978-3-642-04155-6_15.
Retrieved from: http://dx.doi.org/10.1007/978-3-642-04155-6_15

[178] Samek, J.: Virtul GPU cluster. Bachelor’s thesis. Faculty of Information
Technology. Czech technical university in Prague. 2016.

177

http://www.sciencedirect.com/science/article/pii/S1877050915017895
http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc3875.txt
http://www.rarlab.com/technote.htm
http://dx.doi.org/10.1007/978-3-642-04155-6_15

[179] Sanders, C.: How I Cracked your Windows Password (Part 1). TechGenix. January
2010. [Online; Accessed: 2020-11-16].
Retrieved from: http://techgenix.com/how-cracked-windows-password-part1/

[180] Scarfone, K.; Souppaya, M.: Guide to enterprise password management. National
Institute of Standards and Technology. 2009. NIST Special Publication (SP)
800-118.

[181] Schneier, B.; Kelsey, J.; Whiting, D.; et al.: Twofish: A 128-Bit Block Cipher. New
York, NY, USA: John Wiley & Sons, Inc.. June 1998. ISBN 0-471-35381-7.

[182] Schuermann, K. U.: Decrypting Open Document Format (ODF) Files. Ringlord
Technologies. June 2013. Technical report.
Retrieved from: https://ringlord.com/dl/Decrypting%20ODF%20Files.odt

[183] Shehhi, H. A.; Hamdi, D. A.; Asad, I.; et al.: A Forensic Analysis Framework for
Recovering Encryption Keys and BB10 Backup Decryption. In Proceedings of the
12th Annual International Conference on Privacy, Security and Trust (PST).
Toronto, Canada. July 2014. ISBN 978-1-47-993504-8. pp. 172–178.
doi:10.1109/PST.2014.6890937.

[184] Shuanglei, Z.: RainbowCrack 1.0 README. September 2003.
Retrieved from: https://web.archive.org/web/20080705140750/http:
//www.antsight.com/zsl/rainbowcrack#Download

[185] Shuanglei, Z.: RainbowCrack 1.8 README. August 2020.
Retrieved from: https://project-rainbowcrack.com

[186] Shuanglei, Z.: RainbowCrack Documentation. 2020. [Online; Accessed: 2021-02-19].
Retrieved from: https://project-rainbowcrack.com/documentation.htm

[187] Sprengers, M.: GPU-based Password Cracking: On the Security of Password
Hashing Schemes regarding Advances in Graphics Processing Units. Radboud
University Nijmegen. 2011. Master’s thesis.
Retrieved from: https://www.ru.nl/publish/pages/769526/thesis.pdf

[188] Stallings, W.: The Whirlpool Secure Hash Function. Cryptologia. vol. 30. September
2006: pp. 55–67. ISSN 0161-1194. doi:10.1080/01611190500380090.

[189] Steigner, C.; Wilke, J.: Performance Tuning of Distributed Applications with
CoSMoS. In Proceedings of the 21st International Conference on Distributed
Computing Systems. Mesa, AZ, USA: IEEE. August 2001. ISBN 0-7695-1077-9. pp.
173–180. doi:10.1109/ICDSC.2001.918946.

[190] Steinkraus, D.; Buck, I.; Simard, P.: Using GPUs for Machine Learning Algorithms.
In Proceedings of the 8th International Conference on Document Analysis and
Recognition (ICDAR’05). Seoul, South Korea: IEEE. September 2005. ISBN
0-7695-2420-6. pp. 1115–1120. doi:10.1109/ICDAR.2005.103.

[191] Steube, J.: hashcat-legacy. Hashcat Wiki. [Online; Accessed: 2020-11-16].
Retrieved from: https://hashcat.net/wiki/doku.php?id=hashcat-legacy

178

http://techgenix.com/how-cracked-windows-password-part1/
https://ringlord.com/dl/Decrypting%20ODF%20Files.odt
https://web.archive.org/web/20080705140750/http://www.antsight.com/zsl/rainbowcrack#Download
https://web.archive.org/web/20080705140750/http://www.antsight.com/zsl/rainbowcrack#Download
https://project-rainbowcrack.com
https://project-rainbowcrack.com/documentation.htm
https://www.ru.nl/publish/pages/769526/thesis.pdf
https://hashcat.net/wiki/doku.php?id=hashcat-legacy

[192] Steube, J.: Hashcat Wiki: Description. [Online; Accessed: 2021-03-02].
Retrieved from: https://hashcat.net/wiki/doku.php?id=hashcat

[193] Steube, J.: oclHashcat (old version). [Online; Accessed: 2020-11-16].
Retrieved from: https://hashcat.net/wiki/doku.php?id=oclhashcat_old

[194] Tarjan, R.: Depth-first Search and Linear Graph Algorithms. SIAM Journal on
Computing. vol. 1, no. 2. 1972: pp. 146–160. ISSN 0097-5397. doi:10.1137/0201010.

[195] Teufl, P.; Fitzek, A.; Hein, D.; et al.: Android encryption systems. In 2014
International Conference on Privacy and Security in Mobile Systems (PRISMS).
May 2014. pp. 1–8. doi:10.1109/PRISMS.2014.6970599.

[196] The TrueCrypt Foundation: TrueCrypt User’s Guide, version 7.1a. February 2012.

[197] Tilstone, W. J.; Savage, K. A.; Clark, L. A.: Forensic science: An Encyclopedia of
History, Methods, and Techniques. ABC-CLIO. 2006. ISBN 1-57607-194-4.

[198] Turan, M. S.; Barker, E.; Burr, W.; et al.: Recommendation for password-based key
derivation. U.S. Department of Commerce and National Institute of Standards and
Technology. 2010. NIST Special Publication 800-132.

[199] Turner, S.; Chen, L.: Updated Security Considerations for the MD5 Message-Digest
and the HMAC-MD5 Algorithms. Request for Comments (RFC) 6151. Internet
Engineering Task Force (IETF). March 2011.
Retrieved from: http://www.ietf.org/rfc/rfc6151.txt

[200] U. S. Const. amend. V. Art. 3.
Retrieved from: https://constitution.congress.gov/browse/amendment-5/

[201] UK Public General Acts, 2000 c. 23.: Regulation of Investigatory Powers Act 2000,
Part III: Investigation of electronic data protected by encryption etc.
Retrieved from: https://www.legislation.gov.uk/ukpga/2000/23/part/III

[202] U.S. Department of Commerce/National Institute of Standards and Technology
(NIST): Data encryption standard (DES). Federal Information Processing Standard
Publication 46-3. 1999.

[203] Van De Zande, P.: The Day DES Died. SANS Institute, Information Security
Reading Room. July 2001.

[204] Van Vleck, T.: How the Air Force cracked Multics Security. Web Article,
Multicians. org web site. 1995. [Online; Accessed: 2020-11-09].
Retrieved from: https://www.multicians.org/security.html

[205] Venema, W. Z.: Murphy’s Law and Computer Security. In Proceedings of the 6th
USENIX Security Symposium, Focusing on Applications of Cryptography. San Jose,
California, USA. 1996. ISBN 978-1-71-380388-1. pp. 187–193. doi:10.5555/1267569.

[206] Veras, R.; Collins, C.; Thorpe, J.: On Semantic Patterns of Passwords and their
Security Impact. In Proceedings of the 21st Network and Distributed System Security
(NDSS) Symposium. 2014. ISBN 1-891562-35-5. pp. 386–401.
doi:10.14722/ndss.2014.23103.

179

https://hashcat.net/wiki/doku.php?id=hashcat
https://hashcat.net/wiki/doku.php?id=oclhashcat_old
http://www.ietf.org/rfc/rfc6151.txt
https://constitution.congress.gov/browse/amendment-5/
https://www.legislation.gov.uk/ukpga/2000/23/part/III
https://www.multicians.org/security.html

[207] Vu, K.-P. L.; Proctor, R. W.; Bhargav-Spantzel, A.; et al.: Improving password
security and memorability to protect personal and organizational information.
International Journal of Human-Computer Studies. vol. 65, no. 8. 2007: pp. 744 –
757. ISSN 1071-5819. doi:10.1016/j.ijhcs.2007.03.007.

[208] Walker, D. W.: Standards for message-passing in a distributed memory
environment. Oak Ridge National Lab., TN, USA. August 1992. Technical report
ORNL/TM-12147; CONF-9204185-Summ. ON: DE92019391; OSTI 7104668.
Retrieved from: https://www.osti.gov/biblio/7104668

[209] Walker, D. W.; Dongarra, J. J.: MPI: a standard message passing interface.
Supercomputer. vol. 12. 1996: pp. 56–68.

[210] Waltermann, R. D.; Challener, D. C.; Childs, P. L.; et al.: Method for protecting
security accounts manager (SAM) files within windows operating systems. October
2010. U.S. Patent 7818567.

[211] Weir, C. M.: Using probabilistic techniques to aid in password cracking attacks.
PhD. Thesis. Florida State University, Tallahassee, FL, USA. 2010.

[212] Weir, M.; Aggarwal, S.; Collins, M.; et al.: Testing metrics for password creation
policies by attacking large sets of revealed passwords. In Proceedings of the 17th
ACM conference on Computer and communications security. 2010. ISBN
978-1-4503-0245-6. pp. 162–175. doi:10.1145/1866307.1866327.

[213] Weir, M.; Aggarwal, S.; d. Medeiros, B.; et al.: Password Cracking Using
Probabilistic Context-Free Grammars. In Proceedings of the 30th IEEE Symposium
on Security and Privacy. Oakland, California, USA. May 2009. ISBN
978-0-7695-3633-0. pp. 391–405. doi:10.1109/SP.2009.8.

[214] Wu, X.; Hong, J.; Zhang, Y.: Analysis of OpenXML-based office encryption
mechanism. In Proceedings of the 7th International Conference on Computer
Science Education (ICCSE). Melbourne, VIC, Australia. July 2012. ISBN
978-1-4673-0242-5. pp. 521–524. doi:10.1109/ICCSE.2012.6295128.

[215] Yang, C.-T.; Huang, C.-L.; Lin, C.-F.: Hybrid CUDA, OpenMP, and MPI parallel
programming on multicore GPU clusters. Computer Physics Communications. vol.
182, no. 1. 2011: pp. 266–269. ISSN 0010-4655. doi:10.1016/j.cpc.2010.06.035.

[216] Yi-ming, J.; Sheng-li, L.: The Analysis of Security Weakness in BitLocker
Technology. In Proceedings of the 2nd International Conference on Networks
Security, Wireless Communications and Trusted Computing, vol. 1. Wuhan, Hubei,
China. April 2010. ISBN 978-1-4244-6598-9. pp. 494–497.
doi:10.1109/NSWCTC.2010.123.

[217] Zeilenga, K.: SASLprep: Stringprep Profile for User Names and Passwords. Request
for Comments (RFC) 4013. Internet Engineering Task Force (IETF). February 2005.
obsoleted by RFC 7613.
Retrieved from: http://www.ietf.org/rfc/rfc4013.txt

[218] Zhang, L.; Zhou, Y.; Fan, J.: The forensic analysis of encrypted Truecrypt volumes.
In 2014 IEEE International Conference on Progress in Informatics and Computing.
May 2014. pp. 405–409. doi:10.1109/PIC.2014.6972366.

180

https://www.osti.gov/biblio/7104668
http://www.ietf.org/rfc/rfc4013.txt

[219] Zhang, L.; Zhou, Y.; Fan, J.: The forensic analysis of encrypted Truecrypt volumes.
In Proceedings of the 2nd IEEE International Conference on Progress in Informatics
and Computing. Shanghai, China. May 2014. ISBN 978-1-4799-2030-3. pp. 405–409.
doi:10.1109/PIC.2014.6972366.

[220] Zivadinovic, M.; Milenkovic, I.; Simic, D.: Cash, hash or trash-hash function impact
on system security. In Proceedings of the 15th SymOrg International Symposium,
ICT and Management section. Zlatibor, Serbia. June 2016. pp. 788–791.

[221] Zonenberg, A.: Distributed Hash Cracker: A Cross-Platform GPU-Accelerated
Password Recovery System. Rensselaer Polytechnic Institute, Troy, NY, USA. May
2009. Technical report.

181

Appendix A

An overview of password-protected
formats

This chapter provides an overview of selected password-protected formats. For each, I dis-
cuss the encryption mechanisms involved and denote the password verification procedure.

A.1 Documents
Digital documents mainly consist of text and images, however, some formats like PDF
may contain video and sound content as well [8]. Some document formats (like PDF) are
determined for publishing, some are suitable for further editing and expanding its content.

A.1.1 Portable Document Format

Portable Document Format (PDF) is primarily used for publishing documents and is de-
signed to be read-only. Nevertheless, Adobe Acrobat Pro1 some non-official tools can edit
documents in this format. The main contribution of PDF is portability, making the docu-
ment viewable on multiple platforms using different software. PDF documents are designed
to look the same on all devices and browsers.

Each file begins with a %PDF-x signature, where x is the number of the PDF version.
PDF uses a non-binary format and consists of objects like arrays and dictionaries, while
each object has its unique ID. At the end of each file, there is the address of XREF table,
which defines the position of all document’s objects according to their ID. The XREF table
is followed by the XREF trailer. The trailer is a structure that provides information for
viewing software about how to read the document. It also contains the Encrypt flag telling
whether the document is encrypted or not. Inside the trailer, there is the ID of an object
called the encryption dictionary [8]. The exact content of the encryption dictionary depends
on the document’s version, Table A.1 shows its typical entries.

Older versions of PDF were encrypted with the RC4 stream cipher, now considered
obsolete for known weaknesses [164]. Thus, newer versions of PDF use the AES algorithm
[50]. For securing PDF documents, two passwords can be used: a user password, and
an owner password. The owner password is only used to restrict selected operations like
printing or extracting content, and can be ignored. The analyst is usually looking for the
user password which is the actual password used for encryption of the document’s contents.

1https://acrobat.adobe.com/hk/en/acrobat/acrobat-pro.html

182

https://acrobat.adobe.com/hk/en/acrobat/acrobat-pro.html

Key Type and length Value

V 1-byte integer A code specifying the algorithm for encryption
and decryption of the document

R 1-byte integer A number specifying the security revision.

O 32-byte string for 𝑅 ≤ 4
48-byte string for 𝑅 ≥ 5

A string based on both owner and user pass-
words. It is used for computing the encryption
key and for verification of the owner password.

U 32-byte string for 𝑅 ≤ 4
48-byte string for 𝑅 ≥ 5

A string based on the user password. It is used
for verification of the user password.

OE 32-byte string
(only present if 𝑅 ≥ 5)

A string based on both owner and user pass-
words. It is used for computing the encryption
key.

UE 32-byte string
(only present if 𝑅 ≥ 5)

A string based on the user password, also used
for computing the encryption key.

P 4-byte integer
It represents a vector of flags specifying per-
mitted operations when the document is opened
with user or owner access.

Perms 16-byte string
(only present if 𝑅 ≥ 5)

A copy of permission flags encrypted with the
file encryption key.

Encrypt
metadata boolean Indicates whether the document-level metadata

is encrypted as well. The default value is true.

Table A.1: Typical entries of the PDF encryption dictionary

The actual password verification process depends on the security revision (R):

• In revisions 1 and 2 - the password in Latin-1 encoding is aligned to 32-bytes (by
a vector of defined values called “passpad”), and concatenated with O, P strings and
the document trailer’s ID. This is for creating different encryption keys for documents,
where the same passwords are used. From the result of the concatenation, MD5 hash
is computed. The resulting hash represents the encryption key. The key is then used
to encrypt the defined (“passpad”) value using the RC4 stream cipher. The result is
compared to U. If the values match, the password is correct [8].

• Revision 3 uses the same principle, however, MD5 hashing is applied 50 times, and
the RC4 encryption is performed 20 times [172].

• In Revision 4, the verification of a user password remains the same, however, if
metadata is not encrypted (i.e. EncryptMetadata is false), the concatenation used for
creating the encryption key is extended by 0xFFFFFFFF value.

• Revision 5 started with Adobe Acrobat 9 and PDF 1.7 documents with Adobe Ex-
tension Level 3. The Latin-1 encoding is replaced by UTF-8 and a different principle
for password verification is used. It also introduces salt (see Section 2.2) to prevent
the rainbow table attack [142]. From Table A.1, it is clear that starting from revi-
sion 5, O and U values were extended by 16 bytes. The first 8 bytes are called the
validation salt, and the second 8 bytes are called the key salt. For verification, the
password in the UTF-8 form is firstly processed with the SASLprep function [217].
Then it is concatenated with the validation salt from U. From the “salted” password,

183

an SHA-256 hash is computed. The resulting hash is then compared to the first 32
bytes of U. If the values match, the password is considered correct [7].

• Revision 6 was introduced with Adobe Acrobat X and PDF 2.0 documents. The
specification should be defined by ISO 32000-2 which is not yet publicly available.
Despite the absence of the official specification, the behavior of the new revision has
been analyzed and the verification algorithm has been derived. The pseudo-code is
available at Sogeti ESEC Lab webpage2. I personally agree with the author, that the
algorithm itself is quite unique and does not resemble any known one. For verification,
three variants of SHA hashing function are used: SHA-256, SHA-384, SHA-512 [75].
In addition, AES encryption algorithm with 128-bit key in CBC mode is also involved
[50]. The password in the UTF-8 encoding is combined with 8 or 56 bytes of salt,
producing a 256-bit hash. Then there can be up to 4096 iterations, while in each
phase, one of the SHA functions, and an AES encryption are performed. The result
of the algorithm itself is again a 32-byte hash, which is compared to U like in previous
previsions [73].

Not all records from the encryption dictionary are used for the verification of the user pass-
word. Many pieces of metadata have use only when the document is decrypted, or viewed.
However, Once the user password is discovered, the contents can decrypted and viewed by
any document viewer that supports encrypted PDFs. For implementing automated work
with PDF documents, Poppler library3 can provide many useful features.

A.1.2 Microsoft Office - up to 2003

Before the release of Office Open XML format (see Section A.1.3), Microsoft Office docu-
ments used a binary format. However, as shown in Table A.2, the encryption techniques
changed over the versions:

• Version 95 and older versions - used a weak encryption based on XOR obfuscation.
A password was transformed into a 16-bit encryption key. With today’s software and
hardware, the password can be found immediately4.

• Versions 97 and 2000 - switched to the RC4 cipher with a 40-bit key. For password
verification, the MD5 function is also needed. All necessary metadata are located
in a structure called EncryptionHeader. Those include salt, EncryptedVerifier, and
EncryptedVerifierHash; all are 16-byte values. The password is hashed using the
MD5 function, and the first 5 bytes of hash are concatenated with a 16-byte salt. The
resulting 21-byte value is copied 16 times into a 336-byte buffer, on which, MD5 is
applied again. From the result, first 5 bytes are used again and concatenated with a 32-
bit data block chosen by the application – for cracking, the block may contain zeros.
The result is hashed with MD5 for the last time. The first 128 bits of the hash create
the encryption key. With the key, EncryptedVerifier and EncryptedVerifierHash are
decrypted. The decrypted verifier is hashed with MD5. If the computed hash matched
the decrypted verifier hash, the password is correct. This approach is used for MS
Word (DOC) and MS Excel (XLS) documents. MS PowerPoint documents did not
support encryption in versions 97 and 2000 [127].

2https://sogeti33.rssing.com/chan-61982469/all_p12.html
3https://poppler.freedesktop.org/
4http://www.password-crackers.com/en/articles/12/#3.2

184

https://sogeti33.rssing.com/chan-61982469/all_p12.html
https://poppler.freedesktop.org/
http://www.password-crackers.com/en/articles/12/#3.2

• Versions XP and 2003 - introduced support for a longer 128-bit RC4 encryption
key, and the CryptoAPI EncryptionHeader. The header contains values similar to
the classic EncryptionHeader from older versions, extended with KeySize and Veri-
fierHashSize. The password verification method is, however, slightly different. The
password in Unicode UTF-16LE encoding is concatenated with salt and hashed by
SHA-1 [75]. The resulting hash is concatenated with a 32-bit data block (which again
could contain zeros), and hashed with SHA-1 again. The prefix with the length of
KeySize represents the encryption key. The rest is identical to the 97/2000 technique.
The only difference is that EncryptedVerifierHash is 20 bytes long. MS PowerPoint
documents (PPT) support this encryption as well [127].

Office version Hash function Encryption algorithm Key length
95 and older - XOR obfuscation 16-bit
97, 2000 MD5 RC4 40-bit
XP, 2003 SHA-1 RC4 40 to 128-bit
2007 SHA-1 (50,000 rounds) AES 128/192/256-bit
2010 SHA-1 (100,000 rounds) AES 128/192/256-bit
2013, 2016 SHA-2 (100,000 rounds) AES 128/192/256-bit

Table A.2: Cryptographic algorithms used in different MS Office versions

A.1.3 Microsoft Office - Office Open XML

Starting from MS Office 2007, Microsoft introduced Office Open XML (OOXML) document
format, using the document extensions like DOCX, XLSX, PPTX, etc. The document is
in fact a ZIP archive containing multiple subdirectories and files with either XML or bi-
nary data. Encryption is applied to the files themselves, not on the entire archive. In
OOXML, the RC4 algorithm was replaced by AES [214]. In Office 2007 and 2010, the AES
encryption key is 128-bit long by default, which was replaced by 256-bit in Office 2013.
By editing registry entries, local security policy, or domain group policy, the length can
be recondigured. Supported key lengths are 128, 192, or 256 bits5. In the root directory,
there is a file called EncryptedPackage with the encrypted data. The root directory also
contains the EncryptedInfo file with information about the hash function used, the encryp-
tion algorithm, cryptographic salt, and other necessary metadata. OOXML supports two
encryption methods:

• Standard encryption - is used in version 2007, and the encryption metadata is
stored in EncryptionHeader with binary format. The structure is similar to Cryp-
toAPI from versions XP and 2003. The only difference is in flags and encryption
algorithm. A 32-bit AlgID value defines the length of AES encryption key, which can
be 128, 192, or 256 bytes long [50]. The salt is concatenated with Unicode-encoded
password, and hashed with SHA-1 [75]. Then, 50,000 iterations of SHA-1 are per-
formed on a string consisting made an iterator concatenated with the result from
the previous iteration. The iterator is a 32-bit value starting from zero and linearly
increasing up to 49,000. After that, the resulted hash is concatenated with the 32-bit

5https://msdn.microsoft.com/en-us/library/cc313071%28v=office.12%29.aspx

185

https://msdn.microsoft.com/en-us/library/cc313071%28v=office.12%29.aspx

data block (which again could be zeros) and hashed with SHA-1 for the last time. Let
the resulting hash be 𝑋ℎ. Unlike with CryptoAPI, the encryption key is not created
yet [214].

𝑋3 = 𝑋1 ·𝑋2 (A.1)

To obtain the encryption key, one needs to create a 64-bit buffer with all bytes set to
0x36. Then, it is necessary to perform XOR of the first 20 bytes in buffer with 𝑋ℎ.
The result is called 𝑋1. The same procedure is performed again with buffer bytes
set to 0x5C. The result is called 𝑋2. As shown in Equation A.1, concatenation of 𝑋1
with 𝑋2 gives value 𝑋3. The encryption key is the prefix of 𝑋3 with length defined
by KeySize. The rest of the verification is identical with the CryptoAPI (see Section
A.1.2).

Key Description Values
saltSize Size of the salt in bytes up to 64

blockSize Size of a single encrypted block possibilities depend on
cipherAlgorithm

keyBits Length of encryption key in bits
128 (default in 2010)
192
256 (default in 2013/16)

spinCount Number of hash function iterations 100,000 (default)
10,000,000 (maximum)

cipherAlgorithm Algorithm used for encryption AES (default), RC2, DES,
DESX, 3DES, 3DEX_112

cipherChaining Mode of encryption algorithm CBC (default)
CFB

hashAlgorithm Algorithm used for hashing

SHA-1 (default in 2010),
SHA-256, SHA-384, SHA-
512 (default in 2013/16),
MD2, MD4, MD5,
RIPEMD-128,
RIPEMD-160,
WHIRLPOOL

Table A.3: OOXML: Agile encryption options

• Agile encryption - The agile encryption was introduced in MS Office 2010 and by
design supports hash and encryption algorithms that are accessible from the Windows
API [126]. Unlike in previous versions, the EncryptionInfo has XML format enabling
to defined different security options. The most important ones are shown in Table
A.3.
The derivation of the encryption key is similar to the standard encryption, however,
different keys are created for decryption of encryptedVerifier and encryptedVerifier-
Hash. The salt in base64 encoding is converted to a binary form and concatenated
with a Unicode-encoded password. The result is hashed by a given HashAlgorithm.
The number of hashing iterations is spinCount - 1. The result is concatenated with
a blockKey. The values are different for both keys. For decrypting encryptedVerifier, it

186

is 0xFE, 0xA7, 0xD2, 0x76, 0x3B, 0x4B, 0x9E, 0x79 sequence. For decrypting
encryptedVerifierHash, it is 0xD7, 0xAA, 0x0F, 0x6D, 0x30, 0x61, 0x34, 0x4E
sequence. For each key type, the result of the concatenation is hashed again. To
get each key, the hash needs to be aligned to length defined by keyBits. If the hash is
too short, it is extended by adding 0x36 bytes to fit the size. If the hash is too long,
the suffix is truncated.
With two keys, we can decrypt both encryptedVerifier and encryptedVerifierHash us-
ing the algorithm defined by cipherAlgorithm in the mode defined by cipherChaining.
As an initialization vector, it is necessary to use the salt extended with 0x00 bytes to
fit the blockSize. Same as in the standard encryption, the hash of the verifier is com-
pared to the hash from the document. If the values match, the password is considered
correct.

A.1.4 OpenDocument

OASIS Open Document Format for Office Applications, or simply OpenDocument format
(ODF), is used by open-source office suites like OpenOffice6 or LibreOffice7 providing a free
alternative to commercial solutions. The specification is publicly available and was released
as an ISO [90] standard in 2006.

Like OOXML, OpenDocument files are represented by a ZIP container with multiple
sub-files. All versions from 1.0 to 1.2 support encryption. If encrypted, the file contents
are compressed by the DEFLATE algorithm [53] and encrypted using one of the encryption
algorithms from Table A.4.

Version Hash function Encryption algorithm Key length
ODF 1.0 SHA-1 Blowfish in 8-bit CFB 128-bit
ODF 1.1 SHA-1 Blowfish in 8-bit CFB 128-bit
ODF 1.2 SHA-256 AES/3DES/Blowfish 128/256-bit

Table A.4: Cryptographic algorithms used in different OpenDocument versions

Necessary metadata are present inside the manifest.xml file located in the META-INF direc-
tory. Those include the types of hash algorithm, encryption algorithm, and key derivation
function. The manifest:checksum attribute specifies a base64-encoded digest for detecting
the password correctness [36]. The password in UTF-8 form is hashed by SHA-1 or SHA-256
[75]. The result is then “strengthened” using PBKDF2 algorithm [98] with 1024 iterations
of SHA-1 or SHA-256 [75] and the salt. The output is a 128 or 256-bit encryption key.
Using the specified encryption algorithm and the initialization vector from manifest, the
attacker can decrypt one of the document’s subfiles. To verify the password, it is possible to
simply recompute the checksum of the decrypted file and compare it to manifest:checksum
value. If the values match, the password is considered correct [182].

6https://www.openoffice.org/
7https://libreoffice.org/

187

https://www.openoffice.org/
https://libreoffice.org/

A.2 Archives
An archive is a container for files. The archive may be compressed to save disk space in
exchange for time required for compression and decompression. For instance, bare UNIX
.tar files are uncompressed. Applying of additional compression is usually denoted by the
file extension. For instance, the file name of a tarball compressed by GZIP typically ends
with .tar.gz or .tgz. In formats like RAR or ARJ, on the other hand, the archiving and
compression are bound together. ZIP and 7z format use the compression by default, but is
is possible to change the compression ratio to zero.

The choice of a compression tool depends on the user’s needs. Tools like KGB Archiver8

with the PAQ6 algorithm, offer exceptionally high compression rates, and can literally
convert 1 GB files into 7 MB archives without any data loss. On the other hand, the
decompression may take even hours. The most commonly used formats are ZIP, RAR, and
7z on MS Windows systems, TAR archives on UNIX-like systems.

For security reasons, the archives may be encrypted. While TAR archives do not natively
support encryption, many formats like ZIP, RAR, or 7z do. The techniques for encryption
and password verification differ between the formats, however, AES seems to be the most
widely-used algorithm for encrypting file archives [50].

A.2.1 ZIP

The ZIP archive format was created by Phil Katz in 1989, and was first implemented
in the PKZIP utility released by PKWARE, Inc9. The format standard is described by
PKZIP’s APPNOTE10, and in 2015, it was standardized by the ISO [91]. ZIP is also a na-
tive format of a popular WinZIP tool11, and is supported by many other compression tools.
Despite the popularity of WinZIP, PKZIP development continued and in PKZIP 8.0, the
professional edition was renamed to SecureZIP. ZIP format specification supports multi-
ple compression algorithms: Store (no compression), UnShrinking, Expanding, Imploding,
Tokenizing, Deflating, Enhanced Deflating, BZIP2, LZMA, WavPack a PPMd [163].
Figure A.1 shows the internal structure of a ZIP file. At the end of the file, there is the
central dictionary containing a relative offset for each contained file, identifying its position
from the beginning of the document. Each compressed file has its local header, containing
its name, size, compression method, modification timestamp, CRC-32 checksum and other
information.

ZIP format natively supports encryption, but only for file data. Metadata like file
names are not encrypted. Therefore, users can see what files are inside the archive without
entering the correct password. Early versions used the weak [29] PKZIP stream cipher [163].
The introduction of AES [50] in later versions was slightly controversial since WinZIP used
a file structure that is different from the official PKWARE specification. In 2002, PKWARE
introduced Strong Encryption Specification (SES) for the Professional Edition of PKZIP.
However, before updating the APPNOTE, WinZip released its own AES-256 support with
WinZIP 9.0 public beta in 2003 [45]. The WinZIP’s AES-encrypted archive uses a different
file format, than the SES supported by PKZIP and SecureZIP [163]. Currently, ZIP files
can be encrypted by one of the following techniques:

8https://sourceforge.net/projects/kgbarchiver/
9https://www.pkware.com/

10https://support.pkware.com/display/PKZIP/APPNOTE
11http://www.winzip.com/

188

https://sourceforge.net/projects/kgbarchiver/
https://www.pkware.com/
https://support.pkware.com/display/PKZIP/APPNOTE
http://www.winzip.com/

FILE
ENTRY1

<data>

FILE
ENTRY2

<data>

FILE
ENTRY3

<data>

FILE
ENTRY4

<data>

Local header 1

Local header 2

Local header 3

Local header n

Relative offset 2

Relative offset 1

Relative offset 3
Relative offset n

File entry 1

File entry 2

File entry 3
n

CENTRAL
DIRECTORY

Figure A.1: The structure of a ZIP file (Source: WikiMedia Commons)

• PKZIP stream cipher - is the traditional PKWARE encryption used in the early
versions of the ZIP format. Compared with today’s cracking capabilities, the cipher
is very weak and it is vulnerable to a known-plaintext attack described by Biham et
al. [29]. The encryption uses PKWARE’s own algorithm for initializing keys which
are used for decryption of each file. Before the data itself, each file contains a 12-byte
long initialization vector created by random values followed by two, or one (from
ZIP 2.0) most significant bytes from the file’s CRC. To verify the password, it is
necessary to first perform the initialization phase that returns encryption keys and
a 8-bit verification value. If the password is correct, then this value is identical to the
lowest 8-bits of file’s CRC. With only 8 bits to check, there is a high possibility of
getting false positive passwords, i.e., situation when the the 8-bit value matches, but
the password is not correct. Using the incremental brute-force attack, almost every
256th password is false positive. Thus, a good approach is to apply password-checking
method to every file. The probability of false positive password occurrence is getting
lower with the increasing number of files. For 𝑛 files in the archive, the probability can
be calculated as 1

28𝑛
. Nevertheless, for a reliable password verification, it is necessary

to check each “potentially-positive” password for correctness. To do so, one needs to
decrypt a file, recompute its checksum, and compare it with the checksum in the file’s
local header shown in Figure A.1. Only if these values match, the password can be
considered correct password [163]. This is an example of the checksum-based password
verification described by Figure 2.4.

• WinZIP’s AES encryption - uses AES in CTR mode [50]. The key length can
be chosen from 128, 196, or 256 bits. For better integrity, instead of CRC, HMAC
with SHA-1 is used. In the file’s header, there is a salt, and a 16-bit verification
value. The encryption key is calculated by using PBKDF2 [98] with 1,000 iterations
of HMAC-SHA1 with salt from the header [75]. For a key of length 𝑛, one needs
to generate 2𝑛 + 16 bits using PBKDF2. First 𝑛 bits represents the encryption key,

189

the second 𝑛 bits is the key for HMAC function and the last 16 bits should match
the verification value for a “potentially correct” password. The probability of getting
a false positive password is 1

216
. For final verification, decryption and decompression

are not necessary since the HMAC is calculated from the encrypted data [163]. To
optimize the cracking, instead of computing PBKDF2 for all data blocks, one may
use only the block with the 16-bit verification value. This can make the attack up
to 4 times faster. The detailed structure of AES-encrypted ZIP files is described in
a specification published by Corel Corporation [45].

• Strong encryption specification (SES) - is an AES-based technique standardized
by PKWARE. The technique is used by newer versions of PKZIP, and by SecureZIP.
Encryption-related metadata are located in the Extra Fields part of the central di-
rectory (see Figure A.1). Unlike in WinZIP’s solution, the user can be authenticated
not only by a password, but also by a certificate, or using both ways combined. The
encryption metadata include the initialization vector (IV), the length of the key, the
length of the data (Dlen), a piece of encrypted random data (Erd), encrypted verifi-
cation value (EVV), and a CRC-32 checksum. Algorithm 12 shows how to use these
values to verify a password [163].

Algorithm 12: Password verification in ZIP using Strong encryption (SES)
Input: password, IV, Erd, Dlen, EVV
Output: true if the password is correct, false if not

1 𝐾1 = PBKDF2(SHA-1(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)) /* Getting the key to decrypt Erd */
2 𝑟𝑑 = AS-decrypt(𝐸𝑟𝑑, 𝐾1, 𝐼𝑉) /* Decryption of random data */
3 𝐾2 = PBKDF2(SHA1(𝑟𝑑 + 𝐼𝑉)) /* Getting the key to decrypt EVV */
4 𝑉 𝑉 = AES-decrypt(𝐸𝑉 𝑉 , 𝐾2, 𝐼𝑉) /* Decryption of verification value */
5 𝐶𝑅𝐶 = 𝑉 𝑉 [𝐷𝑙𝑒𝑛− 4] /* Last two bytes are CRC */

6 return CRC ̸= CRC-32(𝐸𝑉 𝑉 , 𝐷𝑙𝑒𝑛− 4)

Since version 5.0, the ZIP format standard also officially supports DES, 3DES, RC2, and
RC4 ciphers [163]. Altough its possible to manually use these algorithms, I found no free,
or commercial ZIP-compression tool supporting them. Consulting this with PKWARE
developers then confirmed my surmise.

A.2.2 7z

7z is an archive format used by an open-source 7-Zip12 application, both created by Igor
Pavlov. The format became popular thanks to a high compression ratio, and its open and
modular structure. It supports multiple compression methods: LZMA (default), LZMA2,
PPMD, BCJ, BCJ2, BZip2, and Deflate. In the philosophy of 7z, the encryption using
AES-256 with SHA-256 is also represented as a coder. 7z archive using LZMA can provide
up to 70% higher compression rate than ZIP format. 7z supports AES encryption with
a 256-bit key generated by the SHA-256 hash function. By default, 7z does not encrypt file
names, but this option is available in contrast to ZIP [156].

12http://www.7-zip.org/

190

http://www.7-zip.org/

Another difference from ZIP is slightly more complex and flexible structure of 7z files,
making it more difficult to extract all metadata necessary to verify the password. Internally,
the data of compressed files are saved as continuous streams. Multiple input files can also
be concatenated and treated as a single stream. This techniques allows to achieve much
higher compression ratio than compressing each file independently. The input data is
processed using coders that represent pre-processing filters and compression algorithms.
The following are supported: LZMA, LZMA2, PPMD, BCJ, BCJ2, BZip2, Deflate. To
achieve even higher compression ratio, 7z can use multiple coders chained together [156].

A 7z archive resembles a database of folders and streams of data. A folder is a solid block
of data that contains one or more encoded streams. Each stream may be encoded using
different coders. A decoded stream may create multiple substreams. Each decoded sub-
stream corresponds to a single input file. The structure is described by the 7zFormat.txt
specification [155]. Each archive consist of four parts:

• Start header (32 bytes) - The header starts with a signature 7, z, 0xBC, 0xAF,
0x27, 0x1C followed by general information about the archive. Those include 7z
version, CRC of the start header, and link to the end header.

• Compressed data of files - This part contains streams of compresed (and possibly
encrypted) file data.

• Compressed metadata block for files - The block contains links to compressed
data, file names, sizes, information about compression methods, CRC of the files,
timestamps and other metadata.

• End header - The end header has a variable number of items, each with a one-byte
identifer. The allowed values range from 0x00 to 0x19. In total, the header may
contain up to 25 items. If the archive contains data, the header contains a link to the
compressed metadata block.

The password verification is checksum-based (see Section 2.4) using CRC-32. For each
folder, the archive contains the size and CRC-32 checksum of the decompressed data of
the first file contained. In a nutshell, to verify a password, it is necessary to decrypt and
decompress the file’s data, recalculate the checksum and compare it to the stored one. If
the values match, the password is correct.

First, it is necessary to locate the end header and get information about data streams
from items identified by 0x03 and 0x04. This information is represented by the Streams
Info structure that includes PackInfo, CodersInfo, and SubStreamsInfo. The PackInfo
structure provides information about folders: their amount, location, sizes, and CRC. The
CodersInfo contains information about data coders that are used in the archive. Finally,
the SubStreamsInfo provides information about substreams, i.e., data streams for individ-
ual files.

Once the structures are located, one needs to browse individual coders to search if there
is any file encrypted with the AES-256 + SHA-256 method. Such a coder has identified by
0x06, 0xF1, 0x07, 0x01. Moreover, it is necessary to find out what coders are used data
pre-processing and compression. All these coders need to be supported by the password
cracking tool.

Algorithm 13 shows the procedure when the LZMA compression is used. [156]. The
encrypted data (encData) need to be extracted from the data stream of the file. The initial-
ization vector (IV), the number of SHA-256 iterations (iterations) for deriving password,

191

Algorithm 13: Password verification in 7z archives compressed by LZMA
Input: password, IV, iterations, encData, lzmaData, CRC
Output: true if the password is correct, false if not

1 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 = UTF-16(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑) /* Convert password to UTF-16 */
2 𝐾 = derive_key(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) /* SHA-256 iterations */
3 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐷𝑎𝑡𝑎 = AES-decrypt(𝐾, 𝐼𝑉 , 𝑒𝑛𝑐𝐷𝑎𝑡𝑎) /* data decryption */
4 𝑑𝑎𝑡𝑎 = decompress(𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝐷𝑎𝑡𝑎, 𝑙𝑧𝑚𝑎𝐷𝑎𝑡𝑎) /* data decompression */

5 return CRC ̸= CRC-32(𝑑𝑎𝑡𝑎)

and the initialization data of LZMA dictionaries (lzmaData) are located in the correspond-
ing coder structure. The CRC checksum is located in the file PackInfo structure for the
corresponding folder.

A.2.3 RAR

RAR is an archive file format developed by Eugene Roshal for WinRAR archiving applica-
tion. The name RAR stands for Roshal Archive. It supports compression, error recovery,
and file spanning, i.e. splitting into multiple files. RAR is a proprietary format licensed by
win.rar GmbH13. RAR allows encrypting not only the data of individual files but also their
headers making it impossible to detect what files are present. Version 2.9 (WinRAR 3.0)
introduced encryption of both data and headers using AES in CBC mode with 128-bit key.
Starting from version 5.0, the key length was increased to 256 bits [175].

• RAR 3.0 - From the main archive’s header, we can get CRC checksum, header type
(should be 0x73) and 2 bytes of header flags. If the flags contain 0x04, it indicates,
the file’s headers are also encrypted. On 0x400 address, we can find 8 bytes of salt.
Processing a password and salt with SHA-1, we get the initialization vector for AES
algorithm [50]. For password verification, we need to decrypt and decompress a file,
recalculate it’s CRC and compare it with the CRC from the header. If they match,
the password is considered correct, if they do not match, the password may be wrong,
however, it may also indicate a corrupted archive. Unfortunately, in RAR 3.0, it is
impossible to distinguish between an incorrect password and a corrupted archive [6].

• RAR 5.0 - can be identified by 0x52 0x61 0x72 0x21 0x1A 0x07 0x01 0x00 sig-
nature. The file consists of multiple blocks while each block has a header. The
header contains CRC checksum, header size, header type, etc. If file headers are also
encrypted, there is an extra header called the encryption header containing the com-
mon header values like checksum, size, and flags, but also a 16-byte salt, 8-byte check
value for password verification, and a value called KDF count defining the number of
PBKDF2 function for deriving an encryption key [98]. For each encrypted file, there is
a special record resembling the encryption header which also contain an initialization
vector for AES encryption algorithm [175, 50].
After getting necessary metadata, using a password and salt we compute KDF count
iterations of PBKDF2-HMAC-SHA-256 to get a 256-bit encryption key [98, 50]. By
computing another 32 iterations, we get a 32-byte value called pswcheck on which we

13http://www.win-rar.com

192

http://www.win-rar.com

apply XOR operations in the following way: byte no. 0 with byte no. 8, byte no. 16
with byte no. 24, etc. As a result, we get an 8-byte value which we compare with
the check value extracted from the header. If they match, the password is considered
correct [175].

A.3 Disk volumes
Not only files but entire filesystems can be encrypted to protect sensitive data. Such
a filesystem may represent either a physical disk partition or a virtual one located inside
a regular file. Encryption mechanisms could be provided natively by the operating system
or by external tools. If the system partition is encrypted, it is impossible to boot the
machine unless a correct password is entered.

A.3.1 TrueCrypt

TrueCrypt was a popular open-source software for creating encrypted disk partitions under
Windows, Mac OS X, and Linux operating systems. The tool offered the following options
for encrypted filesystems:

• an encrypted file with a nested virtual filesystem,

• an encrypted partition on an existing storage device, or

• encryption of the entire storage device supplied with a bootloader for pre-boot
authentication in case of a system disk. [196, 218].

To make cryptoanalysis more difficult, TrueCrypt filled the empty with random bytes.
TrueCrypt even supported creating of hidden partitions. The medium could contain two
partitions, each unlockable by a different password. This created a suitable solution for
potential extreme cases, where the medium’s owner would be held hostage and threatened
for surrender of the password. The owner could then provide a working password to one of
the partitions, making the captors unaware of the existence of the other partition containing
the true confidential content [196].

On 28 May 2014, for unknown reasons, the original project’s website14 announced the
end of the project and recommended to use alternative solutions. It was stated, that the
software may contain unfixed security issues. The recent audit15 of TrueCrypt’s source
code found minor defects, however, no critical security issues or indications of the backdoor
presence were detected. The true reasons for the project’s closure is then a subject of
speculations. Based on the TrueCrypt’s source code, two new open-source projects were
created: VeraCrypt (see Section A.3.2) and CipherShed (see Section A.3.3).

Independent of the method used, TrueCrypt allowed a user to choose from different
encryption algorithms, hashing algorithms, and a working mode. TrueCrypt 7.1a sup-
ported the following encryption algorithms: AES [50], Serpent [28], Twofish [181], or their
cascade combinations: AES-Twofish, AES-Twofish-Serpent, Serpent-AES, Serpent-Twofish-
AES, and Twofish-Serpent. The cascade use possibly offered more security redeemed by
longer encryption and decryption intervals. The cryptographic hashing algorithms sup-
ported were: RIPEMD-160 [54], SHA-512 [75], or Whirlpool [188]. Possible operation
modes are LWR and XTS which was then set as default [218, 196].

14http://truecrypt.sourceforge.net/
15http://istruecryptauditedyet.com/

193

http://truecrypt.sourceforge.net/
http://istruecryptauditedyet.com/

Figure A.2: TrueCrypt password verification (Source: Zhang et al. [218])

The password verification process is described by Figure A.2. Using a hash function, the
header key is derived from a password and salt which is the first 64 bytes of the volume’s
header. Using the header key and encryption algorithm, the header is decrypted. The
password is correct if Equation A.2 to Equation A.4 hold [218].

ℎ𝑒𝑎𝑑[64..67] = “𝑇𝑅𝑈𝐸” (A.2)

ℎ𝑒𝑎𝑑[72..75] = 𝐶𝑅𝐶32(ℎ𝑒𝑎𝑑[256..511]) (A.3)

ℎ𝑒𝑎𝑑[252..255] = 𝐶𝑅𝐶32(ℎ𝑒𝑎𝑑[64..251]) (A.4)

The number of hashing iterations depends on the function and partition type, specifically
for the system partition for system partition, it is 1,000 iterations of PBKDF2-RIPEMD-
160. For other partitions and standard file containers, TrueCrypt uses 2,000 for RIPEMD-
160, and 1,000 for SHA-512 or Whirlpool [218, 196]. The main challenge for the attacker,
however, is the fact, that the information about the encryption and hashing algorithms used
are not saved anywhere. Since that, the attacker has to try 8 × 3 = 24 options, possibly
multiplied by two, if LWR mode is also assumed as possible [218].

A.3.2 VeraCrypt

VeraCrypt16 is a successor of TrueCrypt developed by IDRIX17. After the TrueCrypt’s audit
(see Section A.3.1) was finished, the developers of VeraCrypt claimed to have implemented
security improvements based on the audit’s results.

16https://veracrypt.codeplex.com
17https://www.idrix.fr/

194

https://veracrypt.codeplex.com
https://www.idrix.fr/

Since VeraCrypt is a fork of TrueCrypt, the verification procedure is similar. However,
the number of hashing iterations have been increased. For system partitions, it uses 327,661
iterations of PBKDF2-RIPEMD-160. For other partitions and containers, VeraCrypt uses
655,331 iterations of RIPEMD-160, and 500,000 iterations of SHA-2. The known-plaintext
attack searches for work “VERA” instead of “TRUE.” Also, Camellia and Kuznyechik
ciphers were added18 , and the only supported mode is XTS [54, 98].

A.3.3 CipherShed

Ciphershed is, or used to be, another fork of TrueCrypt. On February 1, 2016, the authors
made a first official release. However, since December 28, 2016, the CipherShed website 19

appears to be down and may no longer be available.

A.3.4 BitLocker

BitLocker is a feature of Microsoft Windows first introduced in Windows Vista, and present
in Pro and Enterprise versions of newer systems, also featuring in Windows Server 2008 and
later. It enables full disk encryption (FDE) protecting entire disk volumes. BitLocker uses
AES encryption in CBC or XTS mode using a 128-bit or 256-bit key. Unlike TrueCrypt or
VeraCrypt which require having the disk partition formatted before encryption, BitLocker
can perform the encryption process while still having the files on the disk [183].

The data is encrypted using the Full Volume Encryption Key (FVEK), encrypted by
Volume Master Key (VMK). These two keys are located in an encrypted form in the volume
metadata. To secure these keys, BitLocker uses mechanisms called key protectors20. The
following key protector methods and combinations are available:

• TPM only – BitLocker uses the computer’s Trusted platform module (TPM) to
protect volume keys. The TPM builds the chain of trust during the boot sequence.
TPM support in BIOS is required. The hardware of the TPM contains a Storage Root
Key (SRK) tha is used for decrypting volume keys.

• TPM and PIN – BitLocker uses the combination of TPM and user-supplied PIN.
The length of the PIN is 4 to 20 digits. If allowed, enhanced PINs with non-digit
symbols can be used.

• TPM, PIN, and startup key – Requires TPM, PIN, and additional external key
(startup key) from USB memory device.

• TPM and startup key – Requires TPM and the external startup key.

• Startup key – Only the startup key is required.

• Password – BitLocker uses a user password.

• Recovery key – BitLocker uses recovery key from a USB memory device.

• Recovery password – BitLocker uses a 48-digit recovery password.
18https://veracrypt.codeplex.com/wikipage?title=Encryption%20Algorithms
19https://www.ciphershed.org/
20https://docs.microsoft.com/en-us/powershell/module/bitlocker/add-bitlockerkeyprotector

195

https://veracrypt.codeplex.com/wikipage?title=Encryption%20Algorithms
https://www.ciphershed.org/
https://docs.microsoft.com/en-us/powershell/module/bitlocker/add-bitlockerkeyprotector

• Active Directory DS account – BitLocker uses Domain authentication to unlock
volume keys. Cannot be used with OS volumes.

The type of protector used defines what kinds of attacks are possible. Essentially, there are
the following options:

• Unlocking with the recovery key – All protector options allow decrypting the
volume if the recovery key is entered. The recovery key is created by Windows and
automatically uploaded into the user’s Microsoft account. If logged into the account,
the user may request the key. In the case of domain-based authentication, the user
may also sign into the Azure Active Directory account and recover the key.

• Cold boot attack – The key can be obtained at boot time. This is easiest with the
TPM-only protector since no user interaction is necessary. If an additional protector
(PIN, USB key) is used, the attack is not possible unless these values are known [144].
While TPM should prevent attackers from using bootkits – rootkits that tamper with
the system boot files, Yi-ming et al. a security weakness in key management so that
bootkits can make a break the booting protection [216].

• Memory dump attack – The encryption keys can also be obtained from a memory
dump, as described by Al Shehhi et al. [183]. Afonin also describes that the RAM
can be dumped using a FireWire/Thunderbolt attack [144].

• User passsword attack – If the volume is secured by password without TPM, it is
possible to perform an offline attack [9]. First, it is necessary to extract the volume
metadata. The password verification procedure is:

1. Calculate SHA-256 twice on the password.
2. Calculate 1,048,576 iterations of SHA-256. In each, the input is the last 32-

byte hash concatenated with the hash from the first step, 16-byte salt, and
iteration number. The final result is the intermediate key for AES-encrypting
the Initialization vector (IV) derived from a nonce.

3. Get the decrypted Message Authentication Code (MAC) as XOR of the encrypted
IV and encrypted MAC.

4. Get the decrypted Volume Master Key (VMK) as XOR of the encrypted IV and
encrypted VMK.

5. Calculate mac of the decrypted VMK and compare it to the decrypted MAC.
If they mach, the password is correct.

• Recovery password attack – Technically, it is also possible to perform an attack
on the recovery password. The recovery password is made of 48 digits made of eight
6-digit groups. Each group must be divisible by 11 and lower than 720,896. The sixth
digit is checksum. Such rules redude the keyspace a bit but the number of candidate
passwords is still enormous. Totally, there are 65, 5366 possible combinations [9].

From the password cracking tools discussed in Section 2.4 the following can recover Bit-
Locker passwords: hashcat, John the Ripper, Passware Password Recovery Toolkit, and
Elcomsoft Forensic Disk Decryptor. There is also a tool called BitCracker21 that is ded-
icated for recovering BitLocker password with attacks on the user password or on the
recovery password [9].

21https://github.com/e-ago/bitcracker

196

https://github.com/e-ago/bitcracker

A.3.5 PGP

Pretty Good Privacy (PGP) is a software developed by Symantec22. It was designed for
signing and encrypting e-mails, files and disk partitions, following the OpenPGP standard
[37]. Unlike Truecrypt, PGP and Bitlocker can perform encryption while keeping the files
on the disk. Al Shehhi et al. also confirmed possibility of recovering the PGP password by
using Elcomsoft Forensic Disk Decryptor [183].

A.3.6 Mac Disk Utility

Mac Disk Utility is a software developed by Apple which allows encryption of Mac OS X
Extended disk partitions23. It uses AES with 128-bit or 256-bit key starting from MAC
OS X v10.5. Al Shehhi et al. were successful with mounting the volume using Passware
Password Recovery, however not with the recovery of the password [183].

A.3.7 FileVault

FileVault and FileVault 2 introduced in Mac OS X Version 10.7 (Lion) are another tools to
encrypt Mac OS X disk partitions. It uses AES in XTS mode with a 128-bit or 256-bit key
[50]. Choudary et al. analyzed the properties of FileVault encryption, and developed an
open-source cross-platform library named libfvde which can decrypt and mount FileVault-
encrypted volumes. To decryption and mount volumes one needs to possess a correct
authentication token. The token is provided by the user and can be extracted from a memory
dump [44].

A.4 Portable devices
With the expansion of portable devices like tablets, and cellphones, the necessity of achiev-
ing data confidentiality became crucial. Thus, portable OS developers like Google or Apple
designed mechanisms for encrypting private data inside the device’s memory.

A.4.1 Android

Android OS uses a virtual machine (VM) for running each user application in its own
sandbox, i.e., separately from each other with restricted access to individual resources. This
security-enhancing principle is similar to the Java Virtual Machine (JVM). Before Android
4.4 was introduced, the system used Dalvik VM. In Android 4.4, it is possible to choose
between Dalvik VM, and Android runtime (ART) VM. Starting from version 5.0, the only
VM supported is ART [32, 18]. The Android system also takes advantage from Security-
Enhanced Linux (SELinux) which enables to define policies defining what operations on
what resources each application can perform. SELinux was partially introduced in Android
4.3, and fully deployed in Android 5.0 [18]. For securing confidential data, Android OS
basically supports two encryption schemes:

• Full-disk encryption (FDE)24 - This scheme was introduced in Android 4.4, and
further enhanced in Android 5.0. FDE enables the encryption of all user-created data

22https://www.symantec.com
23https://support.apple.com/en-us/HT201599
24https://source.android.com/security/encryption/full-disk.html

197

https://www.symantec.com
https://support.apple.com/en-us/HT201599
https://source.android.com/security/encryption/full-disk.html

on a device. The data is automatically encrypted before committing to the disk and
decrypted before returning to the calling process. Full-disk encryption is supported up
to Android 9. Since Android 10, FDE is deprecated, and devices must use file-based
encryption instead.

• File-based encryption (FBE)25 - The FBE is supported by Android 7.0 and above.
It enables different files to be encrypted with different keys that can be unlocked
independently. Early versions were not able to use FBE together with adoptable
storage (e.g. SD card). Since Android 9, devices can use both. For devices with
Android 10 and higher, FBE is required.

FDE uses encryption scheme called DM-Crypt depicted by figure A.3. From a PIN or
Passcode (password) and salt using a key derivation function (KDF), we receive a derived
key. The salt value is generated randomly during the activation of the encryption process
eliminating the attack using pre-calculated keys. This derived key is used to protect the
the File-system key also called the master key which is on the top of the key hierarchy and
protects the actual data.

Figure A.3: DM-Crypt encryption system (Source: Teufl et al. [195])

Even before FDE scheme was introduced, Android OS supported encryption, starting
from Android 3.0, however, the key derivation function (KDF) was different from newer
versions. From Android 3.0 to Android 4.3, the KDF used standard hash-algorithms. The
key was derived from a PIN or Passcode (password) and a random 16-byte salt using 2,000
iterations of PBKDF2 [98]. Teufl et al. performed various experiments with brute-force
attack on the FDE. A 4-digit numerical key could be cracked almost instantly on the device
itself. However, using off-device attack using GPUs, even a 10-digit key could have been

25https://source.android.com/security/encryption/file-based.html

198

https://source.android.com/security/encryption/file-based.html

cracked within a day. Alphanumeric or more complex passphrases having 6 characters or
less were also crackable within a single day [195].
In Android 4.4, the PBKDF2 was replaced with the SCRYPT function. SCRYPT was
specifically designed to prevent a GPU-accelerated attack by requiring a large (and config-
urable) amount of memory making highly-parallel cracking on GPU a serious problem26.
Using a distributed CPU attack, PIN-codes 8-digit or shorter, or alphanumeric passphrases
shorter than 5 characters were also crackable in less than a day [195].

Starting from Android 5.0 Lollipop, the system is using the full enforcement mode of
SELinux [18]. Furthermore, the FDE relies on a hardware-bound key making the attack
practically impossible. Using online attack has the advantage of having the hardware-bound
key available to the operation system. However, there is a limited number of attempts, after
which the device will be wiped and reset to the factory defaults27. Using offline attack, i.e.
cracking on the different device, the hardware key is not available, making the only choice
trying all possible combinations of a 128-bit AES key giving about 1038 possible solutions.
Android 7.0 and FBE also relies on a hardware-bound-key, but it was practically exploitable
on devices using Qualcomm chips from which it was possible to extract the hardware-bound
key28. With different chips, the attack is, currently, impossible to be performed at an
acceptable time.

A.4.2 Apple iOS

The iOS (previously known as iPhone OS) system developed by Apple Inc. is used as the
operating system of the company’s portable devices: iPhone, iPad, and iPod touch. The
most recent version is currently iOS 10 released on September 13, 2016. To secure sensitive
content, iOS utilizes a mechanism called Data protection that encrypts data on the device.

iOS 3 (iPhone OS 3.x)

Data protection was first introduced in iOS 3 and iPhone 3GS. The AES [50] encryption
was applied on the entire filesystem using a single 128-bit device key called Key 0x835 and
a random initialization vector. The key was based purely on the device UID “burned” at
the chip, and could not be changed. The key was derived as follows:
key0x835 = AES-128(UID, "01010101010101010101010101010101")

Using the 0x835 key and a defined initialization vector (IV), the data was encrypted in the
following way:
ciphertext = IV + AES-128(key835, data + SHA-1(data), IV)

The data was, however, still accessible transparently from a custom ramdisk. Moreover, it
was possible to extract the key from the device for further offline use. Thus, no password
cracking was necessary [23, 24].

iOS 4

The iOS 4 finally enabled users to choose their own passcode. Contents of almost all files
are encrypted and each protected file has a unique key. The encryption scheme requires not

26http://nelenkov.blogspot.cz/2014/10/revisiting-android-disk-encryption.html
27http://theconversation.com/what-if-the-fbi-tried-to-crack-an-android-phone-we%

2Dattacked-one-to-find-out-56556
28https://bits-please.blogspot.cz/2016/06/extracting-qualcomms-keymaster-keys.html

199

http://nelenkov.blogspot.cz/2014/10/revisiting-android-disk-encryption.html
http://theconversation.com/what-if-the-fbi-tried-to-crack-an-android-phone-we%2Dattacked-one-to-find-out-56556
http://theconversation.com/what-if-the-fbi-tried-to-crack-an-android-phone-we%2Dattacked-one-to-find-out-56556
https://bits-please.blogspot.cz/2016/06/extracting-qualcomms-keymaster-keys.html

only Key 0x835, but also another UID-based key called Key 0x89B which can be derived
as follows:
key0x89B = AES-128(UID, "183e99676bb03c546fa468f51c0cbd49")

Encrypted content is divided into 11 protection classes based on availability requirements,
e.g., class 4 represents data available only when the device is unlocked, class 8 represents
data which are always available, etc. For encryption of filesystem metadata and unprotected
files (with no class specified), the “EMF key” derived from Key 0x89B is used in a similar
way to iOS 3 [23].

Each protection class has a master key that is stored in an encrypted form inside the
system keybag. To decrypt the system keybag, one needs the device UID and the user-
defined passcode. The process of unlocking the system keybag is illustrated in Figure A.4.

Using the master key, it is possible to access the per-file keys that protect the actual
contents. Those are located in so-called keychains. A keychain is the storage of file keys
that has the form of SQLite database with 4 tables containing not only keys, but also
certificates, and other attributes. A keychain belonging to class 𝑐 ∈ {1..11} is protected by
class 𝑐 master key in the system keybag. If a jailbreak (i.e. getting root access) is performed
on a device, one can use a graphical tool called Keychain Viewer to browse the keychain’s
content [23].

Figure A.4: iOS 4 key hierarchy (Source: Belenko et al. [24])

Moreover, iOS 4 offers an Effaceable storage with three 960-byte storage areas that can
be quickly erased if necessary. Those include the payload key and initialization vector for
decryption of the system keybag, or the filesystem encryption key “EMF!” that is used for
obtaining the EMF key.

In addition to the key hierarchy, iOS 4 uses the Escrow keybag that allows iTunes to
unlock the device. This keybag contains the same master keys as the system keybag. The
Escrow keybag is protected by a 256-bit random passcode that is stored on the device.
With each backup, iOS also generates a Backup keybag that contains keys for decryption
of files and system keychains [25].

200

Belenko et al. from Elcomsoft experimented with the recovery of iOS passwords. The
online, i.e. on-device, attack has shown to bee too slow, specifically 2.1 passwords per
second on iPhone 3G and 7 passwords per second on iPad. As they suggested, the system
keybag contains a hint on the passcode complexity, so it is possible to detect the type of
the passcode, specifically: 4-digit PIN, digit-only passcode with different length, and any-
length passcode possibly containing non-digit symbols. However, as Belenko et al. claimed,
passcode is not “usually” a problem and it can be recovered by using a bootrom/iBoot
exploit [24].

iOS 5 and newer

Newer versions of iOS brought further enhancements of the encryption system. Starting
from iOS 5, AES mode was changes to GCM from the original CBC mode. Devices utilize
a new “UID+” hardware key instead of UID. For protecting keychains, the system encrypts
all attributes, not only the file keys. Starting from iOS the devices use new paritioning
scheme called Lightweight Volume Manager (LwVM) that allows encryption of any par-
tition. Filesystem encryption uses a different initialization vector that encryption of files
[25]. Note, iOS 4 and iOS 5 had a security weakness29 that allowed to bypass the screen
locking protection and the device without knowing the passcode or encryption keys.

29https://www.technorms.com/7095/ios-5-shows-security-weaknesses

201

https://www.technorms.com/7095/ios-5-shows-security-weaknesses

Appendix B

The contents of the attached
storage medium

The attached DVD contains the following dictionaries and files:

• experiments/ - various datasets for experiments related to the thesis,

• fitcrack/ - the sources of the Fitcrack password cracking system,

• pcfg/ - proof-of-concept tools related to grammar-based password cracking,

• thesis-tex/ - LATEX sources of this doctoral thesis with figures and bibliography,

• works/ - all my published works,

• cv.pdf - curriculum vitae with an overview of my publications and outputs,

• README.txt - the description of the directory structure.

• thesis.pdf - this doctoral thesis in the PDF format,

• summary.pdf - the summary of the doctoral thesis.

202

	Introduction
	Background
	Early Password Protection
	DES and Password Hashing
	The First Cracking Tools
	The Revolution in Symmetric Cryptography
	Modern Password Cracking
	Advances in Cryptographic Protection
	Possibilities for Further Acceleration

	Research Goals
	Contribution
	Structure of the Thesis

	Password cracking essentials
	The Password Cracking Process
	Password Generation
	Exhaustive Search
	Dictionary-based Attacks
	Probabilistic Methods

	Password Verification
	Hash-based Password Verification
	Decryption-based Password Verification
	Checksum-based Password Verification

	Existing tools
	John the Ripper
	Cain & Abel
	L0phtcrack
	Hashcat
	Elcomsoft Password Recovery
	AccessData Password Recovery Toolkit
	Passware Kit
	Ophcrack
	RainbowCrack

	Distributed Password Cracking
	Motivation and Parallel Cracking Sessions
	Parallel Cracking
	Utilization of GPGPU
	The Limits of a Single Machine

	Related Work
	Early Work
	Cracking in HPC Clusters
	Non-HPC Solutions
	Commercial Distributed Password Crackers
	Hashcat-based Solutions

	Requirements for a Distributed Cracking Solution
	Frameworks for Distributed Computing
	MPI
	Apache Hadoop
	VirtualCL
	CLara
	BOINC
	Summary

	The Choice for the Cracking Engine
	Workload Distribution in Cracking Tasks
	Essentials
	Distribution Schemes
	Workunits in Fitcrack
	The Keyspace in Hashcat
	Adaptive Scheduling

	The Architecture of Fitcrack
	Generator
	Validator
	Assimilator
	Trickler
	BOINC Server Subsystems
	WebAdmin
	PCFG Monitor and PCFG Manager
	MySQL Database
	BOINC Client
	BOINC Manager
	Runner
	Hashcat
	Princeprocessor

	Attack Modes and Proposed Distribution Strategies
	Dictionary Attack
	Combination Attack
	Brute-force Attack
	Hybrid Attacks
	PCFG Attack
	PRINCE Attack

	Experimental Results
	The Time and Efficiency
	Adaptive Scheduling
	Distributed Dictionary Attack
	Distributed Brute-force Attack
	Distributed Combination and PRINCE Attacks
	Summary

	Probabilistic Password Models
	Motivation for Smart Password Guessing
	The Downside of Traditional Methods
	The Potential of Probabilistic Models

	Related Work
	Early Work
	Markovian Models
	Probabilistic Grammars
	The PCFG Cracker
	Motivation for Improvement

	The Scope of Improvements
	Probabilistic Context-free Grammars (PCFG)
	Creating Grammars from Dictionaries
	Letter Capitalization
	Sequential Password Guessing
	Probability Groups
	The Next Function
	The Deadbeat Dad Algorithm

	Key Observations
	Parallel PCFG Cracking
	Grammar Filtering
	Long Base Structures
	Calculating the Number of Password Guesses
	Rule Filtering

	Distributed PCFG Cracking
	Communication Protocol
	Server
	Client

	Experimental Results
	Parallel PCFG Cracking
	Grammar Filtering
	Distributed PCFG Cracking
	Summary

	Conclusion
	Achievements in Distributed Password Cracking
	Achievements in Probabilistic Methods
	Overall Summary
	Future Work

	Bibliography
	An overview of password-protected formats
	Documents
	Portable Document Format
	Microsoft Office - up to 2003
	Microsoft Office - Office Open XML
	OpenDocument

	Archives
	ZIP
	7z
	RAR

	Disk volumes
	TrueCrypt
	VeraCrypt
	CipherShed
	BitLocker
	PGP
	Mac Disk Utility
	FileVault

	Portable devices
	Android
	Apple iOS

	The contents of the attached storage medium

