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Optimalizace automatické detekce vlčího vytí v dlouhodobých pasivních 
nahrávkách 

ABSTRACT (Česky) 

Vlci jsou vrcholoví predátoři a hrají tak důležitou roli v ekosystému. Zároveň se 
jedná o druh, který se může dostávat do konfliktů s člověkem. Pro detailní a efektivní 
znalost výskytu a populačních změn tohoto kryptického druhuje potřeba kombinovat 
různé monitorovací přístupy. Akustický monitoring se zvažuje jako jeden ze slibných 
způsobů monitoringu vlka. Dlouhodobý pasivní akustický monitoring ale také 
představuje výzvu pro analýzu nahrávek. Manuální analýza tisíců hodin nahrávek je 
pracná a časově náročná a tradiční algoritmy automatické detekce zvuků zvířat si 
často nedokáží poradit s hlukem v pozadí nahrávek nebo podobnými zvuky v 
nahrávkách. Metody automatické detekce založené na konvolučních neuronových 
sítích a hlubokém učení (Deep Learning) by mohly být slibným nástrojem pro 
optimalizaci automatické detekce zvuků zvířat v dlouhodobých nahrávkách, protože 
má potenciál uvedené limity dřívějších metod překonat. V této práci byla hluboká 
neuronová síť (DNN) vyvinutá Berglerem et al. (2022) - ANĽVIAL-SPOT - upravena 
pro automatickou detekci vlčího vytí. Vlčí vytí bylo v dlouhodobých nahrávkách 
získaných během pilotní studie akustického monitoringu vlků v České republice 
nejprve manuálně anotováno. Na základě těchto manuálních anotací byly vytvořeny 
datasety, které byly použily k trénování a evaluaci DNN. Bylo vytvořeno několik 
modelů DNN, jejichž výsledky byly následně porovnány za účelem výběru 
potenciálně nej lepšího modelu a nej lepšího prahu detekce. Výsledky automatické 
detekce vlčího vytí byly rovněž porovnány s výsledky anotací od dalších 
dobrovolníků. V situaci, kdy byly záznamníky poblíž vyjících vlků a vlčí vytí bylo 
na nahrávkách kvalitně zaznamenané, byly výsledky D N N srovnatelné s lidskými. V 
nahrávkách, kde byli vlci od záznamníku daleko a vytí bylo na spektrogramech sotva 
viditelné, ale automatická detekce za lidskými výsledky výrazně zaostávala. 

Klíčová slova: akustický monitoring, Canis lupus, hluboká neuronová síť, 
konvoluční neuronová síť, hluboké učení 



Optimizing automatic detection of wolf howls in long-term passive recordings 

ABSTRACT 

Wolves are top predators and play an important role in the ecosystem. They are also 
important from the perspective of potential conflicts with humans. Combination of 
many monitoring methods is required to monitor population changes and potential 
risks of these cryptic animals. Acoustic monitoring represents one promising means 
of monitoring. However, long-term passive acoustic monitoring represents a 
challenge for analysis of recordings. Manual analysis of thousands of hours of 
recordings is laborious and time-consuming. While traditional algorithms of 
automatic detection of animal sounds are dependent on the environmental noise in 
the recordings. Convolutional deep neural networks are a promising tool for 
optimization of automatic detection of animal sounds in long-term passive recordings 
since their detection algorithm is independent from the environmental noise in the 
recordings. Thus, a deep neural network (DNN) developed by Bergler et al. (2022) -
ANIMAL-SPOT - was adapted for an automatic detection of wolf howls in 
long-term passive recordings. In order to perform this work wolf howls were 
annotated in long-term passive recordings received during a pilot study of passive 
acoustic monitoring of wolves in the Czech Republic. Based on manual annotations 
of wolf howls in long-term passive recordings, training and evaluation data sets were 
created, in order to train the D N N to detect wolf howls and to evaluate its 
performance, respectively. Several D N N models were created and evaluated resulting 
in a choice of potentially the best model and the best detection threshold. 
Performance of automatic detection of wolf howls made by D N N was compared to 
human performance. There is no significant difference between the performance of 
automatic detection of wolf howls by D N N and manual annotations when howling 
wolves are close to the recorder. When howling wolves are far from the recorder, 
performance of automatic detection of wolf howls by D N N is significantly lower 
than human performance. 

Key words: acoustic monitoring, Canis lupus, deep neural network, convolutional 
neural network, deep learning 
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I. INTRODUCTION 

The gray wolf {Canis lupus) is the most widely studied large carnivore, top predator 
which is essential for maintaining balance in the ecosystem. They eliminate weak 
and unhealthy individuals, making the genetic pool of the ungulates and other prey 
healthier (Passilongo et al., 2015; Lososova et al., 2019). 

After severe decline due to massive extermination in many areas the recolonization 
of historical species range is observed (Passilongo et al., 2015). Particularly, 
nowadays wolves are spreading in the territory of the Czech Republic as well as in 
other European countries (Lososova et al., 2019). By 2021 there were 18 packs, 5 
pairs and 2 solitary individuals observed in the territory of the Czech Republic 
(Fig.l). 

solitary individual • couple • pack 

Fig. 1. Occurrence of gray wolf {Canis lupus) in the territory of the Czech Republic, 2020-2021 
(Source of the map: URL1) 

A diet of gray wolf varies across different areas even within one country. In some 
areas wild ungulates are the main component of the diet of Canis lupus (Lanszki et 
al., 2012; Figueiredo et al., 2020) while in others wolves feed mainly on small 
rodents (Mowat, 1963). 

In human-dominated landscapes with high abundance of livestock and low 
abundance of wild ungulates, wolves can prey on livestock (Torres et al., 2015) 
negatively affecting the economy of local farms and creating conflicts between 
wolves and farmers (Muhly and Musiani, 2009). 

The presence of a wolf pack close to livestock increases risk of depredation of 
livestock by wolves but the real depredation rate could be low (Chavez and Gese, 
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2006) and causes a small negative impact on the economy of a region compared to 
huge economic benefits of wolf restoration (Duffield et al., 2006). 

Restoration of wolf populations directly and indirectly leads to multiple social and 
ecological benefits for the area of reintroduction (Weiss et al., 2007). Wolves help to 
restore the balance of an ecosystem in various ways including decreasing the density 
of their main ungulate prey, competing with other carnivorous species, increasing 
food base for populations of scavengers and initiating a trophic cascade (Ripple et 
al., 2001; Smith et. al, 2003; Wilmers et. al, 2003; Hebblewhite et. al, 2005; Silliman 
and Angelini, 2012; Fowler et. al, 2022). 

In order to escape depredation by wolves their prey changes its distribution and 
foraging behavior. It leads to restoration of plant species suppressed by browsing in 
the absence of wolves with subsequent increase of biodiversity in these areas (Ripple 
et al., 2001; Smith et. al, 2003; Mech and Boitani, 2003; Ripple and Beschta, 2004; 
Mao et al., 2005; Beschta and Ripple, 2013). 

Duffield et al. (2006) estimated that recovery of wolf populations positively affects 
local economies due to increased rate of ecotourism. People coming to watch and 
hear wolves bring to the budget of the region around 500 times more than the cost of 
livestock predation by wolves. 

Surprisingly, Raynor et al. (2021) showed that economic benefits for a region of 
reintroduction of wolves could be 63 times higher than the cost of livestock 
depredation due to a decreased quantity of road incidents with involvement of deers. 

Because of various ecological, social and economical impacts of expanding wolf 
populations there is an urgent need for detailed monitoring of wolf populations in the 
territory of the Czech Republic. 

Passive acoustic monitoring is now introduced as a pilot study within OWAD project 
in order to complement other monitoring techniques (e.g. camera traps, footprints, 
urine and feces traces, prey kills etc.) currently used to monitor wolf's presence and 
activities in the Czech Republic. 

Passive acoustic monitoring is a cost-effective method of wolf monitoring. Though 
manual annotation of recordings is a very laborious process and automatic detection 
of wolf howls in long-term passive recordings could be done to facilitate this 
process. Though current methods of automatic detection of animal vocal signals in 
the recordings are dependent on the environmental noise except convolutional neural 
networks. 

This emerging technology presents a huge interest in the field of automatic detection 
of animal sounds in long-term passive recordings. Thus, there is a need to adapt this 
new method for automatic detection of wolf howls in long term passive recordings, 
investigate and optimize it. 
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II. LITERATURE REVIEW 

2.1 Methods of monitoring of different animal species 

2.1.1 Classification of methods of monitoring animals 

Wildlife monitoring is an essential instrument of conservation management. Data 
received during monitoring surveys helps to establish an adequate management for a 
species or a territory (Nichols and Williams, 2006; Sauer and Knutson, 2008). 
Depending on a goal of a research and resources availability monitoring objectives 
may vary from determining the presence/absence of species in the environment till 
evaluation of abundance of species and population trends (Liana et al., 2006; Lima et 
al., 2018; Zwerts et al., 2021). 

A method of monitoring is chosen depending on the size of a species and its taxa 
(Table 1). For example, methods used for monitoring of small passerines could be 
not applicable for monitoring of large ungulates (Prosekov et al., 2020). 

Depending on the way of collecting data, monitoring could be direct and indirect. 
Direct methods include trapping and observations. Trapping is used for counting, 
measuring and marking individuals as well as for collecting samples of blood and 
tissue, attaching radio-transmitters for subsequent GIS research etc (Hoffmann et al., 
2010). 

Hoffmann et al. (2010) divides observational methods into three groups: 
direct observations of species in the wild; 
observations of signs of presence of species in the area (scat, scratches, 
footprints etc.); 
camera-traps. 

Indirect methods allow to determine presence and abundance of species in the area 
when monitoring and research is not a primary goal. Examples of such methods are 
hunting, fur harvesting, surveys of meat market, installation of scent marking stations 
for collecting hair of animals for subsequent analysis (Hoffmann et al., 2010). 

Prosekov et al. (2020) classified methods of monitoring animals based on their size 
(Table 1). Based on this classification all the methods are suitable for monitoring of 
medium-sized mammals except aerial surveys which are being conducted for large 
animal species. 

Depending on their effect on animal welfare and behavior, monitoring methods and 
techniques could be divided into invasive and non-invasive. Invasive methods and 
techniques are associated with trapping individuals and subsequent manipulations 
which could stress, hurt or kill an animal (Walker et al., 2010; Ksiažkiewicz-Parulska 
and Gotdyn, 2017; Zemanova, 2020). 

GPS sensors allow remote tracking of animals. But at the same time this method 
requires trapping of an animal and attachment of a radio-transmitter. The latter could 
affect animal welfare, change natural behavior and in some cases even lead to death 
(Brooks et al., 2008; Lechenne et al., 2012; Rasiulis et al., 2014; Zemanova, 2020). 

Non-invasive methods and techniques are connected to different observational 
methods (except GPS sensors) as well as to indirect monitoring. Though the last one 
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could be associated with human activities that could cause a direct negative impact 
on individuals, population and even the whole species (e.g. hunting, wildlife trade) 
(Hoffmann et al., 2010; Da Silva et al., 2016; Willcox et al., 2019; Prosekov et al., 
2020; Zemanova, 2020). 

Table 1. Methods of monitoring animals. (Source: Prosekov et al., 2020) 

Method Animals 

Survey and questionnaire Large and medium-sized animals 

Counting by traces of vital activity (counting 
indirect signs-the number of burrows, claw 

marks, the number of feces, etc) 

Large and medium-size d 
mammals 

Sampling and marking A l l animal species 

Winter route tracking Large, medium, and small animals, 
birds 

The use of traps, pens, and nets Large and medium-size d 
mammals 

Remote tracking using specialized equipment 
(camera traps, sensor nets, acoustic sensors, 

and GPS sensors) 
A l l animal, bird, and insect species 

Aerial survey (counting, photo, and video 
shooting from aerial devices and systems) Large animals 

Traditional non-invasive monitoring methods are connected with direct observations, 
observations of signs of presence of species in the area, camera-trapping and acoustic 
monitoring (Hoffmann et al., 2010; Llaneza et al., 2014; Prosekov et al., 2020). 

Direct observations are considered to be not effective to monitor medium-sized 
mammals (Hoffmann et al., 2010) and observations of signs of their presence in the 
monitored area could be used instead (Llaneza et al., 2014; Dempsey et al., 2015; 
Kinoshita et al., 2019). 

Aerial surveys (including use of unmanned aerial vehicles) are an effective but costly 
method of monitoring for large mammals (Vermeulen et al., 2013; Prosekov et al., 
2020). Cost of sensor networks is higher than the cost of UAV. Although sensor 
networks are considered to have a high potential for monitoring of wildlife 
(Garcia-Sanchez et al., 2010; Badescu and Cotofana, 2015). 

Camera-traps and acoustic monitoring are cost-efficient methods especially when 
automatic recorders are deployed in habitats with poor visibility (forest) (Hoffmann 
et al., 2010; Prosekov et al., 2020). These methods allow recording and storing big 
amounts of data which could be useful in a complex ecological research of an area of 
interest including simultaneous monitoring of many different species (Vielliard, 
2000; Gužvica et al., 2014). 

In comparison to remote camera traps oftenly used in research and monitoring of 
large mammals, acoustic recorders show a lot of advantages. Cameras are 
cost-effective, can work for long time periods, allow to calculate population densities 
based on data recorded. At the same time, cameras' work is limited by a small area 
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and animals often notice them. In contrast, vocal signals of animals producing 
detectable vocalizations can be recorded within a much larger area (Garland et.al, 
2020) and provide more information compared to camera-traps (Pavan et al., 2022). 

Acoustic sensors could be more suitable to study cryptic species since the last ones 
could escape from a camera-trap (Picciulin et al., 2019). 

2.1.2 Methods of monitoring wolves 

Monitoring of cryptic species, like the wolf, needs to combine many different 
approaches to bring a full picture of the animal's life (Garland et al., 2020). 

Monitoring of wolves could be conducted by direct and indirect methods including 
interviewing hunters, collecting scat or environmental D N A for subsequent genetic 
analysis, observation of wolf scratches on the ground, howling surveys, 
radiotelemetry, camera-traps, acoustic monitoring and even aerial survey in case of 
necessity to monitor a particular wolf pack (Chapman, 1978; Caniglia et al., 2011; 
Ausband et al., 2014; Llaneza et al., 2014; Kraus et al., 2015; Jimenez et al., 2016; 
Šver et al., 2016; Palacios et al. 2017; Kinoshita et al., 2019; Palacios et al. 2022). 

It is very hard to estimate wolf population parameters because size of packs as well 
as size of their home ranges vary (Mech and Boitani, 2003; Jimenez et al., 2016). 
Oftenly a combination of different methods and techniques could be used to estimate 
different parameters of wolf population including its size, range and trends (Ausband 
et al., 2014; Jimenez et al., 2016). 

Garland et al. (2020) compared the ability of autonomous recording units (ARU) and 
remote camera traps to estimate occupancy and detectability for gray wolves in 
northern Alberta, Canada. Results were similar for ARUs and for cameras while 
ARUs operated for 3% of the cameras operating time. Combination of both 
approaches - camera traps and ARUs - gave the best detection rate for wolves 
(Garland et.al, 2020). 

At the same time, acoustic monitoring alone can provide a lot of essential 
information which is beyond the abilities of camera-traps. Analysis of recordings of 
wolf howls helps not only to build a picture about home range and pack size but also 
to determine reproduction success and even to identify individuals (Tooze et al., 
1990; Root-Gutteridge et al., 2013; Passilongo et al., 2015; Palacios et al., 2016; 
Papin et al., 2018; Papin et al., 2019). 

Bioacoustic analysis in comparison to other monitoring techniques (i.e. PCR 
analysis) is a low budget technique which requires just sound recorders and software 
for sound analysis (Passilongo et al., 2015). 

2.2 Acoustic monitoring in nature conservation 

In this chapter, I will give a short overview of the history of acoustic monitoring, its 
use in nature conservation for monitoring of different species, current trends and 
problems of this method. 

2.2.1 History of acoustic monitoring of animals 

Historically, sounds were always used as an important sign of an animal's presence. 
Technological progress made it possible to record animal vocalizations and create 
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archives of recordings in order to use the recorded data for subsequent analysis even 
many years after the recording was made (Pavan et al., 2022). 

First recording of an animal sound was made at the end of the 19th century in 
captivity. And in the early 20th century, first recordings of bird vocalization in the 
wild was obtained (Ranft, 2004). In 1930, the Library of Natural Sounds was 
established at the Laboratory of Ornithology of Cornell University forming a basis 
for a systematic recording and storage of animal sounds in natural sound archives 
(Ranft, 2004; Pavan et al., 2022). 

First recorders were analog, heavy and bulky. Time of recording was restricted by the 
length of a storage carrier and capacity of batteries. A storage carrier evolved from 
an Edison wax-cylinder to a reel-to-reel magnetic tape. The latter allowed to 
diminish the size of recorders and make them more portable (Pavan et al., 2022). 

In the middle of the 20th century, a sound spectrograph was invented to receive a 
visual representation of a sound signal - a spectrogram (Fig.2). A sound signal was 
analyzed by the machine and distribution of energy of the signal was reflected on an 
image in time and frequency dimensions (Koenig et al., 1946). Frequency and time 
measurements could be determined on such images with the help of a regular ruler. 
Sounds on the images were identified manually by investigators (Pavan et al., 2022). 

Fig 2. A spectrogram of a wolf signal received in the middle of the 20th century (Koenig et al., 1946). 

Range of recorded frequencies expanded from the sonic diapason (20Hz - 20kHz) in 
the beginning of the 20th century to infra- and ultrasounds in the '80-s (Pavan et al., 
2022). 

Digital era opened new opportunities for bioacoustics. Digital formats allow copying 
and storing data without loss of quality facilitating collecting and archiving of data. 
Technical progress made it possible to capture a signal without distortion. Evolution 
of digital storage carriers led to their miniaturization, reliability and increased 
capacity to store big volumes of information. Computerization led to development of 
different software for recording and analysis of sound recordings simplifying 
bioacoustic research (Ranft, 2004; Pavan et al., 2022). 

A huge breakthrough in bioacoustic research was made after development of 
miniature high capacity (up to 1 Tb) memory cards allowing subsequent 
miniaturization of recorders and their autonomous work in the field. Firstly, the 
capacity of memory cards was restricted by hours of recordings. But subsequent 
development of this technology along with increased capacity of batteries allowed 
autonomous work of a recorder in the field to last many days and even weeks. This 
achievement made it possible to conduct passive acoustic monitoring of different 
species (Madhusudhana et al., 2022; Pavan et al., 2022). 
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2.2.2 Acoustic monitoring in nature conservation 

Acoustic monitoring is applied to different species in different environments. Even 
fish sounds are recorded and classified (Malfante et al., 2018; Mouy et al., 2018). 
However, bioacoustics is more commonly and traditionally used to monitor species 
with high vocalization activity, e.g. birds and marine mammals (Budka et al., 2022; 
Mattmuller et al., 2022; Madhusudhana et al., 2022; Pavan et al., 2022). Detection 
range for loud animal calls could be more than 10 km in water (Johnson et al., 2022) 
and more than 6 km on land (Kershenbaum et al., 2019). 

Acoustic monitoring allows us to obtain information about individuals, groups, 
populations and, even, the whole ecosystems due to recording of the entire 
environmental soundscape (Budka et al., 2022; Pavan et al., 2022). 

Depending on species, analysis of animal vocalizations can tell us about age, sex, 
behavior, type of activity, health status, reproductive state, reproductive success and 
home range. Sometimes, it is possible to count the number of individuals and groups, 
estimate population density and identify geographic boundaries of populations. 
Finally, acoustic monitoring allows us to estimate the abundance and diversity of 
different species to make a conclusion about the health of the ecosystem (Palacios et 
al. 2016; Pieretti et al., 2020; Budka et al., 2022; Pavan et al., 2022). 

Budka et al. (2022) recorded soundscape in meadow sites in order to estimate 
whether acoustic monitoring is more effective compared to traditional bird survey. 
Authors found that the number of bird species detected by recorders was 
significantly higher compared to the number detected by highly experienced human 
observers when the radius of survey for humans was restricted up to 50 m. 

The difference between recorders and human observers when the last ones were 
restricted by 100 m observation radius was not significant. In spite of it, authors 
would recommend use of acoustic monitoring instead of traditional bird surveys. 
Because while being almost equally as effective as highly experienced human 
observers, acoustic monitoring is a more easily standardized method for long-term 
monitoring of birds in meadow and farmland ecosystems on a large scale (Budka et 
al., 2022). 

Passive acoustic monitoring allows to conduct long-term research and receive data 
about the soundscape of an area for days, weeks, months and even years. Analysis of 
long-term passive recordings could provide information about presence-absence of a 
species in the area throughout the year and make conclusions about suitability of 
habitat for the species (Mattmuller et al., 2022). 

2.2.3 Automatic detection of animal signals in audio-recordings 

Passive acoustic monitoring is a useful nature conservation tool. At the same time, 
traditional manual annotation of several months or years of audio recordings is 
challenging and time consuming even for a human expert. Large scale deployment 
only multiplies this problem. 

There are different approaches for automatic detection of sounds. I will briefly 
review the main engines used in different detectors for automatic detection of animal 
vocal signals in some software applications. 
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Methods of automatic detection of animal sounds in audio-recordings 

Cross-correlation 

Detection based on cross-correlation uses a template of the target signal to find 
similar sounds in a recording. This approach is used in R (warbleR package) and the 
X B A T interface of the M A T L A B platform (Barker et al., 2014; Palmero et al., 2022; 
U R L 2). Cross-correlation technique has a problem of isolation of a target signal 
from a background noise. When a background noise is strong and a target signal is 
weak, the information could be lost (Allakhverdiyeva, 2018). It is useful for highly 
stereotyped signals. 

Amplitude threshold 

A target signal could be detected when the amplitude of the target signal crosses a 
certain threshold. This approach also could be used in R (warbleR package) as well 
as in Raven Pro (the Amplitude Detector) (Charif et al., 2010; U R L 2). In R it is 
possible to improve the efficiency of this type of detection by applying time (min and 
max duration of target signal) and bandpass (min and max frequency) filters. 
Disadvantage of this method of automatic detection is that the amplitude of the target 
signal should be higher than the background noise (URL 2). Contrary, in studies of 
wild animals, amplitude of signals of interest is often very low, barely exceeding 
background noise. 

Energy detection 

The Energy Detector of Raven Pro software estimates the background noise in a 
specified frequency band in order to find portions of a signal that are higher than a 
signal-to-noise ratio threshold specified by a user. The performance of this detector is 
affected by high background noise, clutter, high complexity of a signal and power of 
a signal resulting in high quantity of false negatives and false positives (Charif et al., 
2010). 

Machine learning 

Principle of automatic detection of a sound signal could be based on various machine 
learning methods which work with the energy of the signal (e.g. Gaussian Mixture 
Model, Hidden Markov Model). A drawback of this method is that the abilities of 
models to distinguish between the signal of interest and background signals are 
limited (Oliveira et al., 2015). 

Principle of automatic detection of a target signal in Kaleidoscope software - a 
professional tool used for automatic detection of animal sounds in audio recordings -
is based on a Hidden Markov Model. Using statistical properties of target signals, 
automatic detection in Kaleidoscope is sensitive to environmental noise. It means 
that i f the machine was trained to recognize sounds using data set received from a 
particular location, the performance of automatic detection of sounds received from 
another location will be worsened in case there is a difference between soundscapes 
of the locations (URL 3; Wildlife Acoustics, 2017). 
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Deep Neural Networks (DNN) 

Convolutional Neural Networks is a class of machine learning methods. 
Convolutional deep neural networks (DNN) are used in the BirdNET and the 
ORCA-SPOT - D N N for detection and classification of bird species and orca calls 
(Orcinus orca) in passive recordings (Bergler et al., 2019; Kahl et al., 2021). DNNs 
are better suited to detect complex acoustic signals. Creation of D N N is often based 
on intuition (Kahl et al., 2021). 

Automatic detection of sound events in recordings requires preliminary training of 
the network with subsequent evaluation of performance of received models. As a 
consequence a drawback of this method is the problem of obtaining large amounts of 
data to construct a training data set (Bergler et al., 2019; Kahl et al., 2021). 

Another drawback is a requirement of a particular configuration of computer with a 
powerful video card from NVidia since the computations are done using C U D A 
(Bergler et al., 2019; personal conversation with Christian Bergler in 2021). 

C U D A is a parallel computing platform that allows many processes (calculations) to 
run simultaneously in order to speed up the computing by using the power of GPUs 
(Maharjan and Shakya, 2022). Without C U D A training of D N N is performed on 
CPU and could take several weeks compared to several days in case of using GPU 
(personal conversation with Christian Bergler in 2021). 

At the same time, the main advantage of automatic detection of target sounds using 
D N N is their independence from high background noise and overlapping non-target 
signals (Kahl et al., 2021). Such independence from a soundscape results in much 
higher precision and recall and much lower false positives rates in detection of target 
signals by D N N compared to traditional methods (the difference is of several orders 
of magnitude) (Shiu et al., 2020). 

This makes D N N a promising and effective tool for automatic detection of target 
sounds in long-term recordings received during passive acoustic monitoring. 

ORCA-SPOT and ANIMAL-SPOT 

ORCA-SPOT (OS) is a deep neural network that was trained to perform automatic 
detection of sounds of killer whales {Orcinus orca). OS was trained on 11,509 
signals of orcas from the Orchive - a huge bioacoustic repository of oca calls. 
Subsequent tests on 7,447 orca signals at the threshold >0.5 (probability that a 
detected sound signal is a killer whale) showed high performance of this neural 
network. Two OS models detected and classified orca calls with high precision 
(92,42% and 92,48%) and recall (92,70% and 93,77%) rates while false positive 
rates were low (4,24% and 4,36%). Performance of OS was subsequently tested on 
-19,000 hours (-2,2 years) of recordings of the Orchive data. It took just around 8 
days for the OS to conduct segment-based prediction of such a huge amount of data 
(Bergler etal., 2019). 

ORCA-SPOT was improved by Bergler et al. (2022) and adapted to detect sound 
signals of other animal species resulting in creation of a new deep learning 
framework - ANIMAL-SPOT (AS). AS was trained on 10 species-based data sets 
and 1 genus-based data set resulting in creation of 11 detection models (10 
species-specific and 1 genus-specific, respectively). Evaluation of models showed 
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high average precision and recall rates. At the threshold >0.9 average precision was 
0,965 while average recall was 0,709 (Bergler et al., 2022). 

2.3 Wolf howling 

2.3.1 Sociality and territoriality in wolves 

Wolves are social and territorial animals. They usually live in a pack - analogue of a 
human family. Wolf pack - a territorial social group of wolves - is a unit of wolf 
population (Mowat, 1963; Mech and Boitani, 2003). 

Pack size usually correlates with prey size. When wolves feed on garbage and small 
animals, the average pack size is 3-4 individuals. When wolves prey on such a large 
ungulate prey as moose, caribou or bison the number of wolves in a pack could be 
over 30 (Mech and Boitani, 2003). 

Pack usually consists of a mated pair and offspring which stay with parents from 10 
to 54 months. Though there could be different variations in the content of the pack. 
For example, a pack can adopt a strange wolf which is mostly often a male of 1-3 
years old (Mowat, 1963; Mech and Boitani, 2003). 

Wolves are territorial mammals with a tendency to occupy the same area for a long 
time period, particularly during spring-summer season when rearing pups 
(Jedrzejewski et al. 2001; Rio-Maior et al. 2018). In the summer and early autumn 
pups remain at so-called "rendezvous sites" (Packard, 2003). 

2.3.2 Vocal communication in wolves 

Wolves have a big vocal repertoire from birth (Harrington and Asa, 2003). 
Schassburger (1993) describes the vocal repertoire of an adult wolf consisting of 
noisy sounds (growl, snarl, woof and bark), variable sounds (moan) and harmonic 
sounds (whine, whimper, yelp and howl). 

Depending on how far the sound travels, wolf vocal signals could be divided for 
short-ranged signals and long-distance calls - howls. Wolf howling is a lower-pitched 
harmonic signal with frequency range from 300 to 1800 Hz. Acoustic properties of 
howling allow the signal to travel long distances even in a forest area. A wolf can 
hear the howling of another individual when being at a distance up to 6 km from the 
vocalizing animal in the forest and up to 10 km in the open landscape (Harrington 
and Asa, 2003). 

Wolves can howl alone (solo howling) or together with other wolves (chorus 
howling). Chorus howling is a group vocalization when two or more pack members 
vocalize together. Chorus howling is a complex acoustic signal. It includes different 
types of vocalizations: as howls themselves as barks, bark-howls, squeaks, growls 
and howl variations such as "woa-woa" howls (Schassburger, 1993; Holt, 1998). 

In the research of Holt (1998) 17 chorus howls were investigated. Howling was the 
dominant vocalization type in chorus (56±14%, n=1702) while squeaks were on the 
second place (36±11%, n=1202). Barks and growls constituted 7±8%, n=284 and 
0.6±1.2%, n=ll of the chorus, respectively. Bark-howls occurred just twice per all 
recordings (Holt, 1998). 
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Duration of solo howls is from less than 1 up to 14 sec. Duration of a chorus howling 
varies from 30 to 120 sec. It could correlate or not correlate with the quantity of 
members in the pack (Harrington and Asa, 2003). 

2.3.3 Wolf howling as a complex acoustic signal 

Social complexity positively correlates with vocal complexity in different species 
including Carolina chickadee, spotted paca and lemurs (Freeberg et al., 2006; Krams 
et al., 2012; Lima et al., 2018; Fichtel et al., 2022). Environment and parental care 
could also contribute to the development of vocal complexity (Hedwig et al., 2021). 

Complexity of communication reflects animal cognition. Cognitive abilities may be 
associated with repertoire size and syntactic structure of vocalizations in birds and 
mammals (Kershenbaum et al., 2018). 

Wolf howls have complex patterns of frequency modulation. No two howls of wolf 
are the same. Nevertheless, it is difficult to describe the complexity of continuous 
vocal signals of wolves (Kershenbaum et al., 2018). 

Kershenbaum et al. (2018) measured complexity in continuous signals in some 
members of the genus Canis using 4 metrics: Wiener entropy, autocorrelation, 
inflection point count and Parsons entropy. Authors consider that complexity of wolf 
howls is poorly defined and conclusions which can be made about complexity of 
wolf howls depend on what metric was used (Kershenbaum et al., 2018). 

2.3.4 Role and importance of howling in wolf life 

A wolf pack could be considered a complex social system (Mech and Boitani, 2003; 
Pollard and Blumstein, 2012; Freeberg et al., 2012). The social complexity 
hypothesis postulates that complexity of a social system positively correlates with 
complexity of a communicative system (Freeberg et al., 2012; Sewall, 2015). 

Social complexity has different attributes including group size and diversity of social 
roles (Pollard and Blumstein, 2012) which we can see in wolves (Mech and Boitani, 
2003). Social complexity is discussed to be a driver of complex communication 
(Freeberg et al., 2006; Freeberg et al., 2012; Sewall, 2015). 

Howling plays an important role in inter- and intra-pack communication. Nowak et 
al. (2007) investigated spontaneous and provoked howling in wolves in Poland. In 
eastern Poland spontaneous howling of gray wolf Canis lupus was studied with radio 
collars. Provoked howling behavior was investigated in wolves of southern Poland. 

Spontaneous howling in the investigated Polish populations was used mainly for 
intra-pack communication. At the same time the high reply rate of elicited howls 
shows readiness of wolves to demonstrate their presence to strangers from other 
packs who came to their territory (Nowak et al., 2007). 

Within packs howling works as a contact call facilitating reassembly at a 
long-distance. Among packs, howling serves as a communicative signal to mark 
ownership of the territory: residential packs keep their territories from intruders and 
avoid conflicts (Harrington and Mech, 1979; Harrington and Asa, 2003; Passilongo 
etal., 2015). 
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2.3.5 Howling activity 

A significant increase in spontaneous howling frequency was found in the beginning 
of August by Harrington and Mech in 1978. This peak is assumed to be connected 
with raised mobility of pups and as a consequence a raised need for intra-pack 
communication at long-distances as well as with inter-pack communication - an 
advertisement to avoid meetings with strange wolves (Harrington and Mech, 1978). 

Nowak et al. (2007) estimated distribution of howling activity throughout the year. 
58% of spontaneous howls were recorded from July to October. The peak of 
spontaneous howling was in August. The peak of daily howling activity was between 
18:00 and 00:00 o'clock - the peak time of first dusk wolf mobility. Vocalization 
occurred in the core areas of pack's territories but not on the periphery. In 43% of 
cases howls occurred between temporarily separated members of the pack, in 18% -
after reunion, in 22% - before gathering for a hunt. 2% of spontaneous howls were 
addressed to a neighboring pack (Nowak et al., 2007). 

Human-simulated howling was responded by wolves from June till September with 
peak reply rate (39%) in August. Duration of elicited howls was longer in big groups 
compared to single wolves and pairs: in single wolves and pairs was about 34-40 s, 
in groups consisted of 5-7 wolves (with pups) howling lasted about 67-95s on 
average, 4 min maximum (Nowak et al., 2007). 

Howling activity seems to vary in subspecies of Canis lupus depending on location, 
size of a pack, population density in neighboring human settlements and whether 
recordings were made in captivity or in wild population (Smith et al., 2015; Palacios 
et al., 2022). 

Palacios et al. (2022) investigated correlation between howling rate and population 
density near wolf rendezvous sites in 6 study areas. Quantity of howls per day varied 
from 0.00 in Ferreras (Spain) to 3.47 in the Yellowstone National Park (the U.S.) for 
solo howls and from 0.13 in Santiellos (Spain) to 5.29 in Yellowstone National Park 
(the U.S.) for chorus howls, respectively (Palacios et al., 2022). 

The lowest howling rates were observed in packs whose rendezvous sites were in 
areas with higher population densities (5-47, 2-7, 224 people/km2, respectively) 
compared to packs whose rendezvous sites were in areas with lower population 
density (0.08, < 8 and 2-6 people/km2, respectively) (Palacios et al., 2022). 

The highest howling rate was observed in Yellowstone national park where the 
number of inhabitants is around 0.08 people/km2. At the same time touristic activity 
in the park during the study month was around 800,000 people. Authors think that 
positive behavior of people towards wolves could neutralize negative influence of 
neighboring human settlements on wolf howling rate (Palacios et al., 2022). 

Spontaneous vocalizations of wild wolves were investigated by Palacios et al. (2022) 
between 2018 and 2021 in six study areas in North America, Asia, and Europe. 
Howls of 24 wolf packs were recorded during the pup-rearing season around 
rendezvous sites. Quantity of days with howling activity varied across areas with a 
minimum of 12.50% of days with howling in Spain and maximum of 94.12% days 
with howling in the U.S. (Palacios et al., 2022). 
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Jorge Servin (2000) investigated the duration and frequency of chorus howling in a 
pack of the Mexican wolf {Canis lupus baileyi) in captivity between January and 
December. It was shown that the maximum frequency and duration of chorus howls 
are in the breeding season which occurs in January-February (Servin, 2000). 

Palacious et al. showed that a peak of spontaneous chorus howls varies between 
areas and can occur before or after sunset as well as before or after sunrise (Palacios 
et al., 2022). Chorus howling could come before the morning or evening activity in 
order to synchronize and coordinate the activity of the pack (Zimen, 1981). 

Vocalization rate of wolves in captivity is higher compared to wild populations. One 
of the reasons is that it is easy to record howling in captive wolves. At the same time 
wolves in captivity get used to the presence of humans and don't need to limit their 
howling in order not to be detected by humans or other wolf packs (Smith et al. 
2015; Palacios etal., 2022). 

2.4 Acoustic monitoring of wolves 

Thanks to the importance of howling within as well as between group 
communication and its spatial far reaching effect, howling also is a perfect candidate 
signal for acoustic monitoring of wolves and their activity. 

The wolf howling indicates the presence of the wolf in the area but can be also used 
to estimate the number of animals, core territory areas, or interactions between 
individuals (Harrington and Mech, 1979; Mech and Boitani, 2003; Palacios et al., 
2017; Papinetal., 2019). 

The monitoring of such an elusive species as wolf Canis lupus is difficult since this 
species can travel long distances within the pack's territory with various natural 
conditions (Papin et al., 2018). Thus bioacoustics becomes a helpful tool for 
conservation management to detect presence of wolves by howls (Zaccaroni et al., 
2012). Bioacoustic tools have been increasingly applied to the species to obtain 
information on its distribution and abundance. Although acoustic monitoring could 
also be used to estimate reproductive success of particular packs, identify 
individuals, packs and subspecies (Root-Gutteridge et al., 2013; Palacios et al., 2016; 
Larsen et al., 2022a). 

2.4.1 Passive acoustic and howling provocation methods in the monitoring of 
wolves 

Passive acoustic methods and elicited vocalization technique can be used in 
conservation management to monitor the dynamics and recolonization of gray wolf 
(Papin etal., 2018). 

Most studies of wolf howling rely on provoking vocal response from wolves by 
using pre-recorded howls (playback method) or live human imitation of howling. 
Wolves vocalization can be elicited by human imitation of howls (Harrington and 
Mech, 1979). The elicited howling was found to be recorded and identified up to a 
distance of 3 km (Suter et al., 2016). Howling provocation - method of howling 
surveys - is traditionally used as a monitoring tool to evaluate the reproductive status 
of a wolf pack and the minimum number of individuals in the pack (Palacios et al., 
2017). 
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Pups under 4 months old reply to human howling imitation as to howls of other 
members of the pack. At the same time human imitations are taken by adult wolves 
as an intruder's call and they reply to keep a newcomer wolf at distance (Harrington 
and Mech, 1979). Adults reply to human stimuli with a highest rate in the 
summer-early autumn period which could be related to the defensive reaction 
towards young pups during summer. The second peak of responses to stimulated 
howling is in winter during mating season (Harrington and Mech, 1979; Nikolskii 
and Frommolt, 1989; Gazzola et al., 2002). 

However, playback can be invasive towards residential wolf packs as well as it can 
provoke negative reactions from people inhabiting surveyed areas. Thus detecting 
wolves by recording spontaneous howling is more preferable for some locations 
(Suter et al., 2016). Passive acoustic recording of howling is a convenient, 
non-invasive and reliable method of detection and monitoring of gray wolf in wild 
which doesn't demand involving of a human observer and can allow to conduct 
monitoring when it is difficult to access nature conditions (Suter et al., 2016; Papin et 
al., 2018). 

2.4.2 Detection of the location of wolves 

Papin et al. (2018) investigated the possibility of localization of wolves by using a 
low-density microphone array in two natural environments with contrasting 
conditions in north-eastern France. Instead of recorded natural howling a synthetic 
signal which had similar properties with natural wolves howls was used to estimate 
localization and accuracy. Factors which influenced the localization accuracy were 
identified with linear mixed-effects models. 269 from 354 nocturnal broadcasts were 
recorded by at least one autonomous recorder. 59 broadcasts which were used to 
identify localization of the signal were recorded by at least four microphones. 

Overall mean accuracy of localization of broadcast sites was 167 ± 308m. The 
number of records was higher in the lowland environment compared to the 
midmountain environment, but in both environments the localization accuracy was 
similar with significant variations among different nights in each environment. 
Authors confirmed the potential of high accuracy in localizing of wolves in different 
environments at large spatial scales by using acoustic methods (Papin et al., 2018). 

In 2019, Kershenbaum et al. achieved higher accuracy in location of wolves using a 
multilateration method. Compared to microphone arrays multilateration allows to 
achieve more precision due to use of multiple recorders. Location of a wolf is 
calculated based on differences in the time of reaching of wolves howls to multiple 
recorders which are synchronized via GPS. 

In Yellowstone National Park this system allowed to record over 1200 samples of 
howling behavior during 2 years. The system provides information about precise 
location which would otherwise be unavailable since most howls occur at night or 
the time when human observers are not in the territory. The location of a howling 
wolf can be determined at ranges up to 7 km with an error of approximately 20m 
(Kershenbaum et al., 2019). 
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2.4.3 Identification of individuals 

Harrington (1986) assumed that wolves must be able to determine by howling sex 
and age of the other wolf as well as whether he is friend or enemy. He conducted a 
study showing that pup and adult wolves can distinguish between pup and adult 
howls. Reply of packs to playback of recorded adult howls was stronger than to the 
playbacks of pup howls. Harrington assumed that the reaction of pups to adult 
howling may be related to feeding: to come in time when adult wolf returns with 
food (Harrington, 1986). 

Tooze et al. (1990) proved a presence of vocal signature in howls of Canis lupus. 
Particularly fundamental frequency of howls as well as the variability of frequency 
within howls can be used to identify individuals (Tooze et al., 1990). Later, other 
researches also showed that wolf howls display individuality as in fundamental 
frequency as in amplitude variation (Palacios et al., 2007, Root-Gutteridge et al., 
2013). 

Fundamental frequency modulation has been frequently used for identification of 
individuals in mammals, while amplitude is used rarely because it can be highly 
affected by recording distance. Problems with attenuation make this approach to be 
traditionally ignored by researchers (Root-Gutteridge et al., 2013). At the same time, 
amplitude carries information about identity in different species: e.g. red panda, 
Australian sea lion and gray wolf (Charlton et al., 2009; Pitcher et al., 2012; 
Root-Gutteridge et al., 2013). 

Root-Gutteridge et al. (2013) found the individuality in modulation of fundamental 
frequency as well as amplitude in howls of the Eastern wolf {Canis lupus lycaori). 
Individuals were distinguished with 100% accuracy. Using amplitude as an 
individually distinct trait was likely possible only because the study was conducted 
in captive wolves. Thus, amplitude distortions caused by recording distance were 
controlled for (Root-Gutteridge et al., 2013). 

In 2015, Palacios et. al conducted playback experiments with a pack of Iberian 
wolves in captivity. To test wolves' ability to identify howling individuals as well as 
to distinguish artificial changes in acoustic parameters of howls, authors used a 
habiruation-dishabituation paradigm. Dishabituation was not caused by changes in 
fundamental frequency and frequency modulation within the natural range of 
individual howling but was elicited by manipulation in modulation pattern. Wolves 
were exposed to howls of two types: 1) unfamiliar howls produced by a familiar 
wolf; 2) unfamiliar howls of unfamiliar wolves. Wolves habituated to howls of 
familiar wolves in spite of variation in signal. Authors proved that acoustic structure 
of howls allowed wolves to identify individuals and that modulation pattern plays an 
important role for individual recognition (Palacios et al., 2015). 

2.4.4 Identification of packs 

Passilongo et al. (2010) have determined the existence of pack accent in Italian 
subspecies of gray wolf Canis lupus italicus in the wild (Passilongo et al., 2010). 
Later Zaccaroni et al. (2012) investigated the acoustic characteristics of wolf group 
howls recorded from wild wolf packs in different locations of the Arezzo province in 
Italy. Authors proved that each pack has a significantly distinguishing vocal 
signature - howls with specific acoustic structures. These pack-specific vocal 
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signatures are temporarily stable and can be used to identify wolf packs in the wild 
(Zaccaroni et al., 2012). 

2.4.5 Identification of pack size 

In 2015, Passilongo et al. demonstrated an approach to estimate pack size by 
visualizing wolf choruses through spectrograms and spectral envelopes. Visual 
investigation of the chorus howls by spectrogram and spectrum helped to detect the 
real number of wolves in a pack in 92 % (from 29 chorus) cases. Spectrographic 
analysis gave a possibility to discriminate up to seven coinciding vocalizations in a 
chorus howling of nine wolves. There was a strong correlation between estimation of 
wolves' pack size with spectral analysis (92.8 % cases) and weaker correlation with 
the aural estimation (59.2 % cases). This method can be used in combination with 
others to receive more precise results. Digital recordings of howls have an advantage 
that they could be used for future investigations (Passilongo et al., 2015). 

Various acoustic indices were proposed to characterize the complexity of the acoustic 
environment as a whole and they are now tested as possible indicators of 
biodiversity (Sueur et al., 2008, Depraetere et al., 2012). 

In order to estimate the size of packs of gray wolves, Papin et al. (2019) used six 
acoustic indices: the spectral entropy Hf, the temporal entropy Ht, the acoustic 
entropy H, the median of the amplitude envelope M , the acoustic richness A R and 
the acoustic complexity index A C L There was a positive correlation observed 
between all the acoustic indices values and pack size. Authors make a conclusion 
that ACI, AR, and Hf are especially promising for wolf pack size estimation (Papin 
etal., 2019). 

2.4.6 Determining wolf reproduction success 

Palacios et al. (2016) used analysis of acoustic energy distribution to determine the 
presence of pups in chorus howls. For the analysis they used 110 samples of Iberian 
wolf chorus howls where pack composition was known in advance. It was observed 
that when pups are vocalizing the acoustic energy is concentrated at higher 
frequencies. Researchers built predictive models to determine pups in a chorus howls 
and came to the conclusion that distribution of the acoustic energy in chorus howling 
can be used to distinguish the presence of pups in a wolf pack (Palacios et al., 2016). 

Two or three adult wolves can create highly modulated chorus howling to give the 
false impression that the quantity of vocalizing wolves is much higher and even that 
pups are present in the chorus (Harrington, 1989). The accuracy of estimates of wolf 
numbers and presence of pups in the chorus is very low when the evaluation is made 
by human listeners (Palacios et al., 2017). Thus wolf monitoring is more precise 
when evaluation of recorded chorus howls is performed (Palacios et al., 2016; 
Palacios etal. 2017). 

2.4.7 Automatic detection of wolf sounds in long audio recordings 

Manual detection of wolf sounds in a big batch of recordings is time consuming and 
could be replaced by an automatic detection or combination of automatic detection 
and manual verification. 
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To detect and identify roar-barks of maned wolves (Chrysocyon brachyurus) in 
24-hours recordings Rocha et al. (2015) compared four methods: a) a manual 
detection, b) an automatic detection in Raven Pro 1.4, c) an automatic detection in 
XBAT, d) an automatic detection in X B A T + manual verification. 

The authors estimated the total time required for detection of wolf sounds in a 
24-hours recording as well as the number of false positive signals and recall (number 
of true positive signals identified compared to ground truth). Manual annotation of a 
24-hours recording was more time consuming (189 min) compared to automatic 
methods (77 - 93 min). At the same time automatic methods were less effective in 
detection of true positives (Raven = 32.43%, X B A T = 84.86%) compared to manual 
detection (91.89%) while presenting more false positives. X B A T detection followed 
by a manual verification identifies 100% of true positives. 

The authors consider X B A T detection combined with a manual verification to be the 
best from the four tested methods. This method saves time for detection of acoustic 
signals in investigations where large amounts of audio data need to be processed. It 
takes 58.73% of the time compared to manual detection (Rocha et al., 2015). 

Kaleidoscope pro software is being used by some investigators for automatic 
detection of wolf howls in long-term passive recordings. Though such detection 
results in a big percentage of false positives and there is a need for subsequent 
manual verification (personal conversation with Vicente Palacios in 2021). It could 
be connected with a sensitivity of the detecting algorithm to the environmental noise 
and as a consequence - dependency on the soundscape of the location where a 
training dataset originated (a problem mentioned earlier) (URL 3). 

Automatic detection of sounds using a D N N is least affected by the environmental 
noise in case of a proper training of the network. Thus, this method of automatic 
sound detection seems to be the most promising and reliable for acoustic monitoring 
of wolves - a species with a big home range (Mech and Boitani, 2003; Bergler et al., 
2019). Though I have not found publications about automatic detection of wolf 
sounds (particularly, howls) in Canis lupus using a DNN. 

Given the urgent need of monitoring of the gray wolf in the Czech Republic, after 
consultations with my supervisors, it was decided to try to adapt and optimize the 
D N N developed by Bergler et al. (2022) - ANIMAL-SPOT - for automatic detection 
of wolf howls in long-term passive recordings. 
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III. THESIS OBJECTIVE 

Objectives of the thesis 

Monitoring cryptic species, like the wolf, must combine many approaches to give a 
complete picture of the animal's life. Therefore, acoustic monitoring is now 
introduced to complement other currently used monitoring techniques (camera traps, 
footprints, urine and faeces traces, prey kills, etc.) of wolves' presence and activities 
in the Czech Republic. Autonomous recorders are deployed in study areas to record 
any wolf sounds in the environment. The wolf howling indicates the wolfs presence 
in the area but can also be potentially used to estimate the number of animals, core 
territory areas, or interactions between individuals. Long-term passive recordings 
represent a challenge for analysis, as manual analysis is laborious and 
time-consuming. Convolutional neural networks (CNN) came into bioacoustics just 
recently (Bergler et al., 2019) and represent a promising tool for automatic detection 
of animal sounds in long-term recordings. Therefore, I wanted to do a pilot test of 
this method for automatic detection of the wolf howling in our recordings. 

Goals: 

1. To annotate wolf howls in long-term passive recordings. 
2. To create training and evaluation datasets to train the deep neural network and 

evaluate its performance, respectively. 
3. To optimize the performance of the deep neural network by creating several 

models and choosing the best model and the best threshold. 
4. To compare performance of automatic and manual detection. 

The ultimate aim of the thesis is to test whether performance of automatic 
detection of wolf howls in long term passive recordings using a convolutional 
neural network is comparable to the performance of human detection. 

HO: There is no significant difference between the performance of automatic 
detection and manual annotations. 

HI : There is a significant difference between the performance of automatic detection 
and manual annotations. 
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IV. METHODOLOGY 

4.1 Data collection 

Passive acoustic monitoring is now introduced as a pilot study within OWAD project 
in order to complement other monitoring techniques (e.g. camera traps, footprints, 
urine and feces traces, prey kills etc.) currently used to monitor wolf's presence and 
activities in the Czech Republic. 

Autonomous recorders were deployed for about one month in study areas to record 
any wolf sounds in the environment. The placement of the recorders was informed 
by current activity of wolves in the area (scats, camera traps, etc.). Recordings from 
one recorder over a single deployment period of the recorder (until batteries run up) 
are referred here as "a batch" of recordings. 

My part of work was connected with analyzing the data that was collected by my 
supervisor Pavel Linhart, Ph.D. from the Department of Zoology of the University of 
South Bohemia in České Budějovice, and then provided to me. 

At the same time I was in person at the installation of recorders in Šumava National 
Park in order to have a better understanding of the whole procedure of bioacoustic 
monitoring of wolves in the Czech Republic (Fig. 3). My internship in Spain (Dr. 
Vicente Palacios) helped me to receive a fuller impression of how collection of 
long-term audio data is being done. 

Fig. 3. A recorder installed on a tree in Šumava National Park. 

Our data was collected from the late spring till late autumn. A l l recorders were 
deployed in a forest area except recorders installed in Mechov (open area, meadow). 
When choosing a place for deployment of recorders, environmental obstacles that 
could affect wolf howl propagation in air were taken into consideration (Larsen et al., 
2022b). In order to increase the likelihood of picking up the sound wave of a wolf 
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howl, a recorder was placed on some elevation (e.g. hill) with subsequent attachment 
of a device to a tree. In case of absence of elevations, the recorder was attached to the 
highest tree around 5 meters above the ground. 

The first recorders were deployed in October, 2019 in Šluknovský výběžek, close to 
the German border. Next recorders were installed during 2020, 2021 and 2022 in the 
same and in four other areas inhabited by other packs: NP České Švýcarsko (Czech 
Switzerland), Lužické hory, Krušné hory, and NP Šumava (Fig 4). Sites for recorders 
were guided by information about current activity of wolves in the area (camera 
traps) provided by local collaborators (Lukáš Žák, Tomáš Junek, Oldřich Vojtěch, 
Jan Mokrý). 

solitary individual • couple • pack 

Fig. 4 Distribution of solitary individuals, couples and packs of gray wolf (Canis lupus) in the Czech 
Republic. Wolf packs recorded between 2019 and 2022 are marked by X. (Source of the map: URL 1.) 

In Vlčinec and Mechov, recorders were set up to record howls of wolves kept at Srni 
enclosure. The Vlčinec recorder was placed very close to the enclosure and the 
Mechov recorder was placed on the meadow near the Srni village, 1,8 km from the 
enclosure. This was done because wolves in the enclosure howl frequently so it was a 
promising source of howling data. Moreover, it was favorable for purposes of 
training and evaluation of the D N N detection models from many points of view. 
First, because I realized that I could not receive a required amount of data on wild 
wolves within a short time interval. Second, because I expected to receive a huge 
variety of data to construct training and evaluation data sets in order for a model to 
be able to detect wolves independently of their vocal individuality, distance from a 
recorder, type of howling (solo or chorus), and number of wolves in a chorus. Third, 
I could take samples of the same howls recorded from close and far distance in order 
to evaluate the performance of the D N N models on the same howls of different 
quality in terms of recorded sound signal. 
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Table 2. Location of recorders and daily recording schedule (RS) 

Area Location Latitude, N Longitude, E RS Recorder 
Hohwald-l-I 51°01.606' 14°18.31ľ 17.00 - 08.00 R00173 
Hohwald-2 51°02.516' 14°19.215' 17.00 - 08.00 S00442 

ŠV Hohwald-3 5T02.873' 14°18.293' 17.00 - 08.00 S00443 
Hohwald-4 51°02.276' 14°17.453' 17.00 - 08.00 S00444 

Hohwald-l-II 51°3.142' 14°18.630' 17.00 - 08.00 AM10223644 
L H Pěnkavčí vrch 5T50.944' 14°36.769' 17.00 - 08.00 AM10223913 

Výsluní -1 50°30.75ľ 13°12.788' 00.00-23.59 R00173 

K H 
Výsluní -2 50°29.248' 13°11.392' 00.00-23.59 S00442 

K H Výsluní -3 50°29.138' 13°10.672' 00.00-23.59 S00443 
Výsluní -4 50°29.817' 13°11.460' 00.00-23.59 S00444 
Vlčinec -I 49°4.254' 13°29.503' 00.00-23.59 R00173 
Vlčinec -II 49°4.254' 13°29.503' 20.00 - 06.00 R00173 
Mechov -I 49°4.776' 13°28.219' 20.00 - 06.00 am005 
Mechov -II 49°4.776' 13°28.219' 20.00 - 06.00 am005 

ŠNP 
Nova Studnice -I 49°4.81ľ 13°25.666' 20.00 - 06.00 S00443 

ŠNP Nova Studnice -II 49°4.81ľ 13°25.666' 20.00 - 06.00 S00443 
Horní Hrádky -I 49°4.683' 13°30.444' 20.00 - 06.00 S00442 
Hôrni Hrádky-II 49°4.683' 13°30.444' 20.00 - 06.00 S00442 

Liska-I 4904478' 13°30.977' 20.00 - 06.00 S00444 
Liská -II 4904478' 13°30.977' 20.00 - 06.00 S00444 

Czech Switzerland - 05 51°3.086' 14°18.527' 20.00 - 06.00 S5105 
Czech Switzerland - 06 50°56.442' 14°24.296' 20.00 - 06.00 S5106 
Czech Switzerland - 07 50°55.58ľ 14°24.626' 20.00 - 06.00 S5107 
Czech Switzerland -09 50°55.330' 14°25.716' 20.00 - 06.00 S5109 

NPCS Czech Switzerland -10 51°1.982' 14°19.895' 20.00 - 06.00 S5110 
Czech Switzerland -11 50°56.400' 14°25.792' 20.00 - 06.00 S5111 
Czech Switzerland -12 50°55.462' 14°24.150' 20.00 - 06.00 S5112 
Czech Switzerland -13 50°56.006' 14°25.773' 20.00 - 06.00 S5113 
Czech Switzerland -14 51°2.143' 14°18.037' 20.00 - 06.00 S5114 

ŠV - Šluknovský výběžek, LH - Lužické hory, K H 
NPCS - National Park České Švýcarsko. Arabic 
numerals stand for number of a batch of recordings 

- Krušné hory, ŠNP - Šumava National Park, 
numerals stand for number of a location, Roman 
received from the same location. 

Recorder number, gps coordinates, altitude, recording schedule, as well as recording 
settings, were specified in the metadata of every recorder. Name of each recorded 
sound file was being set to provide information about the recorder number, date and 
time of recording. Models of recorders used were: AudioMoth (Open Acoustic 
Devices) and Swift One (K. Lisa Yang Center for Conservation Bioacoustics). 

Duration of sound files was set up to 30 min for all the batches except recorders 
deployed in National Park Czech Switzerland. For the last ones, the duration of one 
sound file was 1 hour. First and last sound files of a batch could have a shorter 
duration of several minutes. 

Daily recording schedule varied: from 20.00-06.00 up to 24 h recording period 
(Table 2). 

In order to achieve the maximum quality, all data was collected in an uncompressed 
WAV format. Compared to the most popular MP3 format of audio files, WAV does 
not distort the sound. MP3 uses a compression while saving a sound file. It could 
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give an opportunity to record more audio files but at the same time such a 
compression affects the spectral and temporal composition of the signal (Obrist et al. 
2010). 

A l l digital recording devices have an inbuilt converter that allows to transfer sampled 
sound from an analogue to digital form and store it in the numeric values. Usable 
frequency range of digital recorders is defined by half the sampling rate. For example 
44.1 kHz converter allows recording sounds with frequency 22.05 kHz. and the bit 
depth of the converter, roughly 6 dB per bit, defines the dynamic range. Thus in 
order to receive high quality in digital recordings we should set up the recorder for 
frequency at least twice the highest frequency to be recorded (Obrist et al. 2010). 

Sampling rate of recorders was set up for 16 kHz providing good representation of 
sounds up to 8kHz in spectrograms which is well above the typical range of wolf 
howls. Encoding was set up to 16-bit. Microphone gain was set to 35.0 dB. 

4.2 Data analyzing 

4.2.1 Manual annotation of long-term passive recordings of wolf howls 

Goals of manual analysis of recordings 

Manual analysis of an audio recording is an analysis performed by an operator in 
some audio software. It includes an annotation of a recording. The main steps of 
manual analysis of collected audio recordings were: 

- to annotate wolf howls in long-term passive recordings manually specifying 
type and quality of recorded howls in selections tables; 

- to distribute data into different data sets based on quality of recorded howls; 

- to make my own annotations of wolf howls as reference (control) annotations 
in order to used them as the ground truth when performing evaluation of 
performance of human volunteers, as well as D N N models; 

- to determine the relationship between speed of manual data processing and 
experience of a human operator. 

Software for manual analysis and annotation of recordings 

Manual analysis of recordings was performed in Raven Pro 1.6 software. In Raven, 
sound could be present in a waveform and in the form of a spectrogram. There are 
three options to display sound spectrum information in Raven Pro: Spectrogram 
views, Spectrogram slice views and Selection spectrum views. These types of views 
show the Relative intensity of frequency components of a sound signal (Charif et al., 
2010). The annotations were done within the Spectrogram view. 

Spectrogram views represent variation of the spectrum of a sound signal over time in 
three dimensions: time, frequency and the relative power of a sound signal. Time is 
on the horizontal axis, frequency is on the vertical axis and the relative power of a 
sound signal is represented by color or by grayscale value (Charif et al., 2010). 
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Raven also gives an opportunity to go manually through a big volume of data 
opening all the recordings within the data set using the page sound feature (Charif et 
al., 2010). Raven opens only a predefined portion of recording (e.g., one minute), 
displays the spectrogram of the portion and allows to screen the dataset by 
predefined interval or to jump in any time within the dataset easily. 

Annotation process 

Settings 

To achieve the goals of detecting wolf howls in long-term passive audio recordings, 
the work was done in a spectrogram views mode which provides an opportunity to 
differentiate signals based on shapes of their curves and make a selection of a signal 
of interest which allows to locate this signal on the timeline. 

Initially spectrogram window settings were used from the preset provided by Pavel 
Linhart. Page size (portion of the sound visible on the screen) was chosen to be equal 
to 1 minute. Window settings were made the following: range of frequency axis: 0 -
2kHz; page size - 1 minute. Focus was the same as FFT size and was set to 2048 
points. Brightness and contrast were adjusted depending on the amount of light in the 
space where annotations were made. 

In around one month of annotation of recordings page size was increased up to 2 
minutes and shortly after it up to 3 minutes. While getting more experience with 
annotations, experiments with bigger page sizes began. Page size was set up to 2 
minutes page size after processing 244 hours of recordings. Shortly after it (259 
hours of processed recordings), page size was subsequently increased up to 3 
minutes. 

Starting from the second batch of recordings received, the page size of 3 minutes was 
used to annotate all other subsequent batches. Focus of spectrogram view for 3 
minute page size was set to 6200 points based on clarity of a sound signal. 

During annotation of first 1000 hours of recordings time spent on annotations of one 
night of recordings was noted, as well as a page size used was marked. Some nights 
were of different length due to the start or end of the recording period. Thus, time 
spent per annotation of a night of recordings was recalculated into time spent per 
annotation of one hour of recordings. This time was used to assess how fast time 
spent for manual processing of audio recordings changes depending on the 
experience of an operator. A graphical representation in Excel was made to fulfill 
this goal. 

Selection tables 

When a wolf howl or other interesting signal was detected a mark was placed to 
make a selection with subsequent annotation of this selection: type of signal (solo 
howling/chorus howling/uncertain/other) and quality of a sound signal 
(1 ow/moderate/good). 

In case of uncertainly that a sound signal belongs to a wolf, a mark "uncertain" was 
made. Level of quality was assigned to a sound signal depending on the following: 
low quality - traces are not clearly visible on the spectrogram, moderate quality -
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traces are clearly visible in some parts of the spectrogram, good quality - traces of 
howls are well visible across the spectrogram (Fig. 5). 

Quality of the 
recorded signal 

Low 

Solo Chorus 

Moderate 

Good 

Fig. 5. Examples of spectrograms of solo and chorus howls depending on low, moderate and good 
quality of the recorded signal. 

A l l the annotated howls were categorized into 2 categories: solo and chorus, and 6 
subcategories, respectively: low quality solo, moderate quality solo, good quality 
solo, low quality chorus, moderate quality chorus and good quality chorus. 

Selection tables were done per night of sound files (e.g. from 5 pm of one day till 8 
am of another day) for the batches of recordings collected till July, 2021. Afterwards 
in order to optimize and speed up manual annotations of the recordings, 1 selection 
table was done for the whole batch of recordings. Each selection table comprises all 
the signals selected and annotated by an operator with their characteristics including 
min and max frequency, begin and end time of the signal, type (solo, chorus or 
uncertain), quality (good, moderate, low). 

Annotation of data sets for the comparison of the performance of humans to the 
performance of DNN 

Annotations of evaluation data sets for comparison of performance of people and 
D N N were performed by 8 volunteers in Raven Lite. The volunteers were attendants 
of Bioacoustic Practicals course at the University of South Bohemia, so they already 
had basic knowledge about sound analysis, working with Raven and reading 
spectrograms. Window settings were taken: range of frequency axis: 0 - 2kHz; page 
size - 1 minute. 
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A l l the volunteering annotators received appropriate training to distinguish wolf 
sounds on spectrograms prior to annotating recordings. They received a set of 20 
files of 30 minutes each, and also each including solo or chorus howls of different 
recording quality. Also, there were sounds frequently confused with wolves such as 
chainsaw, motorbikes and cars, train signals, owls hooting, cows, dogs, etc. The 
results were consulted with the instructor (Pavel Linhart) and any missed wolves or 
confusions were discussed. 

After being trained, the volunteering annotators received 2 data sets of recordings for 
manual annotation which were different in terms of quality of recorded signal of wolf 
howling: low and moderate-good quality, respectively. Time spent for annotation of 
the data sets was measured in order to calculate the average speed of annotation of 
one hour of recordings and compare how it changes with lower quality recordings of 
wolf howls compared to higher quality ones. 

Data verification and filtering 

A l l the data received from the recorders (11260,5 hours) has been processed and 
annotated manually. Many batches of recordings were empty in terms of absence of 
wolf howls: Hohwald-l-II, Pěnkavčí vrch, Výsluní -1, Výsluní -2, Nova Studnice -I, 
Nova Studnice -II, Horni Hrádky -I, Horni Hradky-II, Liska-I, Liská -II, Czech 
Switzerland -12 (11 empty batches in total). Three batches contained a very limited 
number of uncertain wolf howls: Výsluní -3, Výsluní -4. Thus, for the purposes of 
the thesis, they were not used for training and evaluation of the howling automatic 
detection. 

Manual annotations of recordings were verified in order to be sure that annotated 
sound signals are wolf howls indeed, as well as to be sure that wolf howls were not 
missed. "Uncertain howls" were not taken for the analysis. Recordings that didn't 
contain wolf howls or contained just "uncertain howls" were excluded from 
subsequent processing. 

Using an opportunity, Dr. Vicente Palacios was consulted on some unconfirmed 
howls during my internship with him. After consultations with Dr. Palacios, several 
batches of recordings were excluded from further analysis because there was no 
100% certainty about the source of the sound signal which sounded to me and Pavel 
as "unusual howling." 

Annotated wolf howls were subsequently filtered based on the quality of recorded 
signal. Very poor quality howls were not taken into further data processing. 

Recordings which contained confirmed and filtered wolf howls were taken into 
subsequent data processing as the H V M data set. Batches from Czech Switzerland 
became available much later than the primary data set was constructed. Thus, they 
were not included in the H V M data. 

4.2.2 ANIMAL-SPOT as a method for an automatic detection of wolf howls in 
long-term passive recordings 

Choosing a method of automatic analysis 

Since manual analysis is laborious and time-consuming this work is being done to 
determine the best method for an automatic detection of wolf howls in long-term 
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passive recordings. At the beginning, me and Pavel Linhart considered a few 
different approaches for automatic detection including cross-correlation (SASLab by 
Avisoft) and statistical machine learning algorithms (Kaleidoscope by Wildlife 
acoustics). Dependence of these algorithms on environmental noise along with an 
article on ORCA-SPOT (Bergler et al., 2019) spoke in favor of a big potential of 
convolutional deep neural networks in automatic detection of animal sounds. Thus, 
the choice was made to work with the emerging deep learning algorithms because 
they seem to be highly flexible and effective for animal sounds and similar tasks 
(Bergler et al., 2019; Shiu et al., 2020; Kahl et al., 2021). 

Cooperation with computer scientists from the University of 
Erlangen-Nuremberg 

In order to create a Deep Neural Network that would perform automatic detection of 
wolf howls in long-term passive recordings, it was agreed about cooperation with 
computer science specialists from the University of Erlangen-Nuremberg (FAU), 
Speech Processing and Understanding (SAGI) - Pattern Recognition Lab, the 
Department of Computer Science 5. 

Christian Bergler and Elmar Noeth were very kind to agree to take me for the 
internship in order to adapt the deep neural network ORCA-SPOT (OS), developed 
by Bergler et al. (2019) for automatic detection and classification of killer whale 
signals, to perform automatic detection of wolf howls. 

By the time I came to FAU, there was already some work done by Bergler et al. with 
adapting OS for some other species. Thus, I already started to work with another 
D N N - an improved version of OS - ANIMAL-SPOT (AS) (Bergler et al., 2022). 
Though work with wolves using AS has never been done before, and Christian and 
Elmar were also interested in cooperation. 

After my internship was finished, there was still some work to be done. Thus, 
Christian Bergler and Alexander Barnhill provided precious consultations and helped 
to resolve some questions remotely online. 

The Training and the Evaluation data sets were constructed according to the 
instructions received from Christian Bergler, as well as data availability. 

4.2.3 Analysis of the primary HVM data set 

Some batches of recordings either didn't contain wolf howls, or very little, or the 
source of signals resembling howling was uncertain. Thus these batches were 
excluded from subsequent analysis and data processing. Eight batches were chosen 
for further analysis and data processing: four batches from Hohwald (1-1, 2, 3, 4), 
both batches from Vlčinec and both batches from Mechov. 

A l l the recordings of these eight batches, when counted together for the subsequent 
analysis, will be referred to as the H V M recordings. A l l the annotations received 
from these eight batches represent an initial data set and when counted all together, 
they will be referred to as the H V M data set. 

In order to understand how it is better to distribute the filtered data between the 
Training and the Evaluation data sets, the analysis of the primary H V M data set was 
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performed. Numbers and overall durations of wolf howls were calculated in each 
subcategory in order to receive an overview of the data available. 

Then, ratios of numbers and overall duration of the following categories of howls in 
the H V M data set were estimated: 

- howls of wild wolves and wolves from the enclosure; 
- solo and chorus howls; 
- ratio of howls based on the quality of the recorded signal (low, moderate, good): per 
the whole data set and per each category of howls (solo and chorus); 

Distribution of quantity and overall durations of annotated wolf howls in the H V M 
data set based on its subsets was estimated as well. Given that we have 6 
subcategories of wolf howls (Fig.5) and 8 batches of recordings in the H V M data, it 
means that we have 48 subsets of annotated howls in total (some subsets are empty in 
some batches of recordings). 

Each subset is represented by either chorus or solo howls of a particular quality 
annotated in a particular H V M batch of recordings. These subsets are different from 
each other in terms of overall duration of wolf howls, as well as numbers of 
annotated wolf howls. 

Thus, in order to understand which subsets of wolf howls are most abundant and vice 
versa, a distribution of quantity and overall durations of wolf howls was created in 
the H V M data based on its subsetting. 

In order to calculate overall numbers and durations of wolf howls in each 
subcategory of wolf howls, data from Raven selection tables was transferred to Excel 
where subsequent calculations and graphical representations were made. 

4.2.4 Distribution of the HVM data into the Training and the Evaluation data sets 

Distribution of the H V M data into the Training and the Evaluation data sets was 
made based on the results of analysis of the H V M data set and the principles of 
maximum duration combined with maximum diversity of howls allocated for 
training. 

4.2.5 Network training 

Material 

A l l annotated wolf howls from Hohwald 1-4, Vlčinec-I and Mechov-I batches of 
recordings were allocated for the training of the D N N (except 3 unseen tapes, 30 
minutes each, reserved for the very first evaluation of the models) in order to provide 
maximum diversity of wolf howls to the DNN, as well as maximum overall duration 
of howls. 

Mechov and Vlčinec represent the data from 14 wolves kept in the enclosure in Srni. 
These data are convenient because wolves in enclosure howl more frequently 
compared to wild wolves. Moreover, recordings of the same signals were received 
but they were different from each other in terms of quality: higher quality recordings 
from the recorder deployed close to the enclosure (Vlčinec) and lower quality 
recordings from the recorder deployed far from the enclosure (Mechov, 1,8 km). 
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A l l our howling material taken for the network training was represented by 1228 
recorded wolf howls in total, with overall duration 21172 sec (~6 hours): Hohwald-1 
- 85 howls, 580 sec; Hohwald-1 - 119 howls, 1078 sec; Hohwald-3 - 61 howls, 536 
sec; Hohwald-4 - 131 howls, 992 sec; Vlcinec-I - 371 howls, 11985 sec; Mechov-I -
461 howls, 6001 sec. 

The length of howling samples varied from one-two second of solo howls to more 
than 30-40 seconds of chorus howls. 

Howling samples taken were mainly of good and moderate quality. Though low 
quality samples were also present in the training data in order to train the framework 
to detect distant howls. 

In order to train the network to distinguish between the target signal (wolf howl) and 
noise, random variable noise samples were included into the Training data set 
including environmental noise, human voices, sounds of different types of vehicles, 
calls off other animals. 

Data extraction 

Annotated wolf howls were extracted from the recordings and subsequently cut into 
smaller fragments, each of 2 seconds long. Fragments whose length was less than 2 
seconds were not used for further data processings. After all the extractions of howls 
and noise together with their cutting were made, there were 11303 cuts of wolf howls 
and 11303 cuts of in total. 

Noise segments were extracted from all the batches of recordings where wolf howls 
were taken from and subsequently cut into equal fragments of 2 seconds each. The 
same extraction and cutting algorithm were used as for wolf howls. Quantity of noise 
cuts was adjusted to be equal to the quantity of cuts of wolf howls. 

Noise augmentation 

Augmentation of time and pitch of the noise signal, as well as random noise 
augmentation, was done resulting in the creation of additional 1433 augmented noise 
fragments (provided by Christian Bergler) in order to achieve a higher diversity of 
noise in the Training data to train the models. 

Network hyperparameters 

ResNetl8 network architecture inherited by ANIMAL-SPOT from ORCA-SPOT 
was preserved. The following hyperparameters were fixed for all the models: 
sampling rate = 44,1kHz, net input size = 256*128, FFT-Win = 4096 samples, 
frequency range: 25-2500Hz. 

3 of 6 models trained had slightly different hyperparameters (V0, Y and VI) , 4 of 6 
models were the same version of one model and had similar hyperparameters (VI, 
V2, V3 and V4 models) though due to stochastic component of training they 
obtained different detection performance. 

Initial normalization for the first model trained (V0) was set to 0/1 min/max 
normalization. Initial hop and sequence length were taken 441 samples and 1280 ms, 
respectively. 
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Procedure 

Cuts of wolf howls and noise howls were provided to the network. During the 
Training phase noise augmentation was activated. For the Validation and the Testing 
phases of the Training procedure noise augmentation was not activated in order to be 
comparable to other model validation and test results. 

Software 

Extractions of wolf howls from audio recordings were made using the R script 
provided by Pavel Linhart, R 3.6.1 and R-Studio 1.2.5019 . 

Python 3.8.0 was used for all python related procedures. Cutting of all the extractions 
was made using python scripts written by Christian Bergler. 

Additional 1433 augmented noise fragments were provided by Christian Bergler. 

Training of models was made using ANIMAL-SPOT deep learning algorithm (URL 
4) in Python combined with a deep learning framework PyTorch (version 
1.11.0+cull3) (Operating System: Windows). 

Hyperparameters of the V0 model were set and subsequently optimized by Christian 
Bergler. Detection parameters of Y model were configured by myself based on 
consultation with Alexander Barnhill. 

Hardware 

Computing was made on GPU (video card: Nvidia G T X 1060). Due to a big time 
required for training on my personal computer (around 4,5 days) only 1 model of 6 
models in total was trained on my personal computer (Y version). 5 models (versions 
V0, V I , V2, V3, V4) were trained on the computer cluster in F A U (video card: 
Nvidia G T X 1080). 

4.2.6 Network evaluation 

Material 

First, preliminary evaluation of the models was done using 3 unseen tapes, 30 
minutes each selected from the two batches of recordings which were used for the 
training. 3 unseen tapes were selected based on the abundance of wolf howls (overall 
duration of wolf howls per tape) and their quality: low abundance and low quality, 
moderate abundance and moderate quality, high abundance and good quality, 
respectively. 

Unseen tape taken from Mechov-I contained low abundance and low quality of wolf 
howls: 32 seconds of wolf howling overall, 1 chorus (11 sec) and 11 solo (21 sec), 
respectively. Unseen tapes taken from Vlcinec-II contained moderate abundance and 
moderate quality, high abundance and good quality of wolf howls, respectively. 
Particularly, there were 126 seconds of howls, 3 choruses (107 sec), 3 solo (19 sec) 
in tape with moderate abundance and moderate quality of wolf howls. Tape with high 
abundance and high quality of wolf howls contained: 465 seconds of howls, 13 
choruses (423 sec), 10 solo (42 sec). 
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Second evaluation was performed using 2 data sets constructed from the Vlcinec-II 
and the Mechov-II batches, respectively. One data set was constructed from 120 
sound files of 30 minutes each selected from the Vlcinec-II batch of recordings and 
was named the CLOSE data set due to the close distance of howling wolves to the 
recorder. Second data set was built on recordings received from the Mechov-II batch 
and included 80 sound files of 30 minutes each. This data set was named the FAR 
data set due to the far distance of howling wolves to the recorder. 

Division of evaluation data into 2 evaluation data sets was made in order to estimate 
the effect of distance from the recorder to howling wolves on the performance of 
manual annotating, as well as performance of automatic detection using DNN. 

In order to construct data sets the way to compare the performance of D N N to the 
human performance, only 40 hours were selected from Mechov-II (the FAR data set, 
4 hours per night, 10 nights containing howling) and 60 hours were selected from 
Vlcinec-II (the CLOSE data set, 6 hours per night, 10 nights containing howling). 

This reduction of material was done in order to compare the performance of 
automatic detection made by the D N N to the performance of the human volunteers 
and such amount of data was judged as "doable" for the volunteers. 

Other advantages of such reduction: faster to run predictions compared to predicting 
the whole batch, as well as creating a more balanced data set. Vlcinec-II was 
represented mainly by moderate quality chorus in terms of overall durations of 
subcategories of howls. Selection of just part of this batch helped to make the data 
set more balanced. 

The FAR data set represented a moderate abundance of wolf howls: 2,75 howls, 
91,97 seconds per one hour of recordings. In total, the FAR data set contained 110 
wolf howls, overall duration - 3679 seconds. Of them: 46 solo (203 sec) and 64 
chorus (3476 sec) wolf howls. The FAR data set represented moderate abundance 
and mainly low quality (due to recording distance) of howls in recordings. 

The CLOSE data represented a high abundance of wolf howls: 5,65 howls, 141,88 
seconds per one hour of recordings. In total, the CLOSE data set contained 339 wolf 
howls, overall duration - 8513 seconds. Of these, there were 187 solo (1215 sec) and 
152 chorus (7298 sec) howls, respectively. The CLOSE data set represented high 
abundance and moderate-good quality (close distance of howling wolves from a 
recorder) of howls in the recordings. 

General description of the Evaluation algorithm 

The algorithm of evaluation includes 2 steps: 

1. Predi cti on procedure. 
2. Comparison of results of predictions to the ground truth 

Prediction procedure includes the following steps. First, the model performs 
automatic detection of possible wolf howls in the provided data at a specified 
threshold. This is called prediction, and the value of the threshold represents a 
probability that a detected sound signal is a wolf howl. When predictions are being 
done, the algorithm of the AS prediction procedure returns a range of probabilities 
equal to or more than the specified threshold. For example, when the threshold is set 
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to 0.85, prediction procedure returns all the detections where probability that 
detected sound signals are wolf howls indeed is >85%. 

Comparison to the ground truth also includes several steps. First, all prediction 
results are transferred into the Raven selection table. This allows: 1) to perform 
visual verification of predictions in Raven; 2) to compare predictions made by AS to 
the ground truth - manual annotations of the recordings. Result of this comparison is 
performance metrics: precision, recall, number of false positives, F-score etc. 
Performance metrics allows to compare the performance of models to each other as 
well as to compare the performance of AS to performance of human operators. 

Evaluation procedure 

A l l trained models were subsequently tested on unseen recordings provided to the 
network according to the Evaluation algorithm. 

Evaluation of performance of models made on unseen tapes was done at the 
threshold 0.85. Comparison of predictions to the ground truth was combined with 
visual verification of prediction results. Results of the first evaluation of models were 
assessed briefly to filter out the models with "the worst" performance. Performance 
metrics used: numbers of TP and TN. 

Evaluation of performance of models on the FAR and CLOSE data sets was made at 
the thresholds: 0.80, 0.85, 0.90, 0.95, 0.99 and 1.1 used segment-based performance 
metrics: precision, recall, F-score. 

Precision metric (P) is used to estimate how precise a model or a human is when 
detecting the target sound. In other words, precision shows the amount of genuine 
wolf howls (TP) among all the detected sound events (TP+FP): 

P= TP/(TP+FP). 

Recall metric (R) is used to estimate the amount of genuine target sounds detected 
(TP) among all the relevant elements (TP + FN): 

R=TP/(TP+FN). 

F-score (F) is a measure of test accuracy, a harmonic mean of precision and recall: 

F=2*P*R/(P+R) 

Length of the evaluated segment was taken as 60 sec. 

In order to compare the performance of models to each other and choose the best 
model and the best threshold, values of performance metrics received for each model 
were combined on graphs: for precision, recall and F-score, respectively. (Threshold 
equal to 1 was not included in the graphical representation of the results.) 
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Software 

Python version 3.8.0 was used for all the evaluation steps which require use of 
python. Predictions were made using command line and python script written by 
Christian Bergler and Hendrik Schroeter. 

Merging of all the prediction results into one selection table was made using R 
scripts provided to me by Pavel Linhart, R 4.2.2 and RStudio 2022.12.0. 

In case when predictions were made on 3 unseen tapes, evaluation of performance of 
models was made using command line and python scripts written by Christian 
Bergler and Hendrik Schroeter. For convenience results of predictions were 
transferred into the excel table and subsequently verified manually. 

In case when predictions were made on the data set, as well as on the batch of 
recordings, evaluation of performance of models was made with the open source 
Python Evaluation toolbox for Sound Event Detection: sedeval. Results of 
evaluation were transferred into the excel table where subsequent graphical 
representation was made. 

4.2.7 Statistical analysis of comparison of the DNN performance to the human 
performance 

In order to compare the performance of automatic detection of wolf howls in long 
term passive recordings to the performance of manual detection, automatic detections 
of wolf howls made on the FAR and the CLOSE data sets by Y, V2 and V4 D N N 
models were compared to manual annotations of these subsets made by the 
volunteering annotators. The comparison was made using the F-score metric: all 
F-score values received for the automatic detection at all the thresholds for each data 
set and all the F-score values of the volunteering annotators for each data set. 

Particularly, there were 30 F-score values for all the 30 D N N variants of automatic 
detection in total: 15 values received for each data set from the 3 models at the 5 
thresholds, respectively. 

For human data there were 16 F-score values in total: 8 F-score values for each data 
set received from the 8 volunteering annotators. 

A l l F-score values were divided into 4 subsets: human FAR, human CLOSE, D N N 
FAR and D N N CLOSE, depending on an operator (human or network) and data set 
(the FAR or the CLOSE), respectively. 

Subsequently, in order to compare F-score values of the groups to each other 
graphically, a box plot was created. Due to not normal distribution in human data and 
small sample sizes on the whole, nonparametric Wilcoxon signed rank test (for 
paired comparison of human data to human data and D N N data to D N N data) and 
Mann Whitney U test (for unpaired comparison of human data to D N N data) were 
used to estimate statistical significance of comparisons. In total, there were 4 
comparisons. Thus, the Bonferroni correction was applied due to multi comparison in 
order to adjust the p-value for the significant result: p-value was divided by 4. 

R 4.2.2 and RStudio 2022.12.0 Build 353 was used to create graphical representation 
of results of the comparison, as well as to perform statistical analysis. 
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V. RESULTS 

5.1 Data collection 

A l l the recorders operated properly. Recordings were received from each recorder. 
A l l batches of recordings were collected. Period of recording and quantity of 
recorded hours are present in Table 3. In total, 11260,5 hours of audio recordings 
were received from 5 areas and 23 locations, 29 batches of recordings (Table 3). 
Quantity of recorded hours varied from 233 till 764,5 hours per batch. 

Table 3. Period of recording and quantity of recorded hours 

Area Location Recorded period 
YYMMDD-YYMMDD 

Recorder Total time 
recorded, 

hours 
Hohwald-l-I 191011-191026 R00173 233 
Hohwald-2 191011-191026 S00442 233 

ŠV Hohwald-3 191011-191026 S00443 233 
Hohwald-4 191011-191026 S00444 233 

Hohwald-l-II 200623-200711 AM10223644 233 
LH Pěnkavčí vrch 200622-200713 AM10223913 280 

Výsluní -1 200603-200703 R00173 714,5 

K H 
Výsluní -2 200603-200703 S00442 764,5 

K H Výsluní -3 200603-200703 S00443 759 
Výsluní -4 200603-200703 S00444 763 
Vlčinec -I 210528-210625 R00173 674 
Vlčinec -II 210723-210911 R00173 452 
Mechov -I 210528-210622 am005 248,5 
Mechov -II 210723-210817 am005 253 

ŠNP 
Nova Studnice -I 210528-210717 S00443 505 

ŠNP Nova Studnice -II 210723-210911 S00443 477 
Horní Hrádky -I 210528-210627 S00442 240 
Hôrni Hrádky-II 210723-210911 S00442 503 

Liska-I 210528-210718 S00444 518,5 
Liská -II 210723-210911 S00444 499,5 

Czech Switzerland - 05 220724-220911 S5105 496 
Czech Switzerland - 06 220724-220911 S5106 496 
Czech Switzerland - 07 220724-220911 S5107 496 
Czech Switzerland -09 220724-220911 S5109 496 

NPCS Czech Switzerland -10 220724-220911 S5110 496 
Czech Switzerland -11 220724-220911 S5111 496 
Czech Switzerland -12 220724-220911 S5112 496 
Czech Switzerland -13 220724-220911 S5113 496 
Czech Switzerland -14 220724-220911 S5114 496 

Total time 11260,5 

ŠV - Šluknovský výběžek, LH - Lužické hory, K H - Krušné hory, ŠNP - Šumava National Park, 
NPCS - National Park České Švýcarsko. Arabic numerals stand for number of a location, Roman 
numerals stand for number of a batch of recordings received from the same location. 
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5.2 Data analyzing 

5.2.1 Manual annotations of long-term passive recordings of wolf howls 

Experience of an annotator allows change in settings 
It takes some time for a new operator to become familiar with patterns of wolf howls 
and to be able to find them in a spectrogram. Particularly, time to process a recording 
decreases upon obtaining an experience. 

In the beginning of the work, it could take almost one hour for me to process around 
one hour of recordings (including annotating it when necessary). But after going 
through 27 hours of recordings and gaining some experience this time decreased 
drastically and it began to take around 3 minutes on average per one hour of 
recordings (Fig. 6). 

After annotating 259 hours of recordings, this time subsequently decreased till 
around 1,3 minutes on average spent for processing one hour of recordings including 
making basic annotations of places of interest. 

Such a huge decrease in time of processing was also possible due to the increase of 
page size (visible portion of sound) in Raven from 1 minute up to 2 and 3 minutes 
page size after processing 244 and 259 hours of recordings, respectively. 

0 100 200 300 400 500 600 700 800 900 1000 

Number of hours processed 

Fig 6 .Time spent for manual processing of audio recordings depending on experience of an annotator 
and page size. Page size: 1 minute - up to 244 hours; 2 minutes after 244 hours, 3 minutes - after 259 
hours. 

Subsequently I experimented with bigger page sizes: 4, 5 and even 6 minutes. My 
big experience of annotations already allowed me to detect wolf howls in recordings 
even at 7 minute pages. 
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Although when page size was larger than 3 minutes, my level of confidence in the 
origin of the detected howl was much lower than at the 3 minutes page size. 
Consequently, I had to enlarge the size of the signal of interest in the spectrogram 
when verifying a potential wolf howl detected. Such additional action also took time 
and as a consequence overall time of going through recordings was similar to time 
taken at 3 minutes page size. At the same time, my level of confidence in the quality 
of my annotations was less, in spite of finding wolf howls in the recordings. Thus, 
the page size of 3 minutes was optimal for myself bringing the maximum speed of 
screening recordings without compromising the quality of annotations. 

Evaluation datasets for comparison of performance of people and DNN 

Average time spent by a volunteering annotator for processing and annotating one 
hour of recordings from the CLOSE data subset was higher (5 min) than processing 
and annotating one hour of recordings from the FAR data subset (3 min). In order to 
annotate these data sets, for me it took 3 and 1,5 min on average per one hour of 
recordings, respectively. 

It takes time to make a box selection of a wolf howl in the recording and to fill in the 
associated selection table about type of the signal and its quality. The more there are 
wolf howls in the recordings, the longer it will take to make annotations. 

It also takes longer to make a box selection of a chorus howling compared to a solo 
one because a duration of a chorus howl is longer. Chorus howling could appear on 
several pages of a batch of recordings opened in a page view in Raven in case page 
size is around 1 minute. Thus, it would be needed to drag the edge of the box 
selection through the pages in order to select the whole chorus. The more there are 
chorus howls in the recordings, the more time will be spent to make selections. 

Even without making precise calculations, but just being based on my own 
experience of annotating Vlčinec-I and verifying annotation of a volunteer in 
Vlčinec-II, I could say that Vlčinec recordings have very high abundance of wolf 
howls and there are a lot of chorus howls compared to Hohwald recordings. 
Considering all of the above, it took longer for the volunteers to annotate one hour of 
data from the CLOSE data set compared to the FAR one. 

It took more time for me to process recordings from the CLOSE data set compared to 
annotations of wild wolf howls from Hohwald. At the same time, for me it took 
faster than for the volunteers to process the CLOSE as well as the FAR data due to 
my overall experience of processing recordings and increased page length. 

Wolf howls of the FAR data are represented mainly by low quality solo and chorus 
howls. Their abundance is moderate compared to low abundance of wolf howls in 
wild recordings from Hohwald. It could be expected that the time, spent by the 
volunteers for the annotations of one hour of the FAR data set, would be comparable 
to my time due to reduction of the quantity of annotations. But my experience as well 
as increased page size allowed me to do it faster. 
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Data filtering 

In total, 15 batches of recordings were received in which I was sure about wolf howls 
and with considerable amount of howling: that the selected wolf howls are indeed 
wolf howls: Hohwald-1-4, Vlcinec-I-II, Mechov-I-II, Czech Switzerland-05-07, 
Czech Switzerland-09-14. However, recordings from Czech Switzerland were 
collected too late to be included into training or evaluation datasets. 

5.2.2 ANIMAL-SPOT as a method for an automatic detection of wolf howls in 
long-term passive recordings 

Agreement with computer science specialists to work together on the adaptation of 
ANIMAL-SPOT for automatic detection of wolf howls resulted into analysis of all 
the data available at this moment in order to prepare the Training and the Evaluation 
data sets for the training of ANIMAL-SPOT and evaluation of its performance, 
respectively. 

A l l available batches of recordings that time were: Hohwald-1-4, Vlcinec-I-II, 
Mechov-I-II. A l l annotated wolf howls from these recordings represent the primary 
data set which will be called here the H V M data set - a result of data filtering. 

The Training dataset was to be created to train the D N N detection models. Thus, it 
was important to have a diversity of howls there from one hand but at the same time 
in order to keep the purity of the first experiment with D N N and to test how it will 
work on the czech wolves, it was decided to take only data provided to me by my 
supervisor. 

The Evaluation dataset was to be used for the evaluation of the performance of the 
models. Thus, on the one hand, it was needed for it to correspond to the Training data 
set in some sense in order not to confuse the model by absolutely different data or 
wolf dialect. On the other hand it was needed to understand what would affect the 
performance of the models the most in order to work subsequently for its 
improvement. 

The H V M data set served as a base for construction of the Training and the 
Evaluation data sets. Thus, its proper description and analysis is very important in 
order to estimate performance of models and their possible limits. 

5.2.3 Analysis of the primary HVM data set 

Annotated wolf howls had different types of howling (solo or chorus) and were of 
different quality in terms of quality of an audio signal recorded. 

The primary H V M data set contained 3460 annotations of recorded wolf howls with 
overall duration of 72586 seconds (-20,16 hours) (Table 4). 

The overall duration of all the annotated howls in the H V M recordings was very low 
(0,15%) compared to the overall duration of time without howling (99,85%) in total 
duration of all the H V M recordings (2559,5 hours) (Fig.7). 
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Table 4. Number and duration of annotated wolf howls depending on the quality of the recorded signal in the H V M data set 

Batch of 
recording! 

Solo Chorus Total 
N per 
batch 

Total 
T per 
batch 

Batch of 
recording! Low Moderate Good Total 

N 
Total 
T 

Low Moderate Good Total 
N 

Total 
T 

Total 
N per 
batch 

Total 
T per 
batch 

Batch of 
recording! 

N T N T N T 
Total 
N 

Total 
T N T N T N T 

Total 
N 

Total 
T 

Total 
N per 
batch 

Total 
T per 
batch 

H-l-I 79 402 4 17 0 0 83 419 2 161 0 0 0 0 2 161 85 580 

H-2 61 291 11 85 0 0 72 376 29 548 7 85 11 69 47 702 119 1078 
H-3 43 167 12 56 0 0 55 223 5 134 1 179 0 0 6 313 61 536 
H-4 113 547 4 27 0 0 117 574 13 333 1 85 0 0 14 418 131 992 
Vlc-I 130 504 27 133 6 36 163 673 118 4040 81 6367 9 905 208 11312 371 11985 

Vlc-II 818 3170 494 2664 59 696 1371 6530 240 8113 441 26926 70 6165 751 41205 2122 47734 

Mch-I 141 694 0 0 0 0 141 694 316 5002 3 165 1 140 320 5307 461 6001 
Mch-II 46 204 0 0 0 0 46 204 64 3476 0 0 0 0 64 3476 110 3680 
Total 1431 5979 552 2985 65 732 2048 3163 787 21807 534 33807 91 7279 1412 62894 3460 72586 

H - Hohwald, Vlc - Vlčinec, Mch - Mechov 
Low, moderate, good - quality of audio recording of wolf howling 
N - number of howls 
T - overall duration of annotated howls in seconds 
Data used for training the model - bold on gray background 
Data used to test the model with white background. 
Arabic numerals stand for number of a location, Roman numerals stand for number of a batch of recordings 
received from the same location. 0,15% 

I without howls 

I wolf howls 

Fig. 7. Ratio of overall duration of wolf howls and time without howling in the H V M recordings. 
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Estimation of ratio of howls of wild wolves and wolves from the enclosure in the 
H V M data set 

Number of annotated howls of wild wolves (11%) was lower than the number of 
annotated howls of wolves from the enclosure (89%) (Fig. 8A). 

At the same time the overall duration of annotated howls of wild wolves had even 
lower percentage (4%) compared to the overall duration of annotated howls of 
wolves from the enclosure (96%) (Fig. 8B). 

wild wolves 

enclosure 

Fig. 8A. Quantitative ratio of annotated howls Fig. 8B. Ratio of the overall durations of 
of wild wolves and wolves from the enclosure annotated howls of wild wolves and wolves 
in the H V M data set. from the enclosure in the H V M data set. 

Estimation of ratio of solo and chorus howls in the H V M data set 

Quantitatively solo howls prevailed in the H V M data set (59%) over chorus howls 
(41%) (Fig. 9A). While the overall duration of solo howls was much lower (3163 
sec) compared to the overall duration of chorus howls (62894 sec) (Table 4). Ratio of 
durations of solo and chorus howls in the H V M data set was 5 and 95%, respectively 
(Fig. 9B). 

solo 

chorus 

Fig. 9A. Quantitative ratio of annotated solo Fig. 9B. Ratio of the overall durations of 
and chorus howls in the H V M data set. annotated solo and chorus howls in the H V M 

data set. 
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Estimation of ratio of annotated solo and chorus howls based on quality of a 
recorded signal in the H V M data set 

There was the following ratio in the number of low, moderate and good quality howls 
(solo and chorus counted together): 64%, 31% and 5%, respectively, with higher 
abundance of low quality recordings (Fig. 1 OA). 

At the same time when recalculating this ratio in terms of overall durations of these 
groups of recorded howls, we see that howls of moderate quality have the highest 
proportion (51%) among all the howls in the H V M data set (Fig. 10B). 

• low 

• moderate 

• good 

Fig. 10A. Quantitative ratio of wolf howls in 
the H V M data set based on the quality of a 
recorded signal: low, moderate and good. 

Fig. 10B Ratio of overall durations of wolf 
howls in the H V M data set based on the 
quality of a recorded signal: low, moderate 
and good. 

Among solo howls the quantitative ratio of recordings of low quality was higher 
(70%) than recordings of moderate (27%) and good quality (3%) (Fig. 11 A). 

Ratio of the overall durations was 62%, 31% and 7% for low, moderate and good 
quality of recorded signals, respectively (Fig. 11B). 

• low 

• moderate 

• good 

Fig. I IA . Quantitative ratio of solo howls in F ig. IIB. Ratio of overall durations of solo 
the H V M data set based on the quality of a howls in the H V M data set based on the 
recorded signal: low, moderate and good. quality of a recorded signal: low, moderate 

and good. 

Among chorus howls the quantitative ratio of recorded signals of low quality was 
higher (56%) than signals of moderate (38%) and good quality (6%) (Fig. 12A). 
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At the same time moderate quality chorus howls were dominant in the H V M data set 
when comparing the overall durations of chorus howls of different quality. There 
was 54%, 35% and 11% of moderate, low and good quality of recorded chorus 
howls, respectively (Fig. 12B). 

low 

moderate 

good 

low 

moderate 

good 

Fig. 12A. Quantitative ratio of chorus howls 
in the H V M data set based on the quality of a 
recorded signal: low, moderate and good. 

Fig. 12B. Ratio of overall durations of chorus 
howls in the H V M data set based on the 
quality of a recorded signal: low, moderate 
and good. 

Distribution of quantity and overall durations of annotated wolf howls in the 
H V M data set 

Given that there are 8 batches of recordings in the H V M data set and 6 subcategories 
of wolf howls specified before (Fig. 5), there are 48 subsets of the H V M data set. It 
is possible to count the quantity and overall duration of wolf howls in each 
subcategory of every batch and create their distribution (Fig. 13, Fig. 14). 

c 
o 

o 
c 
c 
tu 

M— 
o 
>• 

c 
ns 
a 

900 

800 

700 

•500 

500 

^00 

300 

200 

100 

0 

1 • 

h l 1. . . • . 1 1 . 1 . J 

I H-l 

I H-2 

I H-3 

I H-4 

I Vlc-1 

I Vlc-2 

I Mch-1 

I Mch-2 

low moderate good low moderate good 

solo chorus 
Type and quaity 

Fig.13. Quantity of annotations of low, moderate and high quality recorded solo and chorus wolf 
howls in eight batches of recordings: H - Hohwald, Vic - Vlčinec, Mch - Mechov. 
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Fig.14. Overall duration of annotations of low, moderate and high quality recorded solo and chorus 
wolf howls in eight batches of recordings: H - Hohwald, Vic - Vlčinec, Mch - Mechov. 

Among all the subsets of annotated wolf howls, low and moderate quality solo as 
well as moderate quality chorus from Vlčinec-II prevailed quantitatively over other 
subsets of howls in the H V M data set: 818, 444 and 441 annotated wolf howls, 
respectively (Fig. 13). 

At the same time, in terms of overall duration of annotated wolf howls, moderate and 
low quality chorus from Vlčinec-II had the highest overall durations: 26926 sec and 
8113 sec, respectively. Moderate quality chorus from Vlčinec-I and Vlčinec-II were 
on the 3rd and the 4th place in this distribution of overall durations: 6367 sec and 
6165 sec, respectively (Fig.14). 

Overall duration of wolf howls in Vlčinec-I and Mechov-I recordings is longer 
compared to the overall duration of wolf howls from Hohwald recordings. At the 
same time, a moderate quality chorus has the longest overall duration among all 
other subsets in the recordings from Vlčinec-I. A low quality chorus is dominant in 
the recordings from Mechov-I as quantitatively as in terms of overall duration. Thus, 
low and moderate quality chorus are the most abundant categories of howls in the 
training data. 

5.2.4 Distribution of the HVM data into the Training and the Evaluation data sets 

Quantity (11%) and overall duration (4%) of annotated wolf howls of wild wolves 
was very low in the H V M data set compared to the ones of wolves from the 
enclosure (89% and 96%, respectively) (Fig. 13 and Fig. 14). Thus, it was agreed 
with Pavel to allocate all the wild wolves into the Training data set and for him to 
install subsequent recorders in Czech Switzerland, close to Hohwald, where there 
was information of one more "unrecorded" pack. 

Mechov-I represented higher diversity of subcategories of howls compared to 
Mechov-II. At the same time, the quantity and duration of solo was more there as 
well. Since the Mechov-I recorder was 1,8 km from the enclosure, such distant 
recordings of solo howls could substitute for the lack of distant solo howls of wild 
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wolves. Thus Mechov-I was allocated to the Training data set and Mechov-II - to the 
Evaluation. 

Data from Vlcinec-II was very disbalanced compared to data from Vlcinec-I (Table 
4, Fig. 13 and Fig. 14). Quantity of solo howls was almost 2 times as much as chorus 
howls in the batch, with dominance of very low quality solo over other subsets of 
howls quantitatively. At the same time, moderate chorus drastically suppressed any 
other subsets of howls by overall duration. There was a risk that this data will be 
taken by the network as the main if not to make a preliminary work with it. But there 
was an easier solution - to allocate Vlcinec-II for the Evaluation and Vlcinec-I take 
for the Training. 

Given all of the above, the Training data set is constructed from Hohwald-1, 
Hohwald-2, Hohwald-3 and Hohwald-4, Vlcinec-I and Mechov-I, while the 
evaluation data was taken from Vlcinec-II and Mechov-II batches (Fig. 15). 

Training 
data set 

Hohwald-1-l 
Hohwald-2 
Hohwald-3 
Hohwald-4 
Mechov-I 
Vlcinec-I 

11303 cuts of howls 
[22606 sec) 
11303 cuts of noise 
[22606 sec) 
*each cut-2 sec 

HVM 
data set 

3 unseen tapes 

Mechov-I 

1 tape [30 mini 

32 sec of howls 
[low abundance) 
I chorus {11 sec) 
II solo [21 sec) 
distant 

Vlcinec-I 

1 tape [30 mini 

• 126 sec of howls 
[moderate abundance) 

• 3 choruses [107sec) 
• 3solo [19 sec) 
• close 

1 tape [30 mini 

• 465sec of howls 
[high abundance) 

• 10 solo [42 sec) 
• 13 choruses [423 sec) 
• close 

Evaluation 
data set 

FAR data set 

Mechov-II 

40 hours of 
recordings 

• 3679 sec of 
howls [moderate 
abundance) 

• 46 solo 
[203 sec) 

• 64 chorus 
[3476 sec) 

• close 

CLOSE data set 

Vlcinec-I 

60 hours of 
recordings 

• 3513secof 
howls [high 
abundance) 

• 187solo 
[1215 sec) 

• 152 chorus 
[7293 sec) 

• close 

Fig. 15. Distribution of data between different data sets. Distant, close, moderately distant - rough 
estimation of distance from a recorded wolf howling. Low, moderate, high abundance - abundance of 
wolf howls in the data per tape or per data set, respectively. 
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5.2.4 Network Training 

Training of ANIMAL-SPOT network resulted into creation of 6 D N N models in total 
with slightly different hyperparameters. Subsequent evaluation of each of the models 
was performed. 

5.2.5 Network Evaluation. 

5.2.5.1. Preliminary optimization of hyperparameters 

First evaluation of detection models was done after the training procedure on the 
three 30 min unseen tapes. It allowed to make an initial optimization of the 
ANIMAL-SPOT hyperparameters of the model V0, as well as receive a short-scale 
representation of performance of other models in order to choose the best of them 
for further evaluation. 

V0 was the first model trained. Brief evaluation of the performance of the model on 
the unseen tapes, resulted in fine-tuning of the model's hyperparameters. 0/1 
min/max normalization used for the V0 model was replaced by 0/1-db-normalization 
applied to all the subsequent versions of models. 

Hop-length was changed: from 411 to 84 samples for Y model and 344 samples for 
V1-V4 versions, respectively. Sequence length was also updated: from 1280 to 1000 
ms for all subsequent models. 

After a brief evaluation of performance of other five models on the unseen tapes, 2 
more models were discarded (VI, V3) because it was immediately apparent that they 
provide so many false positive detections that they are unusable. Models Y, V2 and 
V4 were taken for subsequent more detailed evaluation. 

5.2.5.2 Evaluation on the FAR and the CLOSE data sets. 

Performance of models Y, V2 and V4 was subsequently evaluated on the CLOSE and 
the FAR data sets. For the comparison of the performance of models precision, recall 
and F-score performance metrics were used. 

Precision 

If we want to be sure that the detected sounds are really wolf howls precision will 
help us. The precision of predictions made by all the models as on the FAR as on the 
CLOSE data set increased upon increasing the threshold (Fig. 16 FAR and Fig. 16 
CLOSE). Although the precision of predictions of all the models made on the FAR 
data set was much lower compared to the precision of detections made on the 
CLOSE data set at the same threshold levels. The highest precision in detections 
made on the FAR data set (37,5%, V2 model at the threshold 0.99) was much lower 
than the lowest precision in detections made on the CLOSE data set (55,5%, V4 
model at the threshold 0.80). 

Model V2 gave higher precision compared to models Y and V2 when predictions 
were made on the FAR data set at the thresholds 0.90, 0.95 and 0.99. Precision of 
predictions made by V2 was 12% and 19% at thresholds 0.90 and 0.95 compared to 
9% and 13% for model Y and 11% and 14% for model V4, respectively. Model V2 
drastically outperformed models Y and V4 at threshold 0.99 reaching 37,5% of 
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precision compared to 16,5% precision of model Y and 15,6% precision of model 
V4, respectively (Fig. 16 FAR). 

The precision of all the models when predictions were made on the CLOSE data set 
with the threshold 0.99 raised almost to 100%: model Y - 98%, V2 - 99%, V4 - 98% 
(Fig. 16 CLOSE). 

0,95 1,00 

V 4 Threshold 

Fig. 16. Precision of detections made by Y, V2 and V4 models on the FAR and the CLOSE data set, 
respectively. 

When we tried to raise the threshold further up to 1, we received 100% precision of 
predictions of all the models made on the CLOSE data set while no detections at all 
were made by any of the models on the FAR data set. 

Recall 

Recall metric is useful i f there is a need to detect as many genuine wolf howls in the 
recordings as possible ignoring such a drawback as increased number of FP 
detections. 

The recall of the ground truth annotations among the detections made by all the 
models as on the FAR as on the CLOSE data set decreased upon increasing the 
threshold (Fig. 17 FAR, Fig. 17 CLOSE). 
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Fig. 17. Recall of the ground truth annotations among the detections made by Y, V2 and V4 models on 
the FAR and the CLOSE data set, respectively. 

At the same time the recall of the ground truth annotations among the detections 
made by model Y on the FAR data set was higher (97% and 95,5%) compared to the 
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recall made by this model on the CLOSE data set (95,5% and 93%) at the thresholds 
0.80 and 0.85, respectively (Fig. 17 CLOSE). 

After raising the threshold the recall of model Y was higher on the CLOSE data set 
(92%, 89% and 78%) compared to the recall on the FAR data set (89,5%, 81% and 
49%) at the threshold levels 0.90, 0.95 and 0.99, respectively (Fig. 17 FAR). 

The recall of ground truth annotations among detections made by V2 model was also 
higher (97%) for the FAR data set compared to the recall made by this model for the 
CLOSE data set (94%) at the threshold 0.80. Although already starting from the 
threshold 0.85 model V2 began to give higher recall for the CLOSE data set 
compared to the recall made by this model for the FAR data set. Recall made by V2 
at the thresholds 0.85, 0.90, 0.95 and 0.99 was 93,5%, 92%, 91% and 83% for the 
CLOSE data set and 92,5%, 85%, 76%, 31% for the FAR data set, respectively 
(Fig. 17 FAR, Fig. 17 CLOSE). 

Model V4 performed worse when making detections in the FAR data set compared to 
its detections in the CLOSE data set at all threshold levels. 

At the threshold equaled 1 the recall given by all the models drastically decreased on 
the CLOSE data set till 3%, 4% and 4% for models Y, V2 and V4, respectively. 

F-score 

If we want to have as many genuine wolf howls detected as possible but at the same 
time we want to diminish the quantity of false positives (and workload imposed on 
humans who would need to check detections manually) we chose the best model 
based on the F-score. At the same time we sacrifice some not detected genuine wolf 
howls because the F-score metric is the harmonic mean of precision and recall. 

The F-score of predictions of all the models was much lower for the FAR data set 
compared to the CLOSE data set. The highest F-score received on the FAR data set 
(V2 model, threshold 0.99) was much lower than the lowest F-score received on the 
CLOSE data set (V4 at the threshold 0.80). The highest F-score on the FAR data set 
equaled 34% while the lowest F-score on the CLOSE data set was 70% (Fig. 18 FAR, 
Fig. 18 CLOSE). 
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CLOSE 

0,95 1,00 

V4 Threshold 

Fig. 18. F-score of detections made by Y, V2 and V4 models on the FAR and the CLOSE data set, 
respectively. 

Model V4 showed higher F-score (14%, 16,3%, 20%, 24%) on the FAR data set 
compared to model Y (10%, 12%, 17%, 22%) at the thresholds 0.80, 0.85, 0.90 and 
0.95. At the thresholds 0.80 and 0.85 model V4 also gave higher F-score values on 
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the FAR data set than model V2 (11% and 15,9%), respectively. At the same time 
model V4 had a slightly lower F-score (24%) than model Y (25%) on the FAR data 
set at the threshold 0.99 (Fig. 18 FAR). 

Performance of models V4 and Y in terms of the F-score was opposite on the 
CLOSE data set. Model Y outperformed model V4 at the thresholds 0.80, 0.85, 0.90 
and 0.95 with the F-score equaled 78%, 80%, 83% and 88% compared to 71%, 77%, 
82% and 87% values of the F-score for V4 model, respectively. At the same time the 
F-score of model Y (87%) was lower than the F-score of model V4 (93%) at the 
threshold 0.99 (Fig. 18 CLOSE). 

Model V2 gave higher F-score on the both FAR and CLOSE data sets at the 
threshold 0.95 compared to other models: 30% and 89% for the FAR and CLOSE 
data sets compared to 22% and 88% for model Y and 24% and 87% for model V4, 
respectively. 

At the same time the overall performance of model V2 in terms of the F-score was 
better on the FAR data set compared to the CLOSE data set: model V2 also 
outperformed models Y and V4 at the thresholds 0.90 and 0.99: 21% and 34% 
compared to 16,5% and 25% for model Y and 20% and 24% for model V4, 
respectively. 

At the threshold equaled 1 F-score of all the models drastically decreased on the 
CLOSE data set till 6%, 8% and 7% for models Y, V2 and V4, respectively. 

Choice of the best model and the best threshold 

For the practical purposes of acoustic monitoring of wolves, results received on the 
FAR data set are more important. And in case it is necessary to choose the most 
"universal" and cost effective model from these 3 models trained, F-score could be 
helpful since it represents a harmonic mean of precision and recall. Then, model V2 
seems to be the best choice for the detection of distant faint howls of wild wolves at 
the threshold 0.99. It gives the best reduction of human workload because its highest 
precision will result in less false positive detections that need to be reviewed by 
humans. However, we must accept that not all howls are retrieved. Highest F-score 
value of this V2 (threshold 0.99) model for the FAR data set is just 34%, showing 
that the algorithm of ANIMAL-SPOT needs to be improved further in relation to 
distant wolf howls. 

5.2.6 Comparison of the performance of ANIMAL-SPOT to the performance of 
manual detection 

Comparison of the performance of automatic detection using the convolutional D N N 
to the performance of manual detection was made based on F-score values (Fig. 18 
FAR, Fig. 18 CLOSE). The Bonferroni corrected p-value was adjusted from 0.05 to 
0.0125. 

The performance of human detections is significantly higher than the performance of 
the D N N detections (Mann Whitney U test, W =108, p = 0.002, N humans = 8, N 
DNNs =15) when detections were made on the FAR data set. There is no significant 
difference between the performance of human detections and the performance of 
automatic detections by the network when detections are made on the close data set 
(Mann Whitney U test, W =65, p = 0.776, N humans = 8, N DNNs = 15) (Fig. 19). 
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The performance of the DNN, as well as the human performance, is significantly 
much higher when detections were made on the CLOSE data set compared to the 
performance of these groups when detections are made on the FAR data set (DNN: 
Wilcoxon signed-rank test, V = 0, p < 0.001, N = 15; humans: Wilcoxon signed-rank 
test, V = 0, p = 0.008, N = 8). 

It was assumed that the F-score values were independent for simplicity, although 
variants of the same models were used. Mixed-effect models could be eventually 
used to take this into account. 
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Fig 19. Performance of automatic detection made by convolutional DNN ANIMAL-SPOT and human 
detection reflected in F-score values, %. DNN - F-score values of all the network models at all the 
thresholds counted together for the FAR and for the CLOSE data sets, respectively; human - F-score 
values of all the human volunteering annotators counted together for the FAR and for the CLOSE data 
sets, respectively. 
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VI. DISCUSSION 

6.1 Performance of humans 

Passive acoustic monitoring of wolves has never been done in the Czech Republic 
before. And all this work, including my thesis, is about searching for the best 
implementation of this method of monitoring of wolves in the Czech Republic: from 
data collection till automatic detection of wolf howls in long-term passive 
recordings. It is hard to find information and tips about how to process and annotate 
big amounts of recordings retrieved from passive acoustic monitoring. Thus, here is a 
summarization of experience gained during working on this thesis. 

As we see almost half of batches of recordings didn't contain wolf howls, despite the 
fact that recorders were placed on places with recorded wolf activity and sometimes 
even in core areas of the territories or rendez-vous sites (Sluknovský výbéžek, 
Výsluní, Ceske Svycarsko). It seems that wolf howling is not that easy to retrieve 
despite the fact that howls can be heard from far away. Maybe the howling activity of 
Czech wolves is not so frequent i f not considering wolves from the enclosure. It was 
shown, for example, that howling activity may vary between regions, as well as that 
captive wolves and wolves from Yellowstone National Park howl more frequently 
due to their habituation to human presence (Palacios et al., 2022). 

The data also seem to support earlier findings that howling is less frequent during the 
April - July which corresponds to raising the pups. On the other hand, recording 
batches from the end of the summer and autumn seemed to contain more 
vocalizations corresponding to the peak of howling activity which was also found in 
previous studies (Nowak et al., 2007). Daily recording schedule could also affect the 
results. Recorders in Horny Hrádky, Liska, were set to record only till 6 a.m. instead 
of 8 a.m. The peak of wolf howling activity may vary between areas and occur not 
only after sunset and before sunrise but also before sunset and after sunrise (Palacios 
et al., 2022). So, prolonging the daily recording period might help to record more 
howls. Also, more recorders might be needed placed throughout the territories, to be 
able to record howls across the larger area, but this would represent more effort and 
workload on humans and without automatic detection it is not very realistic. 

Experience of an annotator allows change in settings 

Speed of data processing, particularly annotating of sound recordings, depends on 
experience on an annotator. This speed increases fast upon increasing the level of 
confidence that detected sound signals are really wolf howls. 

Further increase of speed of annotation process is possible in case of changing 
settings of spectrogram window in order to find ones that allow to speed the process 
up. Increasing page size of a sound window in Raven helps to increase speed of data 
processing drastically. Though page size taken depends on the experience of an 
annotator and should not go beyond this experience. Optimal page size allows to 
achieve maximum speed of manual annotations without compromising their quality. 

Factors that may affect speed and quality of manual annotations of recordings 

It was expected that it would take much less time and efforts to process manually one 
hour of data from the CLOSE data set compared to one hour of recordings of the 
FAR one. At the same time, the result was opposite. For all the human annotators it 
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took longer to annotate the CLOSE data set compared to the FAR one. Quality of 
processing of the FAR data by volunteers was significantly lower compared to the 
processing of the CLOSE data set. Let's discuss what factors could affect speed and 
quality of manual annotations of recordings. 

The example of our volunteers as well as my own shows that for humans it could 
take different time for processing of one hour of recordings from different data sets: 
the FAR and the CLOSE ones, while there is no difference in time spent by a 
machine for processing data from different locations, of different quality and with 
different abundance of wolf howls. 

Listening to a sound signal in order to determine or verify its origin slows down the 
speed of annotation. Thus, it was expected that annotation of moderate-good quality 
data from Vlčinec would take less time compared to annotations of low quality 
recordings from Mechov. 

Though quality of recording is not the only one factor that may affect speed and 
quality of annotation. Time spent by an operator for annotation of an audio 
recording, as well as a quality of this annotation, depends on many factors including 
experience on an operator, quality of recording, abundance of wolf howls, page 
length etc (Table 5). 

Table 5. Factors that may affect speed and quality of manual annotations of 
recordings 

Factor Description Speed of 
processing 

Quality of 
processing 

Listening to a sound signal in order to determine or 
verify its origin 

yes decreases increases Listening to a sound signal in order to determine or 
verify its origin no increases decreases 
Quality of recording bad low low Quality of recording 

moderate moderate moderate 
Quality of recording 

good high high 
Abundance of wolf howls high low low Abundance of wolf howls 

low high high 
Tiredness of an operator high low low Tiredness of an operator 

low high high 
Spectrogram settings: sound signals are in a good 
focus on a spectrogram, contrast and brightness are 
comfortable for eyes, signal patterns are sharp and 
easy to distinguish 

yes high high Spectrogram settings: sound signals are in a good 
focus on a spectrogram, contrast and brightness are 
comfortable for eyes, signal patterns are sharp and 
easy to distinguish 

no low low 

Page size optimal increases increases Page size 
not optimal decreases decreases 

Quantity of sounds on a spectrogram whose pattern 
resembles a pattern of a wolf howl or which have 
similar frequencies to confuse an operator: vehicles 
(car, train, motorbike), chainsaw, dogs, owls (tawny 
owls), cows 

low high high Quantity of sounds on a spectrogram whose pattern 
resembles a pattern of a wolf howl or which have 
similar frequencies to confuse an operator: vehicles 
(car, train, motorbike), chainsaw, dogs, owls (tawny 
owls), cows 

high low low 

Quantity of uncertain sounds when it is not possible 
to say whether it is a wolf or not 

low high high Quantity of uncertain sounds when it is not possible 
to say whether it is a wolf or not high low low 
Experience of an operator poor low low Experience of an operator 

good high high 
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Difference in quality and speed of processing the data sets by the volunteers is 
connected with different ratios in abundance of different subsets of annotated wolf 
howls in the data sets. 

The recorder deployed in Vlčinec was closer to the wolf enclosure compared to the 
recorder deployed in Mechov, resulting in different ratios of subsets of recorded wolf 
howls in the FAR and the CLOSE data sets. 

The CLOSE data set was constructed from the Vlčinec-II batch of recordings. Thus, 
there is a high abundance of wolf howls in the CLOSE data set. The FAR data set 
was constructed from the Mechov-II batch of recordings (Fig. 15). Reduced 
abundance of wolf howls in the FAR data set makes it quicker for humans to process 
this data compared to the CLOSE one. 

At the same time due to the distant location of Mechov from the wolf enclosure, 
most recorded howls are faint and have low quality. It makes annotation of such 
recordings not an easy task and could lead to mistakes reducing the quality of 
annotations. 

First of all, some wolf howls could be missed. This leads to a decrease in the recall 
rate. Second, when an annotator who has little experience is expecting to find wolf 
howls in the data but doesn't see them, one begins to pay more attention to any curve 
that resembles wolf howling at least somehow and can annotate a wrong signal while 
being sure that it was a wolf howl. This leads to lower precision rates. As a 
consequence F-score which is a harmonic mean of recall and precision also 
decreases. 

One of the possible ways of solving the problem of low quality annotation made by a 
human annotator on a low quality data set is a longer training as well as bigger 
training data set combined with verification of annotations by an instructor with 
subsequent comments on mistakes. Another way could be providing examples of 
spectrograms representing different subcategories of wolf howls together with 
spectrograms of sounds that could confuse an annotator. For example, spectrograms 
of cow calls, rooster calls, vehicles, sound of a train etc. 

6.2 Performance of ANIMAL-SPOT 

The results received on the CLOSE data set clearly show us that the detection 
algorithm of ANFMAL-SPOT works in application to wolf howls. ANIMAL-SPOT 
learns to distinguish wolf howls among other sound signals and noise. But this 
algorithm performs much better in case the recorder was positioned closer to the 
source of the signal (howling wolves) compared to the rather far distance of 1,8 km 
from the recorder to the enclosure. 

When the distance from the recorder to the source of howls is small, the performance 
of the network even matches the performance of humans. This is far from true in the 
case of the FAR dataset. Clearly, the trained model is not yet ready to work with 
"raw" recordings of wild wolves' howls. 

ANFMAL-SPOT has been successfully applied to detect calls of several other 
different vertebrate species and it performed quite well (Bergler et al., 2022). It is 
possible to see that sometimes much less data is needed to train the model for 
accurate classification of species calls. Total time of training dataset ranged from 
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0.18 minutes for pygmy pipistrelle (Pipistrellus pygmaeus) to 649 minutes for killer 
whale (Orcinus orca). Wolf training dataset in this thesis consisted of - 377 minutes 
of wolf samples - the second largest dataset after the killer whales' one. This is likely 
the reason why the network performed so well in the CLOSE dataset. However, it is 
difficult to judge why it failed on the FAR dataset, because the authors do give 
detailed information about datasets for each species and results of evaluation for each 
species. And even a poor data set of pygmy pipistrelle (0.18 min) allows to train a 
model with high precision detection rate (0,996) (Bergler et al., 2022). Different 
factors like, for example, complexity of vocalizations, quality of recordings, and 
presence of additional confounding sounds could affect the performance of 
ANPMAL-SPOT. 

Howls of wild wolves in the recordings are usually distant and faint. They are 
frequently represented just by some trace signals on the spectrogram. Even for 
humans, it is harder to detect them among the noise, especially when there are other 
sound signals of higher quality at the same frequency range that overlap with wolf 
howls. 

Undeniable advantage of a human being over the network is an ability not only to see 
traces of faint howls but also to check the detection out by ear. Listening to an 
unclear sound signal sometimes can say more about its origin than the spectrogram. 
Visual detection combined with audial verification of the sound signal is undoubtedly 
the best option. 

Automatic detection works just with a spectrogram - a graphical representation of a 
sound signal. And even deep neural network algorithms which drastically outperform 
humans in the task of recognizing images (Buetti-Dinh et al., 2019) fail to 
demonstrate higher performance than human beings in case of meeting the distant 
howls of poor quality from Mechov. 

Maegawa et al. (2021) tried to identify the optimal distance of a recorder to the nest 
of Northern goshawks using CNN. Authors showed that the network is able to detect 
calls of the species in the recordings when the recorder is placed not directly on the 
nest but at some distance from it. Although the ability of the system to detect bird 
calls decreased with distance. When the distance of the recorder from the nest was 
200 m, the network could not detect vocal calls of the species in the recordings. 

It could be that the algorithms of the neural network take the faint signals as a 
separate subclass of sound provided for training due to their different quality. Yiwere 
and Rhee (2019) demonstrated that when using convolutional recurrent neural 
networks it is possible to estimate the distance from the source of the sound signal to 
the recorder. This is possible since during training the network performs 
classification of provided spectrograms of sounds recorded at different distances and 
from different locations. 

In this case, one of the likely factors that may affect the performance of 
ANIMAL-SPOT in detection of faint howls could be their insufficient representation 
in the training data set in terms of overall duration considering the difficulty of their 
detection. Probably, an increased amount of data is required to train the network to 
distinguish faint howls. But in this case there is a question: how many hours of faint 
howls is needed to provide to the network for it to be trained to work with this 
category of howls with high performance rates? Probably, the amount of faint howls 
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should be at least as large as the amount of moderate and good quality sounds 
included in the training dataset. 

Further, there is no such abundance of chorus howls in the recordings of wild wolves 
compared to recordings of wolves from enclosure. 

Definitely, there is an opportunity to include more faint howls as well as solo howls 
in this dataset and retrain the model in future. This could be done either by using own 
examples of faint howls amount of which will gradually increase with ongoing 
research or by contributions from other researchers recording wolves on passive 
recorders. 

Manual verification of predictions made on Czech Switzerland-06 at the default 
threshold (0.85) in order to understand how the model will behave with faint wolf 
sounds at higher recall rates, showed that the model skips a lot of faint and 
sometimes even moderate quality sounds, though is successful in detections of 
moderate-good sounds. Among false positive selections there were mainly sounds of 
vehicles, rain and other noise. To solve this problem it is needed to provide a higher 
diversity of noise for the network training. 

Bergler et al. (2019) showed that providing higher diversity of noise to ORCA-SPOT 
slightly improves performance of a model. 6109 additional noise samples were 
included into the training of ORCA-SPOT-2 resulting in higher training and 
validation accuracy, as well as higher rate of true positives, compared to 
ORCA-SPOT-1. High amount of noise was included into the training data of each 
species when training ANIMAL-SPOT. For example, the training data set of pygmy 
pipistrelle contained 3490 samples of noise, overall duration 4,94 minutes together 
with additional 543 augmented noise samples, overall duration 1,80 min. While 
overall duration of sound signals of the target species was around 37 times less than 
overall duration of added noise. 

Training data used for this thesis contained a high amount of noise taken in the same 
quantity and duration as numbers and duration of wolf howls (11303 cuts of wolf 
howls, 2 sec each together with 11303 cuts of noise samples, 2 sec each). Additional 
1433 augmented noise samples were provided to the network. However, since the 
model takes such a huge amount of noise as potential wolf howls, providing for 
training higher diversity of noise may solve this problem. 

Another problem of this experimental data set is lack of howls of wild wolves in the 
data. Since the work on optimization of automatic detection is being done in order to 
facilitate manual detections of howls of wild wolves in the recordings, it is obviously 
needed to work on the improvement of the training data set further. Currently trained 
models have learnt 14 wolves from the enclosure and one wild pack. This low ratio 
of howls of wild wolves in the training data set probably affects predictions on the 
"raw" batch of recordings. It is a question how it would perform on new data from 
different packs or on wolf howls from other regions, because it has been shown that 
wolves from different regions could have different "dialects" (Kershenbaum et al., 
2016). 

A l l of the above represent possible reasons why there is currently some limit in the 
ability of ANIMAL-SPOT to detect the target wolf sounds in the recordings. 
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VII. CONCLUSIONS 

Convolutional deep neural network developed by Bergler et al. (2022) for detection 
of vocal signals of animals in audio recordings - ANIMAL-SPOT - was adapted to 
detect wolf howls in long-term passive recordings. However, performance of 
ANIMAL-SPOT depends on the distance of the recorder from the howling wolves. 
Performance of the network is comparable to human performance in case a howling 
wolf is close to the recorder but it drastically decreases and is significantly less than 
human performance in case there is a need to detect faint wolf howls. 

This thesis represents a first step and assessment for development and optimization 
of the automatic detection of howls in large amounts of recordings obtained during 
passive acoustic monitoring of wolves in Czechia and around the world. 

At the same time, there is potential to improve performance of A N I M A L SPOT on 
wild wolf recordings by enlarging the training dataset, especially, by providing for 
training more examples of solo howls of moderate and low qualities, as well as 
including recordings from different packs and regions, and by examples of 
background noise including sounds that are frequently confused with wolf howls. 
But the base for this further optimization of automatic detection of wolf howls in 
long term passive recordings was constructed. And this base is this thesis. 
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