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Abstract
In recent years, we can observe the rise and rapid development of neural networks and
artificial intelligence in information technology, which include deepfake photos and videos.
Generative adversarial neural networks (GANs) are a clear example of this. Nowadays, they
can achieve virtually impossible results for the average person to distinguish from reality.
Since these networks can therefore be misused for various purposes, it is necessary to be able
to distinguish between what is generated and what is real. This thesis explores current state-
of-the-art neural network solutions that can serve as suitable models for deepfake detection.
We investigate individual architectures that are suitable as a baseline model for detection,
address possible improvements to this model, and develop several new architectures. We
then investigate these and evaluate their results. In conclusion, we have a discussion of the
results and open further questions on this complex issue.

Abstrakt
V posledných rokoch môžeme pozorovať nárast a rýchly rozvoj neurónových sietí a umelej
inteligencie v informačných technológiách, medzi ktoré patria aj deepfake fotografie a videá.
Generatívne adverzné neurónové siete (GAN) sú toho jasným príkladom. V súčasnosti
dokážu dosiahnuť výsledky, ktoré bežný človek nedokáže rozoznať od reality. Keďže tieto
siete sa preto dajú zneužiť na rôzne účely, je potrebné vedieť rozlíšiť, čo je vygenerované a
čo je skutočné. Táto práca skúma súčasné najmodernejšie riešenia neurónových sietí, ktoré
môžu slúžiť ako vhodné modely na detekciu deepfake. Skúmame jednotlivé architektúry,
ktoré sú vhodné ako základný model na detekciu, zaoberáme sa možnými vylepšeniami tohto
modelu a vyvíjame niekoľko nových architektúr. Tie potom skúmame a vyhodnocujeme ich
výsledky. V závere uvádzame diskusiu o výsledkoch a otvárame ďalšie otázky týkajúce sa
tejto zložitej problematiky.
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Rozšířený abstrakt
V posledných rokoch môžeme v informačných technológiách pozorovať vzostup a rýchly
rozvoj neurónových sietí a umelej inteligencie, ktoré zahŕňajú aj deepfake fotografie a videá.
Táto technológia dokáže generovať veľmi realistické audiovizuálne záznamy, ktoré sa dajú
efektívne uplatniť v zábavnom a filmovom priemysle, ako aj v umeleckej sfére či vo vzdelá-
vaní a vzbudiť väčší záujem širšieho spektra ľudí. Ako to už býva, každá technológia má
nielen svetlé, ale aj temné stránky.

Pomocou tejto technológie je možné uskutočniť niekoľko typov útokov v širokom spek-
tre obyvateľstva, či už ide o online šikanu, politické spektrum a ovplyvňovanie davov ľudí
šírením poplašných správ, ale aj falošné obvinenia a ovplyvňovanie súdnictva alebo skrý-
vanie zločineckých identít pri overovaní dokladov totožnosti. Niekoľko z týchto vektorov
útokov a tiež reálne udalosti s nimi spojené, pri ktorých boli tieto útoky použité, sú opísané
v našej práci.

Keďže sme poukázali na dôležitosť prevencie použitia tejto technológie na zlé účely, je
potrebné vedieť, ako sa proti týmto útokom účinne brániť. Moderné neurónové siete, ktoré
sme skúmali, dokážu v súčasnosti generovať taký realistický obraz alebo video, že je často
ťažké odhaliť tieto útoky len pomocou ľudí. Preto sme sa zamerali na konvolučné neurónové
siete a zmapovali sme najmodernejšie riešenia týchto sietí, ktoré sme sa snažili prispôsobiť
pre nami vykonávanú úlohu. Preskúmali sme niekoľko modelov, z ktorých najlepšie vyšla
sieť EfficientNet. Túto sieť sme potom doladili pre úlohu detekcie deepfakes a snažili sme
sa dosiahnuť najlepšiu kombináciu hyperparametrov.

Na efektívne vyhodnotenie vizuálneho záznamu sme sa rozhodli vytvoriť kompletnú
pipeline na spracovanie deepfake videa (alebo obrazu). V prípade videa je potrebné rozdeliť
video na jednotlivé snímky a každú snímku vyhodnotiť samostatne. Potom je možné
vykonať napríklad priemer týchto jednotlivých snímok alebo nastaviť prahovú hodnotu,
koľko snímok je potrebné klasifikovať ako falošné. V prípade obrázka vyhodnocujeme len
samotný obrázok. Potom vykonáme detekciu tváre nad každou snímkou na obrázku po-
mocou vopred natrénovaného modelu MTCNN. Zistenú tvár potom rozrežeme na rozmery
požadované naším modelom a vykonáme centrovanie tváre na stred vstupného obrázka.
Ak sa tvár nachádza na okraji obrazu, je potrebné chýbajúci priestor vyplniť konštantnou
farbou.

Túto architektúru sme sa potom pokúsili vylepšiť pomocou niekoľkých prístupov. Na-
jprv sme sa pokúsili upraviť model určený na detekciu objektov, ktorý sme sa rozhodli
použiť. Tento prístup zvýšil hodnotu AUC (plocha pod krivkou) ROC (Receiver Operating
Characteristic) na neznámom datasete o niekoľko percent. Skúmaním rôznych kombinácií
zmrazenia predtrénovaných váh sme dospeli k záveru, že najlepšie výsledky sa dosiahnu
pri zmrazení prvých 3 blokov siete (sieť obsahuje 7 blokov, po ktorých nasledujú predikčné
bloky z detekcnej siete). Toto správanie môže byť spôsobené tým, že sieť môže obsahovať
extrakciu príznakov v prvých troch blokoch siete potrebných pre túto úlohu. Túto teóriu v
súčasnom stave nemôžeme potvrdiť a bolo by potrebné hlbšie preskúmať jednotlivé bloky
EfficientNet.

Experimentovali sme aj s architektúrou, ktorá by mohla vykonávať detekciu deepfake v
obraze a zobrazovať ich pomocou masky, aby sme mohli určiť presné miesto úpravy. Týmto
prístupom sa nedosiahli požadované výsledky.

Hoci sa nám podarilo vytvoriť architektúru, ktorá dokáže odhaliť deepfake aj nad úplne
novými obrázkami, toto riešenie vyvoláva niekoľko ďalších otázok do budúcnosti, ktoré je
potrebné ďalej riešiť.



Prvou otázkou je vyhodnotenie konzistencie riešenia a následné porovnanie s inými
existujúcimi detektormi. Keďže neexistuje jednotný postup na vyhodnotenie takejto kom-
plexnej úlohy, vyhodnotením sa zaoberá každá práca samostatne. Aj keď sa na výpočet
používajú jednotné metriky, ktoré možno použiť na vyhodnotenie modelu, každé riešenie
používa na trénovanie iné dáta. Model teda môže byť špeciálne predtrénovaný pre dataset,
ktorý sa používa na evaluáciu modelu, a preto sú jeho výsledky lepšie ako výsledky mod-
elov, ktoré tento súbor údajov nikdy nevideli. Naše riešenie použilo na proces trénovania
dataset FaceForensics a na komplexnejšie hodnotenie dataset Celeb-DF.

Ďalšou otázkou je, ako efektívne kontrolovať spôsob, akým sa model trénuje. Pri vyhod-
nocovaní modelu sme narazili na faktor, keď po niekoľkých epochách model dosiahol skvelé
výsledky na validačnom datasete s presnosťou viac ako 95 %. Pri vyhodnocovaní modelu
po jednotlivých epochách nad novým datasetom výsledky neboli také dobré a časom sa skôr
zhoršovali. V niektorých prípadoch nedošlo ku konvergencii k jednotnému výsledku.

Vzhľadom na tieto faktory môžeme tvrdiť, že je potrebné hlbšie preskúmať a zlepšiť
proces vyhodnocovania neurónových sietí pre takéto komplexné úlohy a zjednotiť proces
vyhodnocovania jednotlivých komplexných úloh, ktoré je potrebné riešiť.
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Chapter 1

Introduction

In recent years, in modern technology, we can observe the rise and rapid development of
neural networks and artificial intelligence, including deepfake photos and videos. This tech-
nology can generate very realistic audio-visual recordings which can be effectively applied
in the entertainment and film industry, as well as in the artistic sphere or education and
attract a higher interest from a broader spectrum of people. As it is usual, every technology
has not only a light but also a dark side.

With the help of this technology, it is possible to carry out several types of attacks in a
wide population spectrum [5], whether it is online harassment, political spectrum and influ-
encing crowds of people by spreading popular and false news, but also false accusations and
influencing the judiciary, or hiding criminal identities when verifying identity documents.
Several of these attack vectors and also the real events related to them, where these attacks
were used, are described in our work.

What makes this technology dangerous is also its availability. We can create deepfakes
of audio-visual content or images using several pictures of a person and our mobile phone or
computer. Several freely available applications can do this, or many neural network models
can help a more experienced user. What makes them dangerous is that nowadays, they are
not even demanding computing power.

Since we pointed out the importance of preventing the use of this technology on the
wrong target, it is necessary to know how to defend against these attacks effectively. Modern
generative adversarial neural networks (GAN) [23] that we have researched can nowadays
generate such a realistic image or video that it is often difficult to detect these attacks
using human access alone. This fact is also facilitated by the rapid development in this
area and the wide public interest in this issue. The wide applicability of GAN models, for
example, in the entertainment industry, which is spreading at breakneck speed on social
networks, also contributes to this. We, therefore, focused on convolutional neural networks
(CNN) [43] and mapped state-of-the-art solutions of these networks that we tried to fit for
the task we performed. We explored several models. We then finetuned these networks for
the deepfakes detection task and tried to arrive at the best combination of hyperparameters.

For efficient evaluation of the visual record, we decided to create a complete pipeline
for deepfake video (or image) processing. In the case of a video, it is necessary to split the
video into individual frames and evaluate each frame separately. In the case of a picture, we
evaluate only the image itself. Next, we perform face detection over each frame in the image
using the pre-trained model. We then cut the detected face to the dimensions required by
our model and perform face centring on the centre of the input image. If the face is located
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on the edge of the image, it is necessary to fill the missing space with a constant colour.
We then tried to improve this architecture with several approaches.

To evaluate the experiments themselves, we defined a metric by which we evaluated
them to correspond to the most realistic possible scenario. At the same time, we could
compare the different proposed architectures over it efficiently. We trained our chosen
baseline architecture and then experimented more extensively with the different extensions
we designed. Overall, we have tried two extensions of the baseline architecture, only one
of which we got better results than the baseline architecture. With these extensions, we
improved the system’s overall ability to detect deepfakes in case we compared it with the
baseline architecture. The final output of this thesis is a modified architecture of the
selected convolutional network that demonstrates increased accuracy in deepfake detection
compared to the baseline architecture.

In the discussion, we then discussed the evaluation of our architecture in detail and tried
to look at it from a realistic point of view, not just from the point of view of evaluation
scores and numbers. Although we have succeeded in creating an architecture that can
detect deepfake even over completely new data, this solution raises several other questions
for the future that need to be further addressed.

In Chapter 2, we introduce the issue of neural networks and models necessary for cre-
ating deepfakes and those used for their detection. A deeper understanding of deepfakes is
introduced in Chapter 3, where we explain how deepfakes are formed and present several
freely available models with their evaluation. We then address the risks posed by deepfakes
and introduce architectures that can be used for their detection and discovery. In Chap-
ter 4, we present a baseline architecture and several other architectures we have proposed
for deepfake detection. We also list the datasets we used for training and evaluation and
present the detection pipeline. Chapter 5 is then devoted to a summary of our experiments
on the architectures and their evaluation, followed by a discussion of these problems and
other related issues. The last Chapter 6 summarizes the whole thesis.
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Chapter 2

Neural networks

Neural networks are a concept used for both false-content generation and detection. This
chapter will describe the basic principles of neural networks and divide them into several
subcategories. We will then work with the different types of networks in the following
sections.

2.1 Technical background

The architecture of networks of neurons in the human brain inspires neural network al-
gorithms. These algorithms use idealised neuron models. The fundamental principle is
that artificial neural networks learn by modifying the connections between their neurons to
perform many information-processing tasks [41].

Neural networks are non-linear models for predicting or generating content based on
a general input. These networks comprise neurons connected to layers connected sequen-
tially via synapses. These synapses have weights, generally defining concepts learned by the
network model. A forward-propagation process executes the network on an n-dimensional
input x. Forward propagation refers to calculating intermediate variables for the neural net-
work from the input layer to the output layer with an activation function (ReLU, Sigmoid,
etc.) to summarise the neuron’s output [36, 42].

Neural networks are defined by Mirsky et al. [42]. Let l(i) denote the i-th layer in the
network M , and let

∥

∥l(i)
∥

∥ denote the number of neurons in l(i). Finally, let the total number
of layers in M be denoted as L. The weights which connect l(i) to l(i+1) are denoted as the
∥

∥l(i)
∥

∥-by-
∥

∥l(i+1)
∥

∥matrixW (i) and
∥

∥l(i+1)
∥

∥ dimensional bias vector ~b(i). Finally, we denote
the collection of all parameters θ as the tuple θ ≡ (W, b), where W and b are the weights
of each layer, respectively. Let a(i+1) denote the output (activation) of layer l(i) obtained

by computing f
(

W (i) · ~a(i) +~b(i)
)

, where f is often the Sigmoid or ReLU function. To
execute a network on an n dimensional input x, a process known as forward-propagation is
performed, where x is used to activate l(1) which activates l(2) and so on until the activation
of l(L) produces the m-dimensional output y.

To summarise, we consider the network M as a black box and denote its execution as
M(x) = y. If we want to use supervised learning, we need to define an objective loss function
L and a dataset of paired samples with the form (xi, yi). The loss function generates a signal
at the output of M that is bask-propagated through M to calculate the error of each weight.
Then an optimization algorithm, such as gradient descent or Adam optimizer, is used to
update the weights for several epochs.
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Some neural networks use techniques such as one-shot or few-shot learning, which en-
ables a pre-trained network to adapt to a new dataset X ′ similar to X on which it was
trained. Two common approaches for this are to perform a few additional training itera-
tions on a few samples from X ′ and pass the information on x′ ∈ X ′ to the inner layers of
M during the feed-forward process.

2.1.1 Loss Functions

As Mirsky et al. [42] stated, The loss function must be differentiable to update the weights
with an optimization algorithm, such as gradient descent. Many loss functions can be
applied in different ways depending on the learning. For example, when training M as
n-class classifier, the output of M is the probability vector y ∈ R

n. To train M , we
perform forward-propagation to obtain y′ = M(x), compute the cross-entropy loss (LCE)
by comparing y′ to the ground truth label y, and then perform back-propagation and to
update the weights with the training signal. The loss LCE over the entire training set X is
calculated as

LCE = −

|X|
∑

i=1

n
∑

c=1

yi[c] log
(

y′i[c]
)

(2.1)

where y′[c] is the predicted probability of xi belonging to the c-th class.
Other popular loss functions used in deepfake networks include the L1 and L2 norms

L1 = |x− xg|
1 and L2 = |x− xg|

2. However, L1 and L2 require paired images and perform
poorly. No further detailed analysis of the theory of loss functions is needed for this work.

2.2 Convolutional neural network

Convolutional neural networks (CNNs) [43] primarily focus on processing input as an image.
Thus, by default, CNN neurons are organized into layers with three dimensions representing
the image’s height, width, and depth representing the activation volume. These dimensions
are then reduced using the inner hidden layers, which are then reduced up to 1 × 1 × n

shape, where n represents the number of possible outputs of the classifier.
Figure 2.1 shows a representation of a simple CNN. This network contains several dif-

ferent layers: input layer, convolution layer, pooling layer, fully-connected layer and output
layer. We can divide these layers into two categories, feature extraction and classification.
The input layer specifies the given dimensions of the input image. The image is then trans-
formed by the convolution layer using the learned weights. The pooling layer then reduces
the dimensionality of the image in an attempt to preserve its parametric representation.
This information is then classified using fully-connected layers and assigned to a particular
output category n according to which classification categories the input image satisfies. The
following equation could express this relationship between layers:

IN => [CONV => POOL?] ∗M => [FC] ∗N => OUT, (2.2)

IN denotes the input layer, CONV represents the convolution layer, POOL repre-
sents the pooling layer, FC represents the fully connected layer, and OUT represents the
output layer. M and N are integer numbers, ∗ means repetition and ? means optional.
The activations are not mentioned, but the activation always follows the CONV and FC

layers [45].
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Input Convolution Pooling Fully
connected Output

FEATURE EXTRACTION CLASSIFICATION

Figure 2.1: Architecture of simple CNN [27].

2.2.1 Convolutional layer

The convolutional layer plays a crucial role in how CNNs operate because the layer’s param-
eters focus on using learnable kernels. These kernels are usually small in spatial dimensions
but extend along the entire depth of the input image. When the data reaches the convo-
lution layer, the layer convolves each filter through the spatial dimensionality of the input
to create a 2D activation map. While scrolling through the input image, we calculate the
scalar product for each value of these kernels. Using this process, the network learns which
kernels to use when detecting certain features at specific positions in the input image.
This process is called activation by default. Each kernel has a corresponding activation
map that folds along the depth dimension to form the entire output from the convolutional
layer. Convolutional layers can effectively reduce the complexity of the model by optimizing
the output using the hyperparameters depth, stride and zero-padding.

The number of neurons sets the depth of the output produced by the convolutional layer
in the layer corresponding to a particular part of the image. By reducing this hyperparam-
eter, we can minimize the number of neurons in the network, but this implies a reduction
in the recognition capability of the model.

We can also set the stride, which determines the depth in the spatial dimension of the
entrance through which we place the reception field. If we put the stride low, for example,
to a value of 1, we will get a high overlap of the receptive field that would create very high
activations. Therefore, it is necessary to set the stride value to a higher number to reduce
this overlap factor and thus achieve an output with fewer spatial dimensions.

Zero-padding is a simple process of filling the input boundaries, and it is an efficient
method to control the dimensions of the output volumes further.

Using these techniques, we can effectively modify the spatial dimensionality of the out-
put of convolutional layers. The formula can express this modification:

(V −R) + 2Z

S + 1
(2.3)

V means the input volume size (height × width × depth), R means the receptive field
size, Z is the amount of zero-padding set, and S refers to the stride. If the result of this
equation is not equal to a whole integer, then the stride is incorrectly set, as the neurons
will be unable to fit neatly across the given input. Despite these optimization criteria, the
network for real image processing is huge. Therefore, methods have been developed for
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truncating the set of parameters in convolutional layers. One of these methods is the so-
called parameter-sharing. It works with the assumption that if a region feature is useful for
computation in a certain spatial region, it is likely to be useful in another region. Thus, if we
assign equal weight and bias to each activation map, we can greatly reduce the parameters
produced by the convolutional layer. As a result of this process, we get a state where, in
backpropagation, each neuron in the network represents the overall gradient over its depth,
so it sets the adjustment of the set of weights rather than each weight separately.

2.2.2 Pooling layer

The pooling layer aims to reduce further the dimensionality of the parameters of the internal
representation of the input in the network and thus reduce the computational complexity of
the resulting model. The pooling layer uses the so-called ”MAX“ function for dimensionality
reduction, which applies to each input activation map. This layer is often used as the max-
pooling layer with a kernel dimensionality of 2 × 2 applied with a stride of size 2. These
parameters are not the rule but rather the most common approach. This setting reduces
the input dimensionality to 25 % with depth preserved.

Due to the nature of the pooling layer, there are mainly two types of max-pooling. One
is the one already mentioned, where the values are set to 2 × 2 parameters with a stride
of 2. Thus it is possible to cover the entire spatial dimensionality of the input. But also,
overlapping pooling is used, where the stride is set to 2, and the kernel size is set to 3.
Increasing the kernel size above 3× 3 usually leads to a decrease in the performance of the
resulting network.

CNN can also contain so-called general pooling. General pooling layers consist of pooling
neurons capable of performing many common operations, including L1/L2-normalization
and average pooling. We will not discuss them in detail, as they are not essential for a
basic explanation of the process of CNNs.

2.2.3 Fully-connected layer

The neurons in the fully-connected layer are directly connected to the neurons that represent
the neural network’s output and thus determine the values in the output neurons of the
CNN by evaluating the weights. Between these layers, there is no intermediate layer to
modify the weights.

2.3 Image synthesis networks

Existing state-of-the-art models are mainly built on deep neural networks, showing the ex-
traordinary capability of synthesising new images. Popular categories of models for face
manipulation are generative adversarial networks (GAN) and auto-encoders (AE) [31]. We
also describe the architecture of the U-net network, which is used for localization in classi-
fication tasks.

2.3.1 Auto-encoders

This approach uses two pairs of encoder-decoder [40]. The encoder is used to extract the
latent features from the original image, and the decoder is used to reconstruct the face. It
requires two pairs because it is needed that each encoder-decoder pair is first trained on
the source and then the target image. Then decoders are swapped, so the original encoder
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of the source image and decoder of the target image is used to generate new images from
the target image with source image features. The technique is shown in Figure 2.2. This
approach is mainly used for face-swapping techniques to transpose a victim’s face onto
someone else’s features while keeping the original facial expression.

Encoder Decoder Boriginal
 Face A

latent data
of Face A

reconstructed
Face B from A

Encoder Decoder Boriginal
 Face B

latent data
of Face B

reconstructed
Face B

Encoder Decoder Aoriginal
 Face A

latent data
of Face A

reconstructed
Face A

TRAINING

GENERATION

Figure 2.2: Creation of DeepFake using encoder-decoder pairs [40].

2.3.2 Generative adversarial networks

As stated by Goodfellow et al. [23], generative adversarial networks are a framework for
estimating models where we simultaneously train two networks. One generator network
captures the data distribution, and the discriminator network forecasts the probability
that a sample came from the training data. Then the training procedure for the generator
network is to maximise the likelihood of the discriminator network making a mistake.
The training process is finished when the discriminator network can no longer see the
difference between generated and actual samples. After training, the discriminator network
is removed, and only the generator network is used. This process is shown in Figure 2.3.

Real sample

Generated sample

Discriminator

Discriminator
loss

Generator
loss

Generator

Figure 2.3: Ilustration of generative adversarial networks structure [24].
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2.3.3 U-net architecture

For classification tasks, convolutional neural networks are normally used (described in Sec-
tion 2.2). Still, some tasks require classification and localization of the classified segments
in the input image.

Early versions of this kind of network worked on the sliding-window principle, where a
local region was created around each pixel, and then its classification was evaluated. This
approach is computationally intensive because it is necessary to run the network prediction
for each pixel separately. At the same time, having a much larger number of training data
relative to the training images is necessary. This approach also adds a significant proportion
to the robustness of the network because it is necessary to have many more max-pooling
layers.

In the paper U-Net: Convolutional Networks for Biomedical Image Segmentation, Ron-
neberger et at. [47] improved architecture based on a ”fully convolutional network“, which
provides higher accuracy while requiring less training data. The main idea is to replace
pooling layers with upsampling layers. This approach can learn to produce more accurate
output images in high resolution since upsampling layers contain a high number of feature
channels. The upsampling part is essentially symmetric to the main contracting part, hence
the name of the u-net architecture, as it is formed in the letter U. The architecture also
does not turn off any fully connected layers and therefore ensures a reduction in the number
of trainable network parameters and shortens the training time.

Input
image

Output
segmentation

mask

3 blocks
conv 3x3

max-pool
2x2

up-conv
2x2

conv
1x1

copy

Figure 2.4: Ilustration of U-net architecture [47].

The standard U-net architecture can be seen in Figure 2.4. It is normally divided into
left contraction and right expansion parts. The left cast is, by rule, a standard convolutional
network and thus consists of a 3× 3 repeated application of convolution, each followed by
a rectified linear unit (ReLU) and a 2 × 2 max pooling operation with stride 2 for down-
sampling. At each step during downsampling, the number of parameters is doubled. Each
step in the expansion part again consists of upsampling followed by a 2×2 convolution that
halves the number of parameters. In this part, the concatenation with the corresponding
part from the contraction part is also important, followed by two 3 × 3 convolutions and
ReLu activation. The final layer then uses 1x1 convolution to map the feature vector to the
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desired number of classes. In this architecture, it is necessary to choose the input image
size so that each 2x2 max-pooling operation is applied to a layer that has even x and y
sizes.

The training can then be done with the same number of input images and their as-
sociated desired output masks. However, the authors state that it is preferable to use
high-resolution images for training and not to divide them into batches for efficiency on the
graphics. At the same time to ensure high training momentum to set fast training. Here we
assume that this is more a setting directly for the task for which this network was designed,
i.e. Biomedical data. In other cases, we believe deeper experimentation with the network’s
sensitivity to overtraining is needed.
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Chapter 3

Deepfake

DeepFake is a technique to synthesise or modify image/video and audio recordings with deep
neural networks based on the creator’s will without actual interaction with faked object [42]
or person. In recent years, the concept of DeepFakes gained popularity in various ways,
but most in manipulating people’s faces and voices. Nowadays, to create DeepFake, you
only need to open your smartphone and download the application that makes some funny
DeepFake for you. Some examples of popular applications for smartphones are Dawn AI [53]
or iFace [3]. Dawn AI takes a few pictures of the person and creates a virtual avatar with
some thematics like some mythical creature or astronaut or only modifies your hair colour
similarly. iFace is an application that works on a face swap technique (which will be
explained later). It takes a selfie picture of the person and inserts it into a short video from
some popular movie. More approaches to DeepFake creation will be explained further in
the text.

3.1 What is a Deepfake

Deepfakes are AI-generated media that reproduce made-up events often authentic to the
human eye. The term DeepFake is only a slang term with no agreed-upon technical defini-
tion. This word combines ’deep learning’ and ’fake’, commonly referring to audio or video
of a person doing or saying things they never actually did or said generated by an artificial
neural network [4, 42].

DeepFakes are created with a deep learning method that relies on a complex computing
system called a deep neural network modelled on the biological brain. At first, the network
takes training data samples of the targeted person and then uses an algorithm to extract
mathematical patterns from this data. Synthetic data of the targeted person are then
generated based on these patterns.

Commonly known types of DeepFakes are Face-Swap, Puppet-Master and Attribute-
Change. Face-Swap uses multi-scale architecture convolutional neural network (CNN) to
paste faces from one image to another. Puppet-Master is a technique that manipulates
lip shape. It creates a fake version of the video with the speech of the targeted person
using target audio. Attribute-Change generates detailed and continuous facial expression
transformations [32]. Technical details about these techniques are explained in further
sections.

While commonly discussed types of DeepFakes aim to mimic real people, deep learning
is also used to create entirely fictional objects or people. Deep neural networks can generate
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synthetic images of non-existing people, things, animals or art-like creations. DeepFakes
are a subset of synthetic media. This category includes all AI-generated images, video,
audio, and text formats [4].

3.2 State-of-the-art GAN models

Our primary focus in this thesis is generative adversarial neural networks (GANs). These
networks have a wide range of representations in deepfakes generation, which we will in-
troduce several in this section. They can produce very realistic images (and not only of
people) that are hardly recognizable from reality, and the development of these models is
still in progress. They are also the basis for datasets that we will use later.

3.2.1 StarGAN v2

StarGAN [8] is one of the first models capable of the mappings between a large spectrum of
features, like skin tone, hair colour, eye colour, etc., with a single generator. The generator
transforms an image into a corresponding domain by taking a domain label as an additional
input. One of the main problems with StarGAN is deterministic mapping per domain.
However, data distribution is far more complex, so it brings problems with predetermined
labels.

Choi et al. [9] stated that StarGAN v2 improved this approach and can generate images
across multiple domains. Genuine domain labels are replaced with domain-specific codes
representing specific domain styles. An improved mapping network transforms random
Gaussian noise into style. A new encoder is then used to extract the style from refer-
ence images. With this technique, an improved model can synthesise diverse images over
domains.

Figure 3.1: Morphed pictures based on the male character with StarGAN v2. Face bottom
left is the source shape for feature extraction. The top row shows the shapes from which
the pose shapes were selected and their basis for the generated images. The bottom row
(except for the image on the left) shows the result of the generation.
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We have tried the official TensorFlow implementation of StarGAN v21, and produced
results are pretty impressive. One of the pretrained models is trained on the CelebA-
HQ dataset [33], which consists of 30 000 high-resolution images and can pretty realistically
morph features of targeted people. Figure 3.1 and Figure 3.2 show results from image
generation.

Figure 3.2: Morphed pictures based on the female character with StarGAN v2. Face bottom
left is the source shape for feature extraction. The top row shows the shapes from which
the pose shapes were selected and their basis for the generated images. The bottom row
(except for the image on the left) shows the result of the generation.

The demonstration on an Animal Faces-HQ dataset (AFHQ) dataset [9], which had
been rebuilt using high-quality resize filtering. The pretrained model used animal faces for
training, where the network also showed remarkable results, as shown in Figure 3.3.

3.2.2 StyleGAN v2

StyleGAN [34] focuses on designing a generator that tries to control the image synthesis
process as much as possible. The framework attempts to adjust the style of image input
at every convolutional layer, which it uses to control the power of the images features
specifically. It also uses noise injected directly into the network, which leads to unsupervised
high-level attribute separation in synthesised images. The generator ingrains the latent
input code into a latent space, significantly affecting how the various factors are represented
in the network. Nevertheless, it doesn’t modify the discriminator or loss function in any
specific way.

Newer StyleGAN v2 aims to fix characteristic artefacts and improve the quality of
generated images. As Karras et al. [35] stated, version 2 has improved the architecture
and training process to eliminate primarily two main issues. At first, blob-like artefacts are
displayed in generated images, and second, artefacts are related to progressive growth. The
new design also allows for generating higher-resolution images than the previous version.

1https://github.com/clovaai/stargan-v2
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Figure 3.3: Morphing pictures based on the animals with StarGAN v2. Face bottom left is
the source shape for feature extraction. The top row shows the shapes from which the pose
shapes were selected and their basis for the generated images. The bottom row (except for
the image on the left) shows the result of the generation.

Figure 3.4: StyleGAN v2 generated images that achieve high quality in the eye of the
observer.

We used StyleGAN v2 official repository2 to demonstrate the functionality of this net-
work. They provide a pretrained model trained on the Flickr-Faces-HQ (FFHQ) dataset [35],
consisting of 70 000 high-resolution images of people of different ages, ethnicities and back-
grounds. Figure 3.4 demonstrates high-quality performances from the same seed image.

At last, as shown in Figure 3.5, not every complete transformation produced by Star-
GAN v2 is optimal. At some point of truncation, images look glitched or touched with
some abstract artistic concept.

2https://github.com/NVlabs/stylegan2
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Figure 3.5: StyleGAN v2 generated images with unusual outcomes.

3.2.3 GHOST: Generative High-fidelity One Shot Transfer

The GHOST [25] project brings the GAN solution also to the face-swap problem. It mainly
focuses on improving known problems in deepfakes, such as eye gaze inconsistency, face edge
errors and others. The FaceShifter [37] model is chosen as the baseline for the architecture,
which tries to improve the solution for these known errors. The model consists of three
main components as shown in Figure 3.6, where Xt and Xs represent input images (or a
pair of video images), and Yst represents the output from the model.

Attribute encoder

AAD generator

Identity encoder

Discriminator

Xt

Xs

Yst

Xs

True

False

Figure 3.6: Ilustration of GHOST architecture [25].

The identity encoder is implemented using the ArcFace model, which extracts a vector
of size 1x512 from the input image Xs, in which it tries to preserve information about the
source of the person’s identity.

An attribute encoder is a model built using U-net architecture which extracts features
from the target image.
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Figure 3.7: Example of using GHOST for image-to-image transition. With source (left),
target (middle) and result (right).

Figure 3.8: Example of using GHOST for image-to-image transition in B&W. With source
(left), target (middle) and result (right).

The AAD generator is a model that mixes the identity vector evaluated from Xs and
the attribute vector evaluated from Xt using AAD ResBlocks during the creation process
and generates a new face Yst with the source identity and target attributes.

Next, the discriminator functions as a standard discriminator in the GAN architectures
we described in Section 2.3.2, which tries to decide whether the resulting generated output
is real or fake, thus improving the network training process. The solution also comes with
an improved loss function in training for better network results.

GHOST has shown remarkable results during testing. It can work with two images and
plant a shape into the whole video sequence using one photo, often with very high precision.
Of course, there are cases when it doesn’t do this very well because it is a generic model
that works with one photo as its input. Figure 3.7 and Figure 3.8 show examples produced
by this model.

Figure 3.8 shows that GHOST effectively incorporates not only the face into the image
but the face into the overall scene, where it works very well with making a face fit in the
environment whether by quality, colour, style and other factors that belong to it.

When testing on video, we captured a few frames where the model had a problem, for
example, passing the hand in front of the shape. These are specific cases that almost every
such model has problems with. Still, in the case of using this kind of deepfake, the material
maker can adjust the source and target images/videos according to the model so that these
glitches don’t happen to him.
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3.3 Deepfake threads

The types of deepfake attacks can be of different natures. It can be attacked on specific
persons to tarnish their name or to dehumanise them, as attacks on individuals in general.
Still, it can also be global attacks that will influence mass opinions. We describe various
attack scenarios in this section. We have focused on general attacks using deepfakes with-
out segregating the technology used or the user’s expertise because, nowadays, practically
everyone has access to this technology in their pocket.

3.3.1 General attack vector

Although many scenarios exist of how a deepfakes attack can be executed, most rely on
the same structure. We have described the attack procedure in the same way as Brooks [5]
stated.

1. Intent - The attack starts when the attacker who wants to use deepfake decides to
execute an attack on the selected target according to the chosen scenario.

2. Researching - The attacker needs to research his desired target, which in principle
means that he needs to obtain as much material as possible containing image or
audio-video recordings of the victim. The type of material may vary depending on
the scenario chosen and also on how much close contact the attacker has with the
victim. For example, in the case of Cyberbullying, this step is often much easier than
in Deepfake kidnapping.

3. Training model - In this step, the attacker needs to use the collected data to train
a model suitable for the form of his attack. This step is highly dependent on the
attacker’s knowledge and resources. The type of training and technology used de-
pends on the time spent on this step. In many cases, using commercially available
applications where the required resources are insignificant is possible.

4. Media creation - After training the model, the attacker creates the desired deepfake
according to the chosen scenario. This step can be repeated because the quality of
deepfakes can vary depending on the requirements and may not always be sufficient.
The last two steps do not always have to be performed by the attacker alone. If the
attacker is not experienced or does not have sufficient resources, he can pay for such
a service.

5. Distribution of the deepfake - Then the deepfake needs to be distributed. The way
of distribution can be subtly varied according to the chosen scenario. For example, it
can be posted on social networks, sent out via email or by establishing communication
using a new fake identity.

6. Viewer response - Deepfake has reached the target group of users, and their reaction
is awaited.

7. Victim response - The victim’s reaction is awaited. The victim is a specific sub-
group of viewers from which a different reaction to a given deepfake is also expected.
Depending on the scenario, it may be a statement that it is fake news. Depending on
the scenario, the expected performance may differ.
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At every step of a deepfake attack, it is possible to put preventive measures in place to
prevent this attack. As a rule, each attack belongs to a different category and, therefore, to
a different institution that could prevent this attack. Our work mainly focuses on detecting
deepfakes in the ”Distribution of the deepfake“ step and thus stopping the attack directly
before any damage is done because even if the deepfake is detected later, it can cause profit
for the attacker and problems for the victim.

3.3.2 Attack scenarios

To better understand how deepfakes work and their impact on security, we summarised a
few scenarios of how deepfakes attacks can work. We have divided these scenarios into three
categories: national security and law, commercial use, and society, as Brooks [5] stated. We
focused mainly on those where it is possible to use image deepfakes. For deepfakes where
it is possible to use audio-video format, it is possible to find several other scenarios or to
extend those we describe.

National security and law scenario: Deepfake kidnapping

In this scenario, a criminal gang operating in any tourist location with a high crime rate
(such as Mexico) can track down a tourist group. Suppose they can evaluate the tourist
group as a suitable victim. In that case, they can use deepfake imagery to create a scene
where the gang captures one member of their group, or they can upload footage of a member
of their group being injured to make the victim more likely to comply with the gang’s
demands. Then they can use this material to extort money from other group members. Of
course, this scenario only works if there is a situation where the group members are not
in constant contact, which is not unusual in tourist destinations. In the end, however, the
victims are not injured, and the criminal group does not have to make any extra effort to
kidnap them.

National security and law scenario: False evidence in a criminal case

Nowadays, in serious criminal offences, such as murder, the prosecution is already pursuing
charges against the accused perpetrator using evidence such as DNA tests, fingerprints or
various audio-visual recordings and testimonies. In this scenario, we take the perpetrator
as an advanced person in deepfakes or wealthy enough to pay for such a procedure. Such a
person may be able to use audio-visual recordings to provide false evidence of, for example,
his location within a building (or even another building) at the time of the offence. By doing
so, he supplies relevant evidence of his innocence, and at the same time, he can discredit
other types of evidence against him, such as witness statements from the crime scene. Thus,
he does not only help himself by false evidence but also by reducing the relevance of other
evidence against him.

This scenario can also be applied in the opposite case similarly. Thus against a person
who is accused and is innocent, we prove in this way the perpetrator or another entity
that would have an interest in it introduce ”relevant“ evidence that shows that the person
should be guilty.
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Commerce scenario: Corporate sabotage

This scenario sets an option of spreading misinformation to damage the company’s reputa-
tion, whether it is the overall reputation of the company, the individual products that the
company offers, the company’s board of directors and others. Damage to the company’s
reputation can occur, for example, when some of its top executives or well-known figures are
falsely accused, which can negatively affect the company’s current and future collaborations
or their prices on the stock market.

Commerce scenario: Corporate liability concerns

The following scenario works with a high-quality deepfake video rather than a standalone
image. We present this scenario because it is also possible to cut the video into a sequence
of images and evaluate whether the individual frames are deepfake.

Here we are not working with a direct impact on the company, but rather for a fraud on
the client side, where it is then possible to claim monetary compensation from the company.
If a company that manufactures a product (e.g. a mobile phone) has a defective product
that, for example, explodes, the attacker can use sufficient knowledge to declare his product
equally defective and demand compensation for damages. It is possible to trace original
videos of these defective products with other customers to whom the damage was caused.
The attacker then uses deepfake to create a similar video with his product, simulating the
same type of error that occurred in the past. Based on this, he can hang this video on
social networks. As this kind of video is gaining popularity extremely fast, the company
can be subsequently pressured to compensate the customer, and it is extremely problematic
to verify whether this incident happened. The company would also put itself at great risk
if it wanted to prove that the video in question was not genuine, as it could nevertheless
cast a bad light on a company that does not want to compensate its injured client.

Commerce scenario: Stock manipulation

In this scenario, the attacker impersonates several high-ranking company employees and,
based on their announcements, can manipulate the company’s price and make a financial
profit. The attacker then creates several profiles on social networks that present themselves
as company employees. These may be real employees or fictitious persons who only pretend
to be company employees. The attacker then posts an announcement on the fictitious profile
of a high-ranking employee (e.g. the CEO of the company), which will affect the company’s
future share price. He can buy the company’s shares if the announcement is positive before
the attack starts. If it is rather negative, he can wait for a subsequent fall in the share
price, which should probably be corrected in some way after the fake news is revealed. This
claim can then be supported on other employee profiles created to increase the relevance of
the announcement.

The attack can then be further enhanced by either an audio or audio-video deepfake,
where the announcement is made verbally on video. This way, we can increase the relevance
of the information even more. The attacker not only benefits himself but also destroys the
company’s good name and harms other investors in the company. Therefore, it may not be
purely an attack where the aim is financial gain but also to harm another person or group.
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Society scenario: Cyberbullying

This scenario assumes that the attacker wants to harm the target person exclusively. It is,
therefore, not some form of threat for financial enrichment but rather to lower the victim’s
reputation in a particular group, such as family, work, etc. It may also have the secondary
effect of benefiting the victim’s rival. A standard method of this attack is to create a picture
or video of the victim in a situation that is against the policies of the group in which the
person is a member, which will result in, for example, a ban from attending the group’s
events or a complete exclusion from the group where the victim is located.

Cyberbullying is a form of assault that most often occurs in young people due to the
influence of social media. As young people tend to congregate in large numbers in similar
groups on platforms such as Instagram, Tiktok and others, it is much easier to spread such
fake photos or videos in these groups. Adding to the impact is that if the picture is well
taken, even later proof that it is a deepfake can cause permanent damage to a person in the
collective precisely because it is a sensation that the whole group is addressing. Still, then it
does not matter later on. Another important factor in this issue is also the easy accessibility
to the tools for creating deepfakes, which we have discussed in previous chapters. Thus,
it is extremely easy to create a deepfake, even for a primary or secondary school student.
This deepfake does not have to be extremely high quality, as the general public and experts
in this field do not fully judge it.

Society scenario: Pornography

The issue of deepfake pornography has been dealt with more extensively in Section 3.4.3,
so this attack scenario, despite its extreme seriousness, will be described only briefly. A
common scenario for creating deepfake porn is an ex-boyfriend who cannot get over a break-
up with his partner. Since couples usually have a lot of mutual images and videos, it is easy
for an attacker to train a neural network from enough material to create such a deepfake.
The attacker can then demand that the partner stays in the relationship. If she does not
comply, he publishes this deepfake on the Internet. This can be pornographic photographs
or videos using the face-swap technique. Since this kind of content is available on various
portals, finding a person who, at first glance, resembles the partner so that the deepfake is
as believable as possible is not a problem.

Society scenario: Election influence

In this scenario, we are working with influence on the political scene. Let’s imagine a
situation where candidate A is running for the AP party, and candidate B is running
for the BP party. The BP party can create fake news to boost its candidate, using an
audio-video deepfake of candidate A to damage his reputation and directly increase its
candidate’s chances. They can also use forms of deflection, as discussed in the section
above (cyberbullying or deepfake porn), to harden candidate A for his potential voters
and thus directly attract voters to the side of their candidate. The cases mentioned in
Section 3.4.3 work with the same scenario.

Society scenario: Child predator

One of the most serious scenarios with deepfakes is their use against underage children.
The attacker, who communicates with a small child, can use deepfakes to create his own
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identity as a small child. It is, therefore, easier for him to communicate with the child, as
the victim thinks he is dealing with a child of his/her age and not with an adult. Then
he can find out various things about the background of the child and his parents, influence
him, in the worst case, he can meet him at a dangerous place and possibly kidnap or hurt
him. This scenario is one of the worst because the category of victims is often not mature
and educated enough to recognize whether they are communicating with a child or an adult.
If this attack succeeds, only one last element can prevent this from happening: the timely
input of parents, which is often problematic in the online space.

3.4 Incident reports

For a closer approach to the theoretical scenarios in the last section, we will present several
reported real incidents divided into subcategories.

3.4.1 Passport morphing attack

Biometric face recognition is widely used in border control applications to recognise in-
dividuals based on facial characteristics. The face reference image stored in a passport
or other identity documents strongly connects the biometric reference and the document
holder. Face recognition systems must be tolerant against intra-subject variation. Morphing
attacks can exploit this tolerance bound [17].

This type of attack was first demonstrated by Ferrara et al. [16] and later confirmed
by several research works. Two commercially available face recognition software were used
with modified parameters according to the European standards used at border controls of
European countries. To our surprise, even nowadays, there are countries where the photo
of a person for a passport is not taken at a government office, but the person takes the
picture at home and only brings it when arranging a passport.

Behaviour

Ferrara et al. [15] stated that if a morphed image similar to the face of two people can be
included in a Machine Readable Travel Document (eMRTD), then two persons can share
the document. In this scenario, a criminal can exploit the passport of a collaborator without
criminal records to overcome security controls. The subject with no criminal records could
apply for an eMRTD by presenting the morphed face photo; if the picture is not noticeably
different from their face, the officer accepts the image and releases the document.

The conditions for a successful attack are these two.

• The photograph is sufficiently similar to a person applying for a document, and it is
possible to deceive a human expert who can see through it.

• A Face Recognition System can successfully recognize a photograph (FRS) in the case
of both human subjects.

Several studies have confirmed the high realism of the generated images and their ability
to deceive even a trained human worker. This problem becomes all the more severe because
attackers often use the small size of the photographs used for passports, typically 3.5cm x
4.5cm, which helps the attacker. After all, the small size of the picture and its printing can
effectively hide the flaws caused by the morphing process [46].
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3.4.2 Fictional accounts

The Internet and social networks are undoubtedly the strong sides of this time, whether
we look at it from the point of view of communication, advertising, influencing people, etc.
People use real names or pseudonyms on social networks like Twitter or Instagram. They
communicate with their friends, fans or members of multiple groups according to their
preferences. Therefore, there is natural space for various fictitious users in these places.

Today, the social network Twitter has switched to a new blue badge model [52], where
all a user has to do is pay for a subscription, which costs a few dollars a month. They
automatically become ”verified“. Previously, it worked differently because a person who
wanted this verification badge had to meet a few problematic conditions. Of course, they
had to be a public figure or a company. Therefore, social network users could ”look up
more“ to those who owned this badge because they were sure they knew who they were
communicating with and who was posting their ”tweets“.

The article published by the CNN news portal in 2020 [44] beautifully presents the abuse
of this power. Andrew Walz calls himself a ”proven business leader“ and a ”passionate
student advocate.“ Walz, a Republican from Rhode Island, is running for Congress with
the tagline, ”Let’s make a change in Washington together,“ or so his Twitter account
claimed [44]. This profile was given a badge from Twitter because they wanted to make
it easier for people to access relevant content from political candidates ahead of the 2020
elections. There would have been nothing wrong with this approach if it had not been
discovered that Andrew Walz did not exist. The Twitter profile was created by a 17-year-
old student as a free-time activity during the holidays. He later said that his effort was to
test Twitter’s election integrity efforts. What is also alarming about this story is not only
the fact that Twitter managed to verify a non-existent candidate. This could be seen as
a short circuit in processing a large amount of data, and one profile slipped through the
cracks by mistake. It is also alarming that many candidates have complained that Twitter
could not verify their accounts. Still, despite this, the account of a fictitious person has
been verified.

Other media outlets have reported similar findings about fake profiles created by deep-
fakes. For example, an article by James Farrell [14] includes a report from the LinkedIn
job network that detected thousands of fake profiles among its users. In this case, people
eventually meet a real person in person and potentially get the job anyway, but that does
not change the fact that this is disturbing.

In modern society, dating has also moved mainly to the online world. This is evidenced
by the dating apps people use nowadays, such as Tinder, Hinge, Bumble, etc. In these
apps, we interact daily with thousands of users of our preferred gender; in the more pleas-
ant case, there is some mutual match and the possibility of some further communication.
Unfortunately, even in this case, one cannot be sure that one communicates with a real
person.

Social networks and dating apps are full of fictitious characters pretending to be real
people. They don’t always use deepfake technology to generate their images. Even photos
stolen from the internet are often enough for this approach. Deepfakes, however, allow
deeper communication with the person on the other side. Constructing a new photo ac-
cording to the current needs is always possible. One of the easiest ways to use it is to
use a bot that automatically communicates with the other party and can later get critical
information from him, such as payment card details. A more sophisticated method is to use
deepfake to obtain a match and then communicate with a real person. In this way and with
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very personal communication, attackers can get, for example, compromising images from
a person, which they then use to blackmail that person. ”There are hundreds, probably
even thousands, of Australians who have gone on to pay this money, and they are still
getting blackmailed,“ as the Foster [21] states. Foster [20] also mentioned a practice known
as revenge porn, where men exchange such photos of women from their neighbourhood on
the internet, which can lead to psychological, not only financial, damage to health. Xu [59]
shows a preview of the possible methods of creating these profiles. Still, it is truncated due
to the privacy risks created using the Tinder Kaggle Profile Dataset.

3.4.3 Fake accounts and face-swapping

Deepfake technology can create fictitious persons and add a real person’s face to a specific
scenery. This approach allows the attacker to upload the face of his victim anywhere he
wants, whether it is some way of manipulating the person’s reputation, convicting him of
a crime he did not commit or even ”filming“ pornographic content.

Pornographic content

In 2018, researchers at Sensity AI found that nearly 90 % of deepfake clips are non-
consensual pornographic clips, predicting that this number will double every six months. In
an article by Jennifer Savin [49], the author states that after googling the phrase ”deepfake
porn“, the google search engine lists 57 million results, and the interest has increased by
31 % in the last year. But several approaches are available online to create this kind of
deepfake easily and relatively quickly. We have mentioned a few simple applications that
would be capable of this in Section 3.2, but this is far from all. Several public repositories
of face-swap solutions are available online to create such fake photos or videos. For a more
experienced user, this approach is no problem because all you need to do is find a solution
of sufficient quality. Savin [49] tells the story of a woman whose photos were found online.
She admitted that the only thing she found in the photo as possible evidence of fakery was
a weak pixelation in the waist area, which could have been removed with Photoshop if she
had made a little effort.

Considering that this category of deepfakes is the most used, several more straightfor-
ward approaches exist to create such a fake. There are even online forums where people
offer their services to make deepfakes. The Vice portal published an article [30] where they
set up a deepfake platform and informed about the prices and possibilities in this industry.
As they state, they have communicated with several ”content creators“ who charge an av-
erage of around $30 for creating a video, for which 13 seconds of clear footage of the victim
was enough. The attacker even told the journalist that the price would be lower later be-
cause he had already trained his network on the victim whose video he had provided. After
communicating the order, where the video and the link to the pornographic material were
handed over, the resulting picture was taken in approximately twenty-four hours. These
forums, therefore, give even attackers without experience or the necessary resources the
opportunity to attack for a relatively small fee for the damage they can do to their victim.

Sensity AI also published an interesting article [2] about another kind of deepfakes that
works in a specific way. Framework DeepNude requests a photo of the victim, who then
uses AI to strip naked. Therefore, it is not precisely a face-swap technique because the
photo’s exposure should be preserved, and there is no need for several pictures or a shorter
video. This framework was sold in 2019 to an anonymous buyer after its success, and its
different variations are currently available on the internet in the form of applications or

24



GitHub repositories. This framework also came with automating the process of creating
these deepfakes. According to Sensity AI, several bots on the Telegram platform operate
with this framework. From the service provider’s point of view, it is a fully automated
process. Just visit one of these Telegram groups, upload a request, and within moments
the attacker will receive the finished photo for a small fee. Sensity AI reports that at the
end of July 2020, more than 100 000 photos were taken by such bots and published, and
this number continues to grow.

This approach reflects the increasing tendency to use various deepfake attacks and the
need to address this situation.

Political influence

Deepfakes of politicians belong, from a global point of view, to one of the greatest threats
we face in this technology. The audiovisual images of politicians and their statements im-
pact the public on a vast scale and shape public opinion, whether national or supranational.
They are also easy targets for attackers because they can obtain massive datasets of pub-
lic speeches, photos and various other recordings through the training process of neural
networks.

The Medium [28] portal has summarized several publicly available videos that have
been created using deepfakes, among them some useful ones, such as an Indian politician
who used deepfakes to translate his speech into several languages or the example of Barack
Obama, which serves more as an instructional video to let people know what this technology
can do. In our opinion, this video looks very convincing. However, some videos have caused
a lot of misinformation.

One of the most famous videos is the deepfake of former US President Donald Trump [6],
published by the Belgian Socialist Party. In the video, Donald Trump calls on the states to
withdraw from the Paris Climate Agreement, just as the United States will. Although the
video was imperfect and presented as a fake, it misled many people into thinking it was an
actual speech.

Another well-known example of the use of deepfake is the creation of a video by
Volodymyr Zelensky calling on the Ukrainian people, during the current war in Ukraine, to
lay down their arms and surrender to the Russian Federation [12]. Zelensky subsequently
denied the video and declared it false, but this does not change the consequences the footage
could and perhaps did bring. There have also been deepfake videos of Vladimir Putin call-
ing on Russian soldiers to surrender in this war. This war is a clear example of a significant
threat, even in such military conflicts, where such an act of aggression can cause the morale
of the troops to plummet and turn the situation in favour of the aggressor. In such cases,
technology is dangerous because fake news gets into the consciousness of even unknown
people and shapes their public opinion.

As Medium points out, few known cases of Deepfakes being used for political purposes
exist [28]. However, this fact may be due to the development of technology, and the further
we go, the more frequent these cases may appear. The war in Ukraine is a clear example of
this, where similar incidents have occurred several times during a few months of fighting.
In such conflicts, each side’s moral support is important for their victory, not the absolute
perfection of the technology, because, despite any efforts, the other side will soon declare
that the video is fake.
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False accusation of criminal activity

As this technology develops, important issues, such as recording evidence in court trials,
are also emerging. In the past, oral testimony or a written signed statement was taken as a
conviction or valid proof in a trial. In the development of mobile devices such as telephones,
photographs, videos, or audio recordings have also come into use. These make it possible to
offer evidence even though, for example, the witness who took a photograph might fear for
their life and, therefore, not want to appear in court. With them also comes the possibility
of one of the parties using deepfake as evidence or one of the parties challenging the evidence
concerning this technology.

The modification of photographs as forensic evidence is nothing new. It did not come
with deepfake technology. Digital image forensics mainly focuses on the low level of a
picture to verify its credibility. However, this does not change the fact that videos and
audio recordings are now being added to this, which will only become more and more
sophisticated as time goes on.

The issue is also dealt with in several articles [7, 18, 22].

3.4.4 Summary

In this section, we have shown several theoretical scenarios and, at the same time, practical
examples from the real world of how we can encounter abuse through deepfakes in almost
every segment of our life, whether it is a personal, commercial, or governmental sphere. It is
therefore important that we minimize their bad impact on society and work on prevention
against these attacks at every available step.

This work, therefore, focuses on the detection of deepfakes at the moment of their
publication and in later steps because prevention in the early stages of the creation and
acquisition of the necessary data is an extremely complicated task from the point of view
of freedom, where without the restriction of current free rights it is virtually impossible to
prevent their creation and subsequent dissemination.

3.5 Deepfake detection

Detection of deepfakes is a direction that is the focus of a lot of research because, as shown
in the previous chapter, they are a severe security risk in many ways. In this chapter,
we will discuss some basic approaches that are used for deepfake detection from a human
perspective, we will discuss the basic principle of deep neural networks that try to solve the
problem of image classification and deepfakes recognition, and we will introduce state-of-
the-art models that are used to solve this problem.

3.5.1 Human detection

Before using neural networks for detecting deepfakes, standard methods focused mainly on
the consistency of the image from a low-level view. In addition to the standard search for
artefacts that neural networks often leave in their generated images, there are also standard
forensic procedures used in the pre-deepfake era to detect possible photo manipulation, and
they are still used today.

One of the best methods of detecting fake images is to examine the fingerprint left by
the camera [39]. With good photos captured from the same camera, it is possible to analyse
the amount left by the camera and compare it with the amount in the scanned image. It is

26



possible to determine where the image has been modified or its validity using the differences
in this sum. However, this method requires knowledge of the camera equipment with which
the photograph was taken and, therefore, cannot be applied unless the camera used to
take the image is known. Alternatively, detecting this with a small number of images is
impossible.

Another approach is called copy-move forgery [11]. This method analyses the patterns
in the image, and similarities between them are looked for. When editing images, this
method is often used to fill in missing parts necessary for the resulting image. Thus, we
can detect repeating patterning between the individual components of the picture. Unlike
the previous approach, in this approach, we do not need to know the device from which the
image was taken, and at the same time, we can also process an individual image. It is not
necessary to have a series of others for analysis.

However, human observation remains the primary method for detecting deepfakes.
GANs often create various kinds of artefacts and inconsistencies that can be seen by look-
ing at the image in more detail. When recognising, it is necessary to pay attention to, for
example, reflections in human eyes, differences in eye colours, missing earrings, but also the
surrounding environment in the image, which is often distorted by neural networks, even
though the generated face itself achieves results indistinguishable from reality.

3.5.2 State-of-the-art neural network models

In this section, we describe state-of-the-art models that can be used for image classification
and, thus, deepfake recognition. Their basic idea, architecture, and how these models are
trained will be described. Most of these models can be trained from scratch, but they
contain a wide range of pre-trained models that can be used for the kind of classification
we need using finetuning. We have tested these models from both the finetuning and pure
weight training perspectives, and they will be used as reference models for comparing the
effectiveness of our proposed solution.

VGG

The basis for VGG models was first described by Simonyan et al. [51] in 2015. The cause of
this convolutional neural network is the use of small convolutional filters of size 3× 3 with
stride and pad of 1, along with 2× 2 max-pooling layers with stride 2, which are stretched
to depth sizes 16 and 19 in the framework of the proposed network. From this approach,
the VGG16 and VGG19 models were subsequently developed. The models are focused on
not only classification tasks but also localisation tasks. In the following, we will mainly deal
with the VGG19 model because it will be used as one of the reference models for comparing
the effectiveness of our solution in Chapter 5.

The basic architecture requires an input image size of 224 × 244 pixels. It is capable
of classifying up to 1000 different objects, such as pens, cars, animals and more, using the
pre-trained ImageNet dataset [13]. This approach trains the pre-trained model weights to
accurately classify features on different images. The architecture of the model is shown in
Figure 3.9.

Resnet and Resnetv2

The Kaiming et al. [26] focused on exploring the depth of neural networks. They observed a
degradation problem, which means that the accuracy of neural networks saturates, and then
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Figure 3.9: Illustration of the network architecture of VGG-19 model: conv means convo-
lution, FC means fully connected [61].

their accuracy degrades rapidly. This degradation does not occur by so-called overfitting,
and adding additional layers to the network only causes higher errors in the training process
and, subsequently, in testing. The degradation of training accuracy indicates that not all
systems are similarly easy to optimize. A possible solution for this problem is the so-called
identity mapping, in which the addition of connecting layers to an already existing model
occurs. In this process, the error increase is then reduced.

Instead of hoping each few stacked layers directly fit a desired underlying mapping,
residual mapping holds these layers explicitly. Formally, denoting the selected underlying
mapping as H(x), the stacked nonlinear layers provide another mapping of F (x) := H(x)−
x. The original mapping is recast into F (x)+x. A hypothesis is that optimizing the residual
mapping is easier than optimizing the initial, unreferenced mapping. If identity mapping
were optimal, it would be easier to push the residual to zero than to fit an identity mapping
by a stack of nonlinear layers. Formulation of F (x) + x can be realized by feedforward
neural networks with shortcut connections as shown in Figure 3.10.

Shortcut connections are links that omit one or more layers. In this case, shortened
links perform an identity mapping, and outputs of identity mapping are added to the
outputs of the stacked layers. Identity-shortcut connections do not add any additional
parameters or computational complexity. The entire network can still be trained using an
optimizer with backpropagation and can be easily implemented using standard libraries
without modifying the solvers. The paper’s authors declare that despite the great depth
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Figure 3.10: Building block of residual learning cited from [26].

of the presented models, their complexity is lower than the VGG models already presented
by us.

The ResNet architecture contains 3 × 3 convolutional layers with a stride of size two
that rely primarily on two pillars. First is that for the same output feature map size, the
layers have the same number of filters, and second, if the feature map size is halved, the
number of filters is doubled to preserve the time complexity per layer.
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Figure 3.11: Illustration of the network architecture of ResNet50 model: conv means con-
volution, FC denotes fully connected.

Figure 3.11 shows the architecture of ResNet50. The same skip connections between
the individual blocks where the arrows are located are shown in Figure 3.10.

Densenet

The Densenet architecture was introduced later as an extension of the resnet architecture
by Huang et al. [29]. The paper’s authors argue that even though resnet works on the
principle of propagating weights from the previous layer to the current layer, it can still
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prevent the flow of information across the network. For this reason, they came up with a
new concept called dense connectivity.

This concept is based on the principle that the weights from each layer are propagated
to each successive layer and, thus, not only to the next layer. Thus, layer xn gets the
feature map of all its predecessors from x0 up to xn, so if we express the layer mapping as
a function H, then the computation of this function is

H([x0, x1, ..., xn−1]) (3.1)

where [x0, x1, ..., xn − 1] denotes the concatenation of the feature-maps of layers 0 to
n−1. The composition function itself is defined as a sequence of three successive operations:
batch normalization (BN), rectified linear unit (ReLU) and a 3 × 3 convolution (Conv). For
Formula 3.1 to be functional, the size of the individual feature maps needs to be invariant,
which contradicts the sense of down-sampling blocks that reduce dimensionality in neural
networks. For this reason, the model is divided into so-called dense blocks, between which
transfers are then performed using so-called transition layers, which perform convolution
and pooling.

In this kind of architecture, we can also encounter the problem of a significant increase
in the number of training parameters since each network block has a massive number of
input feature maps. Experimentally it has been proved that due to this propagation of
outputs to all blocks, such a large number of blocks is unnecessary to achieve the necessary
results. The layout of the densenet architecture can be seen in Figure 3.12.
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Figure 3.12: Illustration of the network architecture of Densenet121 model: conv means
convolution.

Xception

Chollet [10] introduced this network. First, we must introduce the Inception hypothesis that
this network uses. The standard convolutional layer tries to learn a filter for mapping in 3D
space and mapping cross-channel and spatial correlations simultaneously. The Inception
hypothesis tries to simplify and streamline this process that would independently look at
cross-channel correlations and spatial correlations. A typical Inception module first looks

30



at cross-channel correlations via a set of 1× 1 convolutions, mapping the input data into 3
or 4 separate spaces more minor than the original input space, then maps all correlations in
these smaller 3D spaces via regular 3×3 or 5×5 convolutions. This is shown in Figure 3.13.

Input

conv 1x1

conv 1x1 conv 3x3

conv 3x3avg pool

conv 1x1 conv 3x3 conv 3x3

concat

Figure 3.13: Illustration of the Inception block.

Inception blocks can have various forms of modifications. The simplest version of the
block is a modification where the channel with average pooling is removed, and the other
parts of the network are modified to 1×1 and 3×3 convolution, or there are several different
versions of a more complicated block.

The extreme version of the inception module works with the assumption that we first
apply a 1x1 convolution to map cross-channel correlations and would then separately map
the spatial correlations of every output channel. This block version is almost identical
to depthwise separable convolution [50], which is widely used in various neural network
implementation frameworks, such as TensorFlow.

There are two significant differences between depthwise separable convolution and the
extreme version of the inception module. There is a different order of operations in them.
The extreme Inception block performs 1x1 convolution first and then performs channel-wise
spatial convolution, while the depthwise separable convolution performs these operations
in reverse order. The second difference is the presence or absence of a non-linearity after
the first operation.

The Xception architecture works exclusively with depthwise separable convolution lay-
ers. This architecture is based on the hypothesis that mapping cross-channel and spatial
correlations in the feature maps of convolutional neural networks can be entirely decoupled.
This is a stronger statement than the Inception hypothesis, so this architecture is named

”Extreme Inception“ or Xception. Xception architecture is a linear stack of depthwise sep-
arable convolution layers with residual connections. This makes the architecture easy to
define and modify; using a high-level library such as Keras takes only 30 to 40 lines of code.

We do not provide implementation details of this architecture in this paper. The archi-
tecture can be considered more complex, and it is unnecessary to describe it in particular
for this work. In short, it contains an Entry flow, followed by a Middle flow composed of
ReLu and Separable convolution. This block is repeated eight times, followed by an Exit
flow which takes care of the inclusion in the predicted class.
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EfficientNet

EfficientNet brings significant improvements to the family of convolutional neural networks
that focus on adjusting network dimensions, such as its depth or width, when it is necessary
to improve the efficiency of the network. To improve the accuracy of neural networks, the
robustness of the network is a frequent factor. Tan et al. [55] discuss how to efficiently
scale up existing models so that smaller models can be scaled up efficiently, and thus not at
the expense of their robustness, which results in a longer training and evaluation process,
and also the necessary computational performance.

Since this form of architecture is presented as an efficient extension of other existing
models, we will not describe it in detail. However, it represents an approach for making
the model training process more efficient, and we will use it in the next part of the thesis,
so at least its basic introduction was necessary.

For the next part of the thesis, we will use the implementation of the EfficientNet
architecture in Keras based on building blocks that will be discussed in more detail during
the experiments.
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Chapter 4

Design proposal

In this chapter, we present three architectures that will be used in the experimental part of
the thesis. Each of these architectures represents some form of modification of the previous.
We will also present the two main datasets we used for training and subsequent evaluation
of the models.

4.1 EfficientNet v2

The first basic architecture we built as a baseline for our solution is the implementation of
Efficientnet v2 M [56]. This model handles an input of 480× 480 pixels and is pre-trained
on the Imagenet dataset [13] to classify images into 1000 different classes.

The model consists of 7 basic blocks which are connected. Each block is then composed
of several smaller subblocks according to the level of immersion. For example, block number
1 contains three subblocks, while the largest block 6 contains eighteen. Figure 4.1 shows
a graphical representation of the fourth subblock in block 3, block3d. Because of the large
size of the network, we have chosen to illustrate only one of these subblocks. The subblocks
have subtle differences depending on the subblock nesting, but we think this representation
is sufficient for illustration.
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Figure 4.1: Illustration of block3d of EfficientNet v2 M from implementation in keras.

We then modified the network to fit the model for binary classification, which in practice
means that we modified the last layers where we added the sigmoid activation function to
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set the final value to a range of 0 to 1. 0 in case it is a deepfake, 1 in case the network
estimates the input image to be real.

In the case of this architecture, we consider it a baseline in our solution, which we try to
finetune as efficiently as possible for our task and then improve with several modifications.
These modifications will then be compared with the best results from this model in the
same training process.

We tested the EfficientNet v2 L version in the same way in this experiment.

4.2 EfficientDet modification

Tan et al. [57] presented modified efficient net architecture focusing on object detection
and subsequent labelling. It uses EfficientNet as its backbone, modifies how it works with
outputs, and adds additional connections to the network. It uses so-called BiFPN links to
do this. The network then uses feature extraction with this BiFPN network and can predict
and box objects in the input image. The design of this architecture is shown in Figure 4.3.

4.2.1 BiFPN

Tan et al. [57] formulate a multi-scale feature fusion problem and then present a solution
BiFPN: efficient bidirectional cross-scale connections and weighted feature fusion. Multi-
scale feature fusion aims to aggregate features at different resolutions. Formally, given a
list of multi-scale features ~P in =

(

P in
l1
, P in

l2
, . . .

)

, where P in
li

represents the feature at level li.
The goal is to find a transformation f that can effectively aggregate different features and
output a list of new features: ~P out = f

(

~P in
)

.

Figure 4.2: Feature network design – (a) FPN introduces a top-down pathway to fuse
multi-scale features from level 3 to 7 (P3 - P7); (b) PANet adds bottom-up pathway on top
of FPN; (c) NAS-FPN use neural architecture search to find an irregular feature network
topology and then repeatedly apply the same block; (d) is our BiFPN with better accuracy
and efficiency trade-offs [57].

Figure 4.2(a) shows the conventional top-down FPN. So it takes inputs 3 to 7 from
the vector ~P in where P in

i represents the feature level with half the resolution of the input
image, i.e. in the case of an input image of size 640× 640 pixels, the calculation for P3in is
640/23 = 80, i.e. a resolution of 80× 80 pixels. FPN aggregates the feature in a top-down
manner
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4

))

where Resize represents the upsampling or downsampling operation for the resolution.
Top-down FPN is limited by a one-way transition from up to down. That is why PANet
introduced an extra bottom-up aggregation layer, as shown in Figure 4.2(b). NAS-FPN
employs neural architecture search to search for better cross-scale feature network topology.
Still, it requires thousands of GPU hours during the search, and the found network is
irregular and difficult to interpret or modify, as shown in Figure 4.2(c). BiFPN then
introduces several architectural improvements. The first fundamental change is removing
nodes with only one input. The idea behind this concept is simple since a node has only
one input, it should contribute to the overall functioning of the network, leading to its
simplification. The second change is to add an extra edge from the original input image to
the output node in case they are on the same level. The last change compared to PANet
is the addition of multiple bidirectional paths to improve feature extraction as opposed to
PANet, which contains only one such path. The architecture is shown in Figure 4.2(d).

Figure 4.3: EfficientDet architecture diagram with EfficientNet backbone [57].

4.2.2 Proposed architecture

The idea behind our proposed architecture is very simple. Since the extended EfficientDet
architecture can perform efficient prediction and boxing simultaneously, it can also serve as
a pure prediction mechanism for deepfakes patterns better than the underlying Efficient-
Net v2 M architecture on which we are based. Therefore, we decided to create a model
whose backbone is the aforementioned model with the addition of BiFPN layers to improve
the prediction mechanism. Compared to the EfficientDet design, we have removed the part
of the network dedicated to boxing since it is unnecessary in our case. Still, it would be
interesting to observe such detection in the case of finding artefacts that neural networks
leave behind, but we have not investigated this approach. The last block that feeds into
the BiFPN layers is block 7, specifically its block7e_expand_activation layer, which implies
that we have removed the last layers used for prediction from the baseline model and re-
placed them with BiFPN. Finally, we added a concatenation and dense layer followed by a
dropout layer and a sigmoid function for inclusion in the corresponding binary class. We
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are also experimenting with a finely extended network design, where we have repeated this
procedure twice and added a layer containing batch normalization after the dense layer. So
we are experimenting with two different designs, one is basic, and the other is extended.

4.3 EfficientYdet

The basis for this proposal is designed by Tjon et al. [58], which uses the u-net architecture
to improve the detection of deepfakes (details are discussed in Section 2.3.3). The basis for
this architecture is the connection of upsampling blocks to individual blocks of the convolu-
tional network, thus creating a second segmentation output that creates a localization mask
for deepfake. This architecture assumes that incorporating a u-net-like architecture into
such a solution can better determine the part of the input image where the manipulated
regions are located. While the paper focuses on detecting deepfakes in the video, it takes
an approach suitable for our work. It chops the input video into a sequence of images. To
speed up the process, 30 images from each video were chosen, assuming the video is 30 FPS
and 10 seconds, so 300 frames. Next, shape detection is performed in each image using the
MTCNN model [60] and its cropping for the input image to the network. In the case of the
training and validation dataset, the same process is performed with the corresponding mask
videos (in the case of fake images), and thus not only the classification part of the network
is used for evaluation, but also the segmentation of the pixels where a potential deepfake
can be found. If the video does not contain a deepfake but a real image, the resulting mask
should be black, i.e. without content. The result is a u-net-like architecture called Y-net
because the end predictive part of the backbone is preserved, and thus the neural network
has two outputs, a classification and a segmentation one, not just one as in u-net.

4.3.1 Proposed architecture

Because of our proposed architecture, we decided to extend our binary architecture for
EfficientDet and add a u-net-like segmentation part. The assumption is that BiFPN is also
used for introducing segmentation tasks, so such an extension could bring results. The
expanding u-net architecture thus uses the outputs from blocks 1, 2, 3 and 5 to introduce
upscaling blocks as in the standard u-net we described in Section 2.3.3. It was only necessary
to select EfficientNet architectures as backbones whose input resolution is satisfactory, i.e.
divisible by powers of 2. This is based on the assumption that the introduction of the
upscaling convolution increases the dimensionality upwards again. Hence, we needed to
get back to the original input image resolution. We also chose the EfficientNet v2 M
and EfficientNet v2 L architectures for the other proposed architectures. We want to
observe the immediate improvements (or degradations) when introducing new blocks into
the network, not compare completely different models. A slight change from the standard
architectures in u-net is that we could also connect the architecture to block7 to get the
lowest possible values in the upscaling. This was impossible because we modified the last
block and added BiFPN layers, cutting off the rest of the network. Finding a block with a
suitable dimensionality to connect to the network was impossible.

It should be noted, however, that the segmentation part of the network has no actual
use in automatic evaluation. The segmentation part can help us to understand better the
behaviour of a given model and the way it works to support its possible correct training
as it adds another input factor, or if we apply it to an actual operation with a human
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supervisor, it can in an ideal scenario point out suspicious places that should be more
deeply investigated.

4.4 Datasets

Proper selection and evaluation of the dataset are also necessary for this task. Therefore, we
selected two datasets, FaceForensics and Celeb-DF, for training and testing. We chose this
combination because FaceForensics is a large dataset often used for models related to this
task. At the same time, it contains segmentation masks necessary for training in one of our
proposed architectures. We have chosen Celeb-DF as a secondary dataset for evaluation to
get as close as possible to the practical use of detectors in deepfakes detection. While each
dataset contains images that should not be dependent on each other in the case of testing
and validation, it is necessary to note that in this area, often only a change of the testing
dataset is needed, and the results can change significantly. We used Celeb-DF for a more
detailed evaluation of the trained models since it was created using different procedures
than the FaceForensics dataset.

4.4.1 FaceForensics

The dataset was introduced in 2019 by Rössler et al. [48]. It comprises 1000 videos (approx-
imately 1.8 million images) with real sources and targets ground truth to enable supervised
learning. These videos then use four state-of-the-art methods to create deepfakes. Two
(Face2Face and FaceSwap) are graphic-based approaches, and two are learning-based ap-
proaches (DeepFakes and Neural Textures). Besides the manipulation output, creators also
compute ground truth masks that indicate whether a pixel has been modified, which can
be used to train forgery localization methods. We will briefly describe two fake-generating
methods we will use in our experiments.

The Deepfake part of the dataset works with applications and available models for
deepfake creation. A face from the series in the source video or image collection thus
replaces the face in the target sequence. These methods are based on two autoencoders
trained to reconstruct the source image into a target face. However, only the part of the
image where the shape is located is used for this, and then in postprocessing, the shape is
added to the rest of the image, which is not modified.

Neural Textures use a unique rendering approach. They use original video data to learn
neural textures of the face in the target video. This is then trained using photorealistic
reconstruction loss in combination with adversarial loss. This part of the generated deep-
fakes mainly focuses on tracking the shapes in the image and, thus, on more accurate shape
reconstruction. They also modify especially the facial expressions around the mouth. The
regions around the eyes remain unmodified.

The individual components of the dataset were also studied using human observers. In
this study, 204 participants, after easy familiarization with the binary classification bag,
tried to determine the relevance of randomly selected images, which were distributed in
a 1:1 ratio. Subjects also had a limited time to decide, with a rule of 2, 4 or 6 seconds.
These results, which can be seen in Figure 4.4, helped us to select the right part of the
dataset for our experiments. We were able to use them to identify the strongest and weakest
points and use them to select the content of the dataset more broadly, not to define it for
a specific group based on the quality of the deepfake. Besides that DeepFakes and Neural
Textures are created using deep learning, they also add diversity to our training dataset in
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that DeepFakes were the easiest to detect by humans and Neural Textures were the most
problematic.

Figure 4.4: The results of a study on all quality levels of the dataset show a correlation
between video quality and the ability to detect fakes. With a lower video quality, human
performance decreases on average from 68.7 % to 58.7 %. We have quoted this graph from
Rössler et al. [48].

The version of the dataset we used contains 363 videos from 28 different actors and 1000
videos downloaded from the youtube platform. It combines common videos from actors
into mixes that alternate between source and target videos. This dataset has not been
standardized into training, testing and validation. Therefore, by analyzing the individual
combinations, we divided the dataset into the following combinations according to the
indexing of actors:

• Training dataset: 1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 18, 20, 21, 25, 26, 27

• Validation dataset: 5, 8, 16, 17, 28

• Test dataset: 10, 19, 22, 23, 24

Figure 4.5: Sample images from generated datasets from DeepFake detection, on the left is
a bad example, on the right a better one.
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In the same way, we split the deepfake images and the associated real images. The
neural textures part of the dataset takes video pairs (with source and target video swap)
from the youtube platform. We divided this part of the dataset in the ratio 70:15:15 into
training, validation and test sets without regard to specific videos. Suppose a video from one
side appears, for example, in the test dataset. In that case, the only video in the validation
dataset will be its opponent, which should not show problems during the evaluation process.

Figure 4.6: Sample images from generated datasets from Neural Textures, on the left is a
bad example, on the right a better one.

In Figure 4.5, we show examples of generated deepfakes against the Deepfake part of the
dataset. Figure 4.6 again shows the same example from the Neural Textures dataset. Also,
in the attached examples, it is possible to see the differences in the quality of the individual
approaches. While with Neural Textures, we had a problem finding an image that could be
considered inferior, and we found obvious signs of deepfakes, with the DeepFake detection
dataset, the problem was rather the opposite, i.e. to find a sufficiently high-quality image
where it is difficult to distinguish whether it is real or fake.

4.4.2 Celeb-DF

Celeb-DF is a dataset focusing on deepfakes detection published in 2019 by Li et al. [38].
The dataset contains 5639 deepfake videos (more than 2 million frames). Source videos
are created from publicly available videos on YouTube containing 59 different celebrities
of different genders, ethnicities and ages. Deepfake videos are then generated by synthetic
methods, mostly publicly available neural network models for generating deepfakes. The
auto-encoder is usually formed by two CNNs, the encoder and the decoder. The encoder E
converts the input target’s face to a vector known as the code. To ensure the encoder cap-
tures identity-independent attributes such as facial expressions, there is one single encoder
regardless of the subjects’ identities.

On the other hand, each identity has a dedicated decoder Di, which generates a face of
the corresponding subject from the code. The encoder-decoder pair is formed alternatively
using E and Di for the input face of each subject and optimising their parameters to
minimize the reconstruction errors (l1 difference between the input and reconstructed faces).
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The parameter update is performed with the back-propagation until convergence. The
synthesized faces are then warped back to the configuration of the original target’s faces
and trimmed with a mask from the facial landmarks. The last step involves smoothing the
boundaries between the synthesized regions and the original video frames.

The Celeb-DF dataset is comprised of 590 real videos and 5,639 deepfake videos. The
average length of all videos is approximately 13 seconds, with a standard frame rate of 30
frame-per-second. 56.8 % of subjects in the real videos are male, and 43.2 % are female.
8.5 % are of age 60 and above, 30.5 % are between 50 - 60, 26.6 % are in 40s, 28.0 % are
30s, and 6.4 % are younger than 30. 5.1 % are Asians, 6.8 % are African Americans and
88.1 % are Caucasians. The real videos exhibit many changes, such as the subject’s face
size (in pixels), lighting condition, orientation and background.

The dataset creators also focused on improvements such as colour mismatch and tem-
poral flickering using data augmentation. To correct for mismatched skin colour, a colour
spectrum matching algorithm was applied at each epoch, and this approach was then ap-
plied to the synthesis of the images as well. The temporal flickering of faces was reduced
in the DeepFake videos by incorporating temporal correlations among the detected face
landmarks. Specifically, the temporal sequence of the face landmarks is filtered using a
Kalman smoothing algorithm to reduce imprecise variations of landmarks in each frame.

Figure 4.7: Sample images from the Celeb-DF dataset that looks real.

Overall, Celeb-DF offers videos with good-quality images, where distinguishing between
a deepfake and a real image is often problematic. In Figure 4.7 and Figure 4.8, we can see
examples of snapshots from this dataset where it is visible that the fakes are in high-quality
processing. The drawback is the low quality of the overall video in the dataset. Therefore,
in our experiments, we decided to use this dataset as a reference dataset for evaluating
the models since they are generated in entirely different ways or videos in the faceforensics
dataset and better simulate real-world usage. Thus we can better observe how the network
is trained and whether the network does not appear to be overtraining on the data specific
to the dataset.
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Figure 4.8: Sample images from the Celeb-DF dataset that look unreal.

4.5 Detection pipeline

The vast majority of deepfake datasets focus on their detection in video. Since this work
focuses on in-video detection, we have created an entire detection pipeline that starts with
video processing and ends with binary output over individual frames in the video. An
illustration of the whole detection pipeline can be seen in Figure 4.9.

Video Frames

MTCNN

Detect

True

False

Figure 4.9: The illustration of the detection pipeline starts by splitting the video into
individual frames and proceeds by detecting faces in the video using a pre-trained neural
network model, which is then pruned into the desired input for the classification model.
The latter then perform binary classification.

For the needs of our task, we divided the videos in datasets into frames of 1 FPS. We
note that a higher framerate will be needed to use the models for detection over videos.
Since the frames in the videos are always more complex scenes, it is necessary to cut out
the part of the face in which we want to deal with deepfake detection. We perform face
detection over the data using a retrained MTCNN model [60] for these needs.
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After performing the face detection, we get the bounding box face from the MTCNN
model. Using this bounding box, we can centre the face and perform its excision with a
resolution adequate to the model we use for detection. In our case, we chose each model
with an input resolution of 480× 480 pixels. In case the resolution of the face exceeds this
resolution, it is necessary to perform scaling to a lower resolution. To unify the scaling, we
permanently reduce the resolution of the overall image itself size until the face’s size resolves
lower than 480 pixels per side (i.e. scaling x2, x4, x8,...). Note that this solution may not be
entirely satisfactory because it can lead to a reduction in the number of artefacts often left
by neural networks designed to generate them. In these cases, of course, it is also possible
that the shape is located on one of the edges synthesised or some part of it is misplaced,
but MTCNN detected the shape. In this case, we centralise the shape to the centre and fill
the positions not in the image with a constant (in our case, black) colour.

We use this way of processing video (images) to train and validate models. The pipeline
shows the complete video processing and detection in the video’s frames and images in a
real-world scenario. We would not need to perform this process in the case of, for example,
shape biometrics, where input images are standardized using The ISO/IEC 19794-5 Token
Face Standard regulates geometry, photometry, and behaviour [54].
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Chapter 5

Experiments

In this chapter, we focused on designing our experiments as part of the iterative process
of creating the architectures we mentioned in Chapter 4. We look at various models and
architectures and our decisions to improve the architectures further iteratively. Later we
will also describe the detailed results of individual experiments on the datasets.

5.1 Experiment design

When experimenting with the models, we chose an iterative approach. Each experiment
results in an output, based on which we have selected an evaluation condition for the next
experiment. We have narrowed down the experiment’s focus and tried to analyse it in more
detail.

5.1.1 Experiment 1: Selecting a fitting convolutional architecture

We focused on selecting a suitable convolutional network architecture for the first experi-
ment. Candidate architectures included convolutional architectures from Section 3.5.2. For
training and testing, we used the following versions of the architectures and their models
from the Keras implementation: the VGG19, ResNet50, ResNet50v2, Densenet121, Xcep-
tion, and EfficientNetv2B0. Each of these models has an input resolution of 224 × 224
pixels. Since the datasets we used later to train our proposed models are more suitable for
higher resolutions, we decided to use the 140k Real and Fake Faces dataset1 available on
the Kaggle platform. This dataset consists of all 70k REAL faces from the Flickr dataset
collected by Nvidia and 70k fake faces sampled from the 1 Million FAKE faces (generated
by StyleGAN). Therefore, the evaluation of the results depends on the review directly of
this dataset. We acknowledge the possible problematic data evaluation that may occur by
evaluating purely over a test set from a single dataset. Still, we do not thoroughly analyse
the results in the first phases of experimentation. Rather, we focus on the overall success
rate achieved and the convergence of the models.

We tested the networks with and without Imagenet pre-trained weights for this exper-
iment. We adjusted the network parameters minimally. The only parameter we modified
was the learning rate in the optimizer.

We then evaluated the results to decide which architecture seemed most suitable for
solving our problem. The assumption was that the best architecture would be EfficientNet,

1https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces
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because, as we mentioned in Section 3.5.2, each architecture brings mostly the optimization
of the previous one, so for such a complex task, we assume this result.

5.1.2 Experiment 2: Finetuning best convolutional model

Based on the evaluation of the previous experiment, we chose the EfficientNet architecture.
For the second experiment, we evaluate the pre-trained architecture of EfficientNet. Since
our prepared datasets support an input resolution of 480×480 pixels, we selected Efficient-
Net models that meet these criteria. The v2 M and v2 L architectures meet suitable input.
These architectures differ mainly in the robustness of the network. While version 2 M
contains approximately 50 million trainable parameters, version L contains twice as many,
about 100 million. For these architectures, we experimented with freezing individual blocks
(or enabling the coaching of weights in the whole network) from block three to block six.
We always froze all the network weights up to the end of the observed block, so for example,
in the case of block 5, blocks 1, 2, 3, 4 and 5 were frozen. Because of this architecture, we
consider each block as one big unit representing a subnetwork. Thus, when experimenting
with preserving the pre-trained weights, we have always either preserved the weights of the
whole block or we have re-trained the whole block.

Since, in this case, there is already a risk of overfitting on the dataset, we decided
that the guiding factor for evaluating the individual models is the calculation of the ROC
(Receiver Operating Characteristic) and AUC (Area Under the ROC Curve)2 over the
FaceForensics test set and also on Celeb-DF dataset. In contrast, the dataset used for
training is FaceForensics (as on all our models).

We have trained the models with 10 epochs each time, evaluating the model separately
after each epoch to see the model’s results. We also evaluated the average between these
results after each training epoch. We can thus observe convergence over the validation
dataset and, in this case, over the ”real data“ that the detector can obtain. Then we can
compare these data with the results of the validation dataset, gained loss and accuracy.

The results of this experiment can then be considered as the results of our baseline
architecture. These results can then be used to evaluate our improved architectures and
their overall comparison with the baseline architecture.

5.1.3 Experiment 3: EfficientDet modification

In this experiment, we explore the architecture of our proposed modified EfficientDet in
more detail, including its mentioned more extensive architecture. Next, we compare the
achieved results with the results from the previous experiment to see if there is an improve-
ment compared to the baseline architecture. We followed a similar procedure as in the
previous experiment. We tried to freeze individual blocks of the backbone architecture of
EfficientNet from block 2 to block 6, and we also compared this with the approach without
freezing the model weights.

For this architecture, we tried to experiment more with dropout layers. We evaluated
each block in the training case with 20, 30, 40 and 50 % dropouts. We then tried the
same procedure as in the previous experiment, i.e., evaluation over the Celeb-DF dataset,
to evaluate the blocks that achieve the best results. In doing so, we also focused on the
overall convergence of the results and the average achieved speedup over the epochs. Then,

2https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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we also experimented with 0 and 10 % dropouts for the blocks that performed the best
results.

We always compare the observed results with a reference architecture. In the case of
EfficientDetM, it is the EfficientNet v2 M architecture, and in the case of EfficientDetL,
it is the EfficientNet v2 L architecture. We then use the average achieved AUC value to
evaluate the improvement (or deterioration) when freezing the weights of the individual
layers of the backbone architecture. In this case, we also observe the best achieved AUC
values among all the trained models.

5.1.4 Experiment 4: EfficientYdet

Since the faceforensics dataset also contains masks belonging to deepfake images, we decided
to test the EfficientYdet architecture, which uses the u-net for its improvement. For this
architecture, we focused purely on improving the previous architecture, not on improving
the baseline. So, as an experiment, we prepared a dataset with the masks. Since there is
always a video that copies its movement from 1 to 1 to a video with a fake shape, we could
assign the images to each other and set up a network with two outputs.

As in the paper by Tjon et al. [58], we used binary cross entropy for the prediction part
of the network and dice loss for the reconstruction part. Keras allows the use of coupled
loss functions, so we assigned a coefficient of 0.5 to both functions to avoid a significant
dominance of one part of the network. The last loss should therefore be their average.

As for the freezing of the block weights, because of the iterative approach, we decided
to test only the versions of our modified EfficientDet network that showed the best results,
so we did not perform this experiment on the freezing of blocks from two to six, but only a
subset selected by us based on the results of the previous investigation. We follow the same
procedure as the previous experiments in the evaluation case. We calculated the AUC of
ROC over the Celeb-DF dataset.

5.1.5 Experiment 5: Compressed images

Since we have always worked with data of maximum quality in all our training processes
and experiments, we decided to focus on the impact of compression on the network results
over our best model in our last experiment. For this experiment, we performed JPEG
compression over the FaceForensics and Celeb-DF datasets at four levels: 100, 80, 60, and
40. Over each of these compression formats, we then performed the same evaluation as in
the other experiments, i.e., over the test datasets. We then plotted this result using ROC
curves and observed changes in the evaluation processes.

5.2 Experimental results

In this section, we discuss the results of individual experiments and their implications for
further iterative development of our proposed architectures.

5.2.1 Experiment 1 results

In this experiment, we mainly observed the achieved accuracy over the validation data dur-
ing training. The training and validation process over 10 epochs can be seen in Figure 5.1.
Due to experimenting with the learning ratio in the network optimizer, we have reached the
value of 0.0001. At higher learning rate values, we reached a state where the network could

45



not train and did not achieve any results. The default value, which is ten times larger, did
not produce results in the actual training of the network. The same result was reached
when comparing the model’s training with and without pre-trained weights. Demonstrably
better results were achieved by models with pre-loaded weights from Imagenet compared to
those that did not include these scales. This is probably because Imagenet is a large dataset
which can be used to achieve good feature extraction over the individual CNNs tested. All
networks achieved results after several epochs at the level of 95 % or more with their best
result, so it is not relevant to compare individual architectures on this dataset and select
the best candidate for our solution. However, it is true that in the confusion matrix, we
have observed minor improvements between the different generations of the network but
not significant ones. They could be improved by adjusting the hyperparameters or choosing
a more suitable dataset for testing. We tried to evaluate the models without their specific
improvement for this experiment.

Since we have obtained such results, we can consider this experiment irrelevant. In the
process, we needed to review the available models of convolutional networks. In Figure 5.1,
we can see various inconsistencies in training. The Resnet50 and Densenet121 architectures
achieved a massive drop in validation accuracy during training. Also, none of the networks
except the VGG19 model achieved smooth convergence. For model VGG19, however, unlike
the others, we can observe a slow convergence to the results. The other models started to
reach their peaks much earlier.

These fluctuations in validation accuracy can be caused by, for example, overfitting the
network to the training data, which occurred after one of the epochs, and then was changed
in the subsequent epochs. The networks have not been subjected to more detailed testing
and experimentation with the network hyperparameters. Since we could not choose the
best architecture for this experiment, we chose EfficientNet for further experiments. As we
showed in Section 3.5, all architectures smoothly build on each other and should solve the
problems that appeared in the previous one. EfficientNet is the newest one in this case.

5.2.2 Experiment 2 results

In this experiment, we focused on freezing individual blocks of the EfficientNet architecture.
For completeness, in the model we used in Keras version 2.9.0, we always froze the weights on
all blocks from the initial block to the blocks: block3e_project_conv, block4g_project_conv,
block5n_project_conv, block6r_project_conv. The results during training and validation
over ten training epochs are shown in Figure 5.2.

During training, we could observe relatively high validation accuracy after a few epochs
for most models except that with frozen weights up to block six. In this case, there is
very little room left for the trainable parameters of the model since block seven has fewer
trainable parameters than the previous blocks. We then performed DET calculations over
the dataset using the best-trained models from ten epochs. The resulting DET3 curves can
be seen in Figure 5.3.

From this observation, we could weakly conclude that the best thing to do is to retrain
all the network weights and terminate the experiment. Even though the data we use in
the test set has never been seen by the network either in training or validation, the data
comes from the same dataset and is produced by the same deepfakes techniques. We can
therefore assume that these measurements are not indicative. We, therefore, evaluated the
ROC and AUC over the test set from the Celeb-DF dataset. We tested every single model

3https://scikit-learn.org/stable/auto_examples/model_selection/plot_det.html
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Figure 5.1: Training and validation process of individual convolutional models over a train-
ing dataset of 140k Real and Fake Faces.

after every training epoch and tried to observe the behaviour of the network to completely
unknown data.

Thus, Table 5.1 shows the AUC results after each training epoch. We have observed
the individual AUC values achieved and then the average ones achieved over the individual
blocks. As we can see, in this case, the model in which we froze the weights in the first
four blocks of the network performed best unambiguously. Epoch eight achieved the best
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Figure 5.2: Training and validation process of the EfficientNet v2 M model depending on
the preloaded Imagenet weights.

accuracy on the validation dataset, 95.77 %, even in the training process. However, this can
also be considered a random match since we have no evidence that this evaluation would
not be different on another dataset. On the other hand, we would like to point out the
decreasing tendency of the AUC value on this dataset in case of freezing a smaller number
of blocks. As we can see, the model where we have trained all the model weights performed
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Figure 5.3: DET curves calculated over the best models based on how we froze individual
network blocks in the training process.

potentially worse in this case than we would have in the case of random selection, where
we have a 50 % chance of a correct evaluation.

Table 5.1: AUC calculated over the EfficientNet v2 M model based on how we froze indi-
vidual network blocks in the training process using the Celeb-DF dataset. The range of
values is from 0 to 1, where 1 symbolizes the best value. The best value achieved is 0.81355.

Epoch Block 3 Block 4 Block 5 Block 6 Without
1 0.71465 0.80102 0.63415 0.53540 0.36158
2 0.69465 0.73966 0.66337 0.57004 0.46389
3 0.73439 0.78646 0.73628 0.60206 0.52113

4 0.76015 0.73170 0.76677 0.63670 0.35873
5 0.72410 0.75450 0.73945 0.61132 0.24104
6 0.75004 0.78548 0.73895 0.64612 0.41540
7 0.69710 0.81035 0.72408 0.64846 0.50440
8 0.77165 0.81355 0.76068 0.56969 0.38606
9 0.73647 0.70130 0.71734 0.62131 0.42837
10 0.75414 0.71430 0.73751 0.58812 0.36347
Average 0.73147 0.76934 0.72012 0.60457 0.40896

The same evaluation was attempted on the EfficientNet v2 L model since this model has
a more robust structure but preserves the dimensionality of the input image and contains
seven subdivided blocks. We applied the same training procedure with freezing the block
weights, the only difference being that the names of the layers we ended up freezing are
subtly different since most of the blocks contain multiple subblocks. The evaluation results
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can be seen in Table 5.2. The model without free weights does not have the result from
the tenth epoch. This is because the model is robust and could not be trained within 24
hours for ten epochs. By default, we performed the training process using the metacentre
project, where we used PBS jobs with a limitation of 24 hours. We did not consider the
result from the last epoch as necessary for our further investigation.

Table 5.2: AUC calculated over the EfficientNet v2 L model based on how we froze individ-
ual network blocks in the training process using the Celeb-DF dataset. The range of values
is from 0 to 1, where 1 symbolizes the best value. The best value achieved is 0.81665, we
do not consider this value relevant because it was achieved after the first training epoch, so
it is likely random.

Epoch Block 3 Block 4 Block 5 Block 6 Without
1 0.61621 0.81665 0.73317 0.67912 0.28770
2 0.78505 0.67752 0.74864 0.61619 0.21287
3 0.65378 0.77933 0.73430 0.52846 0.30313
4 0.79712 0.74017 0.71622 0.55273 0.30564

5 0.77372 0.62209 0.78956 0.59024 0.30025
6 0.76230 0.71462 0.78016 0.63984 0.29078
7 0.72379 0.66700 0.78203 0.60616 0.24848
8 0.69848 0.76492 0.77275 0.61046 0.28126
9 0.77292 0.71118 0.76923 0.65926 0.28671
10 0.72999 0.63755 0.77031 0.65283 -
Average 0.73134 0.71310 0.75964 0.61353 0.27965

In this case, the network behaves significantly differently than version M. We can again
see the fact that the best average results are achieved by freezing the weights up to block
four, but at the same time, we can see that the highest achieved AUC value occurred when
freezing the weights up to block three. This phenomenon occurred right after the first
training epoch. This suggests that it may be a coincidence. Still, it also alerts us to a
possible problem with the evaluation metric since we were able to get the best result this
early. Then it only sets a decrease, even to lower values than the values with another
method of freezing the pre-trained weights.

In general, we consider the best AUC obtained from this experiment to be the AUC
value 0.81355 from model M. This value can therefore be considered as a reference for the
evaluation of further experiments.

5.2.3 Experiment 3 results

In this part, we did not focus on the results obtained over the validation and test set from
the FaceForensics dataset because, in the previous experiments, we concluded that these
results were not completely relevant for such a complex task. Observing a different dataset,
Celeb-DF, in our case, is necessary.

During this experiment, we focused on a deeper investigation of the network training
process. In addition to freezing the pre-trained weights, we also experimented with the
dropout parameters of the network and tried to optimize its training process. Figure 5.4
shows the average AUC achieved over the Celeb-DF dataset when freezing individual blocks.
This average includes all the different dropouts. From our observation, we could not observe
much difference between the individual dropout values.
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Figure 5.4: Average AUC values achieved with freezing block pre-loaded weights by training
the modified EfficientDet network over the Celeb-DF dataset. The average is achieved across
all dropouts we have tested.

As we can observe from the average values, we even achieved better results when we
froze a smaller number of pre-trained weights, i.e. the first three blocks of the net. This
factor may be due to our extension of the network with BiFPN blocks that connect to
the network’s third, fifth and seventh blocks. Therefore, the blocks connected to the fifth
block have more room to adapt to the scales, as they also have the fourth block free for
their optimisation and adjustment of the scales. Since we have obtained reasonable results
only in these two cases, we only report results from these measurements in Table 5.3 and
Table 5.4.

Table 5.3: AUC calculated over the modified EfficientDet v2 M model when we froze
individual network blocks up to block three in the training process while using different
dropout rates using the Celeb-DF dataset. The range of values is from 0 to 1, where 1
symbolizes the best value. The best value achieved is 0.82147. DR means dropout rate.

Epoch DR 0.2 DR 0.3 DR 0.4 DR 0.5
1 0.72341 0.72650 0.76388 0.79301
2 0.72644 0.76568 0.75130 0.74738
3 0.77431 0.73015 0.72495 0.71822
4 0.74781 0.62247 0.74912 0.73482
5 0.68438 0.67978 0.78406 0.72973
6 0.74345 0.74611 0.73127 0.74202
7 0.76712 0.68332 0.77551 0.72068
8 0.64737 0.68225 0.79873 0.79979

9 0.68266 0.74775 0.76434 0.69602
10 0.72976 0.73140 0.82147 0.67932
Average 0.72267 0.71154 0.76646 0.73610
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Table 5.4: AUC calculated over the modified EfficientDet v2 M model when we froze
individual network blocks up to block four in the training process while using different
dropout rates using the Celeb-DF dataset. The range of values is from 0 to 1, where 1
symbolizes the best value. The best value achieved is 0.78536. DR means dropout rate.

Epoch DR 0.2 DR 0.3 DR 0.4 DR 0.5
1 0.78536 0.61947 0.67714 0.71091
2 0.73509 0.67479 0.69264 0.77534

3 0.76513 0.72876 0.73825 0.70866
4 0.73067 0.75899 0.76441 0.66238
5 0.66400 0.76057 0.63580 0.74545
6 0.76943 0.73608 0.67080 0.70765
7 0.77008 0.71707 0.73093 0.73235
8 0.72458 0.68891 0.74643 0.75162
9 0.71169 0.66381 0.76159 0.74276
10 0.75060 0.67810 0.75228 0.73900
Average 0.74066 0.70265 0.71703 0.72761

We will therefore focus more closely on block three, as it has objectively achieved better
results in this case. As shown in Table 5.3, the best AUC value achieved is 0.4 in the
dropout ratio after ten epochs. This value is also slightly higher than the baseline of the
EfficientNet architecture. We want to point out the inconsistencies in the results concerning
the datasets. While in the case of the baseline architecture, we achieved the best result
in the same model, either in the test set over FaceForensics or Celeb-DF, this is no longer
the case. The achieved validation accuracy over FaceForensics, in this case, was 96.59 %.
This is realistically the third-best result in the training process. The seventh epoch, with a
value of 97.01 % over FaceForensics, was the best in this case. Our evaluation metric with
Celeb-DF reaches a score of 0.77551, which is not an insignificant reduction compared to
the best solution. So, again, we have a question about the correctness of model evaluation
for such a complex task, which we will discuss in more detail in the following discussion.

Regarding the extended architecture for the M version, it makes no sense for us to
discuss its results in detail. In its evaluation, we achieved lower results than with this
presented architecture, so we will not detail them here.

When testing the architecture, we encountered another case where we used Efficient-
Net v2 L as a backbone. In this case, we will focus on extended network architecture,
not basic. In the case of our baseline architecture, although we managed to achieve better
results in the case of the M architecture, here we could discuss the opposite.

In this case, only block three has been verified in the context of comprehensive testing.
We can discuss a partially expected result because the L architecture is much more robust.
Therefore, a large part of the pre-trained weights suitable for feature extraction can be
located in earlier parts of the network, so we will not make a deeper comparison of the
other blocks. The results we have achieved when filtering the weights into block three can
be seen in Table 5.5.
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Table 5.5: AUC calculated over the modified EfficientDet v2 L model when we froze indi-
vidual network blocks up to block three in the training process while using different dropout
rates using the Celeb-DF dataset. The range of values is from 0 to 1, where 1 symbolizes
the best value. The best value achieved is 0.85232. DR means dropout rate.

Epoch DR 0.2 DR 0.3 DR 0.4 DR 0.5
1 0.64641 0.63273 0.66113 0.64939
2 0.72119 0.66172 0.72919 0.77837
3 0.68159 0.74349 0.66755 0.69232
4 0.74191 0.66343 0.76956 0.85232

5 0.68760 0.66416 0.74947 0.68363
6 0.67804 0.62055 0.65813 0.74612
7 0.67701 0.63194 0.69028 0.74604
8 0.75747 0.63218 0.69367 0.81394
9 0.71839 0.71272 0.71340 0.67109
10 0.72790 0.72339 0.77961 0.68637
Average 0.70375 0.66863 0.71120 0.73196

We achieved an AUC value of 0.85232 at a dropout rate of 0.5, which could be considered
a significant improvement compared to the baseline network architecture. In this case, this
state has already occurred after training for four epochs. But again, we can point out the
problem with the FaceForensics validation dataset compared to Celeb-DF. We achieved
the best AUC result over Celeb-DF with a FaceForensics validation accuracy of 96.51 %,
which is practically the third lowest validation accuracy we achieved here. For example,
this factor could have been caused by high overfitting to the training dataset data since the
same methods generate both the FaceForensics validation and the test set. Again, there is
room for discussion here since training over four epochs is not much.

Figure 5.5: ROC and AUC calculated over individual models from the proposed architec-
tures that performed best during the training process over the Celeb-DF dataset.
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In Figure 5.5, we compare the best-trained models to the baseline architecture from the
first experiment. Based on the chosen ROC and AUC metrics, we can conclude that we
were able to improve the baseline architecture for the task of detecting deepfakes in the
image with the addition of a minimum of additional parameters to the network since the
new architecture has more parameters only an order of magnitude less than the baseline.

5.2.4 Experiment 4 results

We will deal with the fourth experiment only briefly since, from our point of view, it did not
produce satisfactory results or bring any significant improvements to the network. As we
addressed in Section 5.1.4, we have created a proposed architecture using U-net to improve
the accuracy of prediction, which allows us to develop localization of the places that have
been modified simultaneously. In the reference paper by Tjon et al. [58], the authors report
high accuracy over the FaceForensics dataset. Although we did not copy their procedure
in detail, we can confirm this statement because we did not use only EfficientNet as a
backbone but our extensive EfficientDet architecture. The training process results can be
seen in Figure 5.6.

In our evaluation process over the Celeb-DF dataset, we did not observe any significant
improvements in the calculation of AUC and ROC. Within the iterative process, we tested
the architecture where we froze the first three network blocks in both cases, i.e. the Effi-
cientDet M and EfficientDet L architectures. In both cases, we experimented with dropout
rates from 0 to 0.5, similar to the previous experiments.

Figure 5.6: Training and validation process of the EfficientYDet L model with preloaded
Imagenet weights.

This condition may have arisen for several reasons. We assume that, due to the masks
in the network, overfitting over the training dataset data occurred even earlier than in the
previous experiments because the propagated adjustments of the weights in the network
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were already coming from the reconstruction part, even though we wanted to prevent this
scenario through the use of bound loss functions. Another possible reason for this behaviour
could be the poor processing of the masks in the network training process. Masks do not
provide deeper information about how the input image was modified, but only in which
places the modification should be located. Also, u-nets, as mentioned earlier, are used
mainly for segmentation tasks in healthcare, which is not quite the same as deepfakes. The
original approach is more about detecting anomalies, which can often be solid. In the case
of deepfakes, we cannot classify how solid this output is.

5.2.5 Experiment 5 results

In this experiment, we evaluated the overtrained model EfficientDet L which achieved the
best AUC score, i.e. 0.85 in previous experiments. We evaluated FaceForensics and Celeb-
DF datasets, where we performed JPEG compression. The resulting DET curves can be
observed in Figure 5.7 for FareForensics and Figure 5.8 for Celeb-DF.

We can observe a slight increase of DET curves in the evaluations on the individual
graphs, but not a big one. The fact that we can watch this factor even with a test set of
the training dataset is an expected condition. Even with an unknown dataset, the presence
that we can observe may imply that compression can reduce the detector’s efficiency. A
better question is how much reduction can affect the results. The values we have measured
suggest that this impact might not be significant, but a deeper investigation of this result is
needed than just an investigation of the AUC score. While we can argue that compression
impacts the detection of deepfakes, we cannot determine how large.

Figure 5.7: DET curves calculated over the EfficientDet L model on the FaceForensics
dataset with different compressions. The compression parameter in the histogram shows
the compression ratio of the jpeg. Where 100 represents the highest number of retained pixel
values, i.e. the minimum compression, and 40 is the lowest, i.e. the highest compression.
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Figure 5.8: DET curves calculated over the EfficientDet L model on the Celeb-DF dataset
with different compressions. The compression parameter in the histogram shows the com-
pression ratio of the jpeg. Where 100 represents the highest number of retained pixel values,
i.e. the minimum compression, and 40 is the lowest, i.e. the highest compression.

5.3 Discussion

The first finding we should discuss in more detail is the inconsistency between the results
of the training validation metric and the general assessment using the Celeb-DF dataset.
As we have shown several times, there is no direct connection between the evaluation of
the training process and the results of the test set.

Various factors can cause this fact. One of the factors may be the just mentioned
overtraining of the model on data from the training dataset. Because the data in different
datasets are usually generated using several approaches, the network can learn to detect
the models with which the deepfake is developed. We briefly discussed a similar process in
Section 3.5.1, where we pointed out that in the case of human detection, we can observe
various artefacts or defects in deepfake images. As a rule, this may be more of a problem
of the model that generates these artefacts in specific cases or locations. This can lead to a
situation where the neural network learns to recognize one or multiple kinds of architecture
that create deepfakes. This condition results in the network achieving perfect results for a
particular dataset type but not for other architectures.

In this thesis, we tried to solve this problem more complexly by choosing the best model
over an unseen dataset, and we used Celeb-DF for this purpose. However, this is only one
of the ways we can solve the problem, and we assume that this solution is not optimal
either. If we used a different dataset for the evaluation, we might get different results than
those we obtained in our case. Thus we would not be able to optimally determine which
of the architectures is the best because the results would contradict each other. This area
would need to be the subject of further investigation beyond the scope of this thesis.

Another critical problem may be the ROC metric itself, so let’s look at its result from
our model. In Figure 5.9, we can see the distribution of the early distribution over the
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Celeb-DF dataset for individual images from the real image set and from the deepfake
image set.

Figure 5.9: Distribution of scores of our best network model over the test set of the Celeb-
DF dataset according to the expected results.

As we can observe, the model achieves high success and confidence in the case of real
images. Of course, there are real images that the model classifies as deepfake or is unsure
about, but this percentage is relatively small compared to the rest of the set. As far as
deepfake images are concerned, we can see two main spikes. One is in the certainty that
it is a deepfake image, and the other is precisely in the non-detection of the deepfake and
its classification as a real face. The rest of the set is relatively evenly distributed. This
state is not optimal either because the detector either detects with high confidence that
it is a deepfake or with high confidence that it is a real image. Thus there is no normal
distribution over the elements of the dataset.

This situation leads to hardly determining threshold value to distinguish a deepfake
from a real image. While it is true that we could set this threshold relatively high, for
example, somewhere around 90 %, and we would be able to detect many deepfakes, this
state is not the optimal solution we are looking for. It would be much better for us if there
were a Gaussian distribution of the individual sets with as little overlap as possible. Thus
we could determine this threshold much more efficiently according to what we would expect
from the detector. For example, in the case of a system reporting suspicious activity, we
would be able to set the threshold to detect all deepfakes and even a subset of real images.
This would achieve a state where we would get a cast of fake reports, but we would be
almost guaranteed to get the deepfake images under control as well. Of course, this is only
one scenario, which is impossible to generalize. It would depend on the application, but
this is not exactly the state we have reached with our detector.

Thus, the problem also directly affects the evaluation using the AUC value. Since we
achieve very high precision for real images also included in the AUC evaluation, this value
may be somewhat distorted. However, the opposite could also occur in this case, where we
would achieve a high success rate when evaluating deepfakes. The distribution that we set
for deepfakes would be set for real images. Neither of these extremes is entirely satisfactory.
Since we have mentioned the evaluation problem in the training process, it is not easy to
prevent this condition.
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We want to elaborate on the evaluation of the model itself and its comparison with
other works. In the context of our exploration, we have tried to extend the EfficientNet
architecture and improve its early performance for recognizing deepfakes in the image.
According to our comparisons, we managed to improve the detection capability of the
architecture by several AUC points, which can no longer be considered a negligible number.
However, there is no standardized way to compare these architectures. Since we have
defined a metric that we use to evaluate the model and have verified our results with it,
we can declare the experimental part of our work a success based on this metric. And
yet, for reasons we have already stated earlier in the discussion and pointed out during the
evaluation, we cannot say with absolute certainty that the architecture we present here is
the right one and is indeed generically better. For such an evaluation, comparing overall
architectures and choosing the same evaluation procedure would be necessary. A good
example is the Deepfake detection challenge by Meta [1], in which the resulting comparisons
over unknown data were not published until the challenge was completed. However, this is
again a generic question that we can discuss and would need further investigation, which is
beyond the scope of this thesis.

The main thing we would like to point out is the actual deployment in real operation.
As mentioned by Firc et al. [19], synthetic face datasets are limited. Many of these
datasets could be considered obsolete at a time when there is active work on GAN models
for generating deepfakes. For example, the FaceForensics dataset we used for training our
model was published in 2019. During this time, many models have been developed that
can generate deepfakes with higher quality and with a much lower number of detectable
fragments. For this reason, we cannot estimate how our model would behave on these
deepfakes and, therefore, how it could perform in case of deployment in real traffic. Testing
was only performed on publicly available datasets.

At last, we would like to point out in the discussion the detection of deepfakes in the
image itself. The datasets over which we have performed training and evaluation are videos.
These series of videos always give us several frames which are superimposed on each other.
Face-swapping videos might be easier to detect than single images, as they contain temporal
information [19]. It is helpful to reconsider this fact in the future, and thus if we want to
focus on deepfakes as a general problem, whether it is possible, and to what extent it is
possible, to detect them in an image or whether it is better to focus mainly on single types
of attacks, such as Face morphing which we discussed in Section 3.4.1.

Our observations, therefore, raise several research questions that will need to be ad-
dressed in the future:

• How to properly evaluate deepfakes detection models for their best generalisation?

• Is it appropriate to use already outdated datasets in this field, or would it be necessary
to perform new ones to address this issue?

• How effective is it to solve deepfakes in the image as an in-general problem? Is it
better to focus exclusively on individual types of attacks that are relevant?
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Chapter 6

Conclusion

Deepfakes in any audio-visual form are becoming a part of our everyday lives over time,
often without us even realising it. Despite their many possible uses for the proper purposes,
such as education, cinematography and others, they also create many threats that we must
face in the present and the future. We have pointed out several possible attack vectors in
Section 3.3.

In the paper, we have discussed several architectures and functional models for creating
deepfakes images, where distinguishing them from real content is often difficult. Indeed,
this technology is still imperfect. Therefore, we can find and recognise flaws even among
these advanced architectures. This task is often complicated and not so easy for the average
person.

Since we have pointed out the importance of recognising what a deepfake is and what is
a real contention, we have reviewed several architectures of convolutional neural networks
that can be potentially suitable for solving this problem. Then we tried to select and
improve the best architectures by an iterative procedure. For appropriate testing of our
proposed architectures, we have proposed a way of evaluating models using two different
datasets to be as close as possible to real-world scenarios, i.e. that we cannot evaluate
conclusions purely from one set, which is often generated by the same procedure. We have
therefore processed several datasets that we have used in our models’ training and validation
process, and in Section 4.4, we have also discussed their strengths and weaknesses.

Since most of these datasets are composed of videos, and often the input where the
deepfake needs to be detected is not only the shape of a person, we have also designed a
complete detection pipeline that serves for preprocessing the video or image before it can
be evaluated using our presented model.

In the experimental part of the work, we have attempted to discuss the training and
evaluation process of the univariate models in a broader spectrum. We also tried experi-
menting with different parameter values and freezing the pre-trained model weights for all
models to keep feature extraction as optimal as possible. For our first proposed architec-
ture, a modified EfficientDet model, we achieved a significant improvement in detecting
deepfakes compared to the baseline EfficientNet architecture, the results of which we then
discuss in more detail. The second architecture we investigated, where we placed the ex-
tension using the U-net network, was unsuccessful in this respect. For this one, again, we
assume fast retraining due to a higher rate of dataset-specific inputs, which we used to
evaluate the network training.

At the end of the experimental part of the work, we tried to analyse in detail the results
of our improved architecture. We looked at its output values and tried to explain them from
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the point of view of improving the early graphs and their use in real cases. This summary
then gave us a broader view of the model we are presenting, and we were able to look at
its strengths and weaknesses. We have also discussed the entire evaluation and training
process in more detail and, at the same time, pointed out several problems associated with
detecting deepfakes in the image in general. This gave us the space to open several questions
for discussion on the solution to this problem in general, not only on our solution itself.
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Appendix A

Contents of the included storage

media

Root folder contains executable main.py used for experiments in Section 5 with README.md,
requirements.txt and following directories:

• custommodels: Y-net models architectures

• generators: dataset processing files for executable main.py

• models: CNN models architectures

• preprocessing: scripts for preprocessing of datasets

• processing: checkpoints saving handler

• weights: best models weigths
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