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Abstract 
In recent years, we can observe the rise and rapid development of neural networks and 
artificial intelligence in information technology, which include deepfake photos and videos. 
Generative adversarial neural networks ( G A N s ) are a clear example of this. Nowadays, they 
can achieve v i r tua l ly impossible results for the average person to dist inguish from reality. 
Since these networks can therefore be misused for various purposes, it is necessary to be able 
to dist inguish between what is generated and what is real. Th is thesis explores current state-
of-the-art neural network solutions that can serve as suitable models for deepfake detection. 
We investigate ind iv idua l architectures that are suitable as a baseline model for detection, 
address possible improvements to this model, and develop several new architectures. We 
then investigate these and evaluate their results. In conclusion, we have a discussion of the 
results and open further questions on this complex issue. 

Abstrakt 
V pos ledných rokoch m ô ž e m e pozorovať n á r a s t a rýchly rozvoj neu rónových siet í a umelej 
inteligencie v in fo rmačných technológiách , medzi k t o r é patr ia aj deepfake fotografie a v ideá . 
G e n e r a t í v n e a d v e r z n é neu rónové siete ( G A N ) sú toho j a s n ý m p r í k l a d o m . V súčasnos t i 
d o k á ž u dos iahnuť výsledky, k t o r é b e ž n ý človek n ed o k áže rozoznať od reality. Keďže tieto 
siete sa preto da jú zneužiť na rôzne účely, je p o t r e b n é vedieť rozlíšiť, čo je vygene rované a 
čo je s k u t o č n é . T á t o p r á c a s k ú m a súčasné na jmode rne j š i e r iešenia n e u r ó n o v ý c h sietí , k to r é 
m ô ž u slúžiť ako v h o d n é modely na detekciu deepfake. S k ú m a m e j edno t l ivé a r ch i t ek tú ry , 
k to ré sú v h o d n é ako z á k l a d n ý model na detekciu, z a o b e r á m e sa m o ž n ý m i vy lepšen iami tohto 
modelu a vyv í j ame niekoľko nových a r c h i t e k t ú r . T i e po tom s k ú m a m e a vyhodnocujeme ich 
výsledky. V závere u v á d z a m e diskusiu o výs ledkoch a o t v á r a m e ďalšie o t á z k y týka júce sa 
tejto zložitej problematiky. 
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Rozšířený abstrakt 
V pos ledných rokoch m ô ž e m e v in fo rmačných technológ iách pozorovať vzostup a rých ly 
rozvoj n e u r ó n o v ý c h siet í a umelej inteligencie, k t o r é z a h ŕ ň a j ú aj deepfake fotografie a v ideá . 
T á t o t echnológ ia dokáže generovať veľmi real is t ické aud iov izuá lne záznamy, k t o r é sa da jú 
efekt ívne up la tn i ť v z á b a v n o m a fi lmovom priemysle, ako aj v umeleckej sfére či vo vzdelá­
van í a vzbudiť väčší záu jem širšieho spektra ľudí. A k o to už býva , k a ž d á t echnológ ia m á 
nielen svet lé , ale aj t e m n é s t r ánky . 

Pomocou tejto technológie je m o ž n é usku točn iť niekoľko typov ú t o k o v v š i rokom spek­
tre obyvateľs tva , či už ide o online š ikanu , pol i t ické spektrum a ovp lyvňovan ie davov ľudí 
š í ren ím p o p l a š n ý c h sp ráv , ale aj falošné obvinenia a ovp lyvňovan ie s ú d n i c t v a alebo skrý­
vanie z ločineckých iden t í t p r i overovaní dokladov t o t o ž n o s t i . Niekoľko z t ý c h t o vektorov 
ú tokov a t iež reá lne udalosti s n i m i spojené , p r i k t o r ý c h bol i tieto ú t o k y použ i t é , sú op í sané 
v našej p rác i . 

Keďže sme poukáza l i na dôležitosť prevencie použ i t i a tejto technológie na zlé účely, je 
p o t r e b n é vedieť, ako sa prot i t ý m t o ú t o k o m ú č in n e brán iť . M o d e r n é neu rónové siete, k t o r é 
sme skúmal i , d o k á ž u v súčasnos t i generovať t a k ý real is t ický obraz alebo video, že je ča s to 
ťažké odhal iť tieto ú t o k y len pomocou ľudí. Pre to sme sa zamerali na konvolučné neu rónové 
siete a zmapovali sme na jmoderne j š i e r iešenia t ý c h t o sietí , k t o r é sme sa snažil i pr ispôsobiť 
pre nami v y k o n á v a n ú ú lohu . P r e s k ú m a l i sme niekoľko modelov, z k t o r ý c h naj lepšie vyšla 
sieť EmcientNet . T ú t o sieť sme po tom doladi l i pre ú lohu detekcie deepfakes a snažil i sme 
sa dos iahnuť na j lepš iu kombinác iu hyperparametrov. 

N a efekt ívne vyhodnotenie v i zuá lneho z á z n a m u sme sa rozhodli vytvor iť k o m p l e t n ú 
pipeline na spracovanie deepfake videa (alebo obrazu). V p r í p a d e videa je p o t r e b n é rozdeliť 
video na j edno t l ivé s n í m k y a k a ž d ú s n í m k u v y h o d n o t i ť samostatne. P o t o m je možné 
vykonať n a p r í k l a d priemer t ý c h t o j e d n o t l i v ý c h sn ímok alebo nas tav iť p r a h o v ú hodnotu, 
kolko sn ímok je p o t r e b n é klasifikovať ako falošné. V p r í p a d e o b r á z k a vyhodnocujeme len 
s a m o t n ý obrázok . P o t o m v y k o n á m e detekciu t vá re nad k a ž d o u s n í m k o u na o b r á z k u po­
mocou vopred n a t r é n o v a n é h o modelu M T C N N . Zis tenú t v á r po tom roz režeme na rozmery 
p o ž a d o v a n é n a š í m modelom a v y k o n á m e centrovanie t v á r e na stred v s t u p n é h o ob rázka . 
A k sa t v á r n a c h á d z a na okraji obrazu, je p o t r e b n é chýbajúc i priestor vyplniť k o n š t a n t n o u 
farbou. 

T ú t o a r c h i t e k t ú r u sme sa po tom pokúsi l i vylepšiť pomocou niekoľkých p r í s t u p o v . N a ­
jprv sme sa pokúsi l i uprav iť model u rčený na detekciu objektov, k t o r ý sme sa rozhodli 
použiť . Tento p r í s t u p zvýšil hodnotu A U C (plocha pod krivkou) R O C (Receiver Operat ing 
Characteristic) na n e z n á m o m datasete o niekoľko percent. S k ú m a n í m rôznych kombinác i í 
zmrazenia p r e d t r é n o v a n ý c h váh sme dospeli k záveru , že naj lepšie výs ledky sa dosiahnu 
pr i z m r a z e n í p r v ý c h 3 blokov siete (sieť obsahuje 7 blokov, po k t o r ý c h nas ledu jú p red ikčně 
bloky z de tekčne j siete). Toto sp rávan ie môže byť spôsobené t ý m , že sieť m ô ž e obsahovať 
extrakciu p r í znakov v p r v ý c h troch blokoch siete p o t r e b n ý c h pre t ú t o ú lohu . T ú t o t eó r iu v 
s ú č a s n o m stave n e m ô ž e m e po tv rd i ť a bolo by p o t r e b n é hlbš ie p r e s k ú m a ť j edno t l i vé b loky 
EfncientNet. 

Experimentoval i sme aj s a r c h i t e k t ú r o u , k t o r á by mohla vykonávať detekciu deepfake v 
obraze a zobrazovať ich pomocou masky, aby sme mohl i určiť p re sné miesto úp ravy . T ý m t o 
p r í s t u p o m sa nedosiahli p o ž a d o v a n é výsledky. 

Hoc i sa n á m podarilo vytvor iť a r c h i t e k t ú r u , k t o r á dokáže odhal iť deepfake aj nad ú p l n e 
n o v ý m i o b r á z k a m i , toto r iešenie vyvoláva niekoľko dalš ích o t ázok do b u d ú c n o s t i , k t o r é je 
p o t r e b n é ďalej riešiť. 



P r v o u o t ázkou je vyhodnotenie konzistencie r iešenia a ná s l edné porovnanie s inými 
ex is tu júc imi detektormi. Keďže neexistuje j e d n o t n ý postup na vyhodnotenie takejto kom­
plexnej úlohy, v y h o d n o t e n í m sa z a o b e r á k a ž d á p r á c a samostatne. A j keď sa na v ý p o č e t 
použ íva jú j e d n o t n é metriky, k t o r é m o ž n o použiť na vyhodnotenie modelu, k a ž d é r iešenie 
použ íva na t r énovan ie iné d á t a . M o d e l teda m ô ž e byť špec iá lne p r e d t r é n o v a n ý pre dataset, 
k t o r ý sa použ íva na eva luác iu modelu, a preto sú jeho výs ledky lepšie ako výs ledky mod­
elov, k t o r é tento s ú b o r úda jov n ikdy nevideli . N a š e r iešenie použi lo na proces t r énovan ia 
dataset FaceForensics a na komplexnejš ie hodnotenie dataset Ce l eb -DF . 

Ďa lšou o t ázkou je, ako efekt ívne kontrolovať spôsob , a k ý m sa model t r énu je . P r i vyhod­
nocovaní modelu sme narazi l i na faktor, keď po niekoľkých e p o c h á c h model dosiahol skvelé 
výs ledky na va l i dačnom datasete s p resnosťou viac ako 95 %. P r i v y h o d n o c o v a n í modelu 
po j edno t l i vých e p o c h á c h nad n o v ý m datasetom výs ledky neboli t a k é d o b r é a č a s o m sa skôr 
zhoršoval i . V n i ek to rých p r í p a d o c h nedoš lo k u konvergencii k j e d n o t n é m u výs ledku . 

Vzhľadom na tieto faktory m ô ž e m e tv rd iť , že je p o t r e b n é hlbš ie p r e s k ú m a ť a zlepšiť 
proces vyhodnocovania n e u r ó n o v ý c h siet í pre t a k é t o k o m p l e x n é ú lohy a zjednotiť proces 
vyhodnocovania j e d n o t l i v ý c h komplexných ú loh , k t o r é je p o t r e b n é riešiť. 
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Chapter 1 

Introduction 

In recent years, i n modern technology, we can observe the rise and rapid development of 
neural networks and artif icial intelligence, including deepfake photos and videos. Th is tech­
nology can generate very realistic audio-visual recordings which can be effectively applied 
in the entertainment and fi lm industry, as well as i n the artistic sphere or education and 
attract a higher interest from a broader spectrum of people. A s it is usual, every technology 
has not only a light but also a dark side. 

W i t h the help of this technology, it is possible to carry out several types of attacks i n a 
wide populat ion spectrum [5], whether it is online harassment, pol i t ica l spectrum and influ­
encing crowds of people by spreading popular and false news, but also false accusations and 
influencing the judiciary, or h iding c r imina l identities when verifying identity documents. 
Several of these attack vectors and also the real events related to them, where these attacks 
were used, are described i n our work. 

W h a t makes this technology dangerous is also its availability. We can create deepfakes 
of audio-visual content or images using several pictures of a person and our mobile phone or 
computer. Several freely available applications can do this, or many neural network models 
can help a more experienced user. W h a t makes them dangerous is that nowadays, they are 
not even demanding computing power. 

Since we pointed out the importance of preventing the use of this technology on the 
wrong target, it is necessary to know how to defend against these attacks effectively. M o d e r n 
generative adversarial neural networks ( G A N ) [23] that we have researched can nowadays 
generate such a realistic image or video that it is often difficult to detect these attacks 
using human access alone. This fact is also facilitated by the rapid development i n this 
area and the wide public interest in this issue. The wide appl icabi l i ty of G A N models, for 
example, in the entertainment industry, which is spreading at breakneck speed on social 
networks, also contributes to this. We, therefore, focused on convolutional neural networks 
( C N N ) [43] and mapped state-of-the-art solutions of these networks that we tr ied to fit for 
the task we performed. We explored several models. We then finetuned these networks for 
the deepfakes detection task and t r ied to arrive at the best combination of hyperparameters. 

For efficient evaluation of the visual record, we decided to create a complete pipeline 
for deepfake video (or image) processing. In the case of a video, it is necessary to split the 
video into ind iv idua l frames and evaluate each frame separately. In the case of a picture, we 
evaluate only the image itself. Next , we perform face detection over each frame in the image 
using the pre-trained model . We then cut the detected face to the dimensions required by 
our model and perform face centring on the centre of the input image. If the face is located 
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on the edge of the image, it is necessary to fil l the missing space wi th a constant colour. 
We then tr ied to improve this architecture wi th several approaches. 

To evaluate the experiments themselves, we defined a metric by which we evaluated 
them to correspond to the most realistic possible scenario. A t the same time, we could 
compare the different proposed architectures over it efficiently. We trained our chosen 
baseline architecture and then experimented more extensively wi th the different extensions 
we designed. Overal l , we have tr ied two extensions of the baseline architecture, only one 
of which we got better results than the baseline architecture. W i t h these extensions, we 
improved the system's overall abi l i ty to detect deepfakes i n case we compared it w i t h the 
baseline architecture. The final output of this thesis is a modified architecture of the 
selected convolutional network that demonstrates increased accuracy i n deepfake detection 
compared to the baseline architecture. 

In the discussion, we then discussed the evaluation of our architecture in detai l and tr ied 
to look at it from a realistic point of view, not just from the point of view of evaluation 
scores and numbers. A l though we have succeeded in creating an architecture that can 
detect deepfake even over completely new data, this solution raises several other questions 
for the future that need to be further addressed. 

In Chapter 2, we introduce the issue of neural networks and models necessary for cre­
ating deepfakes and those used for their detection. A deeper understanding of deepfakes is 
introduced i n Chapter 3, where we explain how deepfakes are formed and present several 
freely available models w i th their evaluation. We then address the risks posed by deepfakes 
and introduce architectures that can be used for their detection and discovery. In Chap­
ter 4, we present a baseline architecture and several other architectures we have proposed 
for deepfake detection. We also list the datasets we used for t ra ining and evaluation and 
present the detection pipeline. Chapter 5 is then devoted to a summary of our experiments 
on the architectures and their evaluation, followed by a discussion of these problems and 
other related issues. The last Chapter 6 summarizes the whole thesis. 

4 



Chapter 2 

Neural networks 

Neural networks are a concept used for both false-content generation and detection. This 
chapter w i l l describe the basic principles of neural networks and divide them into several 
subcategories. We w i l l then work w i t h the different types of networks i n the following 
sections. 

2.1 Technical background 

The architecture of networks of neurons in the human brain inspires neural network al ­
gorithms. These algorithms use idealised neuron models. The fundamental principle is 
that artificial neural networks learn by modifying the connections between their neurons to 
perform many information-processing tasks [41]. 

Neura l networks are non-linear models for predict ing or generating content based on 
a general input . These networks comprise neurons connected to layers connected sequen­
t ia l ly v ia synapses. These synapses have weights, generally defining concepts learned by the 
network model. A forward-propagation process executes the network on an n-dimensional 
input x. Forward propagation refers to calculating intermediate variables for the neural net­
work from the input layer to the output layer w i th an act ivation function ( R e L U , Sigmoid, 
etc.) to summarise the neuron's output [36, 42]. 

Neura l networks are defined by M i r s k y et a l . [42]. Let denote the i - th layer i n the 
network M, and let | | Z ^ | | denote the number of neurons i n l®. F ina l ly , let the to ta l number 
of layers i n M be denoted as L. The weights which connect to are denoted as the 
| | /W| | -by- m a t r i x a n d dimensional bias vector feW. Fina l ly , we denote 

the collection of a l l parameters 9 as the tuple 9 = (W, b), where W and b are the weights 
of each layer, respectively. Let a^+1^ denote the output (activation) of layer obtained 

by computing / • b^^j, where / is often the Sigmoid or R e L U function. To 

execute a network on an n dimensional input x, a process known as forward-propagation is 
performed, where x is used to activate which activates and so on un t i l the activation 
of l(L1 produces the m-dimensional output y. 

To summarise, we consider the network M as a black box and denote its execution as 
M(x) = y. If we want to use supervised learning, we need to define an objective loss function 
C and a dataset of paired samples wi th the form (xi,yi). The loss function generates a signal 
at the output of M that is bask-propagated through M to calculate the error of each weight. 
Then an opt imizat ion algori thm, such as gradient descent or A d a m optimizer, is used to 
update the weights for several epochs. 
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Some neural networks use techniques such as one-shot or few-shot learning, which en­
ables a pre-trained network to adapt to a new dataset X' s imilar to X on which it was 
trained. Two common approaches for this are to perform a few addi t ional t ra ining itera­
tions on a few samples from X' and pass the information on x' £ X' to the inner layers of 
M dur ing the feed-forward process. 

2.1.1 Loss F u n c t i o n s 

A s M i r s k y et a l . [42] stated, The loss function must be differentiable to update the weights 
w i th an opt imizat ion algori thm, such as gradient descent. M a n y loss functions can be 
applied i n different ways depending on the learning. For example, when t ra ining M as 
n-class classifier, the output of M is the probabil i ty vector y G M.n. To t ra in M , we 
perform forward-propagation to obtain y' = M(x), compute the cross-entropy loss {CCE) 
by comparing y' to the ground t ru th label y, and then perform back-propagation and to 
update the weights w i t h the t ra ining signal. The loss CCE over the entire t ra ining set X is 
calculated as 

\X\ n 

£ ^ = - E E ^ [ c ] i o g ( ^ w ) (2 . i ) 
i=l c=l 

where y'[c] is the predicted probabil i ty of Xi belonging to the c-th class. 
Other popular loss functions used i n deepfake networks include the L I and L 2 norms 

C\ = \x — xg\x and £2 = \x — xg\2. However, L I and L 2 require paired images and perform 
poorly. N o further detailed analysis of the theory of loss functions is needed for this work. 

2.2 Convolutional neural network 

Convolut ional neural networks ( C N N s ) [43] pr imar i ly focus on processing input as an image. 
Thus, by default, C N N neurons are organized into layers w i th three dimensions representing 
the image's height, width , and depth representing the act ivat ion volume. These dimensions 
are then reduced using the inner hidden layers, which are then reduced up to 1 x 1 x n 
shape, where n represents the number of possible outputs of the classifier. 

Figure 2.1 shows a representation of a simple C N N . This network contains several dif­
ferent layers: input layer, convolution layer, pooling layer, fully-connected layer and output 
layer. We can divide these layers into two categories, feature extraction and classification. 
The input layer specifies the given dimensions of the input image. The image is then trans­
formed by the convolution layer using the learned weights. The pool ing layer then reduces 
the dimensionality of the image i n an attempt to preserve its parametric representation. 
This information is then classified using fully-connected layers and assigned to a part icular 
output category n according to which classification categories the input image satisfies. The 
following equation could express this relationship between layers: 

IN => [CONV => POOL?} * M => [FC] * N => O U T , (2.2) 

IN denotes the input layer, CONV represents the convolution layer, POOL repre­
sents the pooling layer, FC represents the fully connected layer, and OUT represents the 
output layer. M and iV are integer numbers, * means repetit ion and ? means optional . 
The activations are not mentioned, but the activation always follows the CONV and FC 
layers [45]. 

G 
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connected Output 

CLASSIFICATION 

Figure 2.1: Archi tecture of simple C N N [27]. 

2.2.1 C o n v o l u t i o n a l layer 

The convolutional layer plays a crucial role in how C N N s operate because the layer's param­
eters focus on using learnable kernels. These kernels are usually smal l in spatial dimensions 
but extend along the entire depth of the input image. W h e n the data reaches the convo­
lut ion layer, the layer convolves each filter through the spatial dimensionality of the input 
to create a 2D activation map. W h i l e scrolling through the input image, we calculate the 
scalar product for each value of these kernels. Us ing this process, the network learns which 
kernels to use when detecting certain features at specific positions in the input image. 
This process is called activation by default. Each kernel has a corresponding act ivation 
map that folds along the depth dimension to form the entire output from the convolutional 
layer. Convolut ional layers can effectively reduce the complexity of the model by opt imizing 
the output using the hyperparameters depth, stride and zero-padding. 

The number of neurons sets the depth of the output produced by the convolutional layer 
in the layer corresponding to a part icular part of the image. B y reducing this hyperparam-
eter, we can minimize the number of neurons i n the network, but this implies a reduction 
in the recognition capabil i ty of the model. 

We can also set the stride, which determines the depth i n the spatial dimension of the 
entrance through which we place the reception field. If we put the stride low, for example, 
to a value of 1, we w i l l get a high overlap of the receptive field that would create very high 
activations. Therefore, it is necessary to set the stride value to a higher number to reduce 
this overlap factor and thus achieve an output w i th fewer spatial dimensions. 

Zero-padding is a simple process of filling the input boundaries, and it is an efficient 
method to control the dimensions of the output volumes further. 

Using these techniques, we can effectively modify the spatial dimensionality of the out­
put of convolutional layers. The formula can express this modification: 

V means the input volume size (height x width x depth), R means the receptive field 
size, Z is the amount of zero-padding set, and S refers to the stride. If the result of this 
equation is not equal to a whole integer, then the stride is incorrectly set, as the neurons 
w i l l be unable to fit neatly across the given input . Despite these opt imizat ion criteria, the 
network for real image processing is huge. Therefore, methods have been developed for 
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t runcat ing the set of parameters i n convolutional layers. One of these methods is the so-
called parameter-sharing. It works wi th the assumption that if a region feature is useful for 
computat ion i n a certain spatial region, it is l ikely to be useful i n another region. Thus, i f we 
assign equal weight and bias to each act ivation map, we can greatly reduce the parameters 
produced by the convolutional layer. A s a result of this process, we get a state where, in 
backpropagation, each neuron i n the network represents the overall gradient over its depth, 
so it sets the adjustment of the set of weights rather than each weight separately. 

2.2.2 P o o l i n g layer 

The pool ing layer aims to reduce further the dimensionality of the parameters of the internal 
representation of the input i n the network and thus reduce the computat ional complexity of 
the resulting model. The pooling layer uses the so-called „ M A X " function for dimensionality 
reduction, which applies to each input activation map. This layer is often used as the max-
pooling layer w i th a kernel dimensionality of 2 x 2 applied w i t h a stride of size 2. These 
parameters are not the rule but rather the most common approach. This setting reduces 
the input dimensionality to 25 % wi th depth preserved. 

Due to the nature of the pool ing layer, there are mainly two types of max-pooling. One 
is the one already mentioned, where the values are set to 2 x 2 parameters w i th a stride 
of 2. Thus it is possible to cover the entire spatial dimensionality of the input . B u t also, 
overlapping pool ing is used, where the stride is set to 2, and the kernel size is set to 3. 
Increasing the kernel size above 3 x 3 usually leads to a decrease i n the performance of the 
resulting network. 

C N N can also contain so-called general pooling. General pooling layers consist of pooling 
neurons capable of performing many common operations, including L l / L 2 - n o r m a l i z a t i o n 
and average pooling. We w i l l not discuss them in detail , as they are not essential for a 
basic explanation of the process of C N N s . 

2.2.3 F u l l y - c o n n e c t e d layer 

The neurons in the fully-connected layer are directly connected to the neurons that represent 
the neural network's output and thus determine the values in the output neurons of the 
C N N by evaluating the weights. Between these layers, there is no intermediate layer to 
modify the weights. 

2.3 Image synthesis networks 

Exis t ing state-of-the-art models are mainly buil t on deep neural networks, showing the ex­
traordinary capabil i ty of synthesising new images. Popular categories of models for face 
manipulat ion are generative adversarial networks ( G A N ) and auto-encoders ( A E ) [31]. We 
also describe the architecture of the U-net network, which is used for localizat ion i n classi­
fication tasks. 

2.3.1 A u t o - e n c o d e r s 

This approach uses two pairs of encoder-decoder [40]. The encoder is used to extract the 
latent features from the original image, and the decoder is used to reconstruct the face. It 
requires two pairs because it is needed that each encoder-decoder pair is first trained on 
the source and then the target image. T h e n decoders are swapped, so the original encoder 
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of the source image and decoder of the target image is used to generate new images from 
the target image wi th source image features. T h e technique is shown in Figure 2.2. Th is 
approach is mainly used for face-swapping techniques to transpose a v ic t im's face onto 
someone else's features while keeping the original facial expression. 
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Decoder A 
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Figure 2.2: Creat ion of DeepFake using encoder-decoder pairs [40]. 

2.3.2 G e n e r a t i v e adversar ia l networks 

A s stated by Goodfellow et a l . [23], generative adversarial networks are a framework for 
estimating models where we simultaneously t ra in two networks. One generator network 
captures the data dis t r ibut ion, and the discriminator network forecasts the probabil i ty 
that a sample came from the t ra ining data. T h e n the t ra ining procedure for the generator 
network is to maximise the l ikel ihood of the discriminator network making a mistake. 
The t ra ining process is finished when the discriminator network can no longer see the 
difference between generated and actual samples. After t raining, the discriminator network 
is removed, and only the generator network is used. This process is shown i n Figure 2.3. 

Real sample 

Generator Generated sample 

Discriminator 

Generator 
loss 

Discriminator 
loss 

Figure 2.3: Frustration of generative adversarial networks structure [24]. 



2.3.3 U - n e t arch i tec ture 

For classification tasks, convolutional neural networks are normal ly used (described i n Sec­
t ion 2.2). S t i l l , some tasks require classification and localizat ion of the classified segments 
in the input image. 

E a r l y versions of this k ind of network worked on the sl iding-window principle, where a 
local region was created around each pixel , and then its classification was evaluated. Th is 
approach is computat ional ly intensive because it is necessary to run the network prediction 
for each p ixe l separately. A t the same t ime, having a much larger number of t ra ining data 
relative to the t ra ining images is necessary. Th is approach also adds a significant proport ion 
to the robustness of the network because it is necessary to have many more max-pool ing 
layers. 

In the paper U-Net : Convolut ional Networks for Biomedica l Image Segmentation, R o n -
neberger et at. [47] improved architecture based on a „fully convolutional network", which 
provides higher accuracy while requiring less t ra ining data. The main idea is to replace 
pooling layers w i th upsampling layers. Th is approach can learn to produce more accurate 
output images in high resolution since upsampling layers contain a high number of feature 
channels. The upsampling part is essentially symmetric to the main contracting part, hence 
the name of the u-net architecture, as it is formed in the letter U . The architecture also 
does not tu rn off any fully connected layers and therefore ensures a reduction i n the number 
of trainable network parameters and shortens the t ra ining time. 
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Figure 2.4: Frustration of U-net architecture [47]. 

The standard U-net architecture can be seen i n Figure 2.4. It is normally divided into 
left contraction and right expansion parts. The left cast is, by rule, a standard convolutional 
network and thus consists of a 3 x 3 repeated applicat ion of convolution, each followed by 
a rectified linear unit ( R e L U ) and a 2 x 2 max pooling operation wi th stride 2 for down-
sampling. A t each step during downsampling, the number of parameters is doubled. E a c h 
step in the expansion part again consists of upsampling followed by a 2 x 2 convolution that 
halves the number of parameters. In this part, the concatenation w i t h the corresponding 
part from the contraction part is also important , followed by two 3 x 3 convolutions and 
R e L u activation. The final layer then uses l x l convolution to map the feature vector to the 
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desired number of classes. In this architecture, it is necessary to choose the input image 
size so that each 2x2 max-pool ing operation is applied to a layer that has even x and y 
sizes. 

The t ra ining can then be done wi th the same number of input images and their as­
sociated desired output masks. However, the authors state that it is preferable to use 
high-resolution images for t ra ining and not to divide them into batches for efficiency on the 
graphics. A t the same t ime to ensure high t ra ining momentum to set fast t raining. Here we 
assume that this is more a setting direct ly for the task for which this network was designed, 
i.e. Biomedica l data. In other cases, we believe deeper experimentation w i t h the network's 
sensitivity to overtraining is needed. 
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Chapter 3 

Deepfake 

DeepFake is a technique to synthesise or modify image/video and audio recordings w i th deep 
neural networks based on the creator's w i l l without actual interaction wi th faked object [42] 
or person. In recent years, the concept of DeepFakes gained popular i ty in various ways, 
but most in manipula t ing people's faces and voices. Nowadays, to create DeepFake, you 
only need to open your smartphone and download the applicat ion that makes some funny 
DeepFake for you. Some examples of popular applications for smartphones are D a w n A I [53] 
or iFace [3]. D a w n A I takes a few pictures of the person and creates a v i r tua l avatar w i th 
some thematics like some myth ica l creature or astronaut or only modifies your hair colour 
similarly. iFace is an applicat ion that works on a face swap technique (which w i l l be 
explained later). It takes a selfie picture of the person and inserts it into a short video from 
some popular movie. More approaches to DeepFake creation w i l l be explained further i n 
the text. 

3.1 What is a Deepfake 

Deepfakes are Al-generated media that reproduce made-up events often authentic to the 
human eye. The term DeepFake is only a slang term w i t h no agreed-upon technical defini­
t ion. Th is word combines 'deep learning' and 'fake', commonly referring to audio or video 
of a person doing or saying things they never actually d id or said generated by an artificial 
neural network [4, 42]. 

DeepFakes are created wi th a deep learning method that relies on a complex computing 
system called a deep neural network modelled on the biological brain . A t first, the network 
takes t ra ining data samples of the targeted person and then uses an algori thm to extract 
mathematical patterns from this data. Synthetic data of the targeted person are then 
generated based on these patterns. 

Commonly known types of DeepFakes are Face-Swap, Puppet -Master and At t r ibu te -
Change. Face-Swap uses multi-scale architecture convolutional neural network ( C N N ) to 
paste faces from one image to another. Puppet -Master is a technique that manipulates 
l ip shape. It creates a fake version of the video w i t h the speech of the targeted person 
using target audio. At t r ibute-Change generates detailed and continuous facial expression 
transformations [32]. Technical details about these techniques are explained i n further 
sections. 

W h i l e commonly discussed types of DeepFakes a i m to mimic real people, deep learning 
is also used to create entirely fictional objects or people. Deep neural networks can generate 
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synthetic images of non-existing people, things, animals or art-like creations. DeepFakes 
are a subset of synthetic media. This category includes a l l Al-generated images, video, 
audio, and text formats [4]. 

3.2 State-of-the-art G A N models 

Our pr imary focus i n this thesis is generative adversarial neural networks ( G A N s ) . These 
networks have a wide range of representations i n deepfakes generation, which we w i l l in ­
troduce several in this section. They can produce very realistic images (and not only of 
people) that are hardly recognizable from reality, and the development of these models is 
s t i l l in progress. They are also the basis for datasets that we w i l l use later. 

3.2.1 S t a r G A N v2 

S t a r G A N [8] is one of the first models capable of the mappings between a large spectrum of 
features, like skin tone, hair colour, eye colour, etc., w i th a single generator. The generator 
transforms an image into a corresponding domain by taking a domain label as an addit ional 
input. One of the main problems wi th S t a r G A N is deterministic mapping per domain. 
However, data dis t r ibut ion is far more complex, so it brings problems wi th predetermined 
labels. 

Cho i et a l . [9] stated that S t a r G A N v2 improved this approach and can generate images 
across mult iple domains. Genuine domain labels are replaced wi th domain-specific codes 
representing specific domain styles. A n improved mapping network transforms random 
Gaussian noise into style. A new encoder is then used to extract the style from refer­
ence images. W i t h this technique, an improved model can synthesise diverse images over 
domains. 

Figure 3.1: Morphed pictures based on the male character w i th S t a r G A N v2. Face bot tom 
left is the source shape for feature extraction. The top row shows the shapes from which 
the pose shapes were selected and their basis for the generated images. The bot tom row 
(except for the image on the left) shows the result of the generation. 
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We have t r ied the official TensorFlow implementat ion of S t a r G A N v2 , and produced 
results are pretty impressive. One of the pretrained models is trained on the Ce lebA-
H Q dataset [33], which consists of 30 000 high-resolution images and can pretty realistically 
morph features of targeted people. Figure 3.1 and Figure 3.2 show results from image 
generation. 

Figure 3.2: Morphed pictures based on the female character w i th S t a r G A N v2. Face bot tom 
left is the source shape for feature extraction. The top row shows the shapes from which 
the pose shapes were selected and their basis for the generated images. The bot tom row 
(except for the image on the left) shows the result of the generation. 

The demonstration on an A n i m a l Faces-HQ dataset ( A F H Q ) dataset [9], which had 
been rebuilt using high-quality resize filtering. The pretrained model used animal faces for 
t raining, where the network also showed remarkable results, as shown i n Figure 3.3. 

3.2.2 S t y l e G A N v2 

S t y l e G A N [34] focuses on designing a generator that tries to control the image synthesis 
process as much as possible. The framework attempts to adjust the style of image input 
at every convolutional layer, which it uses to control the power of the images features 
specifically. It also uses noise injected directly into the network, which leads to unsupervised 
high-level attr ibute separation in synthesised images. The generator ingrains the latent 
input code into a latent space, significantly affecting how the various factors are represented 
in the network. Nevertheless, it doesn't modify the discriminator or loss function i n any 
specific way. 

Newer S t y l e G A N v2 aims to fix characteristic artefacts and improve the quali ty of 
generated images. A s Karras et a l . [35] stated, version 2 has improved the architecture 
and t ra ining process to eliminate pr imar i ly two main issues. A t first, blob-like artefacts are 
displayed i n generated images, and second, artefacts are related to progressive growth. The 
new design also allows for generating higher-resolution images than the previous version. 

x h t t p s : //github.com/clovaai/stargan-v2 
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Figure 3.3: Morph ing pictures based on the animals w i th S t a r G A N v2. Face bo t tom left is 
the source shape for feature extraction. The top row shows the shapes from which the pose 
shapes were selected and their basis for the generated images. The bot tom row (except for 
the image on the left) shows the result of the generation. 

Figure 3.4: S t y l e G A N v2 generated images that achieve high quali ty i n the eye of the 
observer. 

We used S t y l e G A N v2 official reposi tory 2 to demonstrate the functionality of this net­
work. They provide a pretrained model trained on the F l ickr -Faces-HQ ( F F H Q ) dataset [35], 
consisting of 70 000 high-resolution images of people of different ages, ethnicities and back­
grounds. Figure 3.4 demonstrates high-quality performances from the same seed image. 

A t last, as shown i n Figure 3.5, not every complete transformation produced by Star­
G A N v2 is opt imal . A t some point of truncation, images look glitched or touched wi th 
some abstract artistic concept. 

2 h t t p s : //github.com/NVlabs/stylegan2 
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Figure 3.5: S t y l e G A N v2 generated images wi th unusual outcomes. 

3.2.3 G H O S T : G e n e r a t i v e High- f ide l i ty O n e Shot Transfer 

The G H O S T [25] project brings the G A N solution also to the face-swap problem. It mainly 
focuses on improving known problems in deepfakes, such as eye gaze inconsistency, face edge 
errors and others. The FaceShifter [37] model is chosen as the baseline for the architecture, 
which tries to improve the solution for these known errors. The model consists of three 
main components as shown i n Figure 3.6, where Xt and Xs represent input images (or a 
pair of video images), and Yst represents the output from the model. 

X t >- Attribute encoder 

Y Y Y True 

AAD generator 

A A A 

> Discriminator 

False 

Identity encoder 

L 

Figure 3.6: I lustrat ion of G H O S T architecture [25]. 

The identity encoder is implemented using the ArcFace model, which extracts a vector 
of size 1x512 from the input image Xs, i n which it tries to preserve information about the 
source of the person's identity. 

A n attr ibute encoder is a model buil t using U-net architecture which extracts features 
from the target image. 
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Figure 3.7: Example of using G H O S T for image-to-image transit ion. W i t h source (left), 
target (middle) and result (right). 

Figure 3.8: Example of using G H O S T for image-to-image transi t ion in B & W . W i t h source 
(left), target (middle) and result (right). 

The A A D generator is a model that mixes the identity vector evaluated from X s and 
the at tr ibute vector evaluated from X t using A A D ResBlocks dur ing the creation process 
and generates a new face Yst w i th the source identity and target attributes. 

Next , the discriminator functions as a standard discriminator i n the G A N architectures 
we described i n Section 2.3.2, which tries to decide whether the resulting generated output 
is real or fake, thus improving the network t ra ining process. The solution also comes wi th 
an improved loss function i n t ra ining for better network results. 

G H O S T has shown remarkable results dur ing testing. It can work wi th two images and 
plant a shape into the whole video sequence using one photo, often wi th very high precision. 
Of course, there are cases when it doesn't do this very well because it is a generic model 
that works w i th one photo as its input . Figure 3.7 and Figure 3.8 show examples produced 
by this model. 

Figure 3.8 shows that G H O S T effectively incorporates not only the face into the image 
but the face into the overall scene, where it works very well w i t h making a face fit i n the 
environment whether by quality, colour, style and other factors that belong to i t . 

W h e n testing on video, we captured a few frames where the model had a problem, for 
example, passing the hand in front of the shape. These are specific cases that almost every 
such model has problems wi th . S t i l l , i n the case of using this k ind of deepfake, the material 
maker can adjust the source and target images/videos according to the model so that these 
glitches don't happen to h im. 
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3.3 Deepfake threads 

The types of deepfake attacks can be of different natures. It can be attacked on specific 
persons to tarnish their name or to dehumanise them, as attacks on individuals i n general. 
S t i l l , it can also be global attacks that w i l l influence mass opinions. We describe various 
attack scenarios i n this section. We have focused on general attacks using deepfakes wi th­
out segregating the technology used or the user's expertise because, nowadays, pract ical ly 
everyone has access to this technology i n their pocket. 

3.3.1 G e n e r a l a t tack vector 

Al though many scenarios exist of how a deepfakes attack can be executed, most rely on 
the same structure. We have described the attack procedure i n the same way as Brooks [5] 
stated. 

1. Intent - The attack starts when the attacker who wants to use deepfake decides to 
execute an attack on the selected target according to the chosen scenario. 

2. Researching - The attacker needs to research his desired target, which i n principle 
means that he needs to obtain as much material as possible containing image or 
audio-video recordings of the v i c t im . The type of mater ial may vary depending on 
the scenario chosen and also on how much close contact the attacker has w i t h the 
v i c t im . For example, i n the case of Cyberbul ly ing , this step is often much easier than 
in Deepfake kidnapping. 

3. Training model - In this step, the attacker needs to use the collected data to t ra in 
a model suitable for the form of his attack. This step is highly dependent on the 
attacker's knowledge and resources. The type of t ra ining and technology used de­
pends on the t ime spent on this step. In many cases, using commercial ly available 
applications where the required resources are insignificant is possible. 

4. M e d i a creation - After t ra ining the model, the attacker creates the desired deepfake 
according to the chosen scenario. This step can be repeated because the quali ty of 
deepfakes can vary depending on the requirements and may not always be sufficient. 
The last two steps do not always have to be performed by the attacker alone. If the 
attacker is not experienced or does not have sufficient resources, he can pay for such 
a service. 

5. Distr ibut ion of the deepfake - Then the deepfake needs to be distr ibuted. The way 
of d is t r ibut ion can be subtly varied according to the chosen scenario. For example, it 
can be posted on social networks, sent out v ia email or by establishing communicat ion 
using a new fake identity. 

6. Viewer response - Deepfake has reached the target group of users, and their reaction 
is awaited. 

7. V i c t i m response - The vic t im's reaction is awaited. The v i c t i m is a specific sub­
group of viewers from which a different reaction to a given deepfake is also expected. 
Depending on the scenario, it may be a statement that it is fake news. Depending on 
the scenario, the expected performance may differ. 
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A t every step of a deepfake attack, it is possible to put preventive measures i n place to 
prevent this attack. A s a rule, each attack belongs to a different category and, therefore, to 
a different ins t i tut ion that could prevent this attack. Our work mainly focuses on detecting 
deepfakes i n the „Di s t r i bu t ion of the deepfake" step and thus stopping the attack directly 
before any damage is done because even i f the deepfake is detected later, it can cause profit 
for the attacker and problems for the v ic t im. 

3.3.2 A t t a c k scenarios 

To better understand how deepfakes work and their impact on security, we summarised a 
few scenarios of how deepfakes attacks can work. We have divided these scenarios into three 
categories: nat ional security and law, commercial use, and society, as Brooks [5] stated. We 
focused mainly on those where it is possible to use image deepfakes. For deepfakes where 
it is possible to use audio-video format, it is possible to find several other scenarios or to 
extend those we describe. 

National security and law scenario: Deepfake kidnapping 

In this scenario, a c r imina l gang operating in any tourist location wi th a high crime rate 
(such as Mexico) can track down a tourist group. Suppose they can evaluate the tourist 
group as a suitable v i c t im . In that case, they can use deepfake imagery to create a scene 
where the gang captures one member of their group, or they can upload footage of a member 
of their group being injured to make the v i c t i m more likely to comply w i t h the gang's 
demands. Then they can use this mater ial to extort money from other group members. O f 
course, this scenario only works i f there is a si tuation where the group members are not 
i n constant contact, which is not unusual i n tourist destinations. In the end, however, the 
vict ims are not injured, and the c r imina l group does not have to make any extra effort to 
kidnap them. 

National security and law scenario: False evidence in a criminal case 

Nowadays, i n serious c r imina l offences, such as murder, the prosecution is already pursuing 
charges against the accused perpetrator using evidence such as D N A tests, fingerprints or 
various audio-visual recordings and testimonies. In this scenario, we take the perpetrator 
as an advanced person i n deepfakes or wealthy enough to pay for such a procedure. Such a 
person may be able to use audio-visual recordings to provide false evidence of, for example, 
his locat ion wi th in a bui ld ing (or even another building) at the t ime of the offence. B y doing 
so, he supplies relevant evidence of his innocence, and at the same time, he can discredit 
other types of evidence against h im, such as witness statements from the crime scene. Thus, 
he does not only help himself by false evidence but also by reducing the relevance of other 
evidence against h im. 

This scenario can also be applied i n the opposite case similarly. Thus against a person 
who is accused and is innocent, we prove in this way the perpetrator or another entity 
that would have an interest in it introduce „relevant" evidence that shows that the person 
should be guilty. 
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Commerce scenario: Corporate sabotage 

This scenario sets an option of spreading misinformation to damage the company's reputa­
t ion, whether it is the overall reputation of the company, the ind iv idua l products that the 
company offers, the company's board of directors and others. Damage to the company's 
reputation can occur, for example, when some of its top executives or well-known figures are 
falsely accused, which can negatively affect the company's current and future collaborations 
or their prices on the stock market. 

Commerce scenario: Corporate liability concerns 

The following scenario works wi th a high-quality deepfake video rather than a standalone 
image. We present this scenario because it is also possible to cut the video into a sequence 
of images and evaluate whether the ind iv idua l frames are deepfake. 

Here we are not working wi th a direct impact on the company, but rather for a fraud on 
the client side, where it is then possible to c la im monetary compensation from the company. 
If a company that manufactures a product (e.g. a mobile phone) has a defective product 
that, for example, explodes, the attacker can use sufficient knowledge to declare his product 
equally defective and demand compensation for damages. It is possible to trace original 
videos of these defective products w i th other customers to whom the damage was caused. 
The attacker then uses deepfake to create a similar video wi th his product, s imulat ing the 
same type of error that occurred in the past. Based on this, he can hang this video on 
social networks. A s this k ind of video is gaining popular i ty extremely fast, the company 
can be subsequently pressured to compensate the customer, and it is extremely problematic 
to verify whether this incident happened. The company would also put itself at great risk 
if it wanted to prove that the video i n question was not genuine, as it could nevertheless 
cast a bad light on a company that does not want to compensate its injured client. 

Commerce scenario: Stock manipulation 

In this scenario, the attacker impersonates several high-ranking company employees and, 
based on their announcements, can manipulate the company's price and make a financial 
profit. The attacker then creates several profiles on social networks that present themselves 
as company employees. These may be real employees or fictitious persons who only pretend 
to be company employees. The attacker then posts an announcement on the fictitious profile 
of a high-ranking employee (e.g. the C E O of the company), which w i l l affect the company's 
future share price. He can buy the company's shares i f the announcement is positive before 
the attack starts. If it is rather negative, he can wait for a subsequent fall i n the share 
price, which should probably be corrected in some way after the fake news is revealed. This 
c la im can then be supported on other employee profiles created to increase the relevance of 
the announcement. 

The attack can then be further enhanced by either an audio or audio-video deepfake, 
where the announcement is made verbally on video. This way, we can increase the relevance 
of the information even more. The attacker not only benefits himself but also destroys the 
company's good name and harms other investors in the company. Therefore, it may not be 
purely an attack where the a i m is financial gain but also to ha rm another person or group. 
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Society scenario: Cyberbul ly ing 

This scenario assumes that the attacker wants to ha rm the target person exclusively. It is, 
therefore, not some form of threat for financial enrichment but rather to lower the v ic t im's 
reputation in a part icular group, such as family, work, etc. It may also have the secondary 
effect of benefiting the v ic t im's r iva l . A standard method of this attack is to create a picture 
or video of the v i c t i m i n a si tuation that is against the policies of the group i n which the 
person is a member, which w i l l result in , for example, a ban from attending the group's 
events or a complete exclusion from the group where the v i c t i m is located. 

Cyberbu l ly ing is a form of assault that most often occurs in young people due to the 
influence of social media. A s young people tend to congregate in large numbers in similar 
groups on platforms such as Instagram, T i k t o k and others, it is much easier to spread such 
fake photos or videos in these groups. A d d i n g to the impact is that if the picture is well 
taken, even later proof that it is a deepfake can cause permanent damage to a person in the 
collective precisely because it is a sensation that the whole group is addressing. S t i l l , then it 
does not matter later on. Another important factor in this issue is also the easy accessibility 
to the tools for creating deepfakes, which we have discussed i n previous chapters. Thus, 
it is extremely easy to create a deepfake, even for a pr imary or secondary school student. 
This deepfake does not have to be extremely high quality, as the general public and experts 
in this field do not fully judge i t . 

Society scenario: Pornography 

The issue of deepfake pornography has been dealt w i th more extensively in Section 3.4.3, 
so this attack scenario, despite its extreme seriousness, w i l l be described only briefly. A 
common scenario for creating deepfake porn is an ex-boyfriend who cannot get over a break­
up wi th his partner. Since couples usually have a lot of mutua l images and videos, it is easy 
for an attacker to t ra in a neural network from enough mater ial to create such a deepfake. 
The attacker can then demand that the partner stays in the relationship. If she does not 
comply, he publishes this deepfake on the Internet. Th is can be pornographic photographs 
or videos using the face-swap technique. Since this k ind of content is available on various 
portals, finding a person who, at first glance, resembles the partner so that the deepfake is 
as believable as possible is not a problem. 

Society scenario: Elect ion influence 

In this scenario, we are working wi th influence on the pol i t ica l scene. Let ' s imagine a 
si tuation where candidate A is running for the A P party, and candidate B is running 
for the B P party. The B P party can create fake news to boost its candidate, using an 
audio-video deepfake of candidate A to damage his reputation and directly increase its 
candidate's chances. They can also use forms of deflection, as discussed i n the section 
above (cyberbullying or deepfake porn), to harden candidate A for his potential voters 
and thus direct ly attract voters to the side of their candidate. The cases mentioned in 
Section 3.4.3 work wi th the same scenario. 

Society scenario: C h i l d predator 

One of the most serious scenarios wi th deepfakes is their use against underage children. 
The attacker, who communicates w i th a smal l chi ld , can use deepfakes to create his own 
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identity as a smal l chi ld . It is, therefore, easier for h i m to communicate wi th the child, as 
the v i c t i m thinks he is dealing wi th a chi ld of his /her age and not w i th an adult. T h e n 
he can find out various things about the background of the chi ld and his parents, influence 
h im, i n the worst case, he can meet h i m at a dangerous place and possibly kidnap or hurt 
h im. T h i s scenario is one of the worst because the category of vict ims is often not mature 
and educated enough to recognize whether they are communicat ing w i t h a chi ld or an adult. 
If this attack succeeds, only one last element can prevent this from happening: the t imely 
input of parents, which is often problematic i n the online space. 

3.4 Incident reports 

For a closer approach to the theoretical scenarios i n the last section, we w i l l present several 
reported real incidents divided into subcategories. 

3.4.1 P a s s p o r t m o r p h i n g at tack 

Biometr ic face recognition is widely used in border control applications to recognise in­
dividuals based on facial characteristics. The face reference image stored in a passport 
or other identity documents strongly connects the biometric reference and the document 
holder. Face recognition systems must be tolerant against intra-subject variation. Morph ing 
attacks can exploit this tolerance bound [17]. 

This type of attack was first demonstrated by Ferrara et a l . [16] and later confirmed 
by several research works. Two commercial ly available face recognition software were used 
wi th modified parameters according to the European standards used at border controls of 
European countries. To our surprise, even nowadays, there are countries where the photo 
of a person for a passport is not taken at a government office, but the person takes the 
picture at home and only brings it when arranging a passport. 

Behaviour 

Ferrara et a l . [15] stated that i f a morphed image similar to the face of two people can be 
included in a Machine Readable Travel Document ( e M R T D ) , then two persons can share 
the document. In this scenario, a c r imina l can exploit the passport of a collaborator without 
cr iminal records to overcome security controls. The subject w i t h no c r imina l records could 
apply for an e M R T D by presenting the morphed face photo; i f the picture is not noticeably 
different from their face, the officer accepts the image and releases the document. 

The conditions for a successful attack are these two. 

• The photograph is sufficiently similar to a person applying for a document, and it is 
possible to deceive a human expert who can see through it. 

• A Face Recognit ion System can successfully recognize a photograph ( F R S ) i n the case 
of bo th human subjects. 

Several studies have confirmed the high realism of the generated images and their abi l i ty 
to deceive even a trained human worker. Th is problem becomes a l l the more severe because 
attackers often use the smal l size of the photographs used for passports, typical ly 3.5cm x 
4.5cm, which helps the attacker. After a l l , the smal l size of the picture and its pr int ing can 
effectively hide the flaws caused by the morphing process [46]. 
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3.4.2 F i c t i o n a l accounts 

The Internet and social networks are undoubtedly the strong sides of this t ime, whether 
we look at it from the point of view of communicat ion, advertising, influencing people, etc. 
People use real names or pseudonyms on social networks like Twit ter or Instagram. They 
communicate w i th their friends, fans or members of mult iple groups according to their 
preferences. Therefore, there is natural space for various fictitious users i n these places. 

Today, the social network Twit ter has switched to a new blue badge model [52], where 
al l a user has to do is pay for a subscription, which costs a few dollars a month. They 
automatical ly become „verified". Previously, it worked differently because a person who 
wanted this verification badge had to meet a few problematic conditions. O f course, they 
had to be a public figure or a company. Therefore, social network users could „look up 
more" to those who owned this badge because they were sure they knew who they were 
communicat ing wi th and who was posting their „ tweets" . 

The article published by the C N N news por ta l in 2020 [44] beautifully presents the abuse 
of this power. A n d r e w Walz calls himself a „proven business leader" and a „pass iona te 
student advocate." Walz , a Republ ican from Rhode Island, is running for Congress w i t h 
the tagline, „Let ' s make a change i n Washington together," or so his Twit ter account 
claimed [44]. Th is profile was given a badge from Twit ter because they wanted to make 
it easier for people to access relevant content from pol i t ica l candidates ahead of the 2020 
elections. There would have been nothing wrong w i t h this approach i f it had not been 
discovered that A n d r e w Walz d id not exist. The Twit ter profile was created by a 17-year-
old student as a free-time act ivi ty dur ing the holidays. He later said that his effort was to 
test Twit ter ' s election integrity efforts. W h a t is also a larming about this story is not only 
the fact that Twit ter managed to verify a non-existent candidate. Th is could be seen as 
a short circuit in processing a large amount of data, and one profile sl ipped through the 
cracks by mistake. It is also a larming that many candidates have complained that Twit ter 
could not verify their accounts. S t i l l , despite this, the account of a fictitious person has 
been verified. 

Other media outlets have reported similar findings about fake profiles created by deep-
fakes. For example, an article by James Farre l l [14] includes a report from the L i n k e d l n 
job network that detected thousands of fake profiles among its users. In this case, people 
eventually meet a real person in person and potential ly get the job anyway, but that does 
not change the fact that this is disturbing. 

In modern society, dat ing has also moved mainly to the online world . This is evidenced 
by the dat ing apps people use nowadays, such as Tinder , Hinge, Bumble , etc. In these 
apps, we interact dai ly w i th thousands of users of our preferred gender; i n the more pleas­
ant case, there is some mutual match and the possibil i ty of some further communicat ion. 
Unfortunately, even in this case, one cannot be sure that one communicates w i th a real 
person. 

Social networks and dat ing apps are full of fictitious characters pretending to be real 
people. They don't always use deepfake technology to generate their images. Even photos 
stolen from the internet are often enough for this approach. Deepfakes, however, allow 
deeper communicat ion w i t h the person on the other side. Const ruct ing a new photo ac­
cording to the current needs is always possible. One of the easiest ways to use it is to 
use a bot that automatical ly communicates w i th the other party and can later get cr i t ical 
information from h im, such as payment card details. A more sophisticated method is to use 
deepfake to obtain a match and then communicate w i th a real person. In this way and w i t h 
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very personal communicat ion, attackers can get, for example, compromising images from 
a person, which they then use to b lackmai l that person. „The re are hundreds, probably 
even thousands, of Austral ians who have gone on to pay this money, and they are s t i l l 
getting blackmailed," as the Foster [21] states. Foster [20] also mentioned a practice known 
as revenge porn, where men exchange such photos of women from their neighbourhood on 
the internet, which can lead to psychological, not only financial, damage to health. X u [59] 
shows a preview of the possible methods of creating these profiles. S t i l l , it is truncated due 
to the privacy risks created using the Tinder Kaggle Profile Dataset. 

3.4.3 Fake accounts a n d face-swapping 

Deepfake technology can create fictitious persons and add a real person's face to a specific 
scenery. This approach allows the attacker to upload the face of his v i c t i m anywhere he 
wants, whether it is some way of manipula t ing the person's reputation, convict ing h i m of 
a crime he d id not commit or even „filming" pornographic content. 

Pornographic content 

In 2018, researchers at Sensity A I found that nearly 90 % of deepfake clips are non­
consensual pornographic clips, predict ing that this number w i l l double every six months. In 
an article by Jennifer Savin [49], the author states that after googling the phrase „deepfake 
porn", the google search engine lists 57 mi l l ion results, and the interest has increased by 
31 % i n the last year. B u t several approaches are available online to create this k ind of 
deepfake easily and relatively quickly. We have mentioned a few simple applications that 
would be capable of this in Section 3.2, but this is far from a l l . Several public repositories 
of face-swap solutions are available online to create such fake photos or videos. For a more 
experienced user, this approach is no problem because a l l you need to do is find a solution 
of sufficient quality. Savin [49] tells the story of a woman whose photos were found online. 
She admit ted that the only thing she found i n the photo as possible evidence of fakery was 
a weak pixelat ion i n the waist area, which could have been removed wi th Photoshop i f she 
had made a l i t t le effort. 

Considering that this category of deepfakes is the most used, several more straightfor­
ward approaches exist to create such a fake. There are even online forums where people 
offer their services to make deepfakes. The Vice por ta l published an article [30] where they 
set up a deepfake platform and informed about the prices and possibilities i n this industry. 
A s they state, they have communicated wi th several „content creators" who charge an av­
erage of around $30 for creating a video, for which 13 seconds of clear footage of the v i c t im 
was enough. T h e attacker even to ld the journalist that the price would be lower later be­
cause he had already trained his network on the v i c t i m whose video he had provided. After 
communicat ing the order, where the video and the l ink to the pornographic material were 
handed over, the resulting picture was taken in approximately twenty-four hours. These 
forums, therefore, give even attackers without experience or the necessary resources the 
opportunity to attack for a relatively smal l fee for the damage they can do to their v ic t im. 

Sensity A I also published an interesting article [2] about another k ind of deepfakes that 
works i n a specific way. Framework DeepNude requests a photo of the v ic t im, who then 
uses A I to strip naked. Therefore, it is not precisely a face-swap technique because the 
photo's exposure should be preserved, and there is no need for several pictures or a shorter 
video. This framework was sold i n 2019 to an anonymous buyer after its success, and its 
different variations are currently available on the internet in the form of applications or 
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G i t H u b repositories. Th is framework also came wi th automating the process of creating 
these deepfakes. Accord ing to Sensity A I , several bots on the Telegram platform operate 
wi th this framework. F r o m the service provider's point of view, it is a fully automated 
process. Just visit one of these Telegram groups, upload a request, and wi th in moments 
the attacker w i l l receive the finished photo for a smal l fee. Sensity A I reports that at the 
end of Ju ly 2020, more than 100 000 photos were taken by such bots and published, and 
this number continues to grow. 

This approach reflects the increasing tendency to use various deepfake attacks and the 
need to address this si tuation. 

Polit ical influence 

Deepfakes of polit icians belong, from a global point of view, to one of the greatest threats 
we face i n this technology. The audiovisual images of polit icians and their statements im­
pact the public on a vast scale and shape public opinion, whether nat ional or supranational. 
They are also easy targets for attackers because they can obtain massive datasets of pub­
lic speeches, photos and various other recordings through the t ra ining process of neural 
networks. 

The M e d i u m [28] por ta l has summarized several publ ic ly available videos that have 
been created using deepfakes, among them some useful ones, such as an Indian pol i t ic ian 
who used deepfakes to translate his speech into several languages or the example of Barack 
Obama, which serves more as an instruct ional video to let people know what this technology 
can do. In our opinion, this video looks very convincing. However, some videos have caused 
a lot of misinformation. 

One of the most famous videos is the deepfake of former U S President Dona ld T rump [6], 
published by the Belgian Socialist Party. In the video, Dona ld T rump calls on the states to 
wi thdraw from the Paris Cl imate Agreement, just as the Uni t ed States w i l l . A l though the 
video was imperfect and presented as a fake, it misled many people into th ink ing it was an 
actual speech. 

Another well-known example of the use of deepfake is the creation of a video by 
Vo lodymyr Zelensky cal l ing on the Ukra in i an people, dur ing the current war i n Ukraine, to 
lay down their arms and surrender to the Russian Federation [12]. Zelensky subsequently 
denied the video and declared it false, but this does not change the consequences the footage 
could and perhaps d id bring. There have also been deepfake videos of V l a d i m i r P u t i n cal l­
ing on Russian soldiers to surrender in this war. This war is a clear example of a significant 
threat, even i n such mi l i t a ry conflicts, where such an act of aggression can cause the morale 
of the troops to plummet and t u r n the si tuation i n favour of the aggressor. In such cases, 
technology is dangerous because fake news gets into the consciousness of even unknown 
people and shapes their publ ic opinion. 

A s M e d i u m points out, few known cases of Deepfakes being used for pol i t ica l purposes 
exist [28]. However, this fact may be due to the development of technology, and the further 
we go, the more frequent these cases may appear. The war i n Ukra ine is a clear example of 
this, where similar incidents have occurred several times dur ing a few months of fighting. 
In such conflicts, each side's moral support is important for their victory, not the absolute 
perfection of the technology, because, despite any efforts, the other side w i l l soon declare 
that the video is fake. 
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False accusation of criminal activity 

A s this technology develops, important issues, such as recording evidence i n court trials, 
are also emerging. In the past, oral testimony or a wri t ten signed statement was taken as a 
conviction or val id proof i n a t r ia l . In the development of mobile devices such as telephones, 
photographs, videos, or audio recordings have also come into use. These make it possible to 
offer evidence even though, for example, the witness who took a photograph might fear for 
their life and, therefore, not want to appear in court. W i t h them also comes the possibil i ty 
of one of the parties using deepfake as evidence or one of the parties challenging the evidence 
concerning this technology. 

The modification of photographs as forensic evidence is nothing new. It d id not come 
wi th deepfake technology. D i g i t a l image forensics mainly focuses on the low level of a 
picture to verify its credibili ty. However, this does not change the fact that videos and 
audio recordings are now being added to this, which w i l l only become more and more 
sophisticated as t ime goes on. 

The issue is also dealt w i th in several articles [7, 18, 22]. 

3.4.4 S u m m a r y 

In this section, we have shown several theoretical scenarios and, at the same time, pract ical 
examples from the real world of how we can encounter abuse through deepfakes i n almost 
every segment of our life, whether it is a personal, commercial , or governmental sphere. It is 
therefore important that we minimize their bad impact on society and work on prevention 
against these attacks at every available step. 

This work, therefore, focuses on the detection of deepfakes at the moment of their 
publ icat ion and i n later steps because prevention i n the early stages of the creation and 
acquisition of the necessary data is an extremely complicated task from the point of view 
of freedom, where without the restriction of current free rights it is v i r tua l ly impossible to 
prevent their creation and subsequent dissemination. 

3.5 Deepfake detection 

Detection of deepfakes is a direction that is the focus of a lot of research because, as shown 
in the previous chapter, they are a severe security risk i n many ways. In this chapter, 
we w i l l discuss some basic approaches that are used for deepfake detection from a human 
perspective, we w i l l discuss the basic principle of deep neural networks that t ry to solve the 
problem of image classification and deepfakes recognition, and we w i l l introduce state-of-
the-art models that are used to solve this problem. 

3.5.1 H u m a n detect ion 

Before using neural networks for detecting deepfakes, standard methods focused mainly on 
the consistency of the image from a low-level view. In addi t ion to the standard search for 
artefacts that neural networks often leave i n their generated images, there are also standard 
forensic procedures used i n the pre-deepfake era to detect possible photo manipulat ion, and 
they are s t i l l used today. 

One of the best methods of detecting fake images is to examine the fingerprint left by 
the camera [39]. W i t h good photos captured from the same camera, it is possible to analyse 
the amount left by the camera and compare it w i th the amount i n the scanned image. It is 
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possible to determine where the image has been modified or its val idi ty using the differences 
in this sum. However, this method requires knowledge of the camera equipment w i th which 
the photograph was taken and, therefore, cannot be applied unless the camera used to 
take the image is known. Alternat ively, detecting this w i th a smal l number of images is 
impossible. 

Another approach is called copy-move forgery [11]. Th is method analyses the patterns 
in the image, and similarities between them are looked for. W h e n editing images, this 
method is often used to fi l l i n missing parts necessary for the resulting image. Thus, we 
can detect repeating patterning between the ind iv idua l components of the picture. Unl ike 
the previous approach, i n this approach, we do not need to know the device from which the 
image was taken, and at the same time, we can also process an ind iv idua l image. It is not 
necessary to have a series of others for analysis. 

However, human observation remains the pr imary method for detecting deepfakes. 
G A N s often create various kinds of artefacts and inconsistencies that can be seen by look­
ing at the image i n more detail . W h e n recognising, it is necessary to pay attention to, for 
example, reflections in human eyes, differences i n eye colours, missing earrings, but also the 
surrounding environment i n the image, which is often distorted by neural networks, even 
though the generated face itself achieves results indistinguishable from reality. 

3.5.2 State-of-the-art n e u r a l network models 

In this section, we describe state-of-the-art models that can be used for image classification 
and, thus, deepfake recognition. The i r basic idea, architecture, and how these models are 
trained w i l l be described. Most of these models can be trained from scratch, but they 
contain a wide range of pre-trained models that can be used for the k ind of classification 
we need using fmetuning. We have tested these models from both the finetuning and pure 
weight t ra ining perspectives, and they w i l l be used as reference models for comparing the 
effectiveness of our proposed solution. 

V G G 

The basis for V G G models was first described by Simonyan et a l . [51] i n 2015. The cause of 
this convolutional neural network is the use of smal l convolutional filters of size 3 x 3 wi th 
stride and pad of 1, along w i t h 2 x 2 max-pool ing layers w i t h stride 2, which are stretched 
to depth sizes 16 and 19 i n the framework of the proposed network. F r o m this approach, 
the V G G 1 6 and V G G 1 9 models were subsequently developed. The models are focused on 
not only classification tasks but also localisation tasks. In the following, we w i l l main ly deal 
w i th the V G G 19 model because it w i l l be used as one of the reference models for comparing 
the effectiveness of our solution in Chapter 5. 

The basic architecture requires an input image size of 224 x 244 pixels. It is capable 
of classifying up to 1000 different objects, such as pens, cars, animals and more, using the 
pre-trained ImageNet dataset [13]. This approach trains the pre-trained model weights to 
accurately classify features on different images. The architecture of the model is shown in 
Figure 3.9. 

Resnet and Resnetv2 

The K a i m i n g et a l . [26] focused on exploring the depth of neural networks. They observed a 
degradation problem, which means that the accuracy of neural networks saturates, and then 
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Figure 3.9: I l lustrat ion of the network architecture of V G G - 1 9 model: conv means convo­
lut ion, F C means fully connected [61]. 

their accuracy degrades rapidly. Th is degradation does not occur by so-called overfitting, 
and adding addi t ional layers to the network only causes higher errors i n the t ra ining process 
and, subsequently, i n testing. The degradation of t ra ining accuracy indicates that not a l l 
systems are s imilar ly easy to optimize. A possible solution for this problem is the so-called 
identity mapping, in which the addi t ion of connecting layers to an already existing model 
occurs. In this process, the error increase is then reduced. 

Instead of hoping each few stacked layers directly fit a desired underlying mapping, 
residual mapping holds these layers explicit ly. Formally, denoting the selected underlying 
mapping as H(x), the stacked nonlinear layers provide another mapping of F(x) := H(x) — 
x. The original mapping is recast into F{x)+x. A hypothesis is that opt imiz ing the residual 
mapping is easier than opt imiz ing the in i t ia l , unreferenced mapping. If identity mapping 
were opt imal , it would be easier to push the residual to zero than to fit an identity mapping 
by a stack of nonlinear layers. Formulat ion of F{x) + x can be realized by feedforward 
neural networks w i th shortcut connections as shown in Figure 3.10. 

Shortcut connections are l inks that omit one or more layers. In this case, shortened 
links perform an identity mapping, and outputs of identity mapping are added to the 
outputs of the stacked layers. Identity-shortcut connections do not add any addi t ional 
parameters or computat ional complexity. The entire network can s t i l l be trained using an 
optimizer w i th backpropagation and can be easily implemented using standard libraries 
without modifying the solvers. The paper's authors declare that despite the great depth 
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Figure 3.10: B u i l d i n g block of residual learning cited from [26]. 

of the presented models, their complexity is lower than the V G G models already presented 
by us. 

The ResNet architecture contains 3 x 3 convolutional layers w i th a stride of size two 
that rely pr imar i ly on two pillars. F i r s t is that for the same output feature map size, the 
layers have the same number of filters, and second, i f the feature map size is halved, the 
number of filters is doubled to preserve the t ime complexity per layer. 
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Figure 3.11: I l lustrat ion of the network architecture of ResNet50 model: conv means con­
volut ion, F C denotes fully connected. 

Figure 3.11 shows the architecture of ResNet50. The same skip connections between 
the ind iv idua l blocks where the arrows are located are shown i n Figure 3.10. 

Densenet 

The Densenet architecture was introduced later as an extension of the resnet architecture 
by Huang et a l . [29]. The paper's authors argue that even though resnet works on the 
principle of propagating weights from the previous layer to the current layer, it can s t i l l 
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prevent the flow of information across the network. For this reason, they came up wi th a 
new concept called dense connectivity. 

This concept is based on the principle that the weights from each layer are propagated 
to each successive layer and, thus, not only to the next layer. Thus, layer xn gets the 
feature map of a l l its predecessors from XQ up to xn, so i f we express the layer mapping as 
a function H, then the computat ion of this function is 

H([x0,xi, . . . , x „ _ i ] ) (3.1) 

where [xo,xi, ...,xn — 1] denotes the concatenation of the feature-maps of layers 0 to 
n—1. The composit ion function itself is defined as a sequence of three successive operations: 
batch normalizat ion ( B N ) , rectified linear unit ( R e L U ) and a 3 x 3 convolution (Conv) . For 
Formula 3.1 to be functional, the size of the ind iv idua l feature maps needs to be invariant, 
which contradicts the sense of down-sampling blocks that reduce dimensionali ty in neural 
networks. For this reason, the model is d ivided into so-called dense blocks, between which 
transfers are then performed using so-called transi t ion layers, which perform convolution 
and pooling. 

In this k ind of architecture, we can also encounter the problem of a significant increase 
in the number of t ra ining parameters since each network block has a massive number of 
input feature maps. Exper imenta l ly it has been proved that due to this propagation of 
outputs to a l l blocks, such a large number of blocks is unnecessary to achieve the necessary 
results. The layout of the densenet architecture can be seen i n Figure 3.12. 
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Figure 3.12: I l lustrat ion of the network architecture of Densenetl21 model: conv means 
convolution. 

Xcept ion 

Chollet [10] introduced this network. F i rs t , we must introduce the Inception hypothesis that 
this network uses. The standard convolutional layer tries to learn a filter for mapping i n 3D 
space and mapping cross-channel and spatial correlations simultaneously. The Inception 
hypothesis tries to simplify and streamline this process that would independently look at 
cross-channel correlations and spatial correlations. A typica l Inception module first looks 
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at cross-channel correlations v ia a set of 1 x 1 convolutions, mapping the input data into 3 
or 4 separate spaces more minor than the original input space, then maps a l l correlations in 
these smaller 3D spaces v ia regular 3 x 3 or 5 x 5 convolutions. Th is is shown in Figure 3.13. 

Input 

conv 1x1 conv 3x3 

avg pool conv 3x3 

conv 1x1 conv 3x3 

coneat 

conv 3x3 

Figure 3.13: I l lustrat ion of the Inception block. 

Inception blocks can have various forms of modifications. The simplest version of the 
block is a modification where the channel w i th average pool ing is removed, and the other 
parts of the network are modified to 1 x 1 and 3 x 3 convolution, or there are several different 
versions of a more complicated block. 

The extreme version of the inception module works wi th the assumption that we first 
apply a l x l convolution to map cross-channel correlations and would then separately map 
the spatial correlations of every output channel. Th is block version is almost identical 
to depthwise separable convolution [50], which is widely used in various neural network 
implementation frameworks, such as TensorFlow. 

There are two significant differences between depthwise separable convolution and the 
extreme version of the inception module. There is a different order of operations i n them. 
The extreme Inception block performs l x l convolution first and then performs channel-wise 
spatial convolution, while the depthwise separable convolution performs these operations 
i n reverse order. The second difference is the presence or absence of a non-linearity after 
the first operation. 

The Xcep t ion architecture works exclusively wi th depthwise separable convolution lay­
ers. Th is architecture is based on the hypothesis that mapping cross-channel and spatial 
correlations in the feature maps of convolutional neural networks can be entirely decoupled. 
This is a stronger statement than the Inception hypothesis, so this architecture is named 
„ E x t r e m e Inception" or Xcep t ion . Xcep t ion architecture is a linear stack of depthwise sep­
arable convolution layers w i t h residual connections. Th is makes the architecture easy to 
define and modify; using a high-level l ibrary such as Keras takes only 30 to 40 lines of code. 

We do not provide implementat ion details of this architecture in this paper. The archi­
tecture can be considered more complex, and it is unnecessary to describe it i n part icular 
for this work. In short, it contains an E n t r y flow, followed by a Midd l e flow composed of 
R e L u and Separable convolution. Th is block is repeated eight times, followed by an E x i t 
flow which takes care of the inclusion in the predicted class. 
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EfficientNet 

EfficientNet brings significant improvements to the family of convolutional neural networks 
that focus on adjusting network dimensions, such as its depth or width , when it is necessary 
to improve the efficiency of the network. To improve the accuracy of neural networks, the 
robustness of the network is a frequent factor. Tan et a l . [55] discuss how to efficiently 
scale up existing models so that smaller models can be scaled up efficiently, and thus not at 
the expense of their robustness, which results i n a longer t ra ining and evaluation process, 
and also the necessary computat ional performance. 

Since this form of architecture is presented as an efficient extension of other existing 
models, we w i l l not describe it in detail . However, it represents an approach for making 
the model t ra ining process more efficient, and we w i l l use it i n the next part of the thesis, 
so at least its basic introduct ion was necessary. 

For the next part of the thesis, we w i l l use the implementat ion of the EfficientNet 
architecture i n Keras based on bui ld ing blocks that w i l l be discussed in more detai l during 
the experiments. 
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Chapter 4 

Design proposal 

In this chapter, we present three architectures that w i l l be used i n the experimental part of 
the thesis. Each of these architectures represents some form of modification of the previous. 
We w i l l also present the two main datasets we used for t ra ining and subsequent evaluation 
of the models. 

4.1 EfficientNet v2 

The first basic architecture we buil t as a baseline for our solution is the implementat ion of 
Efncientnet v2 M [56]. Th is model handles an input of 480 x 480 pixels and is pre-trained 
on the Imagenet dataset [13] to classify images into 1000 different classes. 

The model consists of 7 basic blocks which are connected. E a c h block is then composed 
of several smaller subblocks according to the level of immersion. For example, block number 
1 contains three subblocks, while the largest block 6 contains eighteen. Figure 4.1 shows 
a graphical representation of the fourth subblock i n block 3, block3d. Because of the large 
size of the network, we have chosen to il lustrate only one of these subblocks. The subblocks 
have subtle differences depending on the subblock nesting, but we think this representation 
is sufficient for i l lustrat ion. 
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Figure 4.1: I l lustrat ion of block3d of EfficientNet v2 M from implementat ion i n keras. 

We then modified the network to fit the model for binary classification, which in practice 
means that we modified the last layers where we added the sigmoid act ivat ion function to 
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set the final value to a range of 0 to 1. 0 in case it is a deepfake, 1 i n case the network 
estimates the input image to be real. 

In the case of this architecture, we consider it a baseline in our solution, which we t ry to 
finetune as efficiently as possible for our task and then improve wi th several modifications. 
These modifications w i l l then be compared w i t h the best results from this model i n the 
same t ra ining process. 

We tested the EfficientNet v2 L version i n the same way i n this experiment. 

4.2 EfficientDet modification 

Tan et a l . [57] presented modified efficient net architecture focusing on object detection 
and subsequent labell ing. It uses EfficientNet as its backbone, modifies how it works wi th 
outputs, and adds addi t ional connections to the network. It uses so-called B i F P N links to 
do this. The network then uses feature extraction w i t h this B i F P N network and can predict 
and box objects in the input image. The design of this architecture is shown i n Figure 4.3. 

4.2.1 B i F P N 

T a n et a l . [57] formulate a multi-scale feature fusion problem and then present a solution 
B i F P N : efficient bidirect ional cross-scale connections and weighted feature fusion. M u l t i -
scale feature fusion aims to aggregate features at different resolutions. Formally, given a 
list of multi-scale features Pm = (-P/™, -P/™, • • •), where P{n represents the feature at level l{. 
The goal is to find a transformation / that can effectively aggregate different features and 

output a list of new features: P o u t = / ( P m ) . 

repeated blocks repeated blocks 

(a) FPN (b) PAMet (C) NAS-PPN (d) BiPPN 

Figure 4.2: Feature network design - (a) F P N introduces a top-down pathway to fuse 
multi-scale features from level 3 to 7 (P3 - P7) ; (b) P A N e t adds bottom-up pathway on top 
of F P N ; (c) N A S - F P N use neural architecture search to find an irregular feature network 
topology and then repeatedly apply the same block; (d) is our B i F P N wi th better accuracy 
and efficiency trade-offs [57]. 

Figure 4.2(a) shows the conventional top-down F P N . So it takes inputs 3 to 7 from 
the vector P m where P-n represents the feature level w i th half the resolution of the input 
image, i.e. i n the case of an input image of size 640 x 640 pixels, the calculat ion for P 3 i n is 
6 4 0 / 2 3 = 80, i.e. a resolution of 80 x 80 pixels. F P N aggregates the feature i n a top-down 
manner 
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P 7

o u t = C o n v ( P 7

n ) 

P 6

o u t = Conv (Pg1 + Resize ( P 7

o u t )) 

P 3

o u t = Conv ( P | n + Resize ( P 4

o u t )) 

where Resize represents the upsampling or downsampling operation for the resolution. 
Top-down F P N is l imi ted by a one-way transi t ion from up to down. Tha t is why P A N e t 
introduced an extra bot tom-up aggregation layer, as shown i n Figure 4.2(b). N A S - F P N 
employs neural architecture search to search for better cross-scale feature network topology. 
S t i l l , it requires thousands of G P U hours dur ing the search, and the found network is 
irregular and difficult to interpret or modify, as shown i n Figure 4.2(c). B i F P N then 
introduces several architectural improvements. The first fundamental change is removing 
nodes wi th only one input . The idea behind this concept is simple since a node has only 
one input, it should contribute to the overall functioning of the network, leading to its 
simplification. The second change is to add an extra edge from the original input image to 
the output node i n case they are on the same level. The last change compared to P A N e t 
is the addi t ion of mult iple bidirect ional paths to improve feature extraction as opposed to 
P A N e t , which contains only one such path. The architecture is shown in Figure 4.2(d). 
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BiFPN Layer 

Figure 4.3: EfficientDet architecture diagram wi th EfficientNet backbone [57]. 

4.2.2 P r o p o s e d archi tec ture 

The idea behind our proposed architecture is very simple. Since the extended EfficientDet 
architecture can perform efficient prediction and boxing simultaneously, it can also serve as 
a pure prediction mechanism for deepfakes patterns better than the underlying Efficient-
Net v2 M architecture on which we are based. Therefore, we decided to create a model 
whose backbone is the aforementioned model w i th the addi t ion of B i F P N layers to improve 
the prediction mechanism. Compared to the EfficientDet design, we have removed the part 
of the network dedicated to boxing since it is unnecessary in our case. S t i l l , it would be 
interesting to observe such detection i n the case of finding artefacts that neural networks 
leave behind, but we have not investigated this approach. The last block that feeds into 
the B i F P N layers is block 7, specifically its block7e_expand_activation layer, which implies 
that we have removed the last layers used for prediction from the baseline model and re­
placed them wi th B i F P N . Final ly , we added a concatenation and dense layer followed by a 
dropout layer and a sigmoid function for inclusion in the corresponding binary class. We 
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are also experimenting wi th a finely extended network design, where we have repeated this 
procedure twice and added a layer containing batch normalizat ion after the dense layer. So 
we are experimenting w i t h two different designs, one is basic, and the other is extended. 

4.3 Efficient Ydet 

The basis for this proposal is designed by T jon et a l . [58], which uses the u-net architecture 
to improve the detection of deepfakes (details are discussed i n Section 2.3.3). The basis for 
this architecture is the connection of upsampling blocks to ind iv idua l blocks of the convolu-
t ional network, thus creating a second segmentation output that creates a local izat ion mask 
for deepfake. This architecture assumes that incorporat ing a u-net-like architecture into 
such a solution can better determine the part of the input image where the manipulated 
regions are located. W h i l e the paper focuses on detecting deepfakes i n the video, it takes 
an approach suitable for our work. It chops the input video into a sequence of images. To 
speed up the process, 30 images from each video were chosen, assuming the video is 30 F P S 
and 10 seconds, so 300 frames. Next , shape detection is performed i n each image using the 
M T C N N model [60] and its cropping for the input image to the network. In the case of the 
t ra ining and validat ion dataset, the same process is performed wi th the corresponding mask 
videos (in the case of fake images), and thus not only the classification part of the network 
is used for evaluation, but also the segmentation of the pixels where a potential deepfake 
can be found. If the video does not contain a deepfake but a real image, the resulting mask 
should be black, i.e. without content. The result is a u-net-like architecture called Y-ne t 
because the end predictive part of the backbone is preserved, and thus the neural network 
has two outputs, a classification and a segmentation one, not just one as i n u-net. 

4.3.1 P r o p o s e d archi tec ture 

Because of our proposed architecture, we decided to extend our binary architecture for 
EfficientDet and add a u-net-like segmentation part. The assumption is that B i F P N is also 
used for introducing segmentation tasks, so such an extension could br ing results. The 
expanding u-net architecture thus uses the outputs from blocks 1, 2, 3 and 5 to introduce 
upscaling blocks as i n the standard u-net we described i n Section 2.3.3. It was only necessary 
to select EfficientNet architectures as backbones whose input resolution is satisfactory, i.e. 
divisible by powers of 2. Th is is based on the assumption that the introduct ion of the 
upscaling convolution increases the dimensionality upwards again. Hence, we needed to 
get back to the original input image resolution. We also chose the EfficientNet v2 M 
and EfficientNet v2 L architectures for the other proposed architectures. We want to 
observe the immediate improvements (or degradations) when introducing new blocks into 
the network, not compare completely different models. A slight change from the standard 
architectures i n u-net is that we could also connect the architecture to block7 to get the 
lowest possible values i n the upscaling. This was impossible because we modified the last 
block and added B i F P N layers, cut t ing off the rest of the network. F i n d i n g a block wi th a 
suitable dimensionali ty to connect to the network was impossible. 

It should be noted, however, that the segmentation part of the network has no actual 
use i n automatic evaluation. The segmentation part can help us to understand better the 
behaviour of a given model and the way it works to support its possible correct t raining 
as it adds another input factor, or if we apply it to an actual operation w i t h a human 

36 



supervisor, it can i n an ideal scenario point out suspicious places that should be more 
deeply investigated. 

4.4 Datasets 

Proper selection and evaluation of the dataset are also necessary for this task. Therefore, we 
selected two datasets, FaceForensics and Ce l eb -DF , for t ra ining and testing. We chose this 
combination because FaceForensics is a large dataset often used for models related to this 
task. A t the same time, it contains segmentation masks necessary for t ra ining i n one of our 
proposed architectures. We have chosen C e l e b - D F as a secondary dataset for evaluation to 
get as close as possible to the pract ical use of detectors in deepfakes detection. W h i l e each 
dataset contains images that should not be dependent on each other i n the case of testing 
and validation, it is necessary to note that i n this area, often only a change of the testing 
dataset is needed, and the results can change significantly. We used C e l e b - D F for a more 
detailed evaluation of the trained models since it was created using different procedures 
than the FaceForensics dataset. 

4.4.1 FaceForens ics 

The dataset was introduced in 2019 by Flossier et a l . [48]. It comprises 1000 videos (approx­
imately 1.8 mi l l ion images) w i th real sources and targets ground t ru th to enable supervised 
learning. These videos then use four state-of-the-art methods to create deepfakes. Two 
(Face2Face and FaceSwap) are graphic-based approaches, and two are learning-based ap­
proaches (DeepFakes and Neura l Textures). Besides the manipulat ion output, creators also 
compute ground t ru th masks that indicate whether a pixel has been modified, which can 
be used to t ra in forgery local izat ion methods. We w i l l briefly describe two fake-generating 
methods we w i l l use i n our experiments. 

The Deepfake part of the dataset works wi th applications and available models for 
deepfake creation. A face from the series i n the source video or image collection thus 
replaces the face i n the target sequence. These methods are based on two autoencoders 
trained to reconstruct the source image into a target face. However, only the part of the 
image where the shape is located is used for this, and then in postprocessing, the shape is 
added to the rest of the image, which is not modified. 

Neura l Textures use a unique rendering approach. They use original video data to learn 
neural textures of the face i n the target video. This is then trained using photorealistic 
reconstruction loss i n combination wi th adversarial loss. Th is part of the generated deep­
fakes mainly focuses on tracking the shapes i n the image and, thus, on more accurate shape 
reconstruction. They also modify especially the facial expressions around the mouth . The 
regions around the eyes remain unmodified. 

The ind iv idua l components of the dataset were also studied using human observers. In 
this study, 204 participants, after easy famil iar izat ion w i t h the binary classification bag, 
tr ied to determine the relevance of randomly selected images, which were distr ibuted in 
a 1:1 ratio. Subjects also had a l imi ted t ime to decide, w i th a rule of 2, 4 or 6 seconds. 
These results, which can be seen in Figure 4.4, helped us to select the right part of the 
dataset for our experiments. We were able to use them to identify the strongest and weakest 
points and use them to select the content of the dataset more broadly, not to define it for 
a specific group based on the quali ty of the deepfake. Besides that DeepFakes and Neura l 
Textures are created using deep learning, they also add diversity to our t ra ining dataset i n 
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that DeepFakes were the easiest to detect by humans and Neura l Textures were the most 
problematic. 

• R A W • H Q • L Q 

Figure 4.4: The results of a study on a l l quali ty levels of the dataset show a correlation 
between video quali ty and the abi l i ty to detect fakes. W i t h a lower video quality, human 
performance decreases on average from 68.7 % to 58.7 %. We have quoted this graph from 
Rossler et a l . [48]. 

The version of the dataset we used contains 363 videos from 28 different actors and 1000 
videos downloaded from the youtube platform. It combines common videos from actors 
into mixes that alternate between source and target videos. This dataset has not been 
standardized into training, testing and val idat ion. Therefore, by analyzing the ind iv idua l 
combinations, we divided the dataset into the following combinations according to the 
indexing of actors: 

. Tra in ing dataset: 1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 15, 18, 20, 21, 25, 26, 27 

• Val ida t ion dataset: 5, 8, 16, 17, 28 

. Test dataset: 10, 19, 22, 23, 24 

Figure 4.5: Sample images from generated datasets from DeepFake detection, on the left is 
a bad example, on the right a better one. 
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In the same way, we split the deepfake images and the associated real images. The 
neural textures part of the dataset takes video pairs (with source and target video swap) 
from the youtube platform. We divided this part of the dataset i n the ratio 70:15:15 into 
training, val idat ion and test sets without regard to specific videos. Suppose a video from one 
side appears, for example, in the test dataset. In that case, the only video i n the val idat ion 
dataset w i l l be its opponent, which should not show problems dur ing the evaluation process. 

Figure 4.6: Sample images from generated datasets from Neura l Textures, on the left is a 
bad example, on the right a better one. 

In Figure 1.5, we show examples of generated deepfakes against the Deepfake part of the 
dataset. F igure 4.6 again shows the same example from the Neura l Textures dataset. A l so , 
in the attached examples, it is possible to see the differences in the quali ty of the indiv idual 
approaches. W h i l e w i th Neura l Textures, we had a problem finding an image that could be 
considered inferior, and we found obvious signs of deepfakes, w i th the DeepFake detection 
dataset, the problem was rather the opposite, i.e. to find a sufficiently high-quality image 
where it is difficult to dist inguish whether it is real or fake. 

4.4.2 C e l e b - D F 

Celeb -DF is a dataset focusing on deepfakes detection published i n 2019 by L i et a l . [38]. 
The dataset contains 5639 deepfake videos (more than 2 mi l l ion frames). Source videos 
are created from publ ic ly available videos on YouTube containing 59 different celebrities 
of different genders, ethnicities and ages. Deepfake videos are then generated by synthetic 
methods, mostly publ ic ly available neural network models for generating deepfakes. The 
auto-encoder is usually formed by two C N N s , the encoder and the decoder. The encoder E 
converts the input target's face to a vector known as the code. To ensure the encoder cap­
tures identity-independent attributes such as facial expressions, there is one single encoder 
regardless of the subjects' identities. 

O n the other hand, each identity has a dedicated decoder Di, which generates a face of 
the corresponding subject from the code. The encoder-decoder pair is formed alternatively 
using E and Di for the input face of each subject and opt imising their parameters to 
minimize the reconstruction errors (l\ difference between the input and reconstructed faces). 
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The parameter update is performed w i t h the back-propagation un t i l convergence. The 
synthesized faces are then warped back to the configuration of the original target's faces 
and t r immed wi th a mask from the facial landmarks. The last step involves smoothing the 
boundaries between the synthesized regions and the original video frames. 

The C e l e b - D F dataset is comprised of 590 real videos and 5,639 deepfake videos. The 
average length of a l l videos is approximately 13 seconds, w i th a standard frame rate of 30 
frame-per-second. 56.8 % of subjects i n the real videos are male, and 43.2 % are female. 
8.5 % are of age 60 and above, 30.5 % are between 50 - 60, 26.6 % are in 40s, 28.0 % are 
30s, and 6.4 % are younger than 30. 5.1 % are Asians, 6.8 % are Afr ican Americans and 
88.1 % are Caucasians. The real videos exhibit many changes, such as the subject's face 
size (in pixels), l ighting condit ion, orientation and background. 

The dataset creators also focused on improvements such as colour mismatch and tem­
poral flickering using data augmentation. To correct for mismatched skin colour, a colour 
spectrum matching a lgor i thm was applied at each epoch, and this approach was then ap­
plied to the synthesis of the images as well . The temporal flickering of faces was reduced 
in the DeepFake videos by incorporat ing temporal correlations among the detected face 
landmarks. Specifically, the temporal sequence of the face landmarks is filtered using a 
K a l m a n smoothing algori thm to reduce imprecise variations of landmarks i n each frame. 

Figure 4.7: Sample images from the Ce l eb -DF dataset that looks real. 

Overal l , C e l e b - D F offers videos wi th good-quality images, where dist inguishing between 
a deepfake and a real image is often problematic. In Figure 4.7 and Figure 4.8, we can see 
examples of snapshots from this dataset where it is visible that the fakes are i n high-quality 
processing. The drawback is the low quali ty of the overall video i n the dataset. Therefore, 
in our experiments, we decided to use this dataset as a reference dataset for evaluating 
the models since they are generated i n entirely different ways or videos i n the faceforensics 
dataset and better simulate real-world usage. Thus we can better observe how the network 
is trained and whether the network does not appear to be overtraining on the data specific 
to the dataset. 
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Figure 4.8: Sample images from the C e l e b - D F dataset that look unreal. 

4.5 Detection pipeline 

The vast majority of deepfake datasets focus on their detection i n video. Since this work 
focuses on in-video detection, we have created an entire detection pipeline that starts w i th 
video processing and ends w i t h binary output over ind iv idua l frames in the video. A n 
i l lustrat ion of the whole detection pipeline can be seen in Figure 4.9. 

M T C N N 
True 

Detect 

Fa lse 

Video Frames 

Figure 4.9: The i l lustrat ion of the detection pipeline starts by spl i t t ing the video into 
ind iv idua l frames and proceeds by detecting faces i n the video using a pre-trained neural 
network model, which is then pruned into the desired input for the classification model. 
The latter then perform binary classification. 

For the needs of our task, we divided the videos i n datasets into frames of 1 F P S . We 
note that a higher framerate w i l l be needed to use the models for detection over videos. 
Since the frames in the videos are always more complex scenes, it is necessary to cut out 
the part of the face in which we want to deal w i th deepfake detection. We perform face 
detection over the data using a retrained M T C N N model [60] for these needs. 
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After performing the face detection, we get the bounding box face from the M T C N N 
model. Us ing this bounding box, we can centre the face and perform its excision w i t h a 
resolution adequate to the model we use for detection. In our case, we chose each model 
w i th an input resolution of 480 x 480 pixels. In case the resolution of the face exceeds this 
resolution, it is necessary to perform scaling to a lower resolution. To unify the scaling, we 
permanently reduce the resolution of the overall image itself size unt i l the face's size resolves 
lower than 480 pixels per side (i.e. scaling x2, x4, x8,. . .) . Note that this solution may not be 
entirely satisfactory because it can lead to a reduction in the number of artefacts often left 
by neural networks designed to generate them. In these cases, of course, it is also possible 
that the shape is located on one of the edges synthesised or some part of it is misplaced, 
but M T C N N detected the shape. In this case, we centralise the shape to the centre and fill 
the positions not i n the image wi th a constant (in our case, black) colour. 

We use this way of processing video (images) to t ra in and validate models. The pipeline 
shows the complete video processing and detection i n the video's frames and images in a 
real-world scenario. We would not need to perform this process in the case of, for example, 
shape biometrics, where input images are standardized using The I S O / I E C 19794-5 Token 
Face Standard regulates geometry, photometry, and behaviour [54]. 
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Chapter 5 

Experiments 

In this chapter, we focused on designing our experiments as part of the iterative process 
of creating the architectures we mentioned i n Chapter 4. We look at various models and 
architectures and our decisions to improve the architectures further iteratively. Later we 
w i l l also describe the detailed results of ind iv idua l experiments on the datasets. 

5.1 Experiment design 

W h e n experimenting wi th the models, we chose an iterative approach. Each experiment 
results i n an output, based on which we have selected an evaluation condit ion for the next 
experiment. We have narrowed down the experiment's focus and t r ied to analyse it i n more 
detail. 

5.1.1 E x p e r i m e n t 1: Se lect ing a f i t t ing convo lu t iona l archi tec ture 

We focused on selecting a suitable convolutional network architecture for the first experi­
ment. Candidate architectures included convolutional architectures from Section 3.5.2. For 
t ra ining and testing, we used the following versions of the architectures and their models 
from the Keras implementation: the V G G 1 9 , ResNet50, ResNet50v2, Densenet l21, Xcep-
t ion, and EfHcientNetv2B0. E a c h of these models has an input resolution of 224 x 224 
pixels. Since the datasets we used later to t ra in our proposed models are more suitable for 
higher resolutions, we decided to use the 140k Rea l and Fake Faces dataset 1 available on 
the Kaggle platform. This dataset consists of a l l 70k R E A L faces from the F l i c k r dataset 
collected by N v i d i a and 70k fake faces sampled from the 1 M i l l i o n F A K E faces (generated 
by S t y l e G A N ) . Therefore, the evaluation of the results depends on the review directly of 
this dataset. We acknowledge the possible problematic data evaluation that may occur by 
evaluating purely over a test set from a single dataset. S t i l l , we do not thoroughly analyse 
the results i n the first phases of experimentation. Rather, we focus on the overall success 
rate achieved and the convergence of the models. 

We tested the networks wi th and without Imagenet pre-trained weights for this exper­
iment. We adjusted the network parameters minimal ly . The only parameter we modified 
was the learning rate i n the optimizer. 

We then evaluated the results to decide which architecture seemed most suitable for 
solving our problem. The assumption was that the best architecture would be EfHcientNet, 

x h t t p s : //www.kaggle.com/datasets/xhlulu/ 140k-real-and-f ake-f aces 
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because, as we mentioned in Section 3.5.2, each architecture brings mostly the opt imizat ion 
of the previous one, so for such a complex task, we assume this result. 

5.1.2 E x p e r i m e n t 2: F i n e t u n i n g best convo lut iona l m o d e l 

Based on the evaluation of the previous experiment, we chose the EfficientNet architecture. 
For the second experiment, we evaluate the pre-trained architecture of EfficientNet. Since 
our prepared datasets support an input resolution of 480 x 480 pixels, we selected Efficient-
Net models that meet these criteria. The v2 M and v2 L architectures meet suitable input. 
These architectures differ mainly i n the robustness of the network. W h i l e version 2 M 
contains approximately 50 mi l l ion trainable parameters, version L contains twice as many, 
about 100 mi l l ion . For these architectures, we experimented wi th freezing ind iv idua l blocks 
(or enabling the coaching of weights in the whole network) from block three to block six. 
We always froze a l l the network weights up to the end of the observed block, so for example, 
in the case of block 5, blocks 1, 2, 3, 4 and 5 were frozen. Because of this architecture, we 
consider each block as one big unit representing a subnetwork. Thus, when experimenting 
wi th preserving the pre-trained weights, we have always either preserved the weights of the 
whole block or we have re-trained the whole block. 

Since, i n this case, there is already a risk of overfitting on the dataset, we decided 
that the guiding factor for evaluating the ind iv idua l models is the calculation of the R O C 
(Receiver Operat ing Characteristic) and A U C (Area Under the R O C C u r v e ) 2 over the 
FaceForensics test set and also on C e l e b - D F dataset. In contrast, the dataset used for 
t ra ining is FaceForensics (as on a l l our models). 

We have trained the models w i th 10 epochs each time, evaluating the model separately 
after each epoch to see the model's results. We also evaluated the average between these 
results after each t ra ining epoch. We can thus observe convergence over the validat ion 
dataset and, i n this case, over the „real data" that the detector can obtain. T h e n we can 
compare these data w i th the results of the validat ion dataset, gained loss and accuracy. 

The results of this experiment can then be considered as the results of our baseline 
architecture. These results can then be used to evaluate our improved architectures and 
their overall comparison wi th the baseline architecture. 

5.1.3 E x p e r i m e n t 3: Ef f i c i entDet modi f i ca t ion 

In this experiment, we explore the architecture of our proposed modified EfficientDet in 
more detail , inc luding its mentioned more extensive architecture. Next , we compare the 
achieved results w i t h the results from the previous experiment to see i f there is an improve­
ment compared to the baseline architecture. We followed a similar procedure as i n the 
previous experiment. We tr ied to freeze ind iv idua l blocks of the backbone architecture of 
EfficientNet from block 2 to block 6, and we also compared this w i th the approach without 
freezing the model weights. 

For this architecture, we tr ied to experiment more wi th dropout layers. We evaluated 
each block i n the t ra ining case wi th 20, 30, 40 and 50 % dropouts. We then tr ied the 
same procedure as i n the previous experiment, i.e., evaluation over the C e l e b - D F dataset, 
to evaluate the blocks that achieve the best results. In doing so, we also focused on the 
overall convergence of the results and the average achieved speedup over the epochs. Then , 

2https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc 

44 

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc


we also experimented w i t h 0 and 10 % dropouts for the blocks that performed the best 
results. 

We always compare the observed results w i th a reference architecture. In the case of 
Eff ic ientDetM, it is the EfficientNet v2 M architecture, and in the case of EfficientDetL, 
it is the EfficientNet v2 L architecture. We then use the average achieved A U C value to 
evaluate the improvement (or deterioration) when freezing the weights of the indiv idual 
layers of the backbone architecture. In this case, we also observe the best achieved A U C 
values among a l l the trained models. 

5.1.4 E x p e r i m e n t 4: Ef f i c i entYdet 

Since the faceforensics dataset also contains masks belonging to deepfake images, we decided 
to test the EfficientYdet architecture, which uses the u-net for its improvement. For this 
architecture, we focused purely on improving the previous architecture, not on improving 
the baseline. So, as an experiment, we prepared a dataset w i th the masks. Since there is 
always a video that copies its movement from 1 to 1 to a video wi th a fake shape, we could 
assign the images to each other and set up a network wi th two outputs. 

A s in the paper by T jon et a l . [58], we used binary cross entropy for the prediction part 
of the network and dice loss for the reconstruction part. Keras allows the use of coupled 
loss functions, so we assigned a coefficient of 0.5 to both functions to avoid a significant 
dominance of one part of the network. The last loss should therefore be their average. 

A s for the freezing of the block weights, because of the iterative approach, we decided 
to test only the versions of our modified EfficientDet network that showed the best results, 
so we d id not perform this experiment on the freezing of blocks from two to six, but only a 
subset selected by us based on the results of the previous investigation. We follow the same 
procedure as the previous experiments i n the evaluation case. We calculated the A U C of 
R O C over the C e l e b - D F dataset. 

5.1.5 E x p e r i m e n t 5: C o m p r e s s e d images 

Since we have always worked wi th data of m a x i m u m quali ty i n a l l our t raining processes 
and experiments, we decided to focus on the impact of compression on the network results 
over our best model i n our last experiment. For this experiment, we performed J P E G 
compression over the FaceForensics and C e l e b - D F datasets at four levels: 100, 80, 60, and 
40. Over each of these compression formats, we then performed the same evaluation as in 
the other experiments, i.e., over the test datasets. We then plot ted this result using R O C 
curves and observed changes i n the evaluation processes. 

5.2 Experimental results 

In this section, we discuss the results of ind iv idua l experiments and their implications for 
further iterative development of our proposed architectures. 

5.2.1 E x p e r i m e n t 1 results 

In this experiment, we mainly observed the achieved accuracy over the val idat ion data dur­
ing t raining. The t ra ining and val idat ion process over 10 epochs can be seen i n Figure 5.1. 
Due to experimenting wi th the learning ratio in the network optimizer, we have reached the 
value of 0.0001. A t higher learning rate values, we reached a state where the network could 
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not t ra in and d id not achieve any results. The default value, which is ten times larger, d id 
not produce results i n the actual t ra ining of the network. The same result was reached 
when comparing the model's t ra ining wi th and without pre-trained weights. Demonstrably 
better results were achieved by models w i th pre-loaded weights from Imagenet compared to 
those that d id not include these scales. Th is is probably because Imagenet is a large dataset 
which can be used to achieve good feature extraction over the ind iv idua l C N N s tested. A l l 
networks achieved results after several epochs at the level of 95 % or more w i t h their best 
result, so it is not relevant to compare ind iv idua l architectures on this dataset and select 
the best candidate for our solution. However, it is true that i n the confusion matr ix , we 
have observed minor improvements between the different generations of the network but 
not significant ones. They could be improved by adjusting the hyperparameters or choosing 
a more suitable dataset for testing. We tr ied to evaluate the models without their specific 
improvement for this experiment. 

Since we have obtained such results, we can consider this experiment irrelevant. In the 
process, we needed to review the available models of convolutional networks. In Figure 5.1, 
we can see various inconsistencies in t raining. The Resnet50 and Densenetl21 architectures 
achieved a massive drop i n val idat ion accuracy during t raining. Also , none of the networks 
except the V G G 1 9 model achieved smooth convergence. For model V G G 1 9 , however, unlike 
the others, we can observe a slow convergence to the results. The other models started to 
reach their peaks much earlier. 

These fluctuations in val idat ion accuracy can be caused by, for example, overfitting the 
network to the t ra ining data, which occurred after one of the epochs, and then was changed 
in the subsequent epochs. The networks have not been subjected to more detailed testing 
and experimentation wi th the network hyperparameters. Since we could not choose the 
best architecture for this experiment, we chose EmcientNet for further experiments. A s we 
showed i n Section 3.5, a l l architectures smoothly bu i ld on each other and should solve the 
problems that appeared i n the previous one. EmcientNet is the newest one i n this case. 

5.2.2 E x p e r i m e n t 2 results 

In this experiment, we focused on freezing ind iv idua l blocks of the EfncientNet architecture. 
For completeness, i n the model we used i n Keras version 2.9.0, we always froze the weights on 
al l blocks from the in i t i a l block to the blocks: block3e_project_conv, block4g_project_conv, 
block5n_project_conv, block6r_project_conv. The results dur ing t ra ining and val idat ion 
over ten t ra ining epochs are shown i n Figure 5.2. 

Dur ing training, we could observe relatively high val idat ion accuracy after a few epochs 
for most models except that w i t h frozen weights up to block six. In this case, there is 
very l i t t le room left for the trainable parameters of the model since block seven has fewer 
trainable parameters than the previous blocks. We then performed D E T calculations over 
the dataset using the best-trained models from ten epochs. The resulting D E T 3 curves can 
be seen in Figure 5.3. 

F rom this observation, we could weakly conclude that the best th ing to do is to retrain 
al l the network weights and terminate the experiment. Even though the data we use in 
the test set has never been seen by the network either i n t ra ining or validation, the data 
comes from the same dataset and is produced by the same deepfakes techniques. We can 
therefore assume that these measurements are not indicative. We, therefore, evaluated the 
R O C and A U C over the test set from the Ce l eb -DF dataset. We tested every single model 

3 h t t p s : //s cikit-learn.org/stable/auto_examples/model_selection/pl ot_det.html 
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Xcep t i un t ra in ing b f f k i e n t N e t v 2 B 0 t ra in ing 

EpuLha Epulis 

Figure 5.1: Tra in ing and validat ion process of ind iv idua l convolutional models over a train­
ing dataset of 140k Rea l and Fake Faces. 

after every t ra ining epoch and t r ied to observe the behaviour of the network to completely 
unknown data. 

Thus, Table 5.1 shows the A U C results after each t ra ining epoch. We have observed 
the ind iv idua l A U C values achieved and then the average ones achieved over the indiv idual 
blocks. A s we can see, in this case, the model i n which we froze the weights i n the first 
four blocks of the network performed best unambiguously. E p o c h eight achieved the best 
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t f f i d e n t N e t v ^ M t ra in ing b l ock6 f reeze 

Figure 5.2: Tra in ing and validat ion process of the EfficientNet v2 M model depending on 
the preloaded Imagenet weights. 

accuracy on the validat ion dataset, 95.77 %, even i n the t ra in ing process. However, this can 
also be considered a random match since we have no evidence that this evaluation would 
not be different on another dataset. O n the other hand, we would like to point out the 
decreasing tendency of the A U C value on this dataset i n case of freezing a smaller number 
of blocks. A s we can see, the model where we have trained a l l the model weights performed 
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Detection Error Tradeoff (DET) Curves for Multiple Models 

EfficientNet M block 6 freeze 
EfficientNet M block 5 freeze 
EfficientNet M block 4 freeze 
EfficientNet M block 3 freeze 
EfficientNet M 

T -

0.4 0.6 
False Positive Rate 

0.8 1.0 

Figure 5.3: D E T curves calculated over the best models based on how we froze ind iv idua l 
network blocks i n the t ra ining process. 

potentially worse i n this case than we would have in the case of random selection, where 
we have a 50 % chance of a correct evaluation. 

Table 5.1: A U C calculated over the EfficientNet v2 M model based on how we froze indi­
v idua l network blocks in the t ra ining process using the C e l e b - D F dataset. The range of 
values is from 0 to 1, where 1 symbolizes the best value. The best value achieved is 0.81355. 

Epoch Block 3 Block 4 Block 5 Block 6 Wi thou t 
1 0.71465 0.80102 0.63415 0.53540 0.36158 
2 0.69465 0.73966 0.66337 0.57004 0.46389 
3 0.73439 0.78646 0.73628 0.60206 0.52113 
4 0.76015 0.73170 0.76677 0.63670 0.35873 
5 0.72410 0.75450 0.73945 0.61132 0.24104 
6 0.75004 0.78548 0.73895 0.64612 0.41540 
7 0.69710 0.81035 0.72408 0.64846 0.50440 
8 0.77165 0.81355 0.76068 0.56969 0.38606 
9 0.73647 0.70130 0.71734 0.62131 0.42837 
10 0.75414 0.71430 0.73751 0.58812 0.36347 
Average 0.73147 0.76934 0.72012 0.60457 0.40896 

The same evaluation was at tempted on the EfficientNet v2 L model since this model has 
a more robust structure but preserves the dimensionality of the input image and contains 
seven subdivided blocks. We applied the same t ra ining procedure wi th freezing the block 
weights, the only difference being that the names of the layers we ended up freezing are 
subtly different since most of the blocks contain mult iple subblocks. The evaluation results 
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can be seen i n Table 5.2. The model without free weights does not have the result from 
the tenth epoch. This is because the model is robust and could not be trained wi th in 24 
hours for ten epochs. B y default, we performed the t ra ining process using the metacentre 
project, where we used P B S jobs wi th a l imi ta t ion of 24 hours. We d id not consider the 
result from the last epoch as necessary for our further investigation. 

Table 5.2: A U C calculated over the EmcientNet v2 L model based on how we froze ind iv id ­
ual network blocks in the t ra ining process using the C e l e b - D F dataset. The range of values 
is from 0 to 1, where 1 symbolizes the best value. The best value achieved is 0.81665, we 
do not consider this value relevant because it was achieved after the first t ra ining epoch, so 
it is l ikely random. 

Epoch Block 3 Block 4 Block 5 Block 6 Wi thou t 
1 0.61621 0.81665 0.73317 0.67912 0.28770 
2 0.78505 0.67752 0.74864 0.61619 0.21287 
3 0.65378 0.77933 0.73430 0.52846 0.30313 
4 0.79712 0.74017 0.71622 0.55273 0.30564 
5 0.77372 0.62209 0.78956 0.59024 0.30025 
6 0.76230 0.71462 0.78016 0.63984 0.29078 
7 0.72379 0.66700 0.78203 0.60616 0.24848 
8 0.69848 0.76492 0.77275 0.61046 0.28126 
9 0.77292 0.71118 0.76923 0.65926 0.28671 
10 0.72999 0.63755 0.77031 0.65283 -

Average 0.73134 0.71310 0.75964 0.61353 0.27965 

In this case, the network behaves significantly differently than version M . We can again 
see the fact that the best average results are achieved by freezing the weights up to block 
four, but at the same time, we can see that the highest achieved A U C value occurred when 
freezing the weights up to block three. This phenomenon occurred right after the first 
t ra ining epoch. This suggests that it may be a coincidence. S t i l l , it also alerts us to a 
possible problem wi th the evaluation metric since we were able to get the best result this 
early. T h e n it only sets a decrease, even to lower values than the values wi th another 
method of freezing the pre-trained weights. 

In general, we consider the best A U C obtained from this experiment to be the A U C 
value 0.81355 from model M . This value can therefore be considered as a reference for the 
evaluation of further experiments. 

5.2.3 E x p e r i m e n t 3 results 

In this part, we d id not focus on the results obtained over the validat ion and test set from 
the FaceForensics dataset because, i n the previous experiments, we concluded that these 
results were not completely relevant for such a complex task. Observing a different dataset, 
Ce leb -DF , i n our case, is necessary. 

Dur ing this experiment, we focused on a deeper investigation of the network training 
process. In addi t ion to freezing the pre-trained weights, we also experimented w i t h the 
dropout parameters of the network and tr ied to optimize its t ra ining process. Figure 5.4 
shows the average A U C achieved over the C e l e b - D F dataset when freezing ind iv idua l blocks. 
Th is average includes a l l the different dropouts. F r o m our observation, we could not observe 
much difference between the ind iv idua l dropout values. 

50 
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Figure 5.4: Average A U C values achieved wi th freezing block pre-loaded weights by training 
the modified EfficientDet network over the C e l e b - D F dataset. The average is achieved across 
al l dropouts we have tested. 

A s we can observe from the average values, we even achieved better results when we 
froze a smaller number of pre-trained weights, i.e. the first three blocks of the net. This 
factor may be due to our extension of the network wi th B i F P N blocks that connect to 
the network's th i rd , fifth and seventh blocks. Therefore, the blocks connected to the fifth 
block have more room to adapt to the scales, as they also have the fourth block free for 
their opt imisat ion and adjustment of the scales. Since we have obtained reasonable results 
only i n these two cases, we only report results from these measurements i n Table 5.3 and 
Table 5.4. 

Table 5.3: A U C calculated over the modified EfficientDet v2 M model when we froze 
ind iv idua l network blocks up to block three in the t ra ining process while using different 
dropout rates using the C e l e b - D F dataset. The range of values is from 0 to 1, where 1 
symbolizes the best value. The best value achieved is 0.82147. D R means dropout rate. 

E p o c h D R 0.2 D R 0.3 D R 0.4 D R 0.5 
1 0.72341 0.72650 0.76388 0.79301 
2 0.72644 0.76568 0.75130 0.74738 
3 0.77431 0.73015 0.72495 0.71822 
4 0.74781 0.62247 0.74912 0.73482 
5 0.68438 0.67978 0.78406 0.72973 
6 0.74345 0.74611 0.73127 0.74202 
7 0.76712 0.68332 0.77551 0.72068 
8 0.64737 0.68225 0.79873 0.79979 
9 0.68266 0.74775 0.76434 0.69602 
10 0.72976 0.73140 0.82147 0.67932 
Average 0.72267 0.71154 0.76646 0.73610 
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Table 5.4: A U C calculated over the modified EfficientDet v2 M model when we froze 
ind iv idua l network blocks up to block four i n the t ra ining process while using different 
dropout rates using the C e l e b - D F dataset. The range of values is from 0 to 1, where 1 
symbolizes the best value. The best value achieved is 0.78536. D R means dropout rate. 

E p o c h D R 0.2 D R 0.3 D R 0.4 D R 0.5 
1 0.78536 0.61947 0.67714 0.71091 
2 0.73509 0.67479 0.69264 0.77534 
3 0.76513 0.72876 0.73825 0.70866 
4 0.73067 0.75899 0.76441 0.66238 
5 0.66400 0.76057 0.63580 0.74545 
6 0.76943 0.73608 0.67080 0.70765 
7 0.77008 0.71707 0.73093 0.73235 
8 0.72458 0.68891 0.74643 0.75162 
9 0.71169 0.66381 0.76159 0.74276 
10 0.75060 0.67810 0.75228 0.73900 
Average 0.74066 0.70265 0.71703 0.72761 

We w i l l therefore focus more closely on block three, as it has objectively achieved better 
results in this case. A s shown i n Table 5.3, the best A U C value achieved is 0.4 i n the 
dropout ratio after ten epochs. This value is also slightly higher than the baseline of the 
EfficientNet architecture. We want to point out the inconsistencies i n the results concerning 
the datasets. W h i l e in the case of the baseline architecture, we achieved the best result 
in the same model, either i n the test set over FaceForensics or Ce l eb -DF , this is no longer 
the case. The achieved val idat ion accuracy over FaceForensics, in this case, was 96.59 %. 
This is realistically the third-best result i n the t ra ining process. The seventh epoch, w i th a 
value of 97.01 % over FaceForensics, was the best in this case. O u r evaluation metric w i th 
Ce l eb -DF reaches a score of 0.77551, which is not an insignificant reduction compared to 
the best solution. So, again, we have a question about the correctness of model evaluation 
for such a complex task, which we w i l l discuss in more detail in the following discussion. 

Regarding the extended architecture for the M version, it makes no sense for us to 
discuss its results in detail . In its evaluation, we achieved lower results than wi th this 
presented architecture, so we w i l l not detail them here. 

W h e n testing the architecture, we encountered another case where we used Efficient-
Net v2 L as a backbone. In this case, we w i l l focus on extended network architecture, 
not basic. In the case of our baseline architecture, al though we managed to achieve better 
results in the case of the M architecture, here we could discuss the opposite. 

In this case, only block three has been verified i n the context of comprehensive testing. 
We can discuss a par t ia l ly expected result because the L architecture is much more robust. 
Therefore, a large part of the pre-trained weights suitable for feature extraction can be 
located i n earlier parts of the network, so we w i l l not make a deeper comparison of the 
other blocks. The results we have achieved when filtering the weights into block three can 
be seen in Table 5.5. 
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Table 5.5: A U C calculated over the modified EfficientDet v2 L model when we froze indi ­
v idua l network blocks up to block three i n the t ra ining process while using different dropout 
rates using the C e l e b - D F dataset. The range of values is from 0 to 1, where 1 symbolizes 
the best value. The best value achieved is 0.85232. D R means dropout rate. 

E p o c h D R 0.2 D R 0.3 D R 0.4 D R 0.5 
1 0.64641 0.63273 0.66113 0.64939 
2 0.72119 0.66172 0.72919 0.77837 
3 0.68159 0.74349 0.66755 0.69232 
4 0.74191 0.66343 0.76956 0.85232 
5 0.68760 0.66416 0.74947 0.68363 
6 0.67804 0.62055 0.65813 0.74612 
7 0.67701 0.63194 0.69028 0.74604 
8 0.75747 0.63218 0.69367 0.81394 
9 0.71839 0.71272 0.71340 0.67109 
10 0.72790 0.72339 0.77961 0.68637 
Average 0.70375 0.66863 0.71120 0.73196 

We achieved an A U C value of 0.85232 at a dropout rate of 0.5, which could be considered 
a significant improvement compared to the baseline network architecture. In this case, this 
state has already occurred after t ra ining for four epochs. B u t again, we can point out the 
problem wi th the FaceForensics validat ion dataset compared to C e l e b - D F . We achieved 
the best A U C result over C e l e b - D F wi th a FaceForensics validat ion accuracy of 96.51 %, 
which is pract ical ly the th i rd lowest val idat ion accuracy we achieved here. For example, 
this factor could have been caused by high overfitting to the t ra ining dataset data since the 
same methods generate both the FaceForensics val idat ion and the test set. Aga in , there is 
room for discussion here since t ra ining over four epochs is not much. 

Receiver Operating Characteristic (ROC) Curves for Celeb-DF 

False Positive Rate 

Figure 5.5: R O C and A U C calculated over ind iv idua l models from the proposed architec­
tures that performed best dur ing the t ra ining process over the C e l e b - D F dataset. 
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In Figure 5.5, we compare the best-trained models to the baseline architecture from the 
first experiment. Based on the chosen R O C and A U C metrics, we can conclude that we 
were able to improve the baseline architecture for the task of detecting deepfakes i n the 
image wi th the addi t ion of a m i n i m u m of addi t ional parameters to the network since the 
new architecture has more parameters only an order of magnitude less than the baseline. 

5.2.4 E x p e r i m e n t 4 results 

We w i l l deal w i th the fourth experiment only briefly since, from our point of view, it d id not 
produce satisfactory results or br ing any significant improvements to the network. A s we 
addressed i n Section 5.1.4, we have created a proposed architecture using U-net to improve 
the accuracy of prediction, which allows us to develop local izat ion of the places that have 
been modified simultaneously. In the reference paper by T jon et a l . [58], the authors report 
high accuracy over the FaceForensics dataset. A l though we d id not copy their procedure 
i n detail , we can confirm this statement because we d id not use only EfficientNet as a 
backbone but our extensive EfficientDet architecture. The t ra ining process results can be 
seen in Figure 5.6. 

In our evaluation process over the C e l e b - D F dataset, we d id not observe any significant 
improvements i n the calculation of A U C and R O C . W i t h i n the iterative process, we tested 
the architecture where we froze the first three network blocks i n both cases, i.e. the Effi­
cientDet M and EfficientDet L architectures. In both cases, we experimented wi th dropout 
rates from 0 to 0.5, s imilar to the previous experiments. 

EfficientYDet L training block3 freeze DR 0.3 
1.0 -

2 4 6 8 
Epochs 

Figure 5.6: Tra in ing and validat ion process of the Eff ic ientYDet L model w i th preloaded 
Imagenet weights. 

This condit ion may have arisen for several reasons. We assume that, due to the masks 
in the network, overfitting over the t ra ining dataset data occurred even earlier than in the 
previous experiments because the propagated adjustments of the weights i n the network 
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were already coming from the reconstruction part, even though we wanted to prevent this 
scenario through the use of bound loss functions. Another possible reason for this behaviour 
could be the poor processing of the masks in the network t ra ining process. Masks do not 
provide deeper information about how the input image was modified, but only i n which 
places the modification should be located. Also , u-nets, as mentioned earlier, are used 
mainly for segmentation tasks i n healthcare, which is not quite the same as deepfakes. The 
original approach is more about detecting anomalies, which can often be solid. In the case 
of deepfakes, we cannot classify how solid this output is. 

5.2.5 E x p e r i m e n t 5 results 

In this experiment, we evaluated the overtrained model EfficientDet L which achieved the 
best A U C score, i.e. 0.85 i n previous experiments. We evaluated FaceForensics and Celeb-
D F datasets, where we performed J P E G compression. The resulting D E T curves can be 
observed i n Figure 5.7 for FareForensics and Figure 5.8 for Ce l eb -DF . 

We can observe a slight increase of D E T curves i n the evaluations on the ind iv idua l 
graphs, but not a big one. The fact that we can watch this factor even wi th a test set of 
the t ra ining dataset is an expected condit ion. Even wi th an unknown dataset, the presence 
that we can observe may imply that compression can reduce the detector's efficiency A 
better question is how much reduction can affect the results. The values we have measured 
suggest that this impact might not be significant, but a deeper investigation of this result is 
needed than just an investigation of the A U C score. W h i l e we can argue that compression 
impacts the detection of deepfakes, we cannot determine how large. 

DET Curves for FaceForensics with JPEG Compressions 

Our EfficientDet L) 
Our EfficientDet L - compression 100) 
Our EfficientDet L - compression 80) 
Our EfficientDet L - compression 60) 
Our EfficientDet L - compression 40) 

0.4 0.6 
False Positive Rate 

0.8 1.0 

Figure 5.7: D E T curves calculated over the EfficientDet L model on the FaceForensics 
dataset w i th different compressions. The compression parameter i n the histogram shows 
the compression ratio of the jpeg. Where 100 represents the highest number of retained pixel 
values, i.e. the m i n i m u m compression, and 40 is the lowest, i.e. the highest compression. 
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DET Curves for Celeb-DF with JPEG Compressions 

False Positive Rate 

Figure 5.8: D E T curves calculated over the EfficientDet L model on the C e l e b - D F dataset 
wi th different compressions. The compression parameter in the histogram shows the com­
pression ratio of the jpeg. Where 100 represents the highest number of retained pixel values, 
i.e. the m i n i m u m compression, and 40 is the lowest, i.e. the highest compression. 

5.3 Discussion 

The first finding we should discuss in more detail is the inconsistency between the results 
of the t ra ining val idat ion metric and the general assessment using the C e l e b - D F dataset. 
A s we have shown several times, there is no direct connection between the evaluation of 
the t ra ining process and the results of the test set. 

Various factors can cause this fact. One of the factors may be the just mentioned 
overtraining of the model on data from the t ra ining dataset. Because the data i n different 
datasets are usually generated using several approaches, the network can learn to detect 
the models w i th which the deepfake is developed. We briefly discussed a similar process in 
Section 3.5.1, where we pointed out that i n the case of human detection, we can observe 
various artefacts or defects in deepfake images. A s a rule, this may be more of a problem 
of the model that generates these artefacts in specific cases or locations. Th is can lead to a 
si tuation where the neural network learns to recognize one or mult iple kinds of architecture 
that create deepfakes. Th is condit ion results i n the network achieving perfect results for a 
part icular dataset type but not for other architectures. 

In this thesis, we tr ied to solve this problem more complexly by choosing the best model 
over an unseen dataset, and we used C e l e b - D F for this purpose. However, this is only one 
of the ways we can solve the problem, and we assume that this solution is not opt imal 
either. If we used a different dataset for the evaluation, we might get different results than 
those we obtained i n our case. Thus we would not be able to opt imal ly determine which 
of the architectures is the best because the results would contradict each other. Th is area 
would need to be the subject of further investigation beyond the scope of this thesis. 

Another cr i t ical problem may be the R O C metric itself, so let's look at its result from 
our model . In Figure 5.9, we can see the dis t r ibut ion of the early dis t r ibut ion over the 
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Celeb -DF dataset for ind iv idua l images from the real image set and from the deepfake 
image set. 

0.6 

0.4 

Score distributions experiment: Accurate mode 

Genuine scores 532 

- 150 O OA -

- 100 ^ 

-50 5 

Score distributions experiment: Accurate mode 

Matching scores Matching scores 

Figure 5.9: Dis t r ibu t ion of scores of our best network model over the test set of the Celeb-
D F dataset according to the expected results. 

A s we can observe, the model achieves high success and confidence in the case of real 
images. O f course, there are real images that the model classifies as deepfake or is unsure 
about, but this percentage is relatively smal l compared to the rest of the set. A s far as 
deepfake images are concerned, we can see two main spikes. One is i n the certainty that 
it is a deepfake image, and the other is precisely i n the non-detection of the deepfake and 
its classification as a real face. The rest of the set is relatively evenly distr ibuted. Th is 
state is not op t imal either because the detector either detects w i th high confidence that 
it is a deepfake or w i th high confidence that it is a real image. Thus there is no normal 
dis t r ibut ion over the elements of the dataset. 

This s i tuat ion leads to hardly determining threshold value to distinguish a deepfake 
from a real image. W h i l e it is true that we could set this threshold relatively high, for 
example, somewhere around 90 %, and we would be able to detect many deepfakes, this 
state is not the opt imal solution we are looking for. It would be much better for us i f there 
were a Gaussian dis t r ibut ion of the ind iv idua l sets w i th as l i t t le overlap as possible. Thus 
we could determine this threshold much more efficiently according to what we would expect 
from the detector. For example, in the case of a system reporting suspicious activity, we 
would be able to set the threshold to detect a l l deepfakes and even a subset of real images. 
This would achieve a state where we would get a cast of fake reports, but we would be 
almost guaranteed to get the deepfake images under control as well . O f course, this is only 
one scenario, which is impossible to generalize. It would depend on the applicat ion, but 
this is not exactly the state we have reached wi th our detector. 

Thus, the problem also directly affects the evaluation using the A U C value. Since we 
achieve very high precision for real images also included i n the A U C evaluation, this value 
may be somewhat distorted. However, the opposite could also occur i n this case, where we 
would achieve a high success rate when evaluating deepfakes. The dis t r ibut ion that we set 
for deepfakes would be set for real images. Neither of these extremes is entirely satisfactory. 
Since we have mentioned the evaluation problem in the t ra ining process, it is not easy to 
prevent this condit ion. 
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We want to elaborate on the evaluation of the model itself and its comparison wi th 
other works. In the context of our exploration, we have tr ied to extend the EfficientNet 
architecture and improve its early performance for recognizing deepfakes i n the image. 
Accord ing to our comparisons, we managed to improve the detection capabil i ty of the 
architecture by several A U C points, which can no longer be considered a negligible number. 
However, there is no standardized way to compare these architectures. Since we have 
defined a metric that we use to evaluate the model and have verified our results w i t h it , 
we can declare the experimental part of our work a success based on this metric. A n d 
yet, for reasons we have already stated earlier i n the discussion and pointed out dur ing the 
evaluation, we cannot say wi th absolute certainty that the architecture we present here is 
the right one and is indeed generically better. For such an evaluation, comparing overall 
architectures and choosing the same evaluation procedure would be necessary. A good 
example is the Deepfake detection challenge by M e t a [1], i n which the resulting comparisons 
over unknown data were not published un t i l the challenge was completed. However, this is 
again a generic question that we can discuss and would need further investigation, which is 
beyond the scope of this thesis. 

The main thing we would like to point out is the actual deployment in real operation. 
A s mentioned by F i re et a l . [19], synthetic face datasets are l imi ted . M a n y of these 
datasets could be considered obsolete at a t ime when there is active work on G A N models 
for generating deepfakes. For example, the FaceForensics dataset we used for t ra ining our 
model was published i n 2019. D u r i n g this time, many models have been developed that 
can generate deepfakes wi th higher quali ty and wi th a much lower number of detectable 
fragments. For this reason, we cannot estimate how our model would behave on these 
deepfakes and, therefore, how it could perform in case of deployment in real traffic. Testing 
was only performed on publ ic ly available datasets. 

A t last, we would like to point out i n the discussion the detection of deepfakes in the 
image itself. The datasets over which we have performed t ra ining and evaluation are videos. 
These series of videos always give us several frames which are superimposed on each other. 
Face-swapping videos might be easier to detect than single images, as they contain temporal 
information [19]. It is helpful to reconsider this fact i n the future, and thus i f we want to 
focus on deepfakes as a general problem, whether it is possible, and to what extent it is 
possible, to detect them in an image or whether it is better to focus mainly on single types 
of attacks, such as Face morphing which we discussed in Section 3.4.1. 

Our observations, therefore, raise several research questions that w i l l need to be ad­
dressed in the future: 

• How to properly evaluate deepfakes detection models for their best generalisation? 

• Is it appropriate to use already outdated datasets in this field, or would it be necessary 
to perform new ones to address this issue? 

• How effective is it to solve deepfakes i n the image as an in-general problem? Is it 
better to focus exclusively on ind iv idua l types of attacks that are relevant? 
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Chapter 6 

Conclusion 

Deepfakes i n any audio-visual form are becoming a part of our everyday lives over time, 
often without us even realising i t . Despite their many possible uses for the proper purposes, 
such as education, cinematography and others, they also create many threats that we must 
face i n the present and the future. We have pointed out several possible attack vectors in 
Section 3.3. 

In the paper, we have discussed several architectures and functional models for creating 
deepfakes images, where dist inguishing them from real content is often difficult. Indeed, 
this technology is s t i l l imperfect. Therefore, we can find and recognise flaws even among 
these advanced architectures. Th is task is often complicated and not so easy for the average 
person. 

Since we have pointed out the importance of recognising what a deepfake is and what is 
a real contention, we have reviewed several architectures of convolutional neural networks 
that can be potential ly suitable for solving this problem. Then we tr ied to select and 
improve the best architectures by an iterative procedure. For appropriate testing of our 
proposed architectures, we have proposed a way of evaluating models using two different 
datasets to be as close as possible to real-world scenarios, i.e. that we cannot evaluate 
conclusions purely from one set, which is often generated by the same procedure. We have 
therefore processed several datasets that we have used in our models' t ra ining and val idat ion 
process, and i n Section 4.4, we have also discussed their strengths and weaknesses. 

Since most of these datasets are composed of videos, and often the input where the 
deepfake needs to be detected is not only the shape of a person, we have also designed a 
complete detection pipeline that serves for preprocessing the video or image before it can 
be evaluated using our presented model. 

In the experimental part of the work, we have attempted to discuss the t ra ining and 
evaluation process of the univariate models i n a broader spectrum. We also t r ied experi­
menting wi th different parameter values and freezing the pre-trained model weights for a l l 
models to keep feature extraction as op t imal as possible. For our first proposed architec­
ture, a modified EfficientDet model, we achieved a significant improvement i n detecting 
deepfakes compared to the baseline EfficientNet architecture, the results of which we then 
discuss i n more detail . The second architecture we investigated, where we placed the ex­
tension using the U-net network, was unsuccessful in this respect. For this one, again, we 
assume fast retraining due to a higher rate of dataset-specific inputs, which we used to 
evaluate the network training. 

A t the end of the experimental part of the work, we t r ied to analyse in detail the results 
of our improved architecture. We looked at its output values and tr ied to explain them from 
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the point of view of improving the early graphs and their use i n real cases. This summary 
then gave us a broader view of the model we are presenting, and we were able to look at 
its strengths and weaknesses. We have also discussed the entire evaluation and training 
process i n more detail and, at the same t ime, pointed out several problems associated wi th 
detecting deepfakes i n the image in general. This gave us the space to open several questions 
for discussion on the solution to this problem in general, not only on our solution itself. 
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Appendix A 

Contents of the included storage 
media 

Root folder contains executable main.py used for experiments i n Section 5 wi th README.md, 
requirements.txt and following directories: 

• custommodels: Y-net models architectures 

• generators: dataset processing files for executable main.py 

• models: C N N models architectures 

• preprocessing: scripts for preprocessing of datasets 

• processing: checkpoints saving handler 

• weights: best models weigths 
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