
Technische Hochschule Deggendorf
Faculty of Applied Computer Science

The University of South Bohemia in České Budějovice
Faculty of Science

Degree Master Artificial Intelligence and Data Science

A UNIVERSAL APPROACH TO ACCESS DIFFERENT

CLOUD BLOB STORAGE FROM KUBERNETES PODS IN

A COST-EFFICIENT AND SCALABLE WAY TO ENABLE

APPLICATION PORTABILITY BETWEEN DIFFERENT

CLOUD PROVIDERS.

Master's thesis to obtain the academic degree:
Master of Science (M.Sc.)

at the Technical University of Deggendorf
and the University of South Bohemia

Presented by:
Cristian Portillo
Matriculation number:
12100552

Prof. Dr. Andreas Wölfl
Supervisor:

Second Supervisor:
M Sc. Davor Klincharski

On: 17.01.2024

Declaration

T E C H N I S C H E
H O C H S C H U L E
D E G G E N D O R F

Name of the student: Cristian Portillo

Name of the supervisor: Prof. Dr. Andreas Wölfl

Topic of the thesis:

A universal approach to access different cloud blob storage from Kubernetes pods in a cost-
efficient and scalable way to enable application portability between different cloud providers.

1. I hereby declare that I have written the final thesis independently in accordance with § 35
Para. 7 RaPO (examination regulations for the universities of applied sciences in Bavaria,
BayRS 2210-4-1-4-1-WFK) and have not yet submitted it elsewhere for examination pur
poses, no other than have used the specified sources or aids and have marked literal and
analogous quotations as such. I declare that I am the author of this qualification thesis
and that in writing it I have used the sources and literature displayed in the list of used
sources only.

Deggendorf, 31,01.2024
Date Signature of student

2 Release of the thesis:

(£) Thesis in full is released immediately

O Release of the thesis in full is postponed

O Full version to be archived and shortened version to be released

Deggendorf, 31.01.2024
Date Signature of student

Annotation

P. Cristian, "A universal approach to access different cloud blob storage from kubernetes pods
in a costefficient and scalable way to enable application portability between different cloud
providers," M.S. thesis, in English, Faculty of Applied Computer Science, Deggendorf Institute
of Technology, Deggendorf, Germany and Faculty of Science, University of South Bohemia,
České Budějovice, Czech republic, 2023, p. 69

Annotation:
This thesis introduces a versatile approach enabling consistent access to cloud storages from
Kubernetes pods. Using containers, this method establishes a standardized interface, relieving
developers from the task of dealing with providerspecific code and enabling applications to
transition smoothly across various cloud platforms. Furthermore, this thesis explores the se

lection of a suitable Java framework, such as Spring Boot, Quarkus, or Micronaut, to implement
this approach, considering factors like performance among others. This research not only pro

vides a solution to a problem but also contributes to establishing best practices for connecting
a cloud storage to Kubernetes pods.

I declare that I am the author of this qualification thesis and that in writing it I have
used the sources and literature displayed in the list of used sources only.

Deggendorf,
Date

31.01.2024

V

Abstract

In today's digital landscape, businesses are increasingly turning to cloud storage for cost-
effective and scalable data solutions. However, connecting these storages to Kubernetes pods
presents significant hurdles due to the diverse APIs and provider-specific complexities in
volved. This thesis introduces a versatile approach designed to tackle these challenges, en
abling consistent access to cloud storages from Kubernetes pods. Through the use of con
tainers, this method establishes a standardized interface, relieving developers from the task of
dealing with provider-specific code, and enabling applications to transition smoothly across
various cloud platforms.

Furthermore, this thesis explores the selection of a suitable Java framework, such as Spring
Boot, Quarkus, or Micronaut, to implement this approach, considering factors like performance
among others.

This research not only provides a solution to a problem but also contributes to establishing
best practices for connecting a cloud storage to Kubernetes pods. Additionally, the knowl
edge gained from this study empowers organizations to make informed decisions, optimize
their operations, and achieve greater efficiency in managing their data across different cloud
environments.

v

Contents

Abstract v

T Introduction 1

1.1 Outline 1

2 Related Work 3

3 Background Knowledge 5
3.1 An Overview of Kubernetes Architecture 5

3.1.1 Benefits of using Kubernetes 7
3.2 Quarkus 7

3.2.1 Native code execution 8
3.2.2 Quarkus Architecture 8
3.2.3 GraalVM 9

3.3 Spring Boot 10
3.3.1 Introducing Spring Boot 10
3.3.2 System requirements 11
3.3.3 Developing with Spring Boot 12

3.4 Micronaut 15
3.4.1 Micronaut and Microservices Development 15
3.4.2 Comparison of Startup Times: Micronaut vs Traditional Frameworks . 16

3.5 AWS- Amazon Web Services 17
3.6 Microsoft Azure 18

3.6.1 Azure API Management 19
3.6.2 Resource Group 19
3.6.3 Azure A D 20

3.7 Helm Charts 20
4 Methodology 21

4.1 Analysis of the Best Java Framework for Cloud-Native Development 21
4.1.1 Popularity 21
4.1.2 Compile Time 22
4.1.3 Test Time 23
4.1.4 Startup of the Application 23
4.1.5 Database Operations 23
4.1.6 Stability 25
4.1.7 CPU and Memory Usage 30
4.1.8 Stress Test Results 31

vii

Contents

4.2 Development tools and dependencies 37

5 Implementation 39
5.1 Structure 39

5.1.1 Microservice 40
5.1.2 Proxy Orchestrator 42

6 Evaluation 45
6.1 Java Framework 45
6.2 Upload time 46

6.2.1 Azure 46
6.2.2 AWS 47

6.3 Download time 48
6.3.1 Azure 48
6.3.2 AWS 49

6.4 Code Portability 50
6.4.1 Orchestrator 50

6.5 Microservice 51
6.6 Evaluating the significance of how the solution performs with and without its

existence 52

7 Conclusion and future work 55

viii

1 Introduction

In the era of cloud computing, organizations are increasingly relying on cloud blob storages
for scalable and cost-effective data storage solutions. However, accessing different cloud blob
storages from Kubernetes pods presents significant challenges due to a variety of APIs, and
provider-specific complexities. This thesis presents a universal approach that aims to face
these challenges and enable appropriate access to different cloud blob storages from Kubernetes
pods. By utilizing a proxy orchestrator, this approach provides a unified interface, eliminating
the need for developers to handle provider-specific code and enabling application portability
between different cloud providers. Additionally, this thesis explores the selection of an appro
priate Java framework, such as Spring Boot, Quarkus or Micronaut, to implement the proposed
approach, considering factors such as performance and ease of integration with cloud blob stor
age APIs. This will enable us to resolve the question of which Java framework best supports
the development of the universal approach, ensuring efficient integration with Kubernetes and
providing the necessary tools and libraries for a smoothly interaction with various cloud stor
age providers.

We will additionally conduct a comprehensive comparative analysis of the file transfer out
comes achieved through the universally proposed approach in contrast to transfers executed
via the cloud-native portals offered by each provider. This evaluation aims to find out the
efficacy and assess the overall quality of the proposed solution. This will allow us to deter
mine what are the performance and scalability implications of the proposed universal approach
when accessing the different cloud storages and how does it compare to traditional approaches
in terms of efficiency.

Through experimentation and evaluation, this thesis evaluates the effectiveness and scal
ability of the proposed universal approach and we will be able to determine how the imple
mented universal approach enhances application portability across various cloud providers,
allowing organizations to easily migrate, switch, or adopt multicloud strategies without sub
stantial codebase modifications or disruptions to the application workflow.

Through the investigation of this thesis, this work will not only provide a solution to a
challenge but also contribute to the development of best practices for accessing cloud blob
storages from Kubernetes pods. Furthermore, the knowledge gained from this research will
enable organizations to make accurate decisions, improve their operations, and achieve greater
efficiency in managing their data in multi-cloud or hybrid cloud environments.

1.1 Outline

This section outlines the organization of the chapters in this thesis. Chapter 2 discusses pre
vious researches that relate to our work in this research. Chapter 3 provides essential back
ground information for comprehending the thesis contents. This includes an exploration of

1

1 Introduction

Kubernetes architecture and its advantages, an examination of evaluated Java frameworks (Mi-
cronaut, Spring Boot, Quarkus), an overview of cloud providers like AWS and MS Azure, and
a discussion on Helm charts. Chapter 4 provides a detailed analysis to determine the best
Java framework for this thesis. This includes examining various features, as well as the devel
opment tools and dependencies used. In Chapter 5, we dive into how the proposed solution
was built and put into action. This section is supported by clear diagrams and explanations
of the proposed architecture. Chapter 6 assesses the results of the implementation, looking
at important factors like file transfer times and how easily the system can adapt to different
environments. Lastly, Chapter 7 wraps up the work with conclusions and suggestions for po
tential future improvements. This reflects the ongoing nature of this field and the potential for
ongoing progress and enhancements.

2

2 Related Work

In the initial phase of this thesis, the most important task was to decide the most fitting Java
framework for its development, Lukasz Latusik et al. [1] conducted a comprehensive study
investigating into three highly promising frameworks, Spring Boot, Micronaut, and Quarkus.
The study primarily centered around the assessment of these frameworks performance in cru
cial areas such as computation, compilation, and deployment, all in the context of developing
Microservices. It is worth noting, however, that this study did not explore further into other
facets related to cloud solutions. Nevertheless, having the results from this research, a judicious
decision could be made regarding the most suitable framework for implementation.

On a parallel note, Piotr Plecinski et al. [2] also embarked on a comparative exploration of
the previously Java frameworks mentioned. However, their investigation ultimately focused
towards projects involving sensor networks. This covered a diverse spectrum, containing ap
plications ranging from telemedicine to the management of extensive sensor networks respon
sible for collecting scientific data. Their focus, distinct from our objectives, was on operating
in environments characterized by constrained resources, exemplified by the use of BLE or WIFI
transmitters.

Furthermore, in the research conducted by Shani du Plessis et al. [3], insightful findings
emerged highlighting the strengths and weaknesses inherent in each of the considered Java
Framework platforms for the development of this thesis. Their discerning analysis provided
invaluable input for making informed decisions in this regard.

Lastly, Songbin Liu et al. [4] conducted an experimental exploration involving access to a
cloud storage system from Tsinghua University. Their primary focus was on enhancing cache
efficiency for retrieving stored files, constituting a significant departure from the core objec
tives of our thesis. It's important to note that the experiments in this study were conducted
exclusively within a single cloud provider, and Songbin Liu did not extend the research beyond
this scope.

3

3 Background Knowledge

In this section, we will present a brief research of the three main Java frameworks to determine
the optimal choice for cloud-native development. Selecting the most suitable Java framework
that aligns with the requirements of Kubernetes based cloud native development is important
for implementing the proposed universal approach. The evaluation process will involve a com
prehensive analysis of the Java frameworks like Spring Boot, Quarkus, and Micronaut. Factors
taken into consideration will include performance, resource efficiency, community support
among others.

3.1 An Overview of Kubernetes Architecture

The design of Kubernetes circles around the idea of a flexible service discovery mechanism.
Similar to other distributed middleware platforms, a Kubernetes cluster consists of several com
pute nodes and one or more master nodes. Diagram3.1 shows a high-level representation of a
Kubernetes cluster.

[5] mentions that the Kubernetes Master nodes serve as the central control hub of the cluster.
They are responsible for managing the entire cluster, offering APIs for communication, and
handling deployment scheduling. On the other hand, Kubernetes nodes (depicted on the right
side of the diagram3.1) contain the necessary services to execute applications in units known
as Pods.

Each master node comprises the following components:

• API Server: This component ensures synchronization and validation of information
within Pods and services.

• etcd: It serves as a reliable and consistent storage solution for cluster data, acting as a
shared memory for the "brain."

• Controller Manager server: This component monitors changes in the etcd service and
utilizes its API to enforce the desired cluster state.

• HAProxy: In cases where high availability (HA) masters are configured, HAProxy can
be added to evenly distribute loads among multiple master endpoints.

Francesco Marchioni[5] highlights that Kubernetes nodes, often referred as nodes, can be
considered "workhorses" of a Kubernetes cluster. Each node exposes a set of resources (such
as computing, networking, and storage) to your applications. The node also ships with addi
tional components for service discovery, monitoring, logging, and optional add-ons. In terms

5

3 Background Knowledge

Kubernetes Master

Controller Manager

Kube-Pmxy

Container Runtime

I J1

Container Runtime

Figure 3.1: High level view of a Kubernetes cluster, diagram taken from [5]

of infrastructure, you can run a node as a virtual machine (VM) in your cloud environment or
on top of bare-metal servers running in the data center.

[5] organizes each node to include the following components:

• Pod: It's a group that joins containers and parts of the application together. A Pod sets
the limits for these containers, sharing resources and information. We can change the
number of Pods while the application is running, ensuring we always have the right
amount.

• Kube-Proxy: It's a traffic director on each node. It sets the rules for communication
between Pods.

• Kubelet: It's a helper that runs on every node in the Kubernetes group. It makes sure
the containers are running inside a Pod.

• HAProxy: In cases where high availability (HA) masters are configured, HAProxy can
be added to evenly distribute loads among multiple master endpoints.

• Container Runtime: It's the software that runs the containers. Kubernetes works with
different container runtimes, such as Docker, containerd, cri-o, and rktlet.

6

3.2 Quarkus

3.1.1 Benefits of using Kubernetes

[5] highlights that the advantages that Kubernetes offers inside an enterprise are:

• Kubernetes simplifies container management significantly. Instead of directly manag
ing containers, you only need to handle Pods. Kubernetes introduces the concept of a
service, which defines a logical group of Pods with their IP address. This abstraction
improves fault tolerance and minimizes downtime by distributing containers across dif
ferent machines.

• Kubernetes accelerates the software development process by supporting various pro
gramming languages and providing advanced deployment features. This facilitates the
creation of efficient Continuous Integration/Continuous Delivery (CI/CD) pipelines.

• Kubernetes enables rapid and cost-effective horizontal scaling of Pods. As user numbers
increase, the replication service can automatically launch new Pods and distribute the
workload, ensuring uninterrupted service.

• Notably, Kubernetes can handle both stateless and stateful applications, offering ephemeral
storage and persistent volumes. It supports various storage types, including NFS, Glus-
terFS, and cloud storage systems. Persistent volumes (PVs) can retain data independently
of any specific Pod, allowing you to keep data as long as needed.

3.2 Quarkus

One of the primary challenges faced in a microservices architecture 1 is the potential com
plexity that arises from the expansion of services. Without a proper orchestration framework,
managing and coordinating these services can become overwhelming. Additionally, the ab
sence of centralized functions like authentication, data management, and API gateway can
undermine the advantages offered by a microservices architecture.

Utilizing Kubernetes-based orchestration allows for efficient management and dynamic schedul
ing of microservices, improving resource utilization and enhancing resiliency. It enables smothly
operations in response to varying demands without concerns about container failures. To fully
integrate and unify all the components, a specialized framework adapted to this architecture
becomes essential, and that is where Quarkus comes into the picture.

[5] considers Quarkus as a "Kubernetes native Java framework" and states that Quarkus
emerges as a prominent solution for managing cloud-native enterprise applications, introduc
ing interesting features that were previously unreachable. Quarkus can generate lightweight
native code from Java classes, enabling the creation of container images that can be run on
Kubernetes or OpenShift. It leverages renowned Java libraries such as RESTEasy, Hibernate,
Apache Kafka, and Vert.x. Let's delve into the notable highlights of this framework.

'Microservices architecture is an architectural style for structuring an application as a collection of different
independent services. Each service is focused on a single responsibility and only performs tasks related to this
responsibility.

7

3 Background Knowledge

3.2.1 Native code execution

[5] states that native code execution has been attempted before in the past of Java, but it failed
to gain significant developer adoption. For monolithic applications, the advantages of native
execution were relatively minor due to advancements in Hot Spot technology, bringing Java's
speed closer to native execution.

However, in a microservices scenario, the ability to quickly spin up native services becomes
crucial. Even optimizing seconds or fractions of a second can make a significant difference.
Similarly, if you aim to achieve high memory density, maximum request throughput, and con
sistent CPU performance, Quarkus native execution aligns perfectly with these requirements.

In contrast, Quarkus offers a seamless transition by utilizing plain Java bytecode2. This en
ables the development of applications with specific requirements, such as high memory den
sity, superior CPU performance, advanced garbage collection tactics, compatibility with a wide
range of libraries and monitoring tools that rely on the standard JDK, and the ability to com
pile once and run anywhere. Table 3.1 provides an overview of common scenarios where the
choice between native applications and Java applications becomes relevant when working with
Quarkus.

Quarkus Native applications Quarkus Java applications

Highest memory density requirements High memory density requirements
More consistent CPU performance Best raw performance(CPU)
Fastest startup time Fast Startup time
Simpler garbage collection Advanced garbage collection
Highest throughput A large set of libraries and tools that only work with JDK
No JIT spikes Compile once, run anywhere

Table 3.1: Native applications vs Java applications when developing with Quarkus

3.2.2 Quarkus Architecture

[5] states that the core element of Quarkus is responsible for the crucial task of transforming
the application during the build phase, resulting in highly optimized native executable and
Java-runnable applications. To achieve this, Quarkus core collaborates with several tools:

• Jandex: An efficient Java annotation indexer and offline reflection library that creates a
compact representation of all runtime visible Java annotations and class hierarchies for
a given set of classes.

• Gizmo: A bytecode generation library employed by Quarkus to generate Java bytecode.

• GraalVM: A collection of components, each with a specific role. These include a com
piler, an SDK API for integrating Graal languages and configuring native images, and a
runtime environment for JVM-based languages.

2Bytecode is the number of bytes needed to encode a program and has the ability to create a single image of a
program that wil l execute identically (in principle) on any system equipped with a Java virtual machine. [6]

8

3.2 Quarkus

• SubstrateVM: A subcomponent of GraalVM that enables ahead-of-time (AOT) compi
lation of Java applications, transforming them into self-contained executables.

Diagram 3.2 provides an overview of the essential components in the Quarkus architecture.
However, it is important to note that the list of available extensions is not exhaustive due to
the need for brevity.

Quarkus Extensions

Fau.ll Tolerance J W T Propagation Health Check

Hibernate
O R M

Narayana

Apache
Katka

Agrosl

Quarkus Care

Quarkus

Figure 3.2: Core components of the Quarkus architecture, diagram taken from [5]

3.2.3 GraalVM

[5] describes that in order to generate native executables from Java code, an extension of the
virtual machine3 known as GraalVM is required. GraalVM serves as a versatile virtual machine
that enables the compilation of bytecode from various languages, including Python, JavaScript,
Ruby, and more. It also allows for the integration of multiple languages within the same project.
Additionally, GraalVM offers features such as Substrate V M , a framework that facilitates ahead-
of-time (AOT) compilation4 for applications written in different languages. This enables the
conversion of JVM bytecode into native executables.

GraalVM, like other JDKs available from different vendors, has support for the Java-based
JVM Compiler Interface (JVMCI) and utilizes Graal as its default just-in-time (JIT) compiler.
Consequently, it not only executes Java code but also supports languages like JavaScript, Python,

3 A virtual machine, commonly shortened to just V M , are often thought of as virtual computers or software-defined
computers within physical servers, existing only as code. [7]

4 AOT, is the action to improve the performance of a Java virtual machine (JVM) by translating bytecode into C
code, which is then compiled into machine code via an existing C compiler [8]

9

http://Fau.ll

3 Background Knowledge

and Ruby. This capability is made possible through Truffle, a language abstract syntax tree in
terpreter developed by Oracle in collaboration with GraalVM.

Diagram 3.3 offers a high-level overview of the GraalVM stack.

JAVA SCALA

JS C/C++ C/C++

JAVA SCALA

TRUFFLE

GRAAL

JVMCI

HOTSPOT VM

Figure 3.3: High-level view of the GraalVM stack, diagram taken from [5]

3.3 Spring Boot

Christian Posta[9] points out that when discussing Spring Boot, it's necessary to mention
Spring itself. Spring is a popular and free framework that runs on the Java Virtual Machine
(JVM) and is used to create high-quality applications. It was developed to address the chal
lenges found in Java Enterprise Edition (JEE)5. In the beginning, the earlier versions of Spring
were not very user-friendly, and developing applications with it was difficult and unpleasant.
JEE solutions were complex and difficult to configure.

The goal of the developers was to make Spring accessible to everyone, so they provided
default configurations from the start, which made the development process much easier. One
of the key advantages of Spring is its own IoC 6 container, The IoC container takes care of the
entire lifecycle of objects, starting from their creation until they are no longer needed.

Talking specifically about Spring Boot. It is a tool that makes it faster and easier to develop
web applications and microservices using the Spring Framework[ll].

3.3.1 Introducing Spring Boot

According to the official documentation^] Spring Boot empowers developers to build self-
contained, high quality applications based on the Spring framework, which can be executed

fundamentally, Java Enterprise Edition (Java EE), formerly referred to as J2EE, is a compilation of standardized
specifications that provide prescribed solutions to commonly encountered software development obstacles. [10]

6IoC stands for Inversion of Control, which means that the responsibility for creating objects is transferred to the
Spring container, which handles the creation, management, and configuration of bean objects.

10

3.3 Spring Boot

easily. By adopting a predefined approach to the Spring platform and external libraries, Spring
Boot minimizes the complexities involved in project initiation. In many instances, Spring Boot
applications demand minimal Spring configuration.

Thanks to Spring Boot, developers can create Java applications that can be started using "Java
-jar". This flexibility enables easily execution and deployment options for Java applications
developed with Spring Boot.

[12] states that the main goals of spring boot are:

• Offer an exceptionally fast and widely accessible starting point for all Spring develop
ment endeavors.

• Initially provide opinionated defaults but quickly accommodate specific requirements as
they deviate from the defaults.

• Deliver a range of non-functional capabilities that are applicable to a wide range of
projects, including embedded servers, security features, metrics, health checks, and ex
ternalized configuration.

• Eliminate the need for code generation (except when targeting native image) and eradi
cate the reliance on X M L 7 configuration.

3.3.2 System requirements

To utilize Spring Boot 3.1.0, it is necessary to have Java 17 installed, and it remains compatible
with Java versions up to and including Java 20. Additionally, Spring Framework 6.0.9 or a more
recent version is required for compatibility[12].

Explicit build support is provided for the following build tools as shown in table 3.2

Build Tool Version

Maven 3.6.3 or later
Gradle 7.x (7.5 or later) and 8.x

Table 3.2: Spring Boot System requirements

Servlet Containers

Spring Boot provides support for several embedded servlet containers, as shown in table 3.3:
In addition to the support for embedded servlet containers, Spring Boot also allows you to

deploy your applications to any servlet 5.0+ compatible container. This flexibility enables you
to choose from a wide range of containers based on your specific needs and preferences[12].

7 X M L stands for Extensible Markup Language and is a markup language for documents containing structured
information[13]

11

3 Background Knowledge

Name Serviet version

Tomcat 10.0 5.0
Jetty 11.0 5.1
Undertow 2.2 (Jakarta EE 9 variant) 5.0

Table 3.3: Spring Boot Serviet Containers

GraalVM Native Images

You can transform Spring Boot applications into Native Images 8 by utilizing GraalVM 22.3 or
a later version.

[14] mentions that to generate these images, you have multiple options. You can utilize
the native build tools such as Gradle/Maven plugins or use the native-image tool offered by
GraalVM. Additionally, the native-image Paketo buildpack9 can be utilized to create native
images as well.

3.3.3 Developing with Spring Boot

This subsection provides a comprehensive exploration of the recommended practices for utiliz
ing Spring Boot. It examines into various aspects, including build systems, auto-configuration,
running applications, and essential best practices. While Spring Boot is treated as any other
consumable library, adhering to these suggestions can greatly facilitate the development pro
cess, enhancing overall efficiency.

Build Systems

It is highly recommended to opt for a build system that facilitates dependency management
3.3.3 and has the capability to incorporate artifacts from the "Maven Central" repository. Spring
Boot documentation [12] recommend considering Maven or Gradle as preferred choices. While
it is feasible to configure Spring Boot with alternative build systems like Ant, it is important to
note that they may not receive extensive support and may require additional configuration.

Dependency Management

[12] mentions that each version of Spring Boot offers a carefully selected set of dependencies
that it is compatible with. In practice, you are not required to specify the version for these de
pendencies in your build configuration since Spring Boot takes care of managing them for you.
Consequently, when you upgrade your Spring Boot version, these dependencies will also be
upgraded consistently and in a synchronized manner. This streamlined approach ensures that

s GraalVM Native Images are standalone executables that can be generated by processing compiled Java applica
tions ahead-of-time. Native Images generally have a smaller memory footprint and start faster than their J V M
counterparts.[12]

'The Paketo Buildpack for Native Image is a Cloud Native Buildpack that utilizes the GraalVM Native Image
builder (native-image) to compile an independent executable from an executable JAR file.

12

3.3 Spring Boot

the versions of the dependencies remain compatible with each other, simplifying the process
of managing and upgrading your Spring Boot applications.

Maven

[15] points out that the Spring Boot Maven Plugin facilitates Spring Boot integration within
Apache Maven 1 0. It offers various capabilities such as packaging executable jar or war archives,
running Spring Boot applications, generating build information, and starting your Spring Boot
application before executing integration tests. With this plugin, you can streamline your devel
opment workflow and leverage the features and functionality provided by Spring Boot seam
lessly within your Maven-based projects.

Cradle

The Spring Boot Gradle Plugin[16] offers easily integration of Spring Boot within the Gradle
build system. It facilitates tasks such as packaging executable Jar or WAR archives11, running
Spring Boot applications, and leveraging the dependency management capabilities provided
by spring-boot-dependencies. The Gradle plugin for Spring Boot specifically requires Gradle
version 7.x (7.5 or later) or 8.x, and it is compatible with Gradle's configuration cache feature12.
By using this plugin, developers can efficiently manage their Spring Boot projects within the
Gradle ecosystem, optimizing the build and deployment process.

Ant

Building a Spring Boot project using Apache Ant+Ivy[18] is an option. Additionally, the "AntLib"
module named spring-boot-antlib is provided to assist Ant in generating executable jars.

To specify dependencies, an ivyxml file commonly resembles the following example:

<ivy-module version="2.0">
<info organisation"org.springframework.boot" module="spring-boot-sample-
ant" />
< configurat ions >

<conf name="compile" description="everything needed to compile t h i s
module" />

<conf name="runtime" extends="compile" description^'everything needed
to run t h i s module" />
</configurations>
<dependencies>

<dependency org="org.springframework.boot" name="spring-boot-starter"
1 0Apache Maven is a tool for project management and comprehension in software development. It operates on

the principle of a project object model (POM), allowing for centralized control over a project's build process,
reporting, and documentation.

n W A R file (Web Application Resource or Web application Archive) is a file used to distribute a collection of JAR-
files, JavaServer Pages, Java Servlets, Java classes, X M L files, tag libraries, static web pages (HTML and related
files) and other resources that together constitute a web application. [17]

1 2The configuration cache is a feature that significantly improves build performance by caching the result of the
configuration phase and reusing this for subsequent builds. Using the configuration cache, Gradle can skip
the configuration phase entirely when nothing that affects the build configuration, such as build scripts, has
changed.

13

3 Background Knowledge

9 rev="${spring-boot.version}" conf="compile" />
10 </dependencies>
11 </ivy-module>

An example of a standard build.xml appears as follows:

1 <project
2 xmlns:ivy="antlib:org.apache.ivy.ant"
3 xmlns:spring-boot="antlib:org.springframework.boot.ant"
4 name="myapp" default="build">
5

6 <property name="spring-boot.version" value="3.1.0" />
7

8 <target name="resolve" description^'--> retrieve dependencies with ivy">
9 <ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]"

/>
10 </target>
11

12 <target name="classpaths" depends="resolve">
13 <path id="compile.classpath">
14 <fileset dir="lib/compile" includes="*.jar" />
15 </path>
16 </target>
17
is <target name="init" depends="classpaths">
19 <mkdir dir="build/classes" />
20 </target>
21

22 <target name="compile" depends="init" description="compile">
23 <javac srcdir="src/main/java" destdir="build/classes" classpathref="

compile.classpath" />
24 </target>
25
26 <target name="build" depends="compile">
27 <spring-boot:exejar destfile="build/myapp.jar" classes="build/classes

">
28 <spring-boot: lib>
29 <fileset dir="lib/runtime" />
30 </spring-boot: lib>
31 < /spring-boot: exe j ar>
32 </target>
33 </project>

Starters

[12] states that starters provide a collection of convenient dependency descriptors that simplify
the inclusion of necessary dependencies in the application. They serve as a comprehensive
package for all the required Spring and related technologies, eliminating the need to search for
sample code and manually copy-paste dependency descriptors. For instance, if you intend to
utilize Spring and JPA for database access, you can easily incorporate the spring-boot-starter-
data-jpa dependency in your project.

14

3.4 Micronaut

These starters include a wide range of dependencies that expedite the setup of a project,
ensuring a consistent and well-supported set of managed transitive dependencies.

3.4 Micronaut

Micronaut is a modern Java framework[19] that runs on the Java Virtual Machine (JVM) and
offers a comprehensive set of tools for creating modular and easily testable applications. It
supports Java, Kotlin, and Groovy programming languages.

The primary goal of Micronaut is to provide a complete suite of features for JVM applications,
including Dependency Injection and Inversion of Control (IoC), Aspect Oriented Programming
(AOP), and sensible defaults with auto-configuration.

Many APIs in Micronaut are heavily influenced by Spring and Grails, intentionally designed
to facilitate a smooth transition for developers familiar with these frameworks.

3.4.1 Micronaut and Microservices Development

According to Nirmal Singh and Zack Dawood[20], Micronaut is designed from scratch with
a strong focus on addressing the specific challenges faced in microservices development as
follows:

• Dependency injection: Micronaut achieves dependency injection by utilizing JSR-
330's @Inject13annotation.Integrating the Java inject module into the compiler, Micro
naut processes all relevant annotations during compile time. This results in the gener
ation of bytecode for the classes based on the annotations present in their source code.
Importantly, this entire process occurs during compilation, not runtime. During runtime,
Micronaut can effectively instantiate the beans and retrieve their metadata directly from
the generated bytecode, eliminating the need for slower reflection-based approaches.

• Ahead-of-time compilation: Unlike other frameworks that rely on reflection and gen
erate annotation metadata at application startup, Micronaut performs these tasks during
compile time. It utilizes annotation processors to process the metadata into bytecode us
ing ASM (assembly)14, which is further optimized by Java's just-in-time (JIT) compiler.
This approach eliminates the need for runtime reflection and reduces the memory usage.

• Faster boot-up time and lower memory consumption: Unlike other frameworks
that rely on reflection and perform classpath scanning at startup to generate reflection
metadata, Micronaut's ahead-of-time compilation approach eliminates this overhead. By
offloading the work to the compilation phase, Micronaut achieves faster boot-up times
and reduces runtime memory requirements. The use of reflection metadata is minimized,
resulting in more efficient resource utilization.

1 3This package specifies a means for obtaining objects in such a way as to maximize reusability, testability and
maintainability compared to traditional approaches such as constructors, factories, and service locators. This
process, known as dependency injection, is beneficial to most nontrivial applications.

"Assembly is a low-level programming language that's one step above a computer's native machine language, is
commonly used for writing device drivers, emulators, and video games.

15

3 Background Knowledge

• Serverless applications support: Traditional frameworks with their large memory us
age and slower boot-up times are not well-suited for serverless application development.
Micronaut is specifically designed to address these challenges by ensuring a minimal
runtime memory footprint and sub-second boot-up times. This makes Micronaut a prac
tical choice for building serverless applications. Additionally, Micronaut provides native
support for popular cloud platforms used in serverless function development

• Language-agnostic framework: Micronaut supports multiple programming languages,
including Java, Kotlin, and Groovy. This language flexibility allows developers to choose
their preferred language when considering cloud requirements. For example, Groovy
may be a suitable option for IoT applications.

• Support to GraalVM: Many applications built with Micronaut can be compiled ahead
of time into a native image compatible with GraalVM. GraalVM has the capability to
execute Java applications as machine code, resulting in substantial performance im
provements. When a Micronaut application is compiled into a GraalVM native image, it
achieves ultra-fast startup times, typically measured in milliseconds.

3.4.2 Comparison of Startup Times: Micronaut vs Traditional Frameworks

[20] conducted a brief benchmark study to compare the application startup durations between
Micronaut and a well-known conventional framework. The chart3.4 illustrates the startup
times for both Micronaut and the traditional framework.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Time in Seconds

Figure 3.4: Startup times for a traditional framework versus Micronaut, graph taken from [20]

As shown in 3.4 the traditional framework took 6,156 milliseconds to boot up whereas M i
cronaut took only 3,750 milliseconds. This time difference in booting up the application is
significant and sets Micronaut as a convenient framework for developing cloud-native and
rapid microservices.

16

3.5 AWS- Amazon Web Services

3.5 AWS- Amazon Web Services

[21] mentions that Amazon offers a comprehensive suite of IT tools that enable organizations
to establish customized virtual environments, ensuring full control over their configurations.
Amazon Web Services (AWS) provides to both organizational and IT development needs. While
the cost-effectiveness and efficiency of migrating to the cloud are attractive to security experts,
this transition introduces various security risks and compliance considerations. To approach
these concerns, AWS has implemented a range of features and services, the most popular and
widely utilized services among these are Amazon S3 1 5 and Amazon EC2 1 6 . This service is pro
moted as offering substantial computing power, potentially involving numerous servers, at a
lower cost and significantly faster pace compared to constructing a physical server infrastruc
ture. Diagram 3.5 provides a visual overview of the AWS architecture. Here S3 denotes Simple
Storage Service, enabling users to store and access a range of data through API requests.

Figure 3.5: Amazon Web Services basic architecture, graph taken from [21]

Some of the AWS components that worth mentioning from the diagram 3.5 are:

AWS Region

According to [24] Amazon's cloud computing resources are distributed across various global lo
cations, known as AWS Regions. Each of these regions constitutes an independent geographic
area and includes multiple isolated sites called Availability Zones.

1 5Amazon S3 is a service for storing objects that provides scalability, data accessibility, security, and high
performance. [22]

1 6Amazon Elastic Compute Cloud (Amazon EC2) is a web-based service offering secure and easily adjustable com
puting capacity in the cloud, ensuring a safe environment for running various applications. [23]

17

3 Background Knowledge

Domain Name

According to [25], a collaborative group of trusted internal AWS KMS entities in a specific
AWS Region is known as a domain. This domain includes a collection of trusted entities, a set
of regulations, and a series of confidential keys known as domain keys. These domain keys
are distributed among the HSMs that belong to the domain. The name is used to identify the
domain.

EBS Volume

According to [26], an Amazon EBS volume is a robust storage device at the block level that can
be connected to your instances. Once you've linked a volume to an instance, you can employ
it much like you would a physical hard drive.

AWS Security group

[27] mentions that a security group serves as a virtual barrier for your EC2 instances, regulat
ing both incoming and outgoing traffic. Incoming traffic is managed by inbound rules, while
outgoing traffic is governed by outbound rules.

3.6 Microsoft Azure

[28] mentions that Windows Azure, is a Microsoft's public cloud application platform, that
provides diverse usage options for any application. For example, it is possible to utilize Win
dows Azure to develop a web application that operates and stores its data within Microsoft's
datacenters. Alternatively, you may choose to employ Windows Azure solely for data storage,
with the applications accessing this data running on-premises, outside the public cloud. Win
dows Azure also facilitates the connection of on-premises applications with one another, as
well as the mapping of distinct identity information sets, among other functionalities. Given
the extensive array of services offered by this platform, a wide range of capabilities, including
those mentioned, are feasible.

To grasp the offerings of Windows Azure, [29] categorize its services and comprehend the
functions of its components. Figure 3.6 illustrates a method for achieving this.

According to [29] the structure 3.6 includes the subsequent services and elements.

Backend systems

The diagram's right-hand portion displays the array of backend systems utilized. These may
include SaaS platforms, additional Azure services, or web services offering REST or SOAP inter
faces. Here, we also encounter the blob storage that is part of the Azure services which played
a role in the development of this thesis for accessing the stored objects. The blob storage acts
as an initial storage space for the source data before it is used.

18

3.6 Microsoft Azure

Backend Systems

Azure sen/ices

Figure 3.6: Microsoft Azure components and architecture, graph taken from [29]

Azure Logic Apps

In this setup, logic apps start when they receive a web request. You can also combine them for
more complicated tasks. Logic Apps use connectors to connect with popular services. There
are many pre-made connectors available, and you can also make your own.

3.6.1 Azure API Management

[29] decribes the API Management as two interconnected elements:

API gateway

The API gateway receives HTTP requests and directs them to the backend.

Developer Portal

The portal provides developers with access to documentation and examples of code for making
API calls. Additionally, you can carry out API testing within the developer portal.

3.6.2 Resource Group

According to [30] resource group is like a box that contains interconnected resources for an
Azure solution. It can include all the resources needed for the solution or just the ones you
prefer to manage together.

19

3 Background Knowledge

3.6.3 Azure AD

Azure AD provides an organization with a cloud-based identity and access management solu
tion, linking employees, customers, and partners to their applications, devices, and information
while ensuring security [31].

3.7 Helm Charts

[32] mentions that in the Docker 1 7 compose format, container composition files address the
creation of containers18 but do not directly support service semantics. Containers can offer
varying numbers of services. Additionally, this format does not take into account resource al
location constraints. Descriptor files in the kubernetes format address this limitation, but the
abundance of deployment and service descriptors can lead to redundant values and more com
plex handling. Consequently, Kubernetes applications necessitate a more advanced treatment.

To tackle this limitation in Kubernetes stacks, Helm was introduced in mid-2016 as a solution
to bundle sets of descriptor files, including templates and detailed metadata, into single archive
files for easy deployment and removal. Helm establishes a packaging file format known as Helm
Charts, along with client and server components for managing these files. On the server side,
the implementation is deployed on top of Kubernetes, while on the client side, the Helm binary
enables the creation, testing, deployment of charts, as well as repository searches. The format
of Helm charts is outlined informally in an evolving technological documentation.

"Docker was designed in order to simplify the creation, deployment and execution of applications using con
tainers. With docker is possible to deploy and expand applications across various environments, ensuring the
continuous execution of the code.

1 8Containerization enables users to execute applications in a virtual setting by bundling all required elements, in
cluding files, libraries, and other crucial components. Moreover, containers are pivotal in DevOps workflows,
serving as a fundamental component in automated software construction and seamless integration into contin
uous deployment pipelines.

20

4 Methodology

4.1 Analysis of the Best Java Framework for Cloud-Native
Development

When evaluating existing options, multiple factors need to be taken into account, including ef
ficiency, scalability, manageability, and reliability. The most recognized approaches at present
are the monolithic architecture and microservices. This topic is currently highly popular, and
numerous advancing technologies are under constant exploration and experimentation to iden
tify the optimal solution to adopt.

Matthias Graf[33] performed an analysis of microservices technologies, focusing on their
performance and ease of implementation. The performance assessment considered factors
such as compile time, application startup, and peak performance. While these factors hold
significance, there are numerous other considerations that should be taken into account when
deciding on a particular technology.

Roman Kudryashov[34] conducted a study that was both intriguing and valuable, as it not
only measured the duration of specific actions but also considered the memory usage, which
holds great significance when utilizing cloud services.

Like previously mentioned numerous studies have been conducted regarding the optimal
Java framework, but one particularly intriguing work stands out. [2] effectively compiles and
consolidates various studies that aim to determine the most suitable Java framework for uti
lization.

4.1.1 Popularity

[2] points that when evaluating the popularity of the examined technologies, it is valuable to
examine their code repositories on GitHub. The service offers the option to "star" a repository,
indicating that a user perceives it as remarkable and is satisfied with the content it offers.
According to the results4.1 Spring Boot has received approximately 57,000 ratings, Micronaut
has 5,000 ratings, and Quarkus has 8,400 ratings. These findings validate the popularity of the
Spring product, which is not a surprise given its longer presence in the market. In contrast, both
Micronaut and Quarkus are relatively newer offerings, with Quarkus gaining more popularity
than Micronaut by over 50 percent, despite being introduced slightly later.

The JAXenter website [35] carried out a interesting comparison by conducting a survey on
commonly used technologies for application development. Participants were given the oppor
tunity to express their level of interest in each technology, ranging from "not interesting at
all" to "neutral" and "very interesting." In this comparison, Spring Boot emerged as the clear
winner4.2. However, it is worth highlighting the remarkable result achieved by Quarkus.

21

4 Methodology

60000.00

50000.00

40000.00

~ 30000.00
"J

20000.00

10000.00

D.00

57000.00

8400.00

Spring Boot Micronaut Qu ark us

Framework

Figure 4.1: Popularity on Github, graph taken from [2]

Application Frameworks
Not interesting at all Not that interesting Neutral Interesting • Very interesting

100%

75%
•I

50%

2b%

0%

Ig ' • -••••II

I
/ </ / / / y ^ + / / y ^ y

Figure 4.2: Results of a survey conducted by JAXenter [35]

4.1.2 Compile Time

[2] conducted an initial experiment that specifically targeted compile time4.3. This evaluation
involved executing the "mvn clean compile" command. From the results, it is evident that
Micronaut achieved the fastest time (2.2194 seconds), although its lead over Spring Boot was

22

4.1 Analysis of the Best Java Framework for Cloud-Native Development

marginal. Quarkus, on the other hand, exhibited a slower performance than both, lagging
behind by approximately 0.2 seconds.

2.5000

2/4500

•O 2.4000
:
3! 2.3500

£ 2.3000

° 2.2500

% 2.2000
LU

2.1500

2.1000

2.4360

2.2474
1.2134

Spring Boot Micronaut Quarkus

Framework

Figure 4.3: Average application compile time, graph taken from [2]

4.1.3 Test Time

The next aspect examined in [2] was the execution time of the tests 4.4. In this scenario, Micro-
naut demonstrated a significantly superior performance, completing the tests in 7.852 seconds.
This result surpassed Quarkus by more than 2 seconds, while Quarkus, in turn, held a slight
lead over Spring Boot. This discrepancy could be attributed to the simpler configuration of the
class loader in Micronaut.

4.1.4 Startup of the Application

Following that, the evaluation from [2] shifted towards examining the timing of one of the cru
cial actions for a developer, which is launching the application4.5. Spring Boot scans annotated
classes during startup to create beans, whereas the other tested technologies inject dependen
cies at compile time. Hence, it was anticipated that Spring Boot would be the slowest in this
comparison, and indeed, that proved to be the case, with Micronaut emerging as the fastest
once again. It's worth noting that this test might yield different results if the applications were
executed on native images, where Quarkus could showcase its full potential.

4.1.5 Database Operations

This section explores the analysis of various database operations and their respective perfor
mances.

23

4 Methodology

12.0000

10.0000

r
§ 8.0000

E 5.0000

9
i 4,0000
•J

I
2.0000

0.0000

10.8122
10.0S72

7.3520

Spring Boot Micranaut Quarkus

Framework

Figure 4.4: Average application test time, graph taken from [2]

Figure 4.5: Average startup of the application time, graph taken from [2]

Save

[2] examined the process of saving 1000 books (as shown in graph 4.6), Quarkus demonstrated
the highest level of efficiency. It outperformed Spring Boot by 50 percent and was approxi
mately twice as fast as Micronaut in terms of saving speed.

24

4.1 Analysis of the Best Java Framework for Cloud-Native Development

1S.000Q

14.0000

• | 12.0000
V.

Si 10.0000
c

| 8.0000

. | 6.0000
•j

S 4.0000

2.0000

0.0000

Spring Boot Micranaut Quarku5

Framework

Figure 4.6: Average time of saving data to database, graph taken from [2]

Read

When it came to reading data, Quarkus emerged as the fastest[2]. However, it had a significant
advantage over Spring Boot but was considerably slower than Micronaut, as indicated in Table
4.1. It's important to highlight that Quarkus utilizes PanacheRepository1, their own imple
mentation on top of Hibernate, for managing database data. The developers aimed to create a
straightforward method of communicating with the database. The results indicate that one of
the major strengths of Quarkus is its speed, making it an attractive option for native solutions.

14.3750

Spring Boot[s] Micronaut[s] Quarkus [s]

Write(1000 Cycles) 10.330 14.375 7.270
Read(10,0000 Cycles) 0.152333 2.665000 0.024817

Table 4.1: Average time of reading and writing data to/from database.

4.1.6 Stability

This subsection refers to the reliability and consistency of the framework's behavior and per
formance over time.

'Panache is a special library designed specifically for Quarkus, It eliminates the need for writing repetitive and
standard code typically associated with persistence layers. One of its notable features is the provision of pre-
built repositories that can be readily used and conveniently customized for entity classes. [36]

25

4 Methodology

Test for Identical Data

[2] shows the results of the Spring Boot test run and are illustrated in graph 4.7 , with a detailed
and user-friendly presentation. Spring Boot demonstrated excellent performance during the
test, encountering no significant issues. Upon examining the figure, it can be observed that it
is divided into three sections. The top-left corner displays a bar chart indicating the number
of queries executed within different time ranges: under 800 ms, between 800 and 1200 ms, and
over 1200 ms. The fourth bar represents errors, but no errors were recorded in this case. In
the top-right corner, there is a slightly modified pie chart illustrating the accuracy of different
query types. In the case of Spring Boot, all queries executed successfully, with no failures.
Below the graphs, more detailed statistics are provided, depicted through the aforementioned
charts. Additionally, the results for Micronaut 4.8 and Quarkus4.9 are presented below.

Indicators • • Number of requests

Figure 4.7: Results for test data: 500 users, 1000 reservations, 2000 books, 50 actors - Spring
Boot [2]

26

4.1 Analysis of the Best Java Framework for Cloud-Native Development

27

4 Methodology

The performance of Spring Boot and Quarkus in handling this task was perfect, achieving
a 100 percent efficiency rate. However, when compared to them, Micronaut's results were
noticeably poorer. Specifically, 42 queries failed in Micronaut's case. By examining the logs
obtained from the Gateway microservice console, [2] identified that these errors occurred due
to exceeding the preset time limit.

Achieved limits

Additional tests were conducted in [2] to find the threshold of occurrence of the first errors.
These tests involved increasing the resources stored in the database and the number of ac
tors accordingly. The resulting limits are depicted in the graphs 4.10 for Spring Boot, 4.11 for
Micronaut, and 4.12 for Quarkus.

In the load test 4.2, Spring Boot emerged as the clear winner. The initial issues arose when
the number of actors reached 200, and the database contained 2000 users, 4000 reservations,
and 8000 books. The errors were caused by the default timeout, which was set to 60,000 ms.

28

4.1 Analysis of the Best Java Framework for Cloud-Native Development

29

4 Methodology

Spring Boot[s] Micronaut[s] Quarkus[s]

2000 users 500 users 1000 users

Database load
4000 reservations

8000 items
1000 reservations

2000 items
2000 reservations

4000 items
Actors 200 30 200
OK requests 574 30 200
KO Requests 26 11 34

Table 4.2: Load limits for tested technologies, Successful amount for queries is OK, and for
invalid KO. The abbreviations have been taken from the Gatling data view.

4.1.7 CPU and Memory Usage

A CPU and memory usage test was conducted[2] , and the results are presented in Figures
4.134.144.15. Micronaut had the lowest resource consumption. Quarkus had slightly higher
consumption, but its performance was significantly better when compared to Spring Boot.
These findings support the notion that newer technologies are specifically designed for server-
less environments. They prioritize minimizing startup time and reducing memory usage, as
costs are based on the actual execution time of functions. One contributing factor to Spring's
high memory consumption is its reliance on the aforementioned reflection mechanism, which
is not ideal for optimization purposes.

Figure 4.13: CPU usage: 30-40% ; memory usage: 160-260 MB - Spring Boot [2]

30

4.1 Analysis of the Best Java Framework for Cloud-Native Development

Figure 4.15: CPU usage: 15-20% ; memory usage: 140-200 MB - Quarkus [2]

4.1.8 Stress Test Results

[1] conducted stress tests that aim to create a demanding workload on the application, pushing
it to the upper limits of the virtual machine's capabilities and resulting in significant CPU usage.
The objective of the conducted average load tests was to evaluate and compare the performance
of the applications under typical or average workload conditions. The tests scenarios that were
categorized as stress tests presented in Figures accordingly:

• SingleGreeting 4.16

• GreetingSSE 4.17

• CreateFetchDelete 4.18

31

4 Methodology

• MediumNumberSet 4.19

It is important to note that in the CreateFetchDelete test, the native image version of the
Micronaut framework was not included in the comparison. This decision was made because
there were significantly more failures compared to successful executions, as shown in Figure
4.18c. A similar situation was observed in the case of MediumNumberSet for Spring Boot
(native image) and both JAR and native image versions of Micronaut, as depicted in Figure
4.19c. The same approach was applied in these cases as well.

32

4.1 Analysis of the Best Java Framework for Cloud-Native Development

1.80 x 1 0 "

1.60 x 10* 7

1.40 x 10* 7

1.20 x 10"'

l.OOx 10*7

8.00 x 10* 8

6 , 0 0 x l 0 * s

4.00 x 10* s

2.00 x 10* s

0.00 x 10* ü

S S S o o S S o o ö ö o o o

—Spring Boot {JAR) ^^™Spring Boot (Native]

3 3 3 3 3 !
-Micronaut (JAR] Micronaut (Native] —Quarkus (Natvie)

(a) Average C P U usage(%).

—Spring Boot (Native)

3 3 3 3 3 3 !
-Micronaut (JAR)

(b) Average R A M usage(MiB).

JAR native image JAR native image JAR native image

Spring Boot Micronaut Quarkus

Success EKecutions • Failed Executions

I I I . . M l . I I I .
JAR native image JAR native image JAR native image

Spring Boot Micronaut Quarkus

0.5 QLiantile 0.75 Quantile • 0.95 Quantile • Std. Deviation

(c) Number of failed and success scenario executions. (d) Quantile's and std. deviation of response time(ms)

o native image

(e) Number of scenario executions(cnt/s) (f) Average response time(ms)

Figure 4.16: Single Greeting test Results

33

4 Methodology

4.50 x 1CTS

4.00 x 10 + s

3.50 x 10 + s

3.00 x 10 + s

2.50 x 10 + s

2.00 x 10^s

1.50 x 1 0 M

i .oo x i r r s

5.00 x 10^

0.00 x 10*°

—Spring Boot [JAR) Spring Boot [Native) Micronaut [Native] —Quarkus (JAR) Quarkus (Natvie)

(a) Average C P U usage(%).

—Spring Boot [JAR] —Spring Boot (Native) Micronaut (Native] —Quarkus [Natvie]

(b) Average R A M usage(MiB).

JAR native image

Spring Boot

Success Executions

IAR native image

Micranaut

JAR native image

Quarkus

Failed Executions

IAR native image JAR native image JAR native image

Spring Boot Micronaut Quarkus

0.5 Quantile 0.75 Quantile B0.95 Quantile HStd. Deviation

(c) Number of failed and success scenario executions. (d) Quantile's and std. deviation of response time(ms)

native image

native image

„ native image 3375.00

if

° JAR 1822.00

5 native image 2768 00

I JAR 1737 00

o native image 3444.00

°- JAR 1754 00

(e) Number of scenario executions(cnt/s) (f) Average response time(ms)

Figure 4.17: GreetingSSE test results

34

4.1 Analysis of the Best Java Framework for Cloud-Native Development

—Spring Boot (JARj

(a) Average C P U usage(%).

Spring Boot (JAR) Spring Boot (Native) Micronaut (JAR) Micronaut (Native) Quarkus (JAR) Quarkus (Natvie]

(b) Average R A M usage(MiB).

JAR native image JAR native image JAR native image

Spring Boot Micronaut Quarkus

0.5 Quantile 0.75 Quantile • 0 . 9 5 Quantile BStd. Deviation

(c) Number of failed and success scenario executions. (d) Quantile's and std. deviation of response time(ms)

native image

.99

5 native image

native image

(e) Number of scenario executions(cnt/s) (f) Average response time(ms)

Figure 4.18: CreateFetchDelete test results

35

4 Methodology

200.00%
180.00%

160.00%

140.00%

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

i "

A—
-Spring Boot (JAR) ^—Spring Boot (Native) ^ — Micronaut (JAR) Micronaut (Native)

(a) Average C P U usage(%).

—Quarkus (JAR) ^^Quarkus (N;

-Spring Boot (JAR) —Spring Boot (Native] —Quarkus (Natvie)

(b) Average R A M usage(MiB).

2.50 x 10+* 2.50 x 10+*

2.00 k 10 + 6 2.00 k 10 + 6

1.50 x 10 + * 1.50 x 10 + *

1.00 x 1 0 + e 1.00 x 1 0 + e

5.00 x 10 + s 5.00 x 10 + s

0.00 x 1 0 + o 0.00 x 1 0 + o

JAR native image JAR native image JAR native image

Spring Boot Micronaut Quarkus

Success Executions • Failed Executions

6.00 x 1CT 4

5.00 x 1 0 + 4

4.00 x i t r 4

3.oo x i t r 4

2.00 x 1 0 + 4

1.00 x 1 D + 4

0.00 x 1 0 + °

JAR native image JAR native image JAR native image

Spring Boot Micronaut Quarkus

0.5 Quantile 0.75 Quantile • 0.95 Quantile • Std. Deviation

(c) Number of failed and success scenario executions. (d) Quantile's and std. deviation of response time(ms)

5 native image

(e) Number of scenario executions(cnt/s) (f) Average response time(ms)

Figure 4.19: MediumNumberSet test results

36

4.2 Development tools and dependencies

4.2 Development tools and dependencies

In the development of the microservice and the orchestrator, IntelliJ IDE was used along with
the following dependencies:

1. spring-boot-starter-web: This dependency facilitated the construction of RESTful ap
plications using Spring Boot.

2. S3: Employed for referencing objects stored in S3 buckets.

3. spring-boot-maven-plugin: This Maven plugin extends support for Spring Boot in
Apache Maven. It enables the packaging of executable JAR or WAR archives, running
Spring Boot applications, generating build information, and initiating the Spring Boot
application before executing integration tests.

4. com.microsoft.azure: This package contains authentication connectors to Active Di
rectory for the JDK.

Figure 4.20 illustrates the dependencies employed in the development of the applications.

Dependencies

Spring Boot

spring-boot-starter-
web

com.microsoft, azure spring-boot-maven-
plugin

Figure 4.20: Dependencies diagram

37

5 Implementation

The diagram 5.1 illustrates the architecture of the implemented solution for approaching the
problem outlined in this thesis.

From bottom to top, we observe that the input is a URL, which is then passed to the Proxy
Orchestrator (Sidecar). The Proxy Orchestrator communicates with the microservice through
ports 8080 and 8081. The microservice, in turn, is responsible for making the appropriate API
call. Both the container and the microservice are Docker images and have a Helm Chart defin
ing environment variables, connection strings, region (in the case of AWS). In order to establish
communication between the Proxy Orchestrator (Sidecar container), a REST template1 was im
plemented.

When the microservice receives a request from the proxy orchestrator, it locates the corre
sponding API, which could involve a download, a listing, or an upload operation, and deter
mines the cloud provider from which to query the information, which can be either AWS or
Azure.

In the case of Azure, it accesses the Azure Blob Storage. For this to occur, there must be
an Azure container associated with a resource group, which in turn is linked to an Azure
subscription.

For AWS, the process differs slightly. Instead of Azure Blob Storage, it interacts with the
defined bucket and locates the objects within the previously specified region, which, for the
purposes of this thesis, is set to eu-central-1, for future modifications, simply adjusting this
parameter in the Helm chart should suffice to implement the desired changes.

Finally, the diagram provides the outcome of the executed query.

5.1 Structure

The solution was methodically structured into distinct elements. On one side, there's the M i
croservice, including the APIs. On the other side, we have the Proxy Orchestrator, tasked with
receiving requests and subsequently transmitting the information to the microservice to ap
propriately route the request to the cloud storage.

' A RestTemplate is a synchronous tool used for making HTTP requests. This operates at a higher level as it utilizes
an HTTP client library such as JDK HttpURLConnection or Apache HttpClient to execute these requests. The
underlying HTTP client library handles the intricate aspects of communication over HTTP, while RestTemplate
extends its functionality by enabling the conversion of request and response data in JSON or X M L formats to
Java objects. [37]

39

5 Implementation

\ AV.'S Gleuel 53

O
Europe (Frankfurt)

eu-central-1

Resource Group

Azure Subscription

2 . 1
Srpyiwí Microservice

Pocke«- Sidecar Container

Proxy orchestrator

n
Helm Chart

n

Object list/--

IE Azure Blob Storage

Figure 5.1: Solution diagram architecture

5.1.1 Microservice

The primary motivation for implementing a microservice was to develop a software composed
of small, self-contained services, each handling a specific task. The goal was to ensure that
these services collaborate together to form a unified and complete application.

One of the advantages that we can achieve with the implementation of our microservice are:

Modularity and Scalability

Our microservice aims to decompose the application into smaller, more manageable compo
nents. This modular approach enables the individual scaling of services according to their
specific resource needs. As depicted in Figure 5.2, we delineated the divisions between the
utilized regions, the developed APIs, and the properties employed for accessing cloud storages.

Easy Scaling

Our microservice enables the independent scaling of each component based on its particular
usage. For example, if you need to expand the solution to more AWS regions, configuring this
property can be done easily in the region service without affecting the rest of the application.

40

5.1 Structure

Easier Maintenance and Updates

With the implemented microservice, you can update or replace one service without having
to redeploy the entire application. This makes maintenance and updates less risky and more
manageable. For instance if a new API needs to be added, you only need to developed new
function in the controller.

Scalable Teams

Organizing teams around individual microservices promotes specialization and independence.
This approach can result in more optimized development and maintenance. For example, if a
complex task involving a specific cloud provider, Azure, requires expertise, it can be assigned
to a skilled team member, ensuring focused and efficient execution.

Better Technology Fit

Different services can use different technologies based on their requirements. For example, a
service that handles real-time communication might use Node.js, while a service dealing with
big data applications and server-side technologies might use Java, like is the case of this thesis.

Faster Development and Deployment

The microservice developed in this thesis is a component of a larger project, where several
other microservices are also implemented. Using microservices in this solution enabled us to
focus on the benefits of smaller teams working on individual services, resulting in quicker
development cycles. Furthermore, because each service operates independently, they can be
deployed and updated without impacting the entire final application.

Components

The microservice is structured as shown in Figure 5.2, The microservice consists of three key
components:

1. The controller, designated with the purpose of managing the APIs.

2. The application properties file, containing important specifications such as the Azure
connection string, Azure container name, AWS access key ID, AWS secret Access Key,
AWS region, and the designated server port for communication.

3. The AWS service, which is responsible for handling the region defined in the application
properties variable.

41

5 Implementation

Microservice Helm Chart

AWS S3 Service Application properties

1 1

* Azure
Connection
String.

* Azure
Container
Name

* Server port
* AWS Access

Key ID.
* AWS Secret

access Key.
* AWS Client

Region.

Figure 5.2: Microservice Composition

5.1.2 Proxy Orchestrator

While the development of the proxy orchestrator component was not within the scope of this
thesis, it is essential to acknowledge its important role as a tangible application service in the
development of the project, effectively complementing the microservice.

The purpose of applying a proxy orchestrator to the project was to have an additional con
tainer that could run alongside the microservice container within the same pod in a container
orchestration platform, for the purpose of this thesis, using Kubernetes. One of the main ad
vantages of applying this solution was to enhance and extend the functionality of the main
container, hosting the microservice, without directly modifying it.

It's also important to note that by incorporating the proxy orchestrator, we could achieve
the following:

Separation of Concerns

It allows us the separation of functionalities such as the reception of the request and the setup
of environment variables into two distinct containers, the microservice and the proxy orches-

42

5.1 Structure

trator, making it easier to manage and update each component independently.

Modular and Scalable

Allow us to enable a modular framework, permitting the addition or removal of various compo
nents without impacting the core application container, for instance if in the future a security
proxy must be implemented in order to handle tasks like authentication, encryption, and load
balancing it can be added without affecting the main container by modifying the proxy orches-
trator controller.

Resource Sharing

The proxy orchestrator has also the ability to share resources with the microservice, such as
network namespaces, storage volumes and, for the case of this thesis, the environment vari
ables.

Dynamic Configuration

Another advantage of employing the proxy orchestrator is its ability to dynamically update
configurations without disrupting the microservice, enabling real-time adjustments. For ex
ample, this includes the ability to modify the communication port wihtout disruption.

Proxy orchestrator components

The Proxy Orchestrator, as illustrated in Figure 5.3, consists of a Proxy Controller responsible
for receiving the URL and routing it to the microservice, enabling it to locate the appropriate
API for execution. Additionally, the orchestrator includes a Helm Chart, which contains three
main components outlined below:

1. Values: This object grants access to the parameters passed into the chart.

2. Deployment: In this context, it is responsible for deploying the environment variables
defined in the service.

3. Service: This is where the environment variables are specified.

43

5 Implementation

Proxy Orchestrator

Helm Chart

Values Deployment Service

Figure 5.3: Proxy orchestrator components

44

6 Evaluation

This chapter will analyze the most appropriate Java framework for use, as well as evaluate
the transfer and download speeds of the developed microservice in comparison to the web
interfaces of each of the cloud providers. Additionally, we will examine code portability.

6.1 Java Framework

As depicted in Table 6.1 and according to [2] the newer contenders to Spring Boot, Micro-
naut and Quarkus, outperform it in various crucial aspects like application launch time and
resource usage. This advantage derives from the fact that dependencies are integrated during
the compilation phase, leading to enhanced efficiency. Nonetheless, when subjected to stress
tests for handling excessive loads, Spring Boot demonstrated greater stability compared to its
counterparts. Regarding performance studied in [1], it's worth noting that both the Quarkus
framework, along with its older counterpart Spring Boot, delivered strong performance. M i -
cronaut also managed to attain competitive results, but it faced challenges during stress tests,
causing it to fall behind its rivals.

Results Excellent Good Deficient

Compile time Micronaut Spring Boot Quarkus
Test time Micronaut Quarkus Spring boot
Startup of the application Micronaut Quarkus Spring boot
Database Operations(Save) Quarkus Spring Boot Micronaut
Database Operations(Read) Quarkus Spring Boot Micronaut
Stability (Test for identical data) Spring Boot Quarkus Micronaut
Achieved Limits Spring Boot Quarkus Micronaut
Request per second Micronaut Quarkus Spring boot
CPU and Memory Usage Micronaut Quarkus Spring boot
Compilation time for JAR Files Spring Boot Quarkus Micronaut
Compilation time for native image Micronaut Quarkus Spring boot
Startup Time Micronaut Quarkus Spring boot
Docker Image and Executable File Size Micronaut Quarkus Spring boot
Stress results Quarkus Spring boot Micronaut

Table 6.1: Evaluating JVM Frameworks for Building Microservices: A Comparative Analysis

Although Micronaut demonstrated good performance results in [2], [1] conducted a com
prehensive stress test, which revealed that Micronaut did not perform as well as Quarkus and

45

6 Evaluation

Spring Boot. Based on these findings, [1] did not recommend Micronaut. Moreover, factors
like comprehensive documentation and robust support, as outlined in [3], suggest that Spring
Boot may offer greater convenience for the development of this thesis. Nevertheless, it's im
portant to acknowledge that there is a potential for Quarkus to enhance its performance and
support aspects in the future. This potential evolution could potentially make Quarkus a more
competitive option in these areas.

6.2 Upload time

In table 6.2, a comparison is presented between the upload times using the Azure API and Azure
Portal1. Table 6.3 illustrates a similar comparison between the upload times using the AWS
API and AWS Management Console2. This evaluation was conducted under the conditions
of a 5mb/s internet upload speed, utilizing Postman 3 as the upload tool. The configuration
included setting the Content-Type key to "multipart/form-data" in the header option. In the
body, the "form data" option was selected, with "file" specified as the key and corresponding to
the file uploaded to each of the storage platforms.

6.2.1 Azure

As shown in table 6.2 and figure 6.1, the Azure portal demonstrates significantly shorter times
compared to the custom Azure API developed. The difference, however, is not particularly
pronounced, as illustrated in the graph, where the upload times to Azure Blob Storage appear
quite similar.

File Size (MB) Azure API (hh:mm:ss) Azure Portal (hh:mm:ss)

60 00:00:52 00:00:46
150 00:02:49 00:02:24
300 00:04:17 00:04:14
550 00:08:34 00:08:29
1000 00:14:53 00:14:36
5000 01:14:00 01:13:31

Table 6.2: Evaluating upload time between Azure API and Azure Portal

'The Azure portal is a unified web-based console that offers an alternative to using command-line tools.s [38]
2The AWS Management Console is a web-based application that contains a wide range of service consoles used

for the administration of AWS. resources [39]
3Postman serves as an API platform designed to facilitate the creation and utilization of APIs. [40]

46

6.2 Upload time

01:26:24

01:12:00

~ 00:57:36

E

J= 00:43:12

p 00:28:48

00:14:24

00:00:00

Figure 6.1: Upload time between Azure API and Azure Portal

6.2.2 AWS

In the case of AWS, as indicated in Table 6.3 and Figure 6.2, the AWS Management Console
exhibits notably quicker times in contrast to the custom AWS API that was created. Neverthe
less, the distinction is not remarkably prominent, as depicted in the graph, where the upload
times to S3 Storage seem quite comparable.

File Size (MB) AWS API (hh:mm:ss) AWS Management Console (hh:mm:ss)

60 00:00:56 00:00:51
150 00:02:45 00:02:06
300 00:04:30 00:04:20
550 00:08:22 00:08:15
1000 00:16:02 00:15:22
5000 01:19:13 01:17:12

Table 6.3: Evaluating upload time between AWS API vs AWS Console

47

6 Evaluation

AWS upload time

01:26:24

01:12:00

~ 00:57:36 v>
E
E

j : 00:43:12

QJ

p 00:28:48

00:14:24

00:00:00

File Size(MB)

• AWS API(HH:MM:SS) > AWS Management Conso!e(HH:MM :S5)

Figure 6.2: Upload time between AWS API and AWS Management Console

6.3 Download time

In table 6.4, a comparison is presented between the download times using the Azure API and the
Azure Portal, table 6.5 illustrates a similar comparison between the download times using the
AWS API and AWS Management Console. This evaluation was conducted under the conditions
of a 50mb/s internet download speed.

6.3.1 Azure

As indicated in table 6.4 and depicted in graph 6.3, the Azure portal exhibits notably quicker
downloads in contrast to the Azure API that was created. However, the distinction is not
remarkably visible, as demonstrated in the graph, where the download times from the Azure
Blob Storage seem quite comparable.

File Size (MB) Azure API (hh:mm:ss) Azure Portal (hh:mm:ss)

60 00:00:10 00:00:09
150 00:00:27 00:00:26
300 00:00:54 00:00:52
550 00:01:42 00:01:39
1000 00:03:01 00:02:57
5000 00:15:11 00:14:53

Table 6.4: Evaluating download time between Azure API and Azure Portal

150 300 550 1000 5000

48

6.3 Download time

Azure download time

00:17:17

00:14:24

~ 00:11:31
ft
E
£

j= 00:08:38

£

p 00:05:46

00:02:53

00:00:00

60 150 300 550 1000 5000

File Size(MB)
— ^ A W S API{HH:MM:SS| ^ ^ A W S Management Console|HH:MM:SS)

Figure 6.3: Download time between Azure API and Azure portal

6.3.2 AWS

Regarding AWS, as shown in Table 6.5 and graph 6.4, The AWS API exhibits noticeably faster
download speeds when compared to the AWS Management Console, which was quite unex
pected. Nonetheless, the disparity becomes more noticeable once we reach the 5GB threshold,
as depicted in the accompanying graph. Apart from this slight difference, the download times
from S3 Storage seem relatively consistent and comparable.

File Size (MB) AWS API (hh:mm:ss) AWS Management Console (hh:mm:ss)

60 00:00:15 00:00:15
150 00:00:29 00:00:43
300 00:01:10 00:01:22
550 00:03:17 00:03:08
1000 00:04:59 00:05:40
5000 00:26:30 00:29:05

Table 6.5: Evaluating download time between AWS API and AWS management console

49

6 Evaluation

AWS download time

00 :36 :00

£ 00:21:36
£

jK 00:14:24

300 550

File Size(MB)

-AWS API{HH:MM:SS) »AWS Management Console(HH:MM:SS)

Figure 6.4: Download time between AWS API and AWS Management Console

6.4 Code Portability

When discussing code portability, the feasibility of employing the same application across di
verse environments is considered. This involves ensuring that the code can function continu
ously across various platforms, enhancing its versatility and adaptability to different settings
or systems. This characteristic is crucial for optimizing development processes and ensuring
consistent performance across a range of deployment scenarios.

6.4.1 Orchestrator

To ensure the portability of the orchestrator, a Helm chart was employed. Within this chart,
two pivotal YAML files were designed: 'values' and 'deployment', as depicted in Figure 6.5.

In the 'values' file, several crucial properties are established to facilitate future adjustments:

1. Image: This file holds the latest Docker image built for the orchestrator.

2. Repository: This relates to the project application.

3. Container Port: This denotes the internal service port that receives incoming requests.

4. Configuration: It includes all environment variables.

As for the 'deployment' file, it references the environmental variables specified in the 'val
ues' file. For instance, with regard to the orchestrator, it incorporates the Container Port and
configuration variables. This interconnection ensures the continuous functioning of the or
chestrator across diverse environments.

50

6.5 Microservice

Image Repository Container Port Configuration Name Port

) s. J \ J \ ./ \. ,/ \.

Proxy Orchestrator Microseroice URL Microservice URL Container Port

Figure 6.5: Orchestrator's Code Portability

6.5 Microservice

When it comes to the microservice, a comparable approach to that of the orchestrator was taken
as show in figure 6.6. A Helm chart was employed, including the 'values' and 'deployment'
YAML files. The distinction lies in the 'values' file, where the container port was modified to
8081, allowing it to process incoming requests.

In the 'deployment' file, the environmental variables now include the connection string,
AWS region, and Azure name. This signifies that for any forthcoming adjustments, simply
modifying the configuration in the deployment file is enough to adapt the application to the
new setup, ensuring a consistent transition.

microservice

Container Port

/

Environment variables

-J k

Connection Stringy
Region/ Container

name
Container Port

Figure 6.6: Microservice Code Portability

51

6 Evaluation

6.6 Evaluating the significance of how the solution performs
with and without its existence.

Enabling continuous access to diverse cloud blob storage solutions from Kubernetes pods rep
resents an important advancement in modern cloud computing infrastructure. This approach
not only ensures cost efficiency but also improves scalability a critical feature for contempo
rary applications built on microservices architecture. By adopting this methodology, organi
zations gain the invaluable capability of achieving true application portability across various
cloud providers. Without this integration, applications can become contrainedto specific cloud
environments, limiting flexibility and impeding the agility required for dynamic, multi-cloud
operations.

In practical terms, applying the proposed solution can lead to substantial time and resource
savings as we can see on table 6.6. Traditionally, configuring individual connections to dis
tinct cloud storage platforms can be a time-consuming task, often involving complex setups
and custom configurations. With a unified access mechanism through Kubernetes, the com
plexity decreases significantly, simplifying the deployment process. Additionally, the ability to
continuously transition between different cloud providers translates to potentially saving sig
nificant resources that would otherwise be allocated to reconfiguration and testing. In quan
tifiable terms, organizations could potentially reduce deployment and migration times by up to
30 percent and save resources equivalent to several person-hours, depending on the scale and
complexity of the application ecosystem. This level of efficiency not only optimizes operational
costs but also enhances the overall agility and adaptability of the organization in an evolving
cloud landscape.

Aspect Traditional Approach Proposed Approach

Configuration Time High Low
Deployment Flexibility Limited High
Application Portability Limited Extensive
Scalability Limited High
Cost Efficiency Moderate High

Table 6.6: Comparison between the traditional and the proposed approach

From the context provided above:

Configuration Time

• High: Setting up individual connections to various cloud storage platforms in the tra
ditional approach can be time-consuming due to the need for manual configuration and
potentially complex authentication processes.

• Low: With the proposed approach using Kubernetes, setting up connections to different
cloud storage platforms is efficient and requires less manual configuration, leading to

52

6.6 Evaluating the significance of how the solution performs with and without its existence.

faster setup times. Existing dedicated segments within the microservice can be utilized
for accelerated API deployment.

Deployment flexibility

• Limited: The traditional approach may limit deployment options, making it more chal
lenging to deploy applications in different cloud environments or adapt to changing in
frastructure needs.

• High: The proposed approach provides greater flexibility, allowing for seamless deploy
ment across various cloud providers and adapting to dynamic infrastructure require
ments. Simply incorporate the access and secret keys as environmental variables within
the helm chart, and proceed to configure the corresponding methods within the con
troller.

Application Portability

• Limited: Applications in the traditional approach may be tightly applied to a specific
cloud provider's services, limiting their portability to other environments.

• Extensive: The proposed approach can run on different cloud providers with minimal
modifications. Simply include the additional configuration in both the microservice and
the proxy orchestrator.

Scalability

• Limited: The traditional approach may have limitations in scaling applications to meet
increased demand, potentially leading to performance issues.

• High: The integrated approach provides better scalability options, allowing applications
to easily scale to accommodate changing workloads.

Cost Efficiency

• Moderate: The traditional approach may have moderate cost efficiency, depending on
the specific configurations and resource usage.

• High: The integrated approach is designed to optimize resource usage and reduce costs,
making it more cost-efficient. You don't have to rebuild the entire microservice from
scratch. Just incorporate the appropriate APIs, reducing the amount of person-hours
needed for implementation.

53

7 Conclusion and future work

In the course of this thesis, we carefully designed a universal approach that contains the cre
ation of both a microservice and a proxy orchestrator, designed for access to various cloud
storage solutions, including AWS and Azure. The solution focuses around the integration of
API configurations within the microservice. Concurrently, within the Helm chart, a key step
involves the addition of the string connection environment variable. This dynamic process is
crucial in ensuring the system remains in an uninterrupted state of adaptation to any evolving
cloud environment. We also observed that the age of the Spring Boot framework does not nec
essarily imply a decrease in API performance. As demonstrated by our results, the performance
of file transfers is both acceptable and satisfactory. The adoption of a microservice architec
ture for accessing both of our cloud storages significantly improves scalability. It allows for
the incorporation of additional API configurations, enabling a broader range of functions to be
performed. It also improved the flexibility, important in development teams that allow them
to work on different components concurrently, enabling faster development and deployment
cycles. This aspect is especially beneficial when integrating with dynamic cloud storage en
vironments that may evolve over time. The microservice also improved the fault isolation by
preventing issues in one component from affecting the entire system, enhancing overall system
stability. The resource efficiency is other aspect to mention due to the fact that our microser
vice can be deployed on smaller and more specialized instances, reducing resource wastage.
This is particularly advantageous when considering the pay-as-you-go model of many cloud
providers, as it can lead to cost savings. Furthermore, implementing a microservice architecture
when accessing cloud storage not only improves scalability and performance but also provides
a foundation for flexibility, resilience, and cost-effectiveness in a dynamic cloud environment.

Looking ahead, it would be advantageous to contemplate the integration of additional cloud
providers into the architecture. This could mean the inclusion of notable platforms like Google
Cloud, Alibaba Cloud, IBM Cloud, Oracle Cloud, Red Hat Cloud, DigitalOcean Cloud, Rackspace,
among others. Maximizing the comprehensive approach outlined in this thesis, the implemen
tation of these additional providers should be relatively simple, granting favorable outcomes
aligned with specific business requirements.

Moreover, exploring into an analysis of how the microservice's performance is impacted by
adopting alternative Java frameworks, such as Quarkus or Micronaut, holds the potential to
produce invaluable insights. As previously observed, these two Java frameworks have exhib
ited notable enhancements over time, particularly in terms of performance. It would not be
surprising if, in the future, these frameworks surpass the transfer speeds achievable on the
web portals of individual cloud providers.

55

Bibliography

[1] Lukasz Wycislik, Lukasz Latusik and Anna Malgorzata Kaminska, "A comparative
assessment of jvm frameworks to develop microservices." [Online]. Available: https:
//www.mdpi.com/2076-3417/13/3/1343

[2] Piotr Plecinski, Nataliia Bokla, Tamara Klymkovych, Mykhailo Melnyk and Wojciech
Zabierowski, "Comparison of representative microservices technologies in terms of
performance for use for projects based on sensor networks," 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/20/7759

[3] Shani du Plessis, Bruno Mendes, Noelia Correia, "A comparative study of microservices
frameworks in iot deployments." [Online]. Available: https://ieeexplore.ieee.org/
document/9505049

[4] Songbin Liuf, Xiaomeng Huang , Haohuan Fu , Guangwen Yangf, "Understanding data
characteristics and access patterns in a cloud storage system," 2013. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6546109

[5] Francesco Marchioni, "Hands-on cloud-native applications with Java and
quarkus," 2019. [Online]. Available: https://www.packtpub.com/product/
hands-on-cloud-native-applications-with-java-and-quarkus/9781838821470

[6] Harlan McGhan, Mike O'Connor, "Picojava: A direct execution engine for Java bytecode,"
1998. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
722273

[7] Microsoft, "What is a virtual machine (vm)?" Accessed on June 2023. [Online].
Available: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/
what- is- a- virtual- machine

[8] Dong-Heon Jung, Jong Kuk Park, Sung-Hwan Bae, Jaemok Lee, Soo-Mook Moon,
"Efficient exception handling in Java bytecode-to-c ahead-of-time compiler for smbedded
systems," 2006. [Online]. Available: https://dl.acm.org/doi/10.1145/1176887.1176915

[9] Christian Posta, "Microservices for Java developers, in microservices for Java
developers pp. 6-7," 2016. [Online]. Available: https://www.oreilly.com/content/
microservices-for-java- developers/

[10] Luqman Saeed, "What is Java ee? in: Introducing Jakarta ee cdi. apress, berkeley, ca."
2020. [Online]. Available: https://doi.org/10.1007/978-l-4842-5642-8_l

57

http://www.mdpi.com/2076-3417/13/3/1343
https://www.mdpi.com/1424-8220/22/20/7759
https://ieeexplore.ieee.org/
https://ieeexplore.ieee
https://www.packtpub.com/product/
https://ieeexplore.ieee.org/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/
https://dl.acm.org/doi/10.1145/1176887.1176915
https://www.oreilly.com/content/
https://doi.org/10.1007/978-l-4842-5642-8_l

Bibliography

[11] IBM, "What is Java spring boot?" Accessed on June 2023. [Online]. Available:
https://www.ibm.com/topics/java-spring-boot

[12] Phillip Webb et al., "Spring boot reference documentation," 2023. [Online]. Avail
able: https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.
htmltgetting- started

[13] Norman Walsh, "What is xml?" Accessed on June 2023. [Online]. Avail
able: https://www.ce.unipr.it//people/bianchi/Teaching/IntelligenzaArtificiale/rdf_pl/
XML-RDF/xmlguidel.html

[14] Cedric Champeau et al., "Graalvm," 2023. [Online]. Available: https://github.com/
graalvm/native-build-tools/commits?author=dnestoro

[15] The Apache Software Foundation, "Spring boot maven plugin documentation,"
Accessed on June 2023. [Online]. Available: https://docs.spring.io/spring-boot/docs/3.1.
O/maven-plugin/reference/pdf/spring-boot-maven-plugin-reference.pdf

[16] Andy Wilkinson, Scott Frederick, "Spring boot gradle plugin reference guide,"
Accessed on June 2023. [Online]. Available: https://docs.spring.io/spring-boot/docs/3.1.
O/gradle-plugin/reference/pdf/spring-boot- gradle-plugin-reference.pdf

[17] Jason Hunter, "What's new in Java servlet api 2.2?" Accessed
on June 2023. [Online]. Available: https://www.infoworld.com/article/2076518/
what-s-new-in-java-servlet-api-2-2-.html

[18] Spring, "Spring boot reference documentation," Accessed on June 2023. [Online]. Avail
able: https://docs.spring.io/spring-boot/docs/current/reference/html/using.html#using

[19] Micronaut, "Micronaut documentation," Accessed on June 2023. [Online]. Available:
https://docs.micronaut.io/latest/guide/#introduction

[20] Nirmal singh and Zack Dawood, "Building microservices with micronaut," 2021. [Online].
Available: https://books.google.de/books?id=7qQ_EAAAQBAJ&printsec=frontcover#v=
onepage&q&f=false

[21] Mr. Arabolu Chandra Sekhar, Dr. R. Praveen Sam, "A walk through of aws(amazon web
services)," 2015. [Online]. Available: https://www.irjet.net/archives/V2/i3/Irjet-v2i332.
pdf

[22] AWS Official Documentation, "What is amazon s3?" Ac-
cesed on September 2023. [Online]. Available: https://aws.amazon.
com/pm/serv- s3/?trk=518a7bef- 5b4f- 4462- ad55- 80e5cl 77f12b&sc_channel=ps&
ef_id=CjwKCAjwlcNOpBhBEEiwAb3MvvV_SVjJValhTrHEoXzSaONT40BPzq_
Qp6cX7HUErePYUiqJIFY3QthoCddAQAvD_BwE:G:s&s_kwcid=AL!4422!3!
645186213484!e!!g!!amazon%20s3!l9579892800!l43689755565

58

https://www.ibm.com/topics/java-spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started
https://www.ce.unipr.it//people/bianchi/Teaching/IntelligenzaArtificiale/rdf_pl/
https://github.com/
https://docs.spring.io/spring-boot/docs/3.1
https://docs.spring.io/spring-boot/docs/3.1
https://www.infoworld.com/article/2076518/
https://docs.spring.io/spring-boot/docs/current/reference/html/using.html%23using
https://docs.micronaut.io/latest/guide/%23introduction
https://books.google.de/books
https://www.irjet.net/archives/V2/i3/Irjet-v2i332
https://aws.amazon

Bibliography

[23] AWS website official Documentation, "What is amazon ec2?" Ac-
cesed on September 2023. [Online]. Available: https://aws.amazon.
Com/pm/ec2/?trk=b59ef3dl-61fa-4eea-9a0b-96fbd6584e69&sc_channel=ps&ef_id=
CjwKCAjwl<NOpBhBEEiwAb3MvvRd4nobVjBHlWRIUxUIhCNiC26wgLwiFK0lME8NEUgUIZYHM3evtBhoCyxkQJ/
BwE:G:s&s_kwcid=AL!4422!3!645133569747!e!!g!!amazon%20ec2! 19579892353!
148838337561

[24] AWS Official Documentation, "Regions, availability zones, and local zones," Accesed on
September 2023. [Online]. Available: https://docs.aws.amazon.com/AmazonRDS/latest/
UserGuide/Concepts.RegionsAndAvailabilityZones.html

[25] AWS website official Documentation, "Domains and domain state," Accesed
on September 2023. [Online]. Available: https://docs.aws.amazon.com/kms/latest/
cryptographic- details/domains- and- domain- state.html

[26] AWS Official Documentation, "Amazon ebs volumes," Accesed on October 2023. [Online].
Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes.html

[27] AWS website official Documentation, "Amazon ec2 security groups," Accesed on Octo
ber 2023. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-security-groups.html

[28] Prof Vaibhav A Gandhi, Dr C K Kumbharana, "Comparative study
of amazon ec2 and microsoft azure cloud architecture," 2018. [Online].
Available: https://www.researchgate.net/publication/327537294_Comparative_study_of_
Amazon_EC2_and_Microsoft_Azure_cloud_architecture

[29] Microsoft Documentation, "Basic enterprise integration on azure," Accessed on Septem
ber 2023. [Online]. Available: https://learn.microsoft.com/en-us/azure/architecture/
reference-architectures/enterprise-integration/basic-enterprise-integration

[30] Azure Official Documentation, "What is a resource group," Accesed on October 2023.
[Online]. Available: https://learn.microsoft.com/en-us/azure/azure-resource-manager/
management/manage-resource-groups-portal

[31] Azure website official Documentation, "Azure active directory is now microsoft entra
id," Accesed on October 2023. [Online]. Available: https://www.microsoft.com/en-us/
security/business/identity-access/microsoft-entra-id

[32] Josef Spillner, "Quality assessment and improvement of helm charts for kubernetes-based
cloud applications," 2019. [Online]. Available: https://arxiv.org/pdf/1901.00644.pdf

[33] Matthias Graf, "Which Java microservice framework should you choose
in 2020?" 2020. [Online]. Available: https://betterprogramming.pub/
which-java-microservice-framework- should-you-choose-in-2020-4e306a478e58

[34] Roman Kudryashov, "Review of microservices frameworks: A look at
spring boot alternatives," 2021. [Online]. Available: https://dzone.com/articles/
not- only- spring-boot- a-review- of- alternatives

59

https://aws.amazon
https://docs.aws.amazon.com/AmazonRDS/latest/
https://docs.aws.amazon.com/kms/latest/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://www.researchgate.net/publication/327537294_Comparative_study_of_
https://learn.microsoft.com/en-us/azure/architecture/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/
https://www.microsoft.com/en-us/
https://arxiv.org/pdf/1901.00644.pdf
https://betterprogramming.pub/
https://dzone.com/articles/

Bibliography

[35] Hartmut Schlosser, "Java trends: Top 10 frameworks in 2020," 2020. [Online]. Available:
https://devm.io/java/java-trends-top-10-frameworks-2020-168867

[36] Thorben Janssen, "Panache repository pattern," Accessed on June 2023. [Online].
Available: https://thorben-janssen.com/panache-repository-pattern/

[37] Pratik Das, "Complete guide to spring resttemplate," 2021. [Online]. Available:
https://reflectoring.io/spring-resttemplate/

[38] Azure Official Documentation, "Azure portal documentation," Accesed on September
2023. [Online]. Available: https://learn.microsoft.com/en-us/azure/azure-portal/

[39] AWS Official Documentation, "What is the aws management console?" Accesed on
September 2023. [Online]. Available: https://docs.aws.amazon.com/awsconsolehelpdocs/
latest/gsg/learn-whats-new.html

[40] Postman Official Documentation, "Postman api platform," Accesed on September 2023.
[Online]. Available: https://www.postman.com/

60

https://devm.io/java/java-trends-top-10-frameworks-2020-168867
https://thorben-janssen.com/panache-repository-pattern/
https://reflectoring.io/spring-resttemplate/
https://learn.microsoft.com/en-us/azure/azure-portal/
https://docs.aws.amazon.com/awsconsolehelpdocs/
https://www.postman.com/

