BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

COOPERATIVE GAME WITH SPACE-TIME
DUALITY

KOOPERATIVNI HRA S DUALITOU CASU A PROSTORU

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR VOjTECH CZAKAN
AUTOR PRACE

SUPERVISOR Ing. TOMAS POLASEK

VEDOUCI PRACE

BRNO 2023

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

-r

Bachelor's Thesis Assignment [l

Institut: Department of Computer Graphics and Multimedia (DCGM) 156985
Student: Czakan Vojtéch

Programme: Information Technology

Title: Cooperative Game with Space-Time Duality

Category: Computer Graphics

Academic year: 2023/24

Assignment:

1. Survey the current state of cooperative games.

2. Design a cooperative game with elements of Space-Time duality and describe it in a Game Design
Document.

3. Implement the game by means of your choice.

4. lterate implementation with continuous testing and feedback integration.

5. Evaluate the space-time elements of your game in a user study.

6. Present your results using a poster and a short video.

Literature:
+ Koster, Raph. Theory of fun for game design. O'Reilly Media, Inc., 2013.
» Schell, Jesse. The Art of Game Design: A book of lenses. CRC press, 2008.
* Yao, Richard et al. Oculus VR Best Practices Guide. Online, 2014.
» Leap Motion, VR Best Practices Guidelines. Online, 2015
* Unity Learn. Unity, https://learn.unity.com/.
» Further sources according to the supervisor.

Requirements for the semestral defence:
Goals 1, 2 and a working game prototype.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Polasek Tomas, Ing.
Head of Department: ~ Cernocky Jan, prof. Dr. Ing.
Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 9.11.2023

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

https://learn.unity.com/
https://www.fit.vut.cz/study/theses/

Abstract

This thesis details the development of a cooperative video game where two players, each
in a separate dimension, manipulate time to progress through levels while contending with
dangerous obstacles. The game was developed using the Unity engine, enhanced by Netcode
for GameObjects and Unity Relay. The solution offers unique multiplayer experience that
emphasizes communication, strategy, and timely coordination between players. The imple-
mentation demonstrated the feasibility of combining complex time manipulation mechanics
with robust multiplayer support to enhance interactive gameplay.

Abstrakt

Tato prace detailné popisuje vyvoj kooperativni videohry, ve které dva hraci, kazdy ve
své dimenzi, manipuluji ¢asem k postupu trovnémi a soucasné se potykaji s nebezpecnymi
prekazkami. Hra byla vyvinuta pomoci enginu Unity, rozsifeného o Netcode for GameOb-
jects a Unity Relay. ReSeni nabizi jedine¢ny multiplayerovy zazitek, ktery klade diiraz na
komunikaci, strategii a koordinaci mezi hraci. Implementace prokézala proveditelnost kom-
binace slozitych mechanik manipulace ¢asem s robustni podporou multiplayeru pro zlepseni
herniho zazitku.

Keywords
Unity, game, cooperative, multiplayer, time control, game design, Netcode for GameQOb-
jects, Unity Relay.

Klicova slova
Unity, hra, kooperativni, pro vice hraci, ovladani ¢asu, herni design, Netcode for GameOb-
jects, Unity Relay

Reference

CZAKAN, Vojtéch. Cooperative Game with Space-Time
Duality. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Informa-
tion Technology. Supervisor Ing. Tomas Polasek

Cooperative Game with Space-Time
Duality

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of Ing. Tom&s Polasek. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Vojtéch Czakan
May 8, 2024

Acknowledgements

I would like to sincerely thank my supervisor, Ing. Tomas Polasek, for all his advice and
insightful comments. I also want to express my gratitude to all the testing participants for
their valuable feedback.

Contents

1 Introduction

2 Cooperative Games

2.1 Challenges in Cooperative Games
2.2 Multiplayer Challenges in Games
2.3 Existing Solutions and Toolso

3 Game Design Document

3.1 Introduction e
3.2 Target System
3.3 Development Systemo
3.4 Specification.
3.5 Gameplay e
36 Front End
3.7 Multiplayer e
3.8 Testing oL
4 Implementation
4.1 Unity Engine
4.2 Camera e e e e e e e e e
4.3 MOVEment v v i e e e e e e e e e e e e e e e
4.4 Hierarchical State Machine o .
4.5 Multiplayer e
4.6 Player Shadow
4.7 Scene Managemento e e e e
4.8 VIVOX .« v v o o e e e e e e e e e e

5 Testing, and Suggestions for Improvements

5.1 Approach to Testing
5.2 User Study o o i
5.3 Results. o e
5.4 TImprovements
5.5 Conclusion e e

6 Conclusion
Bibliography

A Player Base State Abstract Class

14
15

20
20
20
20
20
23
28
30
31

33
33
33
35
37
39
41
42
43

44
44
45
46
48
48

49

50

52

Chapter 1

Introduction

This thesis explores the development of a cooperative game designed for two players us-
ing the Unity engine, emphasizing the essential role of communication for successful level
completion. Each player exists in a distinct dimension that mirrors the other in layout but
features unique obstacles. The primary challenge involves asynchronous movement mechan-
ics: Only one player can move at a time. This is combined with dynamic time manipulation:
As time progresses in one dimension, it pauses in the other. This setup increases the ur-
gency and complexity of navigating obstacles and necessitates effective communication and
strategic collaboration between players.

From years of gameplay and research in the cooperative gaming domain, I have rec-
ognized the potential benefits of integrating a subtle competitive element among players.
While cooperation is critical for success, introducing competition adds an interesting layer
of intrigue. To this end, a points system was devised to encourage players to achieve indi-
vidually while still collaborating. However, this system also introduces a delicate balance
in which deception and manipulation might occur, challenging players to manage trust and
the risks of misjudgment that could lead to collective failure.

As the game progresses, it becomes more complex with the introduction of game mod-
ifiers that allow players to adversely affect each other’s gameplay. These strategic choices
increase the competitive tension further. Additionally, end-of-level guessing mechanics pro-
mote deception and strategic thinking, challenging players to outsmart each other.

This game concept was inspired by a personal passion for cooperative gaming and
the identification of a market gap for two-player cooperative experiences that incorporate
elements of sabotage and deception. By exploring this niche, this thesis aims to enrich the
diversity and innovation in the gaming industry.

In Chapter 2, I will explore the complexities of cooperative and multiplayer dynamics, of-
fering a detailed analysis of these key aspects. Chapter 3 will focus on game design specifics,
including mechanics, settings, and level design. Chapter 4 will outline the implementation
strategies and discuss the coding challenges encountered throughout the development pro-
cess. Chapter 5 will present the results of the user study, analyzing player interactions and
feedback to gauge the impact of the game. The thesis will conclude with Chapter 6, which
will offer a comprehensive synthesis of the completed work and outline the future directions.

Chapter 2

Cooperative Games

The following chapter aims to provide an overview of the current state of cooperative games,
focusing on their challenges, existing solutions, and the theoretical background necessary
to understand the subject matter. This summary is not an exhaustive encyclopedia of
cooperative games, but aims to give readers a comprehensive understanding of the field
relevant to this thesis.

2.1 Challenges in Cooperative Games

Cooperative games, in which players work together towards a common goal, present unique
challenges compared to competitive games. Some of the key challenges include the following.

2.1.1 Game Design

Game design stands as the foundational pillar of cooperative games, shaping their mechan-
ics, dynamics, aesthetics, and overall player experience. It involves the intricate process of
conceptualizing, planning, and executing the various elements and systems that constitute
a game. Effective game design is paramount to crafting engaging, immersive and rewarding
cooperative game experiences that resonate with players and foster long-term engagement.

Understanding Game Design Principles

Game design principles cover a broad spectrum of considerations [2]. Core Mechanics
form the fundamental rules, actions, and interactions that define gameplay and drive player
engagement. These mechanics are complemented by Narrative Design, which includes
the integration of narrative elements such as characters, plot, and world-building, thereby
enriching the game’s narrative and immersing players in its universe.

Aesthetic Design of the game includes visual and auditory elements such as graphics,
sound design, music, and art style, all contributing to the game’s atmosphere and aesthetics.
Additionally, User Experience (UX) Design focuses on enhancing the player experience
through intuitive controls, clear feedback, seamless navigation, and an overall user-friendly
design.

Lastly, Balancing and Tuning are essential to ensure that the game mechanics, diffi-
culty levels, rewards, and challenges are well-adjusted to offer a challenging yet achievable
and enjoyable experience. A particularly crucial aspect is the balance between player skills
and game difficulty; when this ratio is well-maintained, players can achieve a flow state.

The flow state, as depicted in Figure 2.1, describes a condition where players become fully
immersed in their activities under optimal conditions [7]. This immersive experience is
crucial for engaging and retaining players, as it enhances their enjoyment and interaction
with the game.

Challenges

B

[learning 3

Skills

Figure 2.1: Three dimensions of experience (anxiety, flow, boredom): flow channel diagram.
Taken from [6]

Challenges in Cooperative Game Design

The design of cooperative games presents unique challenges that require careful consid-
eration and creativity to overcome. One significant challenge is Team Dynamics; this
involves creating mechanics and systems that support effective collaboration, communica-
tion, and coordination between players [21]. These systems are crucial to ensure that all
players can contribute and enjoy the game.

Another area of focus is the development of Reward Systems. These must be balanced
and motivating, incentivizing cooperative play while fairly recognizing the contributions of
each player [20]. This approach promotes a sense of achievement and satisfaction among
all participants.

Narrative Cohesion is also vital [12]. It is important to ensure that the cooperative
gameplay mechanics and the narrative align seamlessly. This alignment enhances immersion
and keeps players engaged with the story and each other, providing a richer game experience.

Lastly, Accessibility is a key consideration. Games must be designed to be enjoy-
able and playable for a diverse audience [1]. This includes catering to various skill levels,
preferences, and play styles to accommodate as many players as possible. Ensuring acces-
sibility makes games inclusive and enjoyable for everyone, which is particularly important
in cooperative gaming scenarios.

Key Considerations in Cooperative Game Design

In the realm of cooperative game design, several key considerations play a crucial role in
crafting an engaging experience. At the forefront is Player-Centric Design, which em-
phasizes prioritizing player experience, engagement, and satisfaction throughout the design
process [3]. This approach ensures that the game remains enjoyable and compelling for all
players.

An Iterative Design Process is another critical aspect , where game development
involves incorporating player feedback and continually refining the mechanics of the game

to enhance the overall experience [3]. This method allows designers to adjust and improve
the game dynamically based on actual player interactions. The Iterative Design Process is
visualized in Figure 2.3.

Community Engagement also holds significant importance [16]. By fostering a sup-
portive and engaged gaming community through effective communication, updates, and
community-driven initiatives, developers can create a more immersive and inclusive envi-
ronment.

Furthermore, encouraging Innovation and Creativity in game design is essential [13].
Exploring new ideas, mechanics, and concepts not only differentiates the game from others,
but also helps to captivate players, keeping them interested and involved in the gameplay.

Addressing Game Design Challenges

Addressing the complexities of game design requires a strategic and thoughtful approach.
Collaborative Design plays a central role here, involving designers, developers, artists,
writers, and other stakeholders in a process that leverages diverse expertise and perspectives
[13].

Player Testing and Feedback are integral to this process, involving thorough test-
ing sessions to gather feedback, identify potential issues, and refine game design elements
[3]. This feedback loop is vital for ensuring that the game meets the high standards and
expectations of its players.

Lastly, Continuous Learning and Adaptation are essential for staying informed
about emerging trends, technologies, and best practices in game design [3]. This ongo-
ing process of learning and adapting helps designers continuously improve and innovate,
ensuring that their games remain relevant and engaging in a fast-evolving industry.

Conclusion

Game design serves as the cornerstone of cooperative games, influencing their mechanics,
dynamics, aesthetics, and overall player experience. Embracing the principles of effective
game design, addressing unique challenges, and adopting a player-centric approach are
essential to create engaging, immersive, and rewarding cooperative game experiences that
resonate with players, foster long-term engagement, and stand the test of time.

2.1.2 Communication and Coordination in Cooperative Games

One of the most critical aspects of cooperative games is the need for effective communication
and coordination between players [21]. Unlike competitive games, where players often act
independently to outperform others, cooperative games require players to collaborate closely
to achieve shared objectives.

Importance of Communication

Effective communication is the cornerstone of successful cooperation in games. It enables
players to share information, strategize, and coordinate their actions toward achieving com-
mon goals. In cooperative games, constant communication about intentions, actions, and
observations is essential to ensure alignment and avoid misunderstandings.

Challenges in Communication

Effective communication is paramount in cooperative games, yet it faces several significant
challenges that can impede successful collaboration.

Ambiguity in Communication: One of the primary issues is ambiguity. In-game
situations often arise that require players to interpret and convey information accurately,
which isn’t always straightforward. This ambiguity can lead to misunderstandings and
misalignment of strategies among players, potentially disrupting gameplay.

Noise Interference: Another significant hurdle is noise, especially in multiplayer on-
line environments. External factors such as background noise or poor audio quality can
severely hinder players’ ability to hear and understand each other. Clear communication
is essential for coordinating strategies and actions effectively, and these obstacles can dra-
matically impair that process.

Limited Time for Strategic Communication: Moreover, players often face con-
straints on the time and opportunities available for strategizing and communicating during
gameplay. This scarcity of time can pressure players, leading to rushed decisions and inade-
quate communication. Highlighting the importance of game designs that incorporate more
opportunities for players to discuss tactics and align their approaches seamlessly is crucial.

These challenges underscore the need for carefully considered game design elements that
improve communication effectiveness and reduce potential barriers to collaboration among
players.

Coordination Challenges

Coordination is as crucial as communication in cooperative gameplay, involving the intricate
alignment of players’ actions and strategies to effectively achieve shared objectives. This
complex task encompasses several key challenges:

Role Specialization is a primary aspect, where players often assume specific roles or
responsibilities within a game. Successful coordination demands that each player not only
understands but also effectively executes their designated role. This execution must comple-
ment the actions and roles of other players, requiring a high level of mutual understanding
and teamwork.

Timing and Synchronization are equally important, especially in real-time coopera-
tive games. Precise synchronization of actions and timing is essential, as players must make
split-second decisions that significantly influence the outcome of the game. This necessity
calls for seamless coordination of movements and strategies.

Lastly, Adaptability is vital. As game dynamics change, players must quickly adapt
and re-coordinate their strategies. This flexibility and rapid decision making are crucial
to maintaining effective coordination despite new challenges or unexpected changes in the
game scenario.

Conclusion

Communication and coordination are integral to the success of cooperative games. Despite
their importance, these aspects pose significant challenges due to factors such as ambiguity,
noise, cultural differences, role specialization, timing, and adaptability. Innovative game
design approaches and technologies are required to effectively address these challenges and
facilitate communication and coordination among players. Further exploration and research

in this area are crucial to enhancing the cooperative gaming experience and fostering better
collaboration among players.

2.1.3 Skill Differences

Skill differences among players can significantly impact the dynamics and success of coop-
erative gameplay. When players have varying levels of skill, it can create imbalances within
teams, affecting collaboration, communication, and overall gaming experience.

Understanding Skill Differences

Skill differences among players can significantly affect the dynamics of cooperative games,
manifesting in various key aspects that impact gameplay in distinct ways.

Game Proficiency: One critical area where skill differences are evident is in game
proficiency. Players who possess higher proficiency levels typically have a deeper under-
standing of the game mechanics, strategies, and tactics. This superior knowledge allows
them to make more informed decisions and contribute more effectively to achieving team
objectives.

Execution Skills: Another important aspect is execution skills, which encompass re-
flexes, accuracy, and coordination. Variations in these skills can greatly influence a player’s
ability to successfully perform specific tasks or actions within the game. For example, play-
ers with better execution skills are often able to handle complex maneuvers and respond
quicker to changing game conditions, attributes that are crucial in fast-paced scenarios.

Strategic Thinking: Strategic thinking also plays a vital role in distinguishing skill
levels among players. Those with advanced strategic thinking skills can anticipate oppo-
nents’ moves, plan ahead, and coordinate with teammates more efficiently. Such abilities
not only contribute directly to the team’s success but also enhance the overall strategic
harmony of the group.

Causes of Skill Differences

Several factors significantly contribute to the skill differences observed among players in
cooperative games. Understanding these can help in designing more balanced and engaging
game experiences.

Experience Level: Experience plays a pivotal role in determining a player’s profi-
ciency. Generally, players with more experience possess superior game knowledge and skills,
honed through continuous gameplay and practice. This accumulated experience typically
results in better performance and more effective contributions to team objectives.

Learning Curve: The complexity of the game also affects skill levels. Some games are
inherently more challenging and require more time and effort to master than others. This
variability in the learning curve can create disparities in skill levels among players, as some
may advance more quickly than others, depending on their ability to learn and adapt to
the game’s challenges.

Accessibility and Resources: Accessibility to high-quality gaming equipment, as
well as tutorials and guides, is another crucial factor. Players who have access to better
resources can often develop their skills more rapidly and achieve higher levels of proficiency
than those without such advantages.

Motivation and Commitment: The degree of motivation and commitment also
significantly influences skill development. Players who are more motivated and committed

to improving their skills tend to invest more time and effort into their gameplay, which
can lead to higher skill levels and a greater ability to contribute positively to cooperative
gameplay.

Consequences of Skill Differences

Skill differences among players can have several significant implications for cooperative
gameplay, impacting everything from team dynamics to individual player experiences.

Imbalanced Teams: One major consequence is the formation of imbalanced teams
[21]. Significant skill disparities among players often result in less-skilled players relying
heavily on their more competent teammates. This dependency can disrupt overall team
cohesion and performance, as the balance of contribution becomes skewed.

Communication Challenges: Varying skill levels can also lead to communication
challenges [21]. Less-skilled players might struggle to understand or execute strategies pro-
posed by their teammates, leading to breakdowns in communication. In some cases, more
skilled players may dominate the strategic planning and execution, effectively marginalizing
less skilled team members and deteriorating team interactions.

Frustration and Disengagement: Furthermore, frustration and disengagement can
become prevalent, especially among players who feel they are less skilled. These players
may view themselves as burdens, leading to feelings of inadequacy and a diminished interest
in continuing the game. Such emotional responses can adversely affect not only their own
game experience, but also the morale and unity of the entire team.

Addressing Skill Differences

Addressing skill differences in cooperative games involves a multifaceted approach that
includes game design innovations, effective community management, and targeted player
education. Examples of games with addressing this problems well can be found in Figure
2.2,

Implementing Matchmaking Systems: A foundational strategy is the implementa-
tion of Matchmaking Systems. By considering players’ skill levels, these systems can form
balanced teams, which enhances the overall gaming experience by ensuring that teams are
evenly matched, thus reducing the likelihood of imbalanced games.

Skill-Based Training: Skill-based training also plays a crucial role. Providing players
with tutorials, guides, and training sessions tailored to their specific skill levels can signifi-
cantly bridge the skill gap [3]. These resources enable less experienced players to improve
their skills and better understand game mechanics, promoting a more inclusive gaming
environment.

Community Support: Another key element is fostering a supportive gaming commu-
nity where players can learn from each other, share experiences, and collaborate effectively
[16]. This type of community encourages ongoing learning and improvement at all skill
levels, enhancing cooperative gameplay.

Cooperative Game Mechanics: Designing game mechanics that necessitate cooper-
ative play can also help mitigate skill disparities [21]. By making it impossible for a player to
succeed alone, these mechanics encourage constant communication and teamwork, fostering
a more balanced team dynamic where every player’s contribution is essential.

Adaptive Difficulty Settings: The introduction of adaptive difficulty settings can
align the level of challenge of the game with the player’s proficiency [21]. This system can
dynamically adjust based on various factors, such as player performance, strategies used,

or even the cumulative score. Adjustments may include changes to the game environment,
obstacles, or even altering the capabilities of the character of the player, helping to maintain
a balanced and engaging experience for all players.

Matchmaking systems Player training

League of Legends Bioshock Infinite

Valorant Prey

Community Adaptive difficulty

Hades
Resident Evil 4

Stardew Valley
Terraria

Mechanics supporting
collaboration

We Were Here Together
Lethal Company

Figure 2.2: Examples of games representing different mechanics.

Conclusion

Skill differences between players present significant challenges in cooperative games, affect-
ing team dynamics, communication, and the overall gaming experience. Understanding the
underlying causes and consequences of skill differences is crucial for developing effective
strategies to address this problem and promote a more collaborative and enjoyable gaming
experience for all players.

2.1.4 Reward Disbalance

Reward disbalance represents a significant challenge in cooperative games, which affects the
motivation, engagement, and overall gaming experience of players [20]. This issue arises
when players perceive an unequal or unfair distribution of rewards for their contributions
and efforts within the game. Understanding the complexities of reward imbalance is cru-
cial for game designers, developers, and researchers who want to enhance the cooperative
gameplay experience.

Understanding Reward Disbalance

Reward disbalance can significantly impact player experience and satisfaction in cooperative
games, manifesting in several detrimental ways.

Unequal Distribution of Rewards: A common issue is the unequal distribution
of rewards. Players may feel that their efforts are not appropriately valued, especially if
they perceive that they are receiving fewer rewards compared to teammates who may have
contributed less. This can create a sense of injustice and resentment within the team,
negatively affecting team dynamics and overall game enjoyment.

Mismatched Effort and Reward: Another significant concern is mismatched effort
and reward. Players who invest considerable effort and time to achieve game objectives
might find that the rewards they receive do not match their input. This discrepancy
can cause feelings of frustration and dissatisfaction, potentially discouraging players from
investing similar efforts in future games.

Lack of Incentives for Cooperative Gameplay: Additionally, insufficient incentives
for cooperative gameplay can undermine team collaboration [21]. Without appropriate
rewards to encourage cooperative efforts, players might not feel motivated to participate in
team activities. This lack of motivation can decrease teamwork and overall engagement in
the game, diminishing the cooperative aspect crucial for the game’s success.

Causes of Reward Disbalance

Several key factors can contribute to the occurrence of reward disbalance in cooperative
games, affecting player satisfaction and overall game dynamics.

Poor Reward Systems: One major issue is the existence of ineffective or poorly
designed reward systems. When these systems do not adequately recognize and reward
players’ contributions, significant disbalance can occur. This often leads to diminished
player engagement and motivation, as players feel that their efforts are not being fairly
rewarded.

Mismatched Skill Levels: Differences in player skill levels also play a critical role in
contributing to the disbalance of rewards. These disparities can lead to uneven contributions
during gameplay, which may result in perceptions of unfair reward distribution. Such
perceptions can foster feelings of resentment and injustice within the team, affecting the
overall harmony and effectiveness.

Lack of Transparency: Additionally, a lack of transparency about how rewards are
determined can further aggravate disbalance issues. Without a clear understanding of the
criteria or mechanisms behind the reward distribution, players can develop misconceptions
and dissatisfaction, which undermines trust in the fairness of the game.

Economic Factors: Economic factors related to in-game economies and monetization
strategies also play an important role. When these strategies prioritize revenue generation
over player satisfaction, they can distort reward distributions and exacerbate the sense of
disbalance among players. This prioritization can lead to a gaming environment in which
the monetary investment outweighs the skill or effort as a determinant of reward, further
eroding the balance and fairness of the game.

Consequences of Reward Disbalance

Reward disbalance can lead to several negative effects on cooperative gameplay, affecting
player involvement and overall game health.

10

Reduced Motivation: One significant consequence is reduced motivation. Players
who perceive a disbalance in rewards may feel demotivated, becoming less inclined to par-
ticipate in cooperative activities. This lack of motivation can sap the energy and enthusiasm
essential for engaging gameplay, potentially leading to a passive or disinterested player base.

Erosion of Trust: Furthermore, erosion of trust is a critical issue caused by perceived
unfairness and unequal treatment. When players feel that rewards are not distributed
equitably, trust among team members can erode. This deterioration undermines team
cohesion and collaboration, which are crucial elements for successful cooperative gameplay.

Decreased Engagement: Additionally, decreased engagement is another serious out-
come of the disbalance of rewards. Dissatisfaction with how rewards are distributed may
lead players to reduce their playing time or even abandon the game altogether. This decline
in engagement and retention can severely affect the game’s community and longevity, as
fewer players remain active and invested.

Addressing Reward Disbalance

Successfully addressing reward disbalance in cooperative games involves a combination
of strategic game design, clear communication, and player-centric approaches to ensure
fairness and maintain player engagement.

Implementing Balanced Reward Systems: A fundamental strategy is the design
of reward systems that equitably recognize and compensate players’ contributions. By
ensuring fairness in rewards, games can significantly mitigate issues of imbalance. This
approach helps maintain motivation and encourages all players to participate actively.

Clear Communication: Clear communication plays a critical role in managing expec-
tations and increasing satisfaction. Providing players with transparent information about
how rewards are determined, the criteria used, and what outcomes they can expect helps
to build trust and understanding [3]. This transparency can prevent misconceptions and
dissatisfaction related to the distribution of rewards.

Incorporating Player Feedback: Actively seeking and incorporating player feed-
back is another vital strategy [3]. By engaging with the player community and listening
to their experiences and suggestions regarding rewards and gameplay, developers can iden-
tify potential problems early. This proactive approach is invaluable for making informed
adjustments that enhance the game’s reward dynamics.

Adaptive Reward Mechanisms: Lastly, implementing adaptive reward mechanisms
that adjust rewards based on individual contributions, skill levels, and overall engagement
can further promote fairness. These mechanisms ensure that all players, regardless of
their initial skill or level of experience, have the opportunity to earn rewards that are
commensurate with their efforts and dedication to the game.

Conclusion

Reward disbalance represents a significant challenge in cooperative games, affecting players’
motivation, engagement, and overall gaming experience. Understanding the underlying
causes and consequences of reward disbalance is crucial for developing effective strategies
to address this issue and promote a more collaborative, engaging, and rewarding gaming
experience for all players.

11

2.1.5 Strategy Complexity

Strategy complexity is a key element in cooperative games, profoundly influencing gameplay
dynamics, player engagement, and overall gaming experience. This dimension refers to the
complexity and depth of strategies that players must employ to achieve goals, collaborate
effectively with teammates, and navigate challenges within the game environment. Un-
derstanding the nuances of strategy complexity is essential for game designers, developers,
and researchers aiming to craft compelling, immersive, and strategically rich cooperative
gameplay experiences.

Understanding Strategy Complexity

Strategy complexity in cooperative games involves several key facets that enrich the game-
play and challenge players to think critically and collaborate effectively.

Tactical Depth: At the core of strategy complexity is tactical depth. This refers
to the range and intricacy of strategies that players can employ to outmaneuver oppo-
nents, complete objectives, and secure advantages. A high level of tactical depth allows for
a more engaging and dynamic gameplay experience as players explore various tactics and
approaches to achieve victory.

Collaborative Strategies: Effective coordination and collaboration among team-
mates are crucial for executing complex strategies and achieving shared goals [21]. This
facet of strategy complexity requires players to communicate clearly and work together
closely, significantly enhancing the cooperative aspect of the game.

Decision-making Complexity: Another important component is the complexity in-
volved in making decisions. The decision-making process in these games includes multiple
variables, uncertainties, and potential outcomes that players must consider. This complex-
ity not only tests players’ problem-solving skills but also their ability to anticipate and react
to the changing dynamics of the game.

Adaptive Strategies: Lastly, adaptive strategies are essential for success in dynamic
game environments. Players must continuously adapt and evolve their strategies in re-
sponse to changing game conditions, opponents’ actions, and unforeseen challenges. This
adaptability adds a layer of depth to the gameplay, forcing players to rethink and modify
their strategies as the game progresses.

Causes of Strategy Complexity

The level of strategy complexity in cooperative games is influenced by multiple intercon-
nected factors, each adding depth and challenge to the gameplay.

Game Design Philosophies: These are fundamental in shaping how strategy com-
plexity is approached. Designers’ philosophies about crafting gameplay experiences directly
impact the depth, challenge, and degree of player agency within the game. A focus on intri-
cate gameplay ensures that strategies are not only complex but also rewarding and engaging
for players.

Game Mechanics: This aspect also plays a crucial role. The design and implemen-
tation of mechanics, features, and systems are intended to encourage strategic thinking
and decision-making. Effective mechanics challenge players to assess various situations and
make strategic choices that significantly influence the game’s outcome.

Team Dynamics: The dynamics among teammates are another significant factor [21].
The interplay and coordination required among team members necessitate effective com-

12

munication and collaboration, which can either enhance or complicate strategic decisions
based on the team’s cohesion.

Narrative Elements: Elements such as lore and world-building add additional layers
of complexity to strategies and player interactions. By enriching the game’s context, these
narrative elements can profoundly influence strategic decisions, integrating deeply with
gameplay mechanics and objectives.

Consequences of Strategy Complexity

The complexity of strategies in cooperative games can profoundly influence the gaming
experience, shaping how players interact with the game and each other.

Enhanced Engagement: One positive effect of well-designed strategy complexity
is enhanced engagement. When strategies are complex, they foster deeper investment,
engagement, and satisfaction among players. This is because players are rewarded for their
strategic thinking and creativity, which encourages them to delve deeper into the game
mechanics and collaborate more effectively with their teammates.

Increased Learning Curve: However, high levels of complexity may also introduce
a steep learning curve. This can be daunting for casual or inexperienced players, potentially
leading to frustration or alienation among those who find the game too challenging to enjoy
initially.

Dynamic Gameplay: Strategy complexity contributes to dynamic gameplay. It allows
for evolving gameplay experiences that can change and adapt with each play session, pro-
moting replayability and longevity [21]. This dynamism keeps the game fresh and exciting
for players, encouraging them to return and explore new strategic possibilities.

Challenges in Collaboration: On the other hand, complex strategies can lead to
challenges in collaboration [21]. These strategies often require high levels of coordination
and clear communication among teammates. Without these, collaboration can become
strained, potentially leading to misunderstandings or conflicts within the team.

Addressing Strategy Complexity

Successfully managing and designing strategy complexity in cooperative games requires
a multifaceted approach that balances depth with accessibility and provides adequate sup-
port for players.

Balanced Design: Achieving the right balance between complexity and accessibility is
crucial. It is essential to design game mechanics that are both challenging and approachable,
ensuring that the game remains engaging for experienced players without being overly
daunting for newcomers. This balance helps prevent frustration among less experienced
players and keeps them actively engaged.

Tutorials and Guidance: Providing comprehensive tutorials, clear guidance, and
accessible resources plays an essential role [3]. These supports are vital for helping players
understand, learn, and master complex strategies. With adequate guidance, players of all
skill levels can reach a competent level of play where they can fully engage with and enjoy
the game.

Iterative Design: Continuously incorporating player feedback into game design is
another important strategy [3]. This iterative process involves refining gameplay mechanics
to enhance strategy complexity while also improving clarity and playability. By listening to
the community and adapting the game based on their input, developers can ensure that the

13

game evolves in a way that maintains strategic depth. This process is visualized in Figure
2.3.

START
l
Design
\
Implement Evaluate
Playtest

END

Figure 2.3: Iterative game design

Community Support: Lastly, fostering a supportive and collaborative gaming com-
munity is crucial. A community where players can share ideas, learn from each other, and
collaborate on strategies significantly enhances the gameplay experience [16]. Such a com-
munity not only helps players feel more connected but also deepens their understanding
and appreciation of the game’s strategic elements.

Conclusion

The complexity of the strategy is a key aspect of cooperative games, influencing gameplay
dynamics, player engagement, and overall gaming experience. Understanding the intricacies
of strategy complexity and its impact on cooperative gameplay is essential to crafting
compelling, immersive, and strategically rich gaming experiences that cater to diverse player
preferences and skill levels.

2.2 Multiplayer Challenges in Games

Multiplayer games are a vital aspect of the gaming industry, offering players unique expe-
riences by enabling interactive environments where individuals can play together, compete,
or collaborate. The concept of multiplayer gaming encompasses various types and forms,
from massively multiplayer online role-playing games (MMORPGs) to co-located console
games, each offering unique benefits and challenges.

14

2.2.1 Types and Forms

Multiplayer games vary widely in their setup and gameplay. MMORPGs, such as ,World of
Warcraft,” are expansive virtual worlds where players create avatars and participate in both
social and combative activities [5]. Cooperative multiplayer games, on the other hand, offer
a more accessible experience, typically focusing on time-flexibility and social relationships.

2.2.2 Social Dynamics

The social aspects of multiplayer games are a key component of their success. Players form
strong friendships and emotional bonds in these environments, which can enhance their
enjoyment [5]. Multiplayer games serve as online communication tools, facilitating the
formation of communities and teamwork. Cooperative learning and collaborative gameplay
are also prominent features, enhancing educational aspects.

2.2.3 Technical Challenges

In addition to managing network delays, multiplayer games face several other technical
challenges. Ensuring real-time challenge balancing across players of varying skills with-
out affecting individual player experiences is complex. Also, network delays can lead to
discrepancies in player actions, causing gameplay synchronization issues.

2.2.4 Educational Potential

Multiplayer games are increasingly recognized as powerful educational tools. They foster
collaborative learning and have been used in various learning environments. Serious games
combine entertainment with educational content, enhancing motivation and engagement.

2.2.5 Conclusion

Multiplayer games are multifaceted, combining entertainment, social interaction, technical
innovation, and educational potential. Their diverse forms and applications make them
a unique and influential sector in the gaming industry and beyond.

2.3 Existing Solutions and Tools

Several approaches have been proposed to address the challenges in cooperative games:

2.3.1 Communication Tools

Effective communication stands at the core of successful cooperative gameplay, facilitat-
ing coordination, strategy planning, and team cohesion. As cooperative games continue
to evolve and gain popularity, a plethora of tools and solutions have emerged to support
and enhance communication among players. These tools range from in-game communica-
tion systems to third-party applications, each offering unique features, functionalities, and
benefits tailored to the diverse needs of cooperative gaming communities.

15

In-Game Communication Systems

In-game communication systems are crucial for facilitating direct and effective interaction
among players in cooperative games. These systems are designed to cater to various com-
munication needs and preferences, ensuring that players can easily share information and
strategize together in real time.

Voice Chat: One of the most common forms of in-game communication is voice chat.
Many cooperative games include built-in voice chat functionality, which allows players to
communicate verbally. This real-time communication tool is particularly useful for coordi-
nating actions swiftly and effectively. Voice chat systems often come equipped with features
like private channels, player muting, and audio settings adjustments, enhancing both clarity
and immersion.

Text Chat: Another popular method is text chat. This system allows players to send
written messages to each other, facilitating detailed strategic discussions and information
sharing. Text chat can be particularly valuable in scenarios where voice chat might be
impractical or disruptive. To enrich the communication experience, text chat systems
typically include support for emoticons, text formatting, and a history of past messages,
allowing players to express emotions and refer back to earlier conversations easily.

Ping and Marker Systems: Additionally, many games feature ping and marker
systems. These tools enable players to place markers on the game world or highlight
specific objects, locations, or enemies. Pings and markers serve as non-verbal cues that can
convey essential tactical information and help coordinate team actions without the need for
spoken or written communication. This type of system is incredibly useful for quick and
clear communication, especially in fast-paced gaming environments.

Third-Party Communication Tools

While in-game communication systems are integral to player interaction in cooperative
games, many players also turn to third-party tools to enhance their gaming experience
further. These external platforms offer additional features and functionalities that improve
communication and foster a stronger sense of community among players.

Discord: A standout choice for gamers, Discord is renowned for its robust communica-
tion options, including voice chat, text chat, and community engagement features. Players
can create dedicated Discord servers with various channels for different games or topics,
which enhances organization and simplifies the management of large groups.

TeamSpeak: Known for its high-quality voice communication capabilities, TeamSpeak
is favored in large-scale cooperative games. It offers customizable servers, intricate channel
structures, and detailed permission settings, allowing players to tailor their communication
experience to their group’s specific needs.

Mumble: As an open-source alternative, Mumble provides low-latency voice communi-
cation ideal for real-time strategic gameplay. Its unique feature, positional audio, simulates
sound from various directions, enhancing spatial awareness and improving coordination and
immersion in multiplayer environments.

General-Purpose Platforms: Platforms like Skype and Zoom, though not specifi-
cally designed for gaming, are sometimes used by gamers for their video conferencing and
screen sharing capabilities. These features are invaluable for visual communication and
collaboration on strategies, particularly useful during planning phases or when discussing
complex scenarios.

16

Conclusion

Communication tools play a pivotal role in facilitating coordination, strategy planning,
and team cohesion in cooperative games. As cooperative gaming continues to evolve, the
landscape of communication tools and solutions is expected to diversify, innovate, and adapt
to meet the evolving needs of players, fostering collaboration, enhancing engagement, and
enriching the cooperative gaming experience.

2.3.2 Voice Chat Tools for Unity

Unity, one of the leading game development platforms, supports several robust voice chat
plugins tailored to various needs and scenarios [18]. We will delve into more specifics of
the engine in Section 4.1 Here is an overview of three popular voice chat systems: Photon
Voice, Vivox, and Dissonance Voice. Each of these tools integrates seamlessly with Unity
and offers unique features to developers.

Photon Voice

Photon Voice is a popular choice among developers for its efficient and scalable real-time
voice chat service, specifically designed for multiplayer games and applications [14]. It
operates on the Photon Realtime platform and is optimized for high-quality audio commu-
nication with minimal bandwidth usage and low latency, ideal for fast-paced multiplayer
environments.

Features of Photon Voice include:

e Seamless integration with Photon servers, known for their stability and scalability.

e Support for positional audio, which creates realistic sound effects based on the player’s
location within the game world.

o Automatic detection of voice activity and cancelation of the echo to enhance the audio
experience.
Vivox

Vivox is known for providing robust voice and text chat solutions on all major gaming
platforms, ensuring versatility for cross-platform development [19]. Its reliability and high
scalability have made it the choice for leading games in the industry, such as Fortnite and
League of Legends.

Features of Vivox include:

e Capability to offer both 2D and 3D audio channels, allowing for positional sound
effects and distance-based volume attenuation.

e Advanced audio features such as echo cancelation, noise reduction, and automatic
gain control provide superior voice quality.

e Support for hundreds of simultaneous users in a single voice channel, suitable for
large-scale multiplayer games.

17

Dissonance Voice Chat

Dissonance Voice is a comprehensive real-time voice chat plugin for Unity games and ap-
plications [8]. It is praised for its ease of integration and reliability, providing clear voice
communication across various platforms and network conditions.

Features of Dissonance voice chat include:

e High-quality voice reproduction with low latency, making it ideal for interactive ap-
plications such as virtual reality.

o Compatibility with both Unity networking and various third-party networking solu-
tions, offering flexibility in multiplayer game development.

o A wide range of supported audio codecs to optimize performance or quality based on
the developer’s preferences.

2.3.3 Multiplayer Tools for Unity

Unity offers a robust set of tools designed to facilitate the development of multiplayer
games. These tools allow developers to implement a variety of multiplayer features, from
matchmaking and communication to synchronization of complex game states across multiple
players. Here is an overview of some of the key multiplayer tools available for Unity, which
can help developers build immersive and interactive multiplayer experiences.

Netcode for Game Objects

Unity Netcode for GameObjects is the successor to UNet and is designed to provide a re-
liable and scalable framework for the development of multiplayer games [10]. It focuses on
delivering high-performance networking specifically optimized for Unity games.

Performance and Scalability: The framework ensures smooth gameplay through
real-time synchronization, crucial for maintaining the flow of fast-paced action. It also
efficiently manages network traffic and is capable of supporting large numbers of players
simultaneously, making it an excellent choice for developers looking to scale their games.

Developer Support: Unity Netcode for GameObjects is developer-friendly, offering
comprehensive documentation and tutorials that help new users get started quickly. This
support is vital for developers who need to troubleshoot issues or learn how to make the
most of the framework’s capabilities efficiently.

Photon Unity Networking (PUN)

Photon Unity Networking (PUN) is one of the most popular networking frameworks for
Unity, known for its ability to simplify the process of adding multiplayer capabilities to
games [15]. PUN stands out due to its scalability and ease of use, making it an excellent
choice for developers across all skill levels.

Ease of Integration: PUN is celebrated for its easy setup, which allows developers to
quickly integrate multiplayer features into their games. This ease of use is a significant ad-
vantage for developers looking to accelerate the development process without compromising
quality.

Cross-Platform Compatibility: The framework supports all major platforms, en-
suring that players can connect and play together regardless of the device they are using.

18

This cross-platform capability is crucial to creating an inclusive gaming environment in
which everyone can participate.

Scalability: PUN excels in managing varying player counts efficiently, from small
groups to very large communities without difficulty. This scalability makes it versatile
and capable of supporting different types of multiplayer games, from intimate sessions to
massive arenas.

Mirror Networking

Mirror is a high-level networking API for Unity, offering a powerful yet simple alternative to
Unity’s own low-level API [9]. It simplifies many aspects of networked game development,
making it accessible even to those new to game programming.

Streamlined Simplicity: Mirror’s simplicity helps developers quickly get up to speed
with networked game development without sacrificing the power or flexibility needed for
more complex projects. This approach ensures that even those new to networking can imple-
ment advanced features with ease, streamlining the development process while maintaining
high-quality results.

Community-Driven Development: The API is actively maintained by a vibrant
community of developers. This community-driven approach ensures that Mirror receives
regular updates and improvements, reflecting the latest in networked game development
practices.

Optimized Performance: Mirror is optimized for low bandwidth usage and fast
performance, making it an excellent choice for developers concerned with maintaining high
performance while minimizing resource consumption.

19

Chapter 3

Game Design Document

The objective of this thesis is to outline a comprehensive game design and subsequently
implement a vertical slice of the game’s mechanics. This chapter details the complete game
design, covering various aspects such as mechanics, user interface, and objectives, providing
a thorough view of the intended gameplay experience.

3.1 Introduction

This cooperative video game, developed as part of a Bachelor’s thesis, challenges players to
collaborate, communicate, and conquer time to successfully complete all levels. As players
progress, they discover that the main adversary is not time itself but rather their own
teammate. Throughout the game, tensions rise, and strategies shift, leading to a dramatic
conclusion where only one player can emerge victorious.

3.2 Target System

This game is being developed primarily for PCs running the Windows operating system.
Upon completion of the initial development phase, consideration will be given to creating
ports for the latest Xbox and PlayStation consoles. However, this document will focus
exclusively on the PC version of the game.

3.3 Development System

3.3.1 Software
This game is being developed using the Unity game engine 4.1, specifically version 2022.

The primary programming language utilized within the Unity engine for this project will
be C#.
3.4 Specification

3.4.1 Concept

The core objective of this thesis is to develop a team-based game that not only empha-
sizes essential skills such as communication and teamwork, but also introduces elements of

20

sabotage and deception among friends. This combination aims to create a challenging yet
enjoyable gameplay experience.

3.4.2 Story

Although the story is not the central focus, it serves as an essential backdrop that enhances
player understanding and engagement by explaining the events occurring within the game.

Introduction and Setup

The game begins with a mysterious scenario in which the player awakens in a room that
appears identical to that of their character. Upon rising from the bed and sitting on a com-
puter, the character inadvertently plays a video that installs a virus in their brain. This
virus initiates a startling transformation where the player’s body splits, creating a mate-
rialized shadow that acts as the second player. Each player exists in separate dimensions,
perceiving the other as a shadow in their world.

Conflict and Quest

The two characters, driven by the need to eliminate the virus, decide to search for a cure
initially believed to be in a pharmacy in the house. However, they soon discover that the
necessary device is not there, prompting a journey to a hospital. It is on this journey that
they learn a harrowing truth: Only one can survive after the virus is removed, transforming
their cooperative efforts into a competitive struggle for survival.

Climax and Conclusion

The narrative reaches its climax in the hospital, the setting for the final showdown. Here,
a player manages to get cured, emerging as the sole survivor and victor of the game, marking
a dramatic end to the adventure.

Setting

The game is set in the present day but within an alternative reality that is technologically
more advanced than our own. This setting allows for the integration of futuristic elements
and technologies that are not available in our current timeline, providing a unique backdrop
that enriches the gameplay experience.

3.4.3 Game Structure

The game is strategically divided into three main locations, each featuring distinct visual
environments that enrich the player experience. These settings include:

1. Apartment Building: This is where the player character resides. It serves as the
starting point of the game, introducing players to the basic mechanics and initial
challenges.

2. Outdoor Area (The City): After navigating through the apartment, the play-
ers will venture into the city. This area expands the gameplay with more complex
challenges and interactions set against an urban backdrop.

21

3. Hospital: The final location is the hospital. This climactic setting hosts the most
difficult challenges and serves as the game’s conclusion where the narrative and player
competition come to a head.

In each of these locations, players will progress through several levels. Although the
physical and visual design of these levels remains consistent for both players, the placement
of obstacles will differ. This design choice ensures that the experience and strategy of each
player will vary, focusing on the themes of cooperation and competition of the game.

3.4.4 Players

This game is exclusively designed for two players, each using separate computers. It cannot
be played solo or on a single computer using split-screen mode. This design ensures that
each player has a full view of the game environment from their respective perspectives,
enhancing the gameplay experience and strategic depth.

To facilitate effective communication and collaboration, players are equipped with voice
chat capabilities. This feature allows for real-time coordination and strategy sharing, which
are essential for navigating the challenges and obstacles presented in the game.

3.4.5 Action

Throughout the game, players will face numerous moving obstacles that pose a constant
threat to their progress. These obstacles are designed to test the players’ avoidance skills
and teamwork capabilities.

If a player collides with any obstacle, it results in both players losing and having to
restart the level. This rule underscores the game’s emphasis on cooperative gameplay and
the need for synchronized team strategies.

Although the obstacles encountered are consistent in type for both players, their place-
ment within the level varies. This variation ensures that each player’s experience and chal-
lenges are unique, yet equally demanding. The obstacles are placed manually and are not
generated dynamically. This careful placement ensures that there are no ,blind spots“ —
areas free from obstacles that might otherwise allow players an easy passage. Such a strat-
egy guarantees that each section of the game consistently presents a challenge, maintaining
a uniform level of difficulty and requiring continuous vigilance and strategic thinking from
the players.

3.4.6 Objective

The objective of the entire game differs from the objectives of individual levels.

3.4.7 Level Objective

The objective of each level involves both players working collaboratively to navigate through
various obstacles and reach a predefined goal. This goal could manifest itself in several
forms, such as a door, an elevator, or similar functional elements within the game environ-
ment. Successful navigation and teamwork are crucial to advance to subsequent levels.

22

3.4.8 Game Objective

The overarching objective of the entire game is for players to compete to accumulate more
points than their counterpart at the end of the game. Points can be earned in multiple
ways, such as completing levels efficiently - often measured by being the first to finish
a particular level. Additional methods for scoring points are detailed extensively in the
Gameplay section.

3.4.9 Graphics

Although graphics are not the main focus for the development of this video game, a dis-
tinctive visual style is planned to enrich the gameplay experience. Initially, placeholder
assets will be used during the early stages of development. The game will feature a 3D en-
vironment, utilizing vivid and abundant colors to create a sense of unreality. This vibrant
color palette is intended to reflect the influence of the virus on the player’s perception,
contributing to the game’s thematic depth.

Visual Details

The models used in the game will be low polygonal and minimalistic, aligned with the overall
artistic direction. The visual style is inspired by games such as Sludge Life and High on Life,
which are known for their striking and unconventional aesthetics. This approach is designed
to enhance the surreal feel of the game, making the gameplay environment engaging and
visually unique.

3.5 Gameplay

3.5.1 Levels

The game levels are categorized into three distinct environments, each offering unique chal-
lenges and aesthetics: the apartment building, the outdoor spaces (city), and the hospital.
These categories are designed to provide varying gameplay experiences as players progress
through the game.

Level 1

Name: Tutorial - Player’s Room
Location: Apartment Building
Decription:
This initial level acts as a tutorial to familiarize players with the primary mechanics of the
game, specifically time manipulation. It is set in the player character’s room and aims to
be concise and instructive.

The level is designed to be short and straightforward to ensure that players can grasp
the basic concepts without feeling overwhelmed.

It features one or two simple obstacles to teach players how to navigate and use the
time manipulation mechanic effectively. The sketch of the first level is illustrated in Figure
3.1.

23

Goal

1

X B ==Y
Spawn

Figure 3.1: First level sketch.

Level 2

Name: Corridor
Location: Apartment Building
Decription:

This level is also straightforward, but more advanced than Level 1. It serves as a practice
stage, allowing players to refine their understanding and application of the time manipu-

lation mechanic introduced in Level 1. The sketch of the first level is illustrated in Figure
3.2.

Goal

e
[

O

!

Spawn

Figure 3.2: Second level sketch.

24

3.5.2 Time Manipulation

Time manipulation is the core gameplay mechanic of the game, intricately designed to en-
hance strategic collaboration between players. This mechanic operates on the principle that
when both players remain stationary, the time within both realities slows down, allowing
for a moment for strategic planning and decision making.

However, the moment one player initiates movement, time resumes its normal pace in
the reality of the other player, and previously static obstacles begin to move, introduc-
ing immediate threats. This interplay requires players to alternate motion and stillness
strategically.

The game restricts simultaneous movement, permitting only one player to move at
a time. This mechanic passes control back and forth between players as they navigate
through obstacles. Effective coordination and precise timing are critical, as players must
synchronize their actions to avoid obstacles and advance through the levels successfully.

3.5.3 Cards with Effects

As the game progresses, players are introduced to card mechanics, which significantly im-
prove gameplay through strategic decision making. This mechanic is divided into two dis-
tinct parts, each contributing to the competitive and cooperative elements of the game.The
sketch of this mechanic user interface can be found in Figure 3.4.

Initial Selection and Effects Application:

At the beginning of each round, both players are presented with three cards drawn from
a randomized card database. Each card possesses either a positive or negative effect, which
will be secretly applied to the opposing player. Players must select one card at the start
of the round, and the chosen effect is then applied to their co-player. Importantly, the
effects are designed to be subtle, preventing the other player from immediately discerning
the impact. Notably, negative effects award more points than positive effects, incentivizing
strategic deception.

End-of-Level Guessing Game:

The second part of this mechanic unfolds at the end of each level, after both players have
completed their respective challenges. Here, each player is shown the same three cards that
their co-player viewed at the start of the round. The players must then attempt to guess
which effect was originally chosen and applied to them. Correct guesses result in bonus
points, while incorrect guesses yield no additional points. This element of the game fosters
a deeper level of strategy, as players must balance the use of deception and manipulation
throughout the round, aiming to mislead their co-player about their chosen effect.

25

Cards Effects

These are not all the card effects. More will be gradually added.

Negative Positive

o More obstacles o Less obstacles

o Faster obstacles o Slower obstacles

e Decreased movement speed e Increased movement speed
o Less energy o More energy

e Slower energy regeneration o Faster energy regeneration

3.5.4 Energy

Each player is equipped with an individual energy meter that depletes as they move. The
rate of energy depletion accelerates during more energy-intensive actions such as sprinting
or jumping. Should a player’s energy meter fall to zero, they will ,die“ and consequently
must restart the level.

Energy Management and Gameplay Dynamics:

This energy mechanic is strategically implemented to encourage active participation from
both players. It prevents a scenario where one player might remain in a safe spot devoid
of obstacles, allowing the other player to complete the level unilaterally. Instead, players
must alternate their movements to progress, as the only way to replenish energy is by al-
lowing the other player to advance. This introduces a critical need to manage one’s energy
carefully and strategically coordinate movements with the co-player.

Strategic Implications:

The requirement for energy management adds a layer of strategic depth to the game. Play-
ers must not only navigate obstacles and coordinate with each other, but also continuously
plan their energy usage to ensure that both can sustain their progress without exhausting
their resources prematurely.

3.5.5 Points

As players progress through the game, they will discover the importance of not only col-
lecting points but also ensuring that they collect more points than their opponent to avoid
losing. The game integrates several methods through which players can accumulate points,
enhancing both competitive tension and strategic depth.

Methods for Earning Points:

1. Level Completion: Players can earn points by being the first to complete a level.
This method rewards quick thinking and fast execution, encouraging players to bal-
ance speed with accuracy.

2. Card Mechanics: Utilizing the card mechanics strategically plays a crucial role
in point accumulation. Players who select negative effect cards receive more points,

26

reflecting the risk and strategic consideration involved in choosing such effects. Ad-
ditionally, at the end of each level, if a player correctly guesses the card chosen by
their co-player, they earn bonus points. This aspect not only adds a layer of strategic
deception but also rewards players for their perceptiveness and memory.

Strategic Implications:

The point system is designed to foster a competitive environment in which players must
continually make strategic decisions that could affect their position in the game. This
system compels players to engage deeply with the game mechanics, from choosing their
moves in each level to selecting and remembering cards, thus enriching the overall gameplay
experience.

3.5.6 Controls
The game will be controlled by mouse and keyboard.

e Move forward
o Move backward
e Move left

o Move right

e Jump

e Sprint

e Crouch

o Voice chat

3.5.7 Obstacles

Obstacles within the game will vary significantly depending on the location, with each
type designed to challenge players in unique ways. In addition, the speed and size of
these obstacles will differ, increasing the complexity and requiring adaptive strategies from
players. This variability ensures that each level presents distinct challenges, keeping the
gameplay dynamic and engaging.

Apartment Building

o Paper planes

« Plates

Outdoors (city)
o People
e Car
o Motorbike
o Bike
o Skateboard

27

Hospital
o Hospital stretchers

e Needles

3.6 Front End

3.6.1 Intro

The game begins with an animated intro that sets the stage for the narrative and introduces
the main gameplay mechanics. In this sequence, the playable character awakens and rises
from their bed, walks over to a computer, and plays a video. This video inadvertently
installs a virus into the character’s brain chip, visually represented by a distorted effect on
the screen, symbolizing the virus’s immediate impact.

Following this, the character experiences a dramatic split, resulting in the creation of
a materialized shadow version of themselves. The character attempts to interact with this
shadow, reaching out to touch it, but finds it impossible to make physical contact. At
this moment, moving obstacles begin to materialize, and time comes to a standstill, setting
an eerie and suspenseful atmosphere.

This introductory sequence concludes with the onset of the tutorial, where players are
gradually introduced to the game’s controls and mechanics as they navigate through the
newly formed challenges.

3.6.2 Outro

The game concludes with an animated outro that determines and reveals the winner. After
navigating through numerous challenges, the players reach the pharmacy, the final desti-
nation, where they are each required to take a mechanical pill. This moment serves as the
climax of the game.

Upon swallowing the pill, the winning player observes that the shadow of his co-player
begins to gradually fade away, symbolizing his victory. Conversely, the losing player expe-
riences their environment, and eventually themselves, slowly disappearing, culminating in
a ,,Game Over“ screen. This visual representation not only emphasizes the finality of their
loss, but also enhances the dramatic impact of the game’s conclusion.

For the winning player, the game ends with a celebratory ,,You Won* screen, acknowl-
edging their success. This is immediately followed by the closing credits, providing a resolu-
tion to the game’s narrative and acknowledging the contributors to the game’s development.

3.6.3 Menus

The game features a streamlined menu system designed to facilitate easy navigation and
minimal disruption to gameplay. The various components of this system include:

e Main Menu: The primary interface where players can start the game. This menu
serves as the gateway to all the major game functions and settings. The screenshot
of the main menu is shown in Figure 3.3.

e Settings Menu: Accessible from the main menu, this interface allows players to
adjust various game settings according to their preferences, enhancing the user expe-
rience and accessibility.

28

e« Pause Menu: Available during gameplay, this menu enables players to pause the
game and make adjustments or access options without leaving the game environment.

e Lobby System:

— Host Interface: The lobby where the host player can initiate a new game
session. This interface displays a join code prominently, which is necessary for
other players to enter the game session.

— Join Menu: For players who are joining a game, this menu provides a simple
interface to enter the join code provided by the host player and connect to the
game session.

These menus are designed to be intuitive and user-friendly, ensuring that players of all skill
levels can navigate the game settings and connections seamlessly.

HOST GAME

JOIN GAME
SETTINGS
QuiT

Figure 3.3: In-game screenshot from main menu.

3.6.4 User Interface

The user interface in the game is designed to be minimalistic, focusing the player’s attention
primarily on the gameplay itself. The sole Ul element is an energy indicator, which plays
a critical role in conveying the player’s remaining energy.

Energy Indicator Details:

The energy indicator is uniquely represented by a beating heart icon located in one of the
upper corners of the screen. This choice symbolizes the vitality and urgency of the game-
play. The heart’s behavior is dynamically linked to the player’s energy consumption: as
energy usage increases, the heart beats faster, enhancing the visual feedback for the player.
In addition, when energy consumption reaches a critical level, the screen will subtly begin
to turn red, simulating an increased sense of danger and urgency. This visual cue helps
players gauge their remaining energy intuitively, allowing them to make strategic decisions
based on their current status.

29

Choose a card

Figure 3.4: Sketch of the ’Choose a Card’ user interface.

3.6.5 Player Shadow

The Player Shadow is a crucial feature designed to indicate the spatial presence of a player
within their respective dimension. It provides a visual cue that informs each player of the
other’s location, despite the dimensional separation. The presence of the Player Shadow
enriches the gameplay by enabling players to strategize based on the positional awareness of
their counterpart in the alternate dimension. It also adds a layer of depth to the game, high-
lighting the duality of the players’ existence - separate yet interconnected. By integrating
Player Shadow into the game’s mechanics, it becomes not just a feature for orientation but
a fundamental component that bridges the gap between two parallel gameplay experiences.

3.7 Multiplayer

The multiplayer functionality of the game is designed to support two players. The hosting
model is structured such that the game session is initiated and hosted directly on the
computer of the player who starts the game.

3.7.1 Networking Framework

The game utilizes the Relay Unity package for its networking capabilities [18]. This choice is
strategic, as it allows the game to be hosted on Relay servers without the need for dedicated
servers. The diagram of a connection using a relay server is shown in Figure 3.5. Players
can join a game session by entering a unique code generated by the host. This setup not
only facilitates ease of connectivity, but also enhances the security and integrity of the game
environment.

30

Connecting

Host player player

Connecting Connecting
player player

Figure 3.5: Diagram illustrating a multiplayer game network with a relay server connecting
one host player to multiple connecting players. Diagram taken from [18].

3.7.2 Game State Management

Given that the game is primarily played among friends, there is an inherent level of trust
among players regarding the modification of the game state. This reduces the need for
stringent security measures typically required to prevent unauthorized client-side changes.
The expectation that friends will not cheat allows for a more streamlined development
process, eliminating the need for Remote Procedure Calls (RPCs). This simplification
reduces the complexity of network coding and minimizes potential points of failure, making
the game more robust and responsive.

3.7.3 Netcode for Game Objects

Netcode for Game Objects has been selected as the preferred networking solution for this
project due to its seamless integration with Unity Relay [10]. This integration simplifies
the networking process, particularly in setting up and managing multiplayer game sessions
within Unity environments.

3.7.4 Voice Chat

For the voice communication component of the game, Vivox has been selected as the pre-
ferred solution due to its widespread popularity and ease of use [19]. Vivox is renowned
for providing robust, high-quality voice chat services that are seamlessly integrated into
gaming environments.

3.8 Testing

Testing is a critical component of the game development process, and it is structured in
phases to ensure thorough evaluation and refinement of the game’s mechanics and usability.

31

3.8.1 Imitial Developer Testing

In the early stages of development, testing will be carried out primarily by the developer.
This phase focuses on preliminary assessments of core game functionalities, such as the
basic user interface and single-player elements, before integrating more complex features
such as multiplayer capabilities and time manipulation mechanics.

3.8.2 Player Testing Phase

Once the foundational mechanics are implemented, the testing will expand to include ex-
ternal players. This phase is crucial for understanding the player experience in a real-world
scenario. Key elements of the player testing phase include:

Setup and Initial Interaction:

Testers will receive the game with no prior instructions to assess the intuitiveness of the
game setup and basic mechanics. This approach helps identify any initial hurdles or mis-
understandings that could impede player engagement.

Observational Studies:

The behavior of the testers will be closely observed during gameplay to pinpoint areas of
confusion or difficulty. This observation is vital for refining gameplay flow and ensuring
that the game mechanics are understandable and accessible.

Feedback Collection:

After testing, feedback will be collected systematically using a questionnaire. This feedback
is instrumental in gauging player satisfaction and identifying aspects of the game that
require improvement.

32

Chapter 4

Implementation

This chapter presents an organized overview of the implementation sequence, detailing
the step-by-step process of the project’s development. The implementation was carried out
using the Unity engine, which utilizes C# as its primary scripting language.

4.1 Unity Engine

Unity is a versatile game engine renowned for its comprehensive capabilities in developing
both 2D and 3D video games, simulations, and interactive experiences. Its core strength lies
in its flexibility and the extensive ecosystem of tools and assets available through the Unity
Asset Store. This richness makes Unity an ideal platform for the efficient creation of diverse
gaming projects.

4.1.1 Implementation Using Unity

The decision to use Unity Engine for this project was primarily driven by its all-encompassing
development environment, which supports C# scripting, an extensive array of libraries, and
built-in functionalities that streamline development processes. Unity’s real-time rendering
capabilities, combined with its sophisticated physics engine, facilitate the creation of re-
alistic and interactive experiences, elements that are pivotal for the immersive aspects of
the project.

In this project, Unity provided a cohesive environment in which various components
such as 3D models, animations, and user interface elements could be seamlessly integrated.
The engine’s robust character controller and advanced networking library were particularly
instrumental in developing the game’s interactive and multiplayer features.

For this project, Unity provided a cohesive environment where components such as
3D models, animations, and user interface elements could be integrated seamlessly. The
engine’s characters controller and networking library.

4.2 Camera

The implementation of the first-person camera was prioritized as it is a fundamental aspect
of player interaction and immersion in the game. The code provided controls both the posi-
tioning and orientation of the camera, responding dynamically to player input. This section
will explore the structure and functionality of the camera control system.

33

=W N

4.2.1 Camera Positioning

cameraHolder.transform.position = transform.position + new Vector3(0f,
1.9f, 0f);

Listing 4.1: Setting the camera to eye level in a game environment

This line positions the camera within the game world, specifically at the player’s loca-
tion, offset by 1.9 units vertically to simulate the height of the human eyes. This positioning
is crucial to ensure that the camera provides a perspective that feels natural to the player,
enhancing the realism of the game environment.

4.2.2 Input Handling

float mouse_x = Input.GetAxisRaw("Mouse X") * Time.unscaledDeltaTime *
sensitivity;

float mouse_y = Input.GetAxisRaw("Mouse Y") * Time.unscaledDeltaTime *
sensitivity;

Listing 4.2: Mouse input handling for camera control

These lines are integral to the camera’s responsiveness, capturing horizontal and vertical
mouse movements. The input is scaled by a sensitivity factor, which adjusts the camera’s
responsiveness to mouse movements, allowing for customization based on player preference
or gameplay requirements.

The use of Time.unscaledDeltaTime is particularly noteworthy. Unlike deltaTime,
which varies with changes in the game’s time scale, Time.unscaledDeltaTime remains
consistent even when the game’s time scale is altered or set to zero. This consistency
ensures that camera movements stay smooth and responsive, crucial for maintaining player
control and immersion in scenarios where the game’s time scale frequently changes, such as
during slow-motion effects or gameplay pauses.

Furthermore, the use of Input.GetAxisRaw to capture mouse movements is critical for
maintaining high precision. This method fetches the raw input from the mouse without
any smoothing or filtering applied, which is vital for fast-paced gaming scenarios where
instantaneous camera adjustments are necessary to maintain an immersive and competitive
player experience.

4.2.3 Camera Orientation

_rotation_y += mouse_x;

_rotation_x -= mouse_y;

_rotation_x = Mathf.Clamp(_rotation_x, -90f, 90f);

cameraHolder.transform.rotation = Quaternion.Euler(_rotation_x,
_rotation_y, 0f);

orientation.rotation = Quaternion.Euler(0f, _rotation_y, 0f);

Listing 4.3: Updating camera orientation based on mouse input

These lines update the camera’s orientation based on the processed input data. The horizon-
tal rotation (_rotation_y) affects both the camera and the player’s orientation, enabling

34

yaw movements that are essential for navigation. The vertical rotation (_rotation_x) is
clamped to prevent the camera from overturning, maintaining a realistic human field of
view. This clamping also prevents disorientation and enhances the user experience by keep-
ing the horizon level constant.

4.3 Movement

4.3.1 Initial Approach Using Unity’s Physics Engine

Initially, movement in the game was facilitated through Unity’s built-in 3D physics engine
[18]. This method involved applying forces to rigid bodies using the AddForce function,
which inherently relies on Time.deltaTime to calculate movement. This dependence on
the game’s time scale posed a challenge; Time.deltaTime varies with changes in time scale,
compromising movement control especially when the time scale is reduced to zero.

4.3.2 Transition to Unity’s CharacterController

Due to the need for consistent player movement regardless of time scale adjustments,
I switched to using Unity’s CharacterController [18]. This component simplifies move-
ment mechanics by allowing movement that is constrained by collisions without the com-
plexities of managing a rigid body. The CharacterController is not influenced by forces
and is driven by the Move function, which can effectively utilize Time.unscaledDeltaTime.
This approach ensures that player movement remains fluid and responsive, even when the
game’s time scale is altered or set to zero, thereby maintaining consistent gameplay expe-
rience and control.

4.3.3 Ground Check

_isGrounded = Physics.CheckSphere(groundCheck.position, groundDistance,
groundMask) ;

Listing 4.4: Ground check for player’s position in game environment

Before applying movement or jump logic, the code checks if the player is grounded by using
a sphere cast positioned at groundCheck.position and with a radius of groundDistance.
This check determines whether the sphere intersects with any colliders on the groundMask
layer, effectively ensuring that the player is on the ground

4.3.4 Movement Input and Calculation

_currentMovementInput = new Vector2(Input.GetAxisRaw("Horizontal"),
Input.GetAxisRaw("Vertical"));

Vector3 moveDirection = _ctx.orientation.forward x*
_ctx.CurrentMovementInput.y + _ctx.orientation.right *
_ctx.CurrentMovementInput.x;

_ctx.controller.Move(moveDirection * _ctx.speed * Time.unscaledDeltaTime) ;

Listing 4.5: Calculating and applying player movement input

35

Players provide input through the vertical and horizontal axes, which are captured raw
for more precise control responses. The move direction is computed using the player’s
orientation, allowing movement relative to where the player is facing. The movement is
then applied using Time.unscaledDeltaTime to ensure that the player’s movement speed
remains consistent, independent of any variations in the game’s time scale.

4.3.5 Jump Mechanics and Formula

_ctx.Velocity = new Vector3(_ctx.Velocity.x, Mathf.Sqrt(_ctx.jumpHeight *
-2f * _ctx.gravity), _ctx.Velocity.z);

Listing 4.6: Velocity calculation formula

The jump mechanic is activated when the player presses the jump button and is confirmed
to be on the ground. The key to the mechanic is the calculation of the initial vertical
velocity (vg) that the character needs to achieve a specific jump height (h). The formula
used is the following.

w=vh-(2)-g (41)

In this context, vy represents the initial velocity necessary for the jump, h is the desired
jump height, and ¢ is the acceleration due to gravity, which on Earth is approximately
9.81m/s%. This value is negative in Unity as gravity pulls objects downward. The formula
is derived from the kinematic equations that describe the motion of objects in free fall: [4]

v? = vk +2gh (4.2)
In the game’s simulation, where v (the final velocity) is zero at the peak of the jump, the
formula simplifies to calculate the necessary initial velocity for the ascent. By using the
square root of the product of twice the jump height and the gravitational acceleration, we
obtain the precise initial speed required to reach the desired jump height.

Because Unity uses a coordinate system where gravity is defined with negative values
to represent the downward force, the gravity variable is set to —9.81. Moreover, to reflect
this in the code, instead of using a positive 2 as the multiplier for gravity in the equation,
a negative value is used, hence the ,—2f*“ seen in the code. This ensures that the jump
mechanic functions correctly within the game’s physics system, allowing for a predictable
and realistic jump experience.

4.3.6 Gravity Application

_velocity += new Vector3(Velocity.x, gravity * Time.unscaledDeltaTime,
Velocity.z);

controller.Move(Velocity * Time.unscaledDeltaTime) ;

Listing 4.7: Applying gravity to player’s vertical velocity

Gravity is continuously applied to the player’s vertical velocity, affecting the player’s jump
and fall. This application uses Time.unscaledDeltaTime to maintain consistent behavior
under variable time scales, simulating realistic gravitational effects.

36

4.4 Hierarchical State Machine

Implementing a hierarchical state machine in a game can greatly enhance the control and
management of different state levels of the game [11]. Here is an overview of how the
hierarchical state machine is structured in this game, including its three levels: ,time
management,”“ ,grounded“ and ,movement states, along with an outline of the essential
scripts that define the state machine. State machine diagram can be seen in Figure 4.1.

4.4.1 Time Management (root level)

The root level of the state machine, 'Time Management’, oversees all time-related controls
within the game, comprising four primary states:

1. Time Slowed: When both players are present, allowing full movement capabilities.
2. Time Stopped: Player can move while the game time is halted.

3. Time Moving: Limited to camera movement, no player motion allowed unless tran-
sitioning to ,,Time Slowed.“

4. Game Paused: Complete game pause initiated by a player, typically by pressing
Esc, stopping all movement and enabling menu interaction.

The transitions between these states are controlled via network variables. For exam-
ple, when one player moves, the state switches to ,,Time Stopped* for the mover and
to ,Time Moving“ for the other. When the moving player stops, both players’ state
switches to , Time Slowed“. ,,Game Paused“ state can be entered independently.

4.4.2 Grounded and Jumping

These are direct substates under , Time Management.“ The transition to ,Jumping® is
triggered by the player pressing the spacebar, and it persists until the character lands and
reverts to the ,,Grounded“ state.

4.4.3 Movement States

Under ,,Grounded“ and ,,Jumping,“ substates govern detailed player movements. There are
currently two:

1. Idle: For camera navigation and standing still.

2. Moving: Activated when the player initiates movement.

Both ,,Grounded“ and ,Jumping“ states can transition into any of the ,Movement
States,“ enabling a full range of actions even while in the air.

4.4.4 State Machine Scripts

The state machine is built upon three fundamental scripts:

1. PlayerStateMachine: The PlayerStateMachine is the central controller for player
states within the game, inheriting from NetworkBehaviour to manage state transi-
tions and behaviors across a networked environment. It stores all necessary player

37

variables and initializes a state factory to create different player states as needed.
This setup allows for dynamic state management based on gameplay conditions. Un-
like typical MonoBehaviour classes, concrete states in the state machine inherit from
PlayerBaseState and do not directly invoke MonoBehaviour’s Update method. In-
stead, the state machine manually calls the Update method for the current state
and any substates, ensuring that all state-specific logic is processed efficiently and
encapsulated properly.

. PlayerStateFactory: This class functions as a factory for creating player state
instances, holding a reference to PlayerStateMachine to provide context for each
new state instance it generates.

. PlayerBaseState: An abstract base class defining the core structure for all player
states in the game. Concrete states like ,Idle, ,Walk,* ,Jump,” etc., inherit from
this class and implement its abstract methods to define their behavior. The code for
PlayerBaseState can be found in the Appendix A of this document.

Player State Machine

Start

Game States

[e e e e e e e e e e e e e e e e e e e S S e s B e S S e s S

ime stopped

Time slowed

Game paused

Figure 4.1: Hierarchical state machine diagram.

38

UL W N

4.5 Multiplayer

Multiplayer functionality is implemented using Netcode for GameObjects. The initial pack-
age installed is Relay (version 1.0.5). The Unity project needs to be linked to Unity Cloud,
which can be done through Project Settings under Services. Next, go to Unity Cloud, select
the project, navigate to the Multiplayer tab, and enable Relay [17].

4.5.1 Relay

Relay is implemented in the CreateRelay and JoinRelay scripts. The first step is to
initialize Unity services and authenticate the user, achieved using Unity Authentication
[18]. Unity Authentication allows for anonymous user sign-in. In the JoinRelay script,
users are signed in through the Start method, which is called from the main menu. The
code snippet for this process looks as follows:

await UnityServices.InitializeAsync();
if ('AuthenticationService.Instance.IsSignedIn)
{

await AuthenticationService.Instance.SignInAnonymouslyAsync();

Listing 4.8: Initializing Unity services and handling user authentication for relay setup

The code includes a condition to check if the user is already signed in, accounting for cases
where the user returns to the main menu from the game while still signed in.

The next step is to create the actual relay. This involves creating an allocation on
an available relay server:

Allocation allocation = await
RelayService.Instance.CreateAllocationAsync(1);

Listing 4.9: Creating a relay allocation

Here, the allocation sets the number of players who can join the server, specified in the first
parameter, which is set to 1 in this example.
Subsequently, you need to retrieve the join code and display it to the player:

string joinCode = await
RelayService.Instance.GetJoinCodeAsync(allocation.AllocationId);

Listing 4.10: Retrieving the join code for player connection

After this, in the JoinRelay script, the player can join the server using:

JoinAllocation joinAllocation = await
RelayService.Instance.JoinAllocationAsync(joinCode);

Listing 4.11: Joining the relay server using the retrieved join code

4.5.2 Netcode for GameObjects

After setting up the relay allocation, the next step is to open a connection using Netcode
for GameObjects and its underlying protocol, Unity Transport [10]. This involves installing

39

the necessary packages: Netcode for GameObjects, Multiplayer Tools, and Unity Trans-
port. The NetworkManager object is created and set to DontDestroyOnLoad, making it
persistent throughout the game. More about persistent objects can be found in Section 4.7.
Subsequently, it is necessary to add the NetworkManager component to this object.

In the NetworkManager inspector, the network transport layer is set to Unity Transport.
All important elements of the inspector are highlighted in Figure 4.2. The Unity Transport
component is configured to use the Relay Unity Transport protocol in inspector. The script
then connects Relay with Transport using:

RelayServerData serverData = new RelayServerData(allocation, "dtls");

NetworkManager.Singleton.GetComponent<UnityTransport>()
.SetRelayServerData(serverData) ;

NetworkManager.Singleton.StartHost () ;

Listing 4.12: Configuring Netcode for GameObjects with Unity Transport for relay-based
multiplayer setup

Here, Relay Server Data is initialized with the relay server allocation and configured for
DTLS, which adds an extra layer of security. The StartHost method initiates the host,
while StartClient can be used to start a client.

To prepare the player object prefab, add the NetworkObject component and create
a network prefab list, adding the player prefab to it. Next, assign the player prefab
to NetworkManager’s Player Prefab element in the inspector, enabling automatic player
spawning. Lastly, add the created network prefab list to the NetworkManager’s Network
Prefab Lists element in inspector. This allows the object to be shared across multiple
NetworkManagers.

40

v

v Unity Transport

IProtocoI Type
ax Packet Queue Size

Relay Unity Transport

150

Max Payload Size 6200
Heartbeat Timeout MS 500
Connect Timeout MS 1000

Max Connect Attempts 60

Disconnect Timeout MS 30000
» Debug Simulator

Address 127.0.0.1

Port 7777

| | It'srecommended to leave remote connections disabled for local testing to
* avoid exposing ports on your device.

Allow Remote Connections?
Override Bind IP (optional)

¥ # v Network Manager o
Run In Background v
Log Level Normal v

Player Prefab @ Player ®

Network Prefabs Lists 1

= Element0 GNetworkPlayer (Network Prefabs List) ©®

+ =

General

Protocol Version 0

Network Transport
ick Rate

NetworkManager (Unity Transport) ®©

Performance
Ensure Network Variable Le

Figure 4.2: Screenshot of NetworkManager inspector with important elements highlited in
red.
4.5.3 Synchronization

To manage player movement synchronization, add a check to ensure only the player’s input
is processed:

if (!IsOwner) return;

Listing 4.13: Skipping script execution if not the player owner

Next, add ClientNetworkTransform to player prefab, as described in section 4.6.3, to syn-
chronize player movements across the network.

4.6 Player Shadow

In the game, players are situated in separate but parallel dimensions, represented as different
scenes within Unity’s environment. The scenes, labeled as 1levell_1D and levell_2D, are
identical in layout but diverge in obstacle placements. A screenshot of the player’s shadow
can be seen in Figure 4.3.

41

4.6.1 Scene Segregation and Player Spawning

Fach player is spawned into a designated scene - the first player in 1D’ and the second
in 2D’ Despite being in separate scenes, it’s vital for players to be aware of each other’s
positions to maintain the cooperative and competitive elements of the game.

4.6.2 Visual Representation Through Shadows

To bridge the dimensional gap, I employ a ,shadow® representation system. The ,shadow*
is a non-interactive placeholder within each scene that represents the other player. It is
a networked object that mirrors the player’s movements without possessing any physical
properties, such as colliders, that would allow for interaction with scene elements.

Figure 4.3: Screenshot of player’s shadow.

4.6.3 Coordinate Sharing and Synchronization

Synchronization between player and shadow coordinates in parallel dimensions is achieved
using the ClientNetworkTransform script from the Netcode for GameObjects package [10].
This script facilitates client-side game state changes, including position updates, reducing
the dependency on the host for synchronization tasks. The player object is equipped with
this script, configured to synchronize position data exclusively.

4.7 Scene Management

The inherent design of the Netcode for GameObjects’ scene management expects players
to reside within the same Unity scene. However, my game’s design involves multiple di-
mensions, each represented as a separate scene (1D’ and ’2D’), necessitating a different
approach to scene management.

UnityEngine.SceneManagement .SceneManager.LoadScene ("LevelX_XD");

Listing 4.14: Loading a new scene based on player

42

=W N

This line of code is responsible for placing players in their respective scenes and varies
depending on whether a player is joining or hosting:

1. Joining Players: Upon joining, a player is transitioned to the appropriate scene
using the MovePlayerToScene () method, which is used in JoinRelay.cs script.

2. Hosting Players: The player hosting the game is immediately transferred to the
1D’ scene upon selecting ,Host game®“ in the Main Menu.

Persistent Objects Across Scene Transitions

To ensure that critical objects (such as player objects, Vivox for voice communication, and
NetworkManager) persist across scene loads and reloads, Instance scripts are used. These
scripts create instances of objects and employ Unity’s DontDestroyOnLoad method [18] to
prevent these objects from being destroyed during scene transitions.:

DontDestroyOnLoad (gameObject) ;

Listing 4.15: Preserving objects between scene transitions

This approach ensures the continuity of crucial gameplay components and uninterrupted
network functionality throughout the game.

4.8 Vivox

First, it was necessary to integrate Vivox into the project using Unity Cloud, followed by
installation through the Unity Package Manager [17]. To properly utilize the Vivox SDK,
initialization is required with the following steps:

await UnityServices.InitializeAsync();
await AuthenticationService.Instance.SignInAnonymouslyAsync();
await VivoxService.Instance.InitializeAsync();

Listing 4.16: Initializing Vivox SDK for voice communication

When using Unity Game Services, the Vivox package automatically manages credentials
and tokens [18]. Subsequently, it is essential for the player to log in using:

LoginOptions options = new LoginOptions();
options.DisplayName = UserDisplayName;
options.EnableTTS = true;

await VivoxService.Instance.LoginAsync(options);

Listing 4.17: Logging in to Vivox for voice communication

Once the player is logged in, the JoinGroupChannelAsync method can be utilized to join
a channel [19], with channelName serving as the unique identifier for the channel:

await VivoxService.Instance.JoinGroupChannelAsync(channelName,
ChatCapability.AudioOnly);

Listing 4.18: Joining a group channel for voice communication in Vivox

43

http://JoinRelay.es

Chapter 5

Testing, and Suggestions for
Improvements

This chapter will illustrate the methodologies employed to validate the game’s functionality,
including user studies. The aim is to provide a comprehensive overview of the verification
process and its outcomes.

5.1 Approach to Testing

To ensure a robust evaluation of the game, two different testing approaches were used.
These methods were designed to cover both the technical functionality of the game and its
usability from a player’s perspective.

5.1.1 Preliminary Testing

The initial phase of testing was carried out by the developer, focusing on each new feature
as it was integrated into the game. Given that the game requires two players, certain
features could not be thoroughly tested by a single individual. Consequently, another
tester was occasionally brought in to help. This phase of testing was crucial for identifying
and addressing fundamental issues such as movement discrepancies and collision detection
failures.

5.1.2 Comprehensive Player Testing

Following preliminary testing, a more extensive testing phase was implemented. For this,
early versions of the game were distributed to selected players. Accompanying these distri-
butions was a brief guide, serving as a provisional tutorial to aid players in understanding
the game mechanics. This guide is intended to be replaced in future versions by a short
tutorial animation, which was not the focus of this thesis due to its emphasis on other
developmental aspects.

Players were encouraged to engage with the game naturally, without further guidance
or intervention. After completing their play sessions, participants were asked to complete
a questionnaire. This questionnaire was designed to collect feedback on your experience,
report any bugs encountered, and provide suggestions for improvements. This method of
unguided testing was invaluable for observing authentic player reactions and gathering data
on the game’s intuitiveness and overall user experience.

44

5.2 User Study

The user study is structured into five distinct sections, each designed to collect specific
types of data about players’ experiences and interactions with the game.

5.2.1 Player Experience

The first section assesses the gaming experience of the players to tailor the complexity and
interface of the game accordingly. Questions include:

¢ Do you play video games?
o How experienced are you with playing video games?
¢ On average, how many hours a day do you play video games?

This section helps to understand the player’s familiarity with video games, which can in-
fluence their interaction with the game’s mechanics and user interface.

5.2.2 User Interface

This section evaluates how intuitive and user-friendly the game’s interface is, crucial to
ensuring that players can navigate and utilize game features effectively. Questions asked
are:

e How would you rate the clarity of the main menu?

o How easy was it to start playing the game?

e How clear was the location of your teammate?

o How easy was it to recognize that your movement is blocked?

e How visible were the obstacles?

e How clear was the goal of the level?

e Did you find any bugs in the user interface? If so, please describe.
o Comments and suggestions for improvements to the user interface.

Feedback from this section is intended to refine the user interface to ensure that it is not
only aesthetically pleasing but also functional and straightforward.

5.2.3 Understanding the Main Mechanic: Time Manipulation

This section investigates the players’ comprehension and engagement with the central game
mechanic of time manipulation. Questions include:

o How well explained was the time control mechanism?
e How easy was it to understand the time control?

e How interesting did you find the time control mechanic?

45

e Was the first level sufficient for you to understand how to control time?
e Did you find any bugs in the time manipulation? If so, please describe.
o Comments and suggestions for improving the time control mechanics.

Feedback gathered here will help in assessing whether the time manipulation mechanic is
accessible and engaging, and how it might be improved.

5.2.4 Game Balancing

The fourth section gathers information on the difficulty levels of the game and the effec-
tiveness of in-game communication between players. Questions include:

e How challenging was it to communicate with your teammate?
e How difficult was the first level?

e How difficult was the second level?

e How difficult was the third level?

e Was the character’s speed comfortable for you?

e Was the speed of the obstacles comfortable for you?

e Did you have enough time to plan you approach?

o Comments and suggestions on game balance.

This section aims to adjust the game’s challenge to suit a broad range of players, ensuring
it is neither too easy nor prohibitively difficult.

5.2.5 General Comments

The final section allows players to provide open-ended feedback on any aspect of the game:
¢ Did you encounter any additional bugs?
e Do you have any suggestions for improvements?

This open-ended feedback is crucial to identify issues that structured questions might not
cover and to gather innovative ideas from players.

5.3 Results

The results of the questionnaire are presented in the following sections. Data were collected
from seven different participants.

46

5.3.1 Player Experience

The experience levels of participants were rated on a scale from 1 to 5, where 1 signifies

"inexperienced’ and 5 denotes ’very experienced’.

Player: 112 (3 (4|5 |6 |7
Do you play video games? Y|IY|Y|Y|Y|Y|Y
How experienced are you with playing video games? 4 |15 |4 1(4 |5 |5 1|5
How many hours per day do you play video games? 5+ 5+ 1 |1 | 5+ 2 | 2

Table 5.1: Player Experience results

5.3.2 User Interface

The user interface was evaluated on a scale from 1 to 5, where 1 indicates 'not clear/not

easy’ and 5 represents 'very clear/very easy’.

Player:

How would you rate the clarity of the main menu?

How easy was it to start playing the game?

How clear was the location of your teammate?

How easy was it to recognize that your movement is blocked?
How visible were the obstacles?

How clear was the goal of the level?

QL Ot Ot W = O =

QU Ot O = O O N

QU U = Ot W O W

QU Ot O = O O

QU Ut = Ot DN Ot Ot

T W W w oo

=W W ks Ot oy

Table 5.2: User Interface results

5.3.3 Understanding the Main Mechanic: Time Manipulation

The understanding of the main game mechanic, time manipulation, was evaluated using
a scale from 1 to 5. On this scale, a rating of 1 corresponds to 'very hard/not interesting /not

well explained’ and 5 represents 'very easy/very interesting/very well explained’.

Player:

How well explained was the time control mechanism?

How easy was it to understand the time control?

How interesting did you find the time control mechanic?
Was the first level sufficient for you to understand how to
control time?

..<:Ulpl>UlH

;.<CY!U!CY![\3

<Ot W e W

4
5
1
5
Y

5
4
1
5
Y

<o W W o

OU R

Table 5.3: Understanding time manipulation results

5.3.4 Game Balancing

The game balancing was evaluated using a scale from 1 to 5. On this scale, a rating of 1
corresponds to 'very hard/too slow’ and 5 represents 'very easy/too fast’.

47

Player:

How easy was it to communicate with your teammate?
How easy was the first level?

How easy was the second level?

How easy was the third level?

Was the character’s speed comfortable for you?

Was the speed of the obstacles comfortable for you?
Did you have enough time to plan you approach?

N O N — N O Wk
N WN NN D
= Ot W = WOt W

Ao A DO A O | ot

N b= Wk = Ot WwWw

=W W ks = Ot Ol
N W W~ —= Ot o

Table 5.4: Game balancing results

5.4 Improvements

Feedback collected from the user study highlighted several valuable improvement ideas. The
participants suggested enhancing the time control mechanics by adding a visual indication
to show when the other player stops moving and implementing a stamina feature to limit
indefinite movement. In addition, there were calls to increase the number of levels and
obstacles, improve the visibility of obstacles, and show their trajectories.

Most of these improvements align with planned future developments, such as adding
stamina restrictions and expanding the game with more levels and obstacles. The sugges-
tions to visualize obstacle trajectories and provide visual cues for player movement cessation
are particularly intriguing and are being considered for integration in later stages of the
game’s development. These enhancements aim to enrich the gameplay and user interaction,
ensuring a more engaging and balanced experience.

5.5 Conclusion

In general, the participants expressed general satisfaction with the game, particularly high-
lighting the time manipulation mechanic as the most enjoyable and innovative feature.
Many found this aspect unique and expressed interest in revisiting the game in the fu-
ture. However, there were notable concerns about the balancing of the game. Specifically,
many participants found the obstacles too fast, limiting their ability to react effectively.
In response, adjustments were made to the obstacle speeds immediately after the feedback
sessions.

Despite positive reception, participants also encountered several bugs during the game,
particularly in levels 2 and 3. Although some of these issues were resolved immediately
after testing, others remain and are slated for future correction. Addressing these bugs is
a priority as the game continues to develop, ensuring that the gameplay experience is both
enjoyable and polished for all users.

48

Chapter 6

Conclusion

The goal of this thesis was to develop a cooperative game in which two players, each in
a different dimension, manipulate time to navigate through levels and avoid dangerous
obstacles. This objective was achieved successfully using the Unity engine, complemented
by networking tools such as Netcode for GameObjects and Unity Relay, which streamlined
development and facilitated an enjoyable multiplayer experience.

The thesis began with an analysis of the challenges in creating cooperative games,
proposing potential solutions, and culminating in the creation of a detailed game design
document. This document, which outlines the final state envisioned of the game, was con-
tinually refined throughout the development process. Initially, I utilized Unity’s physics
library to manage movement. However, this approach proved problematic due to its de-
pendency on the time scale of the game, which conflicted with the time stopping mechanic.
This necessitated a transition to Unity’s Character Controller for movement handling.

During development, I also faced challenges with poorly readable code that was difficult
to build on. To address this issue, I implemented a state machine. While this solution
required substantial code refactoring, it ultimately streamlined development, significantly
improving code modularity and readability. The greatest challenge of development was
synchronizing player actions, such as scene transitions and menu interactions, particularly
synchronizing the state machines of both players. Although I managed to achieve synchro-
nization, there remains room for improvement.

From this project, I gained valuable experience working with multiplayer systems and
learned the importance of employing robust coding patterns from the outset. Had I known
the significance of this earlier, I would have prioritized establishing a sound coding frame-
work at the beginning of the implementation.

Moving forward, my goal is to continue developing this game. My short-term objectives
include resolving the remaining bugs identified during testing, adding more levels, and
introducing a greater variety of obstacles. In the long term, I plan to implement the
remaining game mechanics described in the game design document that were not included
due to the time constraints of this thesis. This continued work will not only complete the
game as originally envisioned but also enhance its depth and playability.

49

Bibliography

1]

[8]

[9]

[10]

[11]

BALTZAR, P.; HASSAN, L. and TURUNEN, M. Social accessibility in multiplayer
games: Theory and praxis. Entertainment Computing, 2023, vol. 47, p. 100592. ISSN
1875-9521.

BRryAN, R. Understanding the Fundamentals of Game Design. Medium online, 2023.
Available at: https://medium.com/@richardbryan2242/understanding-the-
fundamental-of-game-design-8ced9daaaabb. [cit. 2024-04-19].

CHARLES, D.; MCNEILL, M.; MCALISTER, M.; BLACK, M.; MOORE, A. et al.
Player-centred game design: Player modelling and adaptive digital games.
Proceedings of DiGRA 2005 Conference: Changing Views - Worlds in Play, january
2005.

CNXUNIPHYSICS. University Physics Volume 1 online. 2016. Available at:
https://pressbooks.bccampus.ca/universityphysicssandbox/. [cit. 2024-04-24].

COLE, H. and GRIFFITHS, M. Social Interactions in Massively Multiplayer Online
Role-Playing Gamers. Cyberpsychology behavior : the impact of the Internet,
multimedia and virtual reality on behavior and society, 2007, 10 4, p. 575-83.

CowLEY, B.; CHARLES, D.; BLACK, M. and HICKEY, R. Toward an understanding of
flow in video games. Computers in Entertainment, 2008, vol. 6, no. 2, p. 1-27.

CSIKSZENTMIHALYI, M. and LEBUDA, I. A Window Into the Bright Side of
Psychology: Interview With Mihaly Csikszentmihalyi. Eur J Psychol, 2017, vol. 13,
no. 4, p. 810-821.

Dissonance Voice Chat. online, 2023. Available at:
https://placeholder-software.co.uk/dissonance/docs/. [cit. 2024-04-23].

Mirror Networking Documentation online. 2023. Available at:
https://mirror-networking.gitbook.io/docs. [cit. 2024-05-01].

Netcode for GameObjects. online, 2024. Available at:
https://docs-multiplayer.unity3d.com/netcode/current/about/. [cit. 2024-04-24].

NyYsTROM, R. Game Programming Patterns. Genever Benning, 2014.

[12] OJEDA, C. M. In The Game: An Exploration of the Concept of Immersion in

Video-Games and its Usage in Game Design. 2007. Bachelor’s thesis. Edith Cowan
University. Available at: https://ro.ecu.edu.au/theses_hons/1298.

50

https://pressbooks.bccampus.ca/universityphysicssandbox/
https://placeholder-software.co.uk/dissonance/docs/
https://mirror-networking.gitbook.io/docs
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://ro.ecu.edu.au/theses_hons/1298

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

PETER ZACKARIASSON, M. W. and WILSON, T. L. Management of Creativity in

Video Game Development. Services Marketing Quarterly. Routledge, 2006, vol. 27,
no. 4, p. 73-97.

Photon Voice Intro. online, 2023. Available at:
https://doc.photonengine.com/voice/current/getting-started/voice-intro. [cit.

2024-04-23].

Introduction to Photon Unity Networking online. 2023. Available at:

https://doc.photonengine.com/pun/current/getting-started/pun-intro. [cit.
2024-05-01].

RuaGaGLEs, C.; WADLEY, G. and GIiBBS, M. Online Community Building Techniques
Used by Video Game Developers, 2005, vol. 3711, p. 114-125.

Unity Cloud online. Available at: https://cloud.unity.com/. [cit. 2024-05-01].

Unity Documentation - Unity Manual. online, 2024. Available at:
https://docs.unity3d.com/Manual/index.html. [cit. 2024-04-24].

Vivox Developer Documentation. online, 2023. Available at:
https://docs.vivox.com/v5/general/core/5_23_0/en-us/Default.htm. [cit. 2024-04-23].

WANG, H. and SuN, C.-T. Game Reward Systems: Gaming Experiences and Social
Meanings. online, 2012. Available at: https://www.researchgate.net/publication/
268351726_Game_Reward_Systems_Gaming_ Experiences_and_Social_Meanings. [Cit.

2024-05-02].

ZACAL, J. and RICK, J. Collaborative games: Lessons learned from board games.
Simulation Gaming - Simulat Gaming, 2006, vol. 37, p. 24—40.

51

http://photonengine.com/voice/current/getting-started/voice-intro
http://photonengine.com/pun/
https://cloud.unity.com/
https://docs.unity3d.com/Manual/index.html
https://docs.vivox.com/v5/general/core/5_23_0/en-us/Default.htm
https://www.researchgate.net/publication/

© 00 g O U s W N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Appendix A

Player Base State Abstract Class

public abstract class PlayerBaseState

{
protected bool _isRootState = false;
protected PlayerStateMachine _ctx;
protected PlayerStateFactory _factory;
protected PlayerBaseState _currentSuperState;
protected PlayerBaseState _currentSubState;

public PlayerBaseState(PlayerStateMachine currentContext,
PlayerStateFactory stateFactory)
{

_ctx = currentContext;
_factory = stateFactory;

public abstract void EnterState();

public abstract void UpdateState();

public abstract void ExitState();

public abstract void CheckSwitchState();
public abstract void InitializeSubStates();

public void UpdateStates()
{
UpdateState();
if (_currentSubState != null)

{
_currentSubState.UpdateState();
if (_currentSubState._currentSubState != null)

{
_currentSubState._currentSubState.UpdateState();

52

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

protected void SwitchState(PlayerBaseState newState)

{
ExitState();
if (_isRootState)

{
if (_currentSubState != null) _currentSubState.ExitState();

newState.EnterState();
_ctx.CurrentState = newState;

}
else if (_currentSuperState != null)
{
_currentSuperState.SetSubState (newState) ;
}

protected void SetSuperState(PlayerBaseState superState)
{

_currentSuperState = superState;

protected void SetSubState(PlayerBaseState subState)
{

_currentSubState = subState;
subState.SetSuperState(this);

_currentSubState.EnterState();

Listing A.1: Abstract base class for player states

53

