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Abstract 
The goal of this thesis is to implement a system for automatic language model adaptation 
for Phonexia A S R system. System expects input in the form of source that, which is 
analysed and appropriate terms for web search are chosen. Every web search results in 
a set of documents that undergo cleaning and filtering procedures. The resulting web 
corpora is mixed with Phonexia model and evaluated. In order to estimate the most 
optimal parameters, I conducted 3 sets of experiments for Hindi, Czech and Mandarin. 
The results of the experiments were very favourable and the implemented system managed 
to decrease perplexity and Word Error Rate in most cases. 

Abstrakt 
Cieľom práce je implementovat systém pre automatickú adaptáciu jazykového modelu pre 
Phonexia A S R systém. Systém prijíma vstupný súbor, ktorý analyzuje a vyberie vhodné 
výrazy pre webové vyhľadávanie. Každé webové vyhľadávanie prináša množinu dokumen
tov, ktoré podstupujú čistenie a filtrovanie. Výsledný webový korpus sa zmieša s Phonexia 
modelom a vykoná sa evaluácia. Pre odhad optimálnych parametrov boli vykonané viaceré 
experimenty pre hindštinu, češtinu a mandarínsku čínštinu. Výsledky experimentov boli 
pozitívne a implementovaný systém bol schopný znížiť perplexitu a Word Error Rate vo 
väčšine experimentov. 

Keywords 
speech-to-text, automatic speech recognition, language model, language model adaptation, 
automatic web search, automatic web document scraping, automatic assessment of web 
documents 

Kľúčové slová 
speech-to-text, automatické rozpoznávanie reči, jazykový model, adaptácia jazykového mod
elu, automatické prehľadávanie webu, automatické čistenie webových dokumentov, auto
matické vyhodnotenie webových dokumentov 

Reference 
GREGUSOVÁ, Sabina. Domain Specific Data Crawling for Language Model Adaptation. 
Brno, 2021. Master's thesis. Brno University of Technology, Faculty of Information Tech
nology. Supervisor Ing. Martin Karafiát, Ph.D. 



Rozšírený abstrakt 
Reč je jedna z najdôležitejších prostriedkov ľudskej komunikácie. S vývojom technológii 
sa ľudia začali zaujímať o možnosť spracovania reči pomocou digitálneho počítača. Táto 
oblasť sa veľmi rozšírila a očakáva sa, že v budúcnosti budú existovať počítače, ktoré sa 
budú ovládať hlasom. 

Takéto systémy sa globálne nazývajú ako systémy pre automatické rozpoznanie reči 
(Automatic Speech Recognition systems). V dnešnej dobe sa vyvíjajú systémy najmä pre 
prepis hovorenej reči, tzv. Speech-To-Text (STT) systémy. Ich úlohou je transformovať 
vstupnú nahrávku na jej čo najpravdepodobnejší prepis. Takéto systémy okrem iného vyvíja 
aj brnenská firma Phonexia, s ktorou som spolupracovala pri písaní tejto práce. 

Automatické systémy pre rozpoznanie reči sú jazykovo závislé a skladajú sa z 2 modelov: 
akustický model so slovníkom a jazykový model. Úlohou akustického modelu je detekovat 
jednotlivé fonémy v krátkych úsekoch (25 ms) nahrávky. Tieto fonémy sa podľa slovníka 
prepíšu na slová. Celé vety sú potom ohodnotené jazykovým modelom. Jazykový model 
v sebe združuje informácie o konkrétnom jazyku, aká je jeho syntax, sémantika a ktoré 
slová sa často vyskytujú spolu. Veta, ktorá je logický správne bude jazykovým modelom 
ohodnotená ako veľmi pravdepodobná, zatiaľ čo veta s náhodnými slovami bude ohodnotená 
ako málo pravdepodobná. 

Firma Phonexia vyvíja presne takéto systémy a okrem nich ponúka aj služby pre adaptá
ciu oboch modelov na cieľovú doménu. Adaptácia je veľmi dôležitá v prakticky nasadených 
systémoch. Môže totiž nastať situácia, že daný STT systém má vysokú presnosť na eval-
uačných datasetoch, ale po nasadení u zákazníka môže byť presnosť oveľa horšia. Toto 
sa deje najmä v prípadoch, ked zákazník používa STT vo veľmi špecifickej doméne, ktorá 
nebola zahrnutá v dátach pre trénovanie. Zákazník teda subjektívne hodnotí STT systém 
ako nevyhovujúci pre svoje potreby. 

Táto práca sa zaoberá automatickým adaptovaním jazykového modelu na cieľovú doménu 
pomocou sťahovania verejných dát . Štandardne adaptácia vyžaduje získanie nového datasetu, 
jeho transformáciu, čistenie a následná tvorba jazykového modelu. Tento proces je veľmi 
náročný na čas aj ľudské zdroje, preto by sme ho chceli zjednodušiť. 

Pre tento účel je implementovaný systém zreťazeného spracovania, tzv. pipeline. Táto 
pipeline je na základe súboru z cieľovej domény schopná stiahnuť podobné dáta. Vstupný 
súbor z cieľovej domény prejde analýzou a vyberú sa najvhodnejšie n-tice pre webové 
vyhľadávanie. Výber najvhodnejších n-tíc je ovplyvnený ich četnosťou výskytu v súbore a 
celkovou dĺžkou. Najoptimálnejšie n-tice sú použité vo webovom vyhľadávaní a pre každú 
n-ticu skript získa množinu vhodných url linkov. 

Každý webový dokument prechádza niekoľkými štádiami kontroly a čistenia, pretože 
chceme zamedziť pridávaniu irelevantných alebo špinavých dát do jazykového modelu. Po 
získaní webového dokumentu je z neho vyextrahovaný text zo všetkých žiadaných webových 
tagov. Tento text je očistený od akéhokoľvek HTML markupu a následne prechádza čistením. 
Vrámci čistenia sa text normalizuje tak, aby výsledný korpus bol v porovnateľnej kvalite, 
akú majú čisté dá ta vo Phonexii. 

Čistý text najskôr podstúpi jazykovú identifikáciu. Ak prejde cez tú to fázu, je posúdená 
jeho relevancia pomocou perplexity. Ak text uspeje, je možné ho ďalej pokročilo filtrovať 
na úrovni paragrafov alebo celého dokumentu. Výsledný text je zapísaný do webového 
korpusu. 

Po vytvorení webového korpusu sa pripraví jeho jazykový model. Tento model sa zmix
uje s pôvodným modelom z Phonexie a získame adaptovaný jazykový model. Pre rýchle 
porovnanie sa počas evaluácie vždy hodnotí perplexita pôvodného aj adaptovaného modelu. 



Celá pipeline je ovládaná pomocou konfiguračného súboru s množstvom vstupných 
parametrov. Pre výber najoptimálnejších parametrov som vykonala 3 sady experimentov s 
rôznymi jazykmi. Chcela som overiť aj jazykovú nezávislosť, preto boli vybrané nasledujúce, 
vzájomne veľmi odlišné jazyky: hindština, čeština a mandarínska čínština. 

Hindština nie je momentálne vyvíjaná vo Phonexii, preto bol s pipeline iba vytvorený 
webový korpus, ale mixovanie modelov bolo uskutočnené s Kaldi. Napriek tomu, že 
pôvodná perplexita bola relatívne nízka, nový model znížil perplexitu až o 7% a Word 
Error Rate o 1%. 

Čeština má pochopiteľne vo Phonexii veľmi vysoký štandard kvality. Pre adaptáciu 
som zvolila technický dataset Phonexie z oblasti automobilového priemyslu. V týchto 
experimentoch bol skript schopný znížiť perplexitu až o 73.9% a Word Error Rate, teda 
mieru chybovosti slov, o 8.7% pre celý A S R systém. 

Posledná sada experimentov bola vykonaná s mandarínskou čínštinou. Čínština je zo 
svojej podstaty veľmi neštandardný jazyk, preto som chcela otestovať, či bude skript dosaho
vať porovnateľné výsledky. Za dataset som zvolila jeden z Phonexia čínskych datasetov pre 
prirodzenú spontánnu reč. Pôvodná hodnota perplexity bola tak nízka, že sa jej zlepšenie 
ani nepredpokladalo. Experimenty potvrdili tento predpoklad, ale napriek tomu priniesli 
dôležitý náhľad na spracovanie neštandardných jazykov. Na základe dosiahnutých výsled
kov verím, že pipeline má potenciál dosiahnuť dobré výsledky aj pre mandarínčinu ak by 
bol zvolený viac špecifický dataset. 

Výsledky experimentov globálne hodnotím ako veľmi pozitívne. Práca potvrdila, že 
je možné využiť implementovánu pipeline pre automatickú adaptáciu jazykového modelu. 
Implementácia bude pridaná do repozitárov Phonexie a dúfam, že zlepší a zjednoduší tento 
proces pre mojich kolegov. 
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Chapter 1 

Introduction 

Speech is one of the most natural and easiest mean of human interaction. Therefore, it is 
no surprise that for decades, humans have tried to analyze, capture and recognize spoken 
language with digital computers. It is expected that at some point in the future, there 
will be a full human-computer interface based solely on speech, making it a very promising 
field of research. Automatic Speech Recognition (ASR) system is implemented to transcribe 
spoken speech to its written form. 

Typical A S R system consists of two components: acoustic model with lexicon and lan
guage model. Each component models different aspects of speech. In practice, both of these 
models can be dynamically adapted to various domains instead of re-training them from 
scratch. This is especially useful for real-life deployed systems, where re-training the model 
again and again would be unfeasible. 

Real-life systems also encounter a different set of problems, namely customer's dissat
isfaction with the system even though the accuracy on evaluation data was high. If a 
customer provides the target domain data, then the adaptation is fairly straightforward. 
However, there is often no customer data for the target domain adaptation, so a lot of extra 
labor to obtain and pre-process the target data is needed. This thesis aims to ease this 
issue by implementing a pipeline that automatically downloads and cleans web documents 
containing the target domain data for the language model adaptation. It explores language 
modelling and implements a fully automatic language model adaptation pipeline for a real 
A S R system of Brno's speech recognition company Phonexia. 

Firstly, chapter 2 introduces all the theoretical prerequisites, namely: speech creation, 
speech propagation and perception and general architecture of any A S R system and its 
components. 

Secondly, chapter 3 deals with language modelling, its methods, approaches, smoothing 
techniques, evaluations and difficulties in real-life applications. 

Chapter 4 contains the design and implementation of the language model adaptation 
pipeline. The pipeline is implemented through multiple different components and each of 
them can be used separately. It includes description of every component of the pipeline, 
their limitations and some practical information for their usage. 

Finally, chapter 5 presents a series of experiments conducted with the pipeline. The 
experiments were conducted on Hindi, Czech and Mandarin Chinese. 

Lastly, chapter 6 concludes the thesis with a summary of this work. It briefly describes 
the experiments' results and pitches some ideas for further research. 
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Chapter 2 

Automatic Speech Recognition 

Automatic Speech Recognition (ASR), often also referred to as Speech-To-Text (STT) or 
Speech recognition, represents a field of computer science that deals with spoken language, 
its processing and recognition. The main goal of such system is to transcribe spoken speech 
in audio format to to its most probable written form, which can be processed even further 
(foreign language translation, sentiment analysis, dialogue interaction). This saves time 
and makes human actions more efficient, therefore, it is expected that there will be an 
increase in the use of speech technology in the future. 

This chapter provides a brief overview of the most important theoretical prerequisites 
for the latter chapters. Each section contains references to multiple publications for further 
details. Section 2.1 provides fundamental knowledge about speech creation, propagation 
and perception. Section 2.2 deals with storing and processing the input speech signal 
inside digital computers. Section 2.3 explains the general architecture of automatic speech 
recognition system and its components. Lastly, section 2.5 introduces acoustic modelling 
with lexicon and some typical modelling approaches. Since language modelling is the central 
subject of this thesis, it is explored in detail in the separate chapter 3. 

2.1 Speech 

Speech is one of the most fundamental means for human interaction and communication. 
On an average day, humans can say up to 20000 words. Fundamentally, speech can be 
perceived as a series of sound signals that convey an idea of the speaker. The average 
person is equipped with organs that allow for natural speech production, with the main one 
being the vocal tract, vocal folds and lungs. Speech production starts with air in the lungs 
as the source of energy, which is then pushed up through the trachea and is modified by 
the vocal folds and the vocal tract. Vocal folds are two small muscles located in the throat 
and are part of the respiratory system. They can be closed and as a result vibrate when air 
passes through, which produces voiced sounds, or they can be opened, thus too far away to 
vibrate, which produces unvoiced sounds. 

Voiced sounds have regular, almost periodic pattern in the time domain. A l l vowels and 
diphthongs (combination of two neighboring vowel sounds into one) are voiced. Unvoiced 
sounds have very irregular structure similar to noise. Consonants can be voiced or unvoiced. 
It is easy to distinguish between the two types by placing a hand on the throat when 
speaking. If it is possible to feel the vibrations of the vocal cords, then the consonant is 
voiced, otherwise it is unvoiced. 
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Figure 2.1: Human speech production system. Taken from [5]. 

The physical structure of the vocal folds directly influences fundamental frequency (FO). 
Fundamental frequency is subjectively perceived as a pitch of the voice. Male voices have 
FO in the range of 80 - 150 Hz while for female voices, it is usually one octave higher at 
a range 160 - 250 Hz. Moreover, children's voices can have fundamental frequency of 300 
Hz. 

Finally, when the air reaches the vocal tract, it can pass through two pathways: oral 
tract or nasal tract. The resulting sounds are heavily influenced by various positioning of 
tongue, teeth and lips [15], [10]. 

The smallest unit of speech that distinguishes words from each other is called a phoneme. 
A n acoustic realization of a phoneme is called a phone. A l l phonemes are grouped and stan
dardized by the International Phonetic Alphabet (IPA), which represents all phonemes 
by a set of symbols. The speech production process is universal and does not depend on 
the language, but each language uses a characteristic subset of phonemes. 

S p e e c h p r o p a g a t i o n 

Speech, as any other sound signal, travels through air in the form of waves. The speed 
of sound (distance travelled per unit of time) is influenced by various factors, but mainly 
temperature and the medium which the sound wave travels through. As the sound waves 
pass through space, they lose energy. In 20°C, the speed of sound is believed to be approx
imately 343 m/s, but it is not always the same. The closer the molecules are to each other 
in the transport medium, the easier it is for the sound waves to pass through. That's why 
it is easier for a sound wave to pass through solids, rather than liquids or gases. 

Additionally, the frequency of the sound wave also influences how it interacts with 
objects that appear in its way. High frequency sound waves are absorbed through concrete 
walls, whilst lower frequency sound waves pass through with minimal absorption. Therefore, 
structure of the sound wave at any point in space and time is greatly influenced by many 
external factors. 
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Essentially, sound wave causes changes in the air pressure. These changes can be picked 
by a microphone and converted to voltage and processed by a computer. Therefore, we 
want to minimize the influence of external factors during speech recordings. Ideally, speech 
should be recorded in a quiet environment with dedicated microphone and a single speaker 
speaking directly to the microphone. Achieving perfect recording conditions is difficult, 
especially when collecting large chunks of data from many different people. If we cannot 
guarantee ideal conditions, the general advice is to record speech in the same or similar 
conditions for all recordings [15], [10]. 

H e a r i n g 

Similarly to microphone, human ear can also distinguish changes in the air pressure and 
we subjectively perceive this passive process as hearing. Human auditory system consists 
of three parts: the outer ear, the middle ear and the inner ear. The acoustic wave firstly 
travels through the ear canal of the outer ear to the eardrum. The air pressure from the 
wave mechanically vibrates on the eardrum, whilst middle ear passes the information about 
vibrations to the inner ear. There is a small complex organ named cochlea that is located in 
the inner ear. Cochlea has a spiral shape resembling a snail shell and is filled with fluid that 
propagates these vibrations. Organ of Corti inside the cochlea is responsible for translating 
the mechanical vibrations to the electrical impulses and sending them to the brain. 

The incoming impulses are analyzed by our brain, which results in the subjective per
ception of hearing. Humans can generally hear frequencies from 16 Hz to 20 kHZ, but as 
we age, the upper frequency limit can drop as low as 14 kHz. Hearing is the most sensitive 
to the frequencies in the range from 2000 Hz to 5000 Hz. On top of that, human hearing 
is not linear or flat, but logarithmic. The intensity of the energy from the sound waves is 
measured in decibels (dB). Humans are less sensitive to lower frequencies and such signals 
actually must have higher intensity in order to be audible for us [15], [10]. 

10 100 1000 10000 
Frequency (Hz) 

Figure 2.2: Graph of equal loudness for frequencies inside the human hearing range. 
Taken from [12]. 
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2.2 Digital signal processing 

When processing and storing speech digitally, the analog input speech signal must be firstly 
converted to digital signal by the analog-to-digital converter. The converter carries out 
the following: 

1. Sampling: a process of converting analog signal to digital by recording values for 
n samples per seconds, where n is the sampling frequency (fs). Nyquist-Shannon 
sampling theorem establishes that a signal can be discretized and fully reconstructed 
if the sampling frequency is at least twice as high as the maximum frequency con
tained in the input signal. Sampling is often preceded by filtering with anti-aliasing 
filter. Anti-aliasing filter removes all the frequencies higher than half of the sampling 
frequency, so no aliasing occurs. 

2. Quantization: a process of mapping any floating values of amplitude to a finite set of 
quantization levels. This finite set of quantization levels is given by the bit resolution, i . 
e. how many bits will be used to store each value of amplitude. Uniform quantization 
assumes uniform distribution of quantization levels. Input signal is assumed to be 
normalized in the range (—1,1) by default. For each sample, the value of amplitude 
is rounded to the closest value from the finite set of quantization levels. 

3. Encoding: a process of assigning a clear binary value to each quantization level. 
The quantization levels are spread either uniformly or non-uniformly. Non-uniform 
encodings take advantage of the fact that humans are less sensitive to higher frequen
cies. Therefore, higher frequencies can be captured with fewer quantization levels 
than lower ones, simply because we subjectively do not hear the difference. 

After this process, the signal can be stored and manipulated digitally. In speech pro
cessing, digital signal is usually represented either in a time domain or a frequency domain. 
Signal in the time domain simply plots the level of air pressure of samples over time. 
However, representing the signal in the time domain is generally ambiguous, thus using 
frequency domain is more prevalent for further processing and analysis. Signal in the fre
quency domain is usually visualized by a spectrogram. Spectrogram plots time on the x-axis, 
frequency (usually half of the sampling frequency) on the y-axis, and the intensity in dB 
for each frequency at every point in time as a coloured tile. 

(i 



(b) Sound recording in the frequency domain as a spectrogram. The redder the colour, the higher 
the intensity. 

Figure 2.3: Speech recording visualized in both the time domain and frequency domain. 
Utterance of " W i l l we ever forget it". Taken from 1. 

T h e b r i d g e b e t w e e n d o m a i n s 

As explained above, both of these domains come with their advantages and disadvantages. 
The most notable advantage of using frequency domain is simplification of mathematical 
operations and equations. Fouriers's work [8] from the 19th century laid a base for the 
famous Fourier transform used to this day. Fourier claimed that any function can be 
expressed as a sum of sines, regardless of whether it is discrete or continuous. 

Building upon that, it was discovered that we can use an integral to exploit the proper
ties of the complex exponential. Complex exponential e2^^ provides a nice encapsulation 
for both the real and imaginary parts of the signal. By Euler's rule, the complex exponential 
can be decomposed as: 

ej2nft = jgin^ft) + cos(27rft) (2.1) 

Essentially, the signal in the time domain can be represented as a sum of sines and cosines 
(i.e. the complex exponential) at different frequencies. These waves are then projected 
onto a frequency spectrum and we get the signal's representation in the frequency domain, 

xhttps: //towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05 
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i . e. how much of each frequency is present in the signal. Collection of these intricate 
transformations is referred to as a Fourier Transform. 

There are multiple versions of the Fourier transform formula that distinguish whether 
the input signal is discrete or continuous and periodic or non-periodic. However, the core 
idea behind all of them remains the same. There are also inverse transformations available, 
so we can transform the input signal back and forth between the two domains. 

The output of the Fourier Transform is a series series of 2 values, one for magnitude and 
the other for phase respectively. In digital signal processing, most commonly used trans
form is the Fast Fourier Transform (FFT) based on the Discrete Fourier Transform 
(DFT). The Discrete Fourier Transform and its inverse is given as follows: 

N-l 

X[k] = x N e — ~ (2.2) 

n=0 
N-l 

x[n] = X[k]e^r- (2.3) 
fc=0 

where x[n] is the signal in time domain, X[k] is the signal in frequency domain and 
finally, there is a complex exponential. If we look closely at both of these formulas, they 
seem very similar. Essentially, both of them represent a base change of the input sequence 
and that can be easily computed with digital computers. 

frequency 

t ime 

Figure 2.4: Visualization of what happens behind the scenes of Fast Fourier Transform. 
Taken from 2. 

The D F T transforms a finite length input signal to a finite length output signal. The 
standard D F T calculations consist of iV multiplications and iV additions, resulting in a 
quadratic complexity 0(N2). Quadratic complexity gets very high for a big enough N, so 
there was a need for optimization of the time complexity. 

The F F T reduces the number of operations to 0(N log 2 N) because of a smart algebraic 
manipulation of the original equation. It was proven that the D F T equation can be sepa
rated into odd and even indexed sub-sequences and those can be computed concurrently. 
This reduces the time complexity by the factor of 2. We can keep splitting by the factor of 

2https: / / www.nti-audio.com/en/support/know-how / fast-fourier-transform-fft 
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2, which is possible only if iV is a power of 2, and obtain the optimized time complexity of 
0(Nlog2N) [16]. 

The convolution theorem takes advantage of this reduced time complexity. The theorem 
states that convolution in the time domain is a simple point-wise multiplication in the 
frequency domain. Similarly multiplication in the time domain results in a convolution in 
the frequency domain. 

oo 
x[n] * y[n] = xikMn ~ k\ X(ejw)Y(ejw) (2.4) 

k=—oo 

Not only is the reduced time complexity big advantage when processing in the frequency 
domain, but on the top of that, the frequency domain often contains clear patterns of 
frequencies in particular sounds, which are ambiguous in the time domain. This also makes 
the frequency domain more suitable for pattern recognition or machine learning [15], [10]. 

2.3 Architecture of Automatic Speech Recognition system 

The input for A S R is a human voice, either extracted in real-time or on pre-recorded 
audio file. The target word sequence W = w\ ... wn can be mathematically perceived 
as a sequence of words W = w\ ... wn originating from a human speech generator (vocal 
tract) tainted with noise from the communication channel. The system aims to process and 
decode the observed acoustic input signal O and produce the best statistical estimation 
of the original word sequence. This is done by extracting feature vectors from the input 
speech and generating the word sequence with the maximum posterior probability, given 
the input feature vectors. 

Depending on the type of sequences that are being decoded, automatic speech recogni
tion systems can be separated into the following classes [20], [10]: 

• Isolated Words: decodes a single word or a single utterance surrounded with silence. 
• Connected Words: similar to isolated words, but utterances require only minimal 

pause between them. 
• Continuous Speech: users are allowed to speak naturally while the computer pro

cesses the content. There is a difficulty in determining the boundaries between the 
utterances. 

• Spontaneous Speech: users are allowed to speak naturally and freely, so the speech 
contains slight imperfections, such as stutter or filler words. This system should be 
able to deal with a big variety of speech and speaker features. 

Noise 

Intention 
Speech 

generator 
Intention 

Speech 
generator 

w 
ASR 

Signal Speech 
Processing Decoder -> w 

Figure 2.5: Basic model of A S R system. 



This fundamental idea of A S R for finding the target word sequence W is expressed by 
the following equation: 

W = argmax P(W|0) (2.5) 
w 

where O is the acoustic observation of feature vector sequence and W is the target word 
sequence. The variable W represents the actual word sequence as intended by the speaker 
and W denotes a word sequence that has been decoded by the A S R . The better the A S R 
system, the smaller the difference between W and W. This equation can be modified using 
the Bayes rule: 

P(0|W)P(W) 
w argmax 

w P(0) 
(2.6) 

Because the maximization is carried out with a fixed observation O, the expression can 
be further simplified as: 

W = argmax P(0|W)P(W) (2.7) 

where P(0|W) and P(W) account for acoustic modelling and language modelling re
spectively. Creating accurate acoustic and language models constitute the biggest challenge 
in the recognition of any spoken language. Because spoken speech is essentially a series of 
continuous signals with possibly infinite number of phoneme combinations, this task goes 
beyond just recognizing simple fixed patterns. The role of both models is to account for 
language variability and statistical properties of a given spoken language [6]. The complex
ity of A S R system greatly varies with vocabulary size, speaker dependency, speech type, 
use of grammar or even training method [1]. 

Acoustic model 

ay 

Spectrogram 

39 features Features extraction 

Lexicon 

b m ay 
smile ^ V W 

Decoding search 

I 
Word sequence 

W* = argmaxPfW I XI w 
W* = argmax p(X|W) P(W) 

Language model 

/Kwt I wM) 
p(is I she) 

word sequence acoustic model language model 

Figure 2.6: General architecture of any A S R system. Taken from [11]. 
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Acoustic model aims to encapsulate the knowledge about acoustics, phonetics, dialect 
and gender differences or microphone and environment variability - this is reflected by 
P(0|W). Acoustic model is accompanied with lexicon for the target language. On the 
other hand, language model focuses on capturing the structure of a target language: what 
words are used, their frequency and which words are more likely to occur together, which 
is reflected by P(W). Both of these models can be dynamically adapted to achieve a better 
overall accuracy of the A S R system [6]. 

E v a l u a t i o n m e t r i c s 

According to [17], a good evaluation metric should satisfy the following four conditions: 
• it should be a direct measure of the desired A S R component 
• it should be an objective measure that can be fully automated 
• it should be an easily and clearly interpretable measure 
• it should be modular in order to allow application-dependent analysis 
One of the most commonly used metrics is the Word Error Rate (WER) derived 

from the edit distance. It is the minimum number of operations required to transform the 
reference word sequence to the word sequence estimated by A S R . These operations include 
insertions, deletions and substitutions. In order to compare different systems, we normalize 
the number of operations by the length of the reference word sequence. Then, W E R is 
defined as follows: 

W E R = 5 + ^ + / (2.8) 

where S is the number of substitutions, D is the number of deletions and / is the number 
of insertions respectively. Nr is the length of the reference sequence [17]. 

2.4 Feature extraction 

Feature extraction is an essential step in the speech processing pipeline. The chosen features 
should be speaker invariant and the extraction process should be clear, deterministic and 
reproducible. The goal of feature extraction is to transform input speech signal into such 
space of observations, where the same class will be grouped together and different classes 
will be further apart. 

There are various methods for extracting features, such as Linear Discriminant Analysis 
(LDA) or Principle Component Analysis (PCA) , but Mel-frequency Cepstral Coefficients 
(MFCC) are the most prevalently used in A S R . M F C C uses the Mel scale, which models 
the non-linear sensitivity of human hearing at different frequencies (described in 2.1). 

After the input signal passes through analog-to-digital converter, the features for M F C C 
are generally extracted as follows: 

D C - o f f s e t r e m o v a l 

Direct current offset is removed from the signal to avoid signal distortion further on. D C -
offset is calculated as a mean amplitude of the signal. 
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W i n d o w i n g 

The original input signal is split into smaller segments called frames by applying a window
ing function. The interval of the segment can be arbitrary, but it is advised to use small 
ranges in the order of milliseconds. It is desired to choose small enough segments so that 
it contains enough relatively stationary information. The windows can be overlapping or 
not. Typical length of the window is 25 milliseconds with 10 milliseconds shift. 

Fas t F o u r i e r T r a n s f o r m a t i o n 

Each frame is transformed from time domain to frequency domain with the F F T . Only the 
power of absolute magnitude is used further on. 

P r e - e m p h a s i s 

The energy of high frequencies is boosted in order to improve the recognition accuracy of 
the acoustic model. 

M e l F i l t e r B a n k 

Filter banks model human hearing along the frequency axis with triangular filters that are 
spaced evenly below 1000 Hz and logarithmically above 1000 Hz. 

L o g a r i t h m 

Logarithm is applied because it has similar properties to human hearing. Small input values 
will be higher, but values that were already high will be lower. 

D i s c r e t e C o s i n e T r a n s f o r m a t i o n 

Decorrelates the data and outputs real-numbered values. Particularly important if the 
target model expects the data to be uncorrelated. 

The output from this feature extraction pipeline is a set of M F C C coefficients. These 
coefficients constitute an acoustic feature vector for each frame. 13th-order M F C C are ex
tracted and those can be supplemented with 1st order delta M F C C and 2nd order delta 
M F C C . These delta coefficients capture temporal changes over time and provide comple
mentary information to the chosen acoustic model [18], [20], [10]. 

2.5 Acoustic modelling 

The task of acoustic modelling is to find a relationship between extracted features and 
phonemes. It is not too difficult to create an acoustic model for a particular speaker in a 
particular language and speaking style. However, the underlying challenge lies in creating a 
truly robust model that can deal with variability of different speakers and speaking styles. 

Acoustic model is trained with a large training corpus of audio files. It is necessaary to 
convert all audio files to the same format - the same sampling rate and the same number 
of bits per sample. The A S R works the best, if the training data encoding matches the real 
application encoding [10]. 
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H i d d e n M a r k o v M o d e l s 

In the past, Hidden Markov Models (EMM) were very popular for acoustic modelling. 
Nowadays, acoustic modelling can also be done with Neural Networks (NN) or a hybrid 
model NN-HMM consisting of the aforementioned models or even a combination of HMM 
and GMM (GMM-HMM). The basic Hidden Markov Model is based on the Markov chain 
model and is formally defined 5-tuple: 

H M M = (Q, A, O, B, 7r) (2.9) 

Q = {Qi,Q2, •••,qn} 

a-n • • • a-in 

O = o\o<i.. .ot 

B = bi(ot) 
N 

n = 7ri, 7T2,..., 7rn where ^ 7 T j = l 
i=l 

where Q is a discrete set of iV hidden states, A is a transition probability matrix N x N for 
moving from state qi to state qj. O is a sequence of T observations and each ot belongs to 
a predefined vocabulary V. B is a sequence of emission probabilities, where each emission 
probability expresses how likely it is that ot has been generated from a state Oj. Finally, 7r 
is an initial probability distribution for iV states that expresses how probable it is for q^ to 
be the initial state. Usually, not every state q% can be initial state, therefore, its respective 
initial probability distribution 7Tj is a zero value. 

H M M is well-suited for acoustic modelling, because it models the hidden states Q that 
emit observations O according to its emission probability distribution. As the name sug
gests, hidden states are unobserved and we try to estimate their probability distribution 
from our observations O. In the case of speech recognition, the observations O are the 
features extracted from the spectrogram of the input signal sequence [15]. Refer to [10] or 
[15] for an exhaustive and precise explanation of the combined models, as well as the full 
training procedure for the standard H M M . 

In general, modelling whole words for a large vocabulary spontaneous speech system is 
unfeasible. It is preferred to choose smaller modelling units that are: accurate, trainable 
and generalizable. One candidate choice is using phones as a basic unit. Phones are more 
trainable and generalizable than the whole words models, but they assume that each phone 
is identical in any context or position, which is not completely accurate. Furthermore, 
humans are not capable of strictly producing one phone right after the other, because we 
cannot adjust our articulatory tract instantaneously. Another option is using slightly larger 
syllables as a basic unit. A correct choice of the basic acoustic unit strongly depends on 
that particular target language and its properties. The acoustic units are then modelled 
with our chosen acoustic model. In H M M , each acoustic unit is usually modelled with at 
least 3 discrete states - beginning, middle and end of the acoustic unit [7], [10]. 

N 
where = 1 for Vi 
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Figure 2.7: Hidden Markov Model sample diagram. Taken from 3 . 

L e x i c o n 

Lexicon, alternatively also called a pronunciation model or a dictionary, closely collaborates 
with the acoustic model. Depending on the application and the target language, the format 
and complexity of the lexicon may vary. 

Lexicon is created by human experts, usually professional linguists. The lexicon con
tains all the words from a pre-defined vocabulary V with their respective pronunciations. 
The pronunciation is described with the basic acoustic units of choice. For most modern 
languages, using phonemes as the acoustic unit of choice yields very good results. 

Linguists have created the International Phonetic Alphabet (IPA) with a standard
ized notation of any speech sound in the written form. IPA is so extensive that it can accu
rately capture the smallest details of each sound, such as pre-voicing, devoicing, aspiration, 
and many others. This has led to the addition of various IPA-exclusive symbols to the Uni
code character encoding. Unicode uses either 8-bits (1 byte) or 16-bits (2 bytes) in order 
to encode a single character. The first standardized computer encoding named ASCII has 
been used as a foundation for the Unicode encoding. Therefore, Unicode has a backward 
compatibility to ASCII and ASCII can be considered as a subset of Unicode. ASCII was 
developed in the 1960s and it utilizes 7-bits to encode 128 unique characters frequently used 
in American English. Those characters consisted of all lowercase and uppercase symbols 
of Latin alphabet, 10 Arabic digits and the rest was used for mathematical symbols and 
common punctuation, including spacing and non-printable characters. 

3https: //upload.wikimedia.org/wikipedia/commons/0/Oc/An example of_HMM.png 
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Since the original goal of Unicode was to create unified and consistent encoding for 
characters in the World Wide Web, the 8-bit encoding has been quickly assigned to the 
most commonly used characters. As a consequence, most IPA exclusive symbols use the 
16-bit encoding. Nowadays, it is no longer necessary to be extremely keen on the memory 
requirements for storing our data. However, training any A S R system is extremely data 
intensive, so every byte counts. 

This issue has been partially solved by the Speech Assessment Methods Phonetic 
Alphabet (SAMPA) . SAMPA is a computer-readable phonetic alphabet that is based on 
IPA, so that it maps the special IPA symbols to the most common characters that fit inside 
the ASCII encoding. Currently, concrete SAMPA has been officially created for around 30 
worldwide languages and more are under the development. Additionally, there is also a 
language-independent version named X-SAMPA, making it one of the most universal and 
efficient approaches for storing pronunciation. 

Currently, SAMPA and X-SAMPA are widely used in lexicons to ease the burden of 
memory requirements for pronunciation storage. In the simplest form, lexicon contains a 
list of words, with each word on a new line. Pronunciation in SAMPA or X-SAMPA is on the 
same line, usually separated from the word with a delimiter of choice. Lexicons can hold 
multiple pronunciations of the same word, but it is advised that all these pronunciations 
follow standard pronunciation rules of that particular language. Words that are still deemed 
as foreign should be kept in a separate lexicon. This requirement is amplified especially if 
that particular foreign word follows different pronunciation rules compared to the target 
language. Alternatively, many foreign words contain characters that are not used in other 
languages, so those should be kept in a separate lexicon as well. 
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Lexicon 
one w ah n 
two t uw 
three th r iy 
four f ao r 
five f ay v 
six s in k s 
seven s eh v ax n 
eight eyt 
nine n ay n 
zero z iy r ow 
oh ow 

Figure 2.8: Sample of an acoustic model with lexicon for the task of isolated digit 
recognition. Taken from [14]. 

Phone HMM 

h/yi t M 
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Chapter 3 

Language modelling 

Language model (LM) is a fundamental component of any A S R system. Language model 
encapsulates the knowledge about vocabulary, syntax and semantics of a particular lan
guage. Therefore, a well-trained language model predicts what words sequences are likely 
to occur. A correct, well-formed sentence would be accessed as very likely to occur by the 
L M , whilst a sentence consisting of random, unrelated words would be assigned a very low 
probability of occurring. 

This chapter explains the most common approaches to languages modelling: formal lan
guage theory (Section 3.1) and the probabilistic language model (Section 3.2) with smooth
ing. Section 3.3 deals with evaluation of language models and finally, section 3.4 introduces 
the biggest challenges for language modelling in real-life applications. 

3.1 Formal languages 

Formal languages neatly preserve the information about language, what the language con
sists of and the rules for given language. The formal language theory is very extensive and 
is explained in detail in [9], but this paper covers only basics of the formal language theory. 

Formally, properties of any language can be recorded by a grammar. Grammar is defined 
as a tuple G = (N, T, R, S), where iV is a set of non-terminal symbols, T is a set of terminal 
symbols and S is a starting non-terminal symbol. It is essential that N n T = 0 so that 
no symbol is simultaneously terminal and non-terminal. Terminal symbols are words that 
belong to a language, for example [ i , love, tabby, cat] is a possible list of terminal 
words. Non-terminal symbols are rewritten according to the rules from R. 

Our goal is to either successfully rewrite all non-terminal symbols to terminal symbols 
(top-bottom approach); or rewrite terminal symbols by applying the rules backward in order 
to obtain the starting non-terminal S (bottom-up approach). The set of rules R consists of 
rules in the form of a —> (3, where a and j5 are arbitrary strings of symbols and a is not 
empty. Constraints posed on the rules result in a hierarchical order (Chomsky's hierarchy) 
of the grammars based on the format of the rule. The bigger the constraint on the rules, 
the weaker the grammar. However, the weaker the grammar is, it becomes less ambiguous, 
which is beneficial for automatic processing. The hierarchy is as follows (from strongest to 
weakest): 

• Phase structure grammar : a —>• f$ 
most general grammar 
corresponding machine is Turing machine 
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• Context-sensitive grammar : a —> /3, \a\ < \/3\ 
— subset of phase structure grammar 
— |. | signifies the length of the string 
— corresponding machine is Linear bounded automata 

• Context-free grammar : A —>• f3 
— subset of context-sensitive grammar 
— only single non-terminal symbol on the left side of the rules; A G N 
— corresponding machine is Push down automata 

• Regular grammar : A —> w and A —> wB 
— subset of context-free grammar 
— only single non-terminal symbol on the left side of the rules; A G iV 
— right hand side of the rule contains either only terminal symbol w, w G T or 

terminal symbol w and non-terminal symbol B, B G N 
— corresponding machine is Finite-state automata 

It is generally assumed that natural spoken language is at least context-sensitive, but 
the requirement for this level of grammar is quite scarce. Instead, the weaker context-free 
grammar is widely preferred in machine learning and natural language processing. It is 
capable of describing the basic structure of any natural language and powerful enough to 
efficiently parse various sentences. However, it is considered very unlikely that any grammar 
would have a complete coverage of the language, not to mention the fact conversational 
speech often does not adhere to the official standardized rules of the language [10]. 

3.2 Stochastic language models 

Stochastic language models approach language modelling as a need to accurately calculate 
the probability P (W) for a given word sequence W = w\w2 • • • wn given a corpus. This 
viewpoint tries to ensure that word sequences likely to occur have a higher probability. 
This probability dramatically reduces search space and makes the speech recognition more 
accurate. Currently, the most popular stochastic language model is a so-called n-gram 
model [10]. 

The joint probability distribution P (W) can be decomposed as follows: 

P(W) = P(w1,w2,...,wn) (3.1) 

P(W) = P(Wl)P(w2)...P(wn) (3.2) 

This approach is rather naive, because it assumes that the words are completely inde
pendent of each other. However, it is more logical to assume that in spoken language, each 
following word Wi depends on all the previously said words, therefore we can adjust the 
decomposition as follows: 

P(W) = P(Wl,w2,...,wn) (3.3) 
P (W) = P(W1)P(W2\W1)P(W3\W1, W2) • • • P(wn\wi, W2..-, Wn-!) (3.4) 

n 

P(W) = Y\P(wi\w1,w2...,Wi-1) (3.5) 
i=l 

Such decomposition means that we have to store history for every single word in the vo
cabulary. This is not feasible, and on top of that, most histories would be unique or occurred 
only a few times in the whole corpus. Consequently, we assume that P(wi\wi, w2 ..., u>j_i) 
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depends only on a few equivalence classes. This equivalence class is based on n previ
ous words, thus the name n-gram. Unigram P{wi) assumes naive independence of words, 
whereas bigram P{wi\Wi-\) assumes dependence on one previous word. A l l the higher or
der n-grams follow the same logic, so trigram P(wi\wi-i,Wi-2) assumes dependence on the 
two previous words. Each sentence is supplemented with arbitrary start and end token to 
clearly mark the sentence boundaries. 

The trigram model is especially powerful, because it assumes that each word has a strong 
dependence on the two previous words, and at the same time, it is still computationally 
feasible. It is possible to use a higher order n-gram if there are computational resources 
and large training corpuses available, but this paper primarily focuses on the trigram and 
lower n-grams. 

The core of the n-gram model is based on counting the co-occurrence of words. For a 
vocabulary of the size V, we need aVxV matrix to cover every possible co-occurrence of 
the words in vocabulary. Naturally, such matrix will be very scarce, because most words 
generally co-occur only with a small subset of the vocabulary. A simple trigram model 
calculates the probability as a relative frequency ratio between the counts of our desired 
trigram and the bigram count of the two previous words: 

However, in a large training corpus, the resulting probability for each trigram tends 
to be a very small number. On top of that, multiplying probabilities between numerous 
trigrams would lead to a very small number with many decimal places, often resulting in 
an underflow. 

Therefore, it is preferred to use log probabilities so that the results can be stored without 
underflow. Additionally, multiplication in linear space results in an addition in logarithmic 
space, so the operation is also simplified from multiplication to addition. Finally, if we 
require result to be a standard probability in the range (0,1), we can take the exponent of 
the final log probability as follows [10], [15] : 

N-gram smoothing 

The vanilla n-gram model has one big disadvantage - it automatically assigns the probability 
of zero to any n-gram not seen during the training. If the training dataset is very small, 
most n-grams will be assigned zero probability during the evaluation phase. However, this 
problem is still present even for a very large training corpus. Statistically, if we use several 
million-word collections, many n-grams would occur only once and the majority of them 
would occur less than 5 times, which is problematic. If we were to assign zero probability 
for any unseen n-grams, P (W) could end up as a zero value. If we substitute 0 for P (W) 
in the central equation of A S R (2.7), the whole expression would be annihilated to 0 and 
impossible to maximize. 

Therefore, in order to ensure that P ( W ) will always be non-zero value, smoothing (al
ternatively called discounting) techniques are used. The core idea behind these methods 
is to shave off a bit of probability mass from the often-occurring n-grams and assigning 
them to those n-grams that have never been seen before. This makes the whole model more 
robust to unseen data for the cost of hurting the training data slightly. There is a variety 
of smoothing techniques available to counter this problem [10], [15]. 

(3.6) 

(3.7) 
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A d d - o n e / a d d - k s m o o t h i n g 

Add-one smoothing and add-k smoothing are very similar in their nature. Add-one 

smoothing (alternatively Laplace smoothing) does exactly what the name suggests - arbi
trarily adds 1 to every n-gram. Therefore, the previously seen n-grams would just increment 
their count by one and those never-before-seen n-grams would appear to have been seen at 
least once. For trigram with the vocabulary of size V, this would lead to a small adjustment: 

P{wi\wi-i,Wi-2) = n l r - (3.8) 
V + C{wi-1,Wi-2) 

Alternative to the Laplace smoothing, add-k smoothing generalizes the value of 1 to 
k, which results in the following smoothing for trigram: 

P(Wi\Wi-l,Wi-2) 
k + C(wj,Wi-i,Wi-2) 
kV + C(wi-i,Wi-2) 

(3.9) 

K n e s e r - N e y s m o o t h i n g 

The aforementioned smoothing techniques became the basis for the Kneser-Ney smoothing, 
which is currently widely used in practice. It is considered to be the most effective state-
of-the-art approach for smoothing. It is based on a smart discounting - subtracting a small 
amount 5 from each count in order to save some probability mass for smaller counts. Fur
thermore, it includes the lower n-gram models in the calculation through PCONT(WI) and 
its normalizing constant A(u>j_i): 

max.(C(wi,Wj-i) - 6,0) 
PKN(Wi\Wi-i) = — r h \(Wi-i)PCONT{Wi) (3.10) 

The key difference between using PCONT or lower order n-gram model is that PCONT 

actually calculates the probability of Wi being a novel continuation. In order to calculate the 
probability of a word ZUi ctS cl novel continuation, we need to count how many n-grams the 
word Wi completes. The resulting novel continuation probability is normalized by dividing 
it with the total number of all n-grams: 

PcoNT{wi) (x \{wi-i : C(wi,wi-1) > 0}| (3.11) 

P r „ , x \{wi-1:C{wi,wi-1)>0}\ . . 
PcONTKWi) - = 7-j—} —— / w n l I K6A2) 

22w/IK-i: c K - i . f f l ) > °}l 

B a c k o f f a n d i n t e r p o l a t i o n 

Alternative approaches to smoothing techniques are backoff and interpolation. In case 
there is no history for particular n-gram, it can be useful to gradually backoff and search 
through (n — l)-grams until enough evidence is found. 

Interpolation actually mixes the high order n-gram with lower order n-grams. This 
approach works generally better than simple backoff. The models are mixed according to 
their mixing weights A. The mixing weights A are estimated from a held-out dataset. It is 
necessary for the mixing weights A to add up to one. 
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Linear interpolation for trigram model with lower n-gram models is defined as follows: 

P{wi\wi-i,Wi-2) =\\P(wi)+ (3.13) 
\2P(wi\wi-i)+ 

\zP(Wi\Wi-i,Wi-2) 
Ai + A 2 + A 3 = l (3.14) 

3.3 Evaluation 

The performance of any language model can be evaluated with an extrinsic or an intrinsic 
evaluation. Extrinsic evaluation requires the language model to be a part of a bigger 
system or application, which is evaluated as a whole. This approach accesses how do that 
particular component improves or setbacks the entire system. Repeated evaluation of the 
entire system can get very expensive and is almost impossible if the other components are 
not fully implemented at that time. Simpler approach is the intrinsic evaluation, because it 
accesses only the performance of our language model independent of any other components. 

Fundamentally, intrinsic evaluation requires the chosen dataset to be split into disjunc
tive subsets, usually a train set and a test set, but it can be complemented with a dev set as 
well. It is crucial that no data from the test set are used in training, because it would lead 
to skewed results. Naturally, we want to use as much data as possible in training, so that 
the resulting trained model can generalize. The chosen dataset is split in such a way, that 
the smaller subsets (test set, dev set) are able to provide us with a statistically significant 
difference, so that it is possible to objectively compare various models. Common practice 
is splitting the dataset as 80% train set, 10% test set and 10% dev set, but the ratio can 
be adjusted at one's discretion. It is also important to include the arbitrary start and end 
tokens in our vocabulary. 

Language models are not evaluated with simple probability, but instead with a metric 
called perplexity (often shortened to PP or PL). Perplexity is calculated as the inverse 
probability when using the test set, normalized by the number of words in the test set. For 
a test set consisting of W = w\W2 • • • wn, where n is the number of words, perplexity for a 
trigram model is given and simplified as follows: 

PP(W) = P(w1w2...w3)-^ (3.15) 

PP(W)=NJ— (3.16) 
P(W\W2 • • • tt>3) 

PP(W) 

PP(W) 

^Qpiw^.-.w^) ( 3 - 1 7 ) 

N 

The inverse probability causes the resulting perplexity to be lower when the conditional 
probability of the words sequences is higher. Another view on perplexity suggests that it 
represents a weighted average branching factor of a language. This basically translates to 
how many possible words usually follow any word [10], [15]. 
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3.4 Practical challenges 

When sampling sentences from a pretrained language model, the obtained sentences will 
vary depending on the original training dataset. If we use a very limited corpus that only 
deals with a small range of topics, then the language model is useless for any different topics 
than those it was trained on. In a general A S R system, we aim to collect as much data as 
possible, so that the language model can deal with a variety of word combinations [15]. 

One huge challenge in practical applications is insufficient data for training of the lan
guage model. Especially if a given language is generally considered to be a low-resource, 
it tends to suffer due to the scarcity of training data. In such cause, we can try to ease this 
burden by expanding the existing language model naturally with similar data from 
the internet. 

On the other hand, there is another underlying challenge usually hidden to the naked 
eye. Our well-trained A S R system has a good performance on the evaluation dataset, but 
once its sold to a customer, it may appear to not perform so well on the customer's data 
as originally anticipated. The reason behind this is often the niche specialisation that the 
A S R system was not trained for. 

Oftentimes, the A S R system performs well on general spontaneous speech, but it lacks 
the knowledge of words and words sequences occurring in the customer's specialisation. 
Consequently, the A S R system outwardly appears to have poorer performance than origi
nally advertised, which may lead to confusion, disappointment and distrust of our customers 
or end users. Fortunately, it is possible to tweak isolated components, so the language 
model can be expanded with words sequences from customer's target domain. This process 
is called a dynamic language model adaptation to target domain and is one of the 
central source problems for this thesis. 

Both of these aforementioned challenges can be partially overcome with downloading 
data and web documents from the internet. This whole process should be fully automated 
without any need for interventions and it should be efficient and not too time-consuming. 
Furthermore, this process should bring at least reasonable gain to make it justifiable [23]. 
Zhang et al.'s work [23] experimented with this approach to improve a keyword spotting 
system and they achieved substantial improvements. 
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Chapter 4 

Language model expansion pipeline 

Automatic language model expansion or adaptation has proven to be very useful when 
dealing with practical challenges in language modelling described in the section 3.4. Fur
thermore, it removes the need for re-training the whole language model from scratch. This 
challenge of dynamically adapting or expanding the language model is the central problem 
explored in this thesis. Naturally, these problems can be fully explored only on a real-life 
Speech-To-Text system. 

Thankfully, the Brno based company Phonexia has offered to collaborate with me on 
this thesis and kindly provided me with much needed information, tools and datasets. 
Therefore, the language model expansion pipeline developed in this paper is specifically 
meant for Phonexia system, but similar approach for different system shall yield comparable 
results. 

Firstly, section 4.1 shortly introduces Phonexia and their system. Only the bare mini
mum of structural information is provided so as not to betray any confidentiality. Secondly, 
section 4.2 explains the design of the pipeline. Finally, section 4.3 describes the implemen
tation of the pipeline and its components. It also includes some practical advice for correct 
usage of the pipeline, particularly on how to choose some of the input parameters. 

4.1 Phonexia 

Phonexia is a Brno based company founded by a few researchers from the Brno University 
of Technology speech group BUT speechOfit. Created in 2006, it has quickly become one 
of the key players in speech and voice recognition technologies. Currently, Phonexia is 
working on many interesting projects in this field, ranging from commercial to government 
solutions. The technologies researched and developed in Phonexia can be divided into 3 
basic categories: 

• Automatic speech recognition technology: Speech-To-Text, keyword-spotting system 
• Voice biometry technology: speaker identification, language identification 
• Supporting technologies: voice activity detection, speech quality estimation 
Further on, this thesis focuses only on the automatic speech recognition technology 

called Speech-To-Text (STT) in Phonexia, because it deals with the biggest variability 
of the input data. The most commonly used types of data are audio files with matching 
textual data. The textual input data is often referred to as annotations or transcriptions 
interchangeably, but these two terms are not complete synonyms. Annotation is a time-
stamped orthographic transcription in the standardized written form of the language, whilst 

23 



the term transcription does not necessarily imply there are any time-stamps present. Fur
thermore, the term transcription can also refer to a purely phonetic transcription, which 
has no use for the STT training. Therefore, it is always better to clarify this with the 
data providers and customers beforehand, because for STT training, we always need the 
time-stamped annotations. 

The quality and amount of the available data often determines the overall accuracy of a 
STT system. Phonexia usually obtains data by purchasing it from providers or directly from 
customers. In some cases, public sources can be used free of charge. It is also possible to 
carry out annotation projects for data without annotations, but such are usually more time-
consuming and expensive than the other methods. When purchasing data for development, 
the price hugely depends on the target language, amount of data and its quality. Telephony 
data collected in call-centers or help-desks are less expensive to obtain, while read sentences 
recorded with professional or semi-professional gear in a quiet environment tend to have 
the highest cost. 

When Phonexia obtains a new dataset, it must be firstly transformed to a predetermined 
structure and format. The unprocessed data is kept in separate folders away from the 
processed data. Already processed datasets are stored in the Phonexia data server. The 
processed dataset structure looks as follows: 

dataset_name + version 

data 

source_data 

transcriptions 

dataset_name + version.txt 

_LICENSE.md 

metadata.csv 

_README.md 

Figure 4.1: Tree structure of a processed dataset. 

The dataset name is joined with a two-digit version code by an underscore. This becomes 
a new internal name of the dataset, so that if there is ever an update to the data, it can be 
clearly distinguished by the version code. Completely processed directory for any dataset 
consists of 3 subfolders and 4 files: 

• data : folder with all audio files that have been converted to a wav mono-channel 
recording with 16-bit encoding (one codec for all files) and a frame rate of 8 kHz (less 
commonly 16 kHz) 

• source_data : folder with the original data in the original form 
• transcriptions : folder with transcriptions or annotations in the original form. The 

form of transcriptions greatly varies, some datasets have separate annotation file for 
each audio file, others gather the transcriptions in one single file 

• dataset_name + version.txt : text file with all relative paths (each on a new line) 
to the audio files in the data folder 

• LICENSE.md : detailed information about license and usage 
• metadata, csv : detailed information about every audio file, including information (if 

available) about the speaker, for example: gender, age, accent, native language etc. 
• README.md : general information about the dataset, such as providers, content of the 

dataset, amount of audio files, quality of the audio file etc. 
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The next step after transforming the dataset to its desired form is to create files that will 
be used in the A S R training: stt.phxstm, test, l i s t and dataset. info. These files are 
then stored in a Gitlab repository and from that point on, they can be used for training, 
test. l i s t contains the paths to the audio files used for evaluation (usually 1 hour of an
notated audio) and dataset.info has some basic information about the dataset, duration 
of the audio files and its license. The longest file named stt .phxstm contains information 
about all the segments with their respective annotations, timestamps and absolute paths. 
It consists of 7 columns separated with a tabulator. 

The exact structure of the stt .phxstm will not be displayed, but only a cropped version 
of the file is shown. Unsurprisingly, the stt.phxstm contains start and end time of each 
segment, its transcription and the absolute path to the audio file containing that particular 
segment. The transcriptions are located in the last column of the stt .phxstm file. 

8 0 3 48 <. ./mozilla_ en us 20201211 01 17147389.wav> 
8 0 7 44 <. ./mozilla_ en us "20201211" 61 534327.wav> 
8 0 4 44 <. ./mozilla_ en us "20201211" 61 18071552.wav> 
8 0 7 632 <. ./mozilla_ en us 20201211 61 22927465.wav> 
8 0 4 152 . . / m o z i l l a en us 20201211 61 17857209.wav> 
8 0 1. 64 . . / m o z i l l a en us "20201211" 61 19729561.wav> 
8 0 1. 88 . . / m o z i l l a en us 20201211" 61 17938442.wav> 
8 e 3 6 <. . / m o z i l l a en us 20201211" 61 17822372.wav> 
8 0 7 92 <. . / m o z i l l a en us 20201211" 61 21294317.wav> 
8 0 6 848 <. ./mozilla_ en us 20201211" 61 18243933.wav> 
8 0 4 488 <. ./mozilla_ en us "20201211" 61 21268757.wav> 
8 0 3 864 <. ./mozilla_ en us "20201211" 61 22399740.wav> 
8 0 7 88 < . ./mozilla_ en us 20201211 61 678039.wav> 
8 6 2 352 ./mozilla_ en us 20201211 61 651325.wav> 

women form l e s s than h a l f of the group 
p l a s t i c surgery has become more popular 
he voyaged on a ship c a l l e d the beagle 
i n i t i a l l y he join e d the north borneo news as a reporter 
i f anything can go wrong i t w i l l 
she works hard very hard 
don't t r y t o teach your grand-mother to suck eggs 
s i l e n c e i s golden 
the i n t e r i o r f l o o r i s marked by a few t i n y c r a t e r l e t s 
j u s t pick up a f i r s t a i d k i t to restore your health 
wiemer has not played p r o f e s s i o n a l hockey si n c e 
the most numerous v i c t i m s were Serbs 
then she looked up 
every purchase i s a vote 

Figure 4.2: Sample of cropped stt .phxstm from the Mozilla common voice dataset for 
American English. Full audiopaths have been shortened for privacy reasons. 

In Phonexia, there is a huge focus on cleaning the transcriptions and annotations cor
rectly. If not done properly, it can hinder the training of subsequent components and 
degrade the overall performance of the STT. As can be seen in the figure 4.2, correctly 
cleaned transcription is stripped of all the punctuation marks (excluding apostrophe and 
tightly-knit hyphens), then redundant spacing is removed and finally, all the letters are con
verted to lowercase. Although this is the general process for cleaning any transcriptions, 
depending on the dataset, there are often some additional steps required to fully normalize 
them. Datasets from providers usually have their own annotation tags, so those must be 
converted to one of the internal Phonexia tags: 

• <hes> : represents hesitation, affirmative/negative sound or a filler word that has a 
sound, but no meaning 

• <sil> : represents silence, non-verbal expressions (coughing, laughing, sneezing) or a 
short background noise (dropped object, car honking, door slamming) 

• <unk> : represents unknown, unfinished, unintelligible or mispronounced words 
Additionally, most modern languages have adapted a fair share of foreign words. Most 
borrowed words are gradually adapted to their official written form in the target language. 
However, some contain special characters not present in the target language and those 
should be marked somehow. Usually, tightly-knit square brackets (e. g. [mobelix]) are 
used to denote foreign words or words with non-standard pronunciation for that particular 
language. 

Once the dataset is fully processed, the resulting stt.phxstm file is used for training 
the STT. During training, acoustic model (2.5) and language model (3) are trained and 
fine-tuned. In order to generalize for unseen words in the lexicon (2.5), a G2P (grapheme 
to phoneme) is trained. Well-trained G2P can map graphemes to their typical phonetic 
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realization of phonemes, with respect to their context or position in the word. This allows 
us to generate pronunciation in terms of phonemes for virtually any word in the target 
language if it follows the standard pronunciation rules. This entire process of training each 
component is very computationally intensive and requires a lot of memory (RAM) and 
parallel GPUs to be truly efficient. 

Once all 3 models: AM, LM and G2P are trained for the target language, they can be 
packaged to a single binary file containing the STT system. This binary file can be used for 
decoding with BSAPI (Brno Speech Application Programming Interface). BSAPI provides a 
command line interface to various Phonexia systems and is frequently used by the customers 
of Phonexia. 

Phonexia constantly tries to improve and optimize their standardized training proce
dures, but they also offer a range of services regarding the adaptation of already existing 
acoustic and language models. Acoustic models can be adapted with standard data from the 
provider or directly on the customer's data, which naturally yields the best results. As for 
language models, the underlying challeng es sire ci little bit tricky and are fully described in 
the chapter 3.4. If a customer can provide specific data for the language model adaptation, 
then the process is very straightforward. However, this situation is mostly rare and a cus
tomer often just subjectively accesses the overall performance of the STT as unsatisfactory 
for their needs. 

Therefore, the adaptation usually requires additional dataset searching, pre-processing 
and cleaning. It might end up being a very time-consuming task for the company. This 
thesis aims to explore, implement and experiment with a pipeline that partially or fully 
alleviates the need for human labor in the language model adaptation or expansion. 

4.2 Design 

The design for the language model adaptation pipeline is general and its components can 
be fully or partially reused for different purposes. Ideally, the pipeline accepts input in the 
form of configuration file and outputs web corpora, web model, mixed model, logger file 
and statistics. 

Key input parameter is the input source file, because it directly determines what 
terms are used during the web search. The default input source file is either stt .phxstm or 
kws .phsxtm, which are standard formats used in Phonexia. Ideally, the pipeline shall search 
the web for arbitrary terms, download the most appropriate and relevant web documents 
for each of them, clean the documents, extract textual data and use the extracted data for 
automatic language model adaptation or expansion. 

As explained in the section 4.1, the stt .phxstm has 7 columns, with the transcriptions 
being in the last column. Therefore, this file can be easily used by Phonexia as an input for 
this pipeline, since the stt.phxstm file is kept in storage long-term. Using stt.phxstm as 
the input source file results in a natural language model expansion, because similar terms 
are used for web search and consequent corpora creation. 

If we need to adapt the language model to a particular domain, the source file for the 
pipeline is a list of keywords inside a kws. phxstm file. Each keyword (or alternatively a 
single sentence) is on a new line. The list of keywords can be provided by our customer or 
it can be created internally. Fortunately, the list of keywords for particular domain may 
contain only the most basic keywords, because the related, more complex vocabulary is 
believed to be found and extracted during the web search. 
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Furthermore, even a different type of file can be easily converted to a kws.phxstm 
format. Fundamentally, the only notable difference between the two input types is the 
number of columns. Stt.phxstm has 7 columns, with the transcriptions being in the last 
one. Kws.phxstm has only one column and it contains keywords or transcriptions, each on 
a newline. The script looks specifically for these two filenames. If the name differs, the file 
is assumed to have the same format as kws.phxstm with only one column. 

Both of these input source files contain only fully normalized transcriptions. In 
this transcription is considered to be fully normalized if it meets the following 
requirements: 

• contains only lowercase characters characteristic for that target language 
• foreign words are inside the square brackets 
• numbers are expanded to their full written form 
• all punctuation marks have been removed 
• redundant spacing has been removed 
• spelling is denoted as a standalone character, immediately followed by an underscore 

INPUT PARSING 
S O U R C E FILE 

P R E P R O C E S S I N G 
N - G H A M 5 C R E A T I O N 

L A N G U A G E 
IDENTIFICATION 

T E X T C L E A N I N G W E B S E A R C H 

R E L E V A N C E FILTERING 

N E W C O R P O R A W E B C O R P O R A L M 

PHONEX1A L M 

M I X E D L M 

E V A L U A T E 

Figure 4.3: The design for the language model adaptation pipeline. 
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The designed pipeline consists of the following sequential stages: 

I N P U T P A R S I N G 

Input parameters are accepted in the form of a JSON configuration file. It holds all 
the hyperparameters for the pipeline, as well as paths to the input source file and results 
directory. The configuration file is parsed and checked for any invalid input parameters. 
Each hyperparameter has a constraint type assigned to it. If there is an invalid parameter 
or the parameter violates the imposed constraint, a respective error message is displayed. 
The next stage is initiated only if the configuration file passes all checks. 

S O U R C E F I L E P R E P R O C E S S I N G 

The input source file, either stt.phxstm, kws.phxstm or a different file treated as a 
kws.phxstm, is loaded and pre-processed if necessary. Generally, these files contain tran
scriptions, which are already fully normalized. However, if the source file happens to be 
different or unprocessed, a cleaning module is provided for a quick pre-processing. This 
step is fully optional and the decision to use it is up to the programmer. 

N - G R A M S C R E A T I O N 

The input source file is analysed and occurrences of all the n-grams are estimated. By 
default, trigrams are estimated and used throughout this pipeline. The trigram model 
provides a nice balance between sufficient context and inexpensive memory requirements, 
making it a very good candidate for a quick web search. Trigrams also provide enough 
information, whilst they do not create too many word combinations, so their re-occurrence 
is more likely. Each n-gram is accessed and ranked relative to the others. Only the best 
scoring n-grams are to be used for the web search. 

W E B S E A R C H 

Each chosen n-gram is converted to a query term and used for the web search. The web 
search is carried out with an arbitrary search engine or A P I . It is assumed that the choice 
and quality of the web search approach may directly influence the final results. Not only 
that, but paid, professional A P I has a potential to greatly decrease the time required for 
the web search and therefore, for the entire pipeline as well. The result of the web search 
phase is a set of links for documents that can be easily obtained with a HTTP GET request. 
The downloaded web documents get stored on the local disk and are re-used later on by 
default. Another reason for storing them is purely pragmatic - in case we need to look 
through a particular document in the future, it will be readily available. 

T E X T C L E A N I N G 

After a web document is downloaded, it must be thoroughly cleaned. Firstly, only the 
paragraphs enclosed by the desired web tags are extracted from the web document. The 
extracted paragraphs must be then stripped of all the HTML tags and markup. Since web 
documents use vast number of different characters, it is very essential to remove all the 
characters not used in a standard written form of the target language. Furthermore, we 
want to clean the text so that it can be considered fully normalized. Higher quality of 
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the cleaning process reduces the amount of invalid data that might get introduced to the 
language model. 

L A N G U A G E I D E N T I F I C A T I O N 

The cleaned text undergoes language identification to make sure the entire text is in the 
target language and not only a few sentences. Already pre-trained model is used to do 
the language identification. The decision threshold for language identification is a hyper-
parameter inside the configuration file and it can be freely adjusted. Ideally, the decision 
threshold should be strict and no lower than 0.75. It is undesirable to mistakenly add data 
in an incorrect language to our web corpora, and the threshold should reflect that. 

R E L E V A N C E F I L T E R I N G 

Finally, web documents are judged according to their relevance. We aim to keep those web 
documents that contain similar data as in the input source file. This stage can be eased or 
even skipped with a good search engine that naturally ranks the most relevant documents 
higher. A file marked as relevant can undergo further advanced filtering for its paragraphs 
or the document whole. 

C R E A T I O N O F W E B C O R P O R A A N D W E B L M 

The data that successfully passed through all the previous stages is used to create the web 
corpora. The web corpora is recorded in a text file and contains all the extracted sentences, 
each one on a new line. This file is used to create the n-gram web corpora language model. 
We do not want to add this data to the Phonexia language model corpora directly, but 
rather create a separate web corpora and web corpora language model that gets mixed with 
the Phonexia language model afterwards. 

M I X M O D E L S 

Phonexia language model is mixed with the web corpora language model according to the 
mixing weights. Mixing weights are estimated with a characteristic text file. The Phonexia 
model is always used as the primary model during mixing of models. The resulting mixed 
model is an optimal combination of both language models given the characteristic text file. 
Therefore, the data used in the characteristic text file should be as close to the real target 
domain data as possible. 

E V A L U A T I O N 

After the mixed model is successfully created, it can be evaluated on the evaluation dataset. 
Ideally, Phonexia language model is firstly evaluated on the same evaluation dataset. After 
the mixed model is created, it can be evaluated with the same dataset and the results 
objectively compared. 

Additionally, the results and statistics about performance of the pipeline are to be 
logged. Experiments module is to be implemented in order to easily run any pipeline 
experiments. The optimal hyperparameters of the pipeline will be established through 
experiments, but they can be adjusted at one's discretion. 
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4.3 Implementation 

The language expansion pipeline is implemented in Python was tested on unix-based sys
tems with the current latest version of Python 3.6. Object-based approach is used in order 
to nicely encapsulate all the individual components as objects. 

The pipeline is controlled by an input configuration file in the JSON format. Each 
run of the pipeline is highly customizable, which is reflected by the amount of adjustable 
hyper parameters in the configuration file. 

I n p u t h y p e r p a r a m e t e r s 

Hyper parameters are split into 2 categories: mandatory and optional. Mandatory hy
perparameters must be provided in the configuration file, otherwise the pipeline cannot be 
initialized. Optional hyperparameters do not have to be provided, although it is advised 
to specify as many hyperparameters (especially those language-dependant) as possible in 
the configuration file. If no value is provided for the optional hyperparameter, the default 
value is used. 

This section provides an alphabetical list of all the hyperparameters, their constraint 
types, basic explanation and their default value. Mandatory hyperparameters are clearly 
denoted as such. Interesting hyperparameters which are used and modified throughout the 
experiments are marked with an asterisk *. 

The implemented constraint types are: 
• bool_val : equivalent to a standard Bool 
• f i l t e r : filter type for advanced filtering of the text 
• lang : 2-character string 
• negative_f loat : negative float number range 
• path : absolute path; if missing and not in REQUIRED_VALUES, the path is be created 
• positive_integer : positive whole number range 
• positive_f loat : positive float number range 
• search_pref : preference for the web search, completely arbitrary and can be ex

panded if a new web search possibility arises 
• web_tags : list of strings of web tags we wish to extract from web documents; the 

strings do not contain square brackets, i . e. ['p'] is valid, whilst ['<p>'] is not 
• zero_one_range : only float values in the range of 0 to 1, used for probabilities 

Alphabetical list of all the hyperparameters with a short description: 

create_ngrams : bool, default is True 

Determines whether n-grams will be created from the input source file. If False, the entire 
sentences from the input source file are used for web search instead of n-grams. The type of 
input source file does not matter, since this parameter only controls the n-grams creation. 
Throughout the experiments, this parameter is always set to True. 

dictionary : mandatory, path 

Absolute path to the dictionary file in the target language. The dictionary file is a lexicon 
in the format as described in the section 2.5. 
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doc_default : positive_integer, default is 25 
For every searched term, its number of available web documents is estimated. If such 
information is unavailable or cannot be estimated, a default value of doc_def ault is used. 

doc_limit : positive_integer, default is 50 
Maximum number of documents that are searched per one term. If more than doc_limit 
documents are chosen to be searched, that value is trimmed to the doc_limit value. 

download_path : path, default is current working directory + /download 
Absolute path to the folder, where web documents are downloaded to. If the path does not 
exist, it is created in the current working directory. This approach allows us to reuse the 
already downloaded web documents without any redundant downloads. 

evaluation : bool, default is False 
Determines whether the final mixed model and the source_model will be evaluated on the 
evaluation_datasets, all located in the evaluation_path. 

evaluation_datasets : no constraint, list of sub paths, default is empty l i s t 

List of sub paths for files used for the evaluation. A l l of these sub paths share the same 
prefix of evaluation_path. 

evaluation_path : mandatory if evaluation is True 
Absolute path to the directory, which is a shared common prefix for all sub paths in the 
evaluation_datasets. 

filter_threshold* : negative_float, default is —4.5 
Threshold for advanced filtering in the log domain. A l l segments or documents with the 
total score lower than the f ilter_threshold are accepted. Otherwise, they are filtered 
out and are not included in the final web corpora. 

filter_type : f i l t e r , default is median 
The type of filter used for advanced filtering. Possible values are median, avg (average) 
and None. 

is_standard_lang* : bool, default is True 
Determines whether the language is considered to be standard. This option allows for an 
analysis of characters of the input source file, which creates a clear constraint of graphemes 
for the web documents. Obtained paragraphs from the web documents are judged based 
on this grapheme constraint. 

k_ngrams* : positive_integer, default is 500 
Given an input source file, estimate the most common n-grams and use the top k best scored 
n-grams, where k = k_ngrams. If there are fewer n-grams than the value of k_ngrams, all 
found n-grams are used. 
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len_penalty* : positive_integer, default is 15 
The optimal length of the entire n-gram in characters. A l l n-grams with length smaller than 
the len_penalty are penalized for bringing too little information. This hyperparameter 
is very language dependant and should be considered carefully based on the nature of the 
target language. 

lid_threshold : zero_one_range, default is 0.9 
Only documents with a confidence for the target language higher than the lid_threshold 
pass the language identification. The default value is so high because we want to avoid 
mistakenly adding data in an invalid language to our web corpora. It is advised not to use 
a threshold lower than 0.75. 

ngrams_percentage : zero_one_range, default is None 
Alternative to k_ngrams, it is possible to use a percentage range from 0 to 1. If the 
percentage value is valid and not None, the top ngrams_percentage of n-grams is used for 
the web search. If the value ngrams_percentage is available, it has higher priority than 
k_ngrams. If the value is None, k_ngrams is used by default. 

order_ngram* : positive_integer, default is 3 
Order of the n-gram model used throughout the pipeline. It is advised to primarily use 
n-grams for n £ (2, 6). 

output_path : path, default is current working directory + /output 
Absolute path to the folder where web corpora, web corpora language model and mixed 
language model will be stored. If the path does not exist, the folder is automatically 
created in the current working directory. 

ppl_path : path, default is current working directory + /ppl 
Absolute path to the folder where relevance filtering results are stored. If the path does 
not exist, the folder is automatically created in the current working directory. 

ppl_threshold* : positive_integer, default is 1200 
The threshold value of perplexity for relevance filtering. A l l documents with higher perplex
ity value than this threshold are filtered out and not considered for the final web corpora. 

search_pref erence : string with possible values of google and bing, default is google 
Search preference for the web search. This list can be updated or adjusted with the intro
duction of another web search engine or A P I . Currently, google from the python google 
module is the best choice that is also free of charge. Bing uses standard Bing A P I , but the 
free version is limited to only around 1500 transactions per month. 

source_model : mandatory, path 

Absolute path to the Phonexia language model in the target language. 

source_path : mandatory, path 

Absolute path to the input source file. This file is used as a sole source of the input text 
data for conducting the web search. 
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statistics_path : path, default is current working directory + /statistics 

Absolute path to the folder, where the statistics files are stored. Each statistics file is named 
after that particular pipeline's characteristic fingerprint. If no directory is given, it is 
automatically created in the current working directory. 

target_language : mandatory, lang 

Case-insensitive ISO 639-1 2-character target language code. 

timeout : positive_integer, default is 90 
Time limit for processing a single link. It the link is not fully processed within the set 
timeout limit, its processing is terminated and the next link is processed. 

trim_input : bool, default is True 
Clean the input source file if not yet fully normalized. Useful for quick use of the pipeline 
without pre-processing the source input file. For the best possible results, it is advised to 
pre-process the source file manually and check it for any discrepancies beforehand. 

use_doc_f i l t e r * : bool, default is False 
When set to True, the whole web documents undergo an advanced filtering with filter of a 
given f ilter_type and only documents with the score lower than f ilter_threshold are 
accepted. 

use_window_par_f i l t e r * : bool, default is False 
When set to True, all paragraphs of the downloaded web document undergo an advanced 
filtering. If window_len is set to non-zero value, each paragraph is considered to be a 
single segment. If window_len is set to a given integer value, every paragraph is split into 
segments with a given window_len length. A l l segments are scored and filtered with filter 
of a given f ilter_type and only segments with score lower than f ilter_threshold are 
accepted. 

web_tags : web_tags, default is ['p' , 'span'] 
List of web tags that are extracted from each web document. 

window_len : positive_integer or None, default is None 
Parameter used for advanced filtering when use_window_par_f i l t e r is set to True. It 
determines, whether each paragraph is split into smaller segments for filtering or not. 

C lasses d e s c r i p t i o n 

This pipeline is implemented through smaller components in the form of objects. Each class 
provides at least one public function and numerous private functions. Public functions 
of each class are introduced in their description below. If a class uses one of the input 
hyper parameters, it is mentioned in the description together with some practical advice on 
how to correctly choose the hyperparameter. 
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The WebCrawler class is the main class that initializes all the smaller components. It 
is initialized with an instance of the Conf igParser class. This is a list of all the classes 
implemented in the pipeline: 

C o n f i g P a r s e r 

Class for parsing the input configuration JSON file and storing values of all the input hy-
perparameters. This class does not have any public methods, but it loads all the hyperpa-
rameters into its public attributes. A n instance of this class is initialized with absolute or 
relative path to the configuration file. During initialization, all the input hyperparameters 
are checked for validity and if there is any incorrect parameter, a proper error message is 
displayed. 

The ConfigParser is implemented so that only mandatory input parameters are re
quired to initialize the pipeline. A l l non-mandatory parameters which are missing from 
the configuration file are supplemented with their respective default values. Adding a new 
parameter or adjusting the existing ones is very straightforward as well. 

List of all the parameters and their constraints is kept in a separate header file named 
conf ig_parser_values .py. It contains a list of REQUIRED_VALUES, a dictionary for default 
values DEFAULT_VALUES and a dictionary of constraints CONSTRAINT_TYPES. 

In order to successfully add a new input parameter to the pipeline, we only need to 
add 3 lines of code. Firstly, add the new parameter name either inside REQUIRED_VALUES 
list or DEFAULT_VALUES dictionary together with its default value. Secondly, add the new 
parameter name and its constraint type to the CONSTRAINT_TYPES dictionary. Lastly, add 
a line of code inside of the ConfigParser class initialization and load the newly added 
parameter into its public attribute with preferably the same name as the hyperparameter. 

W e b C r a w l e r 

The main class that instantiates all the other classes and uses their public methods. Each 
instance of the WebCrawler must have its characteristic arbitrary fingerprint. It is either 
given during the initialization or it gets generated if None is provided. In order to keep the 
naming style concise, the automatically generated fingerprint is actually a hash of all the 
input parameters rolled out into a string. The default hash function is Message Digest 
(MD5), which is known to be suitable for creation of a unique identifier. It outputs a fixed 
length 128-bit vector, which is a great option for the fingerprint. This approach allows for 
easy recollection and identification of experiments and their hyperparameters. Furthermore, 
if there is a model with the identical fingerprint available, it means that such experiment 
with the same input parameters was already carried out, so it can be skipped. 
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If is_standard_lang input parameter is set to True, it automatically estimates the 
allowed characters from the input source file. A l l Arabic numerals are automatically in
cluded in the allowed character's set, as well as all lowercase and uppercase versions of all 
the found graphemes. This character's set is used during document cleaning in one of the 
TextCleaner methods. 

Additionally, each link exploration (downloading, cleaning, language identification, rel
evance filtering, logging...) is limited with a time limit. Many websites require additional 
authorization before download, which may halt the simple HTTP communication inside the 
pipeline. Furthermore, the pipeline relies on different freeware components that may mal
function at any moment, which led to the introduction of timeout. 

Each web link exploration is run as a standalone process guarded by a timeout. Usually, 
very short documents take a couple of milliseconds, whilst middle and large size documents 
need a few seconds to get fully processed. Of course, there are some outlier cases which 
require more time and the time limit should reflect that. Therefore, the default value of 
the time limit is set to be 90 seconds. 

Initially, there was an effort to give all the timeout links a second chance. However, after 
some observations of the experiments, it was concluded that over 90% of all the timeouted 
links that are given a second chance result in timeout for the second time as well. Therefore, 
this part of the design was scrapped. 

The pipeline can be used by calling the lm_pipeline function. This function firstly 
parses the parameters with Conf igParser and creates an instance of the WebCrawler class 
named as pipeline. Then, class method already_done is called to verify, whether a model 
with the same fingerprint already exists. If it does, the experiment is skipped. If not, a 
function search_web is called to create the web corpora. This is the most time-consuming 
function of the pipeline. Finally, mix_models and evaluate functions are called. These 
two functions can be omitted if we wish to only download the web corpora and not mix or 
evaluate the models. 

N g r a m s P r o v i d e r 

Class for analysing the input source file, creating n-grams and choosing the terms for web 
search. If create_ngrams is set to True, n-grams will be created and ranked based on the 
analysis of the input source file. If set to False, the input source file is read line after 
line and no n-grams are created, but the whole sentences are used instead. Such file may 
contain keywords, but also full sentences if we want to be very specific. 

The order of ngram specified in the order_ngram is used throughout this class. The 
default value is 3, as trigram models offer a good trade-off between accuracy and memory 
requirements. Once all n-grams are created during initialization, they can be obtained 
by calling the public method get_top_ngrams(self, k , percentage). The value of k 
corresponds to k_ngrams and percentage to ngrams_percentage. If percentage is not 
None, then the top percentage of n-grams will be chosen. If percentage is None, then the 
top k n-grams will be chosen. The ranking of all n-grams is taken from Zhang et al. [23] 
as their initial document count estimate: 

The document count metric Z?C(ngram) represents the number of all the documents we 
expect to obtain if we do a web search for that particular ngram. It consist of two subcom
ponents: document frequency L)F(ngram) and precision score P(ngram). The document 
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frequency is just a simple count of all occurrences of that particular ngram in the input 
source file, which can be done in one command with collections. Counter. The precision 
score (0 < P(ngram) < 1) aims to penalize n-grams that are too short, because we hypoth
esize that longer n-grams are more likely to return a document in the target language. Our 
adjusted precision ad hoc formula is then calculated similarly to [23] as: 

where the penalty_len is a language dependant input parameter. The ngram is joined to a 
single string with spaces and the number of characters in the resulting string is the n-gram's 
length. In the original paper [23], the len_penalty is set to 20 by default. However, we 
decided to allow the user to dynamically set the value for len_penalty inside the input 
configuration file. 

Precision for different values of len penalty 

1 1 1 1 1 1 

0 5 10 L5 20 25 30 

Ngram length 

Figure 4.5: Graph of precision for different initial values of len_penalty. 

Although it may seem insignificant, len_penalty directly influences ranking of all n-
grams and should be considered carefully. Ideally, len_penalty should be estimated by 
a skilled linguist. If such option is unfeasible, we can do a naive estimation based on a 
simple language analysis. Firstly, we need to find an average length of a single word in the 
target language. It can be estimated either from the input source file or from a large corpus 
of text data in the target language. Then, we can naively estimate the optimal value for 
len_penalty as follows: 

roundup (order n grams x avg_word_len + (order_ngrams — 1)) (4-3) 

The average word length is multiplied by the order of n-grams and (order_ngrams — 1)) 
represents spaces used for joining the n-gram tuple into a single string. The entire expression 
is then rounded up to a whole number. 

The last public function provided by this class is get_expected_count (self, term). 
It outputs the expected number of documents (DC) for given term. This value is then used 
by the DocumentRetriever class. 
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D o c u m e n t R e t r i e v e r 

The DocumentRetriever class nicely encapsulates all the web communication and doc
ument retrieval. It is initialized with search_preference, download_path, doc_limit, 
doc_default, web_tags and target_language. The class implements functions for web 
searching that are built on either BingAPI or Googlesearch python module. What type of 
web search is used depends on the search_pref erence value. Functions for different A P I 
or web search can be easily implemented in the future if necessary. Included BingAPI is set 
up with a free of charge subscription and therefore allows only for around 1500 transactions 
per month. 

On the other hand, the Googlesearch python module is built upon native Python 
modules, so it can be used with no charges. The only downside of this module is the 
occasional request limit exceeding. In that situation, the server stops responding and the 
pipeline automatically terminates. We need to wait for some time before running the 
pipeline again, otherwise the server will keep responding with the same limit excess error 
code. 

I aim to keep the web requests at minimum, so the pipeline stores and recycles the 
web documents by default. This means every document is stored in the download_path 
folder under a unique name. Since web links are usually quite long, we cannot store the 
documents under their web links directly. In order to compress the web link and create a 
unique identifier, hash function called Message Digest (MD5) is used. Storing the web doc
uments on the disk reduces the number of consequent web requests, which makes using the 
Googlesearch python module more feasible. Additionally, it speeds up the experiments, 
since many documents can be re-used from storage instead of being redundantly down
loaded all over again. The mapping of links to their identifiers is stored in the url_mapper 
file inside the download_path directory. 

The class implements 2 public functions. Firstly, search_term(self, term, cnt) uses 
the standard search_pref erence to search cnt number of documents for the given term. 
The value of cnt is estimated in the NgramsProvider class. If the value of cnt cannot 
be estimated for any reason, then the doc_default value is used. If cnt exceeds maxi
mum number of documents given in doc_limit, then doc_limit value is used as cnt. If 
target_language is passed as an argument during class initialization, all web searches are 
given the language code, which increases the hit rate of documents in the target language. 
This function returns a list of web links. 

There was an effort to incorporate .pdf and .doc files processing in this class. I experi
mented with various Python modules and then APIs, but none of them provided satisfactory 
results. If the downloaded documents were only in English, those tools would suffice, but 
they were not reliable enough for other non-standard languages. Thus, the idea was scraped 
and all web links with the filename extension .pdf or .doc are filtered out. 

Second public function get_document_by_url(self, url) is given an url link and 
returns extracted list of paragraphs from the web document. Firstly, the script checks 
whether that web document is not already downloaded. If it is found in storage, the 
file is read and returned. If not, the web document is obtained with a simple HTTP GET 
request through Python module requests. The obtained web document is parsed with 
BeautifulSoup and web tags specified in web_tags are extracted. You can refer to this 
page1 for a full list of available HTML tags. The script can function for any type of web 
tag, but naturally, it is strongly advised to extract only web tags containing text. Once 

xhttps: //way2tutorial.com/html/tag/index.php 
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the text is extracted, it is stripped of any lingering HTML tags and stored locally. However, 
the downloaded documents contain text only from the tags defined in web_tags, so it is 
important to keep that in mind when re-using the downloaded data in-between experiments. 

T e x t C l e a n e r 

Small class that implements methods for quick, easy and automatic text cleaning. It pro
vides a method clean_document (self, content) for complex document cleaning, which 
can be constrained with a chosen characters constraint set. The characters constraint set is 
estimated in the WebCrawler class initialization from the input source file. When cleaning 
a document, each paragraph is cleaned separately and empty ones are removed right away. 
If the characters constraint set is not None, the paragraphs are checked for any constraint 
violations. A l l paragraphs are searched through and those that contain any characters 
outside of the allowed characters constraint set are filtered out. 

Initially, there was an effort to fully clean the web documents automatically, but they 
are often contaminated with various unpredictable characters. A l l web documents undergo 
a basic cleaning procedure, but it is difficult to predict everything, so some special char
acters might remain. We want to avoid clustering our language model with unnecessary 
rubbish, so it is safer to filter out those affected paragraphs. That led to the introduc
tion of the characters constraint set. The characters constraint set is estimated only if 
is_standard_lang is set to True. 

Therefore, the level of data pre-processing for the input source file directly influences 
the quality of our resulting language model. Furthermore, clean_document method au
tomatically removes paragraphs, where more than half of the total number of characters 
are numbers. If the language is standard, all numbers are expanded to their full written 
form with Python module num2words. A l l of these steps are to ensure the highest possible 
quality of the automatically created corpora file. 

TextCleaner also provides a method for trimming the input source file if it had not 
been properly processed. Trimming of the input file includes adjusting spacing, removing 
general interpunction marks, removing underscores for spelling and converting all letters 
to lowercase. However, it is still advised to fully pre-process the input source file and not 
rely on the pipeline for that. If it is already fully pre-processed, trim_input can be set 
to False in order to save some computational resources. If set to True, public method 
trim_input (self, content) is called and the input source file is quickly pre-processed. 

L a n g u a g e l d e n t i f i c a t i o n 

Instance of this class is initialized with the target_language ISO 639-1 code and a thresh
old value lid_threshold. It utilizes Python fastText module and a pre-trained fastText 
language identification model. When this class is initialized for the first time, it at
tempts to download a fastText language identification model named l i d . 176.bin [13]. 
The l i d . 176.bin model is capable of recognizing 176 standard world languages. The tar
get language ISO code is checked with the Python module pycountry. It holds database 
of all the ISO codes for languages, countries and currencies, so it can be used to check the 
inputted target_language code before passing it to the fastText model. 

This class implements a single public function is_target_lang(self, text) that re
turns a Boolean value. If the inputted text is judged to be in the target language with 
confidence higher than the lid_threshold, True is returned. Otherwise, False is returned. 
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The fast Text model outputs a list of languages and their confidence rates. Language with 
the highest confidence rate is considered to be the model's choice. 

In order to only obtain the web documents in the target language, the lid_threshold 
has to be at least 0.75. This threshold needs to be even higher for a language with close 
sister languages. There were several experiments conducted with l i d . 176.bin before it 
was added to the pipeline. 

Firstly, the same Wikipedia web document2 was downloaded in the following language 
pairs: Czech and Slovak, Spanish and Portuguese, Russian and Ukrainian. These language 
pairs were chosen deliberately, because they are very similar in grammar, vocabulary, writ
ing style and origin. Furthermore, each pair share a lot of lexical similarity, so its native 
speakers often understand each other even though they are not speaking the same lan
guage. The figure 4.6 shows Indo-European languages, which language family each one 
belongs to, and finally, their lexical distance to other languages. It is advised to always 
research what languages belong to the same language family so that an informed decision 
about the lid_threshold can be made. 

Initially, each document was accessed by l i d . 176.bin to explore, how confident the 
model is for each document to be in its target language when it really is in the target 
language. 

Czech Slovak Spanish Portuguese Russian Ukrainian 
Confidence (%) 99.85 98.44 97.22 98.44 99.74 99.97 

Table 4.1: Confidence of l i d . 176.bin for each document in its respective language. 

The model has a very high, almost 100%, confidence that each document is really 
fully written in its target language. Subsequently, a new document was sampled from the 
two same documents in the language pair. In the new mixed document, each paragraph 
is randomly selected from one of the documents. Sampled document is then judged by 
l i d . 176.bin in multiple experiments. I carried out 1000 experiments for each language 
pair. The concise results in the Table 4.2 show obtained minimal, maximal and median 
values of the model's confidence. 

2https: //en. wikipedia.org/wiki/ Cat 
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Figure 4.6: Lexical distance among European languages. Taken from [21] and adjusted. 
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Czech ratio (%) Slovak ratio (%) Identified language Confidence (%) 
40.78 59.22 Slovak 50.47 
55.70 44.30 Czech 84.47 
71.90 28.10 Czech 97.61 

(a) Experiment results for Czech and Slovak language pair. 

Russian ratio (%) Ukrainian ratio (%) Identified language Confidence (%) 
40.94 59.06 Ukrainian 49.97 
43.22 56.78 Ukrainian 61.60 
53.31 46.70 Ukrainian 91.64 

(b) Experiment results for Russian and Ukrainian language pair. 

Spanish ratio (%) Portuguese ratio (%) Identified language Confidence (%) 
52.16 47.84 Portuguese 46.13 
42.48 57.52 Portuguese 68.25 
27.62 72.38 Portuguese 88.07 

(c) Experiment results for Spanish and Portuguese language pair. 

Table 4.2: Experiments of language identification model l i d . 176 .bin for randomly mixed 
documents in the language pair. 

Although the documents were mixed randomly, the l i d . 176.bin model made very 
rational choices. Slovak and Czech share a lot of similarities, but Czech contains some 
special characters (r,e) that appear quite frequently in words. Therefore, it usually identifies 
the document as being fully written in Czech. Out of the 1000 experiments, the model 
identified 997 mixed documents as being written in Czech. 

The same thing happened for Spanish and Portuguese. Moreover, these two languages 
look mutually intelligible in their written form, the only difference is that Portuguese has 
some additional special letters (5, a ...), similarly to Czech. Therefore, the model almost 
always chose Portuguese - 987 out of 1000 experiments. 

For Russian and Ukrainian, the results were more mixed. The model chose Ukrainian 
for around 72% of experiments and Russian in the remaining 28%. 

Conclusively, the l i d . 176.bin model makes very reasonable estimates. When faced 
with a mixed document, it tends to make a decision based on the occurrence of graphemes. 

L a n g u a g e M o d e l A p i 

This pipeline utilizes the SRI Language Modelling Toolkit (SRILM) which has been under 
development since 1995 and is freely available for non-commercial purposes. SRILM is a col
lection of C++ libraries, executable programs and other miscellaneous scripts for statistical 
language modelling [22]. It is available for download on its official website3. Unfortunately, 
SRILM is available only in the source form, so it must be manually downloaded, compiled, 
installed and added to the environment variable PATH. If it is not available in PATH, the 
entire pipeline cannot be initialized. Successfully installed SRILM can then be directly used 
inside Unix terminal, including pipelining of multiple SRILM commands. 

3http:// www.speech.sri.com / projects / srilm / 
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Since the rest of the pipeline is fully implemented in Python, I decided to build a 
simple application interface layer in Python over the SRILM toolkit. The toolkit allows for 
language model creation, as well as evaluation. The implemented A P I provides functions 
for the following: 

• creation of a new language model limited with a given dictionary 
• perplexity evaluation of an existing language model with test data 
• mixing of two existing language models 

When the pipeline is initialized, a new language model is created from the input source 
file with create_source_lm(self, content), where content is a list of sentences from 
the input source file. By default, the script uses the Kneser Ney smoothing (Section 3.2) 
technique for every language model creation. Language model is automatically reduced with 
dictionary defined in the input hyperparameter dictionary. The input source file language 
model is created during initialization, so it can be used to evaluate the downloaded web 
documents. 

The decision threshold for accepting or rejecting a web document is given in the input 
parameter ppl_threshold and must be chosen experimentally. A l l documents above the 
aforementioned threshold are rejected, since we aim to choose documents with reasonably 
small perplexity. 

Besides the standard filtering with ppl_threshold, more advanced means of filtering 
were implemented. By default, the advanced filtering is not used unless specified so in the 
configuration file. The advanced filtering is based on the Zhang et al. [23] relevance filtering 
and expanded a little further. The goal of the advanced filtering is to give the user more 
detailed control of what documents (or their parts) are accepted or rejected. Zhang et al. 
approached this problem by selecting a fixed size window of 9 and then split the documents 
into segments of that window's length. Each segment is then scored and judged against the 
given threshold. They use a statistical scoring model created from the training documents 
to assign document frequency to each word in a segment. The score of the entire segment 
is therefore just the average document frequency of all the words in a segment. 

Instead of building a statistical model, I decided to utilize the unigram probabilities 
from the Phonexia source_model. Although probability is usually expressed in the range 
from 0 to 1, very small probability might result in a numerical underflow in the digital 
computers. Because of that, probabilities in the language model are generally expressed in 
the log domain. The higher the value in the log domain, the more probable it is and vice 
versa. A n unknown word is assigned the value of negative infinity. 

The advanced filtering is controlled with use_doc_f i l t e r for the whole document fil
tering and use_window_par_f i l t e r for paragraphs filtering. If any of them is set to True, 
the unigram log domain probabilities from the Phonexia L M are read and stored during 
the class initialization. 

I demonstrate the advanced filtering possibilities and their results with the following 
concrete example. A l l of the used unigram log values are actual values from Phonexia's 
language model for English. Consider a document with the following 3 fully cleaned para
graphs as they are represented internally in the pipeline: 

[„that's my spot said dr sheldon cooper", 
„leonard looked annoyed but moved eventually", 

„there's no point in arguing with sheldon anyway"] 
Document-based filtering joins all the document's paragraphs into a single string. 

Each word in the string is assigned its unigram log domain probability of occurring. Finally, 
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the scored segment vector is then passed through the median or average filter. The resulting 
score is compared with the f ilter_threshold and a decision is made. 

For document-based filtering, it is strongly advised to only use the median filter. The 
average filter has a disadvantage in this case. Once any word in the document is unknown 
to the source_model and is assigned the -inf value, its score with average filter ends up 
being -inf as well. Therefore, median filter is better suited for document-based filtering. 

["that's my spot said dr Sheldon cooper", 
"leonard looked annoyed but moved eventually", 
"there's no point in arguing with Sheldon anyway"] 

[that's my spot... arguing with Sheldon anyway"] 

I 
[-2.726749, -2.657694, -3.998123, ...,-4.943006, -3.207588] 

t t 
Average filter: Median filter: 

-3.6027034 -3.614038 

Figure 4.7: Example of document-based advanced filtering. 

Paragraph-based filtering judges each paragraph separately, giving the user closer 
control over what is included in the web corpora. If window_len is set to None, each 
paragraph is considered to be a separate segment. Otherwise, each paragraph is split into 
windows of a given window_len length. When all the segments are created, each of them 
is judged in the same way as shown in the figure 4.7. 

Every web document that passes through the pipeline is immediately added to the final 
corpora file with write_corpora(corpora, path, append), where corpora is a list of sen
tences, path is the absolute path to the corpora file and append is a self-explanatory Boolean 
value. The corpora file is named after the pipeline's fingerprint as corpora_f ingerprint. 
Once the web searching is finished, corpora_f ingerprint is used to create a web corpora 
language model named model_f ingerprint. 

The last step is mixing the Phonexia language model with model_f ingerprint over a 
test file. The models are mixed with a public method mix_models (self) . The test file is 
needed in order to accurately estimate the mixing weights A for both models. Ideally, the 
test file should contain representative data from the target domain. The resulting mixed 
language model is stored as mixed_model_f ingerprint. 

Next public function is evaluate_ppl_doc(self, corpora, exp_f ingerprint, 
link_f ingerprint), where corpora is a list of sentences for evaluation, exp_f ingerprint 
is the characteristic fingerprint for the pipeline and link_f ingerprint is the characteris-
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tic fingerprint for the web link. The given corpora is automatically evaluated against the 
language model created from the input source file. The evaluation results are stored in the 
ppl_path directory inside a file named after exp_f ingerprint joined with link_f ingerprint 
by an underscore. Evaluation results are stored by default so that we can refer to them 
later if necessary. The mapping of the ppl files is stored in a file named ppl_mapper in the 
ppl_path directory. This function returns a measure of perplexity. 

Last public method is already_done (self) and returns a Boolean value. It checks 
whether there is a model with the same exp_f ingerprint available. If there is, it means 
experiment with the same input parameters was already carried out, so it can be skipped. 

L o g g e r 

The class LoggerBase creates a foundation for its inherited classes: ExperimentsLogger, 
EvaluationLogger and StatisticsLogger. We do not only want to log standard infor
mation, but also information about the experiments, evaluation and overall statistics. 

The parent class LoggerBase provides a basic function for writing any arbitrary content 
to a file. The inherited classes are equipped with additional functions for parsing and logging 
the results. Initially, only the LoggerBase class was used and all the results were formatted 
before being passed to the logger function. However, this made the other parts of pipeline 
very cluttered and cumbersome, so the inherited classes were implemented. Each of them 
accepts data, which is then formatted and organized within its public logging function. 

Firstly, ExperimentsLogger is used to hold information about the experiments. Each 
experiment run with this pipeline is logged in the experiment file. Each line contains 
unrolled input configuration parameters for that experiment, with the exp_f ingerprint in 
the last column. Since all corpora results and models are named after the exp_f ingerprint, 
this experiments logger file holds the exact mapping of what input parameters correspond 
to that fingerprint. 

Secondly, EvaluationLogger deals with the evaluation results. Each experiment has 
its own evaluation file named after its exp_f ingerprint. Firstly, the original Phonexia 
language model is evaluated and logged. Then, the mixed model is evaluated and logged, 
so the results can be directly compared and judged. Each line contains the absolute path 
to the model, absolute path to the evaluation file and then the output from SRILM's ngram 
perplexity evaluation. That includes number of words and sentences in the evaluation file, 
oov rate, logprobability and two values for perplexity, one normalized and the other not. 

Lastly, StatisticsLogger is used to log results from every single link exploration. Each 
experiment has its own statistics file. Links that resulted in timeout are not logged. Each 
line contains the searched term, explored link, document length right after the download, 
whether the document passed language identification, document's perplexity evaluation, 
document length after it is fully cleaned and finally, percentage gain. The percentage 
gain represents, how much information was actually obtained after it passed through the 
pipeline. It is calculated from the cleaned document length and the raw document length 
right after download. 

The statistics file is very important for a quick system recovery. Since it holds infor
mation about all the previously processed terms, it is used for swift continuation of the 
script if the script or any external component fails. When the pipeline is initialized with 
its exp_fingerprint, the script searches for statistics file with the same fingerprint. If 
the statistics file exists, but the mixed model with the same fingerprint does not, it means 
the script was interrupted during corpora preparation. In that case, statistics file is read 
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and all searched terms are extracted. The last term from all the extracted terms is re
moved, since its search might not have been fully finished when it was interrupted. Once 
the NgramsProvider chooses the top n-grams, the script carries out set difference with the 
extracted terms, so only those yet unprocessed terms are searched. This approach reduces 
redundant web searches and allows for easy recovery at the approximate point of failure. 

S t a t i s t i c s v i s u a l i z a t i o n 

Small script named create_statistics .py that processes any arbitrary statistics file and 
outputs accumulated statistics and graphs. This script is not integrated in the pipeline and 
must be run manually. It is used to quickly visualize results from each experiment. The 
absolute path to the statistics file is set up manually at the beginning of the script. 

First graph shows histogram of raw document length and clean document length side by 
side. Second graph plots histogram of how many links were used for each search term. Third 
graph plots a histogram of language identification results. Last graph plots a histogram of 
how many documents were actually extracted per each term. These results provide data 
about web documents and how they were assessed by the pipeline at each stage. However, 
these results alone do not truly reflect the overall contribution of the pipeline, they are only 
informative. 

E x p e r i m e n t s m o d u l e 

Experiments module is implemented to run multiple experiments with the same various 
configuration settings. Of course, the pipeline can be used as is, but if we want to run 
multiple experiments or create multiple web corpora L M models, this script can take care 
of it. It accepts input in the same type of configuration file with a little adjustment - each 
configuration parameter value must be enclosed in a Python list. These lists can contain 
multiple values for each parameter. 

Once the configuration file is read, all possible parameter combinations are created. The 
script then initializes the language model expansion pipeline for each set of parameters and 
carries out experiments one by one. Since all web documents are stored locally by default, it 
is advised to carry out experiments with higher value of k_ngrams or ngrams_percentage 
first. Consequently, the initial experiment downloads a lot of web data and the subsequent 
experiments can re-use a big chunk of it, speeding up the entire process. 
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Chapter 5 

Experiments 

Experiments are conducted in order to evaluate the overall contribution of the implemented 
language model expansion pipeline. The experiments were carried out on the Phonexia's 
SGE server and on my personal computer. 

This chapter presents experiments and the obtained results. The overall goal of experi
ments is to run the pipeline multiple times, compare the results and assess its contribution. 
A l l experiments are language dependant. After each set of experiments is finished, the best 
model is chosen, packaged and used for decoding. 

Firstly, section 5.1 conducts experiments on Hindi, section 5.2 on Czech and section 5.3 
on Mandarin Chinese. Each experiment section begins with language specific information, 
followed with some setup information. Lastly, obtained results are presented and model 
with the best evaluation score is chosen and packaged for decoding. 

5.1 Experiment A - Hind i 

Experiments for Hindi were conducted in the earlier stages of the pipeline development. At 
the time of writing this paper, Phonexia is yet to develop their own A S R system for Hindi. 
However, I wished to test the pipeline on generic system and task to see, whether it could 
be quickly adjusted and used for other non-Phonexia systems. 

Therefore, the following experiments use data from the HINDI ASR CHALLENGE 2022 1. 
The data was collected by a social technology enterprise Gram Vaani and includes sponta
neous telephone speech recordings in regional variations of Hindi. This dataset is said to 
contain speech with natural background noise and timestamped transcriptions with various 
levels of accuracy. The accuracy of transcriptions varies, because this project was crowd 
sourced. 

H i n d i cha rac t e r i s t i c s 

Hindi is one of the official languages currently used in India. Although India has no national 
language, it is home to over 400 unique languages. In the 20th century, there was an effort 
to establish Hindi as a sole official language. However, this proposal was met with resistance 
and dissatisfaction in many regions of the country [4]. 

Currently, Hindi and English are established as the official languages. Additionally, 
each region in India has its own list of officially recognized languages. This makes most of 

x
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the people in India at least bilingual (English, Hindi), with many of them being trilingual 
(English, Hindi, regional language) or even polylingual (4+ languages). However, Hindi 
remains the common language with over 500 million speakers. 

Hindi belongs to the Indo-Aryan language group and its writing system is based on 
Devanagari. Devanagari is a syllable-based system, so each syllable consists of a consonant 
followed by an inherent vowel. Altogether, Hindi has 33 consonants and 11 vowels. The 
vowels can be nasalized or not. Written form of each vowel changes depending on whether 
the vowel follows a consonant or is standalone. 

The Devanagari writing system is used for other regional languages and dialects used in 
India. In order to convey a rough idea of what the writing system visually looks like, here 
is a sample of all the Hindi consonants: 

cb^J |y^^^oJd6^<iU|dSRt|HL|Lr )6 | 'H^ i |<<Hc |§mW 

Grammatically, Hindi is a highly inflected language. The inflections are realized through 
prefixes and suffixes. The typical word order is Subject — Object — Verb (SOV) [2]. 
According to the FSI's ranking of language difficulty (by default for native English speakers), 
Hindi is classified as a category IV language. That makes Hindi one of the harder languages 
to learn with an estimated 1100 hours of study required to achieve proficiency in speaking 
and reading [3]. 

M i x i n g m o d e l s i n K a l d i 

These experiments utilized the implemented pipeline for corpus creation, but mixing and 
evaluation was done with Kaldi. Kaldi is a toolkit for speech recognition written in C++ 
used by the A S R research community [19]. The projects inside Kaldi are organized in the 
form of recipes. 

The web corpora and training corpora of Gram Vaani are pre-processed by removing 
some special tokens and then, G2P is used to generate pronunciation of the newly obtained 
vocabulary. This recipe's G2P uses Phonetisaurus

2

 that needs to be manuallly installed 
beforehand. Finally, the two models can be mixed. Before mixing, it is advised to reduce 
the corpora by given dictionary. Since Phonexia did not have any dictionary for Hindi, 
it was kindly provided by my supervisor. 

In experiments with Hindi, the source_model we mix with the web corpora is actually 
a language model created from the training data of Gram Vaani dataset. The web corpora 
language model is mixed with the source_model to create the mixed_model. The charac
teristic file for estimating the mixing weights is the development data file of Gram Vaani 
dataset. Lastly, both of the models are evaluated on the development set from Gram Vaani 
dataset to determine their perplexity. 

E x p e r i m e n t s 

There were 15 experiments conducted for Hindi. Each experiment used different set of val
ues for the following input hyperparameters: k_ngrams, ppl_threshold and len_penalty. 
Other hyperparameters had their default values. Experiment or language specific param
eters were set accordingly and remained the same throughout the experiments. After all 
corpora files were downloaded, each of them was manually setup in a Kaldi recipe, mixed 
and then evaluated. The perplexity of source_model for the development set was quite low 

2

https: //github.com/Adolf VonKleist/Phonetisaurus 

47 



at 251.96. Out of 15 experiments, only the 8 top results are shown in the following table. 
Results are sorted by the improvement rate. 

k ngrams ppl_threshold len_penalty perplexity improvement (%) # of lines 
500 1200 6 234.18 7.06 229785 
500 1300 6 234.63 6.88 255076 
500 1200 9 235.42 6.56 232708 
250 1000 9 237.77 5.63 141627 
250 1000 3 237.95 5.56 121025 
250 1000 6 238.73 5.25 116062 
100 1100 9 243.66 3.29 60287 
100 1200 3 243.69 3.28 65195 

Table 5.1: Top 8 experiments with the highest improvement rate for trigrams in Hindi 
(original perplexity was 251.96). 

Although the initial perplexity of 251.96 was already low, the experiments managed to 
decrease the perplexity even lower. Initially, I did 9 experiments for k_ngrams equal to 
100. Then, I did 3 experiments each for k_ngrams equal to 250 and 500. The results of 
experiments suggest that k_ngrams strongly influences the number of downloaded lines and 
consequently, the improvement rate. Since len_penalty directly influences what n-grams 
are selected for the web search, experiments with the same len_penalty and k_ngrams val
ues search for the exactly same n-grams. Throughout the experiments, the ppl_threshold 
with the value of 1200 had tendency to choose the most optimal documents. Furthermore, 
when the ppl_threshold was set to 1300, more paragraphs were extracted, but the im
provement rate was lower, meaning the additionally accepted documents were lower quality. 
The most optimal len_penalty from {3, 6, 9} for Hindi is 6. 

Finally, the best language model with the perplexity of 234.18 was packaged in Kaldi 
and decoded. The best mixed model decreased the original WER from 30.3% to 29.3%. 

The number of obtained and used web documents from each experiment can also be 
compared. The following histograms created from the statistics files show, how many 
documents were useful per web search term in a given experiment. Only the best and the 
worst models are compared. The last set of graphs show the relationship between document 
frequency in the source file and number of relevant documents. 
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Figure 5.1: Histograms of relevant downloaded documents for the best and the worst 
model for Hindi. 
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Figure 5.2: Comparison of number of relevant documents given its document frequency 
for the best and the worst model for Hindi. 

Taking into consideration that the development corpora was quite small with only 
around 1800 lines, the experiments were successful, since they managed to lower the per
plexity by as much as 7.06% and WER by 1.0%. These experiments also confirmed the 
pipeline can be used for creation of corpora even for non-Phonexia system. The down
loaded corpora must be mixed and processed to match the system-dependant format of the 
language modelling. 

5.2 Experiment B - Czech 

Since Phonexia is a Czech based company, there's a very high standard for the quality of 
their ASR system for Czech language. Furthermore, Phonexia has acquired various datasets 
for Czech throughout the years and therefore, it has a lot of potential to be used for 
experimenting with the pipeline. 
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C z e c h cha rac t e r i s t i c s 

Czech belongs to the Slavic language family and is spoken by over 10 million speakers. It is 
very closely related to Slovak, and to certain degree to Polish as well. Czech is very rich in 
morphology. Although Czech has a basic word order of Subject — Verb — Object (SVO), 
the rules are quite relaxed. Depending on what we need to emphasize, the word order can 
be flexibly adjusted. 

According to the FSI's ranking, Czech belongs to the category IV language with around 
1100 hours of study required to achieve proficiency [3]. It is ranked so high because of its 
variable structure and morphology. 

The nouns, adjectives and verbs are inflected to modify their meanings. Omission of 
subject in a sentence is also very common, since it is expressed through conjugations of 
that verb. There are also complex rules about capitalization and the use of i /y in different 
words. For non-native speakers, these things can be quite complex, especially if there are 
no equivalent terms in their native language. 

E x p e r i m e n t s 

The experiments for Czech were conducted with one of Phonexia's evaluation dataset 
CS_CZ_SK0DAvl. This dataset is very specific, because it contains data used in the technical 
field of automobile industry. Visual inspection of the dataset concluded that all the annota
tions contain specific technical terminology and almost no general conversation. Therefore, 
this dataset is an excellent adept to test this pipeline, since it simulates the situation of 
obtaining data from our customer with the goal of adapting it to the target domain. Here 
is an example of what types of trigrams were selected for the web search based on the 
document count estimate: 

Term (in Czech) 
únik oleje z 

z hydraulického agregátu 
práce na víkend 
01 ucpaný filtr 
první dva tisíce 
číslo stroje m 

Translation 
oil leakage from 

from hydraulic aggregate 
work for weekend 
01 clogged filter 

first two thousand 
machine number m 

A l l of these terms are quite specific, so their web search is expected to have a good yield 
of relevant documents. The distribution of the estimated document count is as follows: 
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The main hyperparameters that were tuned are: ppl_threshold, len_penalty, k_ngrams 
and order_ngram. Firstly, I carried out experiments for trigram web searches, as trigrams 
capture a lot of contexts (Section 3.2). Each resulting web corpora is mixed with the 
Phonexia Czech language model and the resulting mixed model is then evaluated with per
plexity. In order to compare the results objectively, the Phonexia Czech language model is 
evaluated with perplexity over the same evaluation file. 

Firstly, perplexity of CS_CZ_SKODAvl dataset was measured with the source_model from 
Phonexia. The initial value was quite high at 15032.27. Altogether, 21 experiments were 
carried out for trigrams. The following is a table of hyperparameters, obtained perplexity, 
improvement rate and number of lines extracted for each web corpora. The table is sorted 
by the improvement rate and only the top 10 experiments with their hyperparameters are 
shown. 

k ngrams ppl_threshold len_penalty perplexity improvement (%) # of lines 
500 1200 25 4952.77 67.05 178086 
500 1200 20 4994.80 66.77 224220 
500 1500 25 5011.72 66.66 127594 
500 1100 20 5183.83 65.52 204799 
500 1300 25 5235.75 65.17 106628 
500 1000 20 5251.15 65.07 180342 
500 1200 15 5252.07 65.06 281681 
500 1500 20 5355.56 64.37 194706 
500 1100 15 5458.11 63.69 269138 
500 1300 20 5518.33 63.29 131659 

Table 5.2: Top 10 experiments with the highest improvement rate for trigrams in Czech 
(original perplexity was 15032.27). 
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The experiments were carried out for all combinations of the following hyperparameters: 

k_ngrams G {500, 250} 

ppl_threshold G {1000,1100,1200,1300,1500} 

len_penalty G {25, 20,15} 

These experiments once again confirmed the value of k_ngrams directly influences the 
number of lines extracted and transitively, also the improvement rate. The experiments 
for k_ngrams = 250 did not even make it to the top 10 results. The usual ppl_threshold 
with the highest improvement rate was 1200 as in the Hindi experiments. Experiments 
were more favourable for higher values of len_penalty, and its lowest possible value of 15 
consistently ranked in the lowest range of improvement rates for 500 k_ngrams. 

After the trigrams experiments, I wanted to test whether comparable results could 
be achieved with lower order n-grams. I carried out 3 experiments for bigrams and 1 
experiment for unigram. For the following experiments, k_ngrams was always set to 500 
for all of them. 

ppl_threshold len_penalty perplexity improvement (%) # of lines 
1400 15 3918.56 73.93 394328 
1200 15 4144.76 72.43 340744 
1200 10 4456.50 70.35 371654 

Table 5.3: Experiments for bigrams in Czech (original perplexity was 15032.27). 

Although there's a high improvement rate, the number of extracted lines is also quite 
high. The best corpora for bigrams has more than twice the number of lines than the 
best corpora for trigrams. Since bigrams are less specific, it is reasonable that more data 
is obtained from these experiments. Furthermore, these experiments reached the highest 
improvement rate of almost 74%. 

Lastly, I did one unigram experiment with the most optimal hyperparameters so far 
and expected the improvement rate to be lower but still comparable. Because unigrams do 
not capture any surrounding context, the resulting web corpora is then quite ambiguous as 
well. 

ppl_threshold len_penalty perplexity improvement (%) # of lines 
1200 8 4866.02 68.07 649237 

Table 5.4: Experiment for unigram in Czech (original perplexity was 15032.27). 

As expected, the improvement rate was lower compared to the other experiments. Still, 
it managed to obtain a nice improvement rate of around 68%, which is very good for 
a unigram model. Although both bigram and unigram experiments achieved favourable 
improvement rates, using trigrams as default is still highly advised since it captures the 
most context. The experiments showed trigrams and bigrams provide a nice balance 
between the improvement rate and the amount of relevant data downloaded. 
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Figure 5.4: Histograms of relevant downloaded documents for the best and the worst 
model for Czech. 

Relevant documents given the document frequency 

I 1 5 -

" 2 0 H m • 

ft: 

500 1000 1500 2000 2500 3000 3500 
Document frequency in the source file 

(a) Best model for Czech 
(best bigram). 

Relevant documents given the document frequency 

500 1000 1500 2000 2500 3000 3500 
Document frequency in the source file 

(b) Worst model for Czech 
(worst trigram). 

Figure 5.5: Comparison of number of relevant downloaded documents given its document 
frequency for the best and the worst model for Czech. 

After all the experiments were conducted, I chose the best model for trigram, bigram 
and unigram and packaged each of them into a single A S R system. The results decreased 
the original W E R of 55.7% as follows: 

category W E R (%) improvement (%) 
trigram 48.5 7.2 
bigram 47.0 8.7 

unigram 48.7 7.0 

Table 5.5: Word Error Rate (WER) for the best models in each category. 
Original W E R was 55.7% 

These experiments proved to be very succesful. The perplexity was decreased in all of 
the experiments, so the pipeline positively contributed to the adaptation process. 
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5.3 Experiment C - Mandar in 

Last set of experiments was conducted with Mandarin. Mandarin is considered to be a 
non-standard language, mainly due to its complicated writing system and speaking. I 
chose Mandarin to test, whether the pipeline can be used with non-standard languages as 
well. 

M a n d a r i n cha rac t e r i s t i c s 

Mandarin is based on the Beijing dialect and belongs to the Sinitic (Chinese) language 
group. Contrary to popular belief, Chinese and Mandarin are not completely equivalent 
terms. Chinese refers to a group of languages spoken by the ethnic Han people. Mandarin 
is just its Beijing dialect, which has been selected to be the official language of China in the 
20th century. The reason for doing so was to establish a common mean of communication 
between speakers of different dialects of China, since the dialects are quite different from 
each other. Therefore, many people in China are bilingual (Mandarin, local dialect) or even 
trilingual (Mandarin, two local dialects). 

A l l Chinese languages are tonal, meaning pitch of a voice determines meaning of a given 
linguistic unit. Mandarin uses syllables as a basic unit and each syllable has its set tonal 
variants. Each syllable consists of either consonant followed by a vowel, or a standalone 
vowel sound. There are 4 full tones and 1 neutral tone in Mandarin, traditionally numbered 
from 1 to 5. This fact needs to be clearly reflected in the lexicon file for Chinese ASR. 

Mandarin uses simplified Chinese characters (Hanzi) in Mainland China and traditional 
characters in Taiwan. The simplified Chinese characters were created in order to boost the 
literacy rate. The literacy steadily improved after the introduction of Chinese characters 
with fewer strokes. Every Chinese character is logically composed of smaller units named 
radicals. Pronunciation of a composed character is generally based on one of its radical's 
pronunciations, giving the characters some further logic. Although there are truly many 
characters, only a handful of them is actually frequently used. Some reports suggest that 
there are as many as 50000 characters, but only 20000 of them are used. Average Chinese 
person usually actively knows around 3000 characters, but even knowing the basic 1000 
covers a lot of everyday vocabulary. 

Words with the most basic meaning, such as eat, go, car, cat etc. are usually 1-character 
words. Small percentage of words consists of 3 or 4 characters. Most of the other words 
are 2-character words. More complicated terms are built from the simpler words; multiple 
words can be combined to create a new term. When it comes to grammar, Mandarin is 
very simple - grammatical meaning is generally expressed through short (1 or 2 character) 
particles. The basic word order is same as in English: Subject — Verb — Object (SVO). 

The FSI categorizes Mandarin as a class V language with 2200 hours of study required to 
achieve proficiency. The category V groups together the most difficult languages for native 
English speakers [3]. Besides Mandarin, this category also includes Cantonese, Japanese, 
Korean and Arabic, all of which are languages with vastly different writing styles and 
specific pronunciation. 

E x p e r i m e n t s 

The experiments for Mandarin were quite different from Czech. I used a Phonexia dataset 
named M0Mvzh_01. It contains around 8 hours of spontaneous telephone speech in Man
darin. This dataset was pre-processed quite recently. At that time, there was a discussion 
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on how to pre-process Mandarin datasets, since Mandarin is actually written without any 
spacing. Therefore, no clear boundary between words can be established. 

It was concluded that each Chinese character is to be considered as a separate unigram. 
Therefore, the Mandarin dictionary file is actually a list of Chinese characters with their 
pronunciation, each one on a new line. Current version of Phonexia's Mandarin dictionary 
contains just over 20000 characters, so occurrence of out-of-vocabulary character during 
corpora creation is not very likely. The stt .phxstm for M0Mvzh_01 is already pre-processed 
so that each Chinese character is separated from the others with space. 

However, this poses a great challenge for the pipeline. There are 2 things to be consid
ered before the experiments: 

• If we use the standard trigram approach for M0Mvzh_01, the selected trigrams are 
not actually 3 full words as in the other experiments, but average 1.5 - 2.5 words 
per trigram depending on the characters used. Only if all 3 characters are standalone 
words it would be equivalent to 3 words in a trigram. 

• The document count estimate (Equation 4.1) in the class NgramsProvider uses preci
sion to penalize n-grams shorter than len_penalty. However, Mandarin renders the 
precision metric useless, since all n-grams (containing only Chinese characters) have 
the same length. Therefore, n-grams for web search are ranked and chosen solely on 
their document frequency. 

Additionally, I did 2 manual adjustments to the pipeline for Mandarin before any ex
periments were conducted. Firstly, I adjusted the TextCleaner function for cleaning web 
documents to follow the spacing rules for Mandarin as explained above. Secondly, I added 
filtering to TextCleaner, so only paragraphs with at least 70% of Chinese characters are 
considered. It automatically excludes spacing from its calculations, so only actual charac
ters are counted and compared. The threshold is set to 70% and not higher, because we 
still want to keep paragraphs with a few words in Latin. Such words are usually names of 
companies, foreign names or simply terms that some Chinese tend to write in Latin. 

The initial perplexity evaluation of the M0Mvzh_01 by the source_model from Phonexia 
resulted in a very low score of 73.77. Therefore, it was expected that addition of web data 
is more likely to increase the perplexity, rather than decrease it. 

Firstly, I carried out 16 experiments for Mandarin. Since len_penalty was the same 
for all the experiments of a given order of ngram, I tried to experiment with order_ngram, 
k_ngrams and ppl_threshold. Due to the problems explained above, Mandarin could 
benefit from using higher order n-grams. I experimented with combinations of the following 
hyperparameters: 

order ngram £ {3,4,5} 

k_ngrams G {500,1000} 

ppl_threshold G {1100,1200,1300,1400} 

A l l the conducted experiments led to the increase of perplexity. Furthermore, through
out the experiments, many selected web links did not respond to the HTTP GET requests. 
Some servers responded with RST packet, which immediately closed the connection, and 
an exception of connection reset by peer occurred. Some servers responded only if the 
maximum number of retries was exceeded. Other servers did not respond at all, leaving the 
script hanging and waiting for the server's response. Because each link exploration is run 
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as a standalone process guarded with a set timeout, the script is not left hanging forever 
and after the timer runs out, the process is terminated. 

Although the same problems arose for the other language experiments too, it was still 
very rare. However, for Mandarin, these exceptions occurred definitely more frequently 
than in the other experiments. It is possible that some corporas have diminished potential 
because of these difficulties. 

The best 3 achieved results are shown here: 

order ngram k ngrams ppl_threshold len_penalty perplexity # of lines 
3 1000 1100 5 166.24 22517 
3 1000 1300 5 167.58 27173 
3 1000 1200 5 170.65 27554 

Table 5.6: Experiments for various n-grams in Mandarin (original perplexity was 73.77). 

As expected, the perplexity was not increased. Still, ppl_threshold at around 1200 
consistently ranked higher, while higher values of 1400 ranked lower. The higher the value of 
k_ngrams, the higher the improvement rate, similar to the Czech experiments. Surprisingly, 
Mandarin did not benefit from using higher order n-grams as originally anticipated. Since 
none of these experiments managed to decrease the perplexity, I decided to investigate a 
bit further. 

The first shortcoming is definitely the limited document count estimation. Out of the 
total distinct 230224 trigrams that were found, only around 3.7% had the document count 
estimation higher than 3. If we compare it with the Figure 5.3 for Czech document count 
estimate, Mandarin obviously suffers due to the limited n-grams document count estimate. 

i • 2 B 3 • > 3 

Figure 5.6: Estimated D C for the Mandarin dataset (M0Mvzh_0l). 

Firstly, I tried to improve the results with advanced filtering. I used paragraph-based 
filtering without any window_len specified and carried out 3 experiments for different values 
of f ilter_threshold. Only the median filter type was used. The results improved a little 
bit: 
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filter_threshold perplexity # of lines 
-4.0 157.20 9727 
-4.5 157.93 8939 
-5.0 158.45 9478 

Table 5.7: Experiments for trigrams in Mandarin with advanced paragraph-based 
filtering (original perplexity was 73.77). 

The advanced filtering managed to decrease the perplexity more than the previous 
experiments. Still, the perplexity was higher than the original one, so I decided to try using 
a more language-specific approach, so I manually went through the content of this dataset. 

Since this dataset is not specialized, but a general conversational speech, I took a look 
at what trigrams are actually selected for the web search with the limited document count 
estimation. Here is a sample of terms that were selected: 

Term (in Mandarin) Translation 
OIJTIC, tell me 
H ^ 3 P eventually is that 
Sl'f^ijj. speak with you 
T E ^ " ^ is today 

not have 
5x5 T S finished that 

As anticipated, the terms selected for the web search are quite ambiguous, so the down
loaded corpora is transitively ambiguous as well. Since selecting the trigrams according 
to their estimated document count did not contribute much, I decided to try the inverse 
approach - select rarer n-grams for the web search. By selecting the rarer n-grams, we 
avoid searching for the ambiguous terms and repeated grammatical structures. 

In order to select the rare trigrams, I manually adjusted the selection process inside 
the NgramsProvider class for the following experiments. Firstly, I filtered out trigrams 
that occurred more than once. Secondly, I filtered out trigrams that included multiple 
occurrences of the same Chinese character. Then, the first k_ngrams were picked: 

Term (in Mandarin) 
b m-Eia. 

m m 

Translation 
is the most expensive 

electronic version 
forgot to do that 

send to Korea 
high humidity 
in a busy day 

I manually went through the terms that are to be searched with this approach. Although 
there were still some general terms, this subset of trigrams is certainly more specific than 
the original one. Even the newly selected general terms were a bit more useful - the original 
set of trigrams included a lot of pure grammatical structures without any actual meaning. 
This subset's general terms were mostly numbers and numeral classifiers, which is actually 
more useful, since the basic grammatical structure is already captured by the Phonexia 
source model. 
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I conducted 5 more experiments with the manually selected trigrams. A l l the experi
ments used the same ppl_threshold of 1200, len_penalty of 5 and k_ngrams equal to 500. 
The first experiment was basic, without any advanced filtering. The rest of the experiments 
utilized the advanced filtering. 

I expected to obtain comparable results to the previous experiments. However, the 
opposite happened and perplexity increased substantially. Therefore, this approach was 
unsuccessful and it was concluded the original approach was more suitable despite its lim
itations. 

The best model is therefore the one with perplexity of 157.20 and the worst is the one 
with perplexity of 230.57. If we compare the histograms of number of relevant documents 
for Mandarin between the best and the worst model, the difference is immense. 

On the top of that, since Mandarin suffered from the web search difficulties, the his
tograms are very sparse in comparison to the other experiments. These results also strongly 
suggest there is some diminished potential from the web search for Mandarin. 
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Figure 5.7: Histograms of relevant downloaded documents for the best and the worst 
model for Mandarin. 
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Figure 5.8: Comparison of number of relevant downloaded documents given its document 
frequency for the best and the worst model for Mandarin. 
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5.4 Results summary 

Altogether, 3 sets of experiments were conducted with vastly different languages. Therefore, 
I believe the pipeline's possibilities were fully explored and the results were favourable. 

Firstly, I experimented with corpora creation for Hindi in section 5.1. Although the 
initial perplexity was already low at around 252, the pipeline managed to decrease it by as 
much as 7%. Finally, when the best model was decoded, the WER decreased by 1%. This set 
of experiments also confirmed that the implemented pipeline can used for corpora creation 
even for non-Phonexia systems. 

The second set of experiments was with Czech in the section 5.2. The chosen dataset was 
technical and the initial perplexity was very high at over 15000. In this case, the pipeline 
contributed very much and managed to decrease the perplexity by as much as 73.9%. This 
set of experiments can be considered to be the most successful. A l l of the experiments 
managed to decrease the perplexity. The value of W E R also decrease by as much as 8.7%. 

Last set of experiments was conducted with Mandarin in the section 5.3. The cho
sen dataset was from Phonexia and consisted of natural spontaneous speech. The initial 
perplexity was already very low at around 73, so a substantial decrease was not expected. 
Furthermore, these experiments faced some additional difficulties and limitations. Although 
no model achieved better perplexity, these results still provided an insight on how to handle 
a non-standard language like Mandarin. 

In conclusion, the experiments confirmed the pipeline can be utilized for automatic 
language model adaptation. However, even this pipeline has its limitations. If the dataset 
is very general and the initial perplexity already low, there is not much to improve with 
the simple web searches. I still do believe that this pipeline has the potential to alleviate 
some number of resources for Phonexia during the adaptation process. 
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Chapter 6 

Conclusion 

The goal of this thesis was to explore and implement a pipeline for automatic language 
model adaptation for Phonexia A S R system. The pipeline is given a domain-specific input 
file, which is analysed and the optimal terms for web search are selected. During the web 
search, each document is thoroughly filtered and evaluated to determine, whether it should 
be included in the final web corpora or not. Because filtering of the data is so important, 
some advanced means of filtering were implemented as well. 

The experiments were conducted on 3 vastly different languages - Hindi, Czech and 
Mandarin. Furthermore, the experiments for Hindi used only the corpora creation part 
of the pipeline, but the actual model mixing and evaluation was done with Kaldi. This 
proved the pipeline can be utilized for a web corpora creation even for a non-Phonexia A S R 
system. 

The results were very promising. Hindi used general dataset with very low initial per
plexity. The pipeline managed to decrease its perplexity by around 7% and W E R by 1%. 
The second set of experiments for Czech was carried out on a Phonexia system. The chosen 
dataset was very specialized and technical, which perfectly simulated the situation of ob
taining the data for adaptation to a specific domain. The pipeline managed to decrease the 
perplexity of the language model by as much as almost 74%. When it was packaged to the 
final A S R system and evaluated, W E R decreased by 8.7%. The last set of experiments was 
conducted with the non-standard Mandarin Chinese. The dataset for Mandarin was very 
general and its initial perplexity was already very low compared to the other experiments. 
Therefore, this set of experiments did not achieve better perplexity, but it still provided an 
insight on how to handle the non-standard languages in the pipeline. 

It can be concluded the implemented pipeline can be used as language-independent, 
since the best hyperparameters between sets of experiments were consistently similar. I 
believe the goals of the thesis were fulfilled and hopefully, the implemented pipeline will be 
used by my colleagues in Phonexia to ease the language model adaptation process. 

The future research building on this thesis can focus on many different aspects. For 
example, the pipeline can be easily updated to work with subscription-based A P I or use 
a different language identification model. For the non-standard languages like Mandarin, 
a different, more specific dataset could be used for experiments. Another possible feature 
is the inclusion of movie subtitles in the target language. Since subtitles contain a lot of 
conversational data, they could prove to be useful for natural expansion of the language 
model for general spontaneous speech. Finally, I believe it would be very interesting to 
conduct the same experiments with Mandarin, but with VPN in the target language country. 
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