MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA

DIPLOMOVÁ PRÁCE

BRNO 2015

BC. NELA POLÁKOVÁ

Mendelova univerzita v Brně

Agronomická fakulta

Ústav techniky a automobilové dopravy

Vliv fázových přeměn na vlastnosti uhlíkových ocelí

Diplomová práce

Vedoucí práce: doc. Ing. Josef Filípek, CSc.

Vypracovala: Bc. Nela Poláková

Ústav techniky a automobilové dopravy Akademický rok: 2014/2015

ZADÁNÍ DIPLOMOVÉ PRÁCE

Zpracovatelka: Bc. Nela Poláková

Studijní program:	Zemědělská specializace
Obor:	Management techniky
Konzultant:	Ing. Jiří Votava, PhD.
Název tématu:	Vliv fázových přeměn na vlastnosti uhlíkových ocelí
Rozsah práce:	50 - 60

Zásady pro vypracování:

- 1. Fázové přeměny v ocelích
- 2. Druhy tepelného tepelného zpracování
- 3. Charakteristika ocelí k zušlechťování
- 4. Vliv režimu tepelného zpracování na vlastnosti uhlíkové oceli (praktické zkoušky)
- 5. Porovnání teoretických údajů a praktických zkušeností

Seznam odborné literatury:

- 1. PTÁČEK, L. a kol. Nauka o materiálu : I. Brno: CERM, 2001. 505 s. ISBN 80-7204-193-2.
- 2. PTÁČEK, L. Nauka o materiálu II. Brno: CERM s.r.o., 2003. 396 s. ISBN 80-7204-248-3.
- 3. KRAUS, V. Technologie tepelného zpracování část 1, 2. Plzeň: ZČU, 1992. 379 s.
- MACEK, K. ZŮNA, P. JANOVEC, J. Tepelné zpracování kovových materiálů. Praha: ČVUT, 2008. 133 s. ISBN 978-80-01-04186-4.
- JECH, J. Tepelné zpracování oceli. Praha: SNTL Nakladatelství technické literatury, 1983. 392 s.

Datum zadání diplomové práce:

Termín odevzdání diplomové práce:

duben 2015

říjen 2013

Bc. Nela Poláková Autorka práce

Ing. Jiří Čupera, Ph.D. Vedoucí ústavu

ihele

doc. Ing. Josef Filípek, CSc. Vedoucí práce

prof. Ing. Ladislav Zeman, CSc. Děkan AF MENDELU

Čestné prohlášení

Prohlašuji, že jsem práci:

.....

vypracovala samostatně a veškeré použité prameny a informace uvádím v seznamu použité literatury. Souhlasím, aby moje práce byla zveřejněna v souladu s § 47b zákona č. 111/1998 Sb.,o vysokých školách ve znění pozdějších předpisů a v souladu s platnou *Směrnicí o zveřejňování vysokoškolských závěrečných prací*.

Jsem si vědoma, že se na moji práci vztahuje zákon č. 121/2000 Sb., autorský zákon, a že Mendelova univerzita v Brně má právo na uzavření licenční smlouvy a užití této práce jako školního díla podle § 60 odst. 1 autorského zákona.

Dále se zavazuji, že před sepsáním licenční smlouvy o využití díla jinou osobou (subjektem) si vyžádám písemné stanovisko univerzity, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity, a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla, a to až do jejich skutečné výše.

V Brně dne:.....

.....

podpis

PODĚKOVÁNÍ

Tímto bych chtěla hluboce poděkovat panu doc. Ing. Josefu Filípkovi, CSc. za odborné vedení při psaní mé diplomové práce a ochotu při prováděných praktických zkouškách. Za čas, který mi s nadšením věnoval a za předání jeho odborných znalostí. Zároveň chci poděkovat panu Ing. Jiřímu Votavovi, Ph.D. a panu Ing. et Ing. Petrovi Dostálovi, Ph.D. za odborné znalosti a ochotnou pomoc při praktických zkouškách, jejich vyhodnocení a konzultování.

Ze srdce patří poděkování také mému dědečkovi Ing. Janu Křížovi, za předání celoživotních zkušeností a poznatků z praxe a jeho přínos k mé diplomové práci.

ABSTRAKT

Tato práce se zabývá studiem fázových přeměn u tvářených uhlíkových ocelí a jejich vlivem na mechanické vlastnosti. Bylo upozorněno na nedostatky primární krystalizace a možnosti jejich eliminace. Zvláštní pozornost byla věnována zušlechťování ocelí především pro možnost zvyšování jejich odolnosti vůči cyklickému zatěžování (únavě).

Bylo provedeno rozlišení mezi únavovým poškozením "objemovým" u ocelových dílů např. pružin a poškozením "kontaktním" např. povrchové poškození oběžných drah valivých ložisek.

Při praktických zkouškách na vzorcích z oceli 12 050 byl ověřen vliv kalení, žíhání a zušlechťování na mechanické vlastnosti oceli.

Klíčová slova:

Tvářená uhlíková ocel, fázové přeměny, tepelné zpracování, mechanické vlastnosti.

ABSTRACT

The thesis deals with the study of phase transformations of wrought carbon steels and their effect on mechanical properties. Attention was paid to the imperfections of primary crystallization and possibilities of their elimination. Special attention was paid to quenching of steels, mainly for the possibility of their resistance to cyclic loading (fatigue) increasing. A distinction between fatigue damage ,,volume" for steel parts - eg. the springs and damage ,,contact" - eg. superficial damage of the track of rolling bearings.

In practical tests on samples made from steel 12 050 has been verified the influence of hardening, annealing and quenching to the steel mechanical properties.

Keywords:

Wrought carbon steel, phase transformation, heat treatment, mechanical properties.

1	ÚVO	D	7
2	CÍL P	PRÁCE	8
3	LITE	RÁRNÍ PŘEHLED	9
3.1	Fázové	é přeměny v uhlíkových ocelích	9
3	.1.1 9	Soustava železo – uhlík	9
3	.1.2 I	Fázové přeměny při tuhnutí oceli	. 10
3	.1.3 I	Fázové změny při chladnutí oceli	. 15
3.2	Tepelr	né zpracování uhlíkových ocelí	. 17
3	.2.1	Žíhání	. 17
3	.2.2 I	Kalení	. 19
3	.2.3 I	Popouštění	. 30
3	.2.4 2	Zušlechťování	. 32
3.3	Podsta	atné údaje z ČSN 41 2050	34
3.4	Mecha	anické vlastnosti tvářených ocelí	36
3.5	Závěr	ze studia literatury	. 38
4	МАТ	ERIÁL A METODIKA	39
4.1	Ověřo	vané stavy oceli 12 050 (plech o síle 1,5)	. 39
4.2	Ověřo	vané stavy oceli 12 050 (hranol 10 × 10)	. 44
4.3	Výsled	lky a diskuse	. 55
5	ZÁVÌ	ĚR	57
6	PŘEH	HLED POUŽITÉ LITERATURY	58
7	SEZN	IAM OBRÁZKŮ	59
8	SEZN	IAM TABULEK	60
9	SEZN	IAM PŘÍLOH	61

1 ÚVOD

V současné době je výroba oceli ve světě odhadována na více než miliardu tun. Z toho tvářená ocel tvoří asi 98 % a zbytek jsou ocelové odlitky. Výroba litin se odhaduje asi na desetinu produkce oceli, tj. asi na sto milionů tun.

Slitiny železa patří mezi kovy nejpřijatelnější z ekologického hlediska. Výroba oceli je z energetického hlediska nejúspornější. Na výrobu jedné tuny oceli se spotřebuje 19 GJ energie, hliníku 160 GJ, u ostatních kovů se odhaduje energetická náročnost na 40 GJ na 1 tunu.

Nejpoužívanějšími a nejlevnějšími konstrukčními ocelemi jsou tvářené oceli uhlíkové. U těchto ocelí se potřebné technologické vlastnosti (tvářitelnost, svařitelnost apod.) a potřebné mechanické vlastnosti (tvrdost, pevnost, houževnatost apod.) dosahují zpravidla jen chemickým složením oceli a jejich tvářením, v menší míře pak i jejich tepelným zpracováním.

Velký objem tvářených svařitelných nízkouhlíkových ocelí spotřebovává stavebnictví jednak na armování železobetonu, jednak na nosné konstrukce staveb. Z těchto ocelí se dále vyrábějí stožáry pro přenos elektrické energie, produktovody všeho druhu, trupy tankerů, lodí všeho druhu včetně ponorek.

Velký objem spotřeby tvářených uhlíkových ocelí představují i kolejnice, kde jsou mechanické vlastnosti dosaženy jen chemickým složením a tvářením. Všechny tyto oceli patří podle českých norem do třídy 10 a 11 (oceli obvyklých jakostí).

Možnost zvýšit výrazným způsobem mechanické vlastnosti uhlíkových tvářených ocelí pomocí tepelného zpracování se používá především u třídy 12, která se vyznačuje vyšší čistotou a dokonalejším způsobem výroby.

2 CÍL PRÁCE

Cílem této práce je studijně zpracovat vliv fázových přeměn na vlastnosti uhlíkových ocelí. Dále je cílem praktickými zkouškami ověřit vliv normalizačního žíhání, žíhání na měkko a zušlechťování na mechanické a strukturární vlastnosti ušlechtilé uhlíkové oceli 12 050. Získané vlastnosti porovnat s ČSN 41 2050.

3 LITERÁRNÍ PŘEHLED

3.1 Fázové přeměny v uhlíkových ocelích

3.1.1 Soustava železo – uhlík

Na vlastnosti technických slitin železa má významný vliv uhlík. Uhlík zpravidla rozhodujícím způsobem ovlivňuje důležité vlastnosti slitin železa. Při odhadu vlastností těchto slitin můžeme proto vycházet z rovnovážného diagramu železa s uhlíkem, ze kterého lze zjistit, které fáze jsou v rovnováze při konkrétním obsahu C a konkrétní teplotě.

Uhlík s železem tvoří vlivem malého průměru atomu uhlíku intersticiální tuhé roztoky s omezenou rozpustností uhlíku. Po překročení jeho rozpustnosti v tuhém roztoku se uhlík vylučuje jako samostatná fáze. Při nízkých obsazích tvoří uhlík tvrdou sloučeninu Fe₃C. Soustava Fe-Fe₃C se označuje jako soustava metastabilní a podle této soustavy tuhnou a chladnou zejména oceli. Jestliže je uhlík vyloučen jako grafit, jedná se o soustavu stabilní, která má svůj význam při tuhnutí a chladnutí litin a surových želez. Mechanická analogie metastability, aktivace a stability soustavy je vidět na obr. 1.

Obr. 1 Mechanická analogie metastability, aktivace a stability soustavy [8]

Rovnovážný diagram soustavy železo – uhlík je vidět na obr. 2.

Obr. 2 Rovnovážný diagram soustavy železo – uhlík [9]

U oceli se v diagramu vyskytují následující fáze:

- ferit intersticiální tuhý roztok uhlíku v Fe α. U podeutektoidní oceli se vyskytuje ve formě čistých feritických zrn jako proeutektoidní, nebo v zrnech spolu s lamelárním nebo globulárním cementitem jako eutektoidní.
- austenit intersticiální tuhý roztok uhlíku v Fe γ.
- δ (delta ferit) intersticiální tuhý roztok uhlíku v železe δ .
- eutektoid v metastabilní soustavě se nazývá perlit a skládá se z feritu a cementitu. Morfologicky (podle tvaru) se rozeznává perlit lamelární (řez deskami feritu a cementitu) a perlit zrnitý (ferit se zrnitým cementitem).
- cementit intersticiální chemická sloučenina Fe₃C. Nejčastěji se vyskytuje jako eutektoidní (perlitický), u nadeutektoidní oceli se vyskytuje jako sekundární, a u oceli do 0,02 % C se při klesající teplotě vyskytuje jako terciální. [9]

3.1.2 Fázové přeměny při tuhnutí oceli

Ocel je slitina železa, uhlíku (do 2,08 %) a dalších prvků, které pocházejí ze vsázky, případně se do oceli dostávají záměrně během výroby.

Chemickým složením, tepelným zpracováním a způsobem tváření je možné mechanické, fyzikální a chemické vlastnosti oceli měnit z širokých mezích. Výroba oceli dnes nepředstavuje jen proces zkujňování, to je snižování obsahu uhlíku a jiných prvků v surovém železe, ale i složitý proces výroby, na jehož konci je ocel o předepsaném chemickém složení, případně předepsaných vlastností. Dnes se vyrábí více než 90 % světové produkce oceli v kyslíkových konvertorech a elektrických obloukových pecích. [9]

Při zkujňování (zpravidla v konvertorech) se okysličuje i železo na oxid železnatý (FeO), který je v oceli rozpuštěn. Jeho vliv na ocel je značně nepříznivý, a proto je nutné tekutou ocel po dokončení pochodů v konvertorech odkysličit (dezoxidovat), což se děje feromanganem a ferosiliciem (ocel neuklidněná), popřípadě i přidáním malého množství hliníku (ocel uklidněná). Uklidněná ocel má vyrovnanější složení než ocel neuklidněná.

Oceli s větším obsahem uhlíku a všechny jakostnější oceli se odlévají jako uklidněné. Přísada ferosilicia se projeví na obsahu křemíku, jehož je u uklidněné oceli asi 0,2 % nebo více. Obsah příměsí v surovém železe před zkujněním a v oceli po zkujnění je na obr. 3. [1]

Obr. 3 Obsah příměsí v technickém železe před zkujněním a po zkujnění [1]

Tuhnutí oceli začíná poklesem teploty taveniny pod čáru likvidu – křivka A-B-C na obr. 2. Tekutá ocel se odlévá do kokil (litinových forem), kde po ztuhnutí vzniká ocelový ingot. Na obr. 4 je vidět odlévání ocelových ingotů spodem, na obr. 5 kontinuální (plynulé) lidí ingotů.

Obr. 4 Odlévání ingotů spodem [1]

Velikost ingotů se pohybuje od několika set kilogramů do 20 tun u ingotů k válcování a do 200 tun u ingotů pro kování. Protože odlévání do kokil je nákladné a málo výkonné a vyžaduje mnoho místa, používá se ve velkých ocelárnách tzv. plynulé odlévání oceli – obr. 5. Zde není třeba kokil a ocel se získá ve tvaru, který je pro další zpracování vhodnější. Plynulé odlévání oceli nejen mechanizuje namáhavou práci v hutích, ale zvyšuje výtěžek oceli až o 20 % a zlepšuje strukturu odlitků. [1]

Podle odkazu [14] bylo v Třineckých železárnách v r. 2012 vyrobeno 2,5 milionů tun oceli (asi 50 % oceli vyrobené v ČR). Z toho 97 % bylo zpracováno kontilitím do slitků pravoúhlého nebo kruhového průřezu. Zbytek byl odlit do ingotů. S ohledem na menší průřezy slitků a rychlejší ochlazování snižuje kontilití dendritickou i pásmovou segregaci později tuhnoucích kovových roztoků.

Krystalizace oceli

Z více než jednoho sta prvků seřazených v periodickém systému se jich počítá asi ³/₄ mezi kovy a jen zbytek tvoří nekovy. Všechny kovy v tuhém stavu mají krystalic-kou strukturu.

Při odlití tekuté oceli do kokily nebo vodou chlazeného kovového krystalizátoru se první krystaly začínají tvořit na vnitřní studené ploše kokily nebo krystalizátoru. Z místa zárodku (nukleace) rostou nejdříve tři hlavní osy budoucího krystalu. Na těchto hlavních osách narůstají postupně osy vedlejší a protože se útvar v této fázi podobá stromu (řecky dendros), nazývá se dendrit. Jednotlivé krystaly při svém růstu narážejí na krystaly sousední a tím je jejich růst ukončen. Proto mají jednotlivá zrna vzniklá při primární krystalizaci nepravidelný tvar. Viz obr. 6a – růst krystalů v tavenině počátek, 6b – růst krystalů v tavenině před ukončením. Velikost primárních krystalů se podle rychlosti ochlazování pohybuje od několika setin milimetru až do několika milimetrů.

Obr. 6 Růst krystalů v tavenině [3]

Osy dendritů jsou tvořeny materiálem, který tuhne nejdříve a je nejkvalitnější z hlediska mechanických vlastností, zatímco mezidendritické zóny jsou vyplněny materiálem, který tuhne později a má horší mechanické vlastnosti. Tento stav se nazývá dendritická segregace. Navenek jsou výsledné mechanické vlastnosti dány vlastnostmi nejhoršími – to je vlastnostmi mezidendritických zón. [3] Poslední krystaly se tvoří v ose ingotu, kde končí tuhnutí oceli v ingotu eventuelně v kontislitku.

Schematické znázornění růstu dendritů a vzniku primárních zrn je na obr. 7

Obr. 7 Schematické znázornění růstu dendritů a vzniku primárních zrn [3]

Ke snížení negativního vlivu dendritické segregace se používá homogenizační žíhání, které je však velmi nákladné. Ekonomičtější je použití kladného vlivu při tváření za tepla, kterým se získává tvar konečného polotovaru. Nejnižší mechanické vlastnosti má ocel, která ztuhne naposled v ose ingotu. Zde se kromě dendritické segregace projeví i pásmová segregace. Primární licí zrno je zde největší a mechanické vlastnosti nejnižší. Čím je větší ingot, tím je i větší pásmová segregace.

Při tváření polotovarů např. pro výrobu kroužků valivých ložisek se tvářením za tepla výrazným způsobem snižuje negativní vliv dendritické i pásmové segregace a v rámci možnosti se dbá na to, aby v blízkosti oběžných drah byla vlákna (původní osy dendritů a mezidendritické zóny protažené ve směru tváření) pokud možno rovnoběžná s oběžnými dráhami. [10] Na obr. 8 je vidět průběh vláken v napěchovaném svorníku. [12]

Obr. 8 *Průběh vláken v napěchovaném svorníku (1,5 × zvětšeno) [12]*

U výrobků tvářených převážně jedním směrem (plechy, podélné profily) jsou značné rozdíly vlastností ve směru tváření a napříč ke směru tváření. Hodnota vrubové houževnatosti klesá v druhém případě až na 50 %. [3]

3.1.3 Fázové změny při chladnutí oceli

Chování přídavných prvků v oceli

Kromě uhlíku, který je rozhodující prvek ve slitinách železa se v oceli nachází řada prvků, bez nichž nelze ocel ekonomicky vyrobit (Mn, Si, P, S, atd.) a také řada prvků, které jsou do oceli přidány záměrně. Tyto prvky ovlivňují velkou škálu vlastností oceli.

Jsou – li dva kovy rozpustné v tuhém stavu, tvoří spolu tuhé roztoky. [3] Tuhý roztok je homogenní krystalická fáze, která má prostorovou mřížku základního kovu (rozpustidla) a kromě atomů základního kovu obsahuje i atomy rozpuštěného kovu. Podle způsobu umístění atomů rozpuštěného kovu rozdělujeme tuhé roztoky na substituční a intersticiální.

<u>Tuhý roztok substituční</u> vzniká tehdy, jsou – li velikosti a vlastnosti atomů slitinového a základního kovu podobné (hlavně velikost). V takovém případě se atomy základního kovu legujícího prvku mohou vzájemně zastupovat. Schéma tuhého roztoku substitučního je na obr. 9. Takovým prvkem je např. Mn, Si, Cr.

Obr. 9 Schéma substitučního tuhého roztoku: a – atomy základního kovu, b – atomy substitučně rozpuštěného legujícího prvku [3]

<u>Tuhý roztok intersticiální</u> vzniká tehdy, jsou – li atomy slitinového prvku malé a jsou – li uloženy mezi atomy základního kovu. Čím jsou atomy slitinového kovu menší a základního kovu větší, tím větší je rozpustnost slitinových prvků. Schéma intersticiálního tuhého roztoku je na obr. 10. Takovým prvkem je např. C. [3]

Obr. 10 Schéma intersticiálního tuhého roztoku: a – atomy základního kovu, b – atomy intersticiálně rozpuštěného legujícího prvku [3]

Intermediární fáze. Převážná většina intermediárních fází má povahu chemických sloučenin, ale jen zřídkakdy odpovídá jejich složení určitému chemickému vzorci. Ve většině případů existuje širší rozmezí koncentrací, v němž může daná intermediární fáze existovat. [3]

Příklad intermediární fáze – Fe₃C (cementit)

Fázové změny při chladnutí podeutektoidní uhlíkové oceli

Při dalším ochlazování již ztuhlé oceli nastává při určité teplotě změna krystalické mřížky. Při této přeměně, která se nazývá polymorfní nebo alotropická přeměna, se zrna s jedním typem krystalické mřížky mění na nová zrna s jiným typem krystalické mřížky. Mění se nejen mřížka, ale i zrno a tato přeměna zrna se nazývá překrystalizací. Proto se ve struktuře oceli rozlišuje zrno primární, které vzniklo při tuhnutí taveniny, a zrno sekundární, které vzniká až v tuhém stavu. Jednotlivé druhy krystalů s různou krystalickou mřížkou se u oceli nazývají modifikace a označují se α , β , γ , δ . Změna modifikace je vratná. [3] Ferit β má krystalickou mřížku stejnou jako ferit α , ale je nemagnetický a vyskytuje se nad teplotou 768 °C. Pro technickou praxi má zásadní význam modifikace α a γ a jejich vzájemné přeměny. Ferit δ se při tuhnutí oceli vyskytuje jen při nízkých obsazích uhlíku. Pro čisté železo se vyskytuje mezi 1394 – 1538 °C. Ferit δ má podobnou krystalickou mřížku jako ferit α , má pouze jiné parametry mřížky. Pro technickou praxi nemá ferit δ větší význam.

3.2 Tepelné zpracování uhlíkových ocelí

3.2.1 Žíhání

Společným znakem četných způsobů žíhání je snaha po dosažení struktur tvořených rovnovážnými fázemi. Pro žíhání je tudíž charakteristická relativně malá ochlazovací rychlost, zpravidla ne vyšší než odpovídá ochlazování na klidném vzduchu. Žíhání často bývá i konečnou operací tepelného zpracování, která určuje materiálové vlastnosti výrobku či polotovaru. Pro polymorfní oceli se dělí postupy žíhání podle výšky použité teploty na žíhání bez překrystalizace a na žíhání s překrystalizací. Hodnoty žíhacích teplot hlavních způsobů žíhání jsou patrné z obr. 11. [9]

*Obr. 11 Schématické znázornění oblasti žíhacích teplot v diagramu Fe-Fe*₃*C (žíhání: a – ke snížení pnutí, b – rekrystalizační, c – na měkko, d – homogenizační, e – normalizační)* [9]

Žíhání bez překrystalizace

<u>Žíhání ke snížení pnutí</u>

Provádí se s cílem snížit nebo odstranit vnitřní pnutí, která vznikla ve výrobcích po jejich předcházejícím zpracování jako důsledek místního ohřevu (svařování), tváření za studena (např. rovnání), rozsáhlého třískového opracování nebo nerovnoměrného ochlazování výrobků složitých tvarů a větších rozměrů (odlitky, výkovky). Při teplotách 600 - 650 °C postačuje doba žíhání 1 - 2 hodiny.

<u>Rekrystalizační žíhání</u>

Provádí se k odstranění deformačního zpevnění způsobeného předcházejícím tvářením za studena. Žíhací teploty se volí v intervalu 550 – 700 °C u polymorfních ocelí, u nepolymorfních ocelí feritických kolem 800 °C a austenitických ocelí až 1100 °C. Prodleva na teplotě bývá obvykle 1 – 5 hodin. Teplota a doba rekrystalizačního žíhání jsou výrazně závislé na stupni deformace a požadovaných vlastnostech výrobku. Zpravidla se žíhá tak, aby došlo ke zjemnění silně protaženého zrna po tváření za studena.

<u>Žíhání na měkko</u>

Provádí se za účelem snížení tvrdosti a zejména zlepšení obrobitelnosti oceli. Požadovaných změn se dosahuje sferoidizací perlitického, popř. i sekundárního cementitu za teplot v oblasti teploty A_{c1} . Podeutektoidní oceli se žíhají v intervalu teplot 600 – 720 °C (pod A_{c1}) po dobu 4 hodiny i více s následným pomalým ochlazováním v peci. Při tomto režimu žíhání dojde ke změně lamelárního perlitu na perlit zrnitý. Viz. obr. 12.

Obr. 12 Zrnitý perlit v nadeutektoidní uhlíkové oceli po žíhání na měkko (světelná mikroskopie, zv. 800 ×) [9]

Žíhání s překrystalizací

Při žíhání s překrystalizací dochází k úplné přeměně výchozí feriticko – cementitické struktury v austenit. Podeutektoidní oceli se většinou žíhají nad teplotou A_{c3} , nadeutektoidní oceli nad A_{cm} nebo mezi A_{c1} a A_{cm} .

<u>Homogenizační žíhání</u>

Provádí se za účelem snížení chemické heterogenity, která vzniká při tuhnutí odlitku a ingotů v důsledku dendritické segregace. Lokální rozdíly v chemickém složení se vyrovnávají difuzí. Teploty se tedy volí co nejvyšší, obvykle v rozmezí 1100 – 1250 °C, výdrž je zpravidla 5 – 15 hodin. Úroveň pásmové segregace se zpravidla výrazně nezmění (příliš dlouhé difuzní dráhy).

<u>Normalizační žíhání</u>

Provádí se za účelem zjemnění austenitického zrna např. u výkovků tak, aby všechny výkovky obsahovaly pokud možno stejně jemné austenitické i sekundární zrno. U podetektoidních ocelí se provádí ohřev 30 - 50 °C nad A_{c3} s ochlazením na klidném vzduchu. U nadeutektoidních ocelí se normalizační žíhání používá ojediněle, zpravidla slouží k odstranění síťoví sekundárního cementitu ohřevem mezi A_{c1} až A_{cm} s následným rychlejším ochlazením (proud vzduchu), kterým se vznik tohoto síťoví potlačí. [9]

<u>Izotermické žíhání</u>

Spočívá v rychlém ochlazení austenitizované oceli na teplotu izotermického rozpadu austenitu v oblasti perlitické přeměny (obvykle 600 – 700 °C s následným ochlazením na vzduchu po ukončení přeměny). Smyslem tohoto žíhání je získání měkčí hrubozrnné perlitické struktury usnadňující třískové obrábění. [9]

3.2.2 Kalení

Bez možnosti zvýšení tvrdosti (a tím i pevnosti) tvářených ocelí by pro technické využití byla k dispozici jen žíhaná nebo nežíhaná ocel o tvrdosti a pevnosti odpovídající v podstatě jejímu chemickému složení. Z obr. 13 vyplývá, že tato hranice tvrdosti je asi 40 HRC a jí odpovídající pevnost je asi 1300 MPa. Taková ocel není použitelná na nástroje všeho druhu, na valivá ložiska a na všechny součástky vyžadující vyšší tvrdost nebo pevnost než jsou uvedené hranice. Z obr. 13 vyplývá, že zakalením a různým stupněm popouštění lze získat ocel v celém uvedeném rozsahu tvrdostí a pevností podle křivky b. Z obr. 13 je zřejmé, že s tvrdostí oceli stoupá její pevnost, ale klesá její rázová houževnatost v ohybu. Křivka c je zatím známa jen pro tvrdosti ocelí 60 – 66 HRC, ale je z ní zřejmé, že se stoupající tvrdostí klesá rázová houževnatost ocelí. V budoucnu snad tato křivka bude zpracována i pro tvrdosti nižší než 60 HRC.

Obr. 13 Graf: vliv tvrdosti na pevnost ocelí a jejich rázovou houževnatost v ohybu: a – stav nežíhaný nebo žíhaný, b – stav zušlechtěný nebo kalený a nízko popouštěný [11], c – stav zakalený a nízko popouštěný [5]

Kalením se označují ty způsoby tepleného zpracování, jejichž cílem je dosažení nerovnovážných stavů oceli. Podle převažující strukturní složky se kalení rozděluje na martenzitické a bainitické, přičemž většinou je cílem kalení zajistit vznik struktury martenzitické. [9]

<u>Kalitelnost</u> je schopnost ocelí a litin dosáhnout martenzitické struktury. Takové oceli a litiny označujeme jako kalitelné. Mezi nekalitelné oceli se řadí především vysokolegované nepolymorfní oceli s feritickou nebo austenitickou strukturou.

<u>Zakalitelnost</u> se zpravidla hodností tvrdostí oceli po zakalení a její maximální dosažitelná hodnota je určena tvrdostí martenzitu, která závisí především na obsahu uhlíku v austenitu.

<u>Prokalitelností</u> se označuje schopnost oceli získat po zakalení tvrdost odpovídající její zakalitelnosti v určité hloubce pod povrchem kaleného předmětu.

Železo se v závislosti na teplotě vyskytuje ve dvou krystalografických modifikacích. Čisté železo se až do teploty 912 °C vyskytuje ve formě krystalické mřížky krychlové prostorově středěné. Tato modifikace má atomy Fe v rozích krychle a jeden atom Fe ve středu krychle a označuje se jako modifikace α (obr. 14).

Obr. 14 Krystalické mřížky [1] *a) krychlová prostorově středěná, b) krychlová plošně středěná*

Modifikace α je feromagnetická až do teploty 760 °C, nad touto teplotou ztrácí železo magnetické vlastnosti. Nemagnetická modifikace s krychlovou mřížkou prostorově středěnou se označuje jako modifikace β . V intervalu teplot 912 – 1392 °C má čisté železo krychlovou mřížku plošně středěnou, označovanou jako modifikace γ (obr. 14). Nad tímto intervalem až do teploty tavení nabývá čisté železo opět krystalickou mřížku krychlovou prostorově středěnou a označuje se jako modifikace δ .

Chemicky čisté železo se v technické praxi používá jen výjimečně. Rozhodující přísadou ve slitinách železa je uhlík. Atomy C jsou tak malé, že mohou vytvářet mezerové (intersticiální) tuhé roztoky. V tuhém roztoku zůstávají atomy železa γ (nad teplotou A_{c1}) na svých místech a do volného prostoru v mřížce se vtěsná atom uhlíku. Tento tuhý roztok C v železe γ se nazývá austenit (obr. 15)

Obr. 15 Elementární buňka austenitu [1]

Kalení je ohřev oceli nad překrystalizační teplotu, výdrž na této teplotě (nasycení modifikace γ uhlíkem - vznik austenitu) a ochlazení rychlostí větší než je spodní kritická rychlost ochlazování. U podeutektoidních uhlíkových ocelí je kalící teplota asi 30 – 60 °C nad A_{c3}, u nadeutektoidních nad A_{c1} (obr. 16). [1]

Obr. 16 Oblasti kalicích teplot v diagramu Fe – Fe₃C [1]

U podeutektoidních ocelí nestačí provádět austenitizaci jen mezi teplotami A_{c1} a A_{c3} , protože se v této oblasti kromě austenitu vyskytuje též ferit, který po kalení snižuje tvrdost oceli.

Během ohřevu se uvolňuje C z perlitického Fe_3C a difuzí se dostává do γ železa, čímž vytvoří austenit. Setrvání na teplotě ohřevu nesmí být delší, než je nezbytně nutné,

protože hrubne austenitické zrno, což dělá zakalenou ocel křehčí a zvyšuje procento zbytkového austenitu. Vliv obsahu uhlíku na tvrdost po kalení je patrný z obr. 17. [9]

Obr. 17 Vliv obsahu uhlíku na tvrdost (1 – martenzitu v podeutektoidní oceli kalené z teploty nad A_{c3} , 2 – pouze martenzitu v nadeutektoidní oceli kalené z teploty nad A_{cm} , 3 – struktury tvořené martenzitem a sekundárním cementitem v nadeutektoidní oceli kalené z teploty nad A_{c1} , 4 – struktury tvořené martenzitem a zbytkovým austenitem v nadeutektoidní oceli kalené z teploty nad A_{cm} [9]

<u>Optimální ochlazovací prostředí</u> je takové, které umožní ochlazování příslušných objemů rychlostí jen o málo překračující rychlost kritickou, neboť nadměrně velká ochlazovací rychlost vede ke zvětšení úrovně vnitřních teplotních a strukturních pnutí. Vliv různých ochlazovacích prostředí je vidět z obr. 18.

Obr. 18 Ochlazovací křivky středu ocelového válce o průměru 10 mm v uvedených prostředích [9]

Diagramy anizotermického rozpadu austenitu (ARA)

Diagramy ARA jsou vypracovány v souřadnicích teplota – čas a lze z nich vyčíst počátky a konce jednotlivých přeměn austenitu, které byly získány při jeho plynulém ochlazování různými rychlostmi. Na obr. 19 je schéma anizotermického rozpadu austenitu eutektoidní oceli (C křivky).

Obr. 19 Schéma diagramu anizotermického rozpadu austenitu eutektoidní oceli [9]

Při relativně pomalém ochlazování eutektoidní oceli, křivky 1 a 2 vzniká perlitická přeměna. V praxi se tato přeměna vyskytuje při chladnutí výkovků a válcované oceli tvářené za tepla. Při dosažení určité rychlosti ochlazování (křivka 3) neproběhne perlitická přeměna do konce a zbylý austenit se transformuje v oblasti bainitické, takže výsledná mikrostruktura je tvořena perlitem a bainitem (popř. martenzitem). Pro rychlosti ochlazování větší než odpovídá křivce 4 začíná přeměna austenitu bainitickou transformací a pod teplotou M_s pokračuje martenzitickou přeměnou. Se vzrůstající rychlostí ochlazování se zvětšuje podíl martenzitu. Při rychlosti kritické (v_k) a vyšší se austenit transformuje pouze na martenzit s jistým podílem zbytkového austenitu. Přeměna austenitu na perlit a bainit je přeměna difuzní, přeměna austenitu na martenzit je přeměna bezdifuzní (děje se vysokou rychlostí).

Poloha bodů martenzit M_s a $M_f v$ závislosti na obsahu uhlíku je vidět z obr. 20.

Obr. 20 Poloha bodů Ms, Mf u uhlíkových ocelí [3]

Průběh martenzitické přeměny v závislosti na teplotě je vidět z obr. 21. Z tohoto obr. je vidět, že část austenitu se na martenzit nepřemění (asi do 10 %). Pokud se tento zbytkový austenit rychlým následným zmrazením přemění na martenzit, získá se vyšší dlouhodobá rozměrová stabilita na úkor vyšší křehkosti (koncové měrky, letecká valivá ložiska).

Obr. 21 Průběh martenzitické přeměny v závislosti na teplotě [3]

Bainit je vidět na obr. 22.

Obr. 22 Bainit [3]

Martenzit je vidět na obr. 23.

Obr. 23 Martenzit [3]

Uhlík v oceli rozhodujícím způsobem ovlivňuje tvrdost martenzitu po zakalení, ale prokalitelnost uhlíkové oceli je velmi nízká (několik mm). Přidáním legur do uhlíkové oceli se výrazným způsobem nezvýší tvrdost martenzitu, ale výrazným způsobem se zvýší její prokalitelnost. Viz. obr. 24.

Obr. 24 Schematické znázornění křivek prokalitelnosti (1) uhlíkové a (2) legované oceli [9]

Diagramy izotermického rozpadu austenitu (IRA)

Na obr. 25 jsou C křivky pro izotermický rozpad eutektoidní oceli.

Obr. 25 Schéma izotermického rozpadu austenitu eutektoidní oceli [9]

S použitím obr. 13 lze stanovit pevnost jednotlivých strukturních fází vzniklých izotermickým rozpadem austenitu u eutektoidní oceli. Viz tabulka 1.

Název	Zkratka	Tvrdost [HRC]	Rm [MPa]
Perlit hrubý	Perlit hrubý Ph		700
Perlit jemný	Pj	30 - 40	1000 - 1300
Bainit horní	Bh	40 - 45	1300 - 1400
Bainit dolní	Bd	50 - 60	1800 - 2400
Martenzit	М	65 - 67	3000 - 3300

Tabulka 1 Tvrdost a pevnost strukturních fází vzniklých při izotermickém rozpadu austenitu eutektoidní oceli [9, 11]

Tvar a poloha křivek diagramu IRA jsou ovlivněny zejména chemickým složením oceli. Izotermické kalení je velmi drahé (hodinové prodlevy na vysokých teplotách zpravidla v solné lázni). Výhodou je, že celý průřez součásti má jednotnou strukturu, deformace jsou minimální a součástka se již nepopouští. U bainitické struktury se v odkazu [13] uvádí vysoká odolnost bainitu vůči únavě, viz obr. 26.

Obr. 26 Odolnost strukturních fází vůči únavě [13]

Izotermické kalení se používá výjimečně. Je vhodné pro kalení součástí, které mají být odolné vůči únavě, např. článkové řetězy pro jízdní kola, motocykly apod.

Čelní zkouška prokalitelnosti

Velmi rychlá, jednoduchá a přesná je čelní zkouška prokalitelnosti. [3] Tato zkouška je též známá jako Jominiho zkouška. Ke stanovení prokalitelnosti touto zkouškou stačí jen jeden vzorek, který se zhotoví z tyče, jež byla předtím normalizačně žíhána při teplotě o 50 °C vyšší, než je teplota A_{c3} . Tvar a rozměry vzorku určuje ČSN 42 0447 a je vidět z obr. 27.

Obr. 27 Čelní zkouška prokalitelnosti [3]

Vzorek se ohřeje na kalící teplotu s přesností \pm 5 °C. Doba ohřevu má být 30 – 50 minut a výdrž na kalící teplotě 30 minut. Při ohřevu nesmí být vzorek (zejména čelní plocha) oduhličen. Ohřátý vzorek se vloží do přípravku tak, aby proud vody teplé 15 \pm 10 °C tryskal přímo na střed čela. Tlak vody musí být tak velký, aby před vložením vzorku stříkala voda do výšky 70 \pm 10 mm nad ústím trysky. Ochlazování vodou má trvat 20 až 30 minut, nejméně však 10 minut.

Před měřením tvrdosti musí být na válcové části vzorku vybroušeny podélně (v opačných stranách válce) dvě plochy do hloubky $0,50 \pm 0,10$ mm. Při broušení nesmí dojít k vyhřátí a popouštění těchto míst. Na obroušené ploše se měří tvrdost. Vzájemná vzdálenost jednotlivých vtisků má být 1,5 mm. Výsledky měření se vynesou do diagramu (obr. 29). Na ose x je vzdálenost od kaleného čela v mm, na ose y tvrdost, zpravidla v HRC nebo HV. Hloubku zakalení je možno určit pomocí diagramu na obr. 28, z něhož se určí tvrdost pro strukturu s 50 % martenzitu pro daný obsah uhlíku.

Obr. 28 Závislost tvrdosti na podílu martenzitu a na obsahu uhlíku v oceli [7]

ČSN 42 0447 předpisuje určení prokalitelnosti podle tvrdosti, která musí být ve výsledku uvedena, např. J 450/HV = 10 mm znamená, že při čelní zkoušce prokalitelnosti má vzorek ve vzdálenosti 10 mm od kaleného čela tvrdost 450 HV.

Tavba oceli je charakterizována jednou křivkou prokalitelnosti. Pro jednu značku oceli je nutno stanovit pás prokalitelnosti, který je omezen jednou křivkou pro minimálně prokalující tavbu a druhou křivkou pro tavbu maximálně prokalující. Na obr. 29 je vidět pás prokalitelnosti pro ocel 12 050. Křivka vlevo značí minimálně prokalující tavbu, křivka vpravo znamená maximálně prokalující tavbu.

Obr. 29 Pás prokalitelnosti oceli 12 050 [2]

3.2.3 Popouštění

Účelem popouštění martenzitických struktur získaných po kalení je především snížení vnitřního pnutí a tím zvýšení houževnatosti zakalené oceli při snížení její tvrdosti. Zvýšení houževnatosti odpovídá poklesu její tvrdosti. Nízké popouštění (napouštění) se provádí např. u součástí valivých ložisek, kde je potřeba z důvodu odolnosti vůči kontaktní únavě zachovat vysokou hodnotu meze kluzu a kde je vysoká tvrdost žádoucí s hlediska nízké míry opotřebení povrchu součástí valivých ložisek. Popouštění se má provádět bezprostředně po kalení, aby se zabránilo možným kalícím trhlinám.

Na obr. 30 je vidět, že tvrdost zakalených uhlíkových ocelí se plynule snižuje až do teplot kolem 600 °C, což jsou nejvyšší teploty používané pro popouštění uhlíkových ocelí.

Obr. 30 Závislost tvrdosti zakalených ocelí na teplotě popouštění (a – uhlíková ocel, b – nízkolegovaná chrómová ocel, c – rychlořezná ocel, d – maraging ocel) [9]

Fázové přeměny při popouštění se týkají především martenzitu a zbytkového austenitu. Podle teplot při kterých popouštění probíhá, rozeznáváme obvykle 4 stadia popouštění. [4]

1. stadium popouštění (asi do 200 °C)

Dochází k rozpadu uhlíkem silně přesyceného tuhého roztoku α – tetragonálního martenzitu na karbid ε a nízkouhlíkový martenzit (asi 0,25 % C). Tento martenzit bývá nazýván jako popuštěný (kubický) martenzit. Vznik kubického martenzitu je doprovázen sníženým vnitřního pnutí (při mírném snížení tvrdosti).

2. stadium popouštění (asi 200 – 300 °C)

Probíhá rozpad zbytkového austenitu (nasyceného C) ve strukturu bainitického typu. Je provázen zvětšením objemu a dalším snižováním tvrdosti.

3. stadium popouštění (asi nad 250 °C)

Vzniká rovnovážný tuhý roztok α (ferit). Přeměna nízkouhlíkového martenzitu ve ferit je charakterizována postupným snižováním obsahu uhlíku v tuhém roztoku α a dále se snižuje tvrdost a zvyšuje houževnatost. Výsledek pochodů je nelamelární feriticko cementitická struktura nazývaná sorbit.

4. stadium popouštění (asi nad 500 °C)

Postupně hrubnou částice cementitu, dochází k rekrystalizaci a hrubnutí feritického zrna. Klesá tvrdost, pevnost a zvyšuje se houževnatost. Když se teplota popouštění blíží k A_{c1}, tak se kubický martenzit mění na zrnitý perlit.

3.2.4 Zušlechťování

Se stoupající teplotou popouštění se pevnost a mez kluzu oceli snižují a zvyšují se její plastické vlastnosti (prodloužení a zúžení). Současně se zvyšuje i vrubová houževnatost oceli. Mechanické hodnoty dosažené popouštěním kalené oceli určitého typu na různé teploty jsou sestaveny v tzv. zušlechťovacích diagramech. Na obr. 31 je vidět zušlechťovací diagram pro ocel 12 050. V ČSN 41 2050 je tento diagram označen jako popouštěcí.

Obr. 31 Popouštěcí diagram oceli 12 050 [2]

Je třeba mít na zřeteli, že zušlechtěná je jen prokalená vrstva, která se u ocelí třídy 12 pohybuje asi od 2,5 - 5 mm, což reprezentuje sílu prokalených součástí asi od 5 do 10 mm.

Zušlechťovací diagramy poskytují dobrou informaci i pro popouštění strojních součástí větších průřezů ne zcela prokalených. Skutečně dosažená pevnost a mez kluzu jsou ovšem nižší, než udává diagram, se stoupající popouštěcí teplotou se pomaleji snižují. Popouštěním se vyrovnávají rozdíly mechanických hodnot okrajových vrstev a neprokaleného jádra. [3]

Definice zušlechť ování ocelí

Odkaz [4] definuje zušlechťování jako popouštění ocelí při vysokých teplotách, kdy je účelem získání struktur s vysokou houževnatostí při vysoké mezi kluzu a mezi únavy. Odkaz [1] – účelem zušlechťování je dosáhnout optimálních vlastností ocelí, tj. při největší mezi kluzu, pevnosti v tahu a mezi únavy zároveň nejlepší houževnatosti. Odkaz [9] – popouštění při vysokých teplotách obvykle v rozmezí 400 – 650 °C, se používá k dosažení optimální kombinace pevnostních vlastností ($R_{p0,2}$; R_m), houževnatosti a plasticity. Uvedenou kombinaci vlastností zaručuje sorbitická struktura, která vzniká ve 3., resp. 4. stadiu popouštění.

Z uvedených tří definic jsou uvedené první dvě definice nepřesné, protože se zvyšující se mezí kluzu klesá houževnatost, což vyplývá z tab. 2.

Materiál a jeho tepelné	R _e	R _m	σ _{oc}	τ _c	A ₁₀
zpracování	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[%]
StC 25.61	280	470	220	120	23
zušlechtěný	350	550	270	170	19
StC 60.61	450	750	340	190	15
zušlechtěný	550	900	410	260	10
MCMo 240.63	860	1100	540	310	9
zušlechtěný	1050	1300	620	370	5

Tabulka 2 Pevnost a mez únavy některých zušlechtěných ocelí [11]

Ocel je pro konstrukci cyklicky namáhanou tím vhodnější, čím větší je poměr R_e/R_m . Proto jsou zušlechtěné oceli s vysokou pevností i mezí kluzu podstatně odolnější vůči únavě, než oceli nezušlechtěné houževnaté. [11] U hřídelí, pružin apod. jde o objemovou únavu (i když trhlina vzniká na povrchu součástky), u valivých ložisek jde o kontaktní únavu způsobenou cyklickým kontaktním napětím mezi valivými tělísky a oběžnou drahou ložisek. Zde je poměr $R_{p0,2}/R_m$ velmi vysoký, protože součásti valivých ložisek mají po zakalení a nízkém popouštění tvrdost okolo 60 HRC. Důsledkem cyklické kontaktní únavy je poškození povrchu oběžné dráhy kroužku nebo tělíska – tzv. pitting (dolíček).

Jak u objemové, tak u kontaktní únavy výrazným způsobem snižuje trvanlivost součástky povrchová koroze. Na obr. 32 je vidět část spirálové pružiny tlumící nárazy kola osobního automobilu asi po sedmiletém provozu. Pružina je umístěna přímo nad kolem a je vystavena působení odstřikující vody, solanky, bláta. Povrch pružiny je chráněn plastovou trubičkou, která na části pružiny nevydržela vnější namáhání a odpadla. Tím došlo k výrazné korozi povrchu a následujícímu únavovému lomu.

Obr. 32 Únavový lom spirálové pružiny tlumící nárazy kola osobního automobilu průměr drátu 12 mm. Vlevo – koroze na části, kde odpadla plastová ochrana. Vpravo - únavový lom v místě povrchové koroze.

3.3 Podstatné údaje z ČSN 41 2050

Skupina ocelí podle ČSN 42 0074

K zušlechťování, k povrchovému kalení, pro velké výkovky.

Chemické složení (rozbor tavby - tabulka 3)

Tabulka 3 Chemické složení [2]

Chemické složení (rozbor tavby) [%]	С	Mn	Si	Cr	Ni	Cu	Р	S
	0,42 až 0,50	0,50 až 0,80	0,17 až 0,37	max. 0,25	max. 0,30	max. 0,30	max. 0,040	max. 0,040

Výrobek

Předvalky, válcováno za tepla, povrch okujený.

Doporučené teploty pro tváření a tepelné zpracování

Tabulka 4 Doporučené teploty pro tváření a tepelné zpracování [2]

Způsob		Teplota [°C]	Postup
	volné	1100 - 800	
Kování	v zápustce	1150 - 800	_
Normalizační žíhár	ní	840 - 870	vzduch
K-law(830 - 860	olej
Kalelli		800 - 830	voda
Popouštění		530 - 670	vzduch
Žíhání na měkko		680 - 720	prodleva na teplotě asi 4 h, volně ochlazovat v peci

Charakteristika oceli a vhodnost použití

Uklidněná ocel, vhodná na hřídele těžních strojů, turbokompresorů, karuselů apod., na větší ozubená kola, šneky, ozubené věnce, rotory šroubových kompresorů, ojnice, pístnice, vřetena, plunžry, písty kompresorů, čepy, šrouby, stavěcí šrouby, dopravní válečky, vodící čepy, lamely spojek, kladičky, lůžka, páky, zarážky, kolíky, různé spojovací součásti, posouvací vidlice, držáky, unášeče satelitů, vahadla, západky, kované svorníky tlakových nádob, upínací a stavebnicové části nástrojů, vrtací tyče, frézovací trny.

Svařitelnost podle ČSN 05 1310

Obtížná (vlivem obsahu C 0,42 - 0,5 %). V přechodovém pásmu mezi materiálem sváru a materiálem součásti dochází k částečnému nebo úplnému zakalení oceli s tím i ke zkřehnutí přechodové oblasti.

Pás prokalitelnosti

Je vidět z obr. 29. Jestliže prokalitelnost oceli je dána hloubkou pod povrchem, kde se vyskytuje 50 % martenzitu, pak tvrdost uhlíkové oceli z 0,5 % C v místech s 50 % mar-

tenzitu je asi 47 HRC (obr. 28). Tvrdosti 47 HRC odpovídá tvrdost asi 480 HV. Této tvrdosti odpovídá v pásu prokalitelnosti oceli 12 050 hloubka 2,5 – 5 mm. Plech o síle 1,5 mm z oceli 12 050 použitý v experimentální části bude po zakalení obsahovat jen tetragonální martenzit, zbytkový austenit a globulární karbidy (které jsou produktem žíhání na měkko). [2]

Popouštěcí diagram

Je vidět z obr. 31. [2]

3.4 Mechanické vlastnosti tvářených ocelí

Konstruktér součástí vyráběných z tvářených oceli je musí dimenzovat tak, aby po zadanou dobu trvanlivosti dokázaly odolávat zadaným vnějším silám bez ztráty své funkce. Z ekonomických důvodů volí konstruktér nejlevnější ocel, která požadovaným podmínkám vyhovuje. Pro kusovou nebo malosériovou výrobu je výhodné použít ocel žíhanou nebo nežíhanou (do pevnosti 1300 MPa a tvrdosti 40 HRC) viz obr.13. Pro velkosériovou výrobu je nutné volit ocel žíhanou na měkko (z důvodů ekonomie obrábění) a ocel zušlechtit. Rozhodující vliv na tvrdost a tím i pevnost uhlíkových konstrukčních ocelí ve stavu žíhaném nebo nežíhaném má obsah uhlíku (obr. 33). Použité údaje z odkazu [1].

Obr. 33 Graf: vliv obsahu uhlíku na pevnost oceli ve tvářeném tepelně nezpracovaném stavu

Obsahu uhlíku je přímo úměrný obsah perlitu (u podeutektoidních ocelí) a dále obsah sekundárního cementitu (u nadeutektoidních ocelí), což jsou zdroje tvrdosti a pevnosti uhlíkových ocelí. Dalším zdrojem tvrdosti a pevnosti jsou substituční prvky, jako např. mangan, kterého u nelegovaných ocelí může být až 1,65 %.

V odborné literatuře lze nalézt mechanické hodnoty základních konstrukčních materiálů a dovolená napětí pro různé druhy zatížení. Tak např. pro ocel 12 060 jsou uvedeny v odkazu [6] následující hodnoty: Viz tabulka 5.

Tabulka 5 Mechanické vlastnosti oceli 12 060 a dovolená napětí pro běžné případy zatížení [6]

Mechanické vlastnosti oceli 12 060								
			% z Re					
Mez pevnosti v tahu	Rm [MPa]	600 - 850						
Mez kluzu v tahu	Re [Mpa]	345 - 380						
Mez únavy v ohybu	σ _{oc} [Mpa]	215 - 295	62 - 78					
Mez únavy v krutu	τ_{c} [Mpa]	150 - 210	43 - 55					
Dovolená napětí (Mpa) pro běžné p (vzhledem k mezi kluzu v tahu Re	Dovolená napětí (Mpa) pro běžné případy zatížení pro součinitele bezpečnosti 1,5 až 2 (vzhledem k mezi kluzu v tahu Re, mezi únavy v ohybu σ_{oc} a mezi únavy v krutu τ_c)							
ТАН	I. Statický	175 - 205	51 - 54					
	II. Míjivý	150 - 175	43 - 46					
	III. Střídavý	115 - 135	33 - 36					
TLAK	I. Statický	175 - 205	51 - 54					
	II. Míjivý	150 - 175	43 - 46					
	III. Střídavý	115 - 135	33 - 36					
OHYB	I. Statický	190 - 225	55 - 59					
	II. Míjivý	120 - 140	35 - 37					
	III. Střídavý	85 - 100	25 - 26					
KRUT (SMYK)	I. Statický	110 - 130	32 - 34					
	II. Míjivý	70 - 80	20 - 21					
	III. Střídavý	50 - 60	14 - 16					

3.5 Závěr ze studia literatury

Konstruktér výrobku z tvářených ocelí má k dispozici oceli, které podle způsobu tepelného zpracování vykazují tvrdost přibližně od 100 HV do 1100 HV v závislosti na chemickém složení. V závislosti na této tvrdosti dosahují tepelně nezpracované i zpracované oceli pevnosti asi od 300 MPa do 3000 MPa. Se vzrůstající tvrdostí roste odolnost proti opotřebení, roste mez kluzu a mez pevnosti, roste mez únavy, ale klesá houževnatost oceli. Zdá se, že primární mechanickou vlastností, která určuje velikost ostatních mechanických vlastností je tvrdost.

Zušlechťování ocelí spočívá v zakalení na martenzit a vysokoteplotní popouštění (při teplotách 450 – 650 °C) na sorbit. Odolnost vůči únavě je tím větší, čím tvrdší (pevnější) je ocel po popouštění, ale s tvrdostí oceli klesá její houževnatost.

Je žádoucí, aby na povrchu oceli bylo tlakové pnutí a hladký povrch. Drsnost snižuje mez únavy, což se výrazně projevuje u ocelí s vysokou pevností.

Ocelové součástky, které mají mít vysokou odolnost vůči únavě jsou vyráběny zušlechťováním až do tvrdosti 55 HRC. Kromě vlastností oceli je pro odolnost vůči únavě limitující stav povrchu cyklicky namáhaných součástí.

4 MATERIÁL A METODIKA

Cílem praktických zkoušek je ověření různých stavů oceli 12 050 (druhů tepleného zpracování) na její mechanické vlastnosti eventuálně strukturu. Chemické složení této oceli je patrné z tabulky 3.

4.1 Ověřované stavy oceli 12 050 (plech o síle 1,5)

12 050.1	Normalizačně žíhaný
12 050.2	Rekrystalizačně žíhaný (dodaný stav)
12 050.3	Žíhaný na měkko
12 050.4	Kalený
12 050.6	Zušlechtěný na dolní pevnost obvyklou u oceli 12 050
12 050.7	Zušlechtěný na střední pevnost obvyklou u oceli 12 050
12 050. 8	Zušlechtěný na horní pevnost obvyklou u oceli 12 050

<u>Ověřované vlastnosti oceli 12 050</u> (plech o síle 1,5; technické dodací předpisy jsou obsaženy v ČSN 42 0118)

- a) zkouška tahem (Rm, A, Z)
- b) informativní teplotní pole zkoušených vzorků při tahové zkoušce
- c) zkouška tvrdosti (HV)

Rozměry vzorků pro zkoušku tahem jsou vidět z obr. 34

Obr. 34 Rozměry vzorků pro zkoušku tahem

Výsledky tahových zkoušek jsou uvedeny v tabulce č. 6.

Výsledky zkoušek tvrdosti jsou uvedeny v tabulce č. 7.

Informativní teplotní pole zkoušených vzorků při tahové zkoušce je vidět na obr. 35.

Obr. 35 Teplotní pole na vzorku při tahové zkoušce

Obr. 36 Vlevo – způsob uchycení vzorku pro zkoušku tahem. Vpravo - vzorek po přetržení

Pevnost v tahu							
Dodaný sta	av	Průměr	Prodloužení	Zúžení	Pevnost v tahu		
č. vzorku	F max [N]	F max [N]	A [%]	Z [%]	R _m [Mpa]		
35	7577						
50	7604	7649	19,3	35,47	509,9		
17	7765						
Žíhaný na i	měkko						
č. vzorku	F max [N]						
13	7464						
15	7391	7422	20,6	39,20	494,8		
36	7411						
Normaliza	čně žíhaný						
č. vzorku	F max [N]						
43	10911						
34	10849	10853	15,4	29,87	723,6		
42	10800						
Kalený do	vody 15 minut						
č. vzorku	F max [N]						
32	2426						
48	4181	3786	0,1	0,00	252,4		
41 4750							
Kalený do	Kalený do oleje 5 minut						
č. vzorku	F max [N]						
45	13858						
39	14609	14783	0,2	0,00	985,6		
40	15883						
Kalený do	oleje 30 minut						
č. vzorku	F max [N]						
10	11180						
6	12085	10754	0,1	0,00	716,9		
2	8997						
Kalený do	oleje 15 minut						
c. vzorku	F max [N]						
22	12181	42047	0.1	0.00	064.0		
31	12789	12917	0,1	0,00	861,2		
38	13782						
ř vzorku							
C. VZOľKU 1							
	21001	22665	0.4	2 00	1577 7		
3	20007	23003	0,4	2,00	15/7,7		
44 Popouštor	22300 ví 300 °C						
čyzorku	F max [N]						
51	25120						
2/	25125	25055	27	/ 72	1670 /		
24	25019	23033	2,1	т, / J	1070,4		

Tabulka 6 Výsledky tahových zkoušek

Pevnost v tahu								
Popouštený	400 °C	Průměr	Prodloužení	Zúžení	Pevnost v tahu			
č. vzorku	F max [N]	[N]	[A]	Z [%]	R _m [Mpa]			
12	19880							
26	19920	19833	3,7	11,33	1322,2			
53	19699							
Popoušter	ý 530 °C							
č. vzorku	F max [N]							
8	14205							
20	14416	14334	7,2	19,40	955,6			
7	14382							
Popoušter	ý 600 °C							
č. vzorku	F max [N]							
46	11701							
52	11821	11831	8,4	26,00	788,7			
47	11970							
Popoušter	iý 670 °C							
č. vzorku	F max [N]							
9	9652							
23	9592	9629	11,6	38,80	642,0			
18	9644							

	Tvrdost						
Dodaný s	tav			Celk. prům.	Směr. odch.	Var koef.	Inter. spol. 95 %
č. vzorku	HV	ΗV	HV	[HV]	[HV]	[%]	[HV]
35	127	130	129				
50	114	122	123	125,7	4,94	0,04	124,81 - 126,53
17	127	130	129				
Žíhaný na	měkko)					
č. vzorku	HV	HV	HV				
13	127	130	129				
15	132	134	132	130,0	2,21	0,02	129,62 - 130,38
36	127	130	129				
Normaliz	ačně žíł	naný					
č. vzorku	HV	HV	HV				
34	206	206	200				
42	181	184	189	195,0	8,55	0,04	193,83 - 196,17
43	192	200	197				
Kalený do	o vody 1	15 minut	t				
č. vzorku	HV	HV	HV				
41	828	828	798				
48	679	771	748	783,2	45,77	0,06	780,10 - 786,34
32	771	798	828				
Kalený do	o oleje !	5 minut					
č. vzorku	ΗV	HV	HV				
45	727	748	727				
39	626	727	748	692,7	50,75	0,07	688,98 - 696,63
40	626	679	626				
Kalený do	o oleje S	30 minu	t				
č. vzorku	HV	HV	HV				
2	679	533	748				
6	626	647	626	600,6	80,49	0,13	594,50 - 606,61
10	498	533	515				
Kalený do	o oleje :	15 minu	t				
č. vzorku	HV	HV	HV				
22	707	727	707				
38	626	647	626	669,8	35,06	0,05	667,19 - 672,36
31	679	662	647				
Popoušte	ený 200	°C					
č. vzorku	HV	HV	HV				
1	626	647	626			-	
44	647	626	626	633,0	9,90	0,02	632,22 - 633,78
3	626	626	647				
Popoušte	ený 300	ິ					
č. vzorku	HV	HV	HV				
25	494	494	484				
24	494	533	533	517,9	24,40	0,05	515,74 - 520,04
51	548	533	548				

Tabulka 7 Tvrdost vzorků pro zkoušku tahem

Tvrdost							
Popoušte	ený 400	°C		Celk. prům.	Směr. odch.	Var koef.	Inter. spol. 95 %
č. vzorku	HV	ΗV	HV	[HV]	[HV]	[%]	[HV]
26	394	431	418				
12	418	404	404	422,2	19,12	0,05	420,33 - 424,11
53	431	457	443				
Popoušte	ený 530	°C					
č. vzorku	HV	ΗV	HV				
7	327	308	317				
20	302	317	308	318,3	11,53	0,04	317,08 - 319,58
8	342	317	327				
Popoušte	ený 600	°C					
č. vzorku	HV	ΗV	HV				
47	254	254	248				
52	242	248	248	252,1	6,05	0,02	251,37 - 252,85
46	264	257	254				
Popoušte	ený 670	°C					
č. vzorku	ΗV	ΗV	HV				
18	244	238	244				
23	238	231	238	237,8	4,34	0,02	237,23 - 238,32
9	238	238	231				

4.2 Ověřované stavy oceli 12 050 (hranol 10×10)

12 050.1	Normalizačně žíhaný
12 050.2	Rekrystalizačně žíhaný (dodaný stav)
12 050.3	Žíhaný na měkko
12 050.4	Kalený
12 050.6	Zušlechtěný na dolní pevnost obvyklou u oceli 12 050
12 050.7	Zušlechtěný na střední pevnost obvyklou u oceli 12 050
12 050. 8	Zušlechtěný na horní pevnost obvyklou u oceli 12 050

Ověřované vlastnosti oceli 12 050 (hranol 10 × 10)

- a) tvrdost HV
- b) zkouška rázem v ohybu na vzorku s V vrubem
- c) zkouška opotřebení
- d) metalografické rozbory

Rozměry vzorků pro zkoušku rázem v ohybu jsou vidět z obr. 37

Obr. 37 Rozměry vzorků pro zkoušku vrubové houževnatosti

Zkouška opotřebení – zkušební přístroj s brusným plátnem

Laboratorní zkouška opotřebení s vázaným abrazivem byla prováděna na školním přístroji s brusným plátnem podle normy ČSN 01 5084. Zkušební přístroj je tvořen z rovnoměrně otáčející se vodorovné desky, na kterou je připevněno brusné korundové plátno. Zkušební vzorek o rozměru $10 \times 10 \times 10$ mm je uchycen v držáku a závažím je přitlačován k brusnému plátnu o průměru 480 mm. Měrný tlak je 0,32 N[·]mm⁻² a radiální posuv zkušebního tělesa činí 3 mm[·]ot⁻¹. Během zkoušky se horizontální kotouč s brusným plátnem otáčí, současně se vzorek posunuje od středu k okraji brusného plátna. Délka třecí dráhy je 50 metrů. Po očištění vzorku je na elektronických vahách stanoven hmotnostní úbytek.

Výsledky zkoušek tvrdosti jsou vidět v tabulce 8.

Výsledky zkoušek vrubové houževnatosti jsou vidět v tabulce 9.

Fotografie některých lomů jsou po zkoušce vrubové houževnatosti KCV jsou vidět na obr. 38 a 39.

Výsledky zkoušek odolnosti vůči opotřebení jsou vidět v tabulce 10 a na obr. 40.

Metalografické rozbory byly prováděny u vzorku dodaného stavu; kaleného do vody s dobou austenitizace 15 minut; žíhaného na měkko; zušlechtěného při teplotě popouštění 400 °C a době popouštění 1 hodina; zušlechtěného při teplotě popouštění 670 °C a době popouštění 1 hodina. Metalografické rozbory (zvětšení 1500×) jsou vidět na obr. 41 - 45.

				Tvrdost			
Dodaný s	tav			Celk. prům.	Směr. odch.	Var koef.	Inter. spol. 95 %
č. vzorku	HV	HV	HV	[HV]	[HV]	[%]	[HV]
41	230	233	243				
11	230	233	230				
9	225	230	233	230,5	5,41	0,02	229,80 - 231,20
63	233	225	238				
57	220	225	230				
Žíhaný na	a měkko						
č. vzorku	HV	HV	HV				
56	176	173	178				
16	173	176	173				
7	173	176	176	174,5	1,71	0,01	174,25 - 174,75
73	176	173	173				
30	176	173	173				
Normaliz	ačně žíhan	ý					
č. vzorku	HV	HV	HV				
78	200	206	203				
35	192	197	194				
27	197	200	197	196,8	3,97	0,02	196,25 - 197,35
3	192	192	194				
45	197	194	197				
Kalený do	o vody 15 r	ninut					
č. vzorku	HV	HV	HV				
47	679	679	688				
25	748	679	727				
39	727	727	737	693,3	33,69	0,05	690,77 - 695,83
13	707	679	688				
55	662	626	647				
Kalený do	o oleje 5 m	inut					
č. vzorku	HV	HV	HV				
68	282	295	308				
64	276	317	308				
43	242	242	254	263,4	30,02	0,11	259,90 - 266,90
42	233	236	239			· · · ·	
36	251	233	235				
Kalený do	o oleje 30 i	minut	•				
č. vzorku	HV	HV	HV				
95	404	431	427				
50	354	431	363				
24	394	443	443	421,9	46,25	0,11	417,39 - 426,41
69	431	515	498	I			
37	457	384	354				
Kalený do	o oleje 15 i	minut		1			
č. vzorku	HV	HV	HV				
59	377	378	376				
90	434	407	421				
67	356	422	358	400,7	33,82	0,08	397,29 - 404,11
91	475	435	438				,
40	377	378	379				

Tabulka 8 Tvrdost vzorků pro zkoušku rázem v ohybu

				Tvrdost			
Popoušte	ený 200 °C			Celk. prům.	Směr. odch.	Var koef.	Inter. spol. 95 %
č. vzorku	HV	HV	HV	[HV]	[HV]	[%]	[HV]
17	394	374	384				
72	374	394	384				
32	394	470	394	393,1	22,31	0,06	390,90 - 395,30
38	384	394	404				
21	374	384	394				
Popoušte	ený 300 °C						
č. vzorku	HV	HV	HV				
92	295	308	317				
60	327	334	330				
5	334	354	346	329,3	20,99	0,06	326,91 - 331,69
46	295	317	312				
48	354	357	359				
Popoušte	ený 400 °C						
č. vzorku	HV	HV	HV				
62	334	343	334				
14	269	327	317				
26	317	334	334	326,0	16,88	0,05	324,19 - 327,81
71	334	332	317				
4	332	334	332				
Popoušte	ený 530 °C						
č. vzorku	HV	HV	HV				
74	276	257	242				
15	282	276	279				
65	289	289	282	274,9	11,72	0,04	273,52 - 276,28
51	269	269	276				
70	282	276	279				
Popoušte	ený 600 °C						
č. vzorku	HV	HV	HV				
1	242	248	244				
6	254	242	248				
58	244	242	242	244,2	7,92	0,03	243,20 - 245,20
12	251	257	254				
75	229	231	235				
Popoušte	ený 670 °C						
č. vzorku	HV	HV	HV				
54	231	231	226				
76	229	231	226				
77	226	216	219	228,5	5,68	0,02	227,77 - 229,23
29	226	231	229				
44	231	238	238				

Dodaný stav Průměr Směr. odch. Var koef Inter. spol. 95% KCV $\ell.$ vzorku K [J] [J] [J] [K] [J] [J] [J] 11 22 Image: spole spol				Vrubová hou	ževnatost		
E. vzorku K [J] [J] [J] [%] [J]	Dodaný s	tav	Průměr	Směr. odch.	Var koef.	Inter. spol. 95 %	KCV
41 27	č. vzorku	K [J]	[J]	[1]	[%]	[J]	[J⋅cm ⁻²]
11 22 24 0,11 21,57-23,63 28,25 63 23	41	27					
9 21 22,6 2,42 0,11 21,57-23,63 28,25 63 23	11	22					
63 23	9	21	22,6	2,42	0,11	21,57 - 23,63	28,25
57 20 20 Žihaný na měkko 20 20 \tilde{c} . vzorku $K[J]$ 10 56 74,5 11,00 71 64,8 76,1 11,00 73 70,5 1 73 70,5 1 74 64,8 76,1 75 70,5 1 76 74,4 70,7 78 70 1 78 70 1 78 70 1 78 70 1 78 70 1 79 76 71,4 3,07 0,04 70,70-72,10 89,25 3 68 1 74 3,07 0,04 70,70-72,10 89,25 3 68 1 1 1 1 \tilde{c} vzorku $K[J] 1 1 1 1 \tilde{c} vzorku K[J] 1 1 1 1 1 \tilde{c} vzorku K[J] 1 1 $	63	23					
Žíhaný na měkko Image: split strukture	57	20					
\tilde{c} . vzorku K [J] Image: state of the state of	Žíhaný na	a měkko					
56 74,5	č. vzorku	K [J]					
16 $73, 6$	56	74,5					
7 64,8 76,1 11,00 0,14 73,59-78,61 95,13 30 97 .	16	73,6					
73 70,5 1 <th1< th=""> 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<></th1<>	7	64,8	76,1	11,00	0,14	73,59 - 78,61	95,13
30 97 Normalizačně žíhaný $\bar{c}. vzorku K [J] 78 70 35 74 27 76 71,4 3,07 0,04 70,70-72,10 89,25 3 68 45 69 47 5 25 7 39 6 5,4 1,02 0,19 4,58-6,22 6,75 13 5 55 4 68 17 $	73	70,5	,	,	,	, ,	,
Normalizačně žíhaný Image: strategy strateg	30	97					
č. vzorku K [J] Image: constraint of the second secon	Normaliz	ačně žíhaný					
78 70	č. vzorku	к [J]					
35 74 27 76 71,4 3,07 0,04 70,70 - 72,10 89,25 3 68 45 69 Kalený do vdy 15 minut 47 5 47 5 39 6 5,4 1,02 0,19 4,58 - 6,22 6,75 13 5 55 4 68 17 64 33 36 35	78	70					
27 76 71,4 3,07 0,04 70,70 - 72,10 89,25 3 68	35	74					
3 68 7 7 7 7 7 45 69	27	76	71.4	3.07	0.04	70.70 - 72.10	89.25
45 69 Image: constraint of the second seco	3	68	,		- / -		, -
Kalený do vody 15 minut Image: constraint of the second sec	45	69					
\tilde{c} , vzorku K [J] Image: constraint of the system	Kalený do	o vodv 15 minut					
Additional of the second s	č. vzorku	к [J]					
25 7	47	5					
39 6 5,4 1,02 0,19 4,58-6,22 6,75 13 5 -	25	7					
13 5 9	39	6	5.4	1.02	0.19	4.58 - 6.22	6.75
55 4 Kalený do oleje 5 minut č. vzorku K [J] 68 17 64 33 64 33 43 41 33,5 8,89 0,27 30,78 - 36,22 41,88 42 41,5 36 35	13	5	- /	, -	-, -	,,	-, -
Kalený do oleje 5 minut Image: construction of the system of	55	4					
č. vzorku K [J] Image: constraint of the second secon	Kalený do	o oleje 5 minut					
68 17	č. vzorku	к [J]					
64 33	68	17					
43 41 33,5 8,89 0,27 30,78 - 36,22 41,88 42 41,5 36 35 Kalený do oleje 30 minut </td <td>64</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td></td>	64	33					
42 41,5 0,00 <	43	41	33.5	8.89	0.27	30.78 - 36.22	41.88
36 35	42	41.5	/-		-7		,
Kalený do oleje 30 minut Image: constraint of the second seco	36	35					
č. vzorku K [J]	Kalený do	o oleie 30 minut					
95 28,5	č. vzorku	к [J]					
50 30	95	28,5					
24 27 29,4 1,53 0,05 28,85 - 29,95 36,75 69 31,5 37 30 <	50	30					
69 31,5	24	27	29,4	1,53	0,05	28,85 - 29,95	36,75
37 30	69	31,5	Í Í	, -	, -		
Kalený do oleje 15 minut <	37	30					
č. vzorku K [J] 59 30 90 23 67 31,5 28,0 6,80 0,24 25,60 - 30,40 35,00 91 18 40 37,5	Kalený do	o oleje 15 minut					
59 30	č. vzorku	K [J]					
90 23 <td>59</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td>	59	30					
67 31,5 28,0 6,80 0,24 25,60 - 30,40 35,00 91 18	90	23					
91 18 10 20,00 50,00 50,00 40 37,5 <td>67</td> <td>31.5</td> <td>28.0</td> <td>6,80</td> <td>0.24</td> <td>25.60 - 30.40</td> <td>35.00</td>	67	31.5	28.0	6,80	0.24	25.60 - 30.40	35.00
40 37,5	91	18	,0	-,	-,= ·	_,,	,->
	40	37,5					

Tabulka 9 Vrubová houževnatost

	Vrubová houževnatost					
Popoušte	ený 200 °C	Průměr	Směr. odch.	Var koef.	Inter. spol. 95 %	KCV
č. vzorku	K [J]	[1]	[J]	[%]	[1]	[J⋅cm ⁻²]
17	50,5					
72	39,5					
32	34	40,4	5,76	0,14	38,46 - 42,34	50,50
38	36					
21	42					
Popoušte	ený 300 °C					
č. vzorku	K [J]					
92	48,5					
60	56,5					
5	60	56,9	4,53	0,08	55,71 - 58,09	71,13
46	61,5					
48	58					
Popoušte	ený 400 °C					
č. vzorku	K [J]					
62	76					
14	75					
26	61	72,5	6,81	0,09	70,79 - 74,21	90,63
71	81					
4	69,5					
Popoušte	ený 530 °C					
č. vzorku	K [J]					
74	94,7					
15	88,3					
65	93,2	89,5	6,07	0,07	88,27 - 90,73	111,88
51	78,1					
70	93					
Popoušte	ený 600 °C					
č. vzorku	K [J]					
1	123,2					
6	114,4					
58	112,6	115,1	4,53	0,04	114,27 - 115,93	143,88
12	109,6					
75	115,5					
Popoušte	ený 670 °C					
č. vzorku	К [J]					
54	153,4					
76	137,8					
77	158,8	149,4	7,57	0,05	148,13 - 150,67	186,75
29	153,3					
44	143,7					

Obr. 38 Lom vzorku dodaného stavu (taženo za studena a rekrystalizačně žíháno)

Obr. 39 Lom vzorku v kaleném stavu

	Odolnost vůči opotřebení				
Dodaný sta	av	Popoušter	ιý 200 °C		
č. vzorku	φ	č. vzorku	φ		
1	1,00	1	1,24		
2	1,00	2	1,29		
průměr	1,00	průměr	1,26		
Žíhaný na	měkko	Popoušter	1ý 300 °C		
č. vzorku	φ	č. vzorku	φ		
1	1,16	1	1,13		
2	1,06	2	1,29		
průměr	1,11	průměr	1,21		
Normaliza	čně žíhaný	Popoušter	ıý 400 °C		
č. vzorku	φ	č. vzorku	φ		
1	1,09	1	1,29		
2	1,13	2	1,16		
průměr	1,11	průměr	1,22		
Kalený do	vody 15 minut	Popouštený 530 °C			
č. vzorku	φ	č. vzorku	φ		
1	2,00	1	1,16		
2	1,80	2	1,33		
průměr	1,90	průměr	1,25		
Kalený do	oleje 5 minut	Popoušter	ıý 600 °C		
č. vzorku	φ	č. vzorku	φ		
1	1,33	1	1,33		
2	1,16	2	1,16		
průměr	1,25	průměr	1,25		
Kalený do	oleje 30 minut	Popoušter	ıý 670 °C		
č. vzorku	φ	č. vzorku	φ		
1	1,13	1	1,20		
2	1,29	2	1,06		
průměr	1,21	průměr	1,13		
Kalený do	oleje 15 minut				
č. vzorku	φ				
1	1,29				
2	1,16				
průměr	1,22				

Tabulka 10 Odolnost vůči opotřebe	ıί
-----------------------------------	----

Obr. 40 Graf: závislost odolnosti vůči opotřebení na tvrdosti

Obr. 41 Feriticko – perlitická mikrostruktura vzorku. Taženo za studena, rekrystalizačně žíháno. Lamelární perlit.

Obr. 42 Feriticko – perlitická mikrostruktura vzorku žíhaného na měkko. Globulární perlit.

Obr. 43 Tetragonální martenzit, zbytkový austenit po kalení do vody.

Obr. 44 Sorbitická struktura po popuštění martenzitu 400 °C 1 hodina. Nelamelární jemná feriticko – cementitická struktura.

Obr. 45 Sorbitická struktura po popuštění martenzitu 670°C 1 hodina. Nelamelární jemná feriticko – cementitická struktura.

Obr. 46 Schéma diagramu anizotermického rozpadu austenitu oceli 12 050. A – austenit, M – martenzit, B – bainit, F – ferit, P – perlit [3]

Z diagramu lze odečíst nejnižší rychlost, při níž ještě vzniká pouze martenzitická struktura. Tato rychlost se nazývá kritická ochlazovací rychlost (na obr. 46 je to první ochlazovací křivka zleva). Podle ochlazovacích křivek lze stanovit nejen konečnou strukturu po skončení plynulého ochlazování, ale i výslednou tvrdost v jednotkách HV.

Rozhodující vliv na strukturu a tím i tvrdost po kalení má rychlost ochlazování. U vzorků pro zkoušku tahem (plech o síle 1,5) je rychlost ochlazování podstatně vyšší než u vzorků pro vrubovou houževnatost (hranol 10×10). Rozdílné rychlosti ochlazování odpovídají též rozdílné výsledné tvrdosti po kalení.

4.3 Výsledky a diskuse

Srovnat mechanické vlastnosti dosažené zkouškami s normou ČSN 41 2050 je možné použít jen s výrobkem tyče do průměru 5 tažené za studena. Porovnat je možné jen Rm, která podle normy je v rozsahu 710 – 1060 MPa a nejnižší prodloužení A, které je podle normy minimálně 5 %. Při zkouškách byla dosažena Rm 510 MPa a prodloužení 19 %. Nižší pevnost a vysoké prodloužení lze vysvětlit velmi nízkou tvrdostí oceli 12 050.2, která byla jen 126 HV. Pokud se týká vrubové houževnatosti je veliký rozsah (7 – 187 J⁻cm⁻²) vysvětlitelný vlivem velmi rozdílného tepleného zpracování.

Tvrdost vzorků jak pro zkoušky tahem, tak pro zkoušky vrubové houževnatosti odpovídá tepelnému zpracování.

Rovněž mikrostruktura obou druhů vzorků odpovídá způsobu tepelného zpracování.

Odolnost vůči opotřebení je úměrná tvrdosti vzorků odebraných ze vzorků pro zkoušku vrubové houževnatosti.

Grafy znázorňující průběh tahové zkoušky jsou uvedeny v obr. 47 a v příloze.

Z průběhu prodloužení v závislosti na tahové síle je zřejmé, že se nejedná o ideální trhací stroj pro zkoušky kovových materiálů tahem.

F [N]

Obr. 47 Graf: průběh tahových zkoušek u vybraných vzorků

5 ZÁVĚR

V diplomové práci byl studijně zpracován vliv fázových přeměn na vlastnosti ocelí při jejich tuhnutí, chladnutí a při jejich tepelném zpracování. Byl zdůrazněn vliv stupně přetváření za tepla na odstranění nedostatků primární krystalizace. Byly popsány běžné způsoby tepelného zpracování především uhlíkových ocelí a jejich vliv na vlastnosti ocelí.

Velká pozornost byla věnována údajům v literatuře popisující vliv zušlechťování na mechanické vlastnosti ocelí. Bylo zjištěno, že zušlechtěná ocel má tím větší mez únavy, čím je tvrdší (má i vyšší mez kluzu i mez pevnosti) ale tím nižší má vrubovou houževnatost. Cyklicky namáhaná součástka je tedy extrémně citlivá na jakost povrchové vrstvy, kde po vyčerpání plastických schopností oceli vzniká a odkud se šíří únavová trhlina.

Praktické ověřování mechanických vlastností oceli 12 050 po různém tepelném zpracování ukázalo v jak širokém rozsahu je možné vlastnosti této oceli měnit.

V závislosti na způsobu tepelného zpracování byly naměřeny tvrdosti v rozsahu 125,7 – 783,2 HV. Rozsah houževnatostí se pohyboval od 6,75 – 186,75 J⁻cm⁻². Pevnost v tahu se pohybovala v rozmezí 252,4 – 1670,4 MPa.

Zkoušky též ukázaly, že trhací stroj, který vlastní Mendelova univerzita není vhodný pro zkoušky kovových materiálů. Pokud by se pořizovalo nové zařízení, bylo by žádoucí, aby se na něm mohly provádět i zkoušky s cyklickým zatěžováním.

Z hlediska zvyšování odolnosti ocelí vůči únavovým lomům je žádoucí podrobně prověřit vliv bainitické struktury, event. vliv bainiticko – martenzitických struktur na tento parametr.

6 PŘEHLED POUŽITÉ LITERATURY

[1] BOTHE O., 1979: Strojírenská technologie. SNTL Praha, 176 s.

[2] ČSN 41 2050. Účinnost od 1.7.1978, 15 s.

[3] JECH J., 1983: Tepelné zpracování oceli. STNL Praha, 392 s.

[4] KRAUS V., 2000: Tepelné zpracování a slinování. Západočeská univerzita Plzeň, 274 s.

[5] KŘÍŽ J., 1989: Optimalizace kalení a popouštění kroužků a tělísek valivých ložisek vyrobených z oceli 14 109. Technický zpravodaj ZVL. Považská Bystrica, 24 s.

[6] LEINVEBER J., 2011: Strojírenské tabulky. ALBRA Úvaly, 927 s.

[7] MACEK K. a kol., 2008: Tepelné zpracování kovových materiálů. ČVUT Praha, 133s.

[8] PTÁČEK L. a kol., 2002: Nauka o materiálu 1. CERM, s.r.o. Brno, 516 s.

[9] PTÁČEK L. a kol., 2002: Nauka o materiálu 2. CERM, s.r.o. Brno, 395 s.

[10] RAUZIN R., 1963: Těrmičeskaja obrabotka chromistoj stali. Státní vědeckotechnické nakladatelství strojírenské literatury. Moskva, 378 s.

[11] SCHMIDT Z., DOBROVOLNÝ B., 1956: Technická příručka. Praha, 1551 s.

[12] ŠULC J., Technologická a strojírenská měření pro SPŠ strojnické. SNTL Praha 1980, 418 s.

Internetová publikace:

[13] KALENÍ OCELÍ, teorie tepelného zpracování, Liberec, 2007: Daďourek, Karel.Databáze online [cit. 2014-08-13] Dostupné na:

http://www.kmt.tul.cz/edu/podklady_kmt_magistri/TTZ/ttz%20Dad/kaloceli.pdf

[14] KONSTRUKCE, odborný časopis pro stavebnictví a strojírenství, 2013: Výroba železa a oceli v roce 2012 – technologie, výroba, obnova. Databáze online [cit. 2014-01-22] Dostupné na: <u>http://www.konstrukce.cz/clanek/vyroba-zeleza-a-oceli-v-roce-</u> 2012-technologie-vyroba-obnova/

7 SEZNAM OBRÁZKŮ

Obr. 1 Mechanická analogie metastability, aktivace a stability soustavy	9
Obr. 2 Rovnovážný diagram soustavy železo – uhlík	. 10
Obr. 3 Obsah příměsí v technickém železe před zkujněním a po zkujnění	. 11
Obr. 4 Odlévání ingotů spodem	. 12
Obr. 5 Kontinuální lití ingotů	. 12
Obr. 6 Růst krystalů v tavenině	. 13
Obr. 7 Schematické znázornění růstu dendritů a vzniku primárních zrn	. 14
Obr. 8 Průběh vláken v napěchovaném svorníku	. 15
Obr. 9 Schéma substitučního tuhého roztoku	. 16
Obr. 10 Schéma intersticiálního tuhého roztoku	. 16
Obr. 11 Schématické znázornění oblasti žíhacích teplot v diagramu Fe-Fe ₃ C	. 17
Obr. 12 Zrnitý perlit v nadeutektoidní uhlíkové oceli po žíhání na měkko	. 18
Obr. 13 Graf: vliv tvrdosti na pevnost ocelí a jejich rázovou houževnatost v ohybu	. 20
Obr. 14 Krystalické mřížky	. 21
Obr. 15 Elementární buňka austenitu	. 22
Obr. 16 Oblasti kalicích teplot v diagramu Fe – Fe ₃ C	. 22
Obr. 17 Vliv obsahu uhlíku na tvrdost	. 23
Obr. 18 Ochlazovací křivky středu ocelového válce	. 23
Obr. 19 Schéma diagramu anizotermického rozpadu austenitu eutektoidní oceli	. 24
Obr. 20 Poloha bodů Ms, Mf u uhlíkových ocelí	. 25
Obr. 21 Průběh martenzitické přeměny v závislosti na teplotě	. 25
Obr. 22 Bainit	. 25
Obr. 23 Martenzit	. 26
Obr. 24 Schematické znázornění křivek prokalitelnosti	. 26
Obr. 25 Schéma izotermického rozpadu austenitu eutektoidní oceli	. 27
Obr. 26 Odolnost strukturních fází vůči únavě	. 28
Obr. 27 Čelní zkouška prokalitelnosti	. 28
Obr. 28 Závislost tvrdosti na podílu martenzitu a na obsahu uhlíku v oceli	30
Obr. 29 Pás prokalitelnosti oceli 12 050	. 30
Obr. 30 Závislost tvrdosti zakalených ocelí na teplotě popouštění	. 31
Obr. 31 Popouštěcí diagram oceli 12 050	. 32

Obr. 32 Únavový lom spirálové pružiny	34
Obr. 33 Graf: vliv obsahu uhlíku na pevnost oceli	
Obr. 34 Rozměry vzorků pro zkoušku tahem	39
Obr. 35 Teplotní pole na vzorku při tahové zkoušce	40
Obr. 36 Vlevo – způsob uchycení vzorku pro zkoušku tahem	40
Obr. 37 Rozměry vzorků pro zkoušku vrubové houževnatosti	45
Obr. 38 Lom vzorku dodaného stavu	50
Obr. 39 Lom vzorku v kaleném stavu	50
Obr. 40 Graf: závislost odolnosti vůči opotřebení na tvrdosti	52
Obr. 41 Feriticko – perlitická mikrostruktura vzorku	52
Obr. 42 Feriticko – perlitická mikrostruktura vzorku žíhaného na měkko	53
Obr. 43 Tetragonální martenzit, zbytkový austenit po kalení do vody	53
Obr. 44 Sorbitická struktura po popuštění martenzitu 400 °C 1 hodina	54
Obr. 45 Sorbitická struktura po popuštění martenzitu 670°C 1 hodina	54
Obr. 46 Schéma diagramu anizotermického rozpadu austenitu oceli 12 050	55
Obr. 47 Graf: průběh tahových zkoušek u vybraných vzorků	56

8 SEZNAM TABULEK

Tabulka 1 Tvrdost a pevnost strukturních fází	. 27
Tabulka 2 Pevnost a mez únavy některých zušlechtěných ocelí	. 33
Tabulka 3 Chemické složení	. 34
Tabulka 4 Doporučené teploty pro tváření a tepelné zpracování	. 35
Tabulka 5 Mechanické vlastnosti oceli 12 060	. 37
Tabulka 6 Výsledky tahových zkoušek	. 41
Tabulka 7 Tvrdost vzorků pro zkoušku tahem	. 43
Tabulka 8 Tvrdost vzorků pro zkoušku rázem v ohybu	. 46
Tabulka 9 Vrubová houževnatost	. 48
Tabulka 10 Odolnost vůči opotřebení	. 51

9 SEZNAM PŘÍLOH

Příloha 1 Průběh tahové zkoušky. Dodaný stav	63
Příloha 2 Průběh tahové zkoušky. Vzorky kalené do vody	. 63
Příloha 3 Průběh tahové zkoušky. Vzorky kalené do oleje	64
Příloha 4 Průběh tahové zkoušky. Vzorky kalené do oleje	64
Příloha 5 Průběh tahové zkoušky. Vzorky kalené do oleje	65
Příloha 6 Průběh tahové zkoušky. Vzorky normalizačně žíhané	65
Příloha 7 Průběh tahové zkoušky. Vzorky žíhané na měkko	66
Příloha 8 Průběh tahové zkoušky. Vzorky popouštěné při 200 °C	66
Příloha 9 Průběh tahové zkoušky. Vzorky popouštěné při 300 °C	67
Příloha 10 Průběh tahové zkoušky. Vzorky popouštěné při 400 °C	67
Příloha 11 Průběh tahové zkoušky. Vzorky popouštěné při 530 °C	68
Příloha 12 Průběh tahové zkoušky. Vzorky popouštěné při 600 °C	68
Příloha 13 Průběh tahové zkoušky. Vzorky popouštěné při 670 °C	69

Příloha 1 Průběh tahové zkoušky. Dodaný stav – tažený za studena a rekrystalizačně žíhaný

Příloha 2 Průběh tahové zkoušky. Vzorky kalené do vody, doba austenitizace 15 minut

Příloha 3 Průběh tahové zkoušky. Vzorky kalené do oleje, doba austenitizace 5 minut

Příloha 4 Průběh tahové zkoušky. Vzorky kalené do oleje, doba austenitizace 15 minut

Příloha 5 Průběh tahové zkoušky. Vzorky kalené do oleje, doba austenitizace 30 minut

Příloha 6 Průběh tahové zkoušky. Vzorky normalizačně žíhané

Příloha 7 Průběh tahové zkoušky. Vzorky žíhané na měkko

Příloha 8 Průběh tahové zkoušky. Vzorky popouštěné při 200 °C

Příloha 9 Průběh tahové zkoušky. Vzorky popouštěné při 300 °C

Příloha 10 Průběh tahové zkoušky. Vzorky popouštěné při 400 °C

Příloha 11 Průběh tahové zkoušky. Vzorky popouštěné při 530 °C

Příloha 12 Průběh tahové zkoušky. Vzorky popouštěné při 600 °C

Příloha 13 Průběh tahové zkoušky. Vzorky popouštěné při 670 °C