
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

UNIFIED NETWORK AUTHENTICATION FOR LINUX

DIPLOMOVÁ PRÁCE
M A S T E R ' S T H E S I S

AUTOR PRÁCE PAVEL ZUNA
A U T H O R

BRNO 2010

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

JEDNOTNÁ SÍŤOVÁ AUTENTIZACE PRO LINUX
UNIFIED N E T W O R K A U T H E N T I C A T I O N FOR LINUX

DIPLOMOVÁ PRACE
M A S T E R ' S T H E S I S

AUTOR PRÁCE PAVEL ZUNA
A U T H O R

VEDOUCÍ PRÁCE Ing. JOZEF MLÍCH
S U P E R V I S O R

BRNO 2010

Abstrakt
Tato p r á c e se z a b ý v á n á v r h e m a i m p l e m e n t a c í řešení pro jednotnou síťovou autentizaci
pro ope račn í s y s t é m L i n u x za loženého na integraci sy s t émových d é m o n ů W i n B i n d a S S S D .
Cí lem je navrhnout t akové řešení , k t e r é u m o ž n í autentizaci L inuxových k l ien tů do d o m é n
sp ravovaných a d r e s á ř o v ý m i s lužbami Windows Ac t ive Directory a d o m é n sp ravovaných
a d r e s á ř o v ý m i s lužbami d o s t u p n ý m i na L i n u x u současně . P r v n í dvě kapitoly seznámí č t e n á ř e
s a u t e n t i z a č n í m i mechanizmy a technologiemi, k t e r é se pro tyto účely používa j í na oper­
ačních sys t émech Windows a L i n u x . T ř e t í kapi tola se zabývá j á d r e m p r á c e a vysvět lu je
r o z h o d n u t í u č i n ě n á př i n á v r h u i m p l e m e n t o v a n é h o řešení . S a m o t n á implementace j a pak
p o p s á n a v kapitole č tyř i . Pos ledn í kapi toly popisuj í experimenty a t e s tován í pro v y b r a n é
p ř í p a d y uži t í s n á v r h y a popisem m o ž n ý c h rozší ření do budoucna.

Abstract
This thesis discusses the design and implementat ion of an unified network authentication
solution for the L i n u x operating system based on the integration of W i n B i n d and S S S D
system daemons. The goal is to be able to authenticate L i n u x clients against multiple
domains based on different platforms. In the first two chapters, readers are introduced
to authentication mechanisms and related technologies used i n Windows and L i n u x based
computer network infrastructures. The th i rd chapter is focused on the core of this work and
discusses decisions made during the design phase. Implementation details are described in
chapter four. The last part of the thesis describes experiments and tests for selected use
cases along wi th ideas for future improvements.

Klíčová slova
bezpečnos t , autentizace, ad resá řové služby, L D A P , Ac t ive Directory, L inux , W i n B i n d ,
S S S D , N S S , P A M

Keywords
security, authentication, directory services, L D A P , Ac t ive Directory, L inux , W i n B i n d ,
S S S D , N S S , P A M

Citace
Pavel Zuna: Unified Network Authent ica t ion for L inux , d ip lomová p ráce , Brno , F I T V U T
v B r n ě , 2010

Unified Network Authentication for Linux

Prohlášení
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
Jozefa Ml ícha

Pavel Zuna
M a y 25, 2011

Poděkování
N a tomto m í s t ě bych chtě l p o d ě k o v a t všem, k te ř í m i s touto p rac í pomohl i ať už p ř í m o nebo
n e p ř í m o . Z e j m é n a svému vedouc ímu Jozefu Mlíchovi za věcné p ř i p o m í n k y k textu, Simovi
Sorceovi a Stephenovi Gallagherovi za exkurzi k ó d e m S S S D , D m i t r i Pa lov i za m o ž n o s t na
tomto projektu pracovat, Víťovi, K a č e n c e a d a l š í m k a m a r á d ů m za podporu.

© Pavel Zuna, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Managing Network Accounts 4
2.1 Network Information Service 4
2.2 L D A P Based Solutions 5
2.3 Kerberos 6
2.4 F r e e l P A 6
2.5 Microsoft N T Directory Services 7
2.6 Microsoft Ac t ive Directory D o m a i n Services 7
2.7 Interoperability 8

3 Network Authenticat ion on Linux 9
3.1 Name Service Switch 9
3.2 Pluggable Authent ica t ion Modules 10
3.3 Authent ica t ion Against L D A P 10
3.4 W i n B i n d Daemon 10
3.5 System Security Services Daemon 11

4 Integrating W i n B i n d and S S S D 12
4.1 N S S and P A M responders 13
4.2 Ta lk ing to W i n B i n d 14
4.3 Contro l l ing W i n B i n d 16
4.4 Configuration 17

5 Implementing W i n B i n d providers 20
5.1 SSSD backend framework 20
5.2 Ini t ia l izat ion 22
5.3 Spawning W i n B i n d 23
5.4 ID provider 24
5.5 A U T H provider 26

6 Testing and evaluation 28
6.1 Environment preparations 28
6.2 Testing procedures 29

6.3 Future roadmap 30

7 Conclusion 32

A List of abbreviations 33

1

B Comparison of Directory Services

C Configuration samples

D C o d e samples

E C D contents

Chapter 1

Introduction

Computer networks are a key component in the information infrastructure of any modern
day organization. Unconnected computers are becoming an ever shr inking minor i ty used
only for special applications. V i r t u a l l y the only place where we can find computers not con­
nected to any network today are embedded systems and even there, completely standalone
machines are becoming rare.

Over the years as computers were becoming cheaper and more common as everyday
tools, the size of computers networks grew accordingly. A s they were becoming larger
and more data and resources were made available through them, it was necessary to take
security into account. Access control was nothing new and standalone multi-user systems
implemented them, but it had to be extended over the whole network and adequately
represent the organizational structure of organizations, which led to the creation of software
solutions for centralised management of networks and sub-networks.

Such centralised solutions have existed on both Windows and L i n u x platforms (the plat­
forms this thesis is concerned about) for a long t ime and are constantly being improved as
requirements on network management grow. Unfortunately, the existing solutions targeted
at one of the two platforms are mostly uncompatible w i t h solutions targeted at the other
one. Selected solutions for both platforms wi th emphasis on user account management and
their potential interoperabili ty are discussed in chapter 2.

There are ways for Windows clients to enroll in a L i n u x domain and vise-versa, but there
is no standard solution for unified network authentication of L i n u x clients in the sense of
authenticating against a Windows based and L i n u x based domain simultaneously. The
goal of this thesis is to stand up to the challenge of creating such a solution using existing
facilities. The existing facilities in question are the N S S and P A M services available on most
if not a l l L i n u x distributions and the W i n B i n d and S S S D system daemons implemented on
top of them. A l l of the mentioned technologies are described i n details in chapter 3.

The core of this thesis is dedicated to the design and implementat ion of an integration
scheme for W i n B i n d and S S S D , but it wouldn' t be complete without proper testing of the
resulting implementat ion for target use cases. Chapter 4 and chapter 5 are focused on
designing the integration and on implementat ion details respectively.

It is a personal goal of me, the author of this work, to get the results „ou t there" and
eventually make the life of network administrators of mixed platform domains easier. Chap­
ter 6 discusses the results of this work, what goals have been met and possible enhancements
and follow up work i n the future.

3

Chapter 2

Managing Network Accounts

The core of this thesis is focused on the problem of client network authentication. Never­
theless, we're going to start by looking at the server side as it is crut ia l to understand the
protocols and technologies against which we're going to authenticate.

Before we get to more sophisticated solutions used i n practice. Let ' s outline the simplest
possible scheme for authenticating users used on the historically first computer networks.
Each computer had the information about accounts stored i n files (e.g. /etc/passwd)
locally. In the case of an update to this information, a new version of the file would be
distr ibuted to a l l computers.

The scheme described i n the previous paragraph might be acceptable for smal l networks
consisting of a few nodes. However, as the network grows and the number of nodes increases,
dis t r ibut ion of user account information becomes very expensive and unmanageable. It also
creates an environment were synchronization errors can occur and lead to potential ly ex­
ploitable security threats. Th is and other difficulties like the unabi l i ty to create fine grained
security policies have led to the developement of new solutions wi th centrally managed user
accounts.

Let this serve as a brief introduct ion to the topic of managing user accounts along w i t h
other shared information on computer networks. We're now going to explore the most
commonly used technologies created for this purpose, although the scope w i l l be l imi ted
to L i n u x and Windows platforms only. Other platforms are left out as they are of no
interest for the goals of this thesis. Some of the solutions described i n the following sections
are becoming outdated, but knowledge of them might be helpful to readers i n a better
understanding of current designs and practices.

2.1 Network Information Service

Network Information Service (NIS) is one of the first protocols that emerged for the purpose
of sharing network wide information. It follows the client-server model where clients retrieve
shared information from a directory service.

In this context, a directory service is a software system that stores, organizes and
provides access to information stored i n directory, which is a database opt imized for reading
entries and name value pairs associated w i t h them.

Apar t from user accounts, NIS can be used to mainta in information about hostnames/
machine addresses, security information, ma i l information, Ethernet interfaces and network
services [3]. Note that NIS predates D N S .

4

Being one of the directory service pioneers, NIS has s few drawbacks especially when it
comes to security. There is no support for encryption and some of the mechanisms it uses
are unsecure by design. For example, clients had to do a broadcast to find a running NIS
server on the network; a weak spot for man-in-the-middle attacks as anyone could answer
the broadcasted queries and impersonate the real server.

A n improved version of the protocol named N I S + later developed. A l though similar in
name and purpose, the implementations are completely different. Unl ike NIS , N I S + uses a
hierarchical directory, that can/should be serviced by mult iple servers. The pr imary server
is known as master and other (backup) servers are known as replicas or slaves [3]. B o t h
types hold copies of the directory data. A l l updates have to be commit ted to the master
server and is then propagated to replicas in increments. N I S + is also based around Secure
R P C where servers must authenticate clients and vice-versa [10].

The protocol was developed by Sun Microsystems for their own Solaris operating system.
It was very successful and got licenced to v i r tua l ly a l l other U n i x vendors. A l t o u g h NIS
and it 's successor are s t i l l i n use today they aren't developed or supported by any major
vendors anymore i n favor of new more modern and secure directory services such as L D A P .

Pr io r to the release of Solaris 9, Sun Microsystems has announced it intends to drop
N I S + i n future releases and started shipping tools to migrate N I S + data to L D A P [2].

2.2 LDAP Based Solutions

Similar to NIS in certain aspects, L D A P is another client-server directory service protocol.
It is based on the X.500 specification for directory services [23].

L D A P can be used to store and retrieve arbitrary data (including binary) . Its directory
is organized as a tree of entries called directory information tree (D I T) . A n entry consists
of a set of attributes that can have one or more values. E a c h entry i n D I T has a unique
identifier refered to as a distinguished name (D N) . D N s are constructed from two parts.
Fi rs t part is taken from the most relevant attr ibute and is called the relative destinguished
name (R D N) . Second part is the parent entry D N .

At t r ibutes in L D A P can also hold references to other L D A P server making it possible
to have a directory spanning mult iple servers.

The contents of entries in D I T are governed by the so called schema - a special entry
stored outside of the directory tree. It defines attribute types and object classes. Object
classes define what attributes must or may be stored i n an entry of a certain type. A l l
entries i n L D A P must have an objectClass attribute. A n example of an user account is
shown on figure 2.1.

The protocol comes in two version currently being used. Version 2 (L D A P v 2) was
superseded by version 3 (L D A P v 3) in 1997, which added support for extensibility, improved
security and better alignment w i th the latest X .500 specification [20].

Thanks to its universal design, extensibili ty and platform independence, L D A P popu­
lari ty grew rapidly since it being published and the protocol has become a de facto industry
standard of directory service protocols.

L D A P supports S S L encryption, but it doesn't have a native authentication mechanism.
It does, however, support the Simple Authent ica t ion and Security Layer (S A S L) and is often
coupled wi th the Kerberos protocol.

5

dn: cn=John Doe,ou=people,dc=example,dc=com
cn: John Doe
givenName: John
sn: Doe
telephoneNumber: +1 888 555 6789
telephoneNumber: +1 888 555 1232
m a i l : johnSexample.com
manager: cn=Barbara Doe,dc=example,dc=com
o b j e c t C l a s s : inetOrgPerson
o b j e c t C l a s s : o r g a n i z a t i o n a l P e r s o n
o b j e c t C l a s s : person
o b j e c t C l a s s : top

Figure 2.1: Example of user entry i n L D A P

2.3 Kerberos

W h i l e Kerberos isn't a network management system, but rather an authentication protocol,
it s t i l l deserves its own section i n this chapter, because of its populari ty and pair ing wi th
many directory services.

It's behind the scope of this article to explain the Keberos protocol i n details, but
because of its immense popular i ty when it comes to securing L D A P , readers should be
familiar w i th its fundamentals and most imporatant advantages.

Kerberos uses as its basis the symmetric Needham-Schroeder protocol. It makes use of a
trusted th i rd party named a key dis t r ibut ion center (K D C) , which consists of two logically
separate parts. F i r s t part is an authentication server (AS) and a ticket granting server.
The K D C maintains a database of secret keys. E a c h entity on i n the domain secured by
Kerberos (called a realm in Kerberos terminology) shares a secret key known only to itself
and the K D C . Knowledge of this key servers to prove identity. W h e n two entities on the
network want to communicate, they ask K D C to generate an encrypted session key they
can use for secure interactions [].

The main feature of Kerberos is that entities on the network have to authenticate only
once wi th the authentication server and access to a l l other entities is negotiated trans­
parently w i th the tiget grantig server. The principle of authenticating only once is called
single-sign on. The main advantage of it are that users have to remember only one password
and are entering it i n only one place when logging i n into the network.

One disadvantage of Kerberos is that it hasn't been standardized and various existing
implementations use incompatible A P I s . Fortunately, many (if not all) Kerberos flavors
can be translated through the Generic Security Services App l i ca t ion Program Interface
(G S S - A P I) to procedures that S A S L can understand.

2.4 FreelPA

F r e e l P A is a fully integrated security information solution. It combines a L D A P directory
service (389 Directory Server, formerly known as Fedora D S) , M I T implementat ion of the
Kerberos protocol, certificate server (Dogtag), D N S (Bind) and N T P for Kerberos ticket
synchronization on networks spread over different t ime zones.

It offers a plugin-extensible management framework wi th tools providing a higher level
of abstration over its directory schema. Client can manage information stored wi th F r e e l P A
through the framework a special X M L - R P C A P I or by using direct L D A P calls. The schema
included by default is a compatible extension to the schema used in 389 Directory Server.

6

http://johnSexample.com

A s 389 Directory Server supports multi-master replication, network security architects
and administrators deploying F r e e l P A can make user of this feature as well.

Since version 2.0, a web based user interface wi th self-service capabilities for the end
users (users of the network without administrative privileges), although it 's s t i l l i n B E T A
phase at the t ime wr i t ing this thesis.

The project is developed by R e d Hat as an alternative to current L D A P and Kerberos
based systems. It's goal is to become the standard solution when it comes to network
management. Integration wi th Microsoft Ac t ive Directory D o m a i n Services (discussed later
in this chapter) is planned for version 3.0, which is currently in the design phase.

2.5 Microsoft NT Directory Services

N T Directory Services (N T D S) is the commercial name for a network directory service used
in networks made up of Windows clients. A network of clients sharing the directory service
provided by N T D S is called a Windows Server Domain . In such a domain, the directory
database resides on server configured as domain controllers. A l l domain controllers respond
to security authentication requests, but only one of them can be configured as the P r i m a r y
Doma in Controllers (P D C) . A l l other domain controllers are setup as Backup Doma in
Controllers (B D C) . B D C are read-only and a l l updates must be propagated through the
P D C . In other words, N T D S doesn't support multi-master replication. A n existing B D C
can be readily promoted to P D C i n case of the previous P D C being unavailable for some
reason mit igat ing this disadvantage [17].

Clients can communicate w i th domain controllers only by using the proprietary M i ­
crosoft R P C , which is a modified version of The Open Group 's D C E / R P C standard. C o m ­
municat ion in an N T domain is secured using the N T L A N Manager (N T L M) suite of
Microsoft 's security protocols that provides authentication, integrity and confidentiality of
the transmited information [].

Since the release of Windows 2000 Server, N T Directory Services are now deprecated
in favor of the more sophisticated Ac t ive Directory D o m a i n Services, but backwards com­
pat ibi l i ty w i th the older system is s t i l l maintained.

2.6 Microsoft Active Directory Domain Services

W i t h the introduct ion of Windows 2000 Server, the previously discussed N T Directory
Services were replaced w i t h Ac t ive Directory D o m a i n Services (A D D S) . It isn't just an
incremental version update, but a completely new system.

The P r i m a r y / B a c k u p D o m a i n Controller model of N T D S wasn't good enough for new
constantly growing networks and was superseded wi th a new one support ing multi-master
replication. A l l domain controllers i n an Ac t ive Directory domain can propagate updates
over the network [17].

Communica t ion between client and domain controllers has also been improved and uses
Microsoft Message Passing Interface (M S M P I) , which is a proprietary implementat ion of
the M P I - 2 standard designed for message passing between high performance computing
nodes. Ac t ive Directory also supports both L D A P v 2 and L D A P v 3 protocols and allows
direct access to the directory using L D A P commands [17].

Ac t ive Directory is secured w i t h Microsofts own, again proprietary, implementat ion of
Kerberos and therefore provides single sign-on for user access to managed network resources.

7

It replaces the o ld N T L M suite of protocols used i n N T Directory Services, but is s t i l l
used by Ac t ive Directory is some special cases of inbound authentication such as client
authenticating using an IP address (instead of hostname) or i f Kerberos ports are restriced
by firewall rules [17].

Other features of A D D S include, but are not l imi ted to: D N S services, security policies,
access control, integration wi th other Microsoft products (such as Exchange) and graphical
management tools such as the Microsoft Management Console.

2.7 Interoperability

After reading the previous section of this chapter, the reader should be familiar w i th the
most common systems for managing network user accounts. W h i l e both L i n u x and Windows
solution use similar technologies, it isn't easy to integrate them. The ma in causes are
different implementations of these technologies and different representation of user account
data.

Integration of Windows network services w i t h U n i x has been a long term goal of the
Samba community project. Samba version 3 and higher can integrate w i th N T Directory
Services and act as a P r i m a r y D o m a i n Controller . It can also become part of an Act ive
Directory domain, but only as a member. The abil i ty of Samba acting as a Ac t ive Directory
domain controller is planned for version 4 [12].

A s mentioned before in this chapter, the F r e e l P A project is a iming for Ac t ive Directory
integration i n its upcoming major release.

Microsoft has its own answer to Windows and U n i x interoperabili ty called Windows
Services for U N I X (S F U) . S F U ' s focus isn't the integration of Windows and U N I X directory
services, but provides a U n i x subsystem and other parts of a full U n i x environment on
Windows machines. It does however provide NIS server capabilities l inked wi th Act ive
Directory and tools for transparent handling of N F S mount points as Windows shared
directories and vise-versa [6].

8

Chapter 3

Network Authentication on Linux

A t this point, we've been throught the systems used for managing network user accounts
on Windows and L i n u x networks and w i l l now „swi tch to the client side". A s this chapter
name suggests, you won't find any information here, that relates to the authentication of
Windows clients, as it is outside of the scope of this thesis.

We're going to look at standard facilities developed over the years available to L i n u x
clients for authenticating against the systems and technologies described i n the previous
chapter.

Our main area of interest is the authentication of L i n u x client i n mixed network environ­
ments and the possiblities of authenticating against mult iple domains, or against multiple
directory services i f you prefer.

3.1 Name Service Switch

Name Service Switch (NSS) is a facility i n the U n i x family of operating systems that enables
these systems to define a variety of sources for common configuration databases and name
resolution mechanisms [9].

Configuration of N S S usually takes place in the file etc/nsswitch.conf . Th is con­
figuration file enables system administrators to set a list of modules of name resolution
services for different types of objects such as users, groups, machines (hosts) and possible
others [].

Name resolution services that want to be configurable wi th N S S have to implement
special modules, that N S S can load and execute when the service is requested. These
modules are implemented as static libraries. N S S find the appropriate modules using an
enforced naming conventions. Names of N S S modules are prefixed wi th the string „nss_".

N S S is implemented as part of the standard C library, so that calls to functions such as
getent calls the appropriate N S S module []. This assures that existing applications don't
have to be changed and recompiled when N S S configuration changes or a new N S S module
is loaded.

One major disadvantage of N S S is that its configuration allows only a list w i th static
order of name resolutions services to be defined for the supported objects. W h e n N S S
handles a name resolution request, it calls the first module i n this list and only after it fails,
the next module i n line is invoked. This can be a problem if a user needs to authenticate
against more than one domain.

9

3.2 Pluggable Authentication Modules

Pluggable authentication modules (P A M) is a similar mechanism to N S S in concept. W h e n
a P A M aware application is started, it activates its attachement to the P A M A P I . Config­
urat ion files are read and the appropriate module routines are invoked.

P A M needs to be configured independently for every program or service that wants to
take advantage of its features. E a c h consumer of the P A M framwork needs to have its
configuration stored in a separate file under /etc/pam.d. For example, the S S H daemon
settings can be found in /etc/pam.d/sshd.

Unfortunately, P A M isn't problem free. Configuration requires extensive knowledge
of the handled security protocol and application it applies to. Another problem is that
l imitat ions of the P A M A P I don't allow a P A M module to request Kerberos service tickets
from a Kerberos K e y Dis t r ibu t ion Center (K D C) and only allow it to get ticket granting
tickets []. Therefore, users have to re-enter their password if they wish to authenticate
wi th Kerberos through a P A M enabled applications, that isn't specifically coded for it ,
which hinders the single-sign on principle.

3.3 Authentication Against LDAP

Authent ica t ion of client machines against L D A P is widely supported by most i f not a l l
U n i x distributions including L i n u x . Open source modules that communicate w i th L D A P
are available for both N S S and L D A P .

B o t h modules read the same configuration file named /etc/ldap.conf on most sys­
tems []. The most important configurable values include: L D A P protocol version, the
server hostname or IP address and port, the distinguished name of the directory root, a
search filter to identify user entries and encryption settings for P A M .

A s most solutions involing L D A P are secured using Keberos, because the default au­
thentication mechanism in L D A P is consider weak and doesn't offer the advantages of
single-sign on, p a m J d a p is rarely used i n favor of a specialized Keberos P A M modules. In
the case of the M I T implementat ion Kerberos V prevalent on L inux , the module pam_krb5
is used. pam_krb5 uses its own configuration file named /etc / k r b 5. conf [8].

3.4 WinBind Daemon

W i n B i n d is a daemon that allows its host system to become a full member of an N T or
Act ive Directory domain. Once this is done, the host system w i l l see users and groups in
the Windows domain as i f they were native to the host system. This is achieve throught
W i n B i n d provided N S S and P A M modules allowing name resolution and authentication
wi th a Windows domain controller. The result is that whenever a program on the host
system asks to look up a user or group name, the query w i l l be redirected by N S S to W i n ­
B i n d and consequently to the Windows directory service. The whole process is completely
transparent.

A subset of Microsoft R P C procedures is implemented by W i n B i n d to communicate w i th
N T domain controllers and Microsoft M P I to do the same wi th Ac t ive Directory domain
controllers [13]. Th is means that W i n B i n d uses the native communicat ion protocols which
results in the host system being undistinguishable from a Windows box i n the target domain.

10

W i n B i n d maintains a database called winbincLidmap. tdb i n which it stores mappings
between U N I X user and group IDs (U I D / G I D) and N T security IDs (SID; used both for
users and groups). Th is mapping is used only for users and groups that do not have a local
U I D / G I D . W i n B i n d allocates a por t ion of the range of possible IDs and maps N T SID
into i t . Instead of the winbincLidmap .tdb file, an idmap backend can be specified and the
mapping is retrieved using it instead. For this purpose an L D A P backend is available [13].

B o t h N T and Ac t ive Directory systems can generate a lot of user and group name
lookups. To reduce the bandwidth cost of these lookups, W i n B i n d uses a caching scheme
based on the sequence number of requests generated by domain controllers [13]. This
sequence number is incremented every t ime account information is modified in the directory
and is called S A M . Lookup results returned by domain controllers are cached by W i n B i n d
along w i t h S A M s . If the cache expires, the current S A M is requested from a pr imary
domain controller. In case the requested S A M doesn't match the one stored locally, the
cached information is discarded a new up to date information is requested.

The main use case of W i n B i n d is for organizations that have an existing N T or Act ive
Directory domain infrastructure into which they wish to put L i n u x workstations and servers.

W i n B i n d is part of the Samba community project.

3.5 System Security Services Daemon

System Security Services Daemon (SSSD) is another daemon similar in function to W i n ­
B i n d . It also provides N S S and P A M modules and handles the authentication against
directory services on the network.

SSSD implements a generic interface for authentication. Requests against different d i ­
rectory services are handled by service backends. Backends for communicat ing wi th L D A P
and F r e e l P A are available. The F r e e l P A backend implements the I P A X M L - R P C and en­
ables native mode communicat ion independent of the underlying L D A P schema. Us ing the
L D A P backend, S S S D can communicate w i th Ac t ive Directory since it supports the L D A P
protocol, but special configuration is needed because of the uncompatible schema. It also
isn't the native communicat ion protocol for Ac t ive Directory and is therefore susceptible
to entry format changes i n the A D s directory service.

Kerberos is well supported by S S S D . It can automatical ly renew tickets and also works
around the inabi l i ty of P A M to get service tickets from key dis t r ibut ion centers.

For the same reasons as W i n B i n d (expensive directory lookups i n terms of bandwidth) ,
SSSD also implements a caching mechanism. Unl ike W i n B i n d s caching scheme, it doesn't
rely on any specific features such as S A M sequence numbers and was designed to be more
universal i n order to support th i rd party service backends.

Because of its importance for the capabil i ty to resolving authentication information of
the host system, S S S D features an indepedently running daemon service called monitor.
The role of this monitor service is to periodical ly check if S S S D is running and responding.
If for some reason SSSD needs to be restarted, the monitor is responsible for handling this
task.

SSSD is a young project developed since late 2008 by R e d Hat . It was originally devel­
oped for the Fedora L i n u x operating system, but it is open source and has been designed
wi th por tabi l i ty i n m i n d from the very beginning. Other distributions such as Debian,
U b u n t u or Gentoo have packages of S S S D available in their repositories. S S S D is the
default authentication provider in Fedora 14 and upcoming releases.

11

Chapter 4

Integrating WinBind and SSSD

W i t h introductory chapters over, we're ready to get to the core of the problem this thesis
is t ry ing to solve.

The goal is to have a simple solution for authenticating L i n u x clients against multiple
domains i n mixed environment networks. The solution should take advantage of facilities
already i n place needs to be transparent to the end user.

This thesis proposes the integration of the W i n B i n d daemon and the S S S D daemon
wi th the following traits:

• SSSD is the only authority for authenticating users

• W i n B i n d acts as a gateway between SSSD and Windows directory services

• There is only one cache: S S S D and W i n B i n d caches are unified

• The integration is transparent to the end user

Another solution would be to design and implement a completely new backend for
S S S D , that would handle requests directed at N T and A D domain controllers using native
R P C calls the same way W i n B i n d does. However this would require a lot of new code
wi th functionality already available to us i n W i n B i n d . It would take a considerably larger
amount of t ime and would be very expensive. W i n B i n d has been i n developement for
several years and has a time-tested mature code base. It's being actively developed by the
Samba team, which is also an advantage, because they're working closely togheter w i th
R e d Hat on common A D integration solutions for L i n u x based operating systems. A l l of
the mentioned reasons contributed to the decision of integrating W i n B i n d wi th S S S D .

Some readers wi th more i n depth knowledge of the subject this work is dealing wi th
might object the N S S and P A M responders of W i n B i n d and S S S D can coexist and both
work on the same host system. The same would be true for currently existing solutions
for L D A P identity retrieval and authentication solutions that connect to N S S and P A M .
However, it is the whole purpose of S S S D to aleviate system administrators from having to
manage several configuration files and setting up the corresponding daemons independently
on each client of the network.

To meet the required traits listed at the start of this chapter, this work proposes the cre­
ation of a new SSSD backend wi th providers for identity, authentication, password changes
and possibly security pol icy enforcement. N S S and P A M are going to send requests to the
generic SSSD responders, which w i l l automatical ly forward them to the newly implemented

12

providers if they cannot be satisfied from S S S D internal cache. Each provider w i l l handle
its tasks by querying W i n B i n d if necessary. The high level diagram i n figure 4.1 depicts
the proposed solution.

NSS enabled apps

PAM enabled apps

jHost system

\ NSS
y / responder

\ PAM
J responder

s
s

LDAP
providers

Kerberos
providers

WinBind
providers

NT/AD
domain

controller

WinBind
daemon

Figure 4.1: W i n B i n d and S S S D integration: high level diagram

4.1 NSS and P A M responders

A t this point, after reading section 3 of this paper, readers should be familiar w i th the
purpose and basic functionality of both N S S and P A M . Now, we're going to look a bit
deeper and discuss the sturcture of and how N S S and P A M responders are constructed. We
already know that both are extended using static libraries called modules. These modules
must implement a s t r ic t ly defined interface described i n the following paragraphs. Let 's
take a look at N S S first.

NSS responder

User and group identity information (NSS can also handle hostnames, netgroups, etc., but
these are out of the scope of this work) are retrieved from the standard C l ibrary using
the getpwnam and getgrid functions respectively. B o t h are then forwarded to N S S central
routing mechanism handled by the nsdispatch function. A l l of these calls are defined in
the header file nsswitch.h. The rout ing mechanism sequentially queries modules as they
are wri t ten in the configuration file. If the module contains a handler for the requested
operation, it is called and i f it fails, the next module i n row gets queried. The exception to
this rule is enumeration where a l l modules are queried idependently if they support it [11].

PAM responder

The architectures of N S S and P A M are very similar. However, P A M is more complex as
it provides more functionality. Th is funcitonality is split between four types of modules.
The pr imary purpose of P A M is to do authentication, but it also provides for account and
session management, and changing authentication tokens (such as passwords). If you're

13

creating a new authentication mechanism, you don't have to define a l l of the supported
module types, because some of them might be common to another mechanism already in
place. Available module types are described shortly in table 4.1 [22].

T y p e Purpose
Account Account management

Has user access at this t ime or on this console?
A u t h Authent ica t ion

Is user who he claims to be?
Password Changing authentication tokens

Usual ly a password, finger print, ID card, . . .
Session Performing tasks when user starts/ends a session.

Displaying last login, mai l , mounting directories, . . .

Table 4.1: P A M module types

This section was more of a detour for the purpose of understanding the internals, as
SSSD already implements universal responders for both N S S and P A M available for a l l of
its providers. It is however useful to understand the inner workings to be able to identify a
good solution we're going to bu i ld on top of i t . More information about wr i t ing new N S S
and P A M modules can be found i n [] and [] respectively.

4.2 Talking to WinBind

A s we've seen i n the previous section about N S S and P A M , the interface between those
system services and S S S D (or any other ident i ty/authent icat ion provider) is standardized
and well defined. S S S D already has a l l the necessary hooks wi th the universal responders
and lets us concentrate on developing specific responders. Wha t ' s left for us to decide is
how we're going to tackle communicat ion wi th W i n B i n d . We already know that W i n B i n d
has its own N S S and P A M responders, but they can't be just plugged into S S S D . In theory,
it might be possible to export the appropriate calls from them and use SSSD as a mere
proxy, but it would require some t r icky l ink ing and probably cause conflicts as SSSD already
exports the same calls (by name). Therefore, we need to find another interface, that we
can use to forward requests throught.

W i n B i n d , like many other system daemons, has a named pipe it uses for communicat ion
wi th the outside world. O n Fedora and many other distributions, this named pipe has a file,
which can be found at /var/run/winbind/pipe. The problem is, that the communicat ion
protocol over this pipe is binary and isn't documented anywhere. It's only used internally by
Samba. Even though Samba (the whole suite including W i n B i n d) is open source software,
it would s t i l l require a lot of reverse engineering to figure the protocol out and there's no
guarantee it 's not going to change i n the future.

Fortunately, we're not bound to use this interface at a l l and it isn't recommended by
the Samba team either. Instead of doing 10 direct ly on the pipe, we can use a much
friendlier A P I exported by the l ibwbclient l ibrary that comes wi th the W i n B i n d client
Samba package 1 . Th is A P I includes a l l the necessary calls for retrieving identity information

xIt includes utility programs like wbinfo.

14

from N T and A D domain controllers and also for doing authentication against them, which
is exactly what we need.

Using l ibwbclient as the only interface for requests and responses between SSSD and
W i n B i n d should be very confortable from the implementat ion point of view, because it 's
only a matter of l ink ing wi th the correct static l ibrary. Required header files (or in this
case only one file: wbclient .h) are packaged wi th i t . We can also use the W i n B i n d clients
u t i l i ty programs source code to figure out how to use the l ibwbclient A P I properly, which
w i l l be very helpful as documentat ion is sparse.

The only problem wi th this A P I is that it is completely synchronous. This effectively
means that any request forwarded to W i n B i n d using it w i l l hang the provider process unt i l
results are returned. It's not a problem if W i n B i n d doesn't have to query domain controllers
for information to satisfy the request or i f the piece of requested information is smal l and
latency between the host system and the domain controller is low, but this is hardly the
case in most scenarios. The A P I was designed for W i n B i n d client u t i l i ty programs such
as wbinfo, which are very l i t t le concerned about performance. O n the contrary i n S S S D ,
we should be very concerned wi th performance, since our goal is for it to become the main
gateway for identity and authentication for a l l N S S and P A M enabled applications. This
work proposes to solve this problem by running a request handling process i n parallel to
the main provider process. They w i l l communicate using an unnamed pipe. Requests w i l l
be stored in a F I F O buffer by the request handling process and satisfied one by one as
they come i n while the main process stays responsive to the environment. The solution is
depicted in figure 4.2.

J buffer
requested

Request buffer

send first request{)

send response^

V

Figure 4.2: Communica t ion between W i n B i n d providers processes

It's out of the scope of this work, but it would be beneficial to create an asynchronous
A P I on top of l ibwbclient, that could be used by other applications performance aware
applications seeking information from W i n B i n d . More about this i n the last chapter about
future work and extensions.

15

4.3 Controlling WinBind

After out l ining the high level connections between N S S / P A M , S S S D and W i n B i n d at the
beginning of this chapter and defining the interface between the later two i n the previous
section, we're now standing before the decision of whether we want S S S D to take control
of the W i n B i n d process (in the sense of starting, restarting and stopping it) and to what
extent. The answer for the first part of this decision is straigh forward. Taking control of
the W i n B i n d process is advantageous to us for the following reasons:

• Synchronizat ion

• Unexpected W i n B i n d behaviour (e.g. crashes)

• Configuration

• M u l t i p l e W i n B i n d instances?

In this context, synchronization means that we want S S S D to start before W i n B i n d and
being able to know when W i n B i n d is ready to answer request forwarded from N S S / P A M . We
also want to be able to check i f everything is well and works as expected. B o t h requirements
should be easy to fulfill if we're i n control of the daemons process. We won't discuss the
configuration i tem in details at this point, as there is a whole section dedicated to it in
this chapter. Let ' s just say, that its easier to handle W i n B i n d ' s configuration i f we can
specify the parameters, which are passed to it on the command line at startup. A s readers
have probably noticed, there's a question mark at the end of the last i tem the list above
this paragraph. This is not a coincidence or typo. W i t h the current version of Samba and
W i n B i n d it is impossible to have more than one instance of W i n B i n d running at the same
time. It is therefore impossible to jo in the L i n u x hosts to more than one Ac t ive Directory
domain tree 2 . Short ly after the project behind this thesis took off, negotiations wi th the
Samba team for support ing mult iple independent instances of W i n B i n d have started. If
these negotiations go well, it would be very advantagous to be able to spawn and k i l l
W i n B i n d process based on what domains are currently joinned on the host system. This
feature would be very useful especially for laptop users who connect to the outside world
through different domains at different locations (office, home, foreign office, etc.). Support
for as many domains as possible at the same time without the need for reconfiguration is
one of the ma in concern of S S S D .

Now that we know we want SSSD to take control of W i n B i n d process(es) and we also
know why, it 's t ime to step a l i t t le further and look at the possibilities of how it can be
achieved. There are three ways a daemon process can be controlled on L i n u x systems, that
we can exploit for out purpose.

1. Us ing ini t scripts and/or related uti l i t ies (e.g. service)

2. Sending I P C 3 signals

3. Spawning the daemon process from whi th in another the controll ing process

2 WinBind can only join one AD domain at the same time, but trusted domains are also supported
effectively allowing access to the whole domain tree if not restricted by site-specific security policies.

3Inter-process communication

16

Init scipts and related utili t ies are here mostly for completness rather than being a real
option. They are only standardized to a certain extent, each dis t r ibut ion out there handles
them a l i t t le bit differently and we're not even considering other potential target platforms
like Solaris and countless U n i x flavors, service and similar utili t ies are also dis t r ibut ion
specific (there's no single implementation). Furthermore they are pr imar i ly indented to be
used manual ly by users from their shells.

O n the contrary, sending signals is a val id option. They can be sent to any process
running on the system if we have enough privileges to do so. The only requirement is that
we need to know the process ID (P ID) . O n Fedora and many other distributions, W i n B i n d ' s
P I D can be retrieved from a special file w i th the .pid extention located i n /var/run/.
This file is named after the process, but in the case of W i n B i n d it gets renamed if the
configuration parameter (-n, discusses i n section 4.4) is used. A s a result of this, the
file name is a l i t t le bit less predictable. It can also differ from one L i n u x dis t r ibut ion to
another. Fortunately, we can always search the /proc file system to find out W i n B i n d ' s
P I D portably. However, signals are only one component of the solution we're looking for.
They give us the possibil i ty to stop, k i l l and possibly (with the right signal handlers) restart
the daemon we want to take control of, but they only work on already running processes.
Th is means that we can't start the deamon i f it wasn't started for us before hand by some
external facility.

To take full control of the target deamon. We need to spawn its process ourselves
from wi th in the controll ing process, which gets us to option three. In our case this means
starting W i n B i n d from the S S S D provider. Th is way, we can easily control when and wi th
what parameters the process is started, we don't need to retrieve its P I D for signal sending,
because we know it first hand, and we have direct access to its return codes. Implementation
details w i l l be described i n the next chapter.

A s mentioned earlier, only one instance of W i n B i n d can be running at any given time
on the host system. Because of this l imi ta t ion , we need to detect i f it isn't running already
when we t ry to spawn our own instance. It could be done by checking for existence of
the P I D file i n /var/run/ or searching the /proc filesystem as mentioned earlier, but
there is another way easier than both of those. W h e n investigating communicat ion wi th
the W i n B i n d daemon in the previous section, we discussed the possibil i ty of exploi t ing its
named pipe. The name of this pipe file is always the same, therefore its easy to check for
its existence for the purpose of determining if W i n b i n d is running or not.

4.4 Configuration

Another problem that needs to be solved is how to handle configuration of L i n u x clients.
We need to start from configuration is required by W i n B i n d to succesfully connect and
communicate w i t h Windows N T and/or Ac t ive Directory domain controllers.

W i n B i n d , like any other service provided by the Samba applicat ion suite, is configured
using the smb. conf file. The format of this file is derived from the widely recognized
(although never officially standardized) INI file format introduced by the Windows family
of operating systems.

The INI file format defines properties identified by name and their value. In other
words, it defines key value pairs del imited by equal signs. E a c h key value pair resides on
a single line. Properties may be grouped into arbi t rar i ly named sections. The start of a
section is characterized by a its name enclosed insquare brackets on a new line by itself.

17

Samba recognizes several types of sections i n its configuration file (smb.conf), but the
majori ty of them is out of the scope of this thesis, as they are unuseful i n the goal of
jo ining L i n u x clients to Windows domain controllers. The only one we're interested i n , is
the [global] section. This is where a l l the properties related to W i n B i n d functionality
are located. Relevant properties w i th a short description of their meaning and acceptable
values can be found i n table 4.2.

Opt ion Description
workgroup name of domain W i n B i n d connects to
realm Kerberos realm W i n B i n d uses for authentication

(can also be a K D C network address)
security 'domain ' for N T domains and 'ads' for A D domains
password server network address of domain controller to use
wins server network address of W I N S server i f any
winbind enum users Enables or disables user account enumeration.
winbind enum groups Enables or disables user group enumeration.
winbind refresh tickets Enables or disables automatic Kerberos ticket refreshing.
idmap backend name of I D M A P backend to use (tdb, r id , ...)
idmap u id range of U I D s N T / A D user account SIDs w i l l be mapped to
idmap gid range of G I D s N T / A D user account SIDs w i l l be mapped to
template shell default shell for N T / A D users logging i n local ly

Table 4.2: smb.conf options related to W i n B i n d

Configuration of S S S D takes place i n the sssd.conf file. It's format is s imilar to
smb.conf at first sight, but acceptable keys and their values are defined more formally
using a special grammar created specifically for this purpose.

Definitions of acceptable key value pairs are distr ibuted wi th SSSD and are located in
the sssd. conf .d subdirectory of where the main configuration file is located 4 .

Since one of our goals defined in the start of this chapter was to make S S S D the only
authority regarding identity and authentication of its host system, we don't want users to
be required to modify the smb.conf file in order to configure W i n B i n d . The only place
where any configuration takes places should be the S S S D configuration file. To make this
possible, we need to define new configuration options the S S S D W i n B i n d provider, which
map directly (or indirect ly if it makes things more meaningful) to W i n B i n d properties in
smb.conf. Th is thesis proposes the mapping found i n table 4.3. Not ice that winbind enum
users and winbind enum groups have been unified into the universal option enumerate
that SSSD uses for a l l identity providers.

SSSD w i l l read its own configuration and translate relevant parts to W i n B i n d without
the need of any interaction from users. Th is needs to happen on the fly, because the
configuration can vary in t ime when the network topology or organizationl struture changes.
Reading and translations are implementations problems, that w i l l be analyzed in later
chapters, but we need to figure out the best way of passing it to the W i n B i n d daemon. We
have basically three options:

1. W r i t i n g the translated configuration to the main smb.conf.
4/etc/sssd/ on most systems

18

S S S D option mapping to W i n B i n d option
winbincLworkgroup workgroup
winbincLrealm realm
winbind_domain_type security
winbind_pwd_server password server
winbind_wins_server wins server
winbind_refresh_tickets winbind refresh tickets
winbind_idmap_be idmap backend
winbind_uid_min low range l imi t of idmap u id
winbind_uid_max high range l imi t of idmap u id
winbind_gid_min low range l imi t of idmap gid
winbind_gid_max high range l imi t of idmap gid
winbind-temp .shell template shell
enumerate winbind enum (users groups)

Table 4.3: SSSD to W i n B i n d option mapping

2. W r i t i n g a stand-alone smb.conf and passing it to the W i n B i n d daemon using it 's -n
command-line option.

3. Us ing the Samba registry configuration.

Let 's take a look at these options one by one. The first one might seem to be the most
straight forward, but after analyzing the requirements for implementation, it comes out
as the exact opposite. Th is is because, we can't just write whatever comes out of S S S D
into the main Samba configuration file as we would be put t ing ourselves i n the danger of
overwrit t ing parts related to other Samba services. We would also have to find the start of
the [global] section and write underneath i t . In the end, to make the whole process safe,
we would need to parse the whole configuration file and rewrite it completely, which is an
uneasy and error prone task. The second option, although similar to the first one, is much
easier as we're only wr i t t ing the relavant properties into a new blank file. We don't need
to care about influencing any other Samba services, because the configuration file we're
wr i t t ing is isolated. A s we're going to see in the last chapter, it is also advantageous if we
ever want to have more than one instance of the W i n B i n d daemon running at the same
time. The last option makes use of the new configuration interface introduced i n Samba
version 3.2.0 - registry based configuration. This interface is derived from the Windows
system-wide registry. W h i l e it is a lot more flexible (sections, properties and their values
are hierarchically stored i n a T D B 5 database) than flat files, it suffers from some of the
same problems as using the main configuration file i n the first option. It's not worth to go
into details at this point, but it 's important for readers to know about this possibil i ty as it
might be exploited in future extensions of Samba. Lookup [] for more information about
registry based configuration.

After analyzing a l l the relevant caveats of configuration, we can conclude that for our
purpose, the best approach would be to: create new configuration options for SSSD and map
them to W i n B i n d properties normal ly found in the Samba configuration file (smb.conf).
SSSD w i l l read and translate them for W i n B i n d on the fly into a new stand-alone configu­
rat ion file, that w i l l be passed to W i n B i n d on the command-line using the -s option.

5Trivial database, pre-relational database engine developed by the Samba team [21].

19

Chapter 5

Implementing WinBind providers

The whole previous chapter was about the design of the W i n B i n d providers for S S S D , but
it was intentionally str ipped of i n depth technical details. In other words, it was more about
what then how. In this chapter, we're going to go through what we planned and descibe
how it was implemented, what tools have been used and what pi t fal l were encountered.

SSSD is an open source project w i th very strong emphasis on code culture. It's wri t ten
completely in pure C89 without G N U extensions. Except for t a l l o c and tevent (created
originally for the Samba project), it only uses standard P O S I X libraries w i th high porta­
bi l i ty i n mind . For the W i n B i n d provider, we need to introduce a new dependency, namely
the wbclient l ibrary as discussed i n section 4.2. In order to satisfy S S S D configure script,
modifications to its standard issue header file wbclient .h are required, because it doesn't
define several fixed size integer types (e.g. int32_t) and is therefore not „ u s a b l e " accord­
ing to the script. The modifications i n questions are simple. We only need to add a new
#include directive for the standard C header inttypes.h. Since this way we get a custom
version of the wbclient header file, we need to ship it w i th S S S D to override the system
wide include.

We also need to make S S S D aware of the new configuration options related to the
W i n B i n d provider we defined in section 4.4. Configurat ion options are interpreted by
providers freely, but they can't be arbi t rary i n the sense, that they need to be predefined
in files localed i n the sssd.conf .d directory. The format of these files is as follows:

option = <type>, <subtype>, <mandatory>[, <default>]

Where <type> is either str, int or l i s t according to what type it should be read as by
SSSD configuration A P I . <subtype> is only useful i f <type> is set to l i s t . <mandatory>
is either true or false and doesn't need further explanation. <default> is opt ional and
can be anything that can be interpreted as a va l id value of the corresponding type. A c t u a l
definitions of options introduced i n 4.4 are listed in appendix C.

5.1 SSSD backend framework

SSSD has a bui l t - in framework for creating new backends. The term backend in this context
is just an abstraction for a set of up to four providers each responsible for a specific function.
The four provider types are characterized i n table 5.1. In fact, any provider type can exist

20

independently by itself and doesn't have to be t ied to the other types i n any way.

Provider Description
ID Identity

used to handle N S S requests
A U T H Authent ica t ion

used to handle P A M auth requests
A C C E S S Security policy

used to handle P A M account requests
C H P A S S Changing authentication tokens

used to handle P A M chpass requests . . .

Table 5.1: S S S D provider types

It's a common practice i n pluggable architectures to have a registration mechanism in
place for new plugins. In S S S D , however, this isn't the case. New providers don't have
be registred or listed anywhere and are detected automatical ly by looking up the expected
ini t ia l izat ion function according to the S S S D configuration file. The monitor process, that
keeps a l l providers well and running, is responsible for this task. For the appropriate
ini t ia l izat ion function to be found by the monitor, it needs to have the following signature:

i n t sssm_<backend-name>_<provider-type>_init(struct be_ctx *, str u c t bet_ops **, void **)

Where <backend-name> is the name of the backend this provider w i l l be part of and
<provider-type> is one of the four types found i n table 5.1. B o t h fields need to be
lowercase.

The in i t ia l iza t ion functions take three arguments out of which only the first one serves
as input and the other two are to be filled in when the function returns. The type struct
be_ctx of the first argument represents the backend context. It contains about twenty
different attributes, but most of them are used internally by the framework. Fol lowing is a
list of the most important attribute, we're going to use when implementing the W i n B i n d
providers:

• struct conf db_ctx *cdb - configuration database context

• struct sysdb.ctx *sysdb - system database context

• struct sss_domain_inf o *domain - domain information

Configuration and system database contexts are very important variables used to access
options from the configuration file i n case of the first mentioned and cached identities and
authentication tokens in case of the second. We're going to see them i n action later in
this chapter. D o m a i n information, as the name suggests, contains information about the
domain this provider belongs to.

The second argument is supposed to be filled i n w i th a pointer to a struct bet_ops
structure. This structure contains function pointers to up to three callbacks:

21

• handler is the main callback for operations handled by the provider.

• check_online is used to check if the backend is online.

• f i n a l i z e is called when SSSD shutdowns.

handler is the most important callback and should be always present. The other two
are optional . Checking if the backend is online or offline is useful when the source of
identity, authentication or pol icy information is queried remotely over the network, which
is the case of our W i n B i n d provider, because this information is retrieved from N T / A D
domain controllers. W h e n S S S D shutdowns, the monitor process triggers the f i n a l i z e
callback on a l l providers to give them the opportuni ty to free used resources and perform
other necessary clean up procedures. A t least, that 's how it 's supposed to be, because at
the t ime of this wri t ing, f i n a l i z e is never triggered and providers have to implement their
own mechanisms for cleaning up.

The last argument is used to store private data shared between provider callbacks.

5.2 Initialization

Now that we've been throught the basics of the backend framework, it 's t ime to dwelve
into the specific details of the implemented W i n B i n d providers. Each provider needs to be
ini t ia l ized separately, but the majori ty of steps is shared between them. These steps are
ensued from what has been planned i n chapter 4 and are as follows:

1. Ini t ia l iz ing backend private data

2. Retr ieving configuration options

3. Creat ing a dynamic W i n B i n d configuration file

4. Spawning the W i n B i n d daemon

In step one, we need to ini t ial ize a new structure to hold key pieces of information
required for handlers of a l l the implemented providers. Th is structure is named struct
winbind_id_ctx according to the customs introduced by other backend modules. We won't
show its whole definition here, but it 's important to know that we're going to use it to store
the W i n B i n d daemon process ID (PID) and options from SSSD configuration file related
to our backend. The whole definition can be found i n appendix D .

Step two, on the contrary of what might be expected, doesn't involve any 10 opera­
tions, because the backend framework has already read a l l configurations options for us
according to what was specified i n sssd.conf .d (as described at beginning of this chap­
ter). A l l that's left for us to do is to retrieve the relevant values, perform val idat ion and
store them in the private data structure from step one for later use. Ret r ieving the val­
ues is done using functions defined in providers/dp_backend.h such as dp_get_options,
dp_opt_get_string, dp_opt_get_integer, . . . The first mentioned is used to retrieve a l l the
relevant values in bulk and needs a stat ically defined array of struct dp_option structures.
Th is array has to correspond to what is defined i n sssd. conf .d. Its definition for our W i n ­
B i n d providers is displayed in Append ix C . A l l other of the mentioned functions are used
to retrieve single values and are usuful to us for val idat ion of the winbind_domain_type op­
t ion. Th is step is implemented i n providers/winbind/winbind_common.h as the function
winbind.get.options called directly from the ID provider in i t ia l izat ion function.

22

Another implementat ion option for step two would be to use libsmbconf as discussed
in section 4 .4 , but a desicison against it was made for two main pract ical reasons impl ied
by the fact that the l ibrary is s t i l l i n developement and unstable. The first reason is that
it isn't available anywhere else than i n a non-master branch of the Samba git repository,
causing packaging and dis t r ibut ion problems for the final product. The second reason
being that the l ibrary compiles w i th uncorrectly hard-coded paths of crucial Samba files
and directories (such as the path to T D B files).

The th i rd step involves wr i t t ing a configuration file for W i n B i n d . This is performed on
the fly from what has been retrieved in the previous step according to table 4.3 in function
winbind_write_conf ig. The file is truncated everytime to ensure that there's no leftovers
from another run. B y default, i t 's stored as /var/lib/sssd_winbind.conf and this path
is later passed to the W i n B i n d daemon using its -n option. Except for enumerate and
U I D / G I D ranges, the whole process is implemented by s imply using a static conversion
table.

The last step is the most important and complex and therefore deserves its own dedi­
cated section of this paper.

5.3 Spawning WinBind

A common technique of spawning a new program from the executing process on P O S I X
operating systems is the so called fork-exec. The technique takes its name from two system
calls it makes use of. It's probably not a surprise, that the first of these calls is fork. It
effectively creates a new process identical to the the one it was forked from. The parent
process gets the childs P I D in the return value and we're going to store in the struct
winbind_id_ctx structure, because this w i l l soon become the process I D of the W i n B i n d
daemon. In the chi ld process, we're going to use the techniques second system cal l - exec
or more precisely one of its variants - execvp. The exec family of functions overrides the
call ing process wi th a new image created from a file descriptior or, i n the case of the variant
we're going to use, from a file specified wi th a path string. They also allow us to pass
parameters to the new image.

However, before we start spawning anything, we need to make some preparations. It
was noted i n section 4 .3 , that currently only one instance of the W i n B i n d daemon can be
running at any given time. Even i f this state is temporary, as of now we need to check i f
the daemon is running or not. Checking it is implemented by using the stat system cal l on
the W i n B i n d daemon named pipe file. If the cal l fails and errno is set to ENOENT1 we can
safely continue. Otherwise, we're going to display an error message and stop the W i n B i n d
provider in i t ia l iza t ion process. It would be possible to stop the currently running daemon
process, but it was decided not to do so prevent possible configuration breakdown as there's
no way for us to know why it was started i n the first place.

Before forking and once the necessary check for running instance of the W i n B i n d dae­
mon, we should also make sure that a l l opened file descriptors have the CLOEXEC flag set.
Th is flag ensures that descriptors are closed when exec is called. It 's never set by default,
because it 's a common practice to open an unnamed pipe just before using the fork-exec
technique, so that the parent and chi ld can communicate throught i t . Fortunately, the
implemented W i n B i n d providers shouldn't have any opened file descriptors at this point

1 A component of the path does not exist, or the path is an empty string.

23

except for those started by the monitor process and these are already set w i th the appro­
priate flags.

W h e n everything is setup, we can finally fork the running process and override its chi ld
w i th the W i n B i n d daemon program. It should be accessible using the PATH environment
variable i f the instal lat ion of Samba is configured correctly on the host system as winbindd.
The overridden process w i l l receive the following parameters:

winbindd -F -n -s /var/lib/sssd_winbind.conf

Where the - F option tells W i n B i n d to run i n foreground mode, which means that it 's
not going to deamonize, i.e. double fork and disassociate w i th the terminal [19]. In our
case, role of the terminal is taken by the chi ld process cal l ing exec. We don't want it to
deamonize, because its main process P I D would change from what we got from fork and it
would be harder to k i l l when S S S D shutdowns as we're going to see later i n this section. The
-s opt ion is used to specify the configuration file we generated i n winbind_write_conf ig.

Notice that the -n opt ion was intentionally omit ted from the description of parameters
in the previous paragraph. It has a special and important meaning. Accord ing to [19]
it should disable W i n B i n d caching mechanism, which is one of the main goals we set for
ourselves at the beggining of chapter 4 . However, after examining the daemon source code
carefully, the conclusion that it 's not entirely true was reached. A t the t ime of this wri t t ing ,
negotiations w i th the Samba team are i n progress regarding this issue.

Even after the W i n B i n d daemon is successfully spawned, we're not done yet. Signal
handlers have to be setup i n the parent process specifically SIGTERM and SIGCHLD. The first
one needs to be handled, because we can't rely on the f i n a l i z e handler as discussed in the
previous section and we need to get a chance to k i l l the daemon when S S S D shutdowns.
K i l l i n g it is straight forward; it involves nothing more that sending the SIGTERM signal to the
previously stored P I D in struct winbind_id_ctx. The implementat ion handles SIGCHLD
to detect when the daemon stops running for some reason. If this happens, we can safely
get its return code using the system cal l waitpid and respawn it i f necessary.

A l l of the tasks discussed in this section (with the exception of signal handlers) are
performed by the winbind_start_daemon function implemented i n providers/winbind/
winbind_common.c.

5.4 ID provider

This providers in i t ia l izat ion function is called sssm_winbind_id_init according to conven­
tions discussed i n the first section of this chapter. Y o u can find it in providers/winbind/
winbind.init. c. It performs al l of the required preparations such as reading configura­
t ion, generating files for the W i n B i n d daemon and spawning it . It also initializes the private
data structure struct winbind_id_ctx and fills a l l of its fields. Opposite to what its name
would suggest, it isn't specific to the ID provider and is shared among al l providers of the
implemented backend.

A s noted in table 5.1, the main responsibili ty of I D providers is to handle N S S requests
that can't be satisfied from S S S D identity cache. winbind_account_infoJiandler imple­
mented i n providers/winbind/winbind.id.c is the pr imary callback for handling such

24

requests. This callback serves as a router for different types of queries and is implemented
as a group of nested switches. Identifying the type of N S S request and choosing the right
query is based determined using the req_data field of the struct be_req structure that
comes i n as the only parameter to the pr imary handler. Th is structure is universal to a l l
providers and must be cast to struct be_acct_req i n the case of I D . F r o m there we can
retrieve what entry type is looked up and wi th what k ind of filter. B o t h are represented by
constant defined i n providers/data.provider .h. A n overview of possible entry type and
filter constants is shown i n table 5.2 and table 5.3 respectively.

Constant Description
B E _ R E Q _ U S E R User accounts

B E _ R E Q _ G R O U P User groups

B E _ R E Q _ I N I T G R O U P S Groups a specific user is member of
B S D introduced concept for group access lists

B E _ R E Q _ N E T G R O U P Netgroups
NIS introduces concept of groups containing hosts and users

Table 5.2: N S S entry type constants

Constant Description
B E _ F I L T E R _ N A M E Search by name
B E _ F I L T E R _ I D N U M Search by ID (U I D / G I D / . . .)
B E _ F I L T E R _ E N U M Enumerate a l l

Table 5.3: N S S filter type constants

A n important aspect about I D providers is that they don't return anything. There's
no response to requests coming from N S S . Instead these providers just update the internal
cache called sysdb w i th identity information. The implemented I D provider is no exception
to this rule.

Requests tagged wi th the BE_FILTER_NAME and BE_FILTER_IDNUM constants combined
wi th BE_REQ_USER are routed to the winbind_get_user function. This functions retrieves
the requested identity information from W i n B i n d and stores it using the sysdb A P I , which
provides functions w i t h parameters mapping to fields in the P O S I X defined struct passwd
which is very handy, because that 's exactly what is returned by the wbclient l ibrary.
Same goes for these constants combined wi th BE_REQ.GROUP, except that it 's routed to
winbind.get.group and the prominent P O S I X structure is struct group.

A n y request w i th the last filter type is only satisfied if emuration for the domain is en­
abled i n sssd.conf. The query is executed by winbind_enum_users or by
winbind_enum_groups according to the entry type. One specialty of enumeration is that
more than one entry is updated in the cache and the whole operation is therefore non-atomic.
If interrupted for some reasons, it might cause inconsistent states, which is something we
need to avoid. Situations like this were thought of when sysdb was designed and the support
for transactions is available. It only requires programmers to ca l l sysdb_transaction_start
before updat ing anything and sysdb.transaction.commit when complete.

Our ID provider also implements the check_online callback. Its operation is simple

25

thanks to the fact, that the wbclient l ibrary provides an A P I cal l tailored for retrieving
information about N T / A D domains. This information contains various domain flags among
which WBC_D0MINF0_D0MAIN_0FFLINE is what we're looking for. If present, we know for sure
the domain is offline.

5.5 A U T H provider

The authentication provider relies on the ID provider for performing the required ini t ia l iza­
t ion steps. To be registred by the S S S D monitor daemon it needs a standalone ini t ia l izat ion
function named sssm_winbind_auth_init. Since the order of provider registration is not
guaranteed, it start by cal l ing the I D provider ini t ial izer that contains checks i f it has been
already called or not, so that configuration isn't read needlessly twice and more importantly,
so that we're not t ry ing to spawn the W i n B i n d daemon more than once.

A U T H providers are responsible for satisfying P A M requests as noted in table 5.1. The
main callback here is called winbind_pam_auth_handler and can be found in providers/
winbind/winbind_auth. c. S imi lar ly to the main ID provider handler, it also serves as a
router for different types of queries and is implemented using switches, although this time
there's no nesting involved. There is only one switch for P A M operations. These operations
correspond closely to P A M service module functions. These functions are implemented by
responder modules to handle requests and S S S D is no exception. In detail description of
these functions is out of the scope of this thesis, for more information see []. Individual
operations are identified on the basis of the req_data field of the be_req structure. Note that
the handler callback for A U T H providers has the same signature as for ID providers. The
difference is that the prominent field needs to be cast to the struct pam_data structure.
A field containing one of the constants i n table 5.4 can be dereferenced from it after the
cast.

Constant Description
S S S _ P A M _ A U T H E N T I C A T E Authent icate user
S S S _ P A M _ S E T C R E D A l t e r user credentials
S S S _ P A M _ A C C T _ M G M T Decide i f user has access
S S S _ P A M _ O P E N _ S E S S I O N Commence a session
S S S _ P A M . C L O S E Terminate a session
S S S _ P A M _ C H A U T H T O K (Re) set authentication token 2
S S S _ P A M _ C H A U T H T O K _ P R E L I M (Re) set authentication token 1
S S S _ C M D _ R E N E W Refresh credentials w i th l imi ted lifetime

Table 5.4: P A M operation constants

The most important P A M operation handled by the A U T H provider is marked by
the constant SSS_PAM_AUTHENTICATE and is triggered when a user tries to login using his
password. The main handler routes this to the winbind_pam_authenticate function. Th is
function queries the domain controller and tries to authenticate the user w i th the provided
credentials. The password is sent to W i n B i n d i n clear text form, but it doesn't present a
security risk because the daemon encrypts it before it leaves the host system. If success
is reported, the credentials are cached along wi th the user entry i n sysdb to allow offline
authentication.

A major difference between I D and A U T H providers is that the later must return a value

26

representing the end state of the requested operation. The set of va l id values depends
on what was requested. Possible return values for SSS_PAM_AUTENTICATE are displayed
in table 5.5. winbind_pam_authenticate translates whatever is returned by W i n B i n d to
one of these values except for PAM_CRED_INSUFFICIENT, because it doesn't make sense for
passwords.

Constant Description
P A M _ A U T H _ E R R Authent ica t ion failure
P A M _ C R E D _ I N S U F F I C I E N T Not enought credentials
P A M _ A U T H I N F O _ U N A V A I L Unable to access authentication information
P A M _ S U C C E S S Authent ica t ion success
P A M . U S E R . U N K N O W N Username provided is inval id
P A M . M A X T R I E S M a x i m u m number of authentication tries was reached

Table 5.5: P A M Authent icate return values

SSS_PAM_CHAUTHTOK and SSS_PAM_CHAUTHTOK_PRELIM deserve some addi t ional explana­
t ion. They ' re both related to a single service module function - pam_sm_chauthtok. Th is
function is called when authentication tokens for a specific user are about to be changed.
It's called twice. Once to check if and a second t ime to actually change the tokens [16]. The
first ca l l is equivalent to the prel imitary operation and is the only one O u r A U T H provider
is going to handle as it 's equivalent to SSS_PAM_AUTHENTICATE for N T / A D password. Han­
dl ing the second cal l if the responsibility of the C H P A S S provider.

Remaining operations are unimplemented, because they are uninteresting from network
authentication point of view. The statement isn't true about SSS-CMD.RENEW. Th is operation
is useful for authentication tokens wi th l imi ted lifetimes such as Kerberos tickets used
by some A D services. However we don't need to take care of them as W i n B i n d does it
automatical ly given the correct settings.

check_online isn't implemented as part of the A U T H provider, because it 's already
handled by ID provider, which sets the online/offline status for the whole backend.

27

Chapter 6

Testing and evaluation

In the final chapter of this thesis, we're going to go through the procedures that have
been continuously used to test the implementat ion outputs during the whole developement
process. We're also going to evaluate what has been achieved and where this project is
going in the future. Due to its nature, there are no numbers, nice graphs wi th performance
curves. Instead we're going to present the area where the outputs are useful i n real life
situations.

To take full advantage of S S S D and the implemented W i n B i n d backend a single machine
is not enough. We need connectivity to a domain controller be it N T or A D . The first section
of this chapter w i l l guide readers through the basic steps of setting up such an environment
where the implementat ion can be tested for the most part.

6.1 Environment preparations

Due to the fact that SSSD is developed by R e d Ha t , i t 's native dis t r ibut ion are the in-house
dis tr ibut ion of L i n u x : Fedora and R e d Hat Enterprise L i n u x . Not that it wouldn' t run on
other distributions as well, but we s t i l l recommend you to use one of them. For the purpose
of this work, we're going to pick Fedora as it 's available for free and more accessible to a
wider audience. We're going to use it as the host system for S S S D and a client of the an
Act ive Directory domain.

We're going to assume that most readers don't have access to a readily available A D
domain for testing purposes. Therefore we need to create one. A l l we need is one domain
controller. Samba can act like one, but everything i n this chapter has been tested against an
'or iginal ' Ac t ive Directory enabled server running Windows 2008 R 2 Server. For reference
about configuring A D on this operating system consult [18].

B o t h system (the host for SSSD and the domain controller) must have network access to
other preferrably on a private network. Ports required by A D must be open and you might
consider disabling the firewall on both machines if your testing environment is isolated.

The host system needs to jo in the Ac t ive Directory domain as a member. This can be
achieve either manually using the Samba provided net u t i l i ty :

net ads j o i n -w DOMAIN -I SERVERIP -U USERNAME'/.PASSWORD

Or by using the join-ad.sh script on the C D that comes wi th this paper:

28

./join-ad.sh DOMAIN SERVERIP USERNAME PASSWORD

The later is recommended, because it not only joins the domain, but also checks i f a l l
the required packages are installed on the host system.

6.2 Testing procedures

This section focuses on a few selected use cases and simple procedures tailored to demon­
strate the implemented functionality.

Configuration

The first testing procedure is about checking that i f configured corretly, the S S S D monitor
process starts the W i n B i n d backend and both of i t 's implemented providers.

1. A d d an a new accessible A D domain to sssd.conf using W i n B i n d providers

2. Start S S S D : sssd -d 3 - i

3. Ana lyze the standard error output

4. Check that W i n B i n d is running: service winbind status

5. Check the generated W i n B i n d configuration file

The options used i n step two make SSSD start in interactive mode w i th debug level
three. Th is effectively means that it w i l l not daemonize and run i n the foreground wi th
debugging messages up to level three showing up on standard error. Wi thou t these options,
we wouldn' t be able to analyze the output and see what providers have been ini t ia l ized. If
the W i n B i n d daemon was already running an error message should be reported.

A n example of a va l id sssd. conf and the generated configuration file for W i n B i n d used
when wri t ing the testing procedures is on display in appendix C .

Looking up users and groups

This procedures is for checking that looking up identity information for a single entity works
as expected. Successful completion of the previous procedure is a required prerequisite.

1. Make sure S S S D and W i n B i n d are running: service sssd status

2. Create a new user in A D wi th name 'testuser'

3. Retrieve the newly created user on the host system: getent passwd DOMAIN\testuser

4. Create a new group i n A D wi th name 'testgroup'

5. Retrieve the newly created group on the host system: getent group DOMAIN\testgroup

29

getent is the standard N S S enabled u t i l i ty for retrieving entries from identity reposi­
tories, passwd ang group are aliases for available user account and user group databases.

If everything works as expected, commands from step three and five should display
information about the newly created entries i n A D and should have an U I D / G I D assigned
to them. Retr ieving an entry that doesn't exist should leave the commands wi th no output.

Enumerating users and groups

Enumerat ing users and groups is very similar to the previous procedure except that this
time, we're retrieving al l available entries at once. This includes a l l available entries and
not just the ones i n the A D domain, enumerate must be enabled i n sssd.conf.

1. Make sure S S S D and W i n B i n d are running: service sssd status

2. Retrieve a l l users available on the host system: getent passwd

3. Retrieve a l l groups available on the host system: getent group

Output of the getent commands should include entries from the A D domain. The
listings can be compared to the output of wbinf o -u and wbinf o -g to make sure that al l
entries are really shown. If enumerate is disabled, only users and groups from the local
domain (e.g. from /etc/passwd) should be displayed.

Authenticating as a domain user

The last testing procedure involves authenticating as an A D domain user local ly on the
host system. The user we're going to authenticate as must have a va l id unlocked ac­
count in the A D domain and a password set. Another important requirement is that the
winbind_temp_shell opt ion in sssd.conf must be set to an existing shell on the host
system such as bash or ksh.

1. Make sure S S S D and W i n B i n d are running: service sssd status

2. Create a new user in A D wi th name 'testauthuser'

3. Log in as the newly created user on the host system: su - DOMAIN\testauthuser

4. Check the user is logged in : i d

5. Try to create files and analyze the owner and group they belong to

If everything is configured correctly, the current working directory should be changed
to the A D user home directory. This directory should be created automatical ly on first
login. Files created by the domain user should have owner set to h i m and group set to
DOMAIN\Domain users.

6.3 Future roadmap

This section discusses some of the planned extension for the future of the whole project
and the mot ivat ion behind them. There's s t i l l a lot of work to be done for the project
to become a widely adopted solution for the authentication of L i n u x clients i n Windows
domains. W h a t has been implemented at this point is just the beginning - a seed of a much
larger scheme.

30

Additional providers
Currently, only the ID and A U T H providers of the W i n B i n d backend have been imple­
mented, which means that tasks like changing authentication tokens and enforcing security
policies defined in N T / A D directory services is not possible. A C H P A S S provider needs
to be implemented and the wbclient l ibrary has means to make it conceivable. W h e n it
comes to security policies, future plans are unclear at the t ime of this wri t ing. W i n B i n d
doesn't have any facilities to enforce or even display any of i t . Extents ion to the daemon
or another idependent solution w i l l be necessary.

The A U T H provider also need to have more fine grained options and Kerberos possibil­
ities of Ac t ive Directory have yet to be fully exploited.

Cross-domain trust

Windows domains can have trust relationships setup between each other. Th is means that
services provided by one domains can be accessible to users from another one and vice versa.
Cross-domain trust is an important aspect when bui ld ing complex network infrastructures.
W i n B i n d by itself supports this feature, but SSSD doesn't.

We w i l l need to implemented support for nested domains i n S S S D . Large scale changes
ranging from configuration to the backend framework are going to be necessary. Trust
relationships of Windows domains can be created and removed on the fly at any given
moment and dynamic detection of new domains i n the tree has to be implemented.

Multiple domains

A s noted i n section 4.3, it 's currently impossible to have more than one instance of W i n ­
B i n d running at once. Therefore L i n u x clients using it can become members of only one
Windows domain at the same time. This is an unconfortable l imi ta t ion especially for user
authenticating through different domains on a dai ly basis (e.g. laptop users on business
travels). The only way to solve this is to add the possibil i ty of mult iple W i n B i n d instances.
Negotiations wi th the Samba team have started and look promising.

Asynchronous API for WinBind

The current version of the W i n B i n d A P I implemented by the wbclient l ibrary provides
only synchronous interfaces, which is a major disadvantage especially when dealing wi th
geographically spread networks. Even thought it 's mit igated to a great extent by S S S D
caching mechanism, it 's s t i l l not insignificant.

There are two possible solutions to this problem. One is to update the W i n B i n d A P I
wi th asynchronous calls, which would require the collaboration of the Samba team, but
could benefit other projects as well . The second one is to create an asynchronous layer on
top of it for S S S D . This layer could be implemented specifically to our needs and be fitted
directly into the tevent mechanism already i n place.

Links to FreelPA project

The F r e e l P A project discussed i n section 2.4 is running i n parallel w i th S S S D under the same
leadership. L o n g term goals include the possibil i ty to create cross-domain trust relationships
between Windows and I P A domains. The plan is to bu i ld the trust using the W i n B i n d
backend implemented as part of this work.

31

Chapter 7

Conclusion

The main focus of this thesis was the network authentications of L i n u x client against dif­
ferent directory services wi th the goal to design and implement a unified network authenti­
cation solution by integrating the W i n B i n d and S S S D system daemons. The later provides
a generic interface above N S S / P A M for identity and authentication services over the net­
work. B y integrating the two daemons, we get more control over available user and group
domains, support for offline authentication, easier and portable configuration and much
more.

Accord ing to the given project instructions, this work begins wi th investigation of the
current state of the art in network authentication solutions in both L i n u x and Windows
worlds. It starts w i th legacy technologies like NIS and ends wi th the latest projects in this
area. A lot of attention was given to designing a robust approach to integrating W i n B i n d as
a new provider into the pluggable backend framework of S S S D . Possibilities were discussed
and decisions made. The following part of the thesis takes it from there and goes through
the technical details and pitfalls associated w i t h implementing the proposed solution. F i n a l
pages are devoted to providing comprehensive instructions to reproduce test performed on
the final product and giving an overview of the projects future roadmap.

B o t h formal and personal goals behind this work were met w i th success as the resulting
W i n B i n d provider for S S S D is fully usable. However, there is s t i l l much to be done. W h a t
has been implemented at this point is just the beginning - a seed of a much larger scheme
for Ac t ive Directory integration.

32

Appendix A

List of abbreviations

A D D S Ac t ive Directory D o m a i n Services
A D Ac t ive Directory
A P I App l i ca t i on Programming Interface
A S Authent ica t ion Server
B D C Backup Doma in Controller
D - H Diffie-Hellman
D C Doma in Controller
D I T Directory Information Tree
D N S D o m a i n Name Service
G I D G roup ID
G S S Generic Security Services
K D C K e y Dis t r ibu t ion Server
L D A P Lightweight Directory Access Pro toco l
M I T Massachusetts Institute of Technology
M P I Message Passing Interface
M S Microsoft
N F S Network F i l e System
NIS Network Information Service
N S S Name Service Switch
N T D S N T Directory Services
N T L M N T L A N Manager
N T P Network T i m e Pro toco l
N T Windows N T family of operating systems
P A M Pluggable Authent ica t ion Modules
P D C P r imary Doma in Controller
P I D Process ID
R P C Remote Procedure C a l l
S A S L Simple Authent ica t ion and Security Layer
S F U Windows Services For U n i x
SID Security ID
S S L Secure Socket Layer
S S S D System Security Services Daemon
T D B T r i v i a l Database
U I D User I D

33

Appendix B

Comparison of Directory Services

NIS N I S + L D A P F r e e l P A
Target P la t form P O S I X P O S I X - L i n u x
Hierarchical directory X V
Complex D a t a X X V
Repl ica t ion X V V V
M u l t i - M a s t e r Repl ica t ion X X x/V V
Security Protocols D - H D - H SSL, S A S L / M D 5 SSL , Kerberos

Communica t ion Pro toco l Sun R P C Sun R P C L D A P v2, v3
L D A P v2, v3,

I P A X M L - R P C ,
I P A J S O N - R P C

Table B . l : Compar ison of L i n u x Directory Services

N T D S A D D S
Target P la t form Windows Windows
Hierarchical directory V V
Complex D a t a X V
Repl ica t ion V V
M u l t i - M a s t e r Repl ica t ion X V
Security Protocols N T L M Kerberos, N T L M

Communica t ion Pro toco l M S R P C M S M P I , L D A P
v2, v3

Table B . 2 : Compar ison of Windows Directory Services

34

Appendix C

Configuration samples

WinBind provider option definitions
[provider/winbind]
winbind_workgroup = s t r , None, false
winbind_realm = s t r , None, false
winbind_domain_type = st r , None, false
winbind_pwd_server = str, None, false
winbind_wins_server = st r , None, false
winbind_refresh_tickets = bool, None, false
winbind_idmap_be = st r , None, false
winbind_uid_min = i n t , None, false
winbind_uid_max = i n t , None, false
winbind_gid_min = i n t , None, false
winbind_gid_max = i n t , None, false
winbind_temp_shell = st r , None, false

Example sssd.conf

[domain/REDHAT]
description = WinBind integration
id.provider = winbind
enumerate = true
winbind.workgroup = REDHAT
winbind_realm = REDHAT.RH
winbind_domain_type = ads
winbind_pwd_server = w2k8server .redhat .rh
winbind_wins_server = w2k8server .redhat .rh
winbind_idmap_be = r i d
winbind_ref resh_tickets = true
winbind_uid_min = 1000000
winbind_uid_max = 2000000
winbind_gid_min = 1000000
winbind_gid_max = 2000000
winbind_temp_shell = /bin/bash

35

Example sssd_winbind.conf

[global]
workgroup = REDHAT
realm = REDHAT.RH
security = ads
password server = w2k8server.redhat.
wins server = w2k8server.redhat.rh
idraap backend = r i d
winbind refresh tickets = Yes
template s h e l l = /bin/bash
winbind enum users = Yes
winbind enum groups = Yes
idmap uid = 1000000-2000000
idmap gid = 1000000-2000000

Appendix D

Code samples

sample from winbind_common. h
struct winbincLicLctx {

struct be_ctx *be;
int entry_cache_timeout;
struct dp_options *opts;
pid_t winbind_process_pid;

}:

sample from winbind_common. c

#define WINBIND_CONF_FILE ,,/var/lib/sssd_winbind.conf "
#define WINBIND_PIPE_FILE , ,/var/run/winbindd/pipe''
const char * const winbind_daemon_argv [] = {

,,winbindd", , ,-F'' , , ,-n'' , , , - s " , WINBIND_CONF_FILE, NULL
}:

struct dp_option default_winbind_opts[] = {
{ , ,winbind_workgroup" , DP_OPT_STRING, NULL_STRING, NULL .STRING },
{ , ,winbind_realm" , DP_OPT_STRING, NULL_STRING, NULL_STRING },
{ , ,winbind_domain_type" , DP_OPT_STRING, NULL_STRING, NULL_STRING },
{ , ,winbind_pwd_server" , DP_OPT_STRING, NULLJ3TRING, NULLJ3TRING },
{ , ,winbind_wins_server" , DP_OPT_STRING, NULL_STRING, NULL_STRING },
{ , ,winbind_idmap_be" , DP_OPT_STRING, NULL.STRING, NULLJ3TRING },
{ , ,winbind_refresh_tickets" , DP_0PT_B00L, BOOL J7 ALSE, B00L_FALSE },
{ , ,winbind_uid_min" , DP_OPT_NUMBER, NULL_NUMBER, NULLJJUMBER },
{ , ,winbind_uid_max" , DP_OPT_NUMBER, NULL_NUMBER, NULLJJUMBER },
{ , ,winbind_gid_min" , DP_OPT_NUMBER, NULL_NUMBER, NULLJJUMBER },
{ , ,winbind_gid_max" , DP.OPTJJUMBER, NULLJJUMBER, NULLJJUMBER },
{ , ,winbind_temp_shell" , DP_OPT_STRING, NULL_STRING, NULL.STRING },

}:

37

Appendix E

CD contents

sssd/
G I T snapshot of S S S D branch pzuna-winbind

0001-Winbind-provider-initial-commit.patch
Patch for SSSD master branch

ads-join.sh
U t i l i t y script for joining L i n u x hosts to A D domains

xzunapOO.pdf
Thesis text i n P D F format

:;<s

Bibliography

[1] L D A P Authent ica t ion Us ing pam_ldap and nssddap.
h t t p : / /www. s aa s . n sw . edu . a u / s o l u t i o n s / l d a p - a u t h - p a m . h t m l , (visited on
January 2011).

[2] N I S + End-of-Feature (E O F) Announcement F A Q .
h t t p : / / w w w . s u n . c o m / s o f t w a r e / s o l a r i s / f a q s / n i s p l u s . x m l . (visited in January
2011).

[3] N I S + to L D A P Mig ra t i on i n the Solaris(tm) Operat ing Environment .
h t t p : / / w w w . s u n . c o m / s o f t w a r e / w h i t e p a p e r s / s o l a r i s 9 / n i s l d a p . p d f . (visited i n
January 2011).

[4] N T L A N Manager (N T L M) Authent ica t ion Pro toco l Specification.
h t t p : / / m s d n . m i c r o s o f t . c o m / e n - u s / l i b r a r y / c c 2 3 6 7 0 1 ° / 0 2 8 v = P R 0 T . 10°/ 029. aspx.
(visited on January 2011).

[5] The G N U C L ib ra ry Reference Manua l .
h t t p : / / n e t b s d . g w . c o m / c g i - b i n / m a n - c g i ? n s s w i t c h . c o n f + 5 + N e t B S D - c u r r e n t ,
(visited on January 2011).

[6] Windows Services for U n i x .
h t t p : / / t e c h n e t . m i c r o s o f t . c o m / e n - u s / l i b r a r y / b b 4 9 6 5 0 6 . a s p x . (visited on
January 2011).

[7] Michae l A d a m . Samba's New Registry Based Configuration, h t t p : / / w w w . s a m b a .
o r g / ~ o b n o x / p r e s e n t a t i o n s / l i n u x - k o n g r e s s - 2 0 0 8 / l k 2 0 0 8 - o b n o x . p d f . (visited
on M a y 2011).

[8] Russ Al lbery . pam-krb5. h t t p : / / w w w . e y r i e . o r g / ~ e a g l e / s o f t w a r e / p a m - k r b 5 / .
(visited on January 2011).

[9] Beekmans G . Linux From Scratch. IUniverse.com, Inc., 2000. I S B N 0-595-13765-2.

[10] R a y W . Hi l tb rand . N I S + F A Q .
h t t p : / / w w w . e n g . a u b u r n . e d u / u s e r s / r a y h / s o l a r i s / N I S+_FAQ . h t m l , (visited in
January 2011).

[11] The S C O Group . Inc. N S S Overview.
h t t p : / / u w 7 1 4 d o c . s c o . c o m / e n / S E C _ a d m i n / n s s o v e r . h t m l . (visited on M a y 2011).

[12] D a v i d Col l i e r -Brown Jay Ts , Rober t Eckstein . Using Samba, 2nd Edition. O ' R e i l l y &
Associates, 2003. I S B N 0-596-00256-4.

39

http://www.sun.com/software/solaris/faqs/nisplus.xml
http://www.sun.com/software/whitepapers/solaris9/nisldap.pdf
http://netbsd.gw.com/cgi-bin/man-cgi?nsswitch.conf+5+NetBSD-current
http://technet.microsoft.com/en-us/library/bb496506.aspx
http://www.samba
http://www.eyrie.org/~eagle/software/pam-krb5/
http://IUniverse.com
http://www.eng.auburn.edu/users/rayh/solaris/NIS+_FAQ.html
http://uw714doc.sco.com/en/SEC_admin/nssover.html

[13] Gera ld Carter Jelmer Vernooij , John Terpstra. The Official Samba 3.5.x H O W T O
and Reference Guide.
h t t p : / / s a m b a . o r g / s a m b a / d o c s / m a n / S a m b a - H O W T O - C o l l e c t i o n / , (visited on
January 2011).

[14] Theodore Y . T 'so John T . K o h l , Clifford Neuman. The Evolution of the Kerberos
Authentication System. I E E E Computer Society Press, 1994. I S B N 0-8186-4292-0.

[15] Luke M e w b u r n . Name Service Switch Configurat ion F i l e F r e e B S D M a n u a l Page,
h t t p : / / n e t b s d . g w . c o m / c g i - b i n / m a n - c g i ? n s s w i t c h . c o n f + 5 + N e t B S D - c u r r e n t ,
(visited on January 2011).

[16] A n d r e w G . Morgan . The L i n u x - P A M Modu le Wri ters ' Guide , h t t p : / / w w w . k e r n e l .
o r g / p u b / l i n u x / l i b s / p a m / L i n u x - P A M - h t m l / o l d / p a m _ m o d u l e s . h t m l , (visited on
M a y 2011).

[17] Tony Nor thrup . Introducing Microsoft Windows 2000 Server. Microsoft Press, 1999.
I S B N 1-57231-875-9.

[18] John Pol ice l l i . Active Directory Domain Services 2008 How-To. Sams Publ ish ing,
2009. I S B N 0-672-33045-8.

[19] T i m Potter, winbindd M a n u a l page, h t t p : / /www.manpagez . eom/man /8 /winb indd / .
(visited on M a y 2011).

[20] J . Sermersheim. R F C 4511 - L D A P : The Pro tocol .

h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 4 5 1 0 . (visited i n January 2011).

[21] Samba team, tdb Documentat ion, h t t p : / / t d b . s a m b a . o r g . (visited on M a y 2011).

[22] Jennifer Vesperman. Wr i t i ng P A M Modules .

h t t p : / / l i n u x d e v c e n t e r . c o m / p u b / a / l i n u x / 2 0 0 2 / 0 5 / 0 2 / p a m _ m o d u l e s . h t m l ,
(visited on M a y 2011).

[23] K u r t D . Zeilenga. R F C 4510 - L D A P : Technical Specification Roadmap.
h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 4 5 1 0 . (visited i n January 2011).

40

http://samba.org/samba/docs/man/Samba-HOWTO-Collection/
http://netbsd.gw.com/cgi-bin/man-cgi?nsswitch.conf+5+NetBSD-current
http://www.kernel
http://www.manpagez.eom/man/8/winbindd/
http://tools.ietf.org/html/rfc4510
http://tdb.samba.org
http://linuxdevcenter.com/pub/a/linux/2002/05/02/pam_modules.html
http://tools.ietf.org/html/rfc4510

