
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PRIVACY PROTECTION ON MOBILE DEVICES
OCHRANA CITLIVÝCH INFORMACÍ NA MOBILNÍCH ZAŘÍZENÍCH

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. LUKÁŠ ARON
AUTOR PRÁCE

SUPERVISOR Doc. Dr. Ing. PETR HANÁČEK
ŠKOLITEL

BRNO 2017

Abstract
This thesis analyses privacy protection on mobile devices and presents the method for
protecting these data against information leakage. The security is focused on using the
mobile device for personal purposes and also for the working environment. The concept of
the design solution is implemented i n the form of prototype. M o d e l of implementat ion is
verified wi th the model of required behavior. The thesis also consists of experiments wi th
prototype and verification experiments on defined models.

Abstrakt
Tato p ráce analyzuje ochranu ci t l ivých dat na mobi ln ích zař ízeních a p ř e d s t a v u j e metodu
pro ochranu t ěch to dat p ř e d m o ž n o s t í ú n i k u informaci ze zař ízení . Ochrana se zaměřu je na
využ íván í zař ízení , jak pro osobní účely, tak i v p r a c o v n í m p ros t ř ed í . Koncept n a v r ž e n é h o
řešení je i m p l e m e n t o v á n ve formě prototypu. M o d e l implementace je verifikován s mod­
elem p o ž a d o v a n é h o chování . Součás t í p r á c e jsou experimenty s prototypem a experimenty
z a m ě ř e n é na verifikaci mezi d a n ý m i modely.

Keywords
Mobi le Device, P r ivacy Protect ion, B Y O D , Access Rights Mode l , A n d r o i d , Verification,
Uppaa l

Klíčová slova
Mobi ln í zař ízení , Ochrana soukromí , B Y O D , M o d e l p ř í s t u p o v ý c h p ráv , A n d r o i d , Verifikace,
Uppaa l

Reference
A R O N , Lukas . Privacy Protection on Mobile Devices. Brno , 2017. P h D thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor H a n ä c e k Petr.

Privacy Protection on Mobile Devices

Declaration
Proh lašu j i , že jsem tuto d i ze r t ačn í p rác i vypracoval s a m o s t a t n ě pod veden ím
pana Doc . D r . Ing. Pe t ra H a n á c k á

Uved l jsem všechny l i t e rá rn í prameny a publikace, ze k t e r ý c h jsem čerpal .

L u k á š A r o n
November 5, 2017

Acknowledgements
R á d bych poděkova l svému školiteli doc. Dr . Ing. Pe t ru Hanáčkov i za o d b o r n é veden í a
spo lup rác i p ř i v ý z k u m u . Dá le bych r á d poděkova l v šem, k te ř í m i poskyt l i o d b o r n é rady a
cenné p o d n ě t y . Děkuj i t a k é své rod ině a p ř í t e lkyn i za t rpě l ivos t a podporu.

Contents

1 Introduction 3
1.1 Goals 3
1.2 Cont r ibu t ion 4

2 Privacy Protect ion 7
2.1 Pr ivacy Security Threats 7
2.2 Pr ivacy of Communica t ion Channels 9
2.3 Pr ivacy Protect ion Mechanisms 10
2.4 Summary 13

3 Operat ing System Protection 14
3.1 Fundamental Properties of Secure System 15
3.2 Trusted Comput ing Base 16
3.3 Users, Pr incipals , Subjects, and Objects 17
3.4 Access Con t ro l 18
3.5 V i r t u a l Machine 35
3.6 Summary 39

4 Mobi le Plat form Architecture 40
4.1 V i r t u a l Machine 40
4.2 Sandbox 42
4.3 Permissions 43
4.4 Archi tecture Levels 47
4.5 Summary 65

5 Definition of Access Rights M o d e l 67
5.1 Concept 67
5.2 Related work 68

5.2.1 Detect ion of Pr ivacy Sensitive Information 68
5.2.2 Overview of Information F low Tracking Techniques 69
5.2.3 Summary of Related Work 76

5.3 M o d e l of Required Behavior 76
5.4 Summary 81

6 Implementation of Prototype and its M o d e l 83
6.1 Framework 83
6.2 Design of Prototype 87
6.3 Implementation 93

1

6.4 Configuration 101
6.5 Implementation L i m i t a t i o n 101
6.6 M o d e l of Implementation 102
6.7 Summary 106

7 Formal Verification 107
7.1 Verification Approaches 107
7.2 Verification Too l Selection H O
7.3 Verification Models 112
7.4 Summary H '

8 Verification Experiments 119
8.1 Exper iment 1 120
8.2 Experiment 2 123
8.3 Exper iment 3 I 2 6

8.4 Summary 131

9 Implementation Experiments 132
9.1 Sharing Methods 133
9.2 Repackaging of App l i ca t i on 133
9.3 Performance Overhead 134

9.4 Summary 136

10 Conclusion 138

Bibl iography 140

Appendices 156

A Pseudocodes 15<

B Source Code of Verification Models 159

2

Chapter 1

Introduction

Nowadays, mobile devices are an essential part of our everyday lives since they enable us
to access a large variety of services. In recent years, the availabil i ty of these mobile services
has significantly increased due to the different form of connectivity provided by mobile
devices. In the same trend, the number and typologies of vulnerabili t ies exploi t ing these
services and communicat ion channels have increased as well.

Therefore, mobile devices may now represent an ideal target for hackers.
A s the number of vulnerabili t ies and, hence, of attacks increase, there has been a cor­

responding rise of security solutions proposed by researchers. Related to the populari ty of
mobile devices and also many services that these devices provide the need of protection of
user's data are required from the mobile device operating systems [183]. The mobile device
is usually controlled by the person who is the owner of the current device.

This person uses its device as a personal device, which means that the content of the mo­
bile device is not expl ici t ly restricted against data leakage, even the private data could be
sensitive. There are many mechanisms for protecting the user against data leakage, these
tools are buil t into operating systems or can be addi t ional ly installed [98]. The user can
work wi th the device in two modes - public and protected. D u r i n g working wi th a public
method, the user does not have access to sensitive information and also protected applica­
tions. The switch between these modes is usually at the boot t ime of the device. In some
situations, this switching mechanism can be considered as a disadvantage.

There is need of users to use their devices i n the working environment, and there exist
many solutions to provide this approach, and also these solutions t ry to prevent the data
against its leakage. For instance, the br ing your own device (B Y O D) approach [29] or mobile
device management (M D M) approach [61]. These approaches usually have administrat ion
access to the device and can control the device remotely.

These principles can installed and then administrat ion routine can be done without
user's knowledge. T h whole device is under the administrat ion of the working inst i tut ion.
The advantage of this principle is that the user work w i t h the device i n one mode, which
is usually protected and a l l data are considered as protected. However, the inst i tut ion can
control the sensitive data it also has access to personal data of the owner of the device.

1.1 Goals

The goal of this thesis is to investigate privacy protection on mobile devices and current
solutions provided by the manufacturer of these devices, operating system vendors, th i rd-

3

party institutions, and researchers. Moreover, the investigation covers the software vendors
pr imar i ly creators of operating systems and their approach to protecting users against data
leakage. This thesis concerned wi th mobile device operating systems, their protection and
possibili ty of enhanced security i n the area of information leakage. E n d users usually use
these devices and operating systems for providing a connection wi th other users, sending
messages, using the internet, playing music or movies, taking photos, and work w i t h it.
The focus here is on combining mobile device as a personal device and also using it as a work
device. This concept covers privacy protection against data leakage. A user is usually an
ind iv idua l unique person, and mostly the only owner of the invention and the possibil i ty of
using the personal device at work has its benefits.

Overview of research i n this area, possible vulnerabilit ies and protection against data
leakage can also be considered as one of the goals. Besides, there is presented the topic
wi th the threats that are well known and are s t i l l val id . In order to understand what issues
and protection mechanism are available during these days, the investigation should consider
the technical background of a modern operating system wi th the a im on mobile devices.
Moreover, it should also cover approaches to protection, security aspects and the whole
protection mechanism implemented in these operating systems.

The investigation of vulnerabilit ies, properties leading to protection against these vu l ­
nerabilities and also defining the novel concept, formal model describing the required be­
havior, possible prototype implementat ion as proof of concept and even the verification of
application against behavior needed is the pr imary goal. The focus of this thesis is the def­
in i t ion of the novel approach of using a mobile device as a personal device and also as
a work device. The addi t ional value should be that the user has a power of deciding which
data is considered as personal and which information is private. Moreover, the inst i tut ion
in which the device is used does not have the control over the device and does not have
access to personal data of an owner of the mobile device. Th is approach determines that
the thesis is focused on levels of security w i th properties such as confidentiality, integrity,
and protection.

The formal model of required behavior can be created after the research of current state
of protection i n the area of mobile devices, exploration of technical details of approaches to
this field of security provided by operating systems and also a definition of the behavior.
M o d e l of implementat ion that can be created w i t h the implementat ion of the prototype
should satisfy required properties. To prove that these features are fulfilled the verification
of these models are presented.

The verification can be presented on mathematical bases, or existing verification tool can
be used. To use existing verification tool , the smal l research in this area is needed, because
there are plenty of verification tools that are general for any verification, or specifically
focused on any field. To provide the results from that too l the convenient one should be
presented.

1.2 Contribution

The contr ibut ion of this thesis is in two things. The first one is the definition of general
protection model (model of required behavior), which should consider the need of working
wi th available information on personal basis and another type of information that is marked
as private. The personal information or data is marked as public and private data could
be then marked as private. The contr ibut ion of this work is to provide a possible approach
of using the one mobile device for both use cases (personal device and working device)

4

without any restriction, or without rebooting the machine into a secured mode. Moreover,
the security in case of protection against data leakage should be possible without any
modification of the operating system. Note that the applications should provide the same
functionality as before.

The differences should be apparently visible dur ing protection mode only. The general
protection models should be defined formally, w i th the operating system independence.
Therefore this system can be used on any platform even outside mobile world. In contrast,
the model of implementat ion can be operating system dependent related to the creation of
this model is based on the implementat ion of the prototype. This prototype needs to be
implemented for the specific operating system wi th its specifics on security aspects, such as
instal lat ion applications, access rights, data protection, and other kinds of implementat ion
techniques. The contr ibution should be confirmed during the verification phase of imple­
mentation model w i th the model of required behavior. A l so , experiments of the verification
process discuss the possible results, and implementat ion experiments summarize findings
related to the prototype.

Chapter 2 provides introduct ion into privacy protection on mobile devices. Th is chapter
also describes the complete overview of enhancements of protection user's private informa­
t ion. Addi t ional ly , there is the description of security threats targeted at the mobile world.
These threats are split into few categories i n which the privacy is protected in a differ­
ent approach. In the second part of the chapter, the protection against discussed security
threats are presented.

The chapter 3 discuss protection principles used i n modern operating systems. These
principles are not l imi ted to mobile operating systems only, but they have also used on
desktop or server machines. The first part of the chapter is focused on fundamental proper­
ties of a security system w i t h the discussion about confidentiality, integrity, and availability.
Access control models are defined formally, and their implementat ion covers the second part
of that chapter.

Mobi le operating system architecture is presented in the chapter 4. Dur ing this chapter,
the general privacy protection defined in the chapter 3 is presented as the implementat ion
of one of the most used operating system for mobile devices. The user data protection is
presented through a l l levels of an operating system wi th the detail description of the im­
plementation solution. This chapter can be considered as technical background for the im­
plementation of the prototype.

The ma in idea of this thesis is presented in the chapter 5 that is focused on the definition
of access rights model . Th is chapter discusses the related work in this area of protection
user's data and their approaches. The contr ibut ion of this thesis starts w i th this chapter.
The most important part of this chapter is the model of required behavior, which is defined
formally. Th is formal model can be then used as the model used i n the verification process
of the implementation.

Next chapter 6 presents the technical details of the operating system, which have an im­
pact on the required behavior. The system design is described together w i th the prototype
implementation which should satisfy the requirement presented in the previous chapter.
The inseparable part of this chapter is the description of a framework that helps define
the correct security layer. The second part of this chapter describes the formal model of
implementation, that is the simplified model used in a verification process. The model is
presented i n a s imilar format as the model of required behavior.

A verification process is described i n the chapter 7, i n which model of required behavior
and model of implementat ion are verified wi th the a im of security properties. Th is chapter

5

introduces the verification tools that can be used for checking two models. The specification
of models i n the format of the tool is presented, and other necessary parts for the verification
process are defined.

Chapter 8 shows the verification experiments on already defined models. These experi­
ments are considered as an example of possible verification processes between two models.
They are focused on general verification of available file operations, and their classification
according to a definition. These experiments are evaluated, and the results are discussed
at the final stage of each experiment section.

Implementation experiments are presented i n the chapter 9, which covers the exper­
iments on a real mobile device and operating system simulator. The implementat ion is
tested v ia randomly chosen and freely available applications, which are installed and then
tested wi th the implementation solution. The results of these experiments are then col­
lection and evaluated. The main focused is considered on the data leakage, but also on
properties such as performance measurement.

The last chapter 10 of this thesis is dedicated to a conclusion.

G

Chapter 2

Privacy Protection

This chapter covers the overview of privacy protection on mobile devices. Moreover, this
chapter describes the privacy protection enhancement designed by other researchers, secu­
ri ty specialists, and developers among mobile devices. Addi t ional ly , there is the summary
of the proposals, and other research works i n recent years in this area. A pr imary a im of
this part is related to the leakage of data. Thus, the a i m can be seen in two categories -
privacy protection enhancement and privacy leakage detection [171]. A n approach aimed
to privacy protection enhancement can be implemented i n the system layer and also in
the appl icat ion layer. The system-level enhancement performs the deficiency of privacy
protection mechanism. For instance, coarse granularity access control which allows sensi­
tive data to be leaked out of the device through the impl ic i t data flow. Moreover, relatively
sophisticated privacy leakage detection techniques such as taint analysis and flow control
analysis many kinds of research have applied machine learning to detect the information
leakage.

There are papers related to security survey on mobile devices such as [129, 140, 221].
They are focused on threats, vulnerabilit ies, and related solutions i n the mobile world.
A set of tools have been developed by Enck et a l . [] to handle the security issues of
applications available through applicat ion market. Majo r security fields have been analyzed,
characterized and categorized by Tan et a l . [213].

Pr ivacy protection on mobile devices can be categorized i n many different aspects. For
instance, these selections can be based on threats, platform architecture levels, hardware
and software security accesses, operating systems and its models. The first part of this
chapter is going to cover the selection privacy based on privacy security threats related to
sensitive data access, and then it follows wi th the leakage information possibilities.

2.1 Privacy Security Threats

A s was discussed earlier, the mobile device is an important part of human life, and there­
fore users store private and sensitive data on i t . Due to the mobile operating platform,
the amount of malicious applications on this platform is increasing year by year. It is not
only the issue of one platform but the whole mobile world. In these days the mobile de­
vice w i th the operating system is just tool to handle usual routines such as phone calls,
sms/mms messaging, internet access, camera, music /movie player, and other available func­
tionalities. However, this list of features is not complete. Users want more than l imited
functionality provided by the manufacturer. Th is need is the reason for the available ap-

7

plications provided by the third-party developers. Addi t ional ly , these applications enhance
the functionality of the device. In contrast, these applications need access to the device
hardware through drivers and also access to the system information and sometimes access
to the private or sensitive information, such as location, contact list, emails, messages and
many other data available on the device. Information or data available on the device can be
categorized into four groups, the main idea has been proposed by M i d i et a l . [160]. These
four groups are device resources, user data, system information and applicat ion data.

Device Resources

Current modern mobile devices come to the market w i th many hardware units to provide
the specific feature to the user. For instance, one of these units can be near field commu­
nication (N F C) [], global posit ion system (G P S) [243], camera and other sensors which
enable applications to accomplish complex functions and services, such as phone navigation
[152]. In contrast to desirable properties of a l l sensors and hardware units, there is also
a possible risk for the user. For example, the N F C hardware unit is used i n these days for
payment access control and ticketing (micropayment) [151]. Accord ing to N F C , Haselsteiner
et a l . [102] found possible N F C threats, such as eavesdropping [149], data corruption, data
modification, data insertion, man-in-the-middle attack [], these attacks or threats are
available because the principle of this technology is based on wireless communicat ion.

Another manner of sensitive information detection related to resources available on
a modern mobile device has been found by Dey et a l . [7]. They found that hard­
ware imperfection during fabrication process makes each accelerometer sensor chip unique.
The uniqueness is in the response that each chip response is different to the same motion
st imulat ion. Th is knowledge makes the device to easily track a user over space and time
because this motion stimulus creates a unique fingerprint of the user.

User Data

User data is produced when any user uses the device. Therefore, a user is using the basic
services of a mobile device, including sms/mms messages, contact list, phone records and
other mobile features. Felt et a l . [] found that the most common malicious behavior
is the stealing of personal information of users. Addi t ional ly , the most instant messaging
software request access to the contact list and use the address book to recommend friends
to users. A l though it becomes convenient, attackers can uti l ize this method to obtain
the user's privacy information automatically.

System Information

System information consists of various sources of the current mobile device. These infor­
mat ion could be international mobile equipment identity (IMEI) [15], international mobile
subscriber identity (IMSI)[189], phone number, W i - F i media access control (M A C) address
[59], etc. Some information can uniquely identify a mobile device, namely, identify a unique
user. Accord ing to permissions of the operating system applications installed on the device
can access this information. Related to the research of Acha ra et a l . [1], they found that
permission which allows access to the state of wireless connection can not only identify
the user w i th M A C address but can also obtain their coarse-grained location information
without requesting the permission for location.

8

Application Data

Appl ica t ions create various data related to the user's interest and cookies i n the case of
internet browser. A l though on every modern operating system aimed to mobile devices
is applicat ion sandbox mechanism available to ensure the isolation between applications,
there are s t i l l some means for malware [37] to gather and analyze these data. Recently,
more applications use browser kernel to show the hypertext markup language (H T M L) [16(]
content wi th in them. However, the trend i n the development of mobile applications raises
in the idea of developing an applicat ion for a l l platforms. The main solution to this idea is
to use the browser kernel to handle view part of the applicat ion in H T M L , and the logic
is maintained by JavaScript []. Approaches to developing applicat ion through more than
one operating system are out of the scope of this thesis, but some addi t ional information
can be found in [9, 85, 150].

One feature of this approach is that provides a way for JavaScript i n a browser kernel
to invoke applicat ion code when the applicat ion enables the kernel. This principle allows
the web page to access functionality and also data exposed by the application, which un­
doubtedly increases application's attack. Th is vulnerabi l i ty has been published by C h i n et
al . [55] on webview [39].

2.2 Privacy of Communication Channels

Related to a weakness of privacy communicat ion channels, researchers t ry to handle this
security breaches and propose the tools and mechanisms to protect a user against privacy
leakage. In this section are two types of leakage. One is related to permission escalation,
which is aimed at some operating system privacy issue. The second one is an informal
overview of possible collusion attack.

Permission Escalation

This security issue is related main ly to an operating system and is described as an applica­
t ion wi th fewer permissions (a non-privileged caller) is not restricted to access components
of a more privileged applicat ion (a privileged callee) [62].

Sandbox

Application A
Granted permissions:

A l A2

Sandbox

Application B
Granted permissions: pi

Bl B2

Sandbox

Application C
Granted permissions:

CI [pi]

X T
C2 [p2]

1
— * x -x- * * * Reference monitor

Android Middleware

Figure 2.1: Component-based permission escalation attack []

9

In other words, operating system security architecture does not ensure that a caller
is assigned at least the same permissions as a callee. Figure 2.1 shows the si tuat ion in
which privilege escalation attack becomes possible. Appl ica t ions A, B and C are assumed
to run on an operating system, each of them is isolated in its sandbox. App l i ca t ion A has
no granted permissions and consists of components Al and A2. App l i ca t ion B is granted
a permission pi and consists of components Bl and B2 . Permission labels protect neither
Bl nor B2 and thus can be accessed by any applicat ion. Bo th , Bl and B2 can access
components of external applications protected wi th the permission label pi since i n general,
a l l appl icat ion components inherit permissions granted to their applicat ion. App l i ca t ion C
has no permissions granted, it consists of components CI and C2. Components CI and C2
are protected by permission labels pi and p2, respectively, that means that component CI
can be accessed only by components of applications which possess pi, while component C2
is accessible by components of applications granted permission p2.

A s can be seen in figure 2.1, component Al is not able to access CI component, since
pi permission is not granted to the applicat ion A. Nevertheless, data from component
Al can reach component CI indirectly, v i a the Bl component. Indeed, component Bl
can be accessed by component Al since component S I is not protected by any permission
label. In turn, component S I is able to access CI component since the appl icat ion B and
consequently a l l its components are granted pi permission [62].

Collusion Attack

Attackers accomplish malicious behavior by col luding applications and therefore indirect ly
escalate their permissions. Col lus ion attack can escape those detection technology designed
for a single applicat ion. Col lus ion attack has been revealed by the Marforio et a l . [153].
They implemented and analyzed much covert and overt communicat ion channel that enables
applications to collude.

2.3 Privacy Protection Mechanisms

According to the weakness of privacy protection mechanisms on mobile devices, researchers
t ry to improve the system privacy at different levels. These levels are described i n the fol­
lowing sections.

Privacy Protect Enhancement

Enhancement of privacy can be one on system layer, which is related to operating system
and also on the applicat ion layer. The applicat ion layer is based on third-party develop­
ers and also on execution platform which is the operating system. Lets firstly describe
the system layer and after that the appl icat ion layer security enhancements.

System Layer

The operating system provides a set of permission to l imi t applications access to sensitive
resources [7, 135]. B u t the concept of all-or-nothing feature make it weak []. There is an
approach which provides appropriate authorization for access system resources. Design and
implementation of this approach are based on graph-theoretical a lgori thm [89]. Moreover,
Shen et a l . [201] proposed flow permission mechanism provide users addi t ional context on
how the applications leverage the standard permissions and resources.

10

From another point of view of security - isolation. The isolation technique has been
used i n Solaris operating system [], L i n u x based operating system [147], etc. Appl ica t ions
or processes can not interact w i t h each other i n an isolated environment because protect
application data. Better isolation is achieved wi th the solution called A i r B a g []. It is
a lightweight operating-system level v i r tual iza t ion approach which is designed to isolate and
prevent malware from infecting systems or stealthily leaking private information. However,
numerous system events are isolated at A i r B a g boundary as result of confining the untrusted
application to communicate w i th other legitimate applications and services running on
the native run-time, which w i l l affect the certain functionality of untrusted applications.
This solution is focused on isolating privacy information on data level or process level.

A similar approach has been proposed by Lange et a l . [132] which is called Crossover.
Crossover is based on L 4 A n d r o i d [133] and provides a framework which defines the re­
quirements and properties of a secure and usable user interface to manage several different
operating system environments on one device.

To provide a safe business environment based on B Y O D principle [163], Wang et a l .
[225] proposed an enterprise-level security pol icy enforcement mechanism called DeepDroid .
It is a fine-grained system which modifies the system services responsible for access rights.
Enterprise administrators can dynamical ly enforce fine-grained system services and resource
access control policy. A l though , various works of privacy protection enhancement, such as
Trus tDro id [], using a different security policy, it is approximately the same approach
where they hook and how they enforce a policy.

For mobile operating system exists at least two proposals of policy enforcement pub­
lished by Backes et a l . [I] and Heuser et a l . [105] respectively proposed the A n d r o i d secu­
ri ty framework (A S F) and A n d r o i d security modules (A S M) framework, providing a pro­
grammable interface to develop another novel protection mechanisms. The main difference
between A S F and A S M is that the A S F is deployed in the bo t tom of existing A S F , allowing
third-party developers to supplement or replace the existing platform security mechanism,
while A S F enhances the system security and privacy through applications.

To be sure, that data is unable to use, when other access control mechanisms such as
authentication or file access are compromised, data encryption technology can guarantee
that data is not possible to read. Implementation of a pract ical system of encryption on
mobile devices is published by Y u et a l . [211]. Th is proposal is called M o b i H y d r a , and
the implementat ion is based on plausibly deniable encryption [], featuring mult i level de-
niabi l i ty on mobile devices. A user can choose to store sensitive data at different deniabil i ty
levels and can hide data without rebooting i n this system. Besides, to focus on the entire
file system encryption, there is another proposal called M o b i P l u t o [51] which is based on
a principle of denying the existence of sensitive data stored on the mobile device.

Another type of security protection is security authentication. A n Authent ica t ion is pre­
sented on a mobile device on many levels, but the first one is the key to open the device for
usage. This principle is usually done by personal identification number code, pattern lock,
face recognition, or any other features which could uniquely identify the user of the device.
Ch iang et a l . [53] proposed a new multiple-layer graphical password scheme, which allows
users to draw their passwords across mult iple layers through the „warp-cel ls ." This approach
avoids unlocking the device by brute force. A different approach for a low part ic ipat ion of
authentication mechanism proposed L i et a l . [138]. Th is proposal uses a classifier to learn
the owner's finger movement pattern. It can continuously re-authenticates the current user
without interrupting user-smart-phone interactions.

11

Appl icat ion Layer

The current privacy protection enhancement research on applicat ion layer mainly covers
two aspects: recommendation to the users to fewer risk applications according to their risk
level, and taking a positive response to defense mechanisms, such as monitor ing application's
behavior while they are running.

The applicat ion risk assessment introduces machine learning methods to privacy pro­
tection. For instance, Peng et a l . [174] use probabil ist ic generative models for risk scoring
schemes, and identify several models ranging from the simple Naive Bayes models [184]
to advanced hierarchical mixture models. Moreover, Zhu et a l . [217] developed a recom­
mendation system that considers both the application's popular i ty and the privacy threat.
This solution is based on the work of [174]. Different from using permission to assess risk
an automated framework called R I S K M O N was presented by [116]. Th is framework scores
the risk based on user's coarse expectations and application's behavior. Al though , machine
learning needs a huge amount of t raining data and therefore the data model which contains
information which facilitated risk analysis was created by [212].

Moni to r ing run-time process is helpful for users to understand the privacy data flow
and detect the malicious behavior. For instance, the F i r e D r o i d [186] monitor ing tool serves
as a monitor process which controls the execution of native codes and prevents privacy
leakages. It is working transparently to a user. Moreover, intrusion detection system
based on a host can report and interrupt malicious act ivi ty i n real-time. This mechanism
improves the defense of the host system. To prevent intrusion by performing run-time
policy enforcement on system-level, the Patronous - security architecture system proposed
by Sun et a l . [211].

Privacy Leakage Detection

Private leakage detection research is focusing pr imar i ly to taint analysis, control flow anal­
ysis, and vir tual izat ion. A l so , some researchers introduce machine learning principles to
privacy leakage detection.

Taint analysis includes static and dynamic taint parts. It should taint the sensitive
information firstly, and then analyze the data flow through taint t racking or alias analysis
algori thm. A novel static taint analysis system called F l o w D r o i d [23]. This system is con­
text, flow and objects sensitive while precisely modeling life-cycle, it can adequately handle
callbacks invoked by the framework. Unfortunately, it only enforces taint analysis between
single components. Another proposal, which is based on Ta in tDro id ['] is N D r o i d [17c]
and it performs dynamic taint analysis. Th is system is designed for checking information
flows through Java native interface (JNI) []. N D r o i d can work together w i th Ta in tDro id
to track information flows from selected sources to specified sinks i n applications.

Appl ica t ions which are framework-based and event-driven which lead to t radi t ional
control flow analysis are no longer adaptive. In order to tackle this issue, the new pro­
gram representation was proposed, and it is named callback control-flow graph (C C F G)
[236]. A n algori thm presented for C C F G is based on construction through context-sensitive
control-flow analysis of callbacks. Moreover, automated privacy leakage detection system
called A A P L [148] based on the mult iple special static analysis techniques including flow
identification and joint flow tracking. Addi t ional ly , A A P L uses peer voting to filter out
legitimate privacy disclosures purifying the detection results. The cons of the A A P L are
an impossibi l i ty to detect disclosures caused by Java reflection [80], code encryption, or
dynamical code loading.

12

The most mobile applications are wri t ten i n a programming language which is not
the same as the programming language used to develop a kernel of the operating sys­
tem. For instance, A n d r o i d applications are usually developed using Java programming
language [], while the underlying kernel is implemented by C programming language
[121]. The similar approach is w i th the operating system i O S []. The kernel of i O S
is also implemented by C programming language and applications are developed i n Swift
programming language []. V i r tua l i za t ion technologies are necessary for this area and
provide a v i r tua l execution environment for dynamic detecting privacy leakage behavior
while preventing other applications from being infected. Compared wi th static analysis, it
has a higher precision as the behavior is detected at run-time. For instance, DroidScope
[235] is one of many malware analysis detection platform. It is based on top of quick em­
ulator (Q E M U) [] (multiple-host emulator for multiple-targets), and it can reconstruct
the operating system-level and also vir tualization-level semantic views. A p a r t from this,
DroidScope provides a set of A P I s to help researchers implement custom analysis plugins.

Installation packages of the available mobile applications contain compressed much in­
formation, that can be helpful for researchers. For instance, requested permissions, graphi­
cal user interface, and compiled code. Addi t ional ly , the data flows gained by the t radi t ional
methods such as methods described i n this section - taint analysis and control flow analysis
can be trained as features for machine learning. Th is approach was proposed by Tr ipp et
al . [215] based on the Bayesian notion of statist ical classification. These classifications have
conditioned the wi th judgment whether a release point is legitimate on the evidence arising
at that point. Another s imilar solution called M U D F L O W [] can detect abnormal flows
in possibly malicious applications through learning abnormal and normal flows of sensitive
information from trusted applications.

2.4 Summary

The introduct ion into the privacy protection on mobile devices has been covered i n this
chapter. There were also presented some other work of researchers, security specialist
and developers w i t h a focus on security threats and vulnerabilit ies. These projects are
t ry ing to solve the security breaches, malware protection, vulnerabi l i ty protection or just
move the security on mobile devices into a more secure sphere. The a im of the thesis is
the protection against data leakage, and these presented projects are related to this topics.
Specifically, the second part of this chapter discussed the protection and also detection of
privacy leakage.

In order to understand the theoretical background around this topic, the next chapter
discusses the protection mechanism used pr imar i ly on an operating system level, but these
principles are also used on the higher levels of a software stack. These mechanism related
to the protection are not l imi ted to mobile operating systems.

13

Chapter 3

Operating System Protection

This chapter introduces the operating system protection mechanism widely used and dis­
t r ibuted wi th a responsibility to protect users, applications against security breaches, mal-
ware infection and also against information leakage [128]. The operating system itself is
a software that communicates directly wi th hardware or hardware drivers. The ma in pr in­
ciple is to provide hardware features to users of this system. The security on the operating
system level is mainly focused on protection mechanism and its control access.

Protect ion mechanisms control access to a system by l imi t ing the types of file access per­
mit ted to users. Also , protection has to ensure that only processes that have gained proper
authorization from the operating system can operate on memory segments, the processor,
and other computer resources.

Protect ion is provided by a mechanism that controls the access to applications, pro­
cesses, or users to the resources defined by a computer system. These mechanisms have
to provide a means for specifying the controls to be imposed together w i th a means of
enforcing them.

Security ensures the authentication [83] of system users to protect the integrity of the in ­
formation stored i n the system, as well as the physical resources of the computer system.
The security system prevents unauthorized access, malicious destruction or alteration of
data, and accidental introduct ion to inconsistency.

A s computer systems have become more sophisticated and pervasive i n their applica­
tions, the need to protect their integrity has also grown. Protect ion was in i t ia l ly conceived
as an adjunct to mult i -programming operating systems, so those untrustworthy users might
safely share a standard logical to, such as a directory of files, or share a joint physical
concerning, such as memory. M o d e r n protection concepts have evolved to increase the re­
l iabi l i ty of any complex system that makes use of shared resources.

The most obvious reason to have protection mechanisms is the need to prevent the mis­
chievous, intentional viola t ion of an access restriction by a user. O f more general impor­
tance, however, is the need to ensure that each applicat ion component active i n a system
uses system resources only i n manners consistent w i th stated policies. The requirement is
an absolute one for a reliable system.

Protect ion can improve rel iabi l i ty by detecting latent errors at the interfaces between
component subsystems. E a r l y detection of interface errors can often prevent contamination
of a healthy subsystem by a malfunctioning subsystem. Moreover, an unprotected resource
cannot defend against use by an unauthorized or incompetent user. A protection-oriented
system provides means to dist inguish between authorized and unauthorized usage.

14

The role of protection in a computer system is to provide a mechanism for the en­
forcement of the policies governing resource use. These procedures can be established in
a variety of ways. Some are fixed in the design of the system, while others are formulated
for the management of the system. S t i l l , others are defined by the ind iv idua l users to pro­
tect their files and applications. A protection system has to have the flexibili ty to enforce
a variety policies.

Policies for resource use may vary by applicat ion, and they may change over t ime.
For these reasons, protection is no longer solely of the designer of an operating system.
The applicat ion programmer needs to use protection mechanisms as well, to guard resources
created and supported by an applicat ion subsystem against misuse.

3.1 Fundamental Properties of Secure System

The basis of computer security issues is made up of three fundamental properties. They
describe the accessibility of the system, the correctness of any manipula t ion of any object
on the system and to what extent information considered sensitive is kept secret. The prop­
erties are called availability, integrity and confidentiality and they w i l l be described in this
section. The definitions are from these sources [11, 12]. Each section w i l l begin wi th
a discussion and proceed wi th the definition of the current term.

Confidentiality

To keep data and its existence secret is a challenge that many organizations put a significant
amount of t ime and money. To keep data confidential is a major concern too, for instance,
intelligence agencies and the mil i tary, where information is often made available to personnel
on a need to know basis. Cryptography is an important part of the implementat ion of private
systems. A sensitive example of the use of confidentiality is the medical records that are
stored i n medical databases. In these databases, information about one's emotional health
inherited diseases, and more is stored. Most people consider this information to be very
private and do not want anybody but perhaps their doctor to know about i t .

Definition 3.1.1. Let X be a set of entities and let / be some information. Then / has
the property of confidentiality w i th respect to X i f no member of X can obtain information
about X.

Integrity

In most commercial environments, the integrity of information is more important than to
protect it from unauthorized access, al though that too is an important issue. For instance
the importance of integrity in a bank's transaction records or the contents of a gas station's
selling record. There exist two main categories of integrity mechanisms:

• detective integrity mechanisms

• preventive integrity mechanisms

Detective integrity mechanisms are used to detect any unauthorized modification to
information. The mechanism may give a detailed report under which circumstances the in ­
formation's integrity was affected: by whom and what part of the information that was

15

affected, or it may just report that the data has been changed and mark the data as no
longer trustworthy.

Preventive integrity mechanisms t ry to mainta in the integrity of any information by
blocking any unauthorized attempts to modify i t . This mechanism also includes the case
when a user that has been authorized to modify some information in a certain way tries to
alter it in an unauthorized manner.

Definition 3.1.2. Let X be a set of entities and let / be some information. Then / has
the property of integrity w i th respect to X i f a l l members of X trust /

Availability

One of the most basic aspects of a system is its availability. If a subject is unable to
util ize the services provided, the service may just as well not exist. A n y interrupt ion in
the availabil i ty of the system's parts w i l l make the availabil i ty of the entire system to fail.

Definition 3.1.3. Let X be a set of entities and let / be a resource. Then / has the property
of availabil i ty w i th respect to X i f a l l members of X can access / .

3.2 Trusted Computing Base

In the security, the world is using the term trusted systems rather than secure systems.
These systems that have formally stated security requirements and reach these require­
ments. A t the core of every trusted system is a min ima l trusted computing base (T C B)
[176, 185] which is defined by hardware and software necessary for enforcing a l l the secu­
ri ty rules. The abi l i ty of a trusted computing base to enforce a security pol icy correctly
depends foremost on the integrity, correctness, and protection of the mechanisms imple­
menting the elements of the T C B itself. Similarly, a network trusted computing base
(N T C B) [] is defined as the total i ty of protection mechanisms wi th in a network including
hardware, firmware, and software, the combination of which is responsible for enforcing
a network-wide security policy.

A mechanism is a term used to refer to a specific paradigm, model, or a construct that
is used i n the implementat ion of a part icular service. A security service enforcing a policy
is, therefore, a combinat ion of security mechanisms. Trust i n a T C B means the components
and mechanisms are implementing the enforcement of controls dictated by a security policy
behave expectedly. The expectation here is that the T C B should not subvert the policy
that it is designed to enforce. Essential to the element of trust i n the T C B is its correctness
and overall system integrity.

The general method of defining the boundaries of a T C B is that any software, firmware,
or a hardware component that can subvert a security policy is considered to be part of an
applicable T C B or N T C B . Breaching a T C B is usually accomplished by carrying an attack
that the designer of the T C B had not anticipated. B u i l d i n g an ideal T C B , therefore, requires
exhausting a l l possible attacks. W h i l e it may seem that the elements of network T C B are
scattered and disjoint, in practice trust is a continuous concept throughout that follows
the information flow. Appl icab le trust properties should remain invariant when information
is residing on a storage system, wi th in a thread of execution, dur ing an exchange of data
across address spaces, or while in transmission over a network.

Since the T C B is working to specification, the system security cannot be compromised
even when something else is wrong. A n essential part of the T C B is the reference monitor

16

[10]. A reference monitor is the T C B component of a computing system that mediates
every access of a subject to a resource following a security pol icy that governs such access.
The pol icy may be implemented in the form of rules and attributes associated w i t h a registry
of subjects and a registry of objects. The rules can be static access rights (permissions),
roles, or dynamical ly deduced rights.

Figure 3.1 illustrates the concept of an access-control reference monitor. In addi t ion to
the mediation of reference monitor should not be bypassed at a l l times, should sup­
port isolation of the security services from untrusted processes, mainta in system integrity,
and prevent from tampering by users or system processes.

Principal Operation Reference
monitor

TCB confinement

Figure 3.1: A reference monitor concept of access control citeandersonl972computer

The reference monitor footprint should be kept smal l enough to be susceptible to rigor­
ous verification methods. The gate-keeper approach of the reference monitor makes it an
ideal component for the generation of audit trails reflecting access attempts to the resources
wi th in its confines.

3.3 Users, Principals, Subjects, and Objects

The term user i n computing has been t radi t ional ly equated w i t h a human being. Its
use conveys a unique association between a computing system and an entity that can
be a human being or some programmable agent. User information is encapsulated in an
account, sometimes referred to as a profile. A user account contains information about
authentication as well as authorizat ion credentials and may contain a set of attributes
describing the user (such as a name, a serial number, an organization name, and so forth).
Each user account is associated wi th an identifier that must be unique in the naming space
of the underlying computing system.

W h i l e a user represents an entity external to a computing system, a principal refers
to an entity's internal representation of a computing system. E a c h user may have several
principals associated wi th i t . E a c h pr incipal , on the other hand, is associated wi th one user
only. The pr inc ipal construct defines the run-time association between a computing task
and a part icular user and encapsulates a subset of the entitlements of that user. The scope
of entitlement is dependent on the applicat ion to which the user is signed.

A subject is the term used to identify a running process, a program i n execution. Each
subject assumes the identity and the privileges of a single pr incipal . A pr incipal may launch

17

several processes wi th in a single login session and thus w i l l be associated wi th multiple
subjects, each of which inherits the identity of the login session. Figure 3.2 illustrates
the relationships between a user, pr incipal , and a subject, defined by [35].

A n object refers to a passive entity (i.e., one that is an information receptacle such as
a file, or a record i n a database). A n object, however, may indicate an active device from
the system's resource pool (such as a network printer, or further can be a programmable
service that is managed as a resource).

Figure 3.2: Rela t ion between a user (primary principal) , a pr incipal , and a subject [35]

It is worth noting that i n many cases it merely encounter the basic scenario i n the rela­
tionships among a user, pr incipal , and subject where the user, the pr incipal , and the subject
are a l l the same. In the security literature, the term pr inc ipal is used to mean an active
entity that is capable of causing information to be retrieved, changed or flown between
controlled objects of a computing environment.

3.4 Access Control

A n important requirement of any information management system is to protect data and
resources against unauthorized disclosure (secrecy) and unauthorized or improper modifi­
cations (integrity), while at the same time ensuring their availabil i ty to legitimate users (no
denial-of-service). Enforcing protection, therefore, requires that every access to a system
and its resources be controlled and that a l l and only authorized accesses can take place.
This process goes under the name of access control. The development of an access control
system requires the definition of the regulations according to which access is to be controlled
and their implementat ion as functions executable by a computer system. The development
process is usually carried out w i th a multi-phase approach based on the following concepts:

• Security policy - it provides the high-level rules according to which access control
have to be regulated.

• Security model - it defines a formal representation of the access control security
policy and its working. The formalization allows the proof of properties on the security
provided by the access control system being designed.

• Security mechanism - it determines the low-level functionality (defined i n software
or hardware) that implements the controls imposed by the pol icy and formally stated
in the model.

18

The three concepts above correspond to a conceptual separation between different levels
of abstraction of the design and provides the t radi t ional advantages of multi-phase software
development. In particular, the separation between policies and mechanisms introduces an
independence between protection requirements to be enforced on the one side, and mecha­
nisms are enforcing them on the other. It is then possible to discuss protection requirements
independently of their implementation, and also compare various access control policies as
well as different mechanisms that enforce the same policy, and design mechanisms able to
enforce mult iple policies.

This latter aspect is part icular ly important : when a mechanism is t ied to a specific
policy, a change i n the pol icy would require changing the whole access control system,
mechanisms able to enforce mult iple policies avoid this drawback. The formalization phase
between the pol icy definition and its implementat ion as a mechanism allows the definition
of a formal model representing the policy and its working, making it possible to define
and prove security properties that systems enforcing the model w i l l enjoy. Therefore, by
proving that the model is secure and that the mechanism correctly implements the model.
The implementat ion of an exact mechanism is far from being t r iv ia l and is complicated by
the need to cope wi th possible security weaknesses due to the implementat ion itself and by
the difficulty of mapping the access control primitives to a computer system. The access
control mechanism has to work as a reference monitor (see figure 3.1), that is, a trusted
component intercepting every request to the system.

Even the definition of access control policies (and their corresponding models) is far from
being a t r i v i a l process. One of the major difficulty lies i n the interpretation of, often complex
and sometimes ambiguous, real-world security policies and their translation in well defined
and unambiguous rules enforceable by a computer system. M a n y real-world situations have
complex policies, where access decisions depend on the applicat ion of different rules coming,
for instance, from laws, practices, and organizational regulations. A security policy has to
capture a l l the different regulations to be enforced and, also, has to also consider possible
addi t ional threats due to the use of a computer system. Access control policies can be
grouped into three main classes:

• Discretionary acess control (D A C) [L39] policies control access based on the iden­
t i ty of the requester and on access rules stating what requesters are allowed to do (or
not allowed to do).

• M a n d a t o r y access control (M A C) [] policies control access based on mandated
regulations determined by a central authority.

• Role-based access control (RBAC)[192] policies control access depending on
the roles that users have wi th in the system and on rules stating what accesses are
allowed to users i n given roles.

Discretionary and role-based policies are usually coupled wi th (or include) an adminis­
trative policy that defines who can specify authorizations/rules governing access control.

Discretionary Access Control

Discretionary policies enforce access control by the identity of the requesters and explicit
access rules that establish who can or cannot, execute which actions on which resources.
They are called discretionary as users can be given the abi l i ty to pass on their privileges to

19

Fi l e 1 F i l e 2 F i l e 3 App l i ca t i on 1
User 1 own, read, write read, write execute
User 2 read read, write
User 3 read execute, read

Table 3.1: Access mat r ix

other users, where granting and revocation of privileges is regulated by an administrative
policy.

Access M a t r i x M o d e l

The access mat r ix model proposed by Lampson [13'.] provides a framework for describing
discretionary access control. It is based on protection of resources wi th in the context of op­
erating systems. The model was subsequently formalized by Harr ison, Ruzzo, and U l l m a n n
(H R U model) [101], who developed the access control model proposed by Lampson wi th
the goal of analyzing the complexity of determining an access control policy. The original
model is called access mat r ix since the authorizat ion state, meaning the authorizations are
holding at a given t ime i n the system, is represented as a matr ix . The matr ix , therefore,
gives an abstract representation of protection systems.

A first step in the development of an access control system is the identification of
the objects to be protected, the subjects that execute activities and request access to objects,
and the actions that can be executed on the objects, and that must be controlled. Subjects,
objects, and actions may be different i n different systems or applicat ion contexts. For
instance, i n the protection of operating systems, objects are typical ly files, directories, or
applications. In contrast, in database systems, objects can be relations, views, and or
stored procedures. It is interesting to note that subjects can be themselves objects (this
is the case, for instance, of executable code and stored procedures). A subject can create
addi t ional subjects (e.g., children processes) i n order to accomplish its task. The creator
subject acquires control privileges on the created processes (e.g., to be able to suspend or
terminate its children).

In the access mat r ix model [131], the state of the system is defined by a tr iple (S, O, A),
where S is the set of subjects, who can exercise privileges. O is the set of objects, on
which privileges can be exercised (subjects may be considered as objects, in which case
SCO) and A is the access matr ix , where rows correspond to subjects, columns correspond
to objects, and entry A[s, o] reports the privileges of s on o. The type of the objects and
the actions executable on them depend on the system. B y s imply providing a framework
where authorizations can be specified, the model can accommodate different privileges.
For instance, in addi t ion to the t radi t ional read, write, and execute actions, ownership
(i.e., property of objects by subjects), and control can be considered. Table 3.1 depicts an
example of access matr ix .

Changes to the state of a system are carried out through commands that can execute
pr imit ive operations on the authorizat ion state, possibly depending on some conditions.
The H R U formalization identified six pr imit ive operations that describe changes to the state
of a system. These operations, whose effect on the authorizat ion state are defined in
the following definitions [191], correspond to adding and removing a subject, adding and
removing an object, and adding and removing a privilege.

20

Definition 3.4 .1. operation enter r into A[s,o] [191]:

conditions: s € S,o € 0
new state: Q hoperation Q'

s' = s

0' = 0

A1[s,o} = A[s,o]U{r}

Ai[si,Oj] = A[si,Oj],V(si,Oj) / (s,o)

Definition 3.4.2. operation delete r from A[s,o] [191]:

conditions: s £ S, o € O
new state: <Q> ^operation Q'

S' = S

o' = o
A'[s,o} = A[s,o]\{r}

A'[si,Oj] = A[si,Oj],V(si,Oj) ^ (s,o)

Definition 3.4.3. operation create subject s' [191]:

conditions: s' S
new state: Q hoperation Q'

S' = S U {s'}

O' = O U
A'[s,o] = A[s,o}Vs eS,oeO

A'[s',o] = 0,Voe O

A'[s,s'} = 0,Vs € 5'

Definition 3.4.4. operation create object o' [191]:

conditions: o ^ O
new state: Q \~ operation Q'

5' = S

0' = OU {o'}

A'[s,o] =A[s,o],Vs eS,oeO

A'[s,o'] = 0,Vs € S'

Definition 3.4.5. operation destroy subject s' [191]:

conditions: s ' e S
new state: Q hoperation Q'

S' = S\{s'}

a = o\{s'}
A'[s,o] = A[s,o],Vs e S ' . o e O'

21

Definition 3.4.6. operation destroy object o\ [191]:

conditions: o' £ 0,o' S

operation new state: O h, : ' n /

S' = S

o' = 0\{0l}

A'[s,o] =A[s,o],Vs eS',oe O'

Each command has a condit ional part and body and has the form defined i n the follow­
ing l is t ing 3.1 w i t h n > 0, m > 0. There r',... , r m are actions, op',..., opm are primit ive
operations, while s',..., s m and o',..., om are integers between 1 and k. If m = 0, the com­
mand is without condit ional part.

command c(x\,...,dh)
i f 7"i i n A[x si,a; 0i] and

r 2 i n A[xs2,x02] and

rm i ^ ̂ [^sm? ̂ om]
then opi

Op-2

OPr,
end .

Lis t ing 3.1: F o r m of the command

For instance, the following command presented in l is t ing 3.2 creates a file and gives
the creating subject ownership privilege to it.

command C R E A T E (c r e a t o r , f i l e)
c r e a t e o b j e c t f i l e
e n t e r Own i n t o A [c r e a t o r , f i l e]

end .

Lis t ing 3.2: Create command [191]:

Fol lowing commands expressed i n l is t ing 3.3 allow an owner to grant to others, and
revoke from others, a privilege to execute an action on his /her files.

command C0NFERa (owner, f r i e n d , f i l e)
i f Own i n A [owner , f i l e]
then

e n t e r a i n t o A [f r i e n d , f i l e]
end .

command REV0KEa (owner , e x - f r i e n d , f i l e)
i f Own i n A [owner , f i l e]

22

then
d e l e t e a from A [e x - f r i e n d , f i l e]

end .

Lis t ing 3.3: Grant permission command [191]:

Note that the variable a from l is t ing 3.3 is not a parameter, but an abbreviation for
defining many similar commands, one for each value that a can take (e.g. CONFERread,
REVOKEwrite). Since commands are not parametric actions, a different command needs
to be specified for each act ion that can be granted and or revoked, depicted in definition
3.4.7.

Definition 3.4.7. Let Q \~ o p Q' denote the execution of operation op on state Q, resulting
in state Q'. The execution of command c (a i , . . . , a&) on a system state Q = (S, O, A) causes
the transition from state Q to state Q' such that 3Qi,..., Qn for which Q \-op* (Qh \ - o p *
• • • l~op* Qn = Q', where op\ ... op*n are pr imit ive operations op\... opn i n the operational
part of the command c, i n which actual parameters a« are substi tuted for each formal
parameters Xi, i = 1,.. . , k.

If the condit ional part of the command is not verified, then the command has no effect
and Q = Q'.

Al though the H R U model does not include any bui l t - in administrat ive policies, the pos­
sibi l i ty of defining commands allows their formulation. Adminis t ra t ive authorizations can
be specified by attaching flags to access privileges. For instance, a copy flag, denoted *, at­
tached to a privilege may indicate that the privilege can be transferred to others. Gran t ing
of authorizations can then be accomplished by the execution of a command.

Implementation of Access M a t r i x

Even though the mat r ix represents a quite good conceptualization of authorization, it is
not appropriate for implementation. In a general system, the access mat r ix w i l l be usually
enormous i n size and sparse, because most of its cells are w i th the empty value. Storing
the matr ix as a two-dimensional array is, therefore, a waste of memory space. There are
well known three approaches of implementation:

• Authorizat ion table[] - Access matr ix in which the non-empty cells are reported
w i t h three columns, corresponding to subjects, actions, and objects, respectively.
Each tuple in the table is related to authorization. The authorizat ion table approach
is used i n database management systems, where authorizations are stored as relational
tables of the database.

• Access control list [199] - The mat r ix is stored by columns. E a c h object is associated
w i t h a list indicat ing, for each subject, the actions that the subject can perform on
the object.

• Capabil ity[] - The mat r ix is stored by rows. Each user has associated a list,
called capabil i ty list, indicat ing, for each object, the accesses that the user is allowed
to exercise on the object.

Capabil i t ies and access control lists (A C L s) [191, 199] present advantages and disad­
vantages concerning authorizat ion control and management. In particular, w i th A C L s , it is

23

immediate to check the authorizations holding on an object, while retrieving a l l the autho­
rizations of a subject requires the examination of the A C L s for a l l the objects. Analogously,
w i th capabilities, it is immediate to determine the privileges of a subject, while retrieving
al l the accesses executable on an object requires the examination of a l l the different ca­
pabilities. These aspects affect the efficiency of authorizat ion revocation upon deletion of
either subjects or objects. In a system support ing capabilities, it is sufficient for a subject
to present the appropriate capabil i ty to gain access to an object.

It represents an advantage in distr ibuted systems since it permits to avoid repeated
authentication of a subject: a user can be authenticated at a host, acquire the appropriate
capabilities and present them to obtain accesses at the various servers of the system.

Mandatory Access Control

Manda to ry security policies enforce access control by regulations mandated by a central
authority. The most common form of mandatory policy is the mult i level security policy,
based on the classifications of subjects and objects in the system. Objects are passive entities
storing information. Subjects are active entities that request access to the objects. Note
that there is a dist inct ion between subjects of the mandatory pol icy and the authorization
subjects considered i n the discretionary policies. W h i l e authorizat ion subjects typical ly
correspond to users (or groups), mandatory policies make a dist inct ion between users and
subjects.

Users are human beings who can access the system, while subjects are processes (i.e.,
applications i n execution) operating on behalf of users. T h i s dis t inct ion allows the pol­
icy to control the indirect accesses (leakages or modifications) caused by the execution of
processes.

Security Classifications

In mult i level mandatory policies [191], an access class is assigned to each object and subject.
The access class is one element of a par t ia l ly ordered set of classes. The par t ia l order
is defined by a dominance relationship, which it is denoted wi th >. W h i l e i n the most
general case, the set of access classes can s imply be any set of labels that together w i th
the dominance relationship defined on them form a par t ia l ly ordered set, most commonly
an access class is defined as consisting of two components: a security level and a set of
categories. The security level is an element of a hierarchically ordered set, such as top
secret (TS), secret (S), confidential (C), and unclassified ([/) , where TS > S > C > U.
The set of categories is a subset of a unordered set, whose elements reflect functional,
or competence areas, for instance, mi l i t a ry systems, financial systems, and other types of
systems.

The dominance relationship > is then defined as: an access class c\ dominates (>)
an access class C2 i f the security level of c\ is greater than or equal to that of C2 and
the categories of c\ include those of C2.

Formally, given a total ly ordered set of security levels C, and a set of categories C,
the set of access classes is AC = C x ' P (C) 1 , and V c i = (C\,C\), C2 = (£ 2 , ^ 2) : c\ > C2 -4=>
£-1 > £-2 A C\ D C 2 - The two classes c\ and C2 such that neither c\ > C2 nor C2 > c\ holds
are said to be incomparable. The source of definition is journal [191]. It is easy to see that

1The symbol V denotes the powerset, thus V(C) means the powerset of C.

24

the dominance relationship so defined on a set of access classes AC satisfies the following
definitions:

Definition 3.4.8. Relat ionship definitions [191]

• Reflexivity: Vx G AC : x > x

• Transi t ivi ty: V x , y, z G AC : x > y,y > z =>• x > z

• Ant i symmet ry : V x , y G AC : x > y,y > x x = y

• Existence of a least upper bound:

V x , yeAC:3\ze AC

z > x and z > y

\/t e AC :t>x and t > y =^ t> z

• Existence of a greatest lower bound:

V x , y G AC : 3\z G

x > z and y > z

\/t e AC :x>t and y > t =^ z > t

Access classes defined as above together w i th the dominance relationship between them
therefore define a lattice [64]. Figure 3.3 determines the security lattice obtained considering
security levels TS and S, w i t h TS > S and the set of categories {Nuclear, Army}. The se­
mantics and use of the classifications assigned to objects and subjects wi th in the applicat ion
of a mult i level mandatory policy is different depending on whether the classification is in ­
tended for a secrecy or an integrity policy.

TS, {Army, Nuclear}

S, {}

Figure 3.3: Example of security lattice [190]

25

Secrecy-based M a n d a t o r y Policies

A mandatory secrecy pol icy controls the direct and indirect flows of information to prevent
leakages to unauthorized subjects. Here, the semantics of the classification is as follows.
The security level of the access class associated wi th an object reflects the sensitivity of
the information contained in the object, that is, the potential damage that could result from
the unauthorized disclosure of the information. The security level of the access class asso­
ciated wi th a user, also called clearance, reflects the user's trustworthiness not to disclose
sensitive information to users not cleared to see i t . Categories define the area of competence
of users and data and are used to provide finer-grained security classifications of subjects
and objects than classifications provided by security levels alone. They are the basis for
enforcing restrictions, for instance confining subjects to access the information they need
to know to perform their job.

Users can connect to the system at any access class dominated by their clearance. A user
connecting to the system at a given access class originates a subject at that access class.
For instance, w i th reference to the lattice in figure 3.3, a user cleared (TS,{Nuclear}) can
connect to the system as a (S, {Nuclear}), (TS$), or (TS,$) subject. Requests by a subject
to access an object are controlled concerning the access class of the subject and the object
and granted only i f some relationship, depending on the requested access, is satisfied. In
particular, two principles, first formulated by B e l l and L a P a d u l a [], have to be satisfied
to protect information confidentiality:

• No-read-up - A subject S can only read an object O if S > O and S has discretionary
access to O. Discret ionary access means that a subject has clearance to read can be
accessed, and make downgrading of a piece of information's security classification
impossible. In other words, a subject is allowed a read access to an object only i f
the access class of the subject dominates the access class of the object.

• No-write-down - A subject S can write to an object O i f O > S and S has discre­
t ionary access to O. It means that a subject is allowed a write access to an object
only i f the access class of the subject is dominated by the access class of the object.

Satisfaction of these two principles prevents information from flowing from high-level
subjects/objects to subjects/objects at lower levels, thereby ensuring the satisfaction of
the protection requirements, for instance, no process w i l l be able to make sensitive infor­
mat ion available to users not cleared for i t . It is described in figure 3.4, where four accesses
classes composed only of a security level (TS, S, C, and U) are taken as an example. Note
the importance of controll ing both reads and write operations, since both can be improperly
used to leak information.

Regards to the no-write-down principle, it is clear now why users are allowed to connect
to the system at different access classes. Thus they can access information at different
levels (provided that they are cleared for i t) . Note that a lower class does not mean „less"
privileges i n absolute terms, but only less reading privileges (see figure 3.4).

However users can connect to the system at any level below their clearance, the strict
application of the no-read-up and the no-write-down principles may result too r igid . Rea l
world situations often require exceptions to the mandatory restrictions. For instance, data
may need to be downgraded, for instance, data subject to embargoes that can be released
after some time. Also , information released by a process may be less sensitive than the in ­
formation the process has read. For instance, a procedure may access personal information

26

S U B J E C T S O B J E C T S

Figure 3.4: Information flow for secrecy [193]

regarding the employees of an organization and return the benefits to be granted to each
employee. W h i l e the personal information can be considered secret, the benefits can be
considered Confidential . In order to respond to situations like these, mult i level systems
should then allow for exceptions, loosening or waiving restrictions, i n a controlled way, to
processes that are trusted and ensure that information is sanitized (meaning the sensitivity
of the original information is lost).

Note also that D A C and M A C policies are not mutual ly exclusive, but can be applied
jointly. In this to be granted needs both, the existence of the necessary au­
thorizat ion for it , and also to satisfy the mandatory policy. Intuitively, the discretionary
policy operates wi th in the boundaries of the mandatory pol icy - it can only restrict the set
of accesses that would be allowed by mandatory access control alone.

The secrecy based control principles just i l lustrated summarize the basic axioms of
the security model proposed by D a v i d B e l l and Leonard LaPadula[34]. There are some
concepts of the model formalization to give an idea of the different aspects to be taken into
account in the definition of a security model . In this model a system is composed of a set
of subjects S, objects O , and actions A, which includes read and write. A write actions in
this context behave as write-only or append operation.

The model also assumes a lattice L of access classes and a function: A : SUO —>• L that,
when applied to a subject (object respectively) i n a given state, returns the classification of
the subject (object respectively) i n that state. A state v £ V is defined as a tr iple (6, M , A),
where b £ V(S x O x A) is the set of current accesses (s,o,a), M is the access mat r ix
expressing discretionary permissions same as i n the H R U model, and A is the association
of access classes w i th subjects and objects. A system consists of an in i t i a l state vo, a set
of requests R, and a state t ransi t ion function T : V x R —>• V that transforms a system
state into another state resulting from the execution of the request. Intuitively, requests
capture acquisi t ion and release of accesses, granting and revocation of authorizations, as
well as changes of levels.

The model then defines a set of axioms stating properties that the system must satisfy
and that express the constraints imposed by the mandatory policy. The first version of
the B e l l and L a P a d u l a model stated the following criteria:

27

• simple property - A state v satisfies the simple security property if
Vs G S, o G O : (s, o, read) G b => X(s) > A(o).

• *-property - A state v satisfies the *-security property i f
Vs G S, o G O : (s, o, write) G b X(o) > X(s).

The two axioms above correspond to the no-read-up and no-write-down principles that
were described i n section 3.4. A state is then defined to be secure if it satisfies both
the simple security property and the 4'-property. A system (vo, R, T) is secure i f and only i f
every state reachable from vq by executing one or more finite sequences of requests from R
is state secure. In the first formulation of their model, B e l l and L a P a d u l a provide a basic
security theorem (B S T) , which states that a system is secure when its in i t i a l state vo is
secure, and also the state transi t ion T is security preserving, that is, it transforms a secure
state into another secure state.

Integrity-based M a n d a t o r y Policies

The mandatory pol icy that was discussed above protects only the confidentiality of the in ­
formation, and there is no control enforced on its integrity. L o w classified subjects could
s t i l l be able to enforce improper indirect modifications to objects they cannot write. Start­
ing from the principles of the B e l l and L a P a d u l a model, B i b a [10] proposed a dual policy
for safeguarding the integrity, which controls the flow of information and prevents subjects
from modifying information they cannot write indirectly.

Similarly, as for secrecy, each subject and object in the system is assigned an integrity
classification. The classifications and the dominance relationship between them are de­
fined as before. Example of integrity levels can be: high important (HI), medium impor­
tant (MI), and low important (II). The semantics of integrity classifications is as follows.
The integrity level associated wi th a user reflects the user's trustworthiness for inserting,
modifying, or deleting information. The integrity level associated wi th an object reflects
both the degree of trust that can be placed on the information stored in the object and
the potential damage that could result from unauthorized modifications of the information.
Aga in , categories define the area of competence of users and data. Access control is enforced
according to the following two principles:

• No-read-down - A subject is allowed to a read access to an object only i f the access
class of the object dominates the access class of the subject.

• No-write-up - A subject is allowed to a write access to an object only if the access
class of the subject dominates the access class of the object.

Satisfaction of these principles safeguards integrity by preventing information stored in
low objects (and therefore less reliable) to flow to higher, or incomparable, objects. Th is
principle is i l lustrated i n figure 3.5, where classes composed only of integrity levels (HI, M I ,
and LI) are taken as an example.

Role-based Access Control

Role-based access control (R B A C) is an alternative to t radi t ional D A C and M A C policies
that are at tract ing increasing attention, par t icular ly for commercial applications. The main
motivat ion behind R B A C is the necessity to specify and enforce enterprise-specific security

28

S U B J E C T S O B J E C T S

Figure 3.5: Information flow for integrity [193]

policies in a way that maps natural ly to an organization's structure. In fact, i n a large
number of business activities, a user's identity is relevant only from accountability. For
access control purposes it is much more important to know what a user's organizational
responsibilities are, rather than who the user is. The conventional discretionary access
controls, i n which ind iv idua l user ownership of data plays such an important part, are
not a good fit. Neither is the full mandatory access controls, i n which users have security
clearances, and objects have security classifications. Role-based access control tries to fil l
in this gap by merging the flexibili ty of explicit authorizations wi th addi t ional ly imposed
organizational constraints.

Essentially, role-based policies require the identification of roles in the system, where
a role can be defined as a set of actions and responsibilities associated wi th a part icular
working activity. The role can be widely scoped, reflecting a user's job tit le, for instance,
secretary, or it can be more specific, reflecting, for instance, a task that the user needs to
perform, such as order processing. Then, instead of specifying a l l the accesses, each user is
allowed to execute, access authorizations on objects are specified for roles. Users are then
given authorizations to adopt roles (see figure 3.6). The user playing a role is allowed to
execute a l l accesses for which the role is authorized. In general, a user can take on different
roles on different occasions. Also , the same role can be played by several users, perhaps
simultaneously.

It is important to note the difference between groups and roles. Groups define sets of
users while roles define sets of privileges. There is a semantic difference between them - roles
can be „ac t iva ted" and Reac t iva ted" by users at their discretion, while group membership
always applies, that is, users cannot enable and disable group memberships and correspond­
ing authorizations at their w i l l . However, since roles can be defined which correspond to
organizational figures, for instance, secretary, chair, and faculty, the same mechanism can
be seen both as a group and as a role. The role-based approach has several advantages.
Some of these are discussed below.

• Authorizat ion management - Role-based policies benefit from a logical indepen­
dence i n specifying user authorizations by breaking this task into two parts - assign­
ment of roles to users, and assignment of authorizations to access objects to roles.
It greatly simplifies the management of the security policy. W h e n a new user joins

29

USERS ROLES OBJECTS

Figure 3.6: Role-based access control [190]

the organization, the administrator only needs to grant her the roles correspond­
ing to her job. If afterward a user's job changes, the administrator s imply has to
change the roles associated wi th that user. W h e n a new applicat ion or task is added
to the system, the administrator needs only to decide which roles are permit ted to
execute i t .

• Hierarchical roles - In many applications, there is a natural hierarchy of roles, based
on the familiar principles of generalization and specialization. Figure 3.7 illustrates
an example of role hierarchy. E a c h role is represented as a node, and there is an arc
between a specialized role and its generalization. The role hierarchy can be exploited
for authorizat ion impl icat ion. For instance, authorizations granted to roles can be
propagated to their specializations, such as the secretary role can be allowed a l l ac­
cesses granted to adm-staff. Author iza t ion impl ica t ion can also be enforced on role
assignments, by allowing users to activate a l l generalizations of the roles assigned to
them. For instance, a user allowed to activate secretary w i l l also be allowed to activate
role adm-staff'. Author iza t ion impl ica t ion has the advantage of further simplifying au­
thorizat ion management. Note however that not always impl ica t ion may be wanted,
as propagating a l l authorizations is contrary to the least privilege principle.

• Least privilege - Roles allow a user to sign on w i t h the least privilege required for
the part icular task she needs to perform. Users authorized to powerful roles do not
need to exercise them unt i l those privileges are needed. It minimizes the possible
danger of damage due to inadvertent errors, or intruders masquerading as legitimate
users.

• Separation of duties - Separation of duties refer to the principle that no user
should be given enough privileges to misuse the system on their own. For instance,
the person authorizing a paycheck should not be the same person who can prepare
them. Separation of duties can be enforced either stat ically by defining conflicting
roles, that is, roles which cannot be executed by the same user or dynamical ly by

30

enforcing the control at access t ime. A n example of dynamic separation of duty
restriction is the two-person rule. The first user to execute a two-person operation can
be an authorized user, whereas the second user can be any authorized user different
from the first.

• Constraints enforcement - Roles provide a basis for the specification and enforce­
ment of further protection requirements that real-world policies may need to express.
For instance, cardinali ty constraints can be specified, that restrict the number of users
allowed to activate a role or the number of roles allowed to exercise a given privilege.
The constraints can also be dynamic, that is, be imposed on roles act ivat ion rather
than on their assignment. For instance, while several users may be allowed to acti­
vate role chair, a further constraint can require that at most one user at a t ime can
activate it.

Employee

Figure 3.7: A n example of hierarchy [190]

Role-based Access Contro l M o d e l

The role-based access control model [78] is defined regarding four model components: core
R B A C , hierarchical R B A C , static separation of duty relations and dynamic separation of
duty relations. Core R B A C defines a m i n i m u m collection of elements, element sets, and
relations to completely achieve a role-based access control system. It includes user-role
assignment and permission-role assignment relations, considered fundamental in an R B A C
system. Moreover, core R B A C introduces the concept of role activation as part of user's
session wi th in a computer system. The core of role-based access control is required in
any R B A C system, but the other components are independent of each other and may
be implemented separately or not even used. Each model component is defined by these
sub-components:

• A set of basic element sets.

• A set of R B A C relations involving those element sets (containing subsets of Cartesian
products denoting val id assignments).

• A set of mapping functions that yield instances of members from one element set for
a given instance from another element set.

31

Core role-based access control model element sets and relations are defined in figure 3.8.
Core includes sets of five basic data elements called users (USERS), roles (ROLES), objects
(OBJ), operations (OPS), and permissions (PRMS). The model as a whole is fundamentally
defined regarding ind iv idua l users being assigned to roles and permissions being assigned to
roles. A s such, a role is a means for naming many-to-many relationships among ind iv idua l
users and permissions. Moreover, the core model includes a set of sessions (SESSIONS)
where each session is a mapping between a user and an activated subset of roles that are
assigned to the user.

Figure 3.8: The core of role-based access control [78]

A user is defined as a human being. A l though the concept of a user can be extended
to include machines, networks, or intelligent autonomous agents, for s implic i ty reasons
the description is l imi ted to a user as a person. A role is a job function wi th in the context
of an organization wi th some associated semantics regarding the authori ty and responsibility
conferred on the user assigned to the role. Permission is an approval to operate on one or
more protected objects. A n operation is an executable image of an application, which upon
invocation executes some function for the user. The types of operations and objects that
R B A C controls are dependent on the type of system i n which they w i l l be implemented.
For instance, wi th in a file system, operations might include read, write, and execute, on
the other type of system such as a database management system, operations might include
insert, delete, append, and update.

The purpose of any access control mechanism is to protect system resources. However,
in applying R B A C to a computer system, the description is about protecting objects. Con­
sistent w i th earlier models of access control an object is an entity that contains or receives
information. For a system that implements R B A C , the objects can represent information
containers, for instance, files or directories i n an operating system, and columns, rows,
tables, and views wi th in a database management system. A n objects can represent ex­
haustible system resources, such as printers, disk space, and C P U cycles. The set of objects
covered by R B A C includes a l l of the objects l isted i n the permissions that are assigned to
roles.

Centra l to R B A C is the concept of role relations, around which a role is a semantic
construct for formulating policy. Figure 3.8 illustrates user assignment (UA) and permission
assignment (PA) relations. The arrows indicate a many-to-many relationship, for instance,
a user can be assigned to one or more roles, and a role can be assigned to one or more users.
Th is arrangement provides great flexibility and granularity of assignment of permissions

32

to roles and users to roles. Wi thou t these conveniences, there is an enhanced danger
that a user may be granted more access to resources that is needed because of l imited
control over the type of access that can be associated w i t h users and resources. Users may
need to list directories and modify existing files, for example, without creating new files,
or they may need to append records to a file without modifying existing records. A n y
increase in the flexibil i ty of controll ing access to resources also strengthens the applicat ion
of the principle of least privilege.

Each session is a mapping of one user to possibly many roles, that is, a user establishes
a session during which the user activates some subset of roles that he or she is assigned.
Each session is associated w i t h a single user, and each user is associated wi th one or more
sessions. The function session_roles gives information about the roles activated by the ses­
sion, and the function user sessions give us the set of sessions that are associated wi th
a user. The permissions available to the user are the permissions assigned to the roles that
are activated across a l l the user's sessions. Figure 3.8 can be described i n the following
definitions 3.4.9.

Definition 3.4.9. Core role-based access control [78]

• USERS, ROLES, OPS, and OBS the required sets, user, roles, operations, and ob­
jects, respectively.

• UA C USERS x ROLES, a many-to-many mapping user-to-role assignment relation.

• assigned_users : (r : ROLES) —> 2 U S E , the mapping of role r onto a set of users.
Formal ly: assigned_users(r) = {u G USERS\(u,r) G UA}.

• PRMS = 2 (- O P S x O B S \ the set of permissions.

• PA C PRMS x ROLES, a many-to-many mapping permission-to-role assignment
relation.

• assigned_permissions(r : ROLES) —> 2 P R M S , the mapping of role r onto a set of
permissions. Formal ly : assigned_permissions{r) = { p £ PRMS\(p, r) G PA}.

• Op{p : PRMS) —>• {op C OPS}, the permission-to-operation mapping, which gives
the set of operations associated wi th permission p.

• Ob{p : PRMS) —>• {ob G OBS}, the permission-to-object mapping, which gives
the set of objects associated wi th permission p.

• SESSIONS, the set of sessions.

• user_sessions(u : USERS) —> 2 S E S S I O N S , the mapping of user u onto a set of
sessions.

session_roles(s : SESSIONS) —> 2 R O L E S , the mapping of sessions s onto a set of
roles. Formal ly : session_roles(si) C r G ROLES\(session_users(si),r) G UA).

available_session_perms(s : SESSIONS) —> 2 F R M S , the permissions available to
a user in a session, {Jresession_roies(s) assigned_permissions(r).

33

A s was already described, the basic element sets i n core R B A C are USERS, ROLES,
OPS, and OBS. O f these element sets, OPS and OBS are considered predefined by the un­
derlying system for which is the access control deployed. For instance, a banking system
may have predefined transactions (OPS) for savings deposit and others, and predefined
data sets (OBS) such as saving files, addresses, and other necessary data. Adminis t ra tors
create and delete USERS and ROLES, and establish relationships between roles and ex­
isting operations and objects. Required function definitions (taken from R B A C standard
[]), which creates the complete functional specification of this access control mechanism
follows. The notat ion used i n the formal specification of the R B A C requirements is a subset
of Z notat ion [206]. The only major change is the representation of a schema:
Schema — Name(Declaration){Predicate;...; Predicate}.

Definition 3.4.10. A d d user [78]

AddUser(user : NAME){

user i USERS

USERS' = USERS U user

user_sessions' = user_sessions U user —>• 0}

Definition 3.4.11. Delete user [78]

DeleteUser(user : NAME){

user e USERS

[Vs G SESSIONS • s € user_sessions(user) =4> DeleteSession(s)]

UA' = UA\{r: ROLES • user -> r}

assigned_users = {r : ROLES • r —>• (assigned_users(r) \ {user})}

USERS' = USERS \ {user}}

Definition 3.4.12. A d d role [78]

AddRole(role : NAME){

role i ROLES

ROLES' = ROLES U {role}

assigned_users' = assigned_users U {role —>• 0}

assigned permissions' = assigned_permissions U {role —0}}

34

Definition 3.4.13. Delete role [78]

DeleteRole(role : NAME){

role G ROLES

[Vs G SESSIONS • role G session_roles(s) =4> Z?e^ete5essions(s)]

C M ' = 17A \ {u : USERS • u -)• rote}

assigned_users' = assigned_users \ {role —>• assigned_users(role)}

PA' = PA\ {op : OPS, ob : OBS • (op, ob) -)• rote}

assigned_permissions' = assigned_permissions\

{role —>• assigned_permissions(role)}

ROLES' = ROLES \ {role}}

Definition 3.4.14. Ass ign user [78]

AssignUser(user, role : NAME){

user G USERS; role G ROLES; (user -> rote) ^

[7^4' = C M U {user ->• rote}

assigned_users = assigned_users \ {role —>• assigned_users(role)}U

{role —>• (assigned_users(role) U {user})}}

Definition 3.4.15. Deassign user [78]

DeassignU ser (user, role : A^"^4M£^){

user G USERS; role G ROLES; (user ->• rote) G

[Vs : SESSIONS • s G user_sessions(user) A rote G session_roles(s)

-DeteteSessions(s)]

[7^4' = [7^4 \ {user ->• rote}

assigned_users' = assigned_users \ {role —>• assigned_users(role)}U

{role —>• (assigned_users(role) \ {user})}}

Other relevant definitions, such as grant permission, revoke permission, create a session,
delete a session, add an active role, drop an active role, and many others are described in
the R B A C standard by D . F . Ferraiolo et a l . [78].

3.5 Vi r tua l Machine

The term vir tual iza t ion has many meanings, and aspects of vi r tual iza t ion permeate a l l
aspects of computing. V i r t u a l machines are one instance of this trend. Generally, w i th
a v i r tua l machine, guest operating systems and applications run i n an environment that
appears to them to be native hardware, and that behaves toward them as native hardware
would, but that also protects, manages, and l imits them. This section delves into the uses,
features, and implementat ion of v i r tua l machines. V i r t u a l machines can be implemented
i n several ways, and this section describes these options. One option is to add v i r tua l
machine support to the kernel. Addi t ional ly , hardware features provided by the C P U and

35

even by I / O devices can support v i r tua l machine implementation, so it is discussed how
those features are used by the appropriate kernel modules.

The fundamental idea behind a v i r tua l machine is to abstract the hardware of a single
computer (the C P U , memory, disk drives, and network interface cards) into several differ­
ent execution environments, thereby creating the i l lusion that each separate environment
is running on its private computer. In the case of vi r tual izat ion, there is a layer that cre­
ates a v i r tua l system on which operating systems or applications can run. V i r t u a l machine
implementations involve several components. A t the base is the host, the underlying hard­
ware system that runs the v i r tua l machines. The v i r tua l machine manager (V M M) (also
known as a hypervisor) creates and runs v i r tua l machines by providing an interface that is
identical to the host. E a c h guest process is provided wi th a v i r tua l copy of the host (see
figure 3.9). Usually, the guest process is, i n fact, an operating system. A single physical
machine can thus run mult iple operating systems concurrently, each i n its v i r tua l machine.

Note that w i th vir tual izat ion, the definition of „ope ra t ing system" blurs. For instance,
consider V M M software such as V M w a r e E S X [221]. This v i r tual iza t ion software is in ­
stalled on the hardware, run when the hardware boots, and provides services to applica­
tions. The services include t radi t ional ones, such as scheduling and memory management,
along wi th new types, such as migrat ion of applications between systems. Furthermore,
the applications are in fact guest operating systems. Is the V M w a r e E S X V M M an operat­
ing system that, in turn, runs other operating systems? Certainly, it acts as an operating
system. For clarity, however, it is called the component that provides v i r tua l environments
a V M M . The implementat ion of V M M s varies greatly. Options include the following:

processes

processes

processes

kernel kernel kernel

vw vr/.i vv.j

virtual machine
manager

hardware

Figure 3.9: Non-v i r tua l machine (left), V i r t u a l machine (right) [175]

• Hardware-based solutions that provide support for v i r tua l machine creation and man­
agement through firmware. These V M M s , which are commonly found i n mainframe
and large to mid-sized servers, are generally known as type 0 hypervisors. The exam­
ples of these systems are I B M L P A R s [111] and Oracle L D O M s [155].

• Operating-system-like software buil t to provide vir tual izat ion, including V M w a r e
E S X , Joyent Smar tOS [99], and C i t r i x XenServer [220]. These V M M s are known
as type 1 hypervisors.

processes

kernel

programming'
interface

hardware

36

• General-purpose operating systems that provide standard functions as well as V M M
functions, including Microsoft Windows Server [187] wi th H y p e r V [219] and RedHat
L i n u x [177] w i t h the K V M [124] feature. Because such systems have a feature set
similar to type 1 hypervisors, they are also known as type 1.

• Appl ica t ions that run on standard operating systems, but provide V M M features to
guest operating systems. These applications, which include V M w a r e Worksta t ion
[48] and Fusion, Parallels Desktop [162], and Oracle V i r t u a l - B o x [170], are type 2
hypervisors.

The variety of v i r tual iza t ion techniques i n use today is a testament to the breadth,
depth, and importance of v i r tual iza t ion i n modern computing. Vi r tua l i za t ion is invaluable
for data-center operations, efficient applicat ion development, and software testing, among
many other uses.

Features of Vir tual Machine

Several advantages make vi r tual iza t ion attractive. Most of them are fundamentally related
to the abi l i ty to share the same hardware yet run several different execution environments
(that is, different operating systems) concurrently. One crucial advantage of v i r tual iza t ion
is that the host system is protected from the v i r tua l machines, just as the v i r tua l machines
are protected from each other. A virus inside a guest operating system might damage that
operating system but is unlikely to affect the host or the other guests. Because each v i r tua l
machine is almost completely isolated from a l l other v i r tua l machines, there are almost no
protection problems. A potential disadvantage of isolation is that it can prevent sharing
of resources. Two approaches to providing sharing have been implemented. Fi rs t , it is
possible to share a file-system volume and thus to share files. Second, it is possible to
define a network of v i r tua l machines, each of which can send information over the v i r tua l
communications network. The network is modeled after physical communicat ion networks
but is implemented i n software. O f course, the V M M is free to allow any number of
its guests to use physical resources, such as a physical network connection (with sharing
provided by the V M M) , i n which case the allowed guests could communicate w i th each
other v ia the physical network.

One feature common to most v i r tual iza t ion implementations is the abi l i ty to freeze, or
suspend, a running v i r tua l machine. M a n y operating systems provide that basic feature for
processes, but V M M s go one step further and allow copies and snapshots to be made of
the guest. The copy can be used to create a new V M or to move a V M from one machine
to another w i th its current state intact. The guest can then resume where it was, as i f on
its original machine, creating a clone. The snapshot records a point in time, and the guest
can be reset to that point i f necessary (for example, i f a change was made but is no longer
wanted). Often, V M M s allow many snapshots to be taken. For instance, snapshots might
record a guest's state every day for a month, making restoration to any of those snapshot
states possible. These abilities are used to good advantage i n v i r tua l environments.

A v i r tua l machine system is a perfect vehicle for operating-system research and devel­
opment. Typical ly , changing an operating system is a difficult task. Operat ing systems are
large and complex programs, and a change i n one part may cause obscure bugs to appear
in some other part. The power of the operating system makes changing it par t icular ly dan­
gerous. Because the operating system executes in kernel mode, a wrong change in a pointer

37

could cause an error that would destroy the entire file system. Thus, it is necessary to test
al l changes to the operating system carefully.

Furthermore, the operating system runs on and controls the entire machine, meaning
that the system must be stopped and taken out of use while changes are made and tested.
This period is commonly called system-development t ime. Since it makes the system un­
available to users, system-development t ime on shared systems is often scheduled late at
night or on weekends, when system load is low.

A virtual-machine system can eliminate much of this latter problem. System program­
mers are given their v i r tua l machine, and system development is done on the v i r tua l ma­
chine instead of on a physical machine. N o r m a l system operation is disrupted only when
a completed and tested change is ready to be put into production.

Another advantage of v i r tua l machines for developers is that mult iple operating systems
can run concurrently on the developer's workstation. Th is vi r tual ized workstat ion allows for
rapid por t ing and testing of programs in varying environments. Besides, mult iple versions
of a program can run, each in its isolated operating system, wi th in one system. Similarly,
quality- assurance engineers can test their applications i n mult iple environments without
buying, be powering, and mainta in a computer for each environment.

A significant advantage of v i r tua l machines i n product ion data-center use is system
consolidation, which involves taking two or more separate systems and running them in
v i r tua l machines on one system. Such physical- to-vir tual conversions result in resource
opt imizat ion since many l ight ly used systems can be combined to create one more heavily
used a system.

Consider, too, that management tools that are part of the V M M allow system admin­
istrators to manage many more systems than they otherwise could. A v i r tua l environment
might include 100 physical servers, each running 20 v i r tua l servers. Wi thou t vir tual iza-
t ion, 2,000 servers would require several system administrators. W i t h v i r tual iza t ion and its
tools, the same work can be managed by one or two administrators. One of the tools that
make this possible is templating, i n which one standard v i r tua l machine image, including
an installed and configured guest operating system and applications, is saved and used as
a source for mult iple running V M s . Other features include managing the patching of a l l
guests, backing up and restoring the guests, and monitor ing their resource use.

Vi r tua l i za t ion can improve not only resource ut i l iza t ion but also resource management.
Some V M M s include a live migrat ion feature that moves a running guest from one physical
server to another without interrupting its operation or active network connections. If
a server is overloaded, live migrat ion can thus free resources on the source host while not
disrupting the guest. Similarly, when host hardware must be repaired or upgraded, guests
can be migrated to other servers, the evacuated host can be maintained, and then the guests
can be migrated back. This operation occurs without downtime and interruption to users.

T h i n k about the possible effects of v i r tual iza t ion on how applications are deployed. If
a system can quickly add, remove, and move a v i r tua l machine, then why instal l applica­
tions on that system directly? Instead, the applicat ion could be pre-installed on a tuned
and customized operating system i n a v i r tua l machine. This method would offer several
benefits for applicat ion developers. App l i ca t i on management would become more com­
fortable, less tuning would be required, and technical support of the applicat ion would be
more straightforward. System administrators would find the environment easier to manage
as well . Installation would be simple, and redeploying the applicat ion to another system
would be much more comfortable than the usual steps of uninstal l ing and re-installing. For
widespread adoption of this methodology to occur, though, the format of v i r tua l machines

38

must be standardized so that any v i r tua l machine w i l l run on any vi r tual iza t ion platform.
The „ O p e n V i r t u a l Machine Format; is an attempt to provide such standardization, and it
could succeed in unifying v i r tua l machine formats.

Vi r tua l i za t ion has la id the foundation for many other advances in computer facility
implementation, management, and monitoring. C l o u d computing, for example, is made
possible by vi r tual iza t ion i n which resources such as C P U , memory, and I / O are provided
as services to customers using Internet technologies. B y using A P I s , a program can tel l
a cloud computing facility to create thousands of V M s , a l l running a specific guest operating
system and applicat ion, which others can access v i a the Internet. M a n y multiuser games,
photo-sharing sites, and other web services use this functionality.

In the area of desktop computing, v i r tual iza t ion is enabling desktop and laptop com­
puter users to connect remotely to v i r tua l machines located i n remote data centers and
access their applications as if they were local . Th is practice can increase security because
no data are stored on local disks at the user's site. The cost of the user's computing resource
may also decrease. The user must have networking, C P U , and some memory, but a l l that
these system components need to do is display an image of the guest as its runs remotely.
Thus, they need not be expensive, high-performance components. Other uses of v i r tual ­
izat ion are sure to follow as it becomes more prevalent and hardware support continues to
improve.

3.6 Summary

This chapter discussed the protection on operating system level and the theory about
the protection mechanisms such ctS ctCCCSS control principles, models, and vir tual izat ion.
The most of these protection mechanisms were presented formally. These mechanisms are
the cornerstone of the security through a l l platforms. The decision which of these principles
are used is the provider of the platform. These principles are heavily used and modified for
the specific purposes on mobile devices.

Operat ing systems designed for mobile devices required a different approach compared
to operating systems designed for desktop computers. Moreover, implementat ion of selected
mechanism can differ from one vendor of an operating system to another. Implementation
solution should be confirmed by the verification process w i t h the model of required behavior
or i n this case the model definition of for example access control. The main difference is
the abi l i ty to save as much power as possible, which has an impact on almost every aspect
of the operating system. Algor i thms are redesigned to consume less memory as possible,
and the user experience persists.

The last part of this chapter discusses the v i r tua l machine and its features. The v i r tua l
machine is a cr i t ica l part of the operating system of a mobile world where it is used.
The next chapter discusses the mechanism presented i n this chapter applied i n the world
of mobile operating systems on a selected mobile platform.

39

Chapter 4

Mobile Platform Architecture

This chapter consists of the description of open source available mobile platform archi­
tecture. It is focused on open source solution because implementat ion details are part of
already presented principles. Accord ing to the a i m of the thesis, the A n d r o i d platform has
been chosen as the reference platform. The main reasons for this choice are open source,
large community, possibil i ty to modify the system and test it i n the s imulat ion environ­
ment or the real devices, and other reasons related to law and trademarks. Every th ing that
the platform offers is free of charge.

The mobile platform architecture follows up the previous chapter, which was about
protection of operating systems. There is more detailed information about the mentioned
concepts, and the details are targeted to the A n d r o i d platform, which is currently the most
popular and widespread operating system on the world [229].

A n d r o i d is an applicat ion execution platform for mobile devices comprised out of an op­
erating system, core libraries, development framework and necessary applications. The A n ­
droid architecture stack contains the whole platform levels which correspond to security
levels. The overall architecture is i l lustred i n figure 4.1.

A n d r o i d operating system is buil t on top of a L i n u x kernel. The L i n u x kernel is respon­
sible for executing core system services such as memory access, process management, access
to the physical device through drivers, network management, and security. A t o p the L i n u x
kernel is the v i r tua l machine called Da lv ik v i r tua l machine [168, 70] (or the successor of
Da lv ik called A n d r o i d runtime (A R T) v i r tua l machine [56]) along wi th necessary system
libraries. The D a l v i k / A R T v i r tua l machine is a register-based execution engine used to run
A n d r o i d applications.

A n d r o i d is comprised of several mechanisms playing a role in the security checking and
enforcement. L ike any modern operating system, many of these tools interact w i th each
other, exchanging information about subjects (applications/users), objects (different appli­
cations, files, devices), and operations to be performed (read, write, and delete). Frequently,
enforcement occurs without incident, but occasionally, things slip through the cracks, afford­
ing an opportuni ty for abuse. Th is chapter discusses the security design and architecture
of chosen A n d r o i d platform.

4.1 V i r tua l Machine

To achieve run-time support a diverse set of mobile devices and applications have to be
sandboxed for security, performance, and reliability, a v i r tua l machine is a distinct tech-

40

App
API '

Binder

Stock Android Apps
Launched Phone AlarmClock
Email Settings Camera
Gallery Wims DeskClock
Calendar Browser Bluetooth
Calculator Contacts

Your Apps/Market Apps

android.

Power Manager
Activity Manager
Package Manager
Battery Manager

System Services
Mount Service
Notification Manager
Location Manager
Surface Flinger

Status Bar Manager
Sensor Service
Window Manager

java. *
(Apache Harmony)

Dalvik/Android Runtime/Zygcte

JNI
Libraries

Bionic/OpenGL/WebKitf...
Hardware

Abstraction Layer Native Daemons I nit/Tool box

Linux Kernel
Wakelocks/Lowmem/Binder/Ashmem/Logger/RAM Console/..

Figure 4.1: General A n d r o i d system architecture [(:]

nology to be used. The v i r tua l machine does not necessarily satisfy the requirements w i th
the l imi ted processor power and also l imi ted memory, that characterize most mobile de­
vices. V i r t u a l machine developers have favored stack-based architecture over register-based
architectures. It is mostly due to the s implic i ty of implementation, ease of wr i t ing a com­
piler back-end. V i r t u a l machines are originally designed to host a single language and
density. Executable applications are invariably smaller than applications for register-based
architectures. The s impl ic i ty and code density comes at the cost of performance.

Given that the v i r tua l machine is running on devices wi th constrained processing power,
the choice of a register-based architecture seems appropriate. The v i r tua l machine on
A n d r o i d platform relies on the L i n u x kernel for underlying functionality such as threading
and low-level memory management. E a c h applicat ion runs i n its process w i th its instance
of the v i r tua l machine. Implementation has been wri t ten so that a device can run multiple
instances of v i r tua l machines efficiently The overall architecture of the applicat ion package
which has the compressed behavior i n the form of dex file, which is s imilar to a collection of
compressed class data (compiled Java source code). Th is dex file is the input for the v i r tua l
machine.

A R T is an applicat ion run-time environment provides the execution of applications
on the A n d r o i d operating system. It is the follower of the previous version of the vir­
tua l machine for this platform - Da lv ik . Replacing Da lv ik performs the translat ion of
the application's byte-code into native instructions that are later executed by the run-time
environment.

The history of evolution starts w i t h the trace-based just-in-time compilat ion i n Da lv ik ,
opt imizing the execution of applications by continually profiling forms each t ime they are
processed and dynamical ly compil ing frequently executed short segments of their byte-

41

code into native machine code. W h i l e D a l v i k interprets the rest of the application's byte-
code, native execution of those short byte-code parts, called traces, provides significant
performance improvements.

In contrast, the A R T introduces the use of ahead-of-time compilat ion by compil ing
entire applications into native machine code upon their instal lat ion. B y el iminat ing inter­
pretation of trace-based just-in-time compilat ion, it improves the execution efficiency and
reduces the power consumption, which results in enhanced battery on mobile devices. A t
the same time, A R T brought faster execution of applications, improved memory al location
and garbage collection mechanisms, and more accurate profiling of applications. To keep
backward compatibil i ty, A R T uses the same input byte-code format as Da lv ik , supplied
through dex files as part of the instal lat ion package.

A t the last version (currently 8.0) of the A n d r o i d operating system, the just-in-time
compiler introduced wi th improvements related to code profiling into A R T , which contin­
uously improve the performance of A n d r o i d applications as they run.

4.2 Sandbox

The model based on applicat ion isolation i n a sandbox environment. It means that each
application executes i n its environment and is unable to influence or modify execution of any
other applicat ion. App l i ca t ion sandboxing is performed at the L i n u x kernel level. To achieve
isolation, A n d r o i d utilizes standard L i n u x access control mechanisms. Each applicat ion
instal lat ion package apk is dur ing instal lat ion assigned wi th a unique user identification
number (user ID) . This approach allows the platform to enforce standard file access rights
as it is known from L i n u x based operating systems. Since each file is associated w i t h its
owner's user ID , applications cannot access files that belong to other applications without
being granted appropriate permissions. Each file can be assigned read, write and execute
access permission. Since the root /adminis t ra tor user owns the system files, applications
are not able to act maliciously by accessing or modifying cr i t ica l system components. O n
the other hand, to achieve memory isolation, every applicat ion is running i n its process
(see figure 4.2), i.e., each applicat ion has its memory space assigned. A d d i t i o n a l security is
achieved by u t i l iz ing memory management unit (M M U) [88], a hardware component used
to translate between v i r tua l and physical address space. Th is way an applicat ion can not
compromise system security by running native code i n privileged mode, i.e., the applicat ion
is unable to modify the memory segment assigned to the operating system.

The presented isolation model provides a secure environment for applicat ion execution.
However, restrictions enforced by the model also reduce the overall applicat ion functionality.
For example, useful features could be achieved by accessing cr i t ica l systems such as access
to network services, camera or locat ion services. Furthermore, exchange of a data and
functionalities between applications enhanced the capabilities of the development frame­
work. The shared user ID and permissions are two mechanisms, introduces by the A n d r o i d
platform, which can be used to lift the restrictions enforced by the isolation model.

The mechanism must provide sufficient flexibil i ty to the appl icat ion developers, but
also preserve the overall system security. Two applications can share data and applicat ion
components, i.e., activities, content providers, services and broadcast receivers. For exam­
ple, an applicat ion can run an act iv i ty belonging to other appl icat ion or access its files.
The shared user ID allows applications to share data and applicat ion components. To be
assigned wi th a shared user ID the two applications must be signed wi th the same digi ta l
certificate. In effect, the developers can bypass the isolation model restrictions by signing

42

Application sandbox: Lunix user ID: 12345

Application
Linux user ID: 12345

Resources
Linux user ID: 12345

Files SMS/MMS Database

Sensors

Application sandbox: Lunix user ID: 54321

Application
Linux user ID: 54321

Resources
Linux user ID: 54321

Files SMS/MMS Database

Sensors

Figure 4.2: Two A n d r o i d applications, each on its own sandbox

applications w i th the corresponding private key. Th is approach is not recommended to
use usually, but i n specific cases only. However, since there is not a central certification
authority, the developers are responsible for keeping their private keys secure. B y sharing
the user ID , applications gain the abi l i ty to run i n the same process. The recommended
alternative to the shared user I D approach is to use A n d r o i d permissions. In addi t ion to
sharing data and components, the permissions are used to gain access to cr i t ica l system
modules. Each applicat ion can request and define a set of permissions. It means that
each applicat ion can expose a subset of its functionality to other applications if they have
been granted the corresponding permissions. Besides, each applicat ion can request a set of
permissions to access other applications or system libraries.

Permissions are granted by the operating system during instal lat ion and can be changed
afterward manually. There are four types of permissions: normal , dangerous, signature and
signature-or-system. Standard permission give access to isolated application-level func­
tionalities. These functionalities have l i t t le impact on the system or user security and
are therefore granted without an explicit user's approval. The following section describes
permissions in more detail .

4.3 Permissions

However, the user can review which permissions are requested before appl icat ion installa­
t ion, he must agree wi th a l l requested permission, or the instal lat ion is aborted. A s was
discussed in the previous section there are four groups or types of permissions. A n example
of a normal level permission is access to the phone's v ibra t ion hardware unit . Since it is
an isolated functionality, i.e., user's privacy or other applications cannot be compromised,

43

it is not considered an impact on the system i n the area of security. O n the other hand,
a dangerous level permission provides access to private data and cr i t ica l system function­
ality. For example, by obtaining a dangerous permission, an applicat ion can use telephony
services, network access, locat ion information or gain access to other private data. Since
a dangerous permission level presents a high-security risk, the user is prompted to confirm
set of requested permissions before instal lat ion of an applicat ion. A n d r o i d has the all-or-
nothing architecture for permission granting in the meaning of instal lat ion of applications.
There is a possibil i ty to change permissions in the settings after the successful instal lat ion
process.

Appl ica t ions can access only the resources for which they have permission. Further, it
is observed that most of the applications ask for more permissions then they needed. They
can misuse it for malicious activities and information leakage. Signature permission level
can be granted to the applicat ion signed wi th the same certificate as appl icat ion declaring
the permission. The signature permission level is in effect a refinement of the shared user
ID approach and provides more control i n sharing applicat ion data and components. O n
the other hand, signature-or-system permission level extends the signature permission level
by granting access to the applications installed i n the A n d r o i d system image [93]. However,
caution is required since both the signature and signature-or-system permissions w i l l allow
access rights without asking for the user's explicit approval.

Permission Model

This section formally specifies the A n d r o i d permission scheme by identifying the system
elements and describing their relationships. The A n d r o i d permission scheme is represented
v ia entity-relationship model which it has been used to model R B A C . The formal model is
taken from Wook Shin et a l . who explained the whole permission model and its proof in
the paper [202]. The three major entities of the A n d r o i d permission scheme are as follows:

• APPS, the set of applications

• COM PS, the set of applicat ion components

• PERMS, the set of permissions

Component-based construction of an applicat ion and declared, used, and enforce per­
missions can be represented in the relationships among the entities.

• COMPOSE C APPSxCOMPS, an 1:N relationship that expresses the composit ion
of applications.

• composes : (cmp : CO MPS) —>• APPS, the mapping of component cmp onto its
parent applicat ion.

• DECLARE C APPS x PERMS, an 1:N relationship that maps an applicat ion to
a set of permissions declared by the applicat ion.

• declaredBy : (p : PERMS) —>• APPS, the mapping of permission p to an applicat ion
that declares the permission.

• USE C APPS x PERMS, a N : M relationship that depicts permissions used by
applications.

44

• uses : (app : APPS) —> 2 P E R M S , the mapping of appl icat ion app to a set of permis­
sions that app uses.

• AENFORCE C APPS x PERMS, a N : M relationship that illustrates the permis­
sions that are enforced by applications.

• aEnforces : (app : APP) -> 2 P E R M S , the mapping of applicat ion app to a set of
permissions that app enforces.

• CENFORCE C COMPS x PERMS, a N : M relationship that illustrates the per­
missions that are enforced by applicat ion components.

• cEnforces : (cmp : COMPS) —> 2 P E R M S , the mapping of component cmp to a set
of permissions that cmp enforces.

Cardinalities Mandatory One Mandatory Many Optional Many I E n t i t " T W e I R e l a , i o n

1
- U S E -

li sed By

composes
COMPS ^ H -COMPOSE - H - APPS

composedOf

declares
-H— DECLARE-Q< PERMS

declaredBy •

c Enforces

a Enforces

-CENFORCE-

- A E N F O R C E -
aEnforcedBy

cEnforcedBy

Figure 4.3: Enti t ies and relations in the A n d r o i d permission scheme [202]

Figure 4.3 shows the entities and the relations i n the form of an Ent i ty-Rela t ionship
diagram. The types and meanings of those figures not listed can be easily inferred. The fol­
lowing is a more detailed explanation of the cardinal i ty constraints i n the diagram. A n ap­
plicat ion is composed of one or more components, and the components are introduced into
a system as the applicat ion is installed on the system. Therefore, in the COMPOSE
relation, each element composes one applicat ion, and the applicat ion is composedOf one
or more components. A n applicat ion declares some permissions or none. Declared per­
missions by an applicat ion are introduced into a system as the applicat ion is installed.
Therefore, i n DECLARE, an applicat ion optionally declares mult iple permissions, while
each permission has to be declaredBy an applicat ion. The relation USE, AENFORCE,
and CENFORCE are optional N - t o - M relationships. A n appl icat ion can use or enforce
some permissions. A component can enforce some permissions, as well . Conversely, per­
mission can be used or executed by an application, or enforced by an element. None of
the use or enforcement relations is mandatory.

The execution of a privileged operation on a protected resource object may require
a permit . Therefore, the notion of permission is related to both operations and objects.
The relations determine what k ind of permission is required and when the permission
needs to be checked. Figure 4.4 depicts the relations between permissions, operations,
and objects. Note that applications and components correspond to objects i n the figure,
then the specification of the interactions between them follows. The addi t ional entity and
relation need to be added:

45

AENF0RCE^-O< APRS -H—COMPOSE—1-<

PERMS f X > -CENFORCE- J
EXWITH CX OPS

execütecWth

Figure 4.4: A n d r o i d permissions [202]

• OPS, the set of operations.

• EXWITH C OPS x PERMS, a N : M relationship that describes the permissions
enforced on operations.

• executeWith : (op : OPS)
permissions.

-.PERMS the mapping of operation op to a set of

The definition of a permission includes the relation wi th a set of operations and the re­
lat ion wi th a set of objects. However AENFORCE and CENFORCE can be collected
from the manifest information, the former, EXWITH, can be obtained from concrete im­
plementation, source codes of the A n d r o i d framework and applications. For instance, when
an act ivi ty component sets up its enforce-permission i n the manifest file, it does not mean
the permission is always checked whichever action is performed on the activity. W h e n it
gets started, the permission checking routines embedded in relevant A P I calls are triggered.
Andro id ' s documentation guides the execution of which operation leads to the permission
test. The relationship wi th operations can also be made when an applicat ion expl ici t ly
invokes check permission functions in its code.

2
P E R M S

I Nt ORCI
enforces

OBJS :=
COMPS

-EXWITH-
axecutedWith

OPS

Figure 4.5: A n d r o i d permissions (refined) [202]

The relations in figure 4.4 can be refined and redrawn in terms of components, as
shown in figure 4.5. The new optional N : M relation, ENFORCE reflects CENFORCE
when a component enforces permissions, or AEN FORCE when a component does not
enforce permissions by itself. The mapping enforce : (cmp : COMPS) —> 2 P E R M S maps
a component cmp to the set of permissions obtained by expression 4.1.

{p : PERMS\ (4.1)

(cEn forces (cmp) = 0 p G cEnforces(cmp))V

(cEn forces (cmp) / aEnforces(composes(cmp))}

46

The interaction between components is composed of operations that one element per­
forms on the other. W h e n the user calls one performer scmp, the other ocmp, and the sort
of operation op, it can then denote the interactive process as a tuple of (scmp, ocmp, op).
Some of the actions are protected by permissions. Let the procedure that guards the consent
protected operations as checkAccess which has the type of checkAccess : (scmp, ocmp :
COM PS, op : OPS) ->• BOOL.

The checkAccess tests the legit imacy of the interactive operation by calculat ing if scmp
owns a l l of the permissions that ocmp enforces regarding op. If so, it returns TRUE,
otherwise FALSE.

The set of permissions that ocmp enforces on op can be calculated by expression 4.2.

{p : PERMS\p G en forces (ocmp) Ap G executedWith(op)} (4-2)

The set of permissions that scmp uses can be obtained by using composesQ and usesQ
functions.

Vp : PERMS,p G en forces (ocmp) Ap G executedWith(op) (4-3)

=4> p G uses(composes(scmp))

Final ly , the definition of checkAccess() which returns TRUE only if the condit ion
expression 4.3 is satisfied.

4.4 Architecture Levels

According to A n d r o i d architecture presented in figure 4.1 which is split into several levels,
there is a s imilar dis t r ibut ion of security levels. The following section describes each of this
security level from bot tom to top. The core security principle of A n d r o i d platform is that
an adversary applicat ion should not harm the operating system resources, the user, and
other applications. To procure the execution of this principle, the platform being a layered
operating system exploits the provided security mechanisms of a l l the levels. Focusing on
security, A n d r o i d combines two level enforcement approaches: at the L i n u x kernel level and
the applicat ion framework level (see figure 4.6).

Application 1 Application 2
A A A

Application layer

IPC
Middleware layer

File-system

Socket - ^ D A c T ^) -
Linux kernel layer

Figure 4.6: Levels of A n d r o i d security enforcement [71]

47

The L i n u x kernel enforces the isolation of applications and operating system components
exploit ing standard L i n u x facilities [165] (process separation and D A C [139] over network
socket and file system). This isolation is imposed by assigning each applicat ion a separate
user ID and group identifier (GID) [198], as was discussed in section 4.2. Such architectural
decision enforces running each applicat ion i n a separate process. Thus, due to the process
isolation implementat ion in L i n u x , by default applications cannot interfere each other and
have l imi ted access to the facilities provided by the operating system.

Therefore, applicat ion sandbox ensures that an applicat ion can not drain the operat­
ing system resources and can not interact w i th other applications [230]. The enforcement
mechanism provided at the kernel layer efficiently sandboxes a request from other applica­
tions and the system component. A t the same time, an active communicat ing protocol is
required to allow developers to reuse applicat ion components and interact w i th the operat­
ing system units. T h i s contract is called inter-process communicat ion (IPC) [i] because it
facilitates the interactions between different processes. In the case of A n d r o i d , this proto­
col is implemented as the middleware between two architecture levels (see figure 4.6) w i th
a part icular driver released at the kernel level. The security on this level is provided by
the I P C reference monitor []. The reference monitor mediates a l l communicat ion between
processes and controls how the applications access the components of the system and other
applications. In A n d r o i d , I P C reference monitor follows M A C principle [144].

Each applicat ion by default is run i n a low-privileged applicat ion sandboxes. Thus,
an applicat ion has access to a l imi ted set of system capabilities. The operating system
controls the access of applications to the system resources that may adversely impact user
experience. Th is control is implemented in different forms, some of them are considered
in details in the following parts of this section. There is also a subset of protected system
features (e.g., camera, telephony or location functionality), the access to which should be
provided to third-party applications. However, this access should be provided i n a controlled
manner. In case of A n d r o i d , such control is realized using permissions. E a c h sensitive
interface, which allows access to the protected system resources, is assigned wi th permission
- a unique security label . Moreover, preserved features may also include components of other
applications. To make the use of protected characteristics, the developer of an applicat ion
must request the corresponding permissions in the file AndroidManifest.xml which is an
inseparable part of each applicat ion.

Dur ing the instal lat ion process of an applicat ion, the operating system parses this file
and presents the user a list of the permissions declared i n this file. The instal lat ion of an
application occurs according to all-or-nothing principle, meaning that the appl icat ion is
installed if a l l permissions are accepted. Otherwise, the applicat ion w i l l no be installed at
a l l . The permissions are granted just at the instal lat ion time, and there is a choice to allow
or deny selected permissions i n the settings manually. A s an example of the permission
format, consider an applicat ion that needs to send sms messages.

In this case, the AndroidManifest.xml file has to contain at least the tag depicted by
the l is t ing 4.1:

< u s e s - p e r m i s s i o n android:name="android.permission.SEND_SMS" />
Lis t ing 4.1: S M S permission i n AndroidManifest.xml

It is required to put the label w i th the specific meaning of the permission into tag
uses-permission. A n attempt of an applicat ion to use a feature, which permission has not

18

been declared in the AndroidManifest.xml file w i l l typical ly result i n a t rowing of a security
exception. Fol lowing sections are aimed into an introduct ion to the levels of architecture
presented in figure 4.6.

Linux Kernel

In A n d r o i d platform, L i n u x kernel [1!] is responsible for process management, memory
control, communicat ion subsystem, file-system administrat ion etc. W h i l e operating system
mostly relies on the original version ("vanilla,,) of L i n u x kernel functionality, several cus­
tom changes, which are required for the system operation, have been proposed to this level.
A m o n g them binder [195] - a driver, which provides the support for custom remote proce­
dure ca l l or inter-process communicat ion mechanism on A n d r o i d , ashmem - a replacement
of the standard L i n u x shared memory functionality, wakelocks - a mechanism that prevents
the system from going to sleep are the most notable ones [234].

A l though these changes proved to be very useful i n case of mobile operating systems,
they are s t i l l out of the ma in branch of the official L i n u x Kerne l .

One of the most widely known open-source projects, L i n u x has proved itself as a secure,
trusted and stable piece of software being researched, attacked and patched by thousands
of people a l l over the world . Not surprisingly, L i n u x kernel is the basis of the A n d r o i d
operating system. A n d r o i d relies on L i n u x not only for process management, memory
control, communicat ion subsystem, file-system administrat ion. It is also one of the most
cr i t ical components of the A n d r o i d security architecture. L i n u x kernel is responsible for
provisioning applicat ion sandboxing and enforcement of some permission.

Appl icat ion Sandbox

Let consider the process of an applicat ion instal lat ion in details. Appl ica t ions are dis­
t r ibuted i n the form of apk package files. A package consists of a v i r tua l machine executable
resources, native libraries and a manifest file, and is signed by a developer signature. Three
central mediators may instal l a package on a device i n the stock operating system:

• Google P l a y

• Package installer

• A n d r o i d debug brigde (A D B) instal l

Google play is a unique applicat ion that provides the user w i th a capabil i ty to look
for a use uploaded to the applicat ion market by third-party developers along wi th a pos­
sibi l i ty to instal l i t . A l though it is also a third-party application, because of being signed
wi th the same signature as the operating system, it has access to protected components of
A n d r o i d , which other third-party applications lack for. In case of the user installs appli­
cations from other sources he usually impl ic i t ly uses Package installer applicat ion. Th is
system applicat ion provides an interface that is used to start a package instal lat ion process.
The last named i tem adb install is the uti l i ty, which is provided by operating system, it is
mainly used by third-party applicat ion developers. W h i l e the former two mediators require
the user to agree wi th the list of permissions during the instal lat ion process, the latter
installs an applicat ion quietly. Tha t is why it is mainly used i n developer tools a iming at
instal l ing an applicat ion on a device for testing. This process is shown i n the upper part of
figure 4.7.

49

appl.apk

Package Installer

User permission
checking

Virtual machine

Application 1

uses-permissions

app2.apk

Google Play

User permission
checking

Virtual machine

Application 2

uses-permissions

app3.apk

ADB

Virtual machine

Application 3

uses-permissions

JNI

Middleware (Binder IPC)

user: applications
home: /data/data/cz.aron.lukas

user: applications
home: /data/data/com.ex.lukas

user: applications
home: /data/data/com.ex.aron

Linux kernel

Figure 4.7: A n d r o i d Security Archi tecture - App l i ca t i on instal lat ion possibilities ['

Figure 4.7 shows a more detailed overview of the A n d r o i d security architecture w i t h
the a im on applicat ion instal lat ion possibilities. The process of provisioning applicat ion
sandbox at the L i n u x kernel level is the following.

Dur ing the instal lat ion process, each package is assigned a unique user identifier (UID)
and a group identifier (GID) [] that are not changed during applicat ion life on a mobile
device. Thus, i n A n d r o i d , each applicat ion has a corresponding L i n u x user [117].

Username follows the format app_x, and U I D of that user is equal to the value Pro-
cess.FIRST_APPLICATION_UID + x, where Process.FIRST_APPLICATION_UID is
the constant corresponds to constant w i th value 10 000.

For instance, in figure 4.7 appl.apk package receives dur ing the instal lat ion process user-
name wi th value appl ica t ion_1 , and U I D equal to 10 001. In L i n u x , a l l files in memory are
subjects for discretionary access control (D A C) . Access permissions are set by a developer
of applicat ion or by an owner of a file for three types of users: the owner of the file, the users
who are i n the same group wi th the owner and a l l other users. Th is approach is the same
as in the L i n u x based operating systems. For each type of users, a tuple of reading, write
and execute permissions are assigned. Format is usually i l lustrated as (•r-w-x) tuple.

Hence, so as each applicat ion has its U I D and G I D , L i n u x kernel enforces the applicat ion
execution wi th in its separate address space. Besides that, the applicat ion unique U I D s and
G I D s are used by L i n u x kernel to enforce a clean separation of device resources such as
memory, and C P U between different applications. E a c h applicat ion during the instal lat ion
process also receives its home directory. Default pa th is usually set to the following target
/data/data/package_name, where the package_name is the name of an A n d r o i d package,
for example cz.aron..lukas.

50

Concerning A n d r o i d , this folder is considered as internal storage, in which an applicat ion
keeps its private data. L i n u x permissions assigned to this directory allows only the "owner,,
applicat ion to manipulate the files i n this directory, including the creation of new files. It
should be mentioned there are some exceptions. The applications, which are signed wi th
the same certificate, can share data between each other, may have the same U I D or can
even run i n the same process. These architectural decisions set up effective and efficient
application sandbox on top of L i n u x kernel level. This type of sandbox is base and straight­
forward on the verified discretionary access control model . Lucki ly , so as the sandbox is
enforced on the L i n u x kernel level, native code and operating system applications are also
subjects to there constraints described i n this chapter.

Permission Enforcement

It is possible to restrict the access to some system capabilities by assigning the L i n u x user
and group owners to the components that implement this functionality. Th is type of re­
strictions can be applied to system resources such as files, drivers, and sockets. A n d r o i d
uses file-system permissions and A n d r o i d specific kernel patches known as Paranoid net­
working [71] to restrict the access to system features such as external storage, camera, and
network sockets. A p p l y i n g file-system permissions to files and device drivers it is possible to
l imi t processes i n accessing some functionality of a device. For instance, such technique is
applied to restrict access to applications to a device camera. The permissions to /dev/cam
device driver is set to 0660, w i th root owner and camera owner group. It means that only
processes run as root or which are included in camera group, can read from and write to this
device driver. Thus, only applications which are included into camera group can interact
w i th the camera. The mappings between permission labels and corresponding groups are
defined in the file frameworks/base/'data/'etc/platform.xml. The excerpt of the mapping file
platform.xml is presented i n the following l is t ing 4.2.

< p e r m i s s i o n s >

< p e r m i s s i o n name="android.permission.INTERNET" >
<group g i d = " i n e t " />

</permission>

< p e r m i s s i o n name="android.permission.CAMERA" >
<group gid="camera" />

</permission>

< p e r m i s s i o n name="android.permission.READ_L0GS" >
<group g i d = " l o g " />

</permission>

< / p e r m i s s i o n s >
Lis t ing 4.2: The mapping between permission labels and L i n u x groups

Dur ing the instal lat ion process are set the groups of the installed applicat ion. If an
application request access to a camera feature and the user approve this request, the ap­
plicat ion is assigned to a camera L i n u x group G I D (see the l is t ing 4.2). Therefore, this

51

application receives a possibil i ty to read information from /dev/cam device driver. There
are several points i n A n d r o i d where file-system permissions to files, drivers, and U n i x sock­
ets are set in : init process, init.rc configuration file, the ueventd.rc configuration file and
system R O M file-system configuration file.

In t radi t ional L i n u x based distributions, a l l processes are allowed to init iate a network
connection. A t the same time, for mobile operating systems the access to networking ca­
pabilities has to be controlled. In order to implement this control, proper kernel patches
have been added that l imi t the access to network facilities only to the processes that be­
long to specific L i n u x groups or have specific L i n u x capabilities. These Android-specific
patches of the L i n u x kernel have obtained the Paranoid name networking. For instance,
for AF_INET socket address family, which is responsible for network communicat ion, this
check is performed in kernel/net/ipv4/af_inet. c file. The following l is t ing 4.3 shows the part
of the af_inet.c file, which is related to checking the access rights by the assignment to
the specific L i n u x group. The following lines describe the function which calls the checking
function to ensure the legitimate access to the requested feature.

i f d e f C0NFIG_ANDROID_PARANOID_NETWORK
i n c l u d e < l i n u x / a n d r o i d _ a i d . h >

s t a t i c i n l i n e i n t c u r r e n t _ h a s _ n e t w o r k (v o i d)
{

r e t u r n i n _ e g r o u p _ p (A I D _ I N E T) II capable(CAP_NET_RAW);
}
#else

s t a t i c i n l i n e i n t c u r r e n t _ h a s _ n e t w o r k (v o i d)
{

r e t u r n 1;
}
#endif

/*
* Create an inet socket.
*/

s t a t i c i n t i n e t _ c r e a t e (s t r u c t net *net , s t r u c t s o c k e t * s o c k ,
i n t p r o t o c o l , i n t kern)

{

i f (! c u r r e n t _ h a s _ n e t w o r k ())
r e t u r n -EACCES;

}

Lis t ing 4.3: Paranoid networking patch (af_inet.c file)

52

The mapping between the L i n u x groups and permission labels fro Paranoid networking
are also set i n the platform.xml file, see l is t ing 4.2. Similar patches are also applied to restrict
the access to IPv6 protocol [63] and bluetooth [38]. The constants used i n these checks are
hard-coded i n the kernel and specified i n the kernel/include/Linux/android_aid.h header
file, expressed in l is t ing 4.4. Thus, at the L i n u x kernel level, the A n d r o i d permissions are
enforced by checking if an applicat ion is included into a special predefined group. Members
of this group have access to the protected functionality. Dur ing the instal lat ion process of
an applicat ion, when a user agreed a l l requested permissions, the appl icat ion is included in
the corresponding L i n u x groups and, hence, receives access to the protected functionality.

/* AIDs that the kernel treats d i f f e r e n t l y */
/* was NE T_BT_A DM IN */
d e f i n e AID_0BS0LETE_000 KGIDT_INIT(3001)
/* was NET_BT */
d e f i n e AID_0BS0LETE_001 KGIDT_INIT (3002)
d e f i n e AID_INET KGIDT_INIT(3003)
d e f i n e AID_NET_RAW KGIDT_INIT (3004)
d e f i n e AID_NET_ADMIN KGIDT_INIT(3005)
/* read bandwidth s t a t i s t i c s */
d e f i n e AID_NET_BW_STATS KGIDT_INIT(3006)
/* change bandwidth s t a t i s t i c s accounting */
d e f i n e AID_NET_BW_ACCT KGIDT_INIT (3007)

Lis t ing 4.4: Hard-coded constants i n the kernel level (android_aid .h file)

Native User-space
B y the native user-space is understand as a l l user-space components that run outside of
the v i r tua l machine and do not belong to the L i n u x kernel layer. The first component of this
layer is called - Hardware abstraction layer (H A L) [12]. H A L is blurred between the L i n u x
kernel and native user-space layers. In L inux , drivers for hardware are either embedded into
the kernel or loaded dynamical ly as modules to the kernel. A l though A n d r o i d is buil t on
top of L i n u x kernel, it exploits a very different approach to support new hardware. Instead,
for each type of hardware A n d r o i d defines an A P I that is used by upper layers to interact
w i th the current type of hardware.

The suppliers of hardware have to provide a software module that is responsible for
the implementat ion of the A P I defined i n A n d r o i d for this part icular type of equipment.
Thus, this solution allows system not to embed a l l possible drivers into the kernel anymore
and to disable the dynamic module loading kernel mechanism. Addi t ional ly , such archi­
tectural solution lets hardware suppliers select the license, under which their drivers are
distributed.

Kerne l finishes its boot ing procedure by start ing one user-space process called init [231].
Th is process is responsible for starting a l l other processes and services, along w i t h per­
forming some operations i n the operating system. For instance, i f a cr i t ical service stops
answering, the init process can reboot i t . Th is process performs operations i n accordance
to the init.rc [231] configuration file. The toolbox includes essential binaries, which provide
shell u t i l i ty functionality i n A n d r o i d [234].

53

The operating system also relies on many v i t a l daemons (long running background ser­
vices) . It starts them during system start-up and preserves them running when the system
is working. For instance, rild - the radio interface layer daemon, which is responsible for
communicat ion between base-band processor and other systems, service-manager - contains
an index of a l l binder services running in the system, adbd - A n d r o i d debug bridge that
serves as a connection manager between host and target equipment. The last but not least
component in native user-space is set of native libraries. There are two types of native
libraries: native libraries that come from external projects and developed wi th in the plat­
form itself. These libraries are loaded dynamical ly and provide various functionality for
processes.

Boot ing Process

To understand what procedures provision security on the native user-space level, at first
the boot ing sequence of the device should be considered. It should be mentioned that
during the first steps this course may vary on different devices, but after the L i n u x kernel
is loaded the routine is usually the same.

The flow of the booting process is shown i n figure 4.8.

step 1 Boot ROM

step 2 Boot loader

step 3 Linux kernel

step 4 Init process

step 5

Daemons

Service manager

Runtime

> f

Zygote

> f

Virtual machine

>

System server

> f

step 6

Service manager

System services Surface flinger

Figure 4.8: A n d r o i d boot sequence

W h e n a user powers on a mobile device then the C P U of the device w i l l appear in
a non-ini t ial ized state. In this case, a processor starts executing commands beginning from

54

a hard-wired address i n the memory. This address usually points to a piece of code in
the write-protected memory of the C P U , where boot R O M [237] is located. This routine is
marked as step 1 i n figure 4.8. The main target of the code resided on boot R O M is to detect
a media, where bootloader [173] is located. After the detection is done, boot R O M loads
the bootloader into internal memory, which is available immediately after device powers
on and performs a j ump operation to the full code of the bootloader. The bootloader is
i l lustrated as step 2 i n figure 4.8. The bootloader sets up external random access memeory,
file-system, and network support. After that, it loads L i n u x kernel into the memory a passes
the execution rights to i t . L i n u x kernel initializes the environment to run another code
(usually wr i t ten i n C language []), activates interruption controllers, sets up memory
management units, defines scheduling, loads drivers and mounts root file-system. This step
is i l lustrated i n figure 4.8 wi th step 3 label.

W h e n memory management units are ini t ial ized, the system is ready to use v i r tua l
memory and run user-space processes [107]. Star t ing from this step, the process does not
differ from the one that occurs on desktop computers running on L i n u x platform. The first
user-space process, which is an ancestor of a l l processes i n the A n d r o i d operating system,
is init. The executable of this program is located i n the root directory of the file-system.
To achieve addi t ional settings of the init process there is configuration file init.re which is
wri t ten using a language called A n d r o i d Init Language [201] and is also located i n the root
directory of the file-system. This configuration file can be imagined as a sequence of com­
mands, which execution is triggered by the predefined events. The commands wri t ten in
the init.re configuration file defines global system variables, sets up basic kernel parame­
ters for memory management configuration file-system. F r o m the security, perspective is
more important that it be also responsible for the basic file-system structure creation and
the assignment of the owners and the file-system permissions to the created nodes.

Addi t ional ly , the init process is responsible for start ing several essential daemons and
processes. A n executed process i n L i n u x by default is run w i t h the same permissions and
wi th the same U I D as an ancestor. In A n d r o i d , init is started wi th the U I D equals to
zero, which means wi th the root privileges. Besides that, a l l descendant processes should
run w i t h the same U I D . Fortunately, the privileged processes may change their U I D s to
the less privileged ones. Thus, a l l descendants of the init process may use this functionality
specifying the U I D and the G I D of a forked process. The owner and group i d are also
defined in the init.re configuration file. The whole creation of init process is inside step 4
in figure 4.8.

Another core process launched by this init process is called Zygote [12]. A Zygote is
a special process that has been warmed-up. It means that the process has been ini t ia l ized
and l inked against the core libraries. A Zygote is an ancestor for a l l processes (except the init
process). W h e n a new applicat ion is started, the request for the new process is handled
by the Zygote. The Zygote process is forked and after that, the parameters corresponding
to a new applicat ion such as U I D , GIDs , and name, are set for the forked chi ld process.
The acceleration of a new process creation is achieved because there is no need to copy
core libraries into the new process. The memory of a new process has a principle "copy-
on-write,, [75] protection, meaning that the data w i l l be copied from the Zygote process
to a new one only i f the latter tries to write into the protected memory. Core libraries
cannot be changed. They are retained only in one place reducing memory consumption
and the applicat ion start-up t ime. The Zygote process is part of the booting sequence as
and is shown i n figure 4.8 inside step 5.

55

The first process, which is run using Zygote is System Server i l lustrated i n figure 4.8
in step 6. Th is process, at first, runs native services, such as Surface flinger [] and
Sensor service [161]. After the services are ini t ial ized, a callback is invoked, which starts
the remaining services. A l l these services are then registered w i t h the Service manager
[]•

File-system

However, A n d r o i d operating system is based on top of L i n u x kernel. Its file-system hierarchy
does not comply wi th file-system hierarchy standard [] that defines the file-system layout of
Unix-based systems [242]. A n d r o i d and L i n u x based operating system have some directories
in common, for instance /dev, /proc, /sys, /etc, /mnt, etc. The purpose of these folders
is the same as i n L i n u x . Moreover, there are folders, such as /system, /data and /cache,
which cannot be found i n the L i n u x based systems. These folders are the core parts of
A n d r o i d platform.

Dur ing the bu i ld of the A n d r o i d platform, three image files are created: system.img,
userdata.img and cache.img []. These images provide the core functionality of the op­
erating system and the ones that are flashed on a mobile device. In the course of booting
the system, the init process mounts these images to the predefined mounting points, such
as /system, /data and /cache correspondingly.

The par t i t ion /system incorporates the entire A n d r o i d operating system except for
the L i n u x kernel, which itself is located inside the /boot par t i t ion. This folder contains
the sub-directories /system/bin and /system/lib that contain core native executable pro­
grams and shared libraries respectively. Addi t ional ly , this par t i t ion encompasses a l l system
applications that are buil t w i th the system image. To achieve that the content of this
par t i t ion cannot be changed at run-time, thus the image is mounted in the read mode only.
Hence, /system par t i t ion is mounted as read-only, it can not be used for storing any data.
For this purposes, the separate par t i t ion /data is allocated and is responsible for storing
user data or information changing over the t ime. For instance, /data/app directory contains
al l apk files of installed applications, while /data/data folder encloses the home directories
of the applications.

The /cache par t i t ion is responsible for storing frequently accessed data and applicat ion
components. Addi t ional ly , the operating system over-the-air updates [142] are also stored
on the par t i t ion before being run. So as /system, /data and /cache folders are formed
during the compilat ion of A n d r o i d platform, the default rights and owners to the files and
folders contained on these images have to be defined at compilat ion t ime (before compi­
lation). It means that the users and groups (UIDs and GIDs) should be available during
the compilat ion of this operating system images.

Native Executable Protect ion

Some native binary applications are assigned wi th setuid and setgid access rights without
user notification. These binaries are usually part of the system.img par t i t ion, which was
discussed in the previous section. The settings for files and folders is stored in the file
/'system/code/libcutils/fs_config.c which is located on every A n d r o i d device. The excerpt
of this file is mentioned in l is t ing 4.5. For instance, the su program has the rights set.
Th is public u t i l i ty allows a user to run another program wi th the specified U I D and G I D .
In L i n u x based operating systems this functionality is usually used to run applications
wi th super-user privileges. Accord ing to l is t ing 4.5 the binary /system/xbin/su is assigned

56

wi th the access rights defined in number format (also called as flags) as is the definition of
access rights on the L i n u x based systems. There is also another configuration file on every
Android-based device, which is located in /android_Jilesystem_config.h. This file contains
the settings of ownership and groups to the daemons, sockets, system server, and hardware
drivers.

s t a t i c c o n s t s t r u c t f s _ p a t h _ c o n f i g a n d r o i d _ f i l e s [] = {

{ 00644 , AID. .SYSTEM , AID. .SYSTEM , o, "data/app/*" },
{ 00644, AID. _MEDIA_RW , AID. _MEDIA_ RW ,0 , "data/media/*" },
{ 00644 , AID. .SYSTEM , AID. .SYSTEM , o, " d a t a / a p p - p r i v a t e / * "
{ 00644 , AID. _APP , AID. _APP , 0, " d a t a / d a t a / * " },

{ 04750 , AID. ROOT , AID. .SHELL , 0, " s y s t e m / x b i n / s u " },
{ 06755 , AID. .ROOT , AID. .ROOT , 0, " s y s t e m / x b i n / l i b r a n k " } ,
{ 06755 , AID. .ROOT , AID. .ROOT , 0, " s y s t e m / x b i n / p r o c r a n k " >,
{ 06755 , AID. .ROOT , AID. .ROOT , 0, "system/xbin/procmem" } ,
{ 04770 , AID. .ROOT , AID. .RADIO , o, " s y s t e m / b i n / p p p d - r i l " } ,

}

Lis t ing 4.5: Default permissions and owners (fs_config.c file)

Usually, in L i n u x , an executable appl icat ion is run wi th same privileges as the process
that has started i t . The mentioned access flags allow a user to run a program wi th the priv­
ileges of an executable owner or group [52]. Thus, in this case, the binary /system/xbin/su
ut i l i ty w i l l be run as a root user. The root privileges allow the program to change its U I D
and G I D to the ones specified by a user. After that, su may start the provided program
wi th the specified U I D and G I D . Therefore, the program w i l l be started wi th the required
U I D and G I D .

In this case of privileged programs, it is required to restrict the circle of applications
to have access to such util i t ies. In this regard, without such restrictions, any applicat ion
may run this su program and obtain the root level privileges. In order to achieve this
restriction on a native user-space level, there is implement the approach that compares U I D
of the cal l ing program wi th the list of the U I D s allowed to run the restricted applications.
Thus, the su executable applicat ion obtains the current U I D of the process, which is equal
to the U I D of the process cal l ing it , and it compares this U I D wi th the predefined list of
allowed UIDs .

Therefore, only i f the U I D of cal l ing process is equal to constant AID ROOT or AID
SHELL, then the required su u t i l i ty w i l l be started. To perform such check, the list of U I D
constants is required. These constants can be found inside android_Jilesystem_config.h
file. Addi t ional ly , starting version 4.3 of A n d r o i d operating system, the core developers
use a principle of capabilities for L i n u x kernel system [182]. It allows them to addi t ional ly
restrict the privileges of the programs that are required to run wi th root privileges. For
instance, i n the considered case of the su uti l i ty, it is not required to have a l l privileges of
the root user. For this uti l i ty, it is enough to have a possibil i ty to change the current U I D
and G I D . Therefore, this program requires only CAPSETUID and CAPSETGID root
capabilities to operate correctly.

57

Application Framework

D a l v i k / A r t is a registry-based v i r tua l machine, and it allows the operating system to execute
A n d r o i d applications, which are wri t ten using Java language. D u r i n g the bu i ld process,
Java classes are compiled into a dex files that are interpreted by the v i r tua l machine.
The implementat ion of the v i r tua l machine was specifically designed to be run in constrained
environments. Addi t ional ly , the v i r tua l machine provides functionality to interact w i th
the rest of the system, including native binaries and libraries.

To accelerate the process of ini t ia l izat ion, A n d r o i d exploits a specific component called
zygote[205]. It is a part icular " p r e - w a r m e d „ process that has a l l core libraries l inked in .
W h e n a new applicat ion is about to run, A n d r o i d forks a new process from zygote and sets
the parameters of the process according to the specification of the launched applicat ion.
This approach allows the operating system no to copy l inked libraries into a new process,
thus, speeding up applicat ion launching operation. Java core libraries, which are used in
A n d r o i d , are borrowed from Apache Harmony project [231].

System services are one of the most cr i t ica l parts of the operating system. A n d r o i d comes
wi th some system services that provide underlying mobile operating system functionality
to be used by applicat ion developers i n their applications.

For instance, PackageManagerService [30] is responsible for managing packages wi th in
the operating system, which means installat ion, update, deletion, etc..

Using JNI - Java native interface [91] interfaces system services can interact w i th the dae­
mons, toolbox binaries and native libraries of the native user-space layer. The public A P I
to system services is provided v ia A n d r o i d framework libraries. Th is A P I is used by appli­
cation developers to interact w i th system services.

Binder Framework

A s was described in previous chapters, a l l applications are run inside applicat ion sandbox.
The sandboxing of the applications is provisioned by running a l l applications in different
processes w i th different L i n u x identities. Addi t ional ly , system services are also run in sep­
arate processes w i t h more privileged identities that allow them to get access to different
parts of the system protected using L i n u x kernel D A C capabilities [193]. Therefore, an
inter-process communicat ion (IPC) [] framework is required to organize data and signals
exchange between different processes. In A n d r o i d , a special framework called binder [3, 195]
is used for inter-process communicat ion. The standard P O S I X system V [137] I P C frame­
work is not supported by the A n d r o i d implementat ion of the Bion ic libc l ibrary. Moreover,
addit ional ly to the binder framework for some special cases U n i x domain sockets [209] are
used for communicat ion wi th the Zygote daemon.

The binder framework was expl ici t ly developed to be used i n the A n d r o i d operating
system. It provides the capabilities required to organize a l l types of communicat ion between
processes i n this system. Even the mechanisms, such as intents and content providers, well-
known to applicat ion developers, are buil t on top of the binder framework. This framework
provides the variety of features, such as the possibil i ty to invoke the methods on remote
objects as if they were local , synchronous and asynchronous method invocation, abi l i ty to
send file descriptors across processes [195].

The communicat ion between the processes is organized according to synchronous client-
server model []. The client initiates a connection and waits for a reply from the server
side. Thus, the communicat ion between the client and the server can be imagined as they
are executed i n the same process thread. It provides a developer w i t h the possibil i ty to

58

invoke methods on remote objects as they were local . The communicat ion model through
binder is presented in figure 4.9.

Client Proxy

Process A

Binder
driver j i Stub Service

Kernel Process B

Figure 4.9: Binder communicat ion model

In figure 4.9, the applicat ion i n process A, which acts as a client, wants to use the behav­
ior exposed by a service, which runs in the process B. A l l communicat ion between clients and
services using the binder framework happens through the L i n u x kernel driver /dev/binder.
The permissions to this device driver are set to world readable and writable. Hence, any
application can write to and read from this device. To conceal the peculiarities of the binder
communicat ion protocol, the libbinder [188] l ibrary is used in A n d r o i d platform. It provides
the facilities to make the process of interaction wi th the kernel drive transparent for an ap­
plicat ion developer. In particular, a l l communications between a client and a server happen
through proxies on the client side and stubs on the server side. The proxies and the stubs
are responsible for marshaling [119] and unmarshaling [119] the data and the commands
sent to the binder driver.

In order to make use of proxies and stubs, a developer just defines as A n d r o i d interface
definition language (A I D L) interface [157] that is transformed into a proxy and a stub during
the compilat ion of the applicat ion. O n the server side, a separate binder thread is invoked
to process a client request. Technically, each service (sometimes called binder service) [16']
is exposed using the binder mechanism and assigned wi th a token. The kernel driver ensures
that this token represented as a numeric value (usually 32 bits long) is unique across a l l
processes i n the system. Therefore, this token is used as a handle to a binder service.
Therefore, it is possible to interact w i th the service. However, to start using the service
the client at first has to discover this token value. The discovery of service's handle occurs
using binder's context manager [71]. The service manager is the implementation of binder's
context manager on A n d r o i d platform. The context manager is a special binder service
w i t h the predefined handle value equal to zero.

Whereas it has a fixed handle value, any part of the system can find it and ca l l its
methods. Context manager acts as a name service [54] providing the handle of a service
using the name of this service. In order to achieve this behavior, each service has to be
registered wi th in context manager. For instance, the service can use a specific method of
the ServiceManager class. Thus, a client has to know only the name of a service which
it needs to communicate wi th . Us ing context manager the client receives the token which

59

is later used for the interactions wi th the required service. The binder driver allows only
a single context manager to be registered i n the system. Therefore, the service manager
is one of the first services started during boot ing sequence. The components of service
manager ensure that only the privileged system identities are allowed to register services.
The binder framework does not impose any security by itself. A t the same time, it provides
the facilities to procure the security i n A n d r o i d .

The binder driver adds the U I D and the P I D of the sender process to each transaction
automatically. Therefore, each applicat ion in the system has its U I D . Then this value can be
used to identify the cal l ing party. The receiver of the cal l can check the obtained values and
decide if the transaction should be completed. The receiver can get the U I D , and the P I D
of the sender using the specific method calls []. Addi t iona l ly , a binder handle can also
behave as a security token due to its uniqueness across a l l the processes and the obscurity
of its value [4].

Permissions

A s considered in previous chapters, i n A n d r o i d each applicat ion by default obtains its
U I D and G I D system identities. Addi t ional ly , there are also a number of the identities
hard-coded i n the operating system. These identities are used to separate the components
of the A n d r o i d operating system using D A C enforced on top of the L i n u x kernel level,
thus increases the overall security of the operating system. A m o n g these identities, AID
SYSTEM stands out. Th is U I D is used to run the System server, the component that
unites the services provided by the A n d r o i d system.

The System server has privileged access to the operating system resources, and each
service runs wi th in the System server. It provides the controlled access to a part icular func­
t ional i ty to other system components and applications. The controlled access is backed by
the permission management. It is connected to binder framework which provides the abi l ­
i ty to get the U I D and the P I D of the sender on the receiver side. In general case, this
functionality can be exploited by a service to control consumers that want to connect to
the service. It can be achieved by comparing the U I D and or P I D of a consumer w i t h the list
of U I D s allowed by the service. However, in A n d r o i d , this functionality is implemented in
a slightly different manner. E a c h cr i t ica l method of a service is guarded wi th a part icular
label called permission. Before running the method a check if the cal l ing process is assigned
wi th the required permission is performed. If the cal l ing process has the required permis­
sion, then the service invocation w i l l be allowed. Otherwise, a security check exception w i l l
be thrown.

For instance, i f a developer wants to provide its applicat ion wi th a possibil i ty to send
sms message it is required to add the specific record (uses-permission) into application's
AndroidMainfest.xml file, these user-permissions were depicted in l is t ing 4.1. A n d r o i d also
provides a set of ind iv idua l calls that allow checking at run-time if a service consumer
has been assigned w i t h permission. The permission model described so far provides an
efficient way to enforce security. A t the same time, this model is ineffective because it
considers a l l the permission as equal. In the case of mobile operating systems, the provided
capabilities may not always be equal i n the security sense. For instance, the capabil i ty to
instal l applications is more cr i t ica l than the abi l i ty to send sms messages, which in turn is
more dangerous than the setting an a larm or v ibra t ing of the device.

This issue is addressed i n A n d r o i d by introducing the security levels of permissions.
There are currently four possible levels of permission: normal, dangerous, signature and

60

signature-or-system. The level of permissions is either hard-coded into the A n d r o i d operat­
ing system (for system permissions) or assigned by a developer of a third-party applicat ion
in the declaration of a custom permission (inside AndroidManifest.xml file). To be granted,
the normal permission has to be just requested in application's manifest file. The danger­
ous permissions, besides to be requested i n the manifest file, have to be also approved by
a user during instal lat ion or upgrade process. In this case, dur ing the instal lat ion of an
application, the user is displayed wi th the set of permissions requested by the package. If
the user approves them, then the applicat ion w i l l be installed. Otherwise, the instal lat ion
is aborted.

The signature permission is granted by the system if the applicat ion requested the per­
mission be signed wi th the same signatures as the applicat ion that has declared i t . The de­
tails about usage of appl icat ion signatures are considered i n the following section. The signature-
or-system permission is granted either if the applicat ion is requesting and the declaring
the permission are signed wi th the same certificate or the requesting applicat ion is located
on the system image. For instance, the v ibra t ing capabil i ty w i l l be protected wi th the per­
mission of the normal level, send sms messages functionality w i l l be guarded wi th the dan­
gerous permission level and package instal lat ion abi l i ty w i l l be secured wi th the signature-
or-system permission level.

System Permission Definition

System permissions, which are used to protect A n d r o i d operating system functionality, are
defined i n the framework's AndroidManifest.xml file located i n frameworks/base/core/res
folder of the A n d r o i d sources. A n excerpt of this file w i t h several permission definition
examples is shown i n l is t ing 4.6.

<manifest
x m l n s : a n d r o i d = " h t t p : / / s c h e m a s . a n d r o i d . c o m / a p k / r e s / a n d r o i d "
package = " a n d r o i d " coreApp = " t r u e "
andro i d : s h a r e d U s e r I d = " a n d r o i d . u i d . s y s t e m "
a n d r o i d : s h a r e d U s e r L a b e l = " Q s t r i n g / a n d r o i d _ s y s t e m _ l a b e l " >

<!-- Allows access to the vibrator.
<Tp>Protection l e v e l : normal

— >

< p e r m i s s i o n a n d r o i d : n a m e = " a n d r o i d . p e r m i s s i o n . V I B R A T E "
a n d r o i d : l a b e l = " Q s t r i n g / p e r m l a b _ v i b r a t e "
a n d r o i d : d e s c r i p t i o n = " Q s t r i n g / p e r m d e s c _ v i b r a t e "
a n d r o i d : p r o t e c t i o n L e v e l = " n o r m a l " />

<!-- Allows an a p p l i c a t i o n to send SMS messages.
<Tp>Protection l e v e l : dangerous

— >

< p e r m i s s i o n android:name="android.permission.SEND_SMS"
a n d r o i d : p e r m i s s i onGroup = "andro i d . p e r m i s s i o n - g r o u p . S M S "
a n d r o i d : l a b e l = " Q s t r i n g / p e r m l a b _ s e n d S m s "
a n d r o i d : d e s c r i p t i o n = " Q s t r i n g / p e r m d e s c _ s e n d S m s "
a n d r o i d : p e r m i s s i o n F l a g s = " c o s t s M o n e y "
a n d r o i d : p r o t e c t i o n L e v e l = " d a n g e r o u s " />

<!-- OSystemApi Allows an a p p l i c a t i o n to i n s t a l l packages.

61

http://schemas.android.com/apk/res/android

<Tp>Not for use by t h i r d - p a r t y a p p l i c a t i o n s . -->
< p e r m i s s i o n android:name="android.permission.INSTALL_PACKAGES"

a n d r o i d : p r o t e c t i o n L e v e l = " s i g n a t u r e I p r i v i l e g e d " />

</manif e s t >
Lis t ing 4.6: The definition of the system permissions

In these examples the permission declarations are shown used to protect vibrator of
the device, sending sms messages and package instal lat ion functionality. B y default, the de­
velopers of third-party applications do not have access to the functionality protected wi th
system permissions of levels signature and signature-or-system. Th is behavior is ensured in
the following approach. The applicat ion framework package is signed wi th the platform cer­
tificate. Thus, the applications requiring the functionality protected wi th the permissions
of these levels have to be signed wi th the same platform certificate. However, the access to
the private key of this certificate is available only to the builders of the operating system,
usually hardware suppliers, or telecommunication operators.

Permission Management

The system service PackageManagerService [] is responsible for the applicat ion man­
agement on A n d r o i d platform. This service assists w i th the installat ion, uninstal lat ion,
and update of applications on the mobile device. Another important role of this service is
permission management. It can be considered as a pol icy adminis t ra t ion point. It stores
the information that allows checking i f an A n d r o i d appl icat ion is assigned w i t h a part icular
permission. Addi t ional ly , dur ing the instal lat ion and upgrade processes of application, it
performs a bunch of checks to ensure that the integrity of permission model is not violated
during these routines.

Moreover, it also acts as a pol icy decision point. The methods of this service are
the last elements in the chain of the permission checks. It is not considered the operation
of PackageManagerService here, but there are sources for details of this service [109, 204].
PackageManagerService stores a l l information related to permissions of third-party appli­
cations i n the file /data/system/•packages.xml. Th is file is used as a persistent storage
between the restart of the system. However, at run-time, a l l information about permissions
is preserved i n random access memory (R A M) allowing to increase the responsiveness of
the system. This information is collected during the boot sequence (see figure 4.8) using
data stored i n the packages.xml file for third-party applications and through parsing system
applications.

A p p l i c a t i o n s

A n d r o i d applicat ion is a software that runs on A n d r o i d platform and provides most of
the functionality available to the user. The stock of operating system is shipped wi th some
bui l t - in applications called system applications. They are usually provided by the devel­
oper of the operating system in the case of A n d r o i d it is Google [!] and other types of
system applications are provided by the suppliers of the mobile devices. These applications
compiled as a part of A n d r o i d open source project (A O S P) [] bui l t process. Moreover,
the user may instal l user applications from numerous applicat ion markets to extend the ba­
sic functionality of the operating system.

62

Appl icat ion Components

Appl icat ions on the A n d r o i d platform are dis tr ibuted i n the form of package apk file.
A package consists of v i r tua l machine executable files, resource files, a manifest file and
native libraries. The package has to be signed by the developer of the applicat ion. To
sign the package developer usually use a self-signed certificate. Each applicat ion can be
buil t from several components which are provided by the platform. In the case of A n d r o i d ,
there are four component types: activity, service, broadcast receiver and content provider.
The separation of an applicat ion into the components support the reuse of appl icat ion parts
between applicat ion and also division of the appl icat ion into more logical parts.

• Activity is an element of a user interface. The act ivi ty usually represents a screen,
which a user can interact wi th .

• Service is a background worker. The service can run indefinite t ime. The most famous
example of a service is a media player, that plays music i n the background while a user
is working wi th the device.

• Broadcast receiver is a component of an applicat ion that receives messages and starts
a workflow according to the obtained message.

• Content provider is the last component that provides the abi l i ty to store and retrieve
data, it also permits to share a set of data w i th another application.

Hence, the A n d r o i d applications consist of different components. There is no central en­
t ry point unlike any programming language, such as Java programs wi th the main method.
Regards to missing the central point, a l l components need to be declared inside the Android-
Manifest.xml file by the developer of an applicat ion. There is an exception for broadcast
receivers because they can be defined dynamical ly inside Java code of the applicat ion. E x ­
ample of the application's AndroidManifest.xml file is i n l is t ing 4.7. Th is applicat ion is
composed of one activity.

<?xml v e r s i o n = " 1 .0" encoding="UTF-8" />
<manif e s t

xmlns:andro i d = " h t t p : / / s c h e m a s . a n d r o i d . c o m / a p k / r e s / a n d r o i d "
package = " c z . a r o n . l u k a s . t e s t a p p "
a n d r o i d : v e r s i o n C o d e = " l "
a n d r o i d : v e r s i o n N a m e = "1 .0">

< u s e s - p e r m i s s i o n
android:name="android.permission.SEND_SMS"

/>

< a p p l i c a t i o n
a n d r o i d : i c o n = " Q d r a w a b l e / i c _ l a u n c h e r "
a n d r o i d : l a b e l = " Q s t r i n g / a p p _ n a m e " >

< a c t i v i t y andro id:name = " . T e s t A c t i v i t y "
andro i d : l a b e l = "Qstring/app_name">

63

http://schemas.android.com/apk/res/android

< i n t e n t - f i l t e r >
< a c t i o n a n d r o i d : n a m e = " a n d r o i d .
< c a t e g o r y

andro id:name = "andro i d . i n t e n t
/>

< / i n t e n t - f i l t e r >
< / a c t i v i t y >

< / a p p l i c a t i o n >
</manif e s t >

Lis t ing 4.7: Example of AndroidManifest.xml file

The operating system provides a variety of methods to invoke the components of ap­
plications. A new act iv i ty is started by using one of these methods startActivity and
startActivityForResult. Services are started through the method startService. In this case,
called service invokes its method onStart. W h e n a developer is going to establish a connec­
t ion between a component and a service he invokes the method bindService and the onBind
method is invoked i n the called service.

Broadcast receivers are started when an applicat ion or system component send a special
message using the methods sendBroadcast, sendOrderedBroadcast and sendStickyBroadcast.
Content providers are invoked by the requests from the content resolver. A l l other compo­
nent types are activated through intents. The intent is a special mean of communication-
based on the binder framework, which was already described earlier.

Intents are passed into the methods that perform component invocation. The called
component can be invoked by two different types of intent - an explicit intent or an implicit
intent. For the first intent type, the developer realizes picking the functionality in the com­
ponent of his appl icat ion and calls the component using the component name data field of
the explicit intent. The other approach is to invoke a component of any other applicat ion,
in this case, he has to be sure that this applicat ion is installed on the system.

Basically, from the developer's point of view, there is no difference between interac­
tions of components inside one applicat ion or among components of a different applicat ion.
For the second intent type, the developer transfers the right to choose the appropriate
component to the operating system. The intent object contains some information i n its
fields, such as action, data and Category. Accord ing to this information, using Intent filters
the operating system chooses the proper component that may process the intent.

A n intent filter defines the "template,, of intents the component can process. Further­
more, the same appl icat ion can define an intent filter that w i l l process intents from other
components.

Permissions on T h e Appl icat ion Level

Permissions are used for protecting access to the system resources. The developers of thi rd-
party applications can also use custom permissions to guard the access to the components
of their applications.

These permissions have to be defined inside AndroidManifest.xml file, an example of
custom permission is i n l is t ing 4.8.

i n t e n t . a c t i o n . M A I N " / >

.category.LAUNCHER"

64

< p e r m i s s i o n a n d r o i d : n a m e = " c z . a r o n . l u k a s . p e r m i s s i o n . m y p e r m i s s i o n "
a n d r o i d : l a b e l = " @ s t r i n g / m y p e r m i s s i o n _ l a b e l "
a n d r o i d : d e s c r i p t i o n = " 9 s t r i n g / m y p e r m i s s i o n _ d e s c r i p t i o n "
a n d r o i d : p r o t e c t i o n L e v e l = " d a n g e r o u s "

/>

Lis t ing 4.8: Example of custom permission (part of AndroidManifest.xml file)

The declaration of custom permission is similar to the one of the system permissions.
To il lustrate the usage of custom permissions let refer to figure 4.10.

Application 1

Uses-permission: pi

Application 2

CI: pi C3

C2: p2

Figure 4.10: Permission enforcement to guard the components of third-party applications

The applicat ion 2 consisting of three components wants to protect access to two of
them: CI and C2. To achieve this goal the developer of the appl icat ion 2 has to declare
two permission labels pi, p2 and assign them to protect components correspondingly. If
a developer of the applicat ion 1 wants to obtain access to the component CI of the ap­
plicat ion 2, it must be defined that the applicat ion requires permission pi. In this case,
the appl icat ion 1 receives a possibil i ty to use the components CI and C3 of the appli­
cation 2. W h e n the applicat ion has not specified the required permission, the access to
the component guarded wi th this permission is prohibited, it is i l lustrated i n figure 4.10.

For invoking of the components of the appl icat ion is responsible ActivityManagerService.
To enforce the security applicat ion components, i n the framework methods, which are used
to invoke the components, the special hooks are placed. These hooks check i f an applicat ion
has permission to ca l l the required component.

These checks end i n the PackageManagerServer class w i th the checkllidPermission
method. Thus, the actual permission enforcement happens on the applicat ion framework
level that is considered as a trusted part of the A n d r o i d operating system. Hence the check
cannot be bypassed by applications. More information about how the components are
called and permission checks can be found in [228].

4.5 Summary

This chapter presented the architecture of one of the most used mobile operating system
on mobile devices from the security point of view. The central part of this chapter was
the description of platform layers used for protecting the user's data or privacy. There was
the overview of security mechanisms, such as v i r tua l machine, permission-based system and
al l layers of the architecture focused on security aspects of the platform. The most of this
chapter was the detailed explanation of security aspects, related to the a im of this thesis,
which is the protection user's data against data leakage. A t this point, the data can be

65

sent outside the device wi th in user actions, or by applicat ion logic through many paths.
This chapter discusses these paths and also the permission models, which each applicat ion
needs to follow.

Related to the open source of the platform, such as A n d r o i d is, the snippets of a real
source code of implementat ion were presented for the specific sections. The detail de­
scription of source code was aimed into arts that can influence the resulting solution of
a prototype. Also , the operating system should not be modified the prototype needs to
follow presented security properties and rules defined by the vendor.

The mobile operating system is the cornerstone for this thesis and can be considered as
technical background for the implementat ion solution of a prototype. The next chapter is
focused on a presentation the idea of the work and the definition of the concept.

66

Chapter 5

Definition of Access Rights M o d e l

This chapter describes the main idea of this thesis which protects a user against leakage
of privacy data from a mobile device. The core of this thesis is the formal definition of
the novel approach to protecting data against leakage, but remain the functionality of
the mobile device. The first step is to introduce the whole concept less formally and then
describe the formal model.

The main concept is buil t upon the B Y O D principle [163]. It means that a mobile device
can be used as a personal device and also as a work device at the same t ime. The main
issue w i t h this principle is the security aspect. Moreover, the information which could be
sensitive or corporate is taken outside the protected environment or company. The weakest
point is the user and its device which is used for both purposes (personal and also work
device).

Current solutions related to this area are mainly focused on two approaches. The first
one is that the device is entirely administrated by the company - M D M principle [183].
The second one is supported by the manufacturer of the device. Manufacturer provides
the decision at the boot t ime which mode the user would like to use - secured or unsecured.
This approach is not convenient to a user who needs to switch between two modes a l l
the t ime when requested data from one mode in another one and vice-versa. W h e n the user
does not want to care about these modes and s t i l l require to apply B Y O D principle, there
is a possibil i ty to use one of the taint mechanisms that work on the following information
flow and mechanism which handle the access to the data according to few aspects, such
as posit ion or data classification. More information about these taint ing mechanism is
described i n the following sections.

5.1 Concept

This thesis is aimed at the B Y O D principle w i th the abi l i ty to dynamical ly change the per­
missions which are granted to the applicat ion during instal lat ion. These permissions, al­
ready described i n the earlier chapter), are dynamical ly changed according to the input
files which the user requires to handle the current applicat ion. A t the first phase, the files
on the mobile devices need to be grouped into at least two pr imary categories - public and
private.

W h e n a user needs to work wi th its files (lets marked them as public files) w i th a current
application the applicat ion remains wi th the same permissions as it has from the installa­
t ion phase. The dynamic changing of permissions appears while using the files marked as

67

private. The same applicat ion which was used for public files can be used for private files
as well . Dur ing opening this private file, the applicat ion recognizes that the file is marked
as private and dynamical ly change permissions. A l l permissions which allowed the leakage
file content from the device are denied at the appl icat ion level. If the user wants to open
more files, the applicat ion can work i n two separate modes depends on the current working
file. The public file is also able to be shared wi th other components, applications or even
outside the device. O n the other side, the private file is not able to be shared at a l l .

For example, the user has appl icat ion Text editor which can work wi th the classical
text files. Moreover, the applicat ion can send the opened file v i a various services outside
the device through email , blue-tooth or internet connection. If the user opens the file marked
as public, the appl icat ion remains the same behavior as it was developed for. However,
during the opening of a private file, the applicat ion is not able to send the file outside
the device, but the functionality w i th the file remains.

M a n y implementations can handle the concept of this idea wi th modification of the op­
erating system, which is not a convenient solution for a massive user base of the operating
system. The required solution should be considered as a layer between operating system
and applicat ion layer. The implementat ion of prototype discusses the solution which can
be done by this way wi th some l imitat ions. A l l works related to this topics are not able
to provide this behavior without modification of the operating system. The next section
discusses the solution of the taint t racking principles w i th the focus on solution related to
dynamical ly changing permissions of other researchers.

5.2 Related work

This chapter contains the related work in security area focusing on permission flow tracking,
changes i n permission models, and related topics to this thesis. Besides, there are also
covered kernel and sandbox modifications which are related to permission enforcement
or logging mechanism. D a t a flow or permission flow tracking systems exist i n two basic
categories - static analysis and dynamic analysis. Hence, both categories are covered i n this
chapter.

5.2.1 Detection of Privacy Sensitive Information

According to research [118] there are dynamic analysis and static analysis to approach of
malware detection. There is a possibil i ty that a malicious developer can make his appli­
cation to circumvent the detection of malware. To solve these problems, they focused on
detection method using log output which is dynamic analysis. L i n u x debugging u t i l i ty
named strace [126] monitors system calls used by an applicat ion i n A n d r o i d .

There is a method performing malware detection by analyzing system calls that are
obtained using the strace. Behavior using services of the kernel can be detected by this
method. However, there is a problem that system cal l is not issued i n the behavior which
does not use services of a kernel, and it is impossible to detect such behavior. They focused
on the fact that when A P I that retrieves the phonelD (unique phone identifier) is invoked, it
is processed wi th a remote procedure cal l . It was proposed a method logging the invocations
under the A P I by inserting Log.v method.

The logging by this technique cannot be avoided even i f modification of A P I is performed
on the caller side. Therefore, it is impossible to circumvent the detection even i f a devel­
oper has malicious intent. Because this proposed method is implemented wi th in A n d r o i d

68

framework layer, a malicious applicat ion developer cannot interfere w i th modifications in
this layer. In the current paper, they implemented proposal method tentatively and ran
the applicat ion which acquires phonelD on the A n d r o i d emulator. A s a consequence, they
confirmed record of invocation behavior of the phonelD acquisit ion A P I empirically.

Proposal techniques can be used to grasp a behavior of an A n d r o i d applicat ion. A s
a countermeasure for A n d r o i d malware, an examination of an applicat ion using proposal
method can be applied. For example, dis t r ibut ion of malware may be prevented i f A n d r o i d
market vendors examine applications in advance.

5.2.2 Overview of Information Flow Tracking Techniques

This article [146] covers the overview of flow tracking techniques and its comparison. Taint
analysis techniques are used for t racking the information flow and possible leakage on
A n d r o i d [72, 111, 194, 196, 238]. The taint analysis [146] is data flow analysis technique
that is popular ly used to track the flow of sensitive information. In the taint analysis
sources and sinks of sensitive data are predefined. Taint sources are nothing but the sources
of sensitive information. In the context of A n d r o i d taint, sources can be account, email ,
contact, calendar, database, file, locat ion log, phone state, sms/mms, settings and unique
identifiers, such as I M E I . Whereas taint sinks are points, from which data can leak out of
the system. C o m m o n taint sinks in A n d r o i d are the internet, publ ic ly accessible storage,
and others. Memory card, an inter-process communicat ion message, and sms transmission.
Taint t racking discovers whether there is a route from source to sink. If source data reaches
the sink, it is identified as instances of data leakage. There are two approaches for taint
analysis:

• Dynamic taint analysis

• Static taint analysis

M a n y papers have been proposed based on dynamic taint analysis [196]. The dynamic
analysis can monitor code as it is being executed. It can provide precise security analysis
based upon runtime information as it only considers single execution at a t ime. This
approach of dynamic taint analysis observes the flow of information between sources and
sinks. A n y data value, which is derived from taint source, is marked as tainted and other
values are left untainted. Taint propagation pol icy determines the flow of tainted data as
the program executes. Under ta int ing and over ta int ing of sensitive information can lead
to false positives and false negatives [17]. The dynamic taint analysis has performance
overheads on A n d r o i d as real-time monitor ing of applications is performed. It provides
detailed information on the specific run, but cannot provide complete information of a l l
possible execution path of the program. This approach has to be implemented on the actual
A n d r o i d device or v i r tua l A n d r o i d device for real-time processing.

The static taint analysis approach is also proposed by many types of research in their
works [82, 89, 122, 245]. Th is static taint analysis approach tries to cover a l l possible
execution paths of the program. The complete code is stat ically analyzed without the need
for its execution, generally, control flow graph (C F G) of a program is created. The C F G
is used to trace the flow of sensitive information from sources to sinks. Modern static
taint analyzers convert programs code into some intermediate representation, which can be
effectively processed to generate C F G and cal l graphs [82].

69

The static analysis takes more t ime to analyze the program than dynamic analysis as it
processes complete code and a l l execution paths. However, it has no real-time performance
overhead as processing is done statically before the code is being executed. The static
taint analysis on A n d r o i d can be performed by extracting android package of a l l installed
applications and then processing them outside of the mobile device. A l so , it can be done
at applicat ion market level.

TaintDro id

According to the article which presented Ta in tDro id proposal [], a system-wide dynamic
taint t racking system for A n d r o i d . It can track mult iple sources and sinks simultaneously.
Mobi le device users are notified at the runtime when sensitive information leaves the system.
Ta in tDro id modifies the Da lv ik v i r tua l machine of A n d r o i d to introduce variable level taint
t racking i n it using shadow variables. E a c h variable size is doubled from 32 bits to 64 bits
w i th modified stack format. These extra 32 bits are used to store a taint tag. The taint
tag is a value used to identify the sensitive information (e.g., location, I M E I number). For
t racking taint sources Ta in tDro id does variable level t racking for interpreted code, method
level t racking for native code, message level t racking for inter-process communicat ion and
file level t racking for secondary storage files. Taint tags are added to taint sources, and
when it reaches to taint sinks, these tags are processed to identify which information is
being leaked through that sink. In the A n d r o i d operating system, each applicat ion runs
in its sandbox wi th its user i d (already discussed earlier), D a l v i k v i r tua l machine instance
and set of permissions assigned to it [168].

Trusted Application

| Taint Source] (1)

(2)

Dalvik VM
Interpreter

W]

Virtual Taint Map

Binder IPC Library [Binder Hook J

Untrusted Application

(B)|

Trusted Library Tain! Sink

(6)
Virtual Taint Map

(9)

Dalvik VM
Interpreter

(5)
! Binder Hook] Binder IPC Library

Binder Kernel Module

Figure 5.1: Ta in tDro id architecture wi th in A n d r o i d []

Figure 5.1 shows trusted and untrusted applicat ion running in their respective sandboxes
on top of the kernel. Taint source is marked i n the trusted applicat ion which is then
mapped i n the v i r tua l taint map by the modified Da lv ik v i r tua l machine. The binder which
is responsible for inter-process (inter-application) communicat ion carries tainted data to
the binder hook of untrusted applicat ion. The tainted data is then mapped and propagated
in the corresponding v i r tua l taint map of untrusted applicat ion related to the data flow
rules. W h e n the untrusted applicat ion invokes the taint sink specified library, tag from
the tainted data is retrieved, and an event is reported to the user.

70

Tain tDro id has a specific instruct ion set that requires a custom data-flow logic for
taint propagation. Defini t ion of taint markings, taint tags and variables follows, and taint
propagation is presented in the following lines.

Definition 5.2.1. Universe of Taint Markings £[72]
Let each taint mark ing be a label I. They assume a fixed set of taint markings in any

part icular system. Example privacy-based taint markings include location, phone number,
and microphone input . They define the universe of taint markings C to be the set of taint
markings considered relevant for an applicat ion of Ta in tDro id .

Definition 5.2.2. Taint Tag [72]
A taint tag is a set of taint markings. A taint tag t is in the power set of C, denoted 2C,

which includes 0. E a c h variable has an associated tag that is dynamical ly updated based
on logic rules.

Definition 5.2.3. Variable [72]
A variable is an instance of one of the five variable types - method local variable, method

argument, class static field, class instance field, and an array. Variable types have different
representations. The local and argument variables correspond to v i r tua l registers, denoted
vx. Class field variables are denoted as fx to indicate a field variable w i th class index x.
fx alone indicates a static field. Instance fields require an instance object and are denoted
Vy(fx), where vy is the instance object reference variable. Final ly , vx[.] denotes an array,
where vx is an array object reference variable.

Definition 5.2.4. V i r t u a l Taint M a p Funct ion r(.) []
Let v be a variable. T(V) returns the taint tag t for variable v. T(V) can also be used to

assign a taint tag to a variable. Retr ieval and assignment are distinguished by the posit ion
of t(.) w i th respect to the <— symbol . W h e n T(V) appears on the right-hand side of «—,
T(V) retrieves the taint tag for v. W h e n T(V) appears on the left-hand side, T(V) assigns
the taint tag for v. For example, T(V\) <— T{VI) copies the taint tag from variable V2 to v\.

Definitions provide the primitives required to define run-time taint propagation for
Da lv ik V M . Table 5.1 captures the example of propagation logic, the extended version
of propagation logic was presented i n [72]. The table enumerates abstracted versions of
the byte-code instructions specified i n the Da lv ik documentation [232]. Register variables
and class fields are referenced by vx and fx, respectively. R and E are the return and ex­
ception variables, respectively, maintained wi th in the interpreter. A, B, and C are constants
i n the byte-code.

Op Format Op Semantics Taint Propagation Description

const VA C VA «— C
move VA VB VA VB
throw VA E VA
SpUt VA / s / s 4- VA
sget VA }B VA 4- fB

iput vA Vb fc vB(fc) 4- vA

T(VA) «- 0
T(VA) 4- T(VB)

T{E) «- T{VA)
tUB) 4- T{VA)

T(VA) 4- t(/b)
r (v B (f c)) 4- T(VA)

Clear VA taint
Set VA taint to VB
Set exception taint
Set field fs taint to VA
Set VA taint to field fs
Set field fc taint to VA

Table 5.1: Example of taint propagation logic

The taint propagation logic uses conservative data-flow semantics for constant, move,
ari thmetic, and logic instructions. Dest inat ion register values are always entirely over­
wri t ten. Therefore the taint tag is set expl ici t ly for each instruction. Constant values are

71

considered untainted and therefore do not contribute to the taint tag of the destination reg­
ister. The interpreter maintains "hidden registers,, for return and exception values. These
registers require taint tag storage and corresponding propagation logic. The ari thmetic and
logic operations include unary negation, binary ari thmetic, bit shifts, and bit-wise A N D
and O R .

Ta in tDro id tracks information flows at real-time for privacy monitoring, and it has 14%
performance overhead on a processor bound micro-benchmark. Ta in tDro id implementat ion
needs bui lding a custom R O M , i.e., patched version of the A n d r o i d operating system requir­
ing customized system release. Ta in tDro id has been integrated into CyanogenMod R O M
[120] and the solution has been successfully released on Samsung G a l a x y devices. G o l a m
Swar [] presented a collection of attackers on Ta in tDro id exploring its effectiveness and
l imitat ions. Here, the author successfully applied generic classes of anti-taint methods to
circumvent Ta in tDro id .

AppFence

Peter Hornyack et a l . [I l l] created AppFence tool to block sensitive information leakage
using dynamic taint analysis approach. Instead of providing only notification to the user
like Ta in tDro id , this tool blocks the applicat ion from sending sensitive data. AppFence
could change the permission architecture of the A n d r o i d operating system. It can provide
to the user an option for restricting some permissions of the applicat ion. It implements
two techniques data shadowing and exfiltration blocking to restrict the applicat ion from
leaking sensitive information. The data shadowing substitutes shadow data i n place of
sensitive data to prevent it from exposure and exfiltration blocks network transmission that
is carrying sensitive information. AppFence identified to ta l eleven permissions referring to
twelve essential sources of sensitive information for taint tracking.

Da lvi k V M
application content://calendar

I sandbox
sendStreamf)
write))

open()

OSNetworkSystem,
SSLOutputStream OSFileSystem

connection
blocking

log, camera,
microphone
shadowing

taint tracking

AppFence settings

content manager

account manager

process manager

location manager

telephony manager

AppFence
daemon

Figure 5.2: AppFence architecture [111]

The solid boxes i n figure 5.2 are selected components introduced by AppFence i n A n ­
droid architecture for exfiltration blocking. The shadowing is done by modifying existing
resource manager and file system components of A n d r o i d . AppFence implementat ion is cur­
rently available for A n d r o i d version 2.1 only, which is very old and unused version in these
days. However this work can be marked as deprecated or obsolete, it s t i l l has the significant

72

contr ibution to the A n d r o i d security and to taint the permissions wi th blocking operations.
It has side effects on the applicat ion functionality, sometimes proper operations also get
blocked and applications crash. This approach needs clear-cut differentiation between when
to use shadowing and when to use exfiltration. It prevents the appl icat ion from loading
non-system native libraries. The applicat ion that can detect the presence of these security
control may refuse main functionality un t i l these controls are deactivated. In order to run
this solution, there is the same requirement as i n the Ta in tDro id proposal which means
a special release of A n d r o i d operating system w i t h modified libraries and also other parts
of the system to control the permissions flow.

K y n o i d

Danie l Schreckling et a l . [] proposed K y n o i d , which is real-time enforcement of fine­
grained, user-defined and data-centric security policy. It is based on user-defined security
policies defined for data items stored in shared resources. The core idea of K y n o i d is to
implement a middleware between applicat ion and the data as shown i n figure 5.3 to provide
policy enforcement functionality.

Untrusted Application

Tagged Data Item *

(6)

(1|

Trusted Data Sources

Content
Resolver

Content
Manager

Trusted Library

(6>H
(10) • B Kynoid System Service

(31.(T).j9)

Policy Dependency

OalvikVM

Figure 5.3: K y n o i d architecture [194]

K y n o i d is based on Ta in tDro id to integrate a lightweight pol icy tracker in sandboxing
mechanism on A n d r o i d platform. It tries to make the Ta in tDro id approach fine-grained to
support efficient permission system which allows cr i t ica l and non-cri t ical data. Ta in tDro id
supports 32 different tags i n 32 bits field introduced i n shadow variable, which can refer to
at most 32 different data sources. Whereas K y n o i d uses these 32 bits for identifiers, each
variable i n A n d r o i d can be assigned a different identification number which is again mapped
wi th a policy. It allows K y n o i d to finer-grained tracking by having total 2 3 2 mappings for
security policies. However, this approach creates a tremendous amount of runtime and
memory overhead which is addressed by using dependency graph in K y n o i d .

The dependency graph is evaluated at the sink to derive exact security policy. K y n o i d
blocks the connections which are leaking information at monitored sinks as per pol icy de­
fined. Implementation is done by modifying D a l v i k v i r tua l machine for taint t racking and
K y n o i d system service for policy database and identification numbers mapping. For inter­
process pol icy tracking, identifiers of source variables are mapped to the identifiers of desti-

73

nation variable of another applicat ion. Sinks are monitored i n similar k ind of architecture
that of Ta in tDro id to detect information leak. K y n o i d claims to be giving a competitive
performance on benchmark tests against Ta in tDro id while providing finer granularity of
taint t racking policy, but it exists only as a prototype implementation. Also , K y n o i d needs
to analyze the impact of indirect flows to the overall performance.

L e a k M i n e r

Zhemin Y a n g et a l . [238] proposed LeakMiner , static taint analysis approach to scan appli­
cations on market site. A s shown i n figure 5.4, L e a k M i n e r takes instal lat ion apk package
file of the A n d r o i d applicat ion and converts it to Java bytecode for addi t ional processing. It
also extracts the metadata from manifest file (part of the apk package file). O n l y reputable
sources and sinks are considered in this approach for taint analysis. Permi t ted interfaces w i l l
be analyzed as A n d r o i d only allows interfaces which are granted i n permissions. The man­
ifest file provides granted permissions for that applicat ion which is extracted as metadata.
The ca l l graph is generated from the transformed bytecode.

Android
app

<2

Preprocess

Transforming
D E X code o

Call graph
Construction

Loading
metadata

Identify
sensitive data

Taint Leakage

Propagation Report

Figure 5.4: L e a k M i n e r overall architecture [238]

To model A n d r o i d act ivi ty lifecycle [112] callbacks and mult iple entry points, different
cal l graphs are l inked to the root function node. In the taint propagation possible paths of
sensitive data to taint sinks such as a network or local logging system are discovered and
then reported to the user. Pointer analysis is applied to add some string context information
to source and sink points. L e a k M i n e r approach does not support impl ic i t information flow
leakage. It is not context sensitive which causes many false positives, precision is very less,
about 50 %. O n an average, each applicat ion takes approximately 2.5 minutes for analysis.

F l o w D r o i d

Chris t ian Fr i tz et a l . [] presented F l o w D r o i d , highly precise taint analysis tool for A n d r o i d
applications. It takes the A n d r o i d apk instal lat ion package file as input for processing and
does the static taint analysis. Th is approach models entirely A n d r o i d applicat ion life-
cycle [112] precisely to handle callbacks. It is context sensitive as well as flow, field, and
object-sensitive. Source and sink for targeted A n d r o i d version are identified by using SuSi
framework [22].

Detection of source, sink and entry-point is done by parsing manifest file, dex files and
xml layout files extracted from the applicat ion apk instal lat ion file. F l o w D r o i d generates
main dummy method from parsed data as shown i n figure 5.5. Taint analysis is performed
on this graph to discover paths from source to sink. A l l the discovered paths are then
reported to the user. I F D S framework [181] (interprocedural, finite, distributive, subset)
is used to formulate interprocedural data flow analysis problem which creates exploded

74

source, sink and
entry-point detection

parse manifest file

parse .dex files

parse layout xmls

generate
main method

bui ld call graph
r

perform taint
analysis

Figure 5.5: Overview of F l o w D r o i d [82]

supergraph. F l o w D r o i d ignores dynamic loading and reflection. It treats J N I [] code as
a black box and explicit taint propagation rules are defined for common native methods.
It lacks taint t racking for intra-application and inter-application communication.

Also , the current implementat ion of F l o w D r o i d ignores reflective calls and dynamical ly
loaded codes. A l o n g wi th F l o w D r o i d , authors also proposed Dro idBench [207] which is
the very specific test suite for A n d r o i d containing a set of vulnerable applications. O n
the Dro idBench evaluation, F l o w D r o i d outperformed other commercial ly available tools.
It detected a l l seven data leaks of insecure bank applicat ion (the vulnerable applicat ion
used for evaluation purposes). It also performed well on Java specific benchmark suites.
F l o w D r o i d is highly precise static taint analysis tool , recently it is improved to support
impl ic i t flows, and it is available as an open source. It works on a computer where A n d r o i d
application apk files are given as input for analysis.

T r u s t D r o i d

Trus tDro id presented by Zhibo Zhao et a l . [245] addresses B Y O D [163] privacy issues
protecting leakage of corporate data. It can operate on the server (offline) as well as on
the A n d r o i d mobile device (real t ime). In offline mode, the static analysis is performed on
applications that causes no performance issues for the mobile device. To operate efficiently
in a realtime mode, it implements different levels of granularity. Static semantic analysis
on the compiled bytecode is done for the data flow tracking. Taint propagation rules are
defined for pr imit ive data, object references, inter-process communicat ion, native libraries
and secondary storage.

A n d r o i d bytecode is converted to the simple intermediate textual representation using
Jasmin syntax format [159]. F r o m the aspects of semantic analyzing A n d r o i d bytecode is
converted to the tree structure, which is again processed to generate cal l graph. This cal l
graph is processed to discover source to sink paths. In order to generate the tree structure
parser is buil t based on open source ANTLR parser generator [172]. T rus tDro id taint
t racking engine is composed of source and sink definition sets, file scanner, tag management
system and an interface between these components. The engine scans output of semantic
analyzer by using the file scanner and then performs the taint tracking.

Trus tDro id can work as a standalone applicat ion on the mobile device wi th permissions
to access the file system and scans apk instal lat ion files (which are available on the current
mobile device). L imi ta t ions of this approach are inabi l i ty do to analysis of dynamical ly
loaded code and J N I [91] code. Accord ing to the author, this work can be extended further
for the inter-process communicat ion taint t racking. Authors have not included the results
related to the performance against benchmarks of vulnerable applications. Also , it is not
available as open source.

75

5.2.3 Summary of Related Work

A l l related work mentioned above is related to the ta int ing mechanism that has been chosen
for this thesis. The main reason for this is the abi l i ty to improve mobile security without
modification of the operating system. For this purpose is the mechanism of ta int ing wi th
the mediat ion or inter-mediation of the process the certain way. These researchers are
the cornerstone for the implementat ion of the prototype.

The implementat ion framework is not covered i n this section but is mentioned in
the chapter 6 and this framework is based on the knowledge introduced i n this chapter. It
is beyond this thesis to compare which solution is better against other, but there are men­
tioned the essential parts that could be used to prepare the proof of concept implementat ion
- prototype in this case.

A l l related works have i n common that are required root privilege access to the system
to modify i t . The modification is necessary for providing the required behavior which is
taint mechanism. The question for this thesis is: is it possible to provide ta int ing principle
without this administrator rights? The answer is i n the following chapters.

5.3 Model of Required Behavior

This part informs about the required behavior defined formally to model the concept of
the presented approach to protection. Since a user has a l imi ted amount of files on the device
there exists an easy way of modeling this behavior v i a the finite set of states and or finite
sets of automata for each file separately. There are only two categories of files in the required
solution. Thus the two types of automata are necessary or one wi th decision logic. Note
that the decision logic is not considered as part of this work. The reason is that each user
is ind iv idua l and the categorization of files are different in various use cases.

Unfortunately, the model would not be considered as fulfilling required behavior i n situ­
ations where a user changes a number of files on the device. Th is use case is a usual behavior
of each mobile device user. Moreover, the formal definition should consider the almost un­
l imi ted amount of files available on a device. The formal definition is from preceding reasons
split into two parts. The first part of the formal model is deterministic finite state machine
(F S M) representing actions performed on the files from the user or applicat ion point of view.
Automaton defined i n figure 5.6 consists of five states, which defines the state of the file
and also the decision of into which category the file belongs. The states have the following
meaning: s - start, Spu - start public, Spr - start private, Cpu - close public, and Cpr -
close private.

Figure 5.6 describes the automaton for file operations. The top branch is related to
the public files, and the bo t tom branch is related to private files. This automaton is
considered for the one specific file on the system. In order to cover a l l files i n the system,
this automaton needs to be defined independently for each file available on the device
and also for new ones created i n the future. The formal definition of this automaton is
FSM = (Q,H,5,8,F), where

• Q = {s, Spu, Spr, Cpu, Cpr} - is a finite set of states.

• E = {open_public, open_private, share_content, read_public, read_private,
write_public, write_private, close_public, close_private} - is a finite input alpha­
bet.

76

share_content,
read_public,
write_public

read_private,
write_private

Figure 5.6: Required behavior on file level defined by finite state machine

• 5 - is a state-transition function of type Q x £ —> 2®.

• s £ Q - is an in i t i a l state

• F C Q, F = {s, Cpu, Cpr} - is the set of final states.

States of the automaton define the working status of the file, and the transi t ion between
states identify the required behavior on file. The file can be opened as public or private. It
is not allowed to work wi th one file w i th both approaches at one time. The file is marked as
private or public, and the future changes are not considered i n this model . For that purpose
from a formal point of view, the history is required to repeatable working wi th the same file.
It is depicted by the transi t ion between states s into one of the states Spu, Spr and there is
not possible to provide the transi t ion back to the state s. Transi t ion called share_content
handle the availabil i ty of sharing the file outside of the device i n a l l possible way. Dur ing
this t ransi t ion it is possible to send this file as an attachment to the email , share the file
v i a any connection such as the internet, bluetooth, mobile network or through any other
application feature.

Its in i t i a l state then defines the history of the file (after the original in i t i a l state s and
open file operation). Th is decision logic should be defined by the classification logic which
is not part of this thesis. W h e n the decision is to make, then the file is defined as public or
private the following operations are allowed.

F i n a l states are marked wi th a double border in figure 5.6 and these states inform that
the specific file was not open or it was successfully closed. The F S M is deterministic. Each
state has exactly one t ransi t ion for each possible input . The definition of state-transition
function 5 is defined i n the table 5.2.

The second part of the formal model is the higher view over the possible transitions
on file. A s was already discussed, the F S M needs to be defined independently for each file
available on the device. To model that behavior the automaton presented by A l a n Tur ing
[] - Tur ing machine (T M) was chosen. In order to define the formal model by the T M
which simulates the F S M (see figure 5.6), the logic needs to be defined.

77

8(s, open_public) = {Spu}
5(Spu, close_public) = {Cpu}
5(Cpu, open_public) = {Spu}
5(Spu, read_public) = {Spu}
5(Spu, write_public) = {Spu}
5(Spu, share_content) = {Spu}

8(s, open_private) = {Spr}
5(Spr, close_private) = {Cpr}
5{Cpr, open_private) = {Spr}
5(Spr, read_private) = {Spr}
5(Spr, write_private) = {Spr}

Table 5.2: Required definition of state-transition function (rj) for F S M .

For clear solution the T M has two tapes, the first one is input tape w i t h the operation
sequence flow of available files and the second tape (state tape) handle the state of the F S M
for the specific file. The overview of designed T M is shown i n figure 5.7.

nput tape: Mopen_public | lopen_private | lread_private | llclose_public|...|A

reading head

state tape: $ | A | A | A | A | A | A | A....

reading/writing head
Turing Machine

logic, control states

Figure 5.7: Example of Tur ing machine wi th two tapes

In order to have the connection between the operations on files and its states there
needs to exist the transformation of each file into the unique sequence of one symbol .
The definition of the transformation is depicted i n definition 5.3.1.

Definition 5.3.1. Let N+ is a set of positive integer values, F = {Fi, F2,..., Fn} be a set
of files available on the mobile device, where n is a count of these files (n G N+). There
exist mapping function transform, that maps V/ G F, 3p G N+ =4> transform(f) = p. In
other words, each element file / G F is paired wi th exactly one element of the set of positive
integer values p G N + V p > 0 by the mapping function transform.

The positive integer can be expressed as the sequence of symbol I, which defines
the power value of the element p.

For instance the positive integer value p = 2,p G N+ is transformed into sequence
of symbols / into the following string: II. Accord ing to the transformation mentioned
above, each possible file operation has a prefix w i t h the unique sequence of symbols I. Th is
approach determines which operation is applied to the specific file. For instance operation
open_public for file defined by unique sequence 77 has the format 11 open_public.

There is the connection between the file operation and the file on which the operation is
applied. Operations on the files defined by this approach are the input alphabet on the first
tape of the Tur ing machine.

The whole formal definition of Tur ing machine as a model is TM = (Q, E , A , V, 5, s, F),
where

• Q = {1, 2, 3, 4, A, R} - is a finite set of states.

78

• A - is a blank symbol of the tape denoting the unused space on the input tape.

• E \ {A} - is the set of input symbols, that is, the set of symbols allowed to appear in
the in i t i a l tape contents. This alphabet appears on the first tape only.

• T = {Spu, Spr, Cpu, Cpr} - is a finite set of tape alphabet symbols which appear on
the second tape only.

• S : (Q \ F) x E | J { * } x T | J { * } - > Q x F\J{L, R, _} - is a t ransi t ion function, where
* is any symbol , L is left shift, R is right shift, and is no-operation symbol.

• s £ Q, s = 1 - is the in i t i a l state.

• F C Q, F = {A, R} - is the set of final states.

According to using two tapes, the two reading heads are necessary to read values from
both tapes at the same time. However, this operation can be simulated as a sequence
of two atomic operations provided reading one symbol on the first tape and then reading
one symbol on the second tape, it is more transparent to perform such operation v ia two
reading heads. W h e n reading or wr i t ing is omit ted (no operation is provided at the specific
moment) on one of the selected tapes of the T M the (_), symbol is used.

The allowed input symbols on input tape are the files represented i n the form of se­
quences of symbol / , as was already defined, and the name of operations on these files.
Legal input can be defined as regular expression 5.1. After reading the symbol from the in­
put tape (first tape of T M) , the reading head moves to the right automatically.

E = I+[open_public\open_private\share_content\read_public\read_private (5-1)

\write_public\write_private\close_public\close_private]

This regular expression 5.1 defines a l l possible combination of files w i t h available oper­
ations and thus defines the whole input alphabet E . The second alphabet T of T M which
is related to the second tape is the same set from the set of states presented w i t h F S M
illustrated i n figure 5.6. The reason is that on the second tape the T M simulates the F S M
for each file. In more details, the input tape is the source of a l l possible operations on any
files available on the device and the second type is the logic for each file already defined by
the F S M .

The connection between the operation on the specific file and the second tape defines
the sequence of the symbols / . Th is sequence defines the index of the cell where a state of
F S M is saved on the second tape. For instance, the sequence on the first tape in the format
111 open_public operates wi th the th i rd cell of the second tape.

F rom the definition of T M , the tape is bounded from the left side (both tapes). To
handle the move to the leftmost posit ion let define the specific symbol , such as ($) which is
the first cell (with index equal to zero) of the second tape denoting that this is the leftmost
cell which cannot be used. Its a boundary and the tape cells start after this symbol . Related
to the movement to the leftmost cell the transi t ion should be defined for each symbol which
is not equal to the boundary symbol . Tur ing machine which models the required behavior
is presented i n figure 5.8.

Related to figure 5.8 and its transitions are defined as a tuple, where the first part is
the reading from input tape and the second part denotes reading from the second tape.

79

file:///write_public/write_private/close_public/close_private

(I, *)/R

(*, -$)/L

Figure 5.8: Tur ing machine models required behavior

The wr i t ing operation is defined after the (/) symbol, and the result is wri t ten onto second
tape (or movement is performed). The transi t ion follows the formal definition of 5. A l so ,
there appears the symbol of (*) which defines wild-card wi th the meaning that it does not
matter on the symbol under the reading head. Note that the symbol of the star (*) is used
only if the more specific transi t ion is not possible. Th is type of transi t ion has the lowest
priori ty because it is usually used to halt the T M .

For the clari ty of the condit ion on the transi t ion is defined in the form of expression (->$)
denoting that un t i l the symbol under the reading head is not equal to boundary symbol
the reading head w i l l continue w i t h the specific operation. Specifically this expression is
used i n the state 4 in which the reading head is moved to the boundary of the state tape
and the transi t ion from state 4 into state 1 defines the start ing posit ion of the state tape.

The transi t ion between states 2 and 3 is defined as operation (op) on the file w i th the re­
quired transformation in definition 5.3.1. The reading head on input tape read previous
state (old_state) of F S M (or start ing symbol A , on F S M defined as state s) from the second
tape and provide operation of F S M wi th resulting new state (new_state) which is wri t ten
to the second tape.

Note that its very important to clarify the difference between symbols () and (*).
The reading operation defined on the first tape (input tape) is usually composed of two
primit ive operations - reading and moving the reading head one posit ion to the right. In
turn, the two operating symbols have a different meaning. The star symbol (*) means
wild-card for any symbol available on the current tape, which does not cover the movement
operation. It helps the logic w i th moving reading head on the second tape.

For instance, when the reading head on the second tape needs to move to the first
posit ion of the tape and the reading head on the first tape persists on the same posit ion.
Otherwise, the symbol () determines the operation that provides no action, sometimes
called no-operation.

The last missing part of this formal model, which is the definition of transi t ion function
5, is depicted i n table 5.3.

80

8(1,A,*) = {(A,_)}
8(2,1,*) = {(2, R)}
8(4, * , - $) = {(4, L)}
8(2, open_private, A) = {(3, Spr)}
8(2, open_private, Cpr) = {(3, Spr)}
8(2, close_private, Spr) = {(3, C p r) }

5(4,*,$) = {(1, J }
8(2,read_private, Spr) = {(3, Spr)}

8(2, write_public, Spu) = {(3, Spu)} 8(2, write_private, Spr) = {(3, Spr)}

Table 5.3: Required definition of state-transition function (8) for T M .

A s was described the automaton works wi th a specific format of input - a name of
the operation wi th a prefix of any amount symbols I (at least one). D u r i n g the reading
of these symbols from input tape, the reading head on the state tape moves its head
to the right w i t h the same amount of movement as some symbols / . In this approach,
the reading head of state type has the correct posit ion of the cell which defines the state of
the F S M for the specific file defined on the input tape. After the file follows the operation
on file and this operation has to satisfy the required behavior previously defined by F S M
or by transi t ion function 8.

Automaton halts when there is the wrong symbol on input tape, unsupported transi t ion
wi th in F S M , and or wrong file transformation. There are two finite states, the first one
- A is state denoting acceptance of the input . The whole input tape needs to be read,
and i f the reading was successful according to file transformation and following a l l F S M
transitions, the machine accepts operation sequences on files. Otherwise, the machine halts
in the second finite state - R w i th the meaning that the input was not val id and the state
of the whole T M is rejected.

5.4 Summary

This chapter introduced the main idea of this thesis. There were introduced other work of
researchers i n the similar areas wi th the focus on mobile devices. Related to other work
that can provide similar protection, but not i n a dynamica l way as it is required, moreover
there is not any paper describing the prototype which does not implement the required
behavior without modification of the underlying operating system.

The most important part of this chapter is the definition of the idea that is the cor­
nerstone of implementat ion solution. Therefore the model of required behavior was defined
formally, and this model can be used for the verification purposes. The model of required
behavior was split into two working parts, in which the first one (finite state machine)
defines the behavior on specific file categories. The transitions of this automaton are de­
scribed i n the format of file operations. To be able to work w i t h the dynamical ly changing
environment (files can be removed or new ones created) the Tur ing machine simulates this
finite state automaton on the second tape. A mathematical definition was presented in
the form of Tur ing automaton that simulates the unl imi ted amount of files on the second
tape, which represents the finite state automaton wi th required behavior. To determine
which file is defined by which automaton the transformation function which maps file into
sequence symbols / , were presented dur ing this chapter as well.

81

A s was already mentioned the next chapter discusses the implementat ion of the proto­
type, which should follow the model of required behavior. Therefore, the model of imple­
mentation solution is also part of the next chapter.

82

Chapter 6

Implementation of Prototype and
its M o d e l

In this part of the thesis is described an implementat ion of the proposed mediator between
applications and the operating system. The implementat ion of prototype consists of the de­
sign of the solution, used a framework to handle mediat ion and last but not least the model
of the implementation. Besides, this model should be i n contrast w i th the model of required
behavior, presented i n the previous chapter.

However, there are many other works related to improving security specifically w i th
the a i m of taint t racking as was described earlier. There are s t i l l gaps which are not
covered by other work. For example, the novel approach is made by changing permission
enforcement according to open files during applicat ion. Moreover, this approach could be
moved into another level not to l imi t the decision on file level only. The logic could be
improved and defined on any other input of the applicat ion. It is related to taint the low-
level system cal l allowance or denying automatically. It is what is covered i n this chapter
and precisely i n the following sections.

6.1 Framework

The implementat ion framework for the prototype is called A u r a s i u m [233]. The whole
project has been developed since 2012 as an intern project at the Univers i ty of Cambridge.
The central philosophy is a mechanism of unpacking android applicat ion package - apk file,
injection of monitor ing code into the appl icat ion and then put the modified files back to
the package file. It does not require any administrator (root) access. In order to attach
code, which runs inside the sandbox, the project exploits operating system architecture of
mixed Java and native code execution and introduces interposition code by libc l ibrary [123].
In order to mediate almost a l l types of interactions, this approach seems one of the best,
because this l ibrary is the main point of interaction between the A n d r o i d operating system
and applications.

The framework is split into three main parts. A s was already introduced, there has to
be par t ly responsible for manipulat ing w i t h a apk files. Th is automated repackaging sys­
tem is called pyAPKRewriter and as the name advises the appl icat ion is wri t ten i n P y t h o n
programming language [217]. Second and essential part of the Auras ium framework is
the monitor ing code included i n ApkMonitor appl icat ion that intercepts an application's

83

interactions w i th the system and the Aurasium's Security Manager applicat ion, which en­
abling convenient handling of policy decision of a l l repackaged applicat ion on the device.

The framework structure is shown i n figure 6.1 and starting wi th the sandboxing code,
the top layer of the framework is wri t ten in Java language [92]. The a im is to create
a well-documented and easy-to-use abstraction layer on top of a cumbersome native layer
of the framework. The lower layer provides interface for other possible programs and
delegates a l l requests to the low-level part of the framework implemented i n a native 0 + +
language [210]. Th is layer consists of few shared objects that do a l l the magic work, such
as communicat ion wi th the v i r tua l machine or establishing the mechanism for inter-process
communication.

Application Code

Framework Code - Java
Java Native Interface

Framework Code - Native (C++)

libdvmsoj (libandroid_ruiitime.so] ^libbinder.so

I Aurasium ^ . , ?
libm.so libe.so libstdc++.so

ECene] Boundary \ J V. / \

Linux Kernel

Figure 6.1: Auras ium framework structure [233]

The second part of A u r a s i u m framework, the P y t h o n script for repackaging utilizes
the previously mentioned sandboxing code and deploys it to the A n d r o i d apk applicat ion
instal lat ion package file. Accord ing to figure 6.2, besides the sandboxing code, Auras ium
has to include also several addi t ional parts to apk file i n order to provide the functionality.

Decompiled
small files

Aurasium
Java Code

Android Package (.apk)

classes.dex resources.arsc

uncompiled resources

AndroidMari ifest. xml

Aurasium
Native

Library

Aurasium
Component
Declaration

Figure 6.2: Auras ium repackaging system [233]

The last part of the framework is called A u r a s i u m security manager (A S M) as was al­
ready introduced. A S M handles the policy decisions centrally, which means that a l l repack­
aged applications can be maintained at one place. Security pol icy is based on the decision
of appl icat ion or user. App l i ca t ion decision works transparently without user interaction,
while the user decision is consented by a dialog window and can be remembered and use
by default dur ing next appl icat ion run. Since the project is introduced and publ ic ly doc-

8 Í

umented i n [233] only superficially, the more significant part of the information is hidden
and have to be obtained by research or source code analysis.

P r i n c i p l e of M e d i a t i o n

Auras ium mediat ion mechanism is based on the interposition code of Andro id ' s standard
l ibrary called libc [123, 233]. Th i s l ibrary is used when the upper layer of the framework
wants to interact w i th the operating system. It is located directly on top of the L i n u x
kernel and initiates appropriate system calls into the kernel that completes the required
operation.

The l ibrary is directly mapped i n logical address space (L A S) [44] of each process of
every A n d r o i d appl icat ion using dynamic l ink ing mechanism. Overview of the mapping
into L A S is shown in figure 6.3. This approach is maintained by C + + linker Id.so [244],
which interconnects arranged compile code of libc l ibrary wi th the framework libraries code
in the L A S . In the L i n u x as well as in the A n d r o i d operating system, each compiled l ibrary
located i n the L A S , and shared object files on the disk are i n the executable and l ink ing
format (E L F) [], thus the l ibrary could be shared and therefore mapped anywhere in
the L A S . To achieve injection of the l ibrary into L A S the mechanism of posit ion independent
code (P IC) [197] has been used.

ELF File ELF File

Physical
Address Space:

Logical
Address Space:

Sections

Rcad-uulj Pages Kead-wntc Pages

1
J2 -o -a o.

5
2 £

3 ~ a 5 •a so - , S3

Sections

Read-only Pages Read-write Pages

- f e e g
2 -a -n a. B S

3 ~ a o •a on • . g

/ A
^ ! / I 1

Text Segment Data Segment BSS Segment i -1 s

Figure 6.3: M a p p i n g into process's logical address space [233]

For this purpose, E L F object file dispose dynamic symbol table (D S T) [,] in .dynsym
section containing a l l of the file's impor ted and exported symbols used by linker to fil l
the prepared read-write pages. In more details, .got and .dynamic sections are used - .got
section contains global offset table [50] and is used by setup functions i n procedure linkage
table to retrieve the real target address of the remote function. Section wi th .dynamic is
used to tag the values during l ink ing process.

Since the global offset table is located at the fixed distance from the text segment,
instructions in the code can j ump to the correct offset entry even i f the l ibrary has been
mapped to the arbi trary address. Firs t ly , the linker collects and maps a l l the libraries
code and data into the L A S of a process, and after that, it fills the global offset table wi th
absolute addresses to ensure communicat ion between modules and libraries.

85

Hence, Auras ium goes through every loaded ELF file and overwrites its global offset
table entries w i th pointers to its moni tor ing functions. Functions themselves then mediate
calls to actual l ibrary functions after they have completed monitor ing i f it is necessary.
However, there is no direct possibil i ty to modify L A S directly using Java code, Auras ium
implemented these interposition routines i n C + + language, exactly as the Id.so loader.
Th is approach is possible due to J N I [91] and Andro id ' s native development ki t (N D K)
[180] which ensures interaction between Java and native C + + code.

The mediat ion is used to dynamical ly monitor the appl icat ion behavior and enforce
the fine-grained security policy. A u r a s i u m introduces policies that protect the device from
untrusted applications and their attempts to access sensitive information, leaking to the out­
side world or modifying it , to abuse sms service or network connection as-as to escalate
privilege [] and gain the root access. A l l these refinements against standard bu i l t - in secu­
ri ty policy on A n d r o i d can be categorized into three ma in groups - privacy policy, network
policy and privilege escalation policy.

The purpose of the privacy policy is to enhance user's privacy. This is related to ac­
cessing the private data which are available on the current mobile device, such as I M E I
[125], I M S I [89], phone number, location of the device (and user probably), sms/mms
messages, phone conversations or contact list, etc. The network policy enables finer-grained
interaction wi th the network. For example, only part icular web domains or set of IP [81]
addresses can be accessed. Furthermore, Auras ium also proposes I P blacklist ing provided
by the Bothunter [91] network monitor ing tool to harvest information about malicious de­
vices w i th the specified IP addresses. The last category, privilege escalation policy, is used
to secure the vulnerabi l i ty introduced by A u r a s i u m interposition.

Static Analysis

Aurasium's code is dis tr ibuted under G N U general public license [141] and freely available
on the G i t H u b [] server. Currently, analysis of the code is the only way to obtain more
detailed information about this framework. The most important part of the code is in
the native A n d r o i d applicat ion called ApkMonitor. It contains a l l the sandboxing code, that
is later attached to the selected applicat ion which should be hardened. The most profound
part of this appl icat ion is wr i t ten i n C / C + + language and is called Auras ium native l ibrary
[]. It contains two types of code - the code for preparing the interposition during start­
up and the code performing the mediation. The interposition code has to execute before
any A n d r o i d component is stated, this the solution is robust enough. A n d r o i d A P I defines
the appl icat ion component for this purpose, which is called before every other component
and can be used to include global in i t ia l iza t ion for an applicat ion. However, the most of
the applications do not need to uti l ize this component, which is used i n Auras ium.

Auras ium framework has to include the component called ApiB.ook.java also in the An-
droidManifest.xml declarations. Since the implementat ion rewrites the L A S od the appli­
cation's process, it has to be performed i n the C / C + + language (apihook.cpp). The first
operation is the analysis of the L A S and reading of the memory sections (stored in memmap
[113] array. In the next step, each ELF file is accordingly mapped into soinfo structure,
which is used for patching and relocation of the addresses of libc functions to "hook,,-
mediates functions. A "hook,, function (files w i t h the prefix ahook_„ i n the name) repre­
sents the second type of a native code - it performs the mediation. This function replaces
the standard libc functions wi th the mediat ion code and delegates further processing to
lower layers in the end.

86

http://ApiB.ook.java

Auras ium tries to minimize the amount of native code because it is generally difficult
to write a test for this code. For that reason, Auras ium has a l l the pol icy logic i n the Java
programming language and has been buil t upon many helper functions i n the standard
A n d r o i d framework. However, including Java code into existing apk instal lat ion package is
not t r i v i a l and requires some intermediate steps. In A n d r o i d , a l l application's Java code has
to be compiled to single file called classes, dex which contains byte-code for v i r tua l machine
s imilar ly to Java class file, but contains a l l compiled Java files. Therefore, there is a need to
dis-assembly the dex file, insert Auras ium's sandboxing code and re-assembly it again back
to create a new classes, dex file. Fortunately, there exists an open-source reverse-engineering
tool to perform such task, which w i l l be examined and described i n the following section.
This tool is also used i n A u r a s i u m framework.

Regarding AndroidManifest.xml file, a l l components started in the applicat ion have to
be declared in this file and therefore, also the modification of this file is part of repackaging
already discussed apk file. Th is principle of this approach is to attach applicat ion class
declaration i n the manifest file, which w i l l be instantiated by run-time whenever the appli­
cation is about to start. It enforces the global offset table change (delegating the Auras ium
native l ibrary) before any other parts of the original applicat ion run.

The second part of Auras ium, automated repackaging script, utilizes a combinat ion of
effective text processing of P y t h o n programming language and exploitat ion of Java and
binary third-party console applications for A n d r o i d development and hacking, which w i l l
be analyzed i n next chapter i n more details. A l l parts of the Auras ium framework are in ­
terconnected by using Bash shell interpreter [i 3] of U n i x operating system [26]. In the first
phase, the content of apk instal lat ion file is validated (using script Singer.py) and obtained
using reverse-engineering tool apktool.jar. The next step is launching the ReqriterMain.py
the script, which injects the monitor ing code. This essential script copies the Aurasium
native library into /jni folder and adds new declaration <Application> into AndroidMani­
fest.xml file.

In the next part, the apk instal lat ion file is packed again. Final ly , the last part of
the system is a P y t h o n script for the applicat ion signing since every applicat ion is required
to have a val id signature. Signature in A n d r o i d does not ensure the data integrity or con­
fidentiality but serves as proof of authorship. For example, user-defined permissions of
signature protection level type are granted automatical ly to the applicat ion packages wi th
the same signature, as was discussed earlier. Thus, A u r a s i u m re-signs applications using
a new self-signed certificate maintaining a one-to-one mapping between original certificates
to equivalence classes of authorship among applications. Anyhow, this case is unique, and
Auras ium usually applied to standalone applications where applicat ion updates a coopera­
t ion between more applications are not common.

6.2 Design of Prototype

The design of the solution should focus on private user data, and it is restriction outside
the device. Th is restriction should be performed without affecting the original behavior
of applications, which implies dynamic policy enforcement and use of taint ing mechanism.
Related to the theoretical amount of work, the implementat ion of the prototype is l imited
to focus only on files and tracking it is duplicates which can also be provided to sensitive
A n d r o i d components which are called before leaving the system.

In the following text of this section is the design of the solution which should pretend
or completely deny the leakage of the data through these sinks. The solution is designed

87

according to the concept of the l imi ta t ion to the files only. These files are categorized into
two pr imary groups - public, private. P u b l i c files are standard files which do not need any
restrictions. O n the other hand, the private files should be restricted, and the leakage should
be impossible. The design of prototype does not include the categorization of the files.
It can be done by some classification, which is not the scope of this thesis. To handle
the membership files to groups, there are already exists two folders on the disk par t i t ion
which are named as groups. For instance, files which are public are saved inside public
folder, otherwise they are saved i n private folder.

The work is buil t upon the Auras ium framework and accomplish the pol icy enforcement
using the monitor ing system calls. The framework contains moni tor ing hooks for several
A n d r o i d system calls which are listed i n the following table 6.1.

I P C Network System File
ioctl()
close ()

connect ()
getaddrinfo()

dlopen() open()
forkQ

fopen() read()
wri teQ

Table 6.1: Auras ium intercepted system calls

B i n d e r

In order to perform the required mediation, the part of the A n d r o i d middle-ware called
the Binder needs to be rewritten. Binder provides a high-level abstraction on the top of
t radi t ional , modern operating system services. A l so , it also accomplishes binding functions
and data from one execution environment to another. OpenBinder [] is customized to
provide inter-process communicat ion as was described i n the section 4.4. Interposition
code needs to be placed i n the suitable posit ion on the original binder implementation.
Therefore, there is important to understand the concepts of the mechanism and to analyze
the architecture of this part of the system.

The communicat ion between two processes is ensured by binder objects (B O) , which
are instances of classes that implement ioctl-based binder interface. The most important
method which is defined i n the interface is t r a n s a c t (i n t code, P a r c e l data, P a r c e l
r e p l y , i n t f l a g s) . The appropriate callback method i n the binder object is called
onTransact () . The interface can be further extended by addi t ional business operations as
was described i n section 4.4.

The communicat ion is processed as follows. E a c h B O has a local and global identifier.
The local identifier is unique i n the process, and the global identifier is created when the B O
is passed to another process using binder driver. Binder driver works like a network switch
and persists the mapping from a local identifier to a global identifier i n the table struc­
ture and translate it transparently, s imilar ly than the mapping using A R P protocol [106].
The Binder framework communicat ion uses the client-server model . However, the process
can implement the server, as well as the client so that the communicat ion can be s t i l l b i ­
directional. The binder client invokes an operation on remote binder object called binder
transaction, thus, can involve sending or receiving data over the binder protocol.

In A n d r o i d , the binder driver performs the communicat ion indirect ly and it is exposed
through /dev/binder file. Simple A P I is based on operations open(), release(), poll(),
mmap(), flush() and ioctl(), etc. The first parameter is the file descriptor number which
identifies currently open file and it is used i n /proc/<pid>/fd/<fd> file. The second pa-

88

rameter specifies the ioctl() command. The five important ioctl() commands are listed
bellow.

• BINDER_WRITE_READ - sends zero or more binder operations, then waits (blocking
waiting) to receive incoming operations and returns wi th a result

• BINDER_SET_WAKEUP_TIME - sets the t ime at which the next user-space event is sched­
uled to happen i n the cal l ing process

• BINDER_SET_IDLE_TIMEOUT - sets the t ime thread w i l l remain idle

• BINDER_SET_REPLY_TIMEOUT - sets the t ime threads w i l l block wai t ing for a reply
unt i l the t ime out

• BINDER_SET_MAX_THREADS - sets the m a x i m u m amount of threads that the driver is
allowed to create for that process's thread pool

The most communicat ion is done through i o c t l (binderFD, BINDER_WRITE_READ, &bwd)
operation, where the binderFD is used to access the binder file and bwd is a structure for
binder read/wri te operations defined in l is t ing A . l . The i l lustrat ion of the binder transac­
t ion is i l lustrated in figure 6.4.

The commands for a driver are called binder cal l (B C) and the commands for the B P are
called binder return (B R) commands. B o t h commands abbreviation are used as a prefix
of the name of binder driver commands (see the table 6.2). E a c h command is a couple
consisting of operation code and data.

These commands (couples) are stored i n the binder_transaction_data structure de­
picted in appendices l is t ing A . 2 . W h e n the transaction is inline, the data is direct ly stored
in the structure. Otherwise, the structure contains a pointer to the data buffer. The list of
available binder driver commands, which are stored i n the buffers (read_buff, write_buffer
is l isted i n table 6.2.

write_buffer read_buffer
BC_TRANSACTION, BC_REPLY,
BC_ACQUIRE_RESULT, BC_FREE_BUFFER,
BC_INCREFS, BC_ACQUIRE,
BC_RELEASE, BC_DECREFS,
BC_INCREFS_DONE, BC_ACQUIRE_DONE,
BC_ATTEMPT_ACQUIRE, BC_REGISTER_LOOPER,
BC_ENTER_L00PER, BC_EXIT_L00PER,
BC_REQUEST_DEATH_NOTIFICATION,
BC_CLEAR_DEATH_NOTIFICATION,
BC_DEAD_BINDER_DQNE

BR_N00P, BR_TRANSACTION_COMPLETE,
BR_INCREFS, BR_ACQUIRE, BR_RELEASE,
BR_DECREFS, BR_TRANSACTION, BR_REPLY,
BR_FAILED_REPLY, BR_DEAD_REPLY,
BR_DEAD_BINDER, BR_ERR0R,
BR_0K, BR_ACQUIRE_RESULT, BR_FINISHED,
BR_ATTEMPT_ACQUIRE, BR_SPAWN_L00PER,
BR_CLEAR_DEATH_NOTIFICATION_DONE,

Table 6.2: Binder driver commands

The binder transaction is a passing data from the client to the service, while binder
reply is a passing data from the service back to the client. Th is behavior of binder driver
interaction is i n figure 6.5. The whole binder framework mechanism is transparent to
the A n d r o i d developer since the binder transaction is performed as a local function cal l
using thread migrat ion. It is ensured by the proxies and stubs, which are auto-generated
helper classes from A I D L files. P r o x y is the helper class performing the transformation Java
code into low-level commands for the binder driver. The stub works i n reverse to proxy and

89

w r i t e _ b u f f e r

b i n d e r _ * r i t e _ r e a d

code

b i n d e r . t r a n s a c t i o n d a t a

16

p r o t o c o l t a g ' d a t a . p t r . b u f f e r

S t r i e n
p a r c e l

26 •» d r o i d • m e d • I H e d i a

p 1 a ! y e r 1.0 1.8 i n t e r f a c e d e s c r i p t o r

a n d r o i d , m e d i a . i M e d i a P l a y e r +

• F u n c t i o n code 16: setvolume

(T) f l o a t l e f t v o l u m e

(T) f l o a t r i g h t v o l u m e
I

* Tag sho u l d be Bt transaction

Figure 6.4: Binder Transaction [21]

automatical ly parses and performs read commands on the service side. The overview of this
mechanism was mentioned i n section 4.4 and the principle of proxy and stub is i l lustrated
in figure 4.9.

32
b i t s

Binder 1 Driver Binder 2

BC_TRANSACTION ^JL,

BC REPLY

BR TRANSACTION

BR REPLY

T
Figure 6.5: Binder Dr iver interaction

90

Since the binder driver is implemented on the low-level layer using C programming lan­
guage, there is required the layer responsible for encapsulation of high-level Java objects.
Th is is secured by Parcel container and corresponding Parcelable interface. A procedure for
converting this high-level data structures into parcels is called marshaling. The mechanism
of marshaling and also unmarshall ing, as the reverse process of marshaling, is the respon­
sibi l i ty of the proxy and stub components.

System Design

Design of the system is based on previously defined binder modification and Auras ium
framework. Related to previous chapters it is evident that the solution is based on taint
analysis principle, the ta int ing is based on the principle used i n Ta in tDro id . In order to
perform complete memory tainting, the t racking of each atomic memory operation is needed.
This approach in programmer's point of view means each variable assignment, modification
or unset have to be tracked. It is possible through moni tor ing of instructions on the level
of machine operations. The approach introduced by Ta in tDro id monitors instructions on
the v i r tua l machine level., because a l l possibly malicious applications are run inside v i r tua l
machine environment. A s was discussed, Ta in tDro id uses v i r tua l taint map (V T M) which is
responsible for mir ror ing the address space but does not contain the content of the memory.
It represents the divis ion of the memory into two groups - public and protected. The tainted
files are marked in V T M before the ta int ing process starts. Afterwards, every copying of
memory invokes copying blocks i n V T M . Since the applications, which run on a separate
v i r tua l machine can exchange data, Ta in tDro id introduces message-level ta int ing principle.

This prototype is focused on the integration of two granularities of ta int ing the file and
data level. The message-level taint principle (data exchange between components) from
Ta in tDro id is used for the final pol icy enforcement. Usage of the message ta int ing is mainly
at the final stage of the enforcement that is the restriction because A u r a s i u m framework in­
tercepts only single applications and cannot monitor the unhardened applications. Taint ing
principle on the file-level and also data-level mentioned in this section use the mentioned
principle of V T M .

File-level taint ing between the operating system's files and a memory can be performed
in a full scope, because A u r a s i u m framework can intercept this communicat ion i n a full scale
using these system calls JopenQ, open(), write() and read(). A l so , the function fopen() is not
used only for opening files, but also for obtaining the mode of the opened file. This mode is
used for designing the taint ing customization. W h e n the untainted memory block is wri t ten
to the tainted file i n append mode, the file remains tainted. However, when the untainted
memory is wri t ten to the file i n write mode, the file is untainted as well, because the content
of the file is overwritten by the content of the untainted memory. The operations open() and
read() are use for ta int ing the memory blocks as well as new files. The blocks i n memory
filled from the tainted file are marked same as the file is marked. This means that data in
memory filled from the tainted file is marked tainted as well . Moreover, data in memory
are also directly propagated.

Auras ium can intercept only specific places (system calls) and not the instruction itself.
It is impossible to implement full-range memory-level ta int ing as is introduced by the Taint­
D r o i d solution. Th is is replaced by the newly designed data-level taint ing concept. This
concept together w i t h the file-level ta int ing is i l lustrated i n figure 6.6. The content of
the file is read and tagged using a hash function to assign a unique number. Th is tag, along
wi th the size of a block is used during the wr i t ing unknown memory block into the file.

91

Each unknown memory block is tested concerning any existing hash and marked tainted i f
the hash matches. Subsequently, the file is marked as tainted accordingly.

Application
logic

Logical
address
space

Operating
system

Figure 6.6: Design of data/fi le level tainting

In figure 6.6 are private files represented as file descriptors on the operating system level,
and they have the bo ld border. The first file description (fdl) is the user selected private
file that is read into the memory. In this case, the hash of the private file is computed and
saved into the hashmap situated at the applicat ion logic level. W h e n there is a command
to save this content of the memory into different file represented as second file descriptor
(fd2). Th is file is also marked as private and tainted. O n the other hand, i f the content
of the memory does not have calculated hash inside hashmap it means, that this file is not
considered as private and the ta int ing is not required. T h i s behavior is i l lustrated wi th file
description number three (fd3).

The final pol icy enforcement is performed using the interception of ioctl() system call .
Moreover, when the BR_TRANSACTION command, which consists of destination component
content provider, is read, a l l the read() system calls for the tainted files are i n the mode of
restriction. The prototype is proposed to secure the user-selected files or folders as an entity,
which is intended to be invariable such as images, pictures or movie clips. Documents that
are often changed can be restricted for opening, or there can be assigned ind iv idua l rights
for opening inside hardened applications, and the files are encrypted for other applications
(unhardened ones). In this inverse mode, data is protected wi th unhardened applications
and uncovered and possibly exploited by the hardened applications. The inverse mode is
designed as optional , and it is not part of the prototype.

Unknown memory block which w i l l be wri t ten to a file is compared against the tainted
memory blocks which are smaller than the unknown memory block, and the memory block
which is being read from the file has been divided into smaller units w i t h separate hash
value. Design of data structure w i t h the same meaning as Tain tDroid ' s V T M has is imple­
mented as a simple array of memory blocks. These blocks are an interconnection between
the file system level and applicat ion logic performing described data-tainting. In order to
implement this approach, each memory block is considered as tainted or untainted. The ap­
plicat ion can store only tainted data, and other w i l l be impl ic i t . Init ially, the user-selected
files are marked as tainted, and during the taint ing process, the other files and new blocks
are added. Each memory block has assigned only one file which is the source of its data,
one counted hash value (hashtag), but many destination files to which this data is wri t ten.

92

In regard to taint ing customization, the file modes need to be stored, because read() and
write() functions do not dispose w i t h this information in the passed arguments. Implemen­
tat ion code of the designed data structures focuses on ta int ing process which was described
i n this section are expressed i n l is t ing A . 3 .

In regards to the configuration possibilities, the pr imary purpose is to allow a user to
select and marked privet files and folders. Taint ing based on hashing principle can be
used i n situations where the low memory consumption is the most crucial parameter while
the content-based scanning i n the case of tiles which need more robust security mechanism.
In order to achieve better decision, the selection mechanism was prepared in which the user
can choose the private file/folder.

In some specific cases, there is also need to disable the taint ing at a l l due to perfor­
mance slowdown or extreme battery power consumption. The restriction can be performed
expl ici t ly as well as dynamically. For the protection against theft or unauthorized users
the specific restrict ion can be used, sometimes it is called static restriction. For instance,
this si tuation can be described as parental control. Dynamic enforcement can be realized
using confirmation screen, and it is useful for its flexibility. It is also appropriate to con­
sider the configuration of permanent restriction where the selected protected files cannot be
even read by the unhardened applicat ion which using encryption of the files and only hard­
ened applications have the key for decryption. The configuration settings can be assigned
to a l l applications centrally or ind iv idua l applications separately. Graph ica l screen wi th
the configuration settings can be injected into hardened applications using the first phase
of Auras ium framework - modifying the instal lat ion package. In this case, the applicat ion
configuration is ind iv idua l for each applicat ion. In order to have the central control over a l l
hardened application, the graphical screen is resolved as a single central applicat ion, which
needs to be installed before any modified applicat ion. This approach is preferred according
to proof of concept solution and also the abi l i ty to control mult iple applications (modified
applications only) at one place.

6.3 Implementation

In order to implement the prototype solution the development environment needs to be
set up, the only working combination for the Auras ium project i n these days is Windows
operating system, L i n u x operating system and Ecl ipse integrated development environment
(IDE) [49]. Moreover, the A n d r o i d studio plugin [3] is required to instal l into Ecl ipse I D E ,
which is provided by the A n d r o i d maintainers. The reason for the restriction of using
Eclipse I D E is the full support of A n d r o i d N D K [180] and Auras ium's dependency on
the A n d r o i d package directory structure used by older A n t bui ld ing system [103]. Some
parts of the Auras ium system are wri t ten for Windows C y g w i n L i n u x environment [179]. For
instance, the Makefile [208] for creating code bundles for repackaging. Windows platform is
also used for the Ecl ipse I D E , v i r tual iza t ion of the A n d r o i d operating system and the whole
development. The L i n u x is pr imar i ly used for standalone repackaging scripts which are
the part of the Auras ium and are s t r ic t ly connected to this operating system.

The next stage is to support at least A n d r o i d version 4, which is considered as revolu­
t ionary compared to older ones. The next versions of A n d r o i d are buil t on the changes in
this version, and the following updates w i l l not be so complicated. The currently supported
version of the Auras ium framework is 2.3.3. In this case, the changes need much work, and
this is the challenge of this work. The issues related to this improvements are applicat ion
crashes during run-time, wrong ini t ia l iza t ion and l ink ing of the J N I l ibrary and or more

93

complex issues related to dynamic l ink ing in the A n d r o i d 4 and the following A n d r o i d 5
version. The result of this stage is the functional bui l t - in ApkMonitor applicat ion running
on the A n d r o i d version 4, 5, and 6, which are the most wide-spread A n d r o i d versions in
these days. A part icular part of the second phase is the reconstruction of the repackaging
script, which generates the corrupted instal lat ion packages as default. Even the process
finishes successfully. The package is corrupted.

The last part of the implementat ion covers the selection of examined several open-
source, an available applicat ion which is simple enough to enable edit ing and sharing data.
The most appropriate turned out to be the simple file manager 01 File Manager [16!]
(application 1), which is publ ic ly available on the Google P l a y [115]. Th is appl icat ion has
been manual ly modified. In more details, the ApkMonitor Activity. Java has been injected
instead of the original version, this Java file is called after the mediat ion of system cal l is
started. The information base for this step has been introduced in section 6.1.

Auras ium is capable of intercepting various system calls. O n l y l imi ted set of them is
relevant to the topic of this thesis. Those are the system calls ioctl(), open(), fopen(),
read() and write(), and they were introduced i n the section 6.2. The most important
collected information is the t ime when the A n d r o i d A P I performs the calls and the content
of the passed arguments. In order to implement the required behavior, there is the need to
follow some parameters of the system calls. These parameters are listed w i t h the functions
in the table 6.3 of function prototypes.

Function prototypes
int open(const char *pathname, int flags, . . .) ;
FILE *fopen(const char *path, const char *mode);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int i o c t l (i n t fd, unsigned long request, . . .) ;

Table 6.3: Funct ion prototypes of system calls

System calls have been examined using gdb debugger, LogCat messages and logging to
a file. Debugging is the best method for t racking the sequence of the code i n the time,
LogCat messages are the most usable, but the logging to a file is the most appropriate way
because there can be persistently stored also a very long sequence of the calls for the further
analysis.

Function ioctl()

However the A n d r o i d project repackages the applicat ion singly, there is no possibil i ty to
track the full communicat ion from the one binder object to another and vice versa as
was i l lustrated shown i n figure 6.5. The communicat ion can be tracked between hardened
application and the binder driver as is shown in figure 6.7

Even the implementat ion of the Auras ium mediat ion is performed v i a rewrit ing the ioctl()
function and its operations as the result on the ca l l commands BC_TRANSACTION and
BC_REPLY, induced transactions from the hardened applicat ion are intercepted only as
the remote calls BC_TRANSACTION and BR_REPLY. The another half of communicat ion is
ensured wi th in the delegated original ioctlQ function which is outside the applicat ion as is
depicted in figure 6.8.

94

Interception part

Hardened
application

Binder
driver

BC_TRANSACTIO^rJ-,

Android
component

BC REPLY

BR TRANSACTION

BR REPLY

I
BR TRANSACTION

BR_REPLY ^JL,

BC TRANSACTION

BC REPLY

Figure 6.7: Interception overview

Remote
functionality

remoteCallQ

remoteCallO

remoteCallbackO

Simulate
ioctlQ

Add BC_TRANSACTION

Add BC TRANSACTION

Results

ioctIO

Send as argument

Add BR REPLY

Figure 6.8: Interception overview - detail view

Dur ing the attempt of applicat ion to use standard A n d r o i d A P I , such as share data
through available channels like internet, there is sent an intent w i th action ACTION_SEND
or ACTION SENDTO to reference monitor. The applicat ion does not perform this opera­
t ion itself, even i f it has declared required permissions in its manifest file. There are capture
messages which are sent to various external components or received i n the hardened appli­
cation. The majority of messages is in the outward direction and are also invoked during
the idle state. The list of the most important ones are listed i n the table of captured cal l
transactions 6.4 and table of captured return transactions 6.5.

However, some internal components are called by external components. It is the case
of the following components, which are externally triggered by the A n d r o i d system or
external applicat ion. The external component IContentProvider sends the messages to
perform specific user operation such as querying data provided by the hardened applicat ion.
Therefore these messages are suitable triggers for security policy enforcement.

95

Interface Description
IPackageManager Class for retrieving various information related to the applicat ion

and packages that are installed on the current device.
IAc t iv i tyManager Interact w i t h the overall activities running i n the system.
IWindowManager Interface for communicat ion between applicat ion and the window

manager.
IServiceManager Interface grants basic operating system services, message passing,

and inter-process communicat ion.
I lnputManager Interface provides information about input devices and key layout.
IPowerManager Class ensures a control of the power state of the device.
IWindowSession Interface that convey the communicat ion between applicat ion and

the window manager.

Table 6.4: Captured ca l l transactions

Interface Description
I lnputContex t Interface from an input method to the application, al lowing it to

provides modifications on the current input field and other inter­
actions w i t h the applicat ion.

IContentProvider It encapsulates data and provides it to applications. Th is is used
only if the appl icat ion needs to share data.

Table 6.5: Captured return transactions

F u n c t i o n s open() a n d fopen()

The difference between functions open() and fopen() is that the first one is a system cal l
function, while fopen() is a high-level wrapper which uses buffering and simple interface
- it is usually represented as a l ibrary ca l l i n C language. D u r i n g implementat ion and
experiments, there was captured cal l ing of the function open() and only after the first start
of the applicat ion. Since opening and closing files are t ime-consuming operations, A n d r o i d
manages to keep the files open over the entire life-cycle of the applicat ion and even after
the opening another files. Opened files are closed when the applicat ion is shut down, which
does not mean the idle state of the applicat ion, but the shut down of the process end
removal from the memory.

F u n c t i o n s read() a n d write ()

The system provides the abi l i ty to read the content of the file into the logical address space
of the process and also reverse operation that is wr i t ing the content of the memory into
the file. Since these functions are low-level, the whole file is read or wri t ten at once when
one of this operation is called. In the case of applicat ion 1, the whole content of the files in
the opened folder is read before the real opening of any file from the folder.

L o g g i n g

A l l previously defined functions have been monitored and captured through the logging
mechanism, specifically the logging to the file. A s was discussed before logging to the file
is the most appropriate mechanism to capture the whole sequence of system calls. A n -

96

other possible approach can be the A n d r o i d LogCa t messages or debugger. Accord ing to
the amount of data and the need of further analysis the logging to the file is the only method
which covers a l l required parameters. In regards to the logging mechanism, the one file of
system calls is not considered as well-arranged and for this purpose insufficient. In order
to define the clean structure of the log file, the proposed log files define the divis ion into
following categories (and also into different files) listed in table 6.6.

L o g file name Description
log.txt Moni to r ing of system calls and related memory blocks.
l o g _ t a i n t _ m a p . txt Moni to r ing of snapshots of taint hashmap.
log_java.txt Moni to r ing of Parce l content for final restriction.
log_error . txt Add i t i ona l logs w i th the error priority.
log_debug. txt Add i t i ona l logs w i th the debug priority.

Table 6.6: Summary of log files

Tainting Principle Used in Prototype
Related to the A u r a s i u m framework which is d ivided into few parts, as was described i n this
chapter, the resultant solution of the prototype is follow the same principles. Therefore,
the resulting solution consists of implementat ion in native code, byte-code, and scripting
languages. The implementat ion in native code provides fast handling of taint ing mechanism.
Byte-code is pr imar i ly used to access the ioctlQ function for required restriction and also for
the implementat ion of configuration, see section 6.4. Scr ipt ing languages such as P y t h o n
or Bash are used for repackaging phase, injecting the code, to sing the applicat ion and to
create an instal lat ion package.

Abou t ta int ing principle, the solution is implemented i n C / C + + programming lan­
guages i n order to achieve the best efficiency The life cycle of the hardened applicat ion
starts w i th the creating of log files or overwrit ing the existing ones when the applicat ion is
repeatedly started. The next step is to load the configuration (see section 6.4), after that,
the applicat ion is in monitor ing mode. The main purpose of the moni tor ing is to track
appropriate system calls such as openQ, read(), write() and closeQ, which leads to changes
in the content of the proposed ta int ing structures. This principle is i l lustrated i n figure 6.9.

The resulting code is compiled into the single module into resulting apihook.o object file.
The connection is then ensured by using the delegation mechanism and cal l ing the corre­
sponding handling functions before and after the current system cal l operation. The code of
Auras ium framework can be rewrit ten to another version and reconnected easily. The ap­
plicat ion has to track its state statically, which implies to the usage of static variables.
Unfortunately, even the C / C + + compiler retains the variable store during the whole appli­
cation run, the scope of the variable use is l imi ted according to in i t ia l izat ion point. W h e n
the variable is ini t ia l ized globally, it is not available and or accessible outside the file. There­
fore, there is necessary to use global variables, which are included in a l l required files inside
header file using keyword extern.

In order to create structures for taint ing the C + + standard l ibrary is used, specifically
the std::vector is used for the list of user-selected private files, the list of tainted files,
the list of memory blocks and the lost of blocks of stored information called smal l blocks.
The memory block represents a specific part of logical address spaced of a process whose
content has been obtained from on specific file - source file. A memory block is defined wi th

97

Tainting structures

File descriptor

File descriptor
+

Buffer

>• handle_open()

>• handle_close()

Log files

handle_read()

handle_write()

Figure 6.9: Overview of the proposed taint ing system

a start address and its size and is l inked to one counted hash value, several smal l blocks
and source files. Another data structure uses to store the information about open files is
std::map. The key values of the structure are the file descriptor numbers of the currently
open files. Its usage is pr imar i ly for efficiency, because the same information can be obtained
from the /proc/<pid>/fd/<fd> file. The map is used in read() respectively writeQ function,
because the user selects the file paths while this system calls use the file descriptor.

Taint ing principle starts w i th an empty list of tainted memory blocks and captures
the open() system cal l . W h e n this event occurs, the necessary information about a file is
stored i n a map of open files. If this opened file is the user-selected private file, the read()
event causes the creation and storing the new tainted memory blocks into the list. There is
stored 256 bites long hash calculated by SHA-256 [158] hashing a lgor i thm for the file-based
scanning. The other approach - content-based scanning is implemented using smal l blocks,
as was described earlier. The smal l block represents the part of the file content that is used
for memory taint ing. W h e n the stored smal l block is found i n the logical address space
during the wr i t ing the content of the memory to the file then the resulting file is marked
as tainted as well . The size of the smal l block is defined during the compilat ion process
and depends on the usage of the applicat ion. The size should be sufficiently large to satisfy
the probabil i ty of veracity of the statement, see definition 6.3.1. The size should be as large
as possible, but smal l enough i n order to provide sufficient granularity for taint ing the parts
of files. It is influenced by the variabi l i ty of the media types. For instance, the images used
to be more variable than pla in text files.

Definition 6.3.1. Let set F = {Fi, F2,..., Fn} is a set of private and tainted files, where
n is the amount of theses files and Va; € { 1 , 2 , . . . , bAmount(Fd)} : bx(Fd) is a Smal l B lock
of a file Fd, where bAmount(Fd) is an amount of created Smal l Blocks for the file Fd, d G
{1,2,... ,n} and bx is a function which maps a file to its x-th smal l block.

Final ly , let be a reflexive, symmetric, and transitive relation R that is a transitive closure
of a relation which contains a l l couples of two files that are dependant i n a way one has
been created from another. Then, V d i , d2 G { 1 , 2 , . . . , n } V x G { 1 , 2 , . . . , bAmount(Fdi)}Vy €
{ 1 , 2 , . . . , bAmount(Fd2)} : [(bx(Fdl)) = by(Fd2)} (Fdi,Fd2) € R.

98

In other words, the statement definition 6.3.1 claims, that i f there is found a match
between two smal l blocks, it should indicate that corresponding files are the same or one
file has been created from another. Unfortunately, there can s t i l l be two files which have
the similar or even the same content and the creation of these files was done independently.

The mode of the open file becomes an essential part of the process of ta int ing files. It
is related to the part icular case when the write () function is called to write the content
of the memory which is not tainted. W h e n this memory is not tainted, and the content
is wr i t ten to the private file, which is opened in append mode, the file remained tainted
and marked as private. The reason is that the previous content of the file is considered as
private even that the content of the memory that is appended to this file is not considered
as private. The different si tuation occurs, when the private file is opened in the standard
write mode. In the same si tuation (untainted content of the memory is wri t ten to the file),
the file is not marked as private, because the classical write mode w i l l rewrite the content
of the file w i t h the new content of the memory, which is considered as not private (not
tainted) and i n this case the resulting file is not marked as tainted anymore.

The main operation is the estimation of the presence of private data. Us ing file-tainting,
the hash of the block, which is being wri t ten, is counted and compared to a l l stored hashes
in the hashmap structure. In the case of content-based scanning, a l l smal l blocks of a l l
memory blocks are compared on every posit ion of the current block. This principle is
depicted in figure 6.10.

Small Blocks
r T T T 1 r T T T 1

1 1 1 1 w ^ 1 1 1 1
1 1 1 1 1 1 1 1 w

1 1 1 1
>

> ̂
content_match()

1

! i
Memory Block

Figure 6.10: Pr inc ip le of content-based scanning

The restriction of the tainted files is interposed i n two places. The first one is the hard­
ened applicat ion and the applicat ion which performs the sharing action. The second one is
between the external applicat ion and the file itself. These types of restriction are referred as
a restriction methods i n the configuration activity. The first type of this restriction method
is called communication mediation and is based on the Java programming language and it
implements the prepared Auras ium's interface and parsing mechanism. This code is there­
fore interlaced wi th the original one in the APIHook.java file. Java code operations require
the knowledge of which files are considered as tainted. In order to fulfill this requirement
the methods IsTaintedFile(), GetRestrictionMethod() and GetRestrictionType() have been
implemented using J N I framework. This implementat ion also includes the global variables
definition i n C / C + + code.

For instance, the list of variables defined for this purpose contains SCANNING_TYPE,
RESTRICT!0N_TYPE, RESTRICT!0N_METH0D, THREAT_LEVEL, and ENABLE_LOGGING. The re­
str ict ion is invoked during the Auras ium's on_BC_TRANSACTION callback function. The life
cycle of this approach starts w i th the checking of a descriptor. If the name of the descriptor
is equal to android, content.IContentProvider (described i n the table 6.5) and the transac-

99

t ion name is QUERYTRANS'ACTION, then the hardened application's query () function
is called. I l lustrat ion of this process is described i n figure 6.11.

ProviderRecord
(EmailProvider)

IBinder

3. Create

4. Return IBinder
EmailProvider

IContentProvider.Stub

5. Return IBinder

2. Look up Authority
> IContentProvider.Proxy

6. queryO

ContentResolver 1. queryO

Client application process

Figure 6.11: Content provider interaction

The second restriction method called File protection provides the restriction outside
of the hardened applicat ion. It is related to invocations of the applicat ion by hardened
applications and specifically by sending Andro id ' s SEND_ACTION command. The implemen­
tat ion of an external applicat ion which responses to such action command depends on its
author. It can access the shared content using standard ContentProvider A P I , or it can
access the files directly on the file memory system. For instance, this is the case of ap­
plications such as Google+, Hangouts, MailDroid, because the previous restriction is not
efficient. The solution is the extension of the original applicat ion design wi th the falsified
files. W h e n the applicat ion wants to share the file, this file is moved to another location,
and the new empty file is created i n the same directory which is available to access by
other applications instead of accessing the original file. The name of a backup file is usually
created by adding the dot prefix and pe suffix. For instance the example of backup file w i th
the name file is /pat/to/file/.file.pe.

Another approach can be creating the backup file in the specially protected location.
However, the lifetime of this file should be as smallest as possible, especially during the op­
eration of external sharing applicat ion. In this prototype, the protected file is returned to
its original state immediately after the hardened applicat ion is restored and there is new
open() system function ca l l on the file. In the case of chosen App l i ca t i on 1, the process
is transparent, and the file is not visible to the user. The steps of implementat ion usually
follow this order. Arguments from the query() function are read as the first step. After
that, the content of the second argument - unified resource identifier is compared to the a l l
user-selected tainted files. The restriction is then performed according to user settings de­
fined i n the configuration or by the configuration applicat ion. The communicat ion can be
restricted impl ic i t ly , or the configuration dialog is shown.

In order to ensure the restriction mechanism, the new parcel is created, and this par­
cel replaces passed arguments w i t h the blank values. Regarding to the designed explicit
restriction, this is implemented as the reaction on the read() function event. Moreover,
the read buffer is overwritten or cleaned. This approach can be achieved by a modification
of the operation on the buffer parameter of this system cal l . In the case of overwriting
there is modified only the content referenced by the th i rd parameter.

100

6.4 Configuration

Configuration is implemented as standalone A n d r o i d applicat ion that is capable of defining
the protected private files and adminis t ra t ion of configuration. The selection of private
files is provided by open source project Android file dialog. The graphical user inter­
face is d ivided into two ma in basic parts called fragments. The first fragment informs
the user about selected private files, and there is also a possibil i ty to change the selec­
t ion. The second fragment defines the adminis t ra t ion of configuration for the hardened
applications. The principle of communicat ion w i t h the hardened applications is based on
configuration file usually called private_files.conf and the content, as the name prompts,
contains the list of selected private files. Th is file is currently located inside folder /data/-
data/cz.vutbr.aron.privatefiles/files, as it is the default location used by function onFile-
Output() that is used for opening the private files associated w i t h the main context of
the appl icat ion package. The configuration file is opened wi th in MODE_WORLD_READABLE
mode according to access by the configuration applicat ion and also by hardened applica­
tions.

This method of manipula t ing wi th data is convenient for prototype or testing purposes
only. It usually works on the level of operating system and can be therefore direct ly accessed
by interposed hook functions wri t ten i n native code. The hardened applications load and
maintain the state of current configuration at the beginning of the process and during its
run-time. Man ipu la t ion wi th the configuration file is insured by Utility.Java file provides
the basic functionality such as loadFromFileQ and saveToFile().

The fragment w i th the configuration setting is extending the PreferenceFragment. Th is
implementation of A n d r o i d A P I automatical ly creates the graphical interface known from
the A n d r o i d standard setting screens and remembers the settings u t i l iz ing the A n d r o i d Pref-
erenceManager. Moreover, there is also the implementat ion of the feature that listens to
changed-preference event and maps the saved, shared preferences immediately into the con­
figuration file. Configurat ion screen can set the tainting, type of restriction, a method of
restriction, type of data falsifying and logging feature. In order to achieve this ability,
the configuration file has the first line definition of mentioned parameters. The structure
of the file is depicted in l is t ing 6.1, i n which the shortcut Restr means restriction.

< T a i n t i n g X R e s t r . T y p e X R e s t r . M e t h o d X T h r e a t L e v e l ><Logging>
<Absolute Path to the P r i v a t e F i l e or F o l d e r >
<Absolute Path to the P r i v a t e F i l e or F o l d e r >

Lis t ing 6.1: The structure of configuration file

The protection of configuration applicat ion and also configuration files are not part of
this prototype, and in this case, it can be the weak point of the solution. However, this
prototype should determine that the proposed concept can implement and the behavior of
the permission enforcement is dynamical ly changed during the file manipulat ion.

6.5 Implementation Limitat ion

This section describes the l imi ta t ion of proposed implementation. The implementat ion does
not cover the protection against leakage in a l l circumstances. Th is section describes a few

101

cases in which the protection can be weak or does not work at a l l . Note that this thesis
and mainly this chapter is focused on implementat ion of the prototype, which should define
proof of concept. The implementat ion can contain bugs, errors or vulnerabilit ies. Let 's
discuss three main topics related to l imi ta t ion of the implementation.

Modif icat ion of Applications

In regards to concept, the implementat ion is defined as a layer between an operating system
and the user. Moreover, the instal lat ion and usage of the prototype do not require adminis­
trator access (root access). Owner of the device (or the user) can choose which applications
communicates w i th the underlying operating system v i a the prototype. The B Y O D princi­
ple is defined as using a personal mobile device i n the working environment. There should be
a definition of control which applicat ion is required to be modified by the Auras ium frame­
work wi th the prototype implementation. In order to circumvent any required restriction,
the applicat ion can be omit ted from that modification or removed from the device and
installed again without related system function hooks.

Pre-installed Applications

The second l imi ta t ion is related to pre-installed applications on the system level. Vendor
of the operating system provides a set of applications that are present on the platform.
Appl ica t ions usually persist on the platform and they cannot be removed by standard
principle. These applications can be modified wi th the script and system calls hooks can
be added, but this needs to be done on the image of the related operating system for
the specific mobile device. Also , this image needs to be installed on the mobile device.
Related to B Y O D , the user usually has already functional mobile device w i t h an already
installed operating system.

Tainting of File Content

Implementation of taint ing the file content is handled on the prototype level. The content of
the file is split into smal l blocks, as was already discussed earlier i n this chapter. These small
blocks have a specific size, and for each block, the SHA-256 hash is calculated. The hash
value is saved and compared during the write operation. The result of the comparison is
the category of the file - public or private. In order to circumvent this protection, the smaller
amount of unit needs to be shared/send. For instance, the text document can be shared
through any channel split by letters. Th is technique takes as long as the document has
letters.

6.6 Model of Implementation

The formal definition of implementat ion can be described in the very similar deterministic
F S M as was required. The formal model expresses the file taint mechanism described in
the previous sections of this chapter. A s was already described i n the concept of this work
the files should be divide into two categories - public and private. The decision logic is not
part of this work, but in the prototype, the user has the power to select files and mark
them as private. For the model specification, this action is considered as automatic wi th in
the opening of the file, and the file remains i n the same category for the whole life-cycle of
the automaton.

102

The F S M defines the behavior of one specific file on the mobile device. In order to handle
al l available files (and new ones as well) the amount of automaton is equal to some files
on the mobile device. Therefore the same principle as in the model of required behavior is
used - the F S M is simulated by the T M wi th two tapes and two independent reading heads.
The first tape (input tape) contains the input file operations (with the same transformation
as was described in definition 5.3.1), the second tape (state tape) consisting of F S M state
on the specific file. Note that the formal model is not the precise model of implementation.
The reason is that the model is used in the verification process and the results of verification
need to be computed i n a reasonable amount of t ime.

The formal definition of finite state automaton for implementat ion solution is defined
as FSM = (Q, E , 6, s, F), where

• Q = {s, Spu, Spr, Wpu, Wpr, Cpu, Cpr} - is a finite set of states

• E = {open_public, open_private, read_public, read_private, write_public,
write_private, share_content, copy, seek__position, close_public, close_private} - is
a finite input alphabet

• 5 - is a state-transition function of type Q x E —> 2®

• s £ Q - is an in i t i a l state

• F C Q, F = {s, Cpu, Cpr} - is the set of final states

Figure 6.12 describes the finite state automaton of the implementat ion. The top half
is defined as working wi th public files, and the bo t tom part is for working wi th private
files. Note that the implementat ion handle this operation according to their parameters or
file path, but for the formal model is more transparent w i th two possible transitions. A s
was described the decision logic in the state s is defined by the user selection. The history
of the file persists dur ing the first t ransi t ion from state s into one of the possible states -
Spu, Spr. The meaning of the states is: s - start, Spu - start public, Spr - start private,
Wpu - work wi th public, Wpr - work wi th private, Cpu - closed public and Cpr - closed
private.

The ma in logic is provided dur ing operations (transitions) on states Wpu or Wpr, which
defines the implementat ion logic layer, already presented. This layer consists of guarding
the content of opened files, working wi th files memory blocks and managing file operations.

Transitions or state-transition function defines the user operations wi th any applicat ion.
The sequence of user operations can be described as a sequence of system functions which
are already defined as the set of input alphabet E . The definition of state-transition function
5 is depicted in table 6.7.

Note that the transi t ion called share is one of a l l possibilities for sharing provided by
the operating system and also installed applications. Accord ing to many possible shar­
ing methods, the model has only one transi t ion name which wraps a l l possible choices.
Moreover, this sharing method is available during public file operations, because a l l shar­
ing methods use ioctlQ function, which can be stopped inside hardened applicat ion by
the implementat ion of the prototype.

This F S M defines the behavior for one specific file on the mobile device. To control a l l
possible files, the T M can be used, and the same principle as during the model of required
behavior is defined here as well . Therefore the model of the T M is the same, and it is
i l lustrated by figure 6.13. The whole formal definition of Tur ing machine as a model is
TM = (Q, E , A , r , 6, s, F), where

103

8(s, open_public) = {Spu}
5(Spu, read_public) = {Wpu}
5(Spu, write_public) = {Wpu}
5(Spu, close_public) = {Cpu}
5(Wpu,read_public) = {Wpu}
8(Wpu, write_public) = {Wpu}
5(Wpu,write_private) = {Wpu}
8(Wpu, close_public) = {Cpu}
5{Cpu, open_public) = {Spu}
8(Wpu, share_content) = {Wpu}
5(Wpu, copy) = {Wpu}

Table 6.7: Defini t ion of si

5(s, open_private) = {Spr}
5(Spr, read_private) = {Wpr}
5(Spr, write _pr iv ate) = {Wpr}
5(Spr, close_private) = {Cpr}
5{Wpr, read_private) = {Wpr}
5{Wpr, write_private) = {Wpr}
5(Wpr, seek_position) = {Wpr}
5(Wpr, close_private) = {Cpr}
5(Cpr, open_private) = {Spr}
5(Wpu, seek_position) = {Wpu}

e-transition function (5).

open_public

open_public

open_private H
S p i 7 Fi id private,

write_private

close_private

share_content,
read_public,
write_public,

write_private,
copy,

seek_position

read_private,
write_private,
seek_position

open_private close_private

Figure 6.12: F in i t e state machine defines the implementat ion behavior for file operations.

• Q = {1, 2, 3, 4, A, R} - is a finite set of states.

• A - is a blank symbol of the tape denoting the unused space on the input tape.

• S \ { A } - is the set of input symbols, that is, the set of symbols allowed to appear in
the in i t i a l tape contents. This alphabet appears on the first tape only.

• T = {Spu, Spr, Wpu, Wpr, Cpu, Cpr} - is a finite set of tape alphabet symbols which
appear on the second tape only.

• 6 : (Q \ F) x S | J { * } x T | J { * } - > Q x F\J{L, R, } - is a t ransi t ion function, where
* is any symbol , L is left shift, R is right shift, and is no-operation symbol.

• s £ Q, s = 1 - is the in i t i a l state.

• F C Q, F = {A, R} - is the set of final states.

104

The allowed input symbols on input tape are the files represented i n the form of se­
quences of symbol I , as was already defined i n definition 5.3.1, and the name of operations
on these files. Legal input can be defined as regular expression 6.1. After reading the symbol
from the input tape (first tape of T M) , the reading head moves to the right automatical ly
when the reading possible according to state-transition function.

E = I+[open_public\open_private\read_public\read_private\write_public (6-1)

\write_private\share_content\seek_position\copy\close_public\close_private]

The second tape of the T M simulates finite state automaton for implementat ion i n each
cell of this tape. Therefore the cell of the second tape consists of empty symbol A denoting
that w i th the specific file representing the sequence of symbol I and point ing to this cell
w i th empty symbol was not already used (opened). Otherwise, the symbol of the same cell
can have only one of the allowed symbols defined by T.

(I, *)/R

(*, - $) / L

Figure 6.13: Tur ing machine defines implementat ion behavior

Transi t ion function between states of T M is defined by the 5 in the table 6.8. Moreover
the symbols (_) and (*) have the specific meaning. The symbol of star denotes the wi ld ­
card for any symbol on the tape. O n the other hand, the symbol (_) means no-operation
on the reading head, i n other words, the reading head remains in the same posit ion.

Tur ing machine for implementat ion behavior halts i n two possible use cases. The first
one defined by the reading the whole input tape and when there is no input (the symbol A
is on the input tape) thus the t ransi t ion into the accepting state A is performed.

The second hal t ing the T M is dur ing the wrong input tape symbol, such as the operation
without the prefix of symbols I or not allowed the sequence of steps defined in the finite
state automaton for implementation. In this case, the t ransi t ion into rejecting state R is
performed.

105

file:///write_private/share_content/seek_position/copy/close_public/close_private

I, *)--
,*,*) =
,*,*) =
,open_
,open_
,read_
, write
,read_
, write
, write
, close_
, close_
,seek_
,share

= { (2 , Ä) }

= { (4 , ü) }

public, A) = { (3 , S p u) }
public, Cpu) = { (3 , S p u) }
public, Spu) = { (3, VFptt) }
jpublic, Spu) = { (3, W p i t) }
public, Wpu) = { (3, Wpu)}

_public, Wpu) = { (3, Wpu)}
_private, Wpu) = { (3, Wpu)}
jmblic, Wpu) = { (3, Cpu)}
jmblic, Spu) = { (3, Cpu)}
position, Wpu) = { (3, Wpu)}
_content,Wpu) = { (3, Wpu)}

8(1,A,*) = {(A,_)}
5(2,1,*) = {(2, R)}
8(4, *,-$) = { (4, L)}
5(2, open_private, A) = { (3, S p r) }
5(2, open_private, Cpr) = { (3, S p r) }
5(2, read_private, Spr) = { (3, V F p r) }
8(2,write_private, Spr) = { (3, V F p r) }
8(2,read_private, Wpr) = { (3, V Fp r) }
8(2,write_private, Wpr) = { (3, V F p r) }
5(2, copy , W p u) = { (3, Wpu)}

8(2,close_private,Wpr) = { (3, C p r) }
8(2, close_private, Spr) = { (3, C p r) }
8(2, seek_position, Wpr) = { (3, Wpr)}
8(4,*,$) = {(!,_)}

Table 6.8: definition of state-transition function (8).

6.7 Summary
This chapter presented the system design that should satisfy the model of required behav­
ior. The description covers the implementat ion details about the prototype of the solution,
which defines its behavior that is required. A t the beginning of the chapter, the framework
which was used for the prototype was introduced wi th its capabilities and l imi ts . The pr in­
ciples of the proposed solution for the specific mobile platform was defined i n technical
aspects and programming point of view. Design and the implementat ion of the proto­
type define the required behavior and discuss new approaches to the solution. There were
presented two types of ta int ing principle, and one of them was implemented.

The second part of this chapter describes the formal model of the implementation.
In order to simplify the verification process, the model of implementat ion was defined
in the same format like the model of required behavior has. The Tur ing machine defines
the abi l i ty to model the unl imi ted amount of files, and the behavior is described by the finite
state automaton, that is simulated by the Tur ing machine.

Next chapter discusses the verification process, that should confirm or deny the satis­
faction of implementat ion model w i th the model of required behavior.

106

Chapter 7

Formal Verification

In the context of software systems, formal verification [156] is the act of proving or dis­
proving the correctness of proposed systems or underlying parts of the intended systems
to a part icular formal specification or property using formal methods (particular k ind of
mathematical ly based techniques for the specification).

The verification of software systems is done by providing a formal proof of an abstract
formal model of the system, the correspondence between the formal model and the nature
of the system being otherwise known by construction.

Related to the thesis, the verification process was chosen i n order to prove or disprove
that the implementat ion solution satisfies the required behavior. There exist other ap­
proaches of proving behavior between two models in a less formal way, such as debugging
or testing for required behavior and demonstration of its results w i th few examples. Ver i ­
fication seems better format for that proves related to the results of existing tools. These
tools usually provide the answer about the required properties satisfaction. Since these
properties are usually satisfied one sentence is enough. Otherwise, the counterexample is
usually provided, which is more helpful than just one sentence about disproving, which is
the result of other techniques (debugging or testing). Next sections discuss the verification
approaches and selection of the conventional method and software for verifying implemen­
tat ion of the prototype (its model) and the model of required behavior. Descript ion of
existing software tools dedicated to verification is also part of this chapter. Therefore,
there is no need to write own verification tool , because there are lots of existing solutions
aimed at this

7.1 Verification Approaches

The verification process can be performed in various formats related to the formal model
definition. One approach and formation is model checking [], which consists of a system­
atically exhaustive exploration of the mathematical model . Mathemat ica l models used for
model checking are possible finite state machines, but also for some infinite models where
infinite sets of states can be represented efficiently finitely by using abstraction or taking
advantage of symmetry. It consists of exploring a l l states and transitions i n the model , by
using smart and domain-specific abstraction techniques to consider whole groups of states
in a single operation and reduce computing time.

The properties to be verified are often described in temporal logic [84], such as linear
temporal logic (L T L) [203], property specification language [136], or computat ional tree

107

logic (C T L) [7]. The advantage of model checking is that it is often fully automatic.
However, its pr imary disadvantage is that it does not work i n general scale to large systems,
symbolic models are typical ly l imi ted to a few hundred bits of state, while explicit state
enumeration requires the state space being explored to be relatively small .

There exist many tools for model checking verification i n these days. Besides these tools,
general purpose formal verification too l can be used to verify two models. However, it is
better and more intuit ive to use one of the existing tool expl ic i t ly designed for verification
two models. One of the well known general purpose verification tools can be considered Spin
[108]. Spin targets the efficient verification of multi-threaded software, not the verification
of hardware circuits. The tool supports a high-level language to specify systems descriptions
called P R O M E L A (short for PROcess M E t a LAnguage) . Sp in has been used to trace logical
design errors i n distr ibuted systems design, such as operating systems, data communications
protocols, switching systems, concurrent algorithms, railway signaling protocols, control
software for spacecraft or nuclear power plants. The tool checks the logical consistency of
a specification and reports on deadlocks, race conditions, different types of incompleteness,
and unwarranted assumptions about the relative speeds of processes.

Another tool for modeling, validation, and verification of real-time systems called U p -
paal [36] is a parallel composit ion of t imed automata extended w i t h data types (bounded
integers or arrays). It is appropriate for systems that can be modeled as a collection of
non-deterministic processes w i th finite control structure and real-valued clocks, communi­
cating through channels or shared variables. T y p i c a l appl icat ion areas include real-time
controllers and communicat ion protocols, in particular, those where t iming aspects are
cr i t ical . Uppaa l consists of three main parts: a description language, a simulator, and
a model-checker. The description language is a non-deterministic guarded command lan­
guage wi th data types (e.g., bounded integers, and arrays). It serves as a modeling or
design language to describe system behavior as networks of automata extended w i t h clock
and data variables. A simulator is a val idat ion tool which enables examination of possible
dynamic executions of a system during early design (or modeling) stages and thus provides
an inexpensive mean of fault detection before verification by the model-checker which covers
the exhaustive dynamic behavior of the system. The model-checker can check invariant and
reachability properties by exploring the state-space of a system, i.e., reachability analysis
concerning symbolic states represented by constraints.

Tools dedicated to the verification of security are for instance Cryp tyc [96], Scyther [58],
L y S a [45] and Choreographer []. There are also tools targeting on a wide use and appli­
cabil i ty to pract ical issues such as A V I S P A tool suite [14], and A V A N T S S A R platform [13].
A V I S P A (automated val idat ion of internet security protocols and applications) is a tool
funded by the European Union , which provides a push-button, industrial-strength tech­
nology for the analysis of large-scale Internet security-sensitive protocols and applications.
A V I S P A uses several different model-checking approaches. P ro toco l models are wri t ten in
the high-level protocol specification language (H L P S L) . Protocols are specified i n H L P S L
regarding their roles, using control flow patterns, data structures, alternative adversary
models, as well as different cryptographic primitives and their algebraic properties. H L P S L
specification has a declarative semantics based on Lampor t ' s temporal logic of actions[130]
and an operational semantics defined regarding a rewrite-based formalism called the inter­
mediate format. Once the model of the system is specified in H L P S L , A V I S P A translates
it into the intermediate format, which is an input format for A V I S P A back-end model
checkers.

108

A V I S P A utilizes four back-end tools for val idat ion of security protocols: On-the-fly
model-checker (O F M C) , constraint-logic-based attack searcher (C L - A t S e) , SAT-based model-
checker (S A T M C) , and tree automata based on automatic approximations for the analysis
of security protocols (T A 4 S P) . The advantage of having mult iple back-ends is that only one
model can be specified and it can be analyzed wi th four different tools.

A V A N T S S A R (automated validat ion of trust and security of service-oriented architec­
tures) is a follow-up project of A V I S P A , introducing new languages for describing mod­
els, the A V A N T S S A R specification languages A S L a n + + and A S L a n . A S L a n + + [1 I] is
a high-level formal language similar to the H L P S L , used for specifying security-sensitive
service-oriented architectures, their associated security policies, and their trust and security
properties. Translat ion formally defines the semantics of A S L a n + + to A S L a n , the low-level
specification language that is the input language for the back-ends of the A V A N T S S A R
Platforms - O F M C , C L - A t S e , and S A T M C :

• O F M C [32] combines many techniques to enable the efficient analysis of security prop­
erties. F i r s t , O F M C uses lazy data types as a simple way of bui ld ing efficient on-the-fly
model checkers for security properties w i t h very large, or even infinite, state spaces.
A lazy data type is one where data constructors bu i ld data without evaluating their
arguments. Second, O F M C models the adversary in a lazy fashion, where adversary
communicat ion is represented symbolical ly and solved during a search. T h i r d , while
O F M C performs verification for a bounded number of sessions, it works w i th symbolic
session generation, which avoids enumerating a l l possible ways of instantiat ing possi­
ble sessions. Four th , O F M C exploits a state-space reduction technique, inspired by
partial-order reduction, called constraint differentiation [164]. Constraint differentia­
t ion works by el iminat ing certain kinds of redundancies that arise i n the search space
when using constraints to represent and manipulate the messages that may be sent
by the adversary. F ina l ly , O F M C also provides some l imi ted support for handling
different equation specified operators on messages.

• C l -A t se [216] represents protocol states symbolical ly as collections of non-ground facts,
which record the states of different threads, the messages sent to the network, and
the adversary knowledge. In particular, constraints are used to describe what the dif­
ferent agents know, and a constraint calculus is used to solve for what they can know,
from messages previously exchanged, i.e., the calculus is used to solve a variant of
the non-ground intruder deduction problem. C L - A t s e was designed to allow the easy
integration of new deduction rules and operator properties.

• S A T M C [15] is an open platform for model checking of security services. S A T M C re­
duces the problem of checking whether a protocol is vulnerable to attacks of bounded
length to the satisfaction of abi l i ty of a proposit ional formula which is then solved by
a state-of-the-art S A T solver. It is done by combining a reduction technique of proto­
col insecurity problems to planning problems and SAT-reduc t ion techniques developed
for planning and Lampor t ' s Temporal Logic that allows for leveraging state-of-the-art
S A T solvers. S A T M C provides some distinguishing features, including the abi l i ty to
check the protocol against complex temporal properties (e.g., fair exchange); analyze
protocols (e.g., browser-based protocols) that assume messages are carried over secure
channels.

Another approach is deductive verification []. It consists of generating from the system
and its specifications (and possibly other annotations) a collection of mathematical proof

109

obligations, the t ru th of which imply conformance of the system to its specification, and
discharging these obligations using either interactive or automatic theorem provers. Th is
approach has the disadvantage that it typical ly requires the user to understand in detail
why the system works correctly, and to convey this information to the verification system,
either in the form of a sequence of theorems to be proved or i n the form of specifications
of system components (e.g. functions or procedures) and perhaps sub-components (such as
loops or data structures).

7.2 Verification Tool Selection

Related to the topic of this thesis the Uppaa l verification tool was chosen. The graph­
ical user interface dedicated to describing the model i n the form of the automaton (or
more cooperating automata i n the form of processes) seems satisfactory for the required
purposes. The Uppaa l is a toolbox for val idat ion (via graphical simulation) and verifica­
t ion (via automatic model-checking) of real-time systems. It consists of two main parts:
a graphical user interface and a model-checker engine. The graphical user interface is used
for creating models for simulation and or verification. These models need to be specified
in the format of Uppaal , that is described in this section wi th examples, and there are
also mentioned the differences related to unified modeling language (U M L) [69], that is
considered as the standard modeling language.

The engine part of Uppaa l tool is dedicated to verification, and it is by default executed
on the same computer as the user interface, but can also run on a more powerful server. For
this thesis, the same machine is used for creating models, s imulation and also verification.
Formal models presented in previous chapters can be defined in the format or language
of Uppaa l w i th some minor modifications. In order to provide this transformation from
the formal definition of automata into the Uppaa l format, the resulting format needs to be
defined.

The idea is to model a system using t imed automata [8], simulate it and then verify
properties on i t . T i m e d automata are finite state machines wi th t ime (clocks). The formal
definition of t imed automaton can be expressed as TA = (L , Iq, C, A, E, I), where

• L is a set of locations,

• 1$ £ L \s the in i t i a l location,

• C is the set of clocks,

• A is the set of actions, co-actions, and internal r-actions,

• E e L x A x B(C) x 2C x L is a set of edges between locations wi th and action,
a guard and a set of clocks to be reset,

• I : L —> B{C) assigns invariants to locations.

A system consists of a network of processes that are composed of locations. Transitions
between these locations define how the system behaves. The simulat ion step consists of
running the system interactively to check that it works as intended. Then Uppaa l can ask
the verifier to check reachability properties, i.e., i f a part icular state is reachable or not. It
is called model-checking, and it is an exhaustive search that covers a l l possible dynamic be­
haviors of the system. More precisely, the engine uses on-the-fly verification combined wi th

110

a symbolic technique reducing the verification problem to that of solving simple constraint
systems [239, 134]. The verifier checks for simple invariants and reachability properties for
efficiency reasons. Other properties may be checked by using testing automata [115] or
the decorated system wi th debugging information [143].

The description language of Uppaa l , which is based on graphical user interface, differs
from standard U M L representation of finite state automaton. Some major differences are
presented in figure 7.1.

Figure 7.1: Example of Models w i th action

Note that these two models define the same automaton. The significant difference is
the in i t i a l state, which is defined i n U M L (left image) i n figure 7.1 depicted by the first
arrow from no-where and on the right side of the same figure is the automaton i n the Uppaa l
format w i t h in i t i a l state marked as the locat ion wi th double border. The double border is
used i n U M L for the finite state, which is not expl ic i t ly defined i n Uppaa l tool . F in i t e state
in Uppaa l can be presented as a location from which does not exist any other t ransi t ion to
another state.

The transi t ion between states can contain the condit ion which is called guard in Uppaa l .
W h e n the condit ion is evaluated as positive (correct) the transi t ion is enabled. Otherwise,
this t ransi t ion is not enabled, and the system remains in the same state. W h e n a variable
is part of a condit ion, it needs to be declared as a local variable of the state machine
model or global variable of the system. Guards can restrict the possible state changes
by disabling transitions. However, it can also extend the possible transit ion. In order to
form more complex transitions, these actions can be assigned to the transit ion. A n action
and the transi t ion are executed together. Act ions are usually t ided wi th a variable which
updates.

A system in Uppaa l is composed of concurrent processes, each of them modeled as
an automaton. The automaton has a set of locations (states). Transitions are used to
change location. To control when to take a transi t ion (to "fire,, i t) , it is possible to have
a guard and a synchronization. A guard is a condit ion on the variables and the clocks
saying when the t ransi t ion is enabled. There are two different types of synchronization:
synchronization on simple channel or on broadcast channel. B o t h synchronizations require
the declaration of the channel of the synchronization: message sending is realized on these
channels. The synchronization mechanism i n U p p a a l is a hand-shaking synchronization:
two processes take a t ransi t ion at the same time, one w i l l have an a! and the other an
a?, w i th a being the synchronization channel. W h e n taking a transit ion, two actions are
possible: assignment of variables or reset of clocks.

I l l

There is a synchronization on a single channel a only i f there is a process (state machine)
w i th an actual location from where there is an outgoing enabled edge (enabled transition)
on which a! is set, and there is the other process w i th an enabled transi t ion on which a? is
set. This is depicted in figure 7.2. In the frames there are parts (locations) of the different
processes, the top locations are the actual states of the processes. A s far as the process
in the left frame can send a synchronization message and the other process can receive it ,
the synchronization is enabled, and both transitions are executed together. However, i f
there were not a synchronization message sending transi t ion or a receiver transit ion, then
the synchronization would be disabled, and the transitions are also disabled.

If there are mult iple receivers on the channel, the synchronization is executed only
wi th one of them (chosen randomly) . Broadcast synchronization happens between one
sender and mult iple receivers (amount of receivers could be zero and more). The receiver
behaves s imilar ly to the simple synchronization (if the transi t ion is enabled and there is
a synchronization message, the transi t ion can fire). However, there is a difference from
the sender point: sender can execute the transit ion wi th synchronization if there are multiple
receivers and a l l of the receiver processes execute the synchronization transit ion.

Two formal model was defined i n previous chapters, and these models need to be verified.
More precisely, the model of implementat ion needs to be verified wi th the model of required
behavior. However, these models were defined formally as Tur ing machine automata, and
both have the second tape wi th the simulation of deterministic finite state automaton.
Accord ing to the fact that both models have the same Tur ing machine, the verification
process is focused on model checking of presented deterministic finite state automata. Tur­
ing machine was used i n both cases i n order to handle mult iple files on a mobile device.
For verification process is convenient to have a static amount of files which is not changing
during the process. Moreover, Tur ing machines perform the same behavior for both models
- model of required behavior and model of implementation. Since there are no differences
between Tur ing machines, the verification of this automaton is omitted.

Note that proposed model of implementat ion is weaker than the precise model . There­
fore more vulnerabilit ies can be found, and it is expected behavior. In order to be more
precise, the model can be adjusted, and a process of verification can be started again.

Definit ion of models is provided in the format of Uppaa l tool , which was already de­
scribed i n this chapter. Models are verified wi th a user process. The user process is another

Figure 7.2: Simple synchronization example i n Uppaa l tool

7.3 Verification Models

112

finite state machine, which is non-deterministic. A user is simulated by this machine, which
sends commands to both models. These commands are depicted randomly by the definition
of non-deterministic t ransi t ion by Uppaa l . For the thesis, three types of user are created.
The first one is a general user, which sends a sequence of a l l possible operations defined by
expression 7.1 to both models (model of required behavior and model of implementation).
The second one is l imi ted to work wi th public files only (sends operations which are related
to public file only) . The last one is the same but sends operation l imi ted to private file
usage.

operations = {open_public, open_private, read_public, read_private, write_public,

write_private, share_content, seek_position, copy, close_public, close_private} (7.1)

Commands Declaration

In order to verify working wi th a sequence of commands defined in expression 7.1, there
needs to exist declaration of these commands. Unfortunately, Uppaa l does not support data
types such as string or array of characters. Therefore, the set of commands can be encoded
into numbers. Each command has its constant value. Th is value can be then assigned to
share variable called command. This command variable has in i t ia l ly zero value, which does
not belong to any command.

Example of declaration these commands is described in l is t ing 7.1.

/ / s h a r e d command v a r i a b l e
i n t command = 0;

/ / c o n s t a n t s of command t y p e
c o n s t i n t o p e n _ p u b l i c = 1
c o n s t i n t o p e n _ p r i v a t e = 2
c o n s t i n t r e a d _ p u b l i c = 3
c o n s t i n t r e a d _ p r i v a t e = 4
c o n s t i n t w r i t e _ p u b l i c = 5
c o n s t i n t w r i t e _ p r i v a t e = 6
c o n s t i n t s h a r e _ c o n t e n t = 7
c o n s t i n t s e e k _ p o s i t i o n = 8
c o n s t i n t copy = 9
c o n s t i n t c l o s e _ p u b l i c = 10;
c o n s t i n t c l o s e _ p r i v a t e = i i ;

L i s t ing 7.1: Declarat ion of variables for verification

Synchronization Channels

To set required behavior in Uppaa l tool mechanism for synchronization was defined. These
two mechanisms are finite state automaton, which is wait ing for the synchronization com­
mand and the fire another synchronization signal through a different channel. The reason
for that is the update of the variable is provided as the last part of the transit ion. For
instance lets have two states and one transi t ion wi th condit ion that a == 3, wait ing for
channel a?, and wi th update the variable a = 4- The evaluation is defined as when the signal

113

arrives from channel a, and the condit ion is evaluated as true, then the update is performed.
In order to have two processes (state machines) synchronized wi th message passing value
through shared variable, it is required to define another process (state machine).

The definition of channels is depicted on l is t ing 7.2. Declarat ion of channels, constants,
and the shared variable command is defined on the global level. The reason is that each
process (each model of automaton) can access its values and the synchronization is provided
for the whole system.

// s y n c h r o n i z a t i o n c h a n n e l s
chan read_command;
chan next_command;
chan u s e r _ a c t i o n ;
b r o a d c a s t chan r e a d ;

Lis t ing 7.2: Declarat ion of channels for verification

Unfortunately Uppaa l tool does not support value passing through the channels [36],
but this can be simulated by shared variable and few synchronization mechanism. Note
that it is not clean to do read!, x = 3 and read1?, y = x, where read is a channel and x, y
are variables.

For this thesis, two synchronization processes are needed. The first one is situated
between user model (definition follows i n this section) and shared command variable, which
holds the message. Note that the user sends commands to the model of required behavior
and also to the model of implementat ion v ia the shared command variable. The user
does not read the value. It is one direction flow of information. W h e n the user sends its
command, there is need to be wri t ten, and afterward, these models can read the value.
The mechanism of the synchronization can be defined as two state finite state automaton,
called as the Wri te process i l lustrated i n figure 7.3.

1 - 0 * 1

user action? next command!

Figure 7.3: Wri te process synchronization model

Figure 7.3 describe the automaton which is wait ing for a signal from the channel called
user_action? that is sent from user model . After that, the transi t ion from the in i t i a l
location is performed. After that, the second transi t ion is executed, and the signal is sent
through the channel next_command.

Similar automaton is used for reading a value from the shared variable command.
The Reader process also has two states wi th transi t ion related to channel reaction only.
This process waits for new value i n the command variable and the event from the Wri te pro­
cess. W h e n event through next_command channel arrives, and the next step is produced,

114

the broadcast channel read fire the event to the model of required behavior, the model of
implementation, and to the user model . The first two models read the value an if is it
possible perform the transi t ion between their states. The user model just goes back to its
in i t i a l state and can produce next command.

Figure 7.4 shows the automaton for synchronizing the reading of shared variable com­
mand. The automaton waits for a signal on channel next_command? that is sent from
the Wri te r process. Afterwards, the transi t ion from the in i t i a l state is performed. The next
t ransi t ion in this process sends the signal through the channel read! to subscribers of this
channel.

Model of User

A user is unpredictable part of the verification process, and therefore it is defined as a non-
deterministic automaton. The reason for non-determinism is that the transi t ion is chosen
randomly by the Uppaa l verification engine. There is no defined pattern of the sequence of
commands that the user should provide. The set of a l l available commands was defined by
expression 7.1 and the general user model should be able to send each command to wai t ing
models (model of required behavior and model of implementation).

More precisely, the user model should provide the step of its automaton, and the result
writes into the shared variable command. T h e n synchronization processes perform their
tasks. The general user model is i l lustrated i n figure 7.5. Note that there appear two lines
on some transitions, the reason is that the first line defines the update of shared variable
command dur ing the transi t ion and also sending the signal on the channel user_action to
its listeners.

The user model starts its execution in s state. Since there is no guard on any transi t ion
from state s the Uppaa l chose randomly which transi t ion w i l l be done. E a c h transi t ion
from state s is defined as sending the signal through channel user_action. The receiver
of this channel is the Wri te r process. The result of the transi t ion is the change of shared
variable command.

After the successful t ransi t ion into any state except the state s the execution of this au­
tomaton is blocked un t i l the signal from channel read arrives. The read channel synchronize
the reading of the value of shared variable in a l l processes.

The model of behavior and also the model of implementat ion cannot provide their
first t ransi t ion without the decision of file type (public or private). The synchronization
processes (Writer and Reader) were defined, and user model (user process) provides the be­
havior of a prospective user. These processes are necessary for performing model checking

next command? read!

Figure 7.4: Reader process synchronization model

115

command = read_public

0-
user_action!

command = open_private
user action!

scommand = open_public
a ^ user action!

read?
read?

read?

read?

0"

read?

command = close_private/
d X —

user action!
command = close_public

user action!

command = read_private
user_action!

command = write_public
user_action!

command = write_private^-
user_action! X .

/
read?

<D
<D

read?
read?

command = seek_position
user action!

read?

X h

read?
command = share_content

user action
command = copy
user action!

Figure 7.5: General user nodel for verification

on two formal models defined in previous chapters. The models are defined in the Uppaa l
format in the following sections.

Verification Model of Required Behavior

A model which defines required behavior was defined i n the formal format consisting of
Tur ing machine for handling mult iple files on the mobile device and the decision logic
formally defined as finite state automaton. This automaton is described i n the Uppaa l
format and marked as the required behavior model . The model is i l lustrated i n figure 7.6.

Note that the model is equal to its formal definition. The evident difference is that
the Uppaa l model does not have finite states. Th is model is modeled as a never-ending
finite state machine. Th is aspect cannot be considered as the wrong model . Moreover,
this difference does not have any impact on the verification results. The model has on its
transitions one guard (condition), which can be identified by the symbol of equality (==)
and communicat ion wi th synchronization channel read?. Some transitions can be done v ia
more than one specific command.

Therefore more choices are defined by O R symbol (||). The synchronization channel
read is wai t ing for the Reading process, which informs about new command presented in
the shared variable command.

116

command == read_public ||
command == write_public ||
command == share_content

read?

command == open_public
read?

command == open_public
read?

'>\SPU1 command == c lose_publ i c*^y '
read?

M s P r /
command == open_privateV-/ command == close_private

read? T \^ read?
command == open_private

read?

command == read_private ||
command == write_private

read?

Figure 7.6: M o d e l of required behavior i n Uppaa l format

Ver i f i ca t ion M o d e l of I m p l e m e n t a t i o n

A formal model of implementat ion has the same feature wi th Tur ing machine. Moreover,
the Tur ing machine has the same behavior as the model of required behavior has. The main
implementation logic is defined as finite state automaton, and this logic is also presented in
the Uppaa l format i n figure 7.7. F i l e operations are mainly defined in the states Wpu and
Wpr.

These two states operate not on file level, but w i th memory, that is tainted, and the flow
of data is handled in the implementation. The model of implementat ion i n U p p a a l format
does not have a finite state, as was already described earlier.

States Cpu and Cpr are finite in the formal model and the reason is that during these
states opened file is released from memory. However, users usually do not close file manually,
but they close the applicat ion itself which perform closing operation on behalf of a user.
M o d e l i n U p p a a l tool is defined as a process which is opened applicat ion wi th a file, and
the life-cycle is never ended. The verification process is not focused on the finite states, but
to the whole behavior of model related to required behavior.

7.4 Summary

This chapter introduces verification process as the measurement of the checking the prop­
erties represented as pr imary states between the model of required behavior and model of
implementation. D u r i n g this chapter, the verification tools were described, and U p p a a l was
chosen as an appropriate tool for model checking i n order to verify proposed solution wi th

117

command == close_publlic
command == open public /[A . read?

read? ((C p u K "
command == close_public

read?

command == open_public
read?

command == read_public ||
command == write_public

read?
->(Wpu

command == open_private
read?

command == open_private
read?

command == read_private ||
command == write_private

read?

command == close_private
read?

>(Wpr

command == close_private
read?

Figure 7.7: M o d e l of implementat ion i n U p p a a l format

the model of required behavior. The implementat ion details of verification process w i th
the variables and command declarations were described, and source code presented.

Moreover, the models were specified i n the format of the U p p a a l and synchronization
processes needed for verification process were also described. These synchronization pro­
cesses were used for simplifying the message passing between a user and the models. In
order to define the user, the addi t ional model was introduced. This model performs sending
the commands to both checking models.

The next chapter provides verification experiments w i th these models inside Uppaa l
verification tool .

118

Chapter 8

Verification Experiments

This chapter introduces verification experiments based on models, which are processes
in the verification tool . Models were defined by the graphical user interface and then
simulated. The next phase of confirmation that the implementat ion solution model satisfy
required behavior is called verification. Verification is focused on user actions that are
sends to both models (model of required behavior and model of implementation). Result
of the verification process is the report consisting of required behavior defined by formulas
defined in this chapter and their results provided by U p p a a l engine.

A i m of the verification experiments is confirmation that the implementat ion satisfy
required behavior. Otherwise the Uppaa l engine should find the counterexample. W h e n
counterexample is found, the discussion about that occurrence is provided. Since the model
of implementat ion i n any rule does not satisfy the required behavior does not necessarily
means that the implementat ion is wrong.

There are two possible explanation before the experiments starts. The first case can be
that the model of implementat ion is simplified and does not cover the whole functionality of
implementation. In this case the model can be justified or updated in the specific sections,
that does not fulfill the required behavior. The second reason can be identified on the side of
model of required behavior, which for example does not provide transi t ion for specific user
command. In this case the model of required behavior has different state than the model of
implementation. The results of each experiment i n this chapter are discussed wi th attention
to details, when any verification rule does not confirm required behavior.

Verification experiments are based on Uppaa l query language [36], which is based on
t ime computat ional tree logig (T C T L) quantifiers [95]. In very short description, the queries
available in the U p p a l verifier engine are:

• E < > p : there exists a path where p eventually holds.

• A[] p : for a l l paths p always hold.

• E[] p : there exists a path where p always holds.

• A < > p : for a l l paths p w i l l eventually hold.

• p —> q: whenever p holds q w i l l eventually holds.

where p and q are state formulas. For example formula Pl.cs means that the process
(a state machine) P is i n the state cs. The full grammar of the query language is available
in the on-line help of Uppaa l tool . Moreover U p p a l verification tool provides verification

119

for these properties: reachability, safety and liveness property, which uses the previously
defined queries. Dur ing this chapter three examples of verification are presented. These
verification examples should provide introduct ion into verification of two models, in which
the user provides sequence of commands to both models and these models should be in
consistent state. The consistency is checked by properties defined i n Uppaa l query language.

Related to definition of synchronization models, user model, and both models that are
verified (model of required behavior and model of implementation), the following sections
uses the terms model and process i n the same meaning. The reason is that the formal
model presented in Uppaa l format is dur ing verification process transformed into process.

8.1 Experiment 1
The first verification experiments is focused on the basic model checking which relates be­
tween states of the required behavior automaton and implementat ion automaton. The ver­
ification is dedicated to check if bo th models are i n the same states when user sends com­
mands (file operations) into applicat ion. The experiment uses user model as was defined in
previous section, and it is called UserProcess B.4 .

Moreover, model of required behavior is named FSMRequiredProcess B .2 , model of im­
plementation is called FSMImplementationProcess B . 3 . In addi t ion, the verification process
have synchronization processes presented earlier. E a c h state machine is defined as process
in the Uppaa l verification tool .

In order to check the consistency of in i t i a l states of automata, the rules depicted on
l ist ing 8.1 are used. In other words this mean that the model of required behavior (F S M ­
RequiredProcess) is i n the same in i t i a l state as the model of implementat ion (FSMImple ­
mentationProcess) .

A[] F S M R e q u i r e d P r o c e s s . s i m p l y F S M I m p l e m e n t a t i o n P r o c e s s . s

A[] F S M I m p l e m e n t a t i o n P r o c e s s . s i m p l y F S M R e q u i r e d P r o c e s s . s

Lis t ing 8.1: Verification rule for in i t i a l states

Next rules depicted i n l is t ing 8.2 verify the states related to opened file. Since the file
is open as public i n the model of required behavior it is not possible to have the same file
opened as public in the model of implementat ion and vice versa. In details, when the model
of required behavior is in state Spu (working wi th public file), the model of implementat ion
should not be i n the state Spr or Wpr (working wi th private file). The same should be
val id for working wi th private file i n model of required behavior w i th state Spr and model
of implementat ion and states Spu or Wpu.

A [] not (F S M R e q u i r e d P r o c e s s . S p u and
(F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r))

A [] not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r)
and (F S M R e q u i r e d P r o c e s s . S p u))

A[] not (F S M R e q u i r e d P r o c e s s . S p r and
(F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u))

120

A [] not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r))

Lis t ing 8 .2: Verification rules for opened file

In addit ion, working state of file in model of required behavior is named as Spu or Spr
(according to file category). The same state is expected in the state of implementation, thus
next two rules are presented. Related to implementat ion details (and also formal model)
the working status for file can be selected i n one of the possible combination of states Spu
and Wpu or Spr and Wpr. These properties are verified wi th following rules presented in
l ist ing 8.3.

A [] F S M R e q u i r e d P r o c e s s . S p u im p l y
(F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u)

A[] (F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u)
i m p l y F S M R e q u i r e d P r o c e s s . S p u

A[] F S M R e q u i r e d P r o c e s s . S p r im p l y
(F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r)

A[] (F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r)
i m p l y F S M R e q u i r e d P r o c e s s . S p r

Lis t ing 8.3: Verification rules for working states of file

Another part of this experiment is focused on closing file operation. The opened file
should be always closed by the user, otherwise the system w i l l close the file when the ap­
plicat ion is closed. In the formal definition of both models, the user is able to close the file
w i th the operation related to category of the file. Pr ivate file should be closed by the oper­
ation close_private and public file w i t h operation close_public. Related to this fact and
formal definition of models, model of required behavior should be in one of these states
Cpu or Cpr (according to open file category) and the model of implementat ion has to be
in the same state, because the verification works wi th both models i n the same manner.
Verification rules expressed i n l is t ing 8.4 also check for correct file operation (command
sent by the user model).

A[] F S M R e q u i r e d P r o c e s s . C p u and F S M I m p l e m e n t a t i o n P r o c e s s . C p u

A[] F S M R e q u i r e d P r o c e s s . C p r and F S M I m p l e m e n t a t i o n P r o c e s s . C p r

A [] (F S M R e q u i r e d P r o c e s s . C p u and command == c l o s e _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . C p u and command == c l o s e _ p u b l i c)

A [] (F S M R e q u i r e d P r o c e s s . C p r and command == c l o s e _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . C p r and command == c l o s e _ p r i v a t e)

Lis t ing 8.4: Verification rules for closing file

121

E x p e r i m e n t 1 Resu l t s

The rules mentioned i n the previous section were collected together and were run on the sys­
tem consisting of a l l related processes (models and their synchronization models). Th is was
focused on basic states transi t ion and the dist inguish between public and private file in
both models. For the purpose of general verification the user model w i th the abi l i ty of ran­
dom choosing command wi th the meaning of file operation was used. In order to provide
the process of verification through a l l possible combinat ion of command this user model
seems the right choice. The consistency was verified through the states related to opening
and closing file and also for working statuses. The closing file was also verified through
the checking of command value sent by user model . The results presented i n l is t ing 8.5 of
the experiment is described as log file from Uppaa l tool .

A[] F S M R e q u i r e d P r o c e s s . s i m p l y F S M I m p l e m e n t a t i o n P r o c e s s . s
P r o p e r t y i s s a t i s f i e d .

A[] F S M I m p l e m e n t a t i o n P r o c e s s . s i m p l y F S M R e q u i r e d P r o c e s s . s
P r o p e r t y i s s a t i s f i e d .

A[] not (F S M R e q u i r e d P r o c e s s . S p u and
(F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r))

P r o p e r t y i s s a t i s f i e d .

A[] not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r)
and (F S M R e q u i r e d P r o c e s s . S p u))

P r o p e r t y i s s a t i s f i e d .

A[] not (F S M R e q u i r e d P r o c e s s . S p r and
(F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u))

P r o p e r t y i s s a t i s f i e d .

A[] not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r))

P r o p e r t y i s s a t i s f i e d .

A[] F S M R e q u i r e d P r o c e s s . S p u imp l y
(F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u)

P r o p e r t y i s s a t i s f i e d .

A[] (F S M I m p l e m e n t a t i o n P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . W p u)
i m p l y F S M R e q u i r e d P r o c e s s . S p u

P r o p e r t y i s s a t i s f i e d .

A[] F S M R e q u i r e d P r o c e s s . S p r imp l y
(F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r)

P r o p e r t y i s s a t i s f i e d .

A[] (F S M I m p l e m e n t a t i o n P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . W p r)
i m p l y F S M R e q u i r e d P r o c e s s . S p r

P r o p e r t y i s s a t i s f i e d .

A [] F S M R e q u i r e d P r o c e s s . C p u and F S M I m p l e m e n t a t i o n P r o c e s s . C p u
P r o p e r t y i s s a t i s f i e d .

A[] F S M R e q u i r e d P r o c e s s . C p r and F S M I m p l e m e n t a t i o n P r o c e s s . C p r
P r o p e r t y i s s a t i s f i e d .

122

A [] (F S M R e q u i r e d P r o c e s s . C p u and command == c l o s e _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . C p u and command == c l o s e _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

A[] (F S M R e q u i r e d P r o c e s s . C p r and command == c l o s e _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . C p r and command == c l o s e _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

Lis t ing 8.5: Results of verification experiment 1

This experiment shows that the general required behavior of implementat ion method
should be satisfied. The results should not be considered that the model of implementa­
t ion is perfectly correct, the reason is that the verification of a l l possible combinat ion of
states were not checked and also the model of implementat ion is defined from the higher
perspective and some details are omit ted. In order to be more precise the model can be
adjusted.

8.2 Experiment 2

This experiment is focused on the verification of the same models as the previous exper­
iment. Moreover, this experiment is l imi ted to private file operations only. There should
be checked that the model of implementat ion does not provide any space for data leak­
age through available file operations, system operations, or other available features. For
the purpose of this verification the general user process was modified. Basical ly the same
models are verified and the presence of synchronization models are required.

In order to be sure, that the required part of verified models w i l l be used, which means
the subset of available commands related to the private files is considered in this experiment.
User model needs to be modified i n order to provide at least the control t ransi t ion at
the beginning of the verification process. The control t ransi t ion is the only one possible
command that is send to checking models and this command is open_private.

command = open_private command = read_private

user_action! user_action!

Figure 8.1: User model for private file operations i n U p p a a l format

123

For performance purposes and the requirement for control transitions on the user pro­
cess, a set of allowed file operations were l imi ted to union of sets of available transi t ion
operations defined by FSMRequiredProcess (model of required behavior) and FSMImple-
mentationProcess (model of implementation). Th i s approach removes operations w i t h pub­
lic files, which i n this case perform the wait ing of these checking automata, because there is
not defined the transi t ion for this k ind of operations. Upda ted model of user is defined in
Uppaa l format and i l lustrated in figure 8 .1 . One type of transitions defined on this model
consist of two lines, which denotes updat ing of share variable command and sending the sig­
nal to listeners of synchronization channel user_action. The second type of t ransi t ion is
the wai t ing for the signal on channel read un t i l the content of the variable command is read.
Source code of user process focused on private file operations is defined i n l is t ing B.6 .

According to figure 8 .1 , the in i t i a l state is s and the only available transi t ion is v ia
the command open_private as was already described. The next is the synchronization
transit ion, which checks that the command value has been read. Fol lowing transitions are
randomly selected as i n the general user model used i n the Exper iment 1. The set of rules
from Exper iment 1 is s t i l l va l id even for this l imi ted user model.

The rules that verify the reachability of states related to opening or working w i t h public
files are presented on l ist ing 8 .6. Rules are specified as provide satisfied result when these
states are not possible to reach. The formula can be also presented i n the opposite way,
for instance the result is considered as satisfied when required states are reached v i a any
transit ion.

A []] not (F S M R e q u i r e d P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . S p u or
F S M I m p l e m e n t a t i o n P r o c e s s . W p u)

A []] not (F S M R e q u i r e d P r o c e s s . C p u or F S M I m p l e m e n t a t i o n P r o c e s s . C p u)

Lis t ing 8 .6: Verification rules for reachability states related to public file operations

The reachability of the state Spr i n both checking models (model of required behavior
and model of implementation) is defined by the t ransi t ion w i t h the only one command
open_private. Th is consistency is checked by the rule expressed in l is t ing 8 .7. F r o m this
state the file operations can be performed on the file. The reason is that i n this point
the existing file is opened (or new one w i l l be created in near future w i th file operation
write__private).

A O (F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p r i v a t e)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p r i v a t e)

A O not ((F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p u b l i c))

A O not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p u b l i c))

Lis t ing 8 .7: Verification rules for reachability Spr state

124

The model of required behavior defines available transitions on already opened file as
read_private and write_private and the automaton persist in the same state Spr. In
order to provide any file operations which can be taint by the prototype the model of
required behavior has its own state for working wi th the file. Th is difference should not be
considered as malfunction or any other k ind of vulnerabil i ty. However, the amount of a l l
possible operations should be verified wi th these rules presented in l is t ing 8.8.

A O (F S M R e q u i r e d P r o c e s s . S p r and command == r e a d _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == r e a d _ p r i v a t e)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == r e a d _ p r i v a t e)
or (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command = r e a d _ p r i v a t e)

A O (F S M R e q u i r e d P r o c e s s . S p r and command == w r i t e _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == w r i t e _ p r i v a t e)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == w r i t e _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == w r i t e _ p r i v a t e)

A O (F S M R e q u i r e d P r o c e s s . S p r and command == s e e k _ p o s i t i o n)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == s e e k _ p o s i t i o n)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == s e e k _ p o s i t i o n)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == s e e k _ p o s i t i o n)

Lis t ing 8.8: Verification rules for file operations during working wi th file

There are no more possible transi t ion commands available. Commands related to closing
file were already tested during the experiment 1.

E x p e r i m e n t 2 Resu l t s

Results expressed i n l is t ing 8.9 of this experiment are presented i n the form of log from
Uppaa l tool i n the same format as i n the Exper iment 1. This experiment was focused on
transi t ion logic between states and checking models. These states and transitions defined
in the model of required behavior should be consistent w i th the model of implementation.
M o d e l of implementat ion has different state for working wi th file, the reason is checking
the file content as was presented in the prototype. However, there are differences in models,
the protection of private files should be preserved.

A[] not (F S M R e q u i r e d P r o c e s s . S p u or F S M I m p l e m e n t a t i o n P r o c e s s . S p u or
F S M I m p l e m e n t a t i o n P r o c e s s . W p u)

P r o p e r t y i s s a t i s f i e d .

A[] not (F S M R e q u i r e d P r o c e s s . C p u or F S M I m p l e m e n t a t i o n P r o c e s s . C p u)
P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p r i v a t e)

125

P r o p e r t y i s s a t i s f i e d .

A O not ((F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p u b l i c))

P r o p e r t y i s s a t i s f i e d .

A O not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command == o p e n _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == o p e n _ p u b l i c))

P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p r and command == r e a d _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == r e a d _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == r e a d _ p r i v a t e)
or (F S M I m p l e m e n t a t i o n P r o c e s s . S p r and command = r e a d _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p r and command == w r i t e _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == w r i t e _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == w r i t e _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == w r i t e _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p r and command == s e e k _ p o s i t i o n)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == s e e k _ p o s i t i o n)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p r and command == s e e k _ p o s i t i o n)
i m p l y (F S M R e q u i r e d P r o c e s s . S p r and command == s e e k _ p o s i t i o n)

P r o p e r t y i s not s a t i s f i e d .

Lis t ing 8.9: Results of verification experiment 2

According to results depicted i n l is t ing 8.9, the last rule is not satisfied. The reason
is the the command seek_position is not defined in the model of required behavior and
the automaton can not provide transi t ion. Seek operation defined on file is defined as
moving the posit ion i n already opened file, which is used for reading or wr i t ing f rom/to
the file. Th is file operation is not considered as vulnerabi l i ty i n the purpose of the thesis.
There are two possible ways i n order to satisfy the last rule. The first approach is to adjust
the model of required behavior w i th the adding the missing file operation into corresponding
transi t ion and the second one is to remove the operation from the model of implementation,
and also update the implementat ion solution i n order to deny this system function ca l l . Note
that, related to implementat ion of the prototype, this system cal l was not appeared during
working wi th prototype.

8.3 Experiment 3

The last experiment related to verification is focused on the public file operations. General
requirements targeted on participants are the same as i n previously described experiments,
i n other words the model of required behavior, model of implementation, user model and
synchronization models are mandatory for this experiment. The user model is updated for

126

this type of experiment i n very similar way as the user model is modified in the experiment
2.

The current user model has control over the in i t i a l state and the first t ransi t ion wi th
command equal to open_public and than other commands are chosen randomly. The illus­
t ra t ion in figure 8.2 describe the modification of general user model . D u r i n g transi t ion can
be updated the share variable command and the signal for wai t ing processes user_action.
The second type of transi t ion is wait ing for signal on the synchronization channel read.

command = open_public

command = close_public
user_action!

Figure 8.2: User model for public file operations in Uppaa l format

Figure 8.2 w i t h automaton begins its execution i n the state s and generates the user
action w i t h command open_public, as is required for this experiment. W h e n the signal
w i th this command is confirmed and read, there are a l l possible commands that appear
on the public part of the model of implementat ion and model of required behavior. M o d e l
checking is based on checking of a l l possible commands that are send to the verified models.

This experiment is focused on working w i t h public files and their abi l i ty to influence
private files. There should not be possible to set opened public file as private. In the words
of automaton, there should not be a path from public states of automaton (Spu, Wpu, and
Cpu) into private states of the same automaton (Spr, Wpr, and Cpr). Moreover, there
should be also consistency between model of required behavior and model of implementa­
t ion. Rules for checking reachability properties for private states of automaton, which use
updated user model w i th public file operations, is described on l is t ing 8.10. Source code of
user process focused on public file operations is defined in l is t ing B .5 .

E<> not (F S M R e q u i r e d P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . S p r or
F S M I m p l e m e n t a t i o n P r o c e s s . W p r)

E<> not (F S M R e q u i r e d P r o c e s s . C p r or F S M I m p l e m e n t a t i o n P r o c e s s . C p r)

Lis t ing 8.10: Verification rules for reachability of private states

127

These rules describe two three private states that should not be possible to reach v ia
available commands. In addit ion, when the automata (FSMRequiredProcess and FSMIm-
plementationProcess) are i n the state Spu, it is not possible to reach private states even
thought the general user model is used. Related to modified user model , the accessibility
of state Spr needs to be verified i n order to cover the correct opening of the private file.
The rules presented on l is t ing 8.11 checks for this property.

A O (F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p u b l i c)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p u b l i c)

A O not ((F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p r i v a t e))

A O not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p r i v a t e))

Lis t ing 8.11: Verification rules for accessibility the state Spr

The next verification rules presented i n l is t ing 8.12 check for consistency of operations
related to public file, such as read_public, write_public and share_content. These oper­
ations are available in both models and should perform safe file operations.

A O (F S M R e q u i r e d P r o c e s s . S p u and command == r e a d _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == r e a d _ p u b l i c)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == r e a d _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == r e a d _ p u b l i c)

A O (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p u b l i c)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p u b l i c)

A O (F S M R e q u i r e d P r o c e s s . S p u and command == s h a r e _ c o n t e n t)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s h a r e _ c o n t e n t)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s h a r e _ c o n t e n t)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == s h a r e _ c o n t e n t)

Lis t ing 8.12: Verification rules for public file operations

The model of implementat ion defines three addi t ional t ransi t ion compared to model of
required behavior and these transitions should be also verified. Verification rules for these
properties are depicted on l is t ing 8.13. The first t ransi t ion command seek_position was
already discussed i n the previous experiment. Th is system cal l function can be considered
as safe, because it just define the posit ion inside the file. Another specific transi t ion related
to model of implementat ion is called copy, this is special case of sharing data, which is not
available as feature for private file operations.

128

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s e e k _ p o s i t i o n)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == s e e k _ p o s i t i o n)

A O (F S M R e q u i r e d P r o c e s s . S p u and command == s e e k _ p o s i t i o n)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s e e k _ p o s i t i o n)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == copy)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == copy)

A O (F S M R e q u i r e d P r o c e s s . S p u and command == copy)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == copy)

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p r i v a t e)

A O (F S M R e q u i r e d P R o c e s s . S p u and command == w r i t e _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p r i v a t e)

Lis t ing 8 .13: Verification rules for addi t ional implementat ion public file operations

In order to correctly handle this si tuation the specific mechanism was implemented
and described in chapter w i th prototype. The last different t ransi t ion write_private can
influence private files. This transi t ion defines that a content of any public file can be saved
as private file. F r o m the security point of view this property l imits the available operations
and does not provide any security breach or possible data leakage. Moreover, there is
a possibil i ty of updat ing private file, this case is under control of implementation.

Experiment 3 Results

Presented rules were collected and used i n U p p a l verification tool , the results are expressed
on l is t ing 8.14. There are more unsatisfied rules then in previous experiments. However,
there are differences between model of required behavior and model of implementat ion
and results confirms this fact, the content of files should be protected and private file
content should not be shared or copied. Implementation provides the abi l i ty to update
already opened private file w i t h content of opened public file, this can be expressed by
the transi t ion on public file w i th command write_private. Th is behavior is not expl ic i t ly
described by the model of required behavior. The implementat ion provides the abi l i ty to
write the public content of the memory into the private file, but w i th the restriction focused
on append mode.

E O not (F S M R e q u i r e d P r o c e s s . S p r or F S M I m p l e m e n t a t i o n P r o c e s s . S p r or
F S M I m p l e m e n t a t i o n P r o c e s s . W p r)

P r o p e r t y i s s a t i s f i e d .

E O not (F S M R e q u i r e d P r o c e s s . C p r or F S M I m p l e m e n t a t i o n P r o c e s s . C p r)
P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

129

A O not ((F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p r i v a t e))

P r o p e r t y i s s a t i s f i e d .

A O not ((F S M I m p l e m e n t a t i o n P r o c e s s . S p u and command == o p e n _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == o p e n _ p r i v a t e))

P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == r e a d _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == r e a d _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == r e a d _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == r e a d _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p u b l i c)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p u b l i c)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p u b l i c)

P r o p e r t y i s s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == s h a r e _ c o n t e n t)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s h a r e _ c o n t e n t)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s h a r e _ c o n t e n t)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == s h a r e _ c o n t e n t)

P r o p e r t y i s not s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s e e k _ p o s i t i o n)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == s e e k _ p o s i t i o n)

P r o p e r t y i s not s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == s e e k _ p o s i t i o n)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == s e e k _ p o s i t i o n)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == copy)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == copy)

P r o p e r t y i s not s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == copy)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == copy)

P r o p e r t y i s s a t i s f i e d .

A O (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p r i v a t e)
i m p l y (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p r i v a t e)

P r o p e r t y i s not s a t i s f i e d .

A O (F S M R e q u i r e d P r o c e s s . S p u and command == w r i t e _ p r i v a t e)
i m p l y (F S M I m p l e m e n t a t i o n P r o c e s s . W p u and command == w r i t e _ p r i v a t e)

P r o p e r t y i s s a t i s f i e d .

Lis t ing 8.14: Results of verification experiment 3

130

Rules which were not satisfied are related to the transitions w i th commands, that are
not defined i n the model of required behavior. The model of required behavior can be
adjusted to handle these missing file operations. In contrast, the model of implementat ion
can be more strict and some operations can be removed from model and restricted i n its
implementat ion i n order to have consistency.

8.4 Summary

This chapter presented verification experiments, which were verified by U p p a a l verifica­
t ion tool . Models (model of required behavior and model of implementation) described in
the Uppaa l format were verified v i a sending commands by the User model . User model was
split into three categories - general user model , public user model and private user model.
Each experiment uses different user model. Verified properties were focused on consistency
of states between checking models and their t ransi t ion commands. Next chapter provides
experiments related to implementat ion solution.

Verification goals were defined wi th the Uppaa l Query Language and wi th in this lan­
guage security properties are defined, but not explicit ly. Th is thesis is focused on data
protection wi th the abi l i ty of avoidance data leakage from the device. Results of the E x ­
periment 1 described that there is not possible to provide file operations from different
category on already opened file. In other words, for public file it is not possible to use file
operations dedicated to private file and vice versa.

The Exper iment 2 was focused on the private file category and Exper iment 3 on the pub­
lic file category. B o t h experiments shows that there is l imi ted set of available operations,
that can be performed on each file. Experiments shows that the model of implementat ion
should satisfy the basic requirements defined by model of required behavior.

Experiments shows that the state of both checking automata are i n consistent states,
which means that content of private file should be kept on the device. Related to to model of
implementation, there is no transit ion defined for sharing, copying or wr i t ing the content of
private file into other place than the private file itself. However, the results of experiments
were almost satisfied, it does not mean that the implementat ion solution is without errors
or completely without vulnerabili t ies. The model of implementat ion was simplified i n order
to provide the results in convenient t ime and also i n order to avoid state space explosion.
For the purpose of the thesis the model should be considered as sufficient.

131

Chapter 9

Implementation Experiments

The theoretical part is covered, and the prototype was implemented, and this chapter
introduces the experiments on randomly downloaded A n d r o i d applications and the applying
restriction i n the way of l imi ta t ion of permission enforcement related to open input files.
The selection of the appl icat ion was made to handle input i n the file format. For instance, it
does not make any sense to modify applicat ion which is not related to file manipulat ion such
as game-based applications, internet browser, an a larm or any other k ind of applications
without a file on the input.

There are evaluated results from intercepted system calls w i th the obtained theoretical
knowledge, described i n earlier. Experiments are concerned w i t h the assembly testing
wi th the real selected applications such as 10 File Manager (application 1) or Ted Text
Editor (application 2). The system calls are monitored wi th in the Auras ium framework
in a real A n d r o i d environment. T h e implemented hook functions have been integrated
into the testing applicat ion. Thus , it is capable of reading and wr i t ing from/to the file.
The result of the testing has been recorded by design into the log files.

Also , the content of the log_taint_map.txt has been significant, because there is tracked
the content of a l l ta int ing structures in a t ime that is the only relevant output of taint­
ing the process. The final restriction is tested performing the black-box approach wi th
the manual ly repackaged App l i ca t i on 1 and App l i ca t i on 2.

The manual repackaging is necessary in the case of experiments w i t h the abi l i ty to
perform a step-by-step process of the execution and debugging possibility. W h e n the appli­
cation is repacked by an automated script, the result of this is installed applicat ion package
without access to the source code wi th the following compilat ion and therefore the de­
bugging process is not available. Concerning applicat ion 1, the ta int ing mechanism has
been tested. F i n a l restriction is based on two different methods and communicat ion wi th
the configuration activity. For instance, the taint ing mechanism, in this case, performed
actions such as mode, copy, rename, open, and send to test the real hardened applicat ion.
Operat ion of removal (delete) is not considered as necessary i n the manner of the a im of
this prototype experiments.

The second of the proposed applicat ion 2 is used pr imar i ly for testing of specific restric­
t ion. There are conducted three scenarios such as opening the unprotected (public) file,
opening the protected (private) file in empty data falsifying mode and opening the protected
file i n a fake data forging type. The pr imary purpose of these experiments is to focus on
data sharing (sending) v i a various possible channels, such as bluetooth, W i - F i , S M S , and
email . Note that the sharing is the specific name for sending data to other available applica­
tions or other devices connected by open protocols. The method name sharing comes from

132

the technical aspects of a mobile operating system, i n this case, A n d r o i d . E a c h sharing
method was tested on various types of media files that are usually available on the mobile
device. For instance, these file format consists of text files, images, animated images, movie
clips, music files, various document files and other types of specific data.

9.1 Sharing Methods

The required behavior of the sharing method is depicted i n the table 9.1. There are cov­
ered the most useful methods available on the mobile device that is i n factory reset state.
Related to A n d r o i d mobile operating system, the factory state of the device contains a se­
lection of applications, which provide the abi l i ty to share or communicat ing v ia various
channels. These applications are selected expressed i n this table 9.1 and they are consid­
ered as required for implementat ion experiments.

Sharing method Application Outcome without
restriction

Outcome with re­
striction

Email Gmail Email is sent Email is not sent
Bluetooth Bluetooth applica­

tion
File is sent (to paired
device)

File is not sent (to
paired device)

S M S / M M S Messages S M S / M M S is sent with
attachment

S M S / M M S is not sent

Instant Messag­
ing

Google+ Message with attach­
ment is sent

Message is not sent

Cloud Google Drive File is uploaded File is not uploaded

Table 9.1: Required behavior of sharing method

The interception of the pre-installed applicat ion is not considered as satisfactory even
the instal lat ion package modification was complete without errors. The required behavior
has been confirmed i n the unrestricted mode, but w i th the restriction, these applicat ion is
not even started. F r o m the security perspective, it has the same behavior as the purpose of
the thesis require. In contrast, there is no guarantee when the applicat ion starts successfully
that the behavior is decent as proposed.

To confirm this, it is necessary to randomly select and download another applicat ion
from the official Google P l a y market w i th the same amount of sharing methods. These
third-party applications are set as default endpoints of the sharing methods. Appl ica t ions
which are not pre-installed on the device as default are repacked successfully and modified in
the same way as the default ones. Also , there are some measure results from the experiments
described i n the table 9.2.

9.2 Repackaging of Applicat ion

A s was already discussed, the default applications for sharing data through various channels
are failing in the restricted mode. Appl ica t ions of other vendors are successfully modified
and when the user attempts to share data through applicat ion 1 v i a channels described
in the table 9.2. A test was performed on the applicat ion 1 repackaged using automatic
Auras ium script, and the result has the expected isomorphic behavior. The applicat ion
graphical user interface responds as expected and the private data are protected i n a l l
testing cases.

133

Sharing method Application Outcome without re­
striction

Outcome with re­
striction

Email Gmail Email is sent Application is not
started

Email.cz Email is sent Application is started
with empty attachment

Bluetooth Bluetooth applica­
tion

File is sent (to paired de­
vice)

File sending failed on
sending device

S M S / M M S Messages SMS/MMS is sent with
attachment

Application is not
started

Textra SMS SMS/MMS is sent with
attachment

Application is started
without attachment

Instant Messaging Google+ Message with attach­
ment is sent

Application is not
started

Hangouts+ Message with attach­
ment is sent

Application is not
started

Facebook Messenger Message with attach­
ment is sent

Application is started
without attachment

Cloud Google Drive File is uploaded Application is not
started

Dropbox File is uploaded Application is started
with empty attachment
to upload

Table 9.2: The results of sharing method on th i rd party Appl ica t ions

This script is part of the Auras ium project, and the overall evaluation of the mod­
ification process of applicat ion packages is depicted in table 9.3 introduced by [3], in
which the row in the table modifies the applications downloaded from the official appli­
cation market (Google P l ay) . The second row depicts the same applications downloaded
from the third-party appl icat ion market, and 1260 of 3491 were malicious. The results of
repackaging script are nearly 100% even the applications are malicious.

T y p e of Appl icat ion A m o u n t of applications Repackaging success rate
Appl i ca t i on store corpus 3491 99.6% (3476)
Malware corpus 1260 99.8% (1258)

Table 9.3: Repackaging evaluation results []

Repackaging process introduces the negligible part of the Java code, and the result
size of the introduced code i n C language is under 50 K B . It is not relevant compared to
the vast libraries, and another code is already included i n the implementat ion of Auras ium
project. The size of the applicat ion package increase as expected. More details about
the size overhead and their comparison can be found in [233].

9.3 Performance Overhead

In regards to the performance evaluation, the test has been conducted on real A n d r o i d
device LG G4 w i th 1.8 G H z processor (6 cores), 32 G B of internal memory, and 3 G B of
system memory (R A M) . Start-up t ime of hardened applications is considerably changed.
Auras ium's over-writing of the global offset table entries is t ime-consuming operation and
lasts about 10 s as is shown i n the table 9.4.

134

http://Email.cz

Application Original (ms) Repackaged (ms)
Application 1 729 830 645 11132 10238 10694
Application 2 1016 1056 1184 11187 11040 11236

Table 9.4: Start-up t ime overhead on repackaged applications

The performance of the selected applications and actions was tested on the original
version of applications (before repackaging) and after the repackaging process w i th the in ­
active taint ing and restriction and then wi th the ta int ing mechanism and current restriction.
The target of this evaluation is to identify the appl icat ion performance from the user per­
spective and detection of unexpected performance issues. These issues can lead to the dis­
covery of unknown errors and covert vulnerabilit ies. To determine real performance values
the logging mechanism is disabled during measurement. The reason is to have accurate
performance values as possible. There is also calculated the overhead of the repackaged
application wi th active functional protection. The performance of restricting was tested
on two sharing actions. The first one is the abi l i ty to share data through email client and
sending away from the device. Bluetooth was the second action wi th the abi l i ty to send any
files to a paired (trusted) device. The results of this performance experiments are divided
into the sharing methods.

M e t h o d Original [ms] Inactive [ms] Act ive [ms]
Media t ion 1079 1047 922 1469 1258 1515 1320 1368 1336
F i l e protection 1079 1047 922 1469 1258 1515 1226 1297 1351

Table 9.5: Performance of Sharing method through E m a i l

Table 9.5 wi th the experiments related to the email sharing defines t ime measurement
the performance overhead. Columns describe the states of the applicat ion such as original
state that is the applicat ion without any modifications related to taint ing. States named
inactive and active means the restriction of the applicat ion which can be enabled or disabled,
but the appl icat ion is modified i n the way of performing the taint ing mechanism through
the Auras ium framework. These columns are the same for the second sharing method which
is bluetooth and its results are in table 9.6. The overhead in this table is significantly
more arduous than in the email sharing method. This overhead is caused by different
implementation and reaction on an unexpected condit ion i n the restriction.

M e t h o d Original ms] Inactive ms] Act ive [ms]
Media t ion 445 382 508 992 953 914 985 961 1000
F i l e protection 445 382 508 992 953 914 1144 1047 1063

Table 9.6: Performance of Sharing method through Bluetooth

T ime from table 9.5 and table 9.6 are read from A n d r o i d log messages defined for
the taint ing process. A s is shown both tables the t ime of processing is more related to
the applicat ion that is responsible for handling the action of the sharing than the method
of restriction. The ta int ing performance was tested for combinations of scanning type and
protection of copied file regarding configuration. Moreover, there is measured a durat ion
of a paste action between the start and the end of the copy process. T h i s processes time
durat ion is depicted on table 9.7 and table 9.8. The first table contains the durat ion of
copying for the untainted files and the second for tainted files.

135

Scanning Original [ms] Inactive [ms] Act ive [ms]
File-based 2394 2479 2421 2675 2643 2647 2787 2608 2778
Content-based 2394 2479 2421 2675 2643 2647 2665 2784 2586

Table 9.7: Taint ing performance during copying of untainted file

Scanning Original [ms] Inactive [ms] Act ive [ms]
File-based 2394 2479 2421 2675 2643 2647 2707 2626 2596
Content-based 2394 2479 2421 2675 2643 2647 2792 2735 2663

Table 9.8: Taint ing performance during copying of tainted file

In regards to a user, the results are satisfactory in this case, because the performance of
the hardened applicat ion remains almost without any t ime overheads. The table also details
the difference between original applicat ion and the same applicat ion wi th modification in
its inactive and active restrictions state.

The last experiment is focused on the performance of file opening and reading process
during increased threat level mode. The worst case results are obtained during the active
protection wi th fake data falsifying because the data needs to be overwritten i n the system
memory as was described earlier. A faster method is reached wi th the empty falsifying
protection in comparison to the previous method. Unfortunately, there is s t i l l about 20%
performance overhead against the original unmodified applicat ion. Exper iment durat ion
times are recorded in the table 9.9.

D a t a type Original ms] Inactive [ms] Act ive [ms]
E m p t y data 736 732 704 1881 1425 1357 948 859 816
Fake data 736 732 704 1881 1425 1357 1901 1438 1513

Table 9.9: Dura t ion of file opening during increased threat level

9.4 Summary

To summarize the performance experiments, the start-up t ime overhead of repackaged
applications is the most prominent performance drawback. Otherwise, there can be some
slowdowns which are almost transparent to the user and does not represent an obstacle for
usage. The average t ime overhead is i n most cases similar i n compared to the proposed
interception actions in Auras ium framework.

Implementation of the prototype has its l imi ta t ion . F i rs t of a l l , some applications wi th
activated restriction behave correctly in a secure manner but the not responding state
which results i n the appl icat ion failure is not required behavior. To perform user-friendly
responds the prototype should be improved and the implementat ion should be prepared
entirely different for each version of the A n d r o i d operating system.

The main weakness of the solution is the mandatory process of repackaging the appli­
cation. There is no possibil i ty of ta int ing the function calls provided by the system itself.
Even the development mode of the system does not provide this feature. In that case,
the repackaging of the applications is necessary to obtain the control over the function calls
or the whole behavior. It is s t i l l not complete for the setup the environment w i th the full
control. W h e n these hardened applications are installed, and the configuration is prepared

136

for the restriction and if the Auras ium framework is missing the management of the applica­
t ion in the meaning of taint ing is not working properly. Moreover, if the whole environment
is set up as required and the user would like to do something that is not available w i th
the restriction, he can uninstal l the Auras ium applicat ion or just re-install the applicat ion
itself w i th the original one from the official applicat ion market store.

This prototype does not cover a l l situations that can be achieved on the device. For
the full protection (even wi th the appl icat ion fails dur ing restriction mode) the Auras ium
framework and configuration applicat ion need to be installed wi th in the system image of
the system. The same is achieved by the vendors of the mobile devices. These vendors usu­
ally ad a few applications to the original operating system, such as graphical user interface,
and third-party applications.

The implementat ion of the prototype shows the possibil i ty that this approach of dy­
namical ly changing the rights of the applicat ion is reachable without administrat ion rights,
but w i th l imi ta t ion to follow specific rule set.

137

Chapter 10

Conclusion

This thesis analyses the security threats on a mobile device wi th the focus on privacy
protection i n the data leakage area. The novel approach of working wi th sensitive data was
presented and defined formally. Moreover, the prototype was introduced, and its model
verified through model checking. The high-level goal of this thesis was investigated privacy
protection on a mobile device and current solutions provided by the manufacturers of these
devices and to find a method of improving the protection of sensitive information.

The contr ibut ion of this thesis can be divided into two parts. The first one defines
the concept of required behavior to working wi th public and private files on the same
device, presented i n chapter 5. The concept consists of restriction mechanism which controls
the applicat ion system calls and decides if the system cal l is performed or not related to
the opened file. The idea is based on the B Y O D principle, which defines the usabil i ty of
the personal mobile device in the working environment. The concept discussed a l l related
topics such as the design of the required behavior, a framework that can be used and
also the implementat ion of the prototype. The prototype implementat ion is considered as
proof of concept, that was firstly defined by the formal method, described i n chapter 6.
The prototype was implemented on the open-source platform, which was also identified in
the thesis from the security and architecture point of view.

The second contr ibution of this thesis is verification of presented models to prove that
the implementat ion solution satisfies the required behavior, demonstrated i n chapter 7.
M o d e l of required behavior and model of implementat ion were defined and later used for
the formal verification process. The formal method was chosen to provide the possibil i ty of
portabi l i ty to other platforms.

The verification was defined i n the Uppaa l platform, and both models were transformed
into the format of this tool . Examples of verification process demonstrate the usabil i ty of
the proposed method, presented i n chapter 8.

Further research can be focused on finding a more specific solution for protecting user
data. For instance, art if icial intelligence can be considered in this area, at least for the cat­
egorization of files into two groups - public and private. Moreover, art if icial intelligence
can be used to decide which system cal l can be allowed or denied for a specific file. It is
a new era of controll ing the content of a mobile device, but the user is considered a person,
and there could be very difficult to categorize files and the behavior of user without any
knowledge about the user and also the working environment.

The results presented in this thesis were published as a chapter i n the book [16], inter­
national conferences [17, 18, 19, 100] and i n the journals [] and [218].

138

139

Bibliography

[1] Achara , J . P.; Cunche, M . ; Roca , V . ; et a l . : Short paper: Wif iLeaks : underestimated
privacy implications of the access_wifi_state android permission. In Proceedings of
the 2014 ACM conference on Security and privacy in wireless & mobile networks.
A C M . 2014. pp. 231-236.

[2] Ahmaro , I. Y . ; Mustafa, M . ; A l - A h m a d , A . : Solaris Operat ing System.
ALMADINAH ISLAMIC STUDIES, vo l . 1, no. 66. 2012.

[3] Aleksandar Gargenta: Deep Dive into A n d r o i d I P C / B i n d e r Framework.
https://thenewcircle.com/s/post/1340/Deep_Dive_Into_Binder_Presentation.htm.
2012.

[4] A l e x Lockwood: Binders and W i n d o w Tokens.
http://www.androiddesignpatterns.com/2013/07/binders-window-tokens.html.

2013.

[5] Al lbery , B . S.; Bost ic , K . ; Eckhardt , D . ; et a l . : Fi lesystem hierarchy standard. 2015.

[6] Al l iance , O . H . : A n d r o i d open source project. 2011.

[7] Al l iance , O . H . : A n d r o i d (operating system). Marketing, vol . 4, no. 5. 2013.

[8] A l u r , R . ; D i l l , D . L . : A theory of t imed automata. Theoretical computer science, vol .
126, no. 2. 1994: pp. 183-235.

[9] Anderson, J . : Appcelerator Titanium: Up and Running. " O ' R e i l l y Media , Inc.,,.
2013.

[10] Anderson, J . P. : Computer Security Technology P lann ing Study. Volume 2.
Technical report. Anderson (James P) and C o Fort Washington P A . 1972.

[11] Anderson, R . J . : Security engineering: a guide to building dependable distributed
systems. John W i l e y & Sons. 2010.

[12] Andrus , J . ; Nieh , J . : Teaching operating systems using android. In Proceedings of
the 43rd ACM technical symposium on Computer Science Education. A C M . 2012.
pp. 613-618.

[13] Armando , A . ; Arsac , W . ; Avanesov, T . ; et al . : The A V A N T S S A R platform for the
automated val idat ion of trust and security of service-oriented architectures. Tools
and Algorithms for the Construction and Analysis of Systems. 2012: pp. 267-282.

140

https://thenewcircle.com/s/post/1340/Deep_Dive_Into_Binder_Presentation.htm
http://www.androiddesignpatterns.com/2013/07/binders-window-tokens.html

[14] Armando , A . ; Bas in , D . ; Boichut , Y . ; et a l . : The A V I S P A tool for the automated
val idat ion of internet security protocols and applications. In International
conference on computer aided verification. Springer. 2005. pp. 281-285.

[15] Armando , A . ; Carbone, R . ; Compagna, L . : S A T M C : A S A T - B a s e d M o d e l Checker
for Secur i ty-Cr i t ica l Systems. In TACAS, vol . 8413. 2014. pp. 31-45.

[16] A r o n , L . : Security Threats on Mobi le Devices. In New Threats and Countermeasures
in Digital Crime and Cyber Terrorism. I G I G loba l . 2015. pp. 30-52.

[17] A r o n , L . ; Hanacek, P. : Introduction to A n d r o i d 5 Security. In SOFSEM (Student
Research Forum Papers/Posters). 2015. pp. 103-111.

[18] A r o n , L . ; Hanacek, P. : Overview of security on mobile devices. In Web Applications
and Networking (WSWAN), 2015 2nd World Symposium on. I E E E . 2015. pp. 1-11.

[19] A r o n , L . ; Hanacek, P. : A concept of dynamic permission mechanism on android. In
AIP Conference Proceedings, vol . 1705. A I P Publ i sh ing . 2016. page 020022.

[20] A r o n , L . ; Hanacek, P. : Dynamic Permission Mechanism on A n d r o i d . JSW. vol . 11,
no. 12. 2016: pp. 1124-1230.

[21] Artenstein, N . ; Revivo, I.: M a n i n the binder: He who controls ipc, controls the
droid. In Europe BlackHat Conf. 2014.

[22] A r z t , S.; Rasthofer, S.; Bodden, E . : Susi: A tool for the fully automated
classification and categorization of android sources and sinks. 2013.

[23] A r z t , S.; Rasthofer, S.; Fr i tz , C ; et a l . : F lowdro id : Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan
Notices, vol . 49, no. 6. 2014: pp. 259-269.

[24] Avdi ienko, V . ; Kuznetsov, K . ; Gor l a , A . ; et a l . : M i n i n g apps for abnormal usage of
sensitive data. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. I E E E Press. 2015. pp. 426-436.

[25] B a b i l , G . S.; Mehan i , O. ; Bore l i , R . ; et a l . : O n the effectiveness of dynamic taint
analysis for protecting against private information leaks on Android-based devices.
In Security and Cryptography (SECRYPT), 2013 International Conference on.
I E E E . 2013. pp. 1-8.

[26] Bach , M . J . ; et a l . : The design of the UNIX operating system, vol . 1. Prent ice-Hal l
Englewood Cliffs, N J . 1986.

[27] Backes, M . ; Bugie l , S.; Ger l ing, S.; et a l . : A n d r o i d Security Framework: Extensible
multi-layered access control on A n d r o i d . In Proceedings of the 30th annual computer
security applications conference. A C M . 2014. pp. 46-55.

[28] Bac l i t , R . ; Sicam, C ; Membrey, P.; et a l . : Bash . Foundations of CentOS Linux.
2009: pp. 31-54.

[29] Ballagas, R . ; Rohs, M . ; Sheridan, J . G . ; et a l . : B y o d : B r i n g your own device. In
Proceedings of the Workshop on Ubiquitous Display Environments, Ubicomp, vol .
2004. 2004.

141

[30] Banur i , H . ; A l a m , M . ; K h a n , S.; et a l . : A n A n d r o i d runtime security pol icy
enforcement framework. Personal and Ubiquitous Computing, vol . 16, no. 6. 2012:
pp. 631-641.

[31] Bartholomew, D . : Qemu a multihost multitarget emulator. Linux Journal, vol . 2006,
no. 145. 2006: page 3.

[32] Bas in , D . ; Meddersheim, S.; Vigano, L . : O F M C : A symbolic model checker for
security protocols. International Journal of Information Security, vol . 4, no. 3. 2005:
pp. 181-208.

[33] Baumann , A . ; Heiser, G . ; Appavoo, J . ; et a l . : P rov id ing Dynamic Update in an
Operat ing System. In USENIX Annual Technical Conference, General Track. 2005.
pp. 279-291.

[34] B e l l , D . E . ; L a P a d u l a , L . J . : Secure computer systems: Mathemat ica l foundations.
Technical report. M I T R E C O R P B E D F O R D M A . 1973.

[35] Benantar, M . : Access control systems: security, identity management and trust
models. Springer Science & Business M e d i a . 2006.

[36] Bengtsson, J . ; Larsen, K . ; Larsson, F . ; et a l . : U P P A A L — a tool suite for automatic
verification of real-time systems. Hybrid Systems III. 1996: pp. 232-243.

[37] Bettany, A . ; Halsey, M . : W h a t Is Malware? In Windows Virus and Malware
Troubleshooting. Springer. 2017. pp. 1-8.

[38] Bhagwat, P.: Bluetooth: technology for short-range wireless apps. IEEE Internet
Computing, vol . 5, no. 3. 2001: pp. 96-103.

[39] Bhavani , A . : Cross-site scripting attacks on android webview. arXiv preprint
arXiv:1304.7451. 2013.

[40] B i b a , K . J . : Integrity considerations for secure computer systems. Technical report.
M I T R E C O R P B E D F O R D M A . 1977.

[41] B i r m a n , K . P. : Remote Procedure Cal ls and the Cl ient /Server M o d e l . In Guide to
Reliable Distributed Systems. Springer. 2012. pp. 185-247.

[42] Bishop, M . A . : The art and science of computer security. Addison-Wesley Longman
Publ i sh ing Co . , Inc.. 2002.

[43] Bj0rner, N . ; Browne, A . ; Chang, E . ; et a l . : STeP: Deductive-algori thmic verification
of reactive and real-time systems. In International Conference on Computer Aided
Verification. Springer. 1996. pp. 415-418.

[44] Bodden, E . ; Hermann, B . ; Lerch, J . ; et a l . : Reducing human factors in software
security architectures. In Future Security Conference (to appear. 2013.

[45] Bodei , C ; Buchhol tz , M . ; Degano, P.; et a l . : Au tomat i c val idat ion of protocol
narration. In Computer Security Foundations Workshop, 2003. Proceedings. 16th
IEEE. I E E E . 2003. pp. 126-140.

142

[46] Brockmann , A . : A Plaus ib ly Deniable Enc ryp t ion Scheme for Personal D a t a
Storage. 2015.

[47] Brookes, S. T . ; Whi t ley , E . ; Peters, T . J . ; et a l . : Subgroup analyses i n randomised
controlled trials: quantifying the risks of false-positives and false-negatives. Health
Technology Assessment, vol . 5, no. 33. 2001: pp. 1-56.

[48] Bugnion, E . ; Devine, S.; Rosenblum, M . ; et al . : Br ing ing vi r tual iza t ion to the x86
architecture wi th the original vmware workstat ion. ACM Transactions on Computer
Systems (TOCS). vol . 30, no. 4. 2012: page 12.

[49] Burnette, E . : Eclipse IDE Pocket Guide. O ' R e i l l y Med ia , Inc.. 2005.

[50] Cabrero, J . E . ; Hol land , I. M . : System and method for providing shared global
offset table for common shared l ibrary i n a computer system. J u l y 10 2001. uS
Patent 6,260,075.

[51] Chang, B . ; Wang, Z. ; Chen, B . ; et al . : Mobip lu to : F i l e system friendly deniable
storage for mobile devices. In Proceedings of the 31st Annual Computer Security
Applications Conference. A C M . 2015. pp. 381-390.

[52] Chen , H . ; Wagner, D . ; Dean, D . : Setuid Demystified. In USENIX Security
Symposium. 2002. pp. 171-190.

[53] Chiang , H . - Y . ; Chiasson, S.: Improving user authentication on mobile devices: A
touchscreen graphical password. In Proceedings of the 15th international conference
on Human-computer interaction with mobile devices and services. A C M . 2013. pp.
251-260.

[54] C h i n , E . ; Felt, A . P.; Greenwood, K . ; et a l . : A n a l y z i n g inter-application
communicat ion i n A n d r o i d . In Proceedings of the 9th international conference on
Mobile systems, applications, and services. A C M . 2011. pp. 239-252.

[55] C h i n , E . ; Wagner, D . : Bifocals: A n a l y z i n g webview vulnerabilit ies i n android
applications. In International Workshop on Information Security Applications.
Springer. 2013. pp. 138-159.

[56] Cinar , O. : A n d r o i d P la t form. In Android Quick APIs Reference. Springer. 2015. pp.
1-14.

[57] Clarke, E . M . ; Grumberg, O. ; Peled, D . : Model checking. M I T press. 1999.

[58] Cremers, C . J . : The scyther tool: Verification, falsification, and analysis of security
protocols. In CAV, vol . 8. Springer. 2008. pp. 414-418.

[59] Cunche, M . : I know your M A C Address: Targeted tracking of ind iv idua l using
W i - F i . Journal of Computer Virology and Hacking Techniques, vol . 10, no. 4. 2014:
pp. 219-227.

[60] Dabbish , L . ; Stuart , C ; Tsay, J . ; et a l . : Social coding i n G i t H u b : transparency and
collaboration i n an open software repository. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work. A C M . 2012. pp. 1277-1286.

143

[61] Danford, T . E . ; Batchu, S. K . : V i r t u a l instance architecture for mobile device
management systems. November 15 2011. uS Patent 8,060,074.

[62] D a v i , L . ; Dmit r ienko, A . ; Sadeghi, A . - R . ; et a l . : Privi lege escalation attacks on
android. In International Conference on Information Security. Springer. 2010. pp.
346-360.

[63] Deering, S. E . : Internet protocol, version 6 (IPv6) specification. 1998.

[64] Denning, D . E . : A lattice model of secure information flow. Communications of the
ACM. vol . 19, no. 5. 1976: pp. 236-243.

[65] Desmedt, Y . : Man-in-the-middle attack. In Encyclopedia of cryptography and
security. Springer. 2011. pp. 759-759.

[66] Developers, A . : A d t plugin for eclipse. VRI: http:/'/devel-oper. android,
com/sdk/eclipse-adt. html. 2012.

[67] Dey, S.; Roy, N . ; X u , W . ; et a l . : Acce lPr in t : Imperfections of Accelerometers Make
Smartphones Trackable. In NDSS. 2014.

[68] Drake, J . J . ; Lanier , Z . ; Mul l ine r , C ; et a l . : Android Hacker's Handbook. John
W i l e y & Sons. 2014.

[69] Dumas, M . ; Ter Hofstede, A . H . : U M L act ivi ty diagrams as a workflow specification
language. In UML, vol . 2185. Springer. 2001. pp. 76-90.

[70] Ehringer, D . : The dalvik v i r tua l machine architecture. Techn. report (March 2010).
vol . 4. 2010: page 8.

[71] Elenkov, N . : Android security internals: An in-depth guide to Android's security
architecture. N o Starch Press. 2014.

[72] Enck, W . ; Gi lber t , P. ; Han , S.; et a l . : Ta in tDro id : an information-flow tracking
system for realtime privacy moni tor ing on smartphones. ACM Transactions on
Computer Systems (TOCS). vol . 32, no. 2. 2014: page 5.

[73] Enck, W . ; Octeau, D . ; M c D a n i e l , P. ; et a l . : A Study of A n d r o i d App l i ca t i on
Security. In USENIX security symposium, vol . 2. 2011. page 2.

[74] Enck, W . ; Ongtang, M . ; M c D a n i e l , P . D . ; et a l . : Understanding A n d r o i d Security.
IEEE security & privacy, vol . 7, no. 1. 2009: pp. 50-57.

[75] F á b r e g a , F . J . T. ; Javier, F . ; G u t tm an , J . D . : Copy on write. 1995.

[76] Fagin, R . : O n an authorizat ion mechanism. ACM Transactions on Database
Systems (TODS), vo l . 3, no. 3. 1978: pp. 310-319.

[77] Felt , A . P.; Finifter, M . ; C h i n , E . ; et a l . : A survey of mobile malware in the wi ld . In
Proceedings of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices. A C M . 2011. pp. 3-14.

[78] Ferraiolo, D . F . ; Sandhu, R . ; Gavr i l a , S.; et a l . : Proposed N I S T standard for
role-based access control. ACM Transactions on Information and System Security
(TISSEC). vol . 4, no. 3. 2001: pp. 224-274.

144

[79] Flanagan, D . : JavaScript: the definitive guide. " O ' R e i l l y Media , Inc.,,. 2006.

[80] Forman, I. R . ; Forman, N . ; Ibm, J . V . : Java reflection in action. 2004.

[81] Forouzan, B . A . : TCP/IP protocol suite. M c G r a w - H i l l , Inc.. 2002.

[82] Fr i tz , O ; A r z t , S.; Rasthofer, S.; et a l . : H igh ly precise taint analysis for A n d r o i d
applications. E C S P R I D E . Technical report. T U Darmstadt , Tech. Rep . 2013.

[83] Furnel l , S.; Clarke, N . ; Kara tzoun i , S.: Beyond the p in : Enhanc ing user
authentication for mobile devices. Computer fraud & security, vol . 2008, no. 8. 2008:
pp. 12-17.

[84] Gabbay, D . M . ; Hodkinson, I.; Reynolds, M . : Temporal Logic Mathemat ica l
Foundations and Computa t iona l Aspects. 1994.

[85] Garc ia , J . ; De Moss, A . ; Simoens, M . : Sencha Touch in action. Mann ing
Publ icat ions. 2013.

[86] Gargenta, A . : Deep dive into A n d r o i d I P C / B i n d e r framework. Android Builders
Summit. 2013.

[87] Garr i ty , D . F . : B i n d i n g apparatus. M a y 16 2000. uS Patent 6,062,792.

[88] Gelter, A . ; Parker, B . ; Boatr ight , R . ; et a l . : Memory management unit . 2013. uS
Patent 8,443,098.

[89] Gibler , O ; Crussell , J . ; Er ickson, J . ; et a l . : Andro idLeaks : automatical ly detecting
potential privacy leaks in android applications on a large scale. In International
Conference on Trust and Trustworthy Computing. Springer. 2012. pp. 291-307.

[90] Gi lmore , S.; Haenel, V . ; K l o u l , L . ; et a l . : Choreographing security and performance
analysis for web services. Formal Techniques for Computer Systems and Business
Processes. 2005: pp. 200-214.

[91] Gordon , R . : Essential JNI: Java Native Interface. Prent ice-Hal l , Inc.. 1998.

[92] Gosl ing, J . : The Java language specification. Addison-Wesley Professional. 2000.

[93] Gotzfried, J . ; Mi i l l e r , T . : Ana lys ing Andro id ' s F u l l Disk Enc ryp t ion Feature.
JoWUA. vol . 5, no. 1. 2014: pp. 84-100.

[94] G u , G . ; Porras, P . A . ; Yegneswaran, V . ; et a l . : BotHunter : Detect ing Malware
Infection Through IDS-Dr iven Dia log Correlat ion. In Usenix Security, vol . 7. 2007.
pp. 1-16.

[95] Guel la t i , S.; K i t o u n i , I.; Saidouni, D.-e.: Verification of durat ional action t imed
automata using uppaal. International Journal of Computer Applications, vol . 56,
no. 11. 2012.

[96] Haack, O ; Jeffrey, A . : T i m e d spi-calculus w i th types for secrecy and authenticity. In
CONCUR, vo l . 5. Springer. 2005. pp. 202-216.

145

[97] Hafer, T. ; Thomas, W . : Computa t ion tree logic C T L * and path quantifiers i n the
monadic theory of the binary tree. Automata, Languages and Programming. 1987:
pp. 269-279.

[98] Halpert , B . : Mobi le device security. In Proceedings of the 1st annual conference on
Information security curriculum development. A C M . 2004. pp. 99-101.

[99] Han , Y . ; Chronopoulos, A . T . : Dis t r ibuted loop scheduling schemes for cloud
systems. In Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013 IEEE 21th International. I E E E . 2013. pp. 955-962.

[100] Hanacek, L . A . P. : Mobi le Security for Bank ing on A n d r o i d P la t form. In The
International Conference on Computing Technology, Information Security and Risk
Management (CTISRM2016). 2016. page 7.

[101] Harr ison, M . A . ; Ruzzo, W . L . ; U l l m a n , J . D . : Protect ion i n operating systems.
Communications of the ACM. vol . 19, no. 8. 1976: pp. 461-471.

[102] Haselsteiner, E . ; Breitfufi, K . : Security i n near field communicat ion (N F C) . In
Workshop on RFID security. 2006. pp. 12-14.

[103] Hatcher, E . ; Loughran, S.: Java development with Ant. Mann ing : London: Pearson
Educat ion , . 2003.

[104] Herken, R . : The Universal Tur ing Machine. A Half-Century Survey. 1992.

[105] Heuser, S.; Nadkarn i , A . ; Enck, W . ; et a l . : A S M : A Programmable Interface for
Ex tend ing A n d r o i d Security. In USENIX Security, vol . 14. 2014. pp. 1005-1109.

[106] Hi rv in i emi , S.: W i d e area network (wan) interface for a transmission control
protocol/ internet protocol (tcp/ ip) in a local area network (lan). September 1 1998.
uS Patent 5,802,285.

[107] Hol l a , S.; K a t t i , M . M . : A n d r o i d based mobile applicat ion development and its
security. International Journal of Computer Trends and Technology, vol . 3, no. 3.
2012: pp. 486-490.

[108] Holzmann , C : Spin model checker, the: primer and reference manual.
Addison-Wesley Professional. 2003.

[109] Hoog, A . : Android forensics: investigation, analysis and mobile security for Google
Android. Elsevier. 2011.

[110] Hoog, A . ; Strzempka, K . : iPhone and iOS forensics: Investigation, analysis and
mobile security for Apple iPhone, iPad and iOS devices. Elsevier. 2011.

[I l l] Hornyack, P.; Han , S.; Jung, J . ; et a l . : These aren't the droids you're looking for:
Retrofi t t ing android to protect data from imperious applications. In Proceedings of
the 18th ACM conference on Computer and communications security. A C M . 2011.
pp. 639-652.

[112] H u , C ; Neamt iu , I.: Au toma t ing G U I testing for A n d r o i d applications. In
Proceedings of the 6th International Workshop on Automation of Software Test.
A C M . 2011. pp. 77-83.

146

[113] Huang, J . : A n d r o i d I P C Mechanism. Southern Taiwan University of Technology.
2012.

[114] Jann, J . ; Dubey, N . ; Burugula , R . S.; et a l . : Dynamic reconfiguration of C P U and
WebSphere on I B M pSeries servers. Software: Practice and Experience, vol . 34,
no. 13. 2004: pp. 1257-1272.

[115] Jensen, H . E . ; Larsen, K . G . ; Skou, A . : Mode l l ing and Analys is of a Col l i s ion
Avoidance Pro toco l using S P I N and U P P A A L . BRICS Report Series, vol . 3, no. 24.
1996.

[116] J ing, Y . ; A h n , G . - J . ; Zhao, Z . ; et a l . : R i skmon : Continuous and automated risk
assessment of mobile applications. In Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy. A C M . 2014. pp. 99-110.

[117] Johnson, M . K . ; Troan, E . W . : Linux application development. Addison-Wesley
Professional. 2004.

[118] Ka j iwara , N . ; Matsumoto, S.; Nishimoto, Y . ; et a l . : Detect ion of P r ivacy Sensitive
Information Retr ieval Us ing A P I C a l l Logging Mechanism wi th in A n d r o i d
Framework. JNW. vol . 9, no. 11. 2014: pp. 2905-2913.

[119] Kaladharan , Y . ; Mate t i , P. ; Jevitha, K . : A n Enc ryp t ion Technique to Thwart
A n d r o i d Binder Explo i t s . In Intelligent Systems Technologies and Applications.
Springer. 2016. pp. 13-21.

[120] Kar lsson, K . - J . ; Gl isson, W . B . : A n d r o i d Anti-forensics: Modi fy ing CyanogenMod.
In System Sciences (HICSS), 2014 47th Hawaii International Conference on. I E E E .
2014. pp. 4828-4837.

[121] Kernighan, B . W . ; Ri tchie , D . M . : The C programming language. 2006.

[122] K i m , J . ; Y o o n , Y . ; Y i , K . ; et a l . : ScanDal : Static analyzer for detecting privacy
leaks in android applications. MoST. vol . 12. 2012.

[123] K i m , Y . - J . ; Cho , S.-J.; K i m , K . - J . ; et a l . : Benchmarking Java applicat ion using J N I
and native C applicat ion on A n d r o i d . In Control, Automation and Systems
(ICCAS), 2012 12th International Conference on. I E E E . 2012. pp. 284-288.

[124] K i v i t y , A . ; Kamay, Y . ; Laor , D . ; et a l . : k v m : the L i n u x v i r tua l machine monitor. In
Proceedings of the Linux symposium, vol . 1. 2007. pp. 225-230.

[125] Kor tesa lmi , J . ; Pel to, T . : Preventing misuse of a copied subscriber identity i n a
mobile communicat ion system. Ju ly 30 2002. uS Patent 6,427,073.

[126] Kosoresow, A . P.; Hofmeyer, S.: Intrusion detection v i a system cal l traces. IEEE
software, vol . 14, no. 5. 1997: pp. 35-42.

[127] Kostakos, V . ; O ' N e i l l , E . : N F C on mobile phones: issues, lessons and future
research. In Pervasive Computing and Communications Workshops, 2001. PerCom
Workshops' 07. Fifth Annual IEEE International Conference on. I E E E . 2007. pp.
367-370.

147

[128] Krishnamurthy, B . ; W i l l s , C . E . : P r ivacy leakage i n mobile online social networks.
In Proceedings of the 3rd Wonference on Online social networks. U S E N I X
Associat ion. 2010. pp. 4-4.

[129] L a Po l l a , M . ; Mar t ine i i i , F . ; Sgandurra, D . : A survey on security for mobile devices.
IEEE communications surveys & tutorials, vol . 15, no. 1. 2013: pp. 446-471.

[130] Lampor t , L . : The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS), vol . 16, no. 3. 1994: pp. 872-923.

[131] Lampson, B . W . : Protect ion. ACM SIGOPS Operating Systems Review, vol . 8,
no. 1. 1974: pp. 18-24.

[132] Lange, M . ; Liebergeld, S.: Crossover: secure and usable user interface for mobile
devices wi th mult iple isolated os personalities. In Proceedings of the 29th Annual
Computer Security Applications Conference. A C M . 2013. pp. 249-257.

[133] Lange, M . ; Liebergeld, S.; Lackorzynski , A . ; et a l . : L 4 A n d r o i d : a generic operating
system framework for secure smartphones. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices. A C M . 2011. pp. 39-50.

[134] Larsen, K . G . ; Pettersson, P. ; Y i , W . : Model-checking for real-time systems. In
International Symposium on Fundamentals of Computation Theory. Springer. 1995.
pp. 62-88.

[135] Lee, H . ; Chuvyrov , E . ; Ferracchiati , F . C : Beginning Windows Phone 7
Development. Springer. 2010.

[136] Lee, I.; Sokolsky, O. : A graphical property specification language. In High-Assurance
Systems Engineering Workshop, 1997., Proceedings. I E E E . 1997. pp. 42-47.

[137] Lewine, D . : POSIX programmers guide. " O ' R e i l l y Media , Inc.,,. 1991.

[138] L i , L . ; Zhao, X . ; X u e , C : Unobservable Re-authentication for Smartphones. In
NDSS. 2013.

[139] L i , N . : Discret ionary access control. In Encyclopedia of Cryptography and Security.
Springer. 2011. pp. 353-356.

[140] L i ang , FL; W u , D . ; X u , J . ; et a l . : Survey on privacy protection of android devices. In
Cyber Security and Cloud Computing (CSCloud), 2015 IEEE 2nd International
Conference on. I E E E . 2015. pp. 241-246.

[141] License, G . G . P.: G N U General Pub l i c License. Retrieved December, vol . 25. 1989:
page 2014.

[142] Liebergeld, S.; Lange, M . : A n d r o i d security, pitfalls and lessons learned. In
Information Sciences and Systems 2013. Springer. 2013. pp. 409-417.

[143] L indah l , M . ; Pettersson, P. ; Y i , W . : Formal design and analysis of a gear controller:
A n industr ia l case study using uppaal. In LNCS, Proc. of the 4th International
Workshop on Tools and Algorithms for the Construction and Analysis of Systems,

vol . 1384. 1998. pp. 281-297.

148

[144] Lindqvis t , H . : Manda to ry access control. Master's Thesis in Computing Science,
Umea University, Department of Computing Science, SE-901. vol . 87. 2006.

[145] L i u , C . Z. ; A u , Y . A . ; C h o i , H . S.: Effects of freemium strategy in the mobile app
market: an empir ical study of Google play. Journal of Management Information
Systems, vol . 31, no. 3. 2014: pp. 326-354.

[146] Lokhande, B . ; Dhavale, S.: Overview of information flow tracking techniques based
on taint analysis for android. In Computing for Sustainable Global Development
(INDIACom), 2014 International Conference on. I E E E . 2014. pp. 749-753.

[147] Love, R . : Linux Kernel Development (Novell Press). Novel l Press. 2005.

[148] L u , K . ; L i , Z . ; Kemerl is , V . P.; et a l . : Checking More and A le r t i ng Less: Detecting
Pr ivacy Leakages v ia Enhanced Data-flow Analys is and Peer Vot ing . In NDSS. 2015.

[149] Magg i , F . ; Gaspar in i , S.; Boracchi , G . : A fast eavesdropping attack against
touchscreens. In Information Assurance and Security (IAS), 2011 7th International
Conference on. I E E E . 2011. pp. 320-325.

[150] Mahesh, B . R . ; K u m a r , M . B . ; Manoharan , R . ; et a l . : Por tab i l i ty of mobile
applications using phonegap: A case study. In Software Engineering and Mobile
Application Modelling and Development (ICSEMA 2012), International Conference
on. I E T . 2012. pp. 1-6.

[151] Maine t t i , L . ; Patrono, L . ; Vergallo, R . : I D A - P a y : an innovative micro-payment
system based on N F C technology for A n d r o i d mobile devices. In Software,
Telecommunications and Computer Networks (SoftCOM), 2012 20th International
Conference on. I E E E . 2012. pp. 1-6.

[152] Mak ino , H . ; Ishii, I.; Nakashizuka, M . : Development of navigation system for the
b l ind using G P S and mobile phone combination. In Engineering in Medicine and
Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th
Annual International Conference of the IEEE, vol . 2. I E E E . 1996. pp. 506-507.

[153] Marforio, C ; Ritzdorf , H . ; Franci l lon, A . ; et a l . : Analys is of the communicat ion
between colluding applications on modern smartphones. In Proceedings of the 28th
Annual Computer Security Applications Conference. A C M . 2012. pp. 51-60.

[154] Mauerer, W . : Professional Linux kernel architecture. John W i l e y &: Sons. 2010.

[155] McKer ley , M . ; Lohner, M . ; Fulay, A . : Session S316970: Enab l ing
Database-as-a-Service Through Agi le , Self-Service Dr iven Provis ioning. 2010.

[156] Meadows, C . A . : Formal verification of cryptographic protocols: A survey. In
International Conference on the Theory and Application of Cryptology. Springer.
1994. pp. 133-150.

[157] Meier , R . : Professional Android 4 application development. John W i l e y & Sons.
2012.

[158] Menezes, A . J . ; V a n Oorschot, P . C ; Vanstone, S. A . : Handbook of applied
cryptography. C R C press. 1996.

149

[159] Meyer, J . ; Downing, T . : Jasmin, http://jasmin.sourceforge.net/. 2017.

[160] M i d i , D . ; Oluwat imi , O. ; Shebaro, B . ; et a l . : Demo overview: privacy-enhancing
features of identidroid. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. A C M . 2014. pp. 1481-1483.

[161] Mile t te , C ; Stroud, A . : Professional Android sensor programming. John W i l e y &;
Sons. 2012.

[162] Mi l l e r , K . ; Pegah, M . : Vi r tua l i za t ion : v i r tua l ly at the desktop. In Proceedings of the
35th annual ACM SIGUCCS fall conference. A C M . 2007. pp. 255-260.

[163] M i l l e r , K . W . ; Voas, J . ; Hur lbur t , G . F . : B Y O D : security and privacy
considerations. It Professional, vol . 14, no. 5. 2012: pp. 0053-55.

[164] Meddersheim, S.; Vigano, L . ; Bas in , D . : Constraint differentiation: Search-space
reduction for the constraint-based analysis of security protocols. Journal of
Computer Security, vo l . 18, no. 4. 2010: pp. 575-618.

[165] Morr i s , J . ; Smalley, S.; Kroah-Har tman , G . : L i n u x security modules: General
security support for the l inux kernel. In USENIX Security Symposium. 2002.

[166] Musciano, C ; Kennedy, B . ; et a l . : HTML, the definitive Guide. O ' R e i l l y &
Associates. 1996.

[167] Nakao, K . ; Nakamoto, Y . : Toward remote service invocation in android. In
Ubiquitous Intelligence & Computing and 9th International Conference on
Autonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference
on. I E E E . 2012. pp. 612-617.

[168] O h , H. -S . ; K i m , B . - J . ; C h o i , H . - K . ; et a l . : Evalua t ion of A n d r o i d Da lv ik v i r tua l
machine. In Proceedings of the 10th International Workshop on Java Technologies
for Real-time and Embedded Systems. A C M . 2012. pp. 115-124.

[169] Openlntents: OI F i l e Manager.
h t t p s : / / p l a y . g o o g l e . c o m / s t o r e / a p p s / d e t a i l s ? i d = o r g . o p e n i n t e n t s . f ilemanager.

[170] Oracle, V . : V i r t u a l B o x , User Manua l , 2011. 2012.

[171] Papadimi t r iou , P.; Garc i a -Mol ina , H . : D a t a leakage detection. IEEE Transactions
on knowledge and data engineering, vol . 23, no. 1. 2011: pp. 51-63.

[172] Parr , T . : The definitive ANTLR 4 reference. Pragmat ic Bookshelf. 2013.

[173] Pau l , K . ; K u n d u , T . K . : A n d r o i d on mobile devices: A n energy perspective. In
Computer and Information Technology (CIT), 2010 IEEE 10th International
Conference on. I E E E . 2010. pp. 2421-2426.

[174] Peng, H . ; Gates, C ; Sarma, B . ; et a l . : Us ing probabil ist ic generative models for
ranking risks of android apps. In Proceedings of the 2012 ACM conference on
Computer and communications security. A C M . 2012. pp. 241-252.

[175] Peterson, J . L . ; Silberschatz, A . : Operating system concepts, vol . 2. Addison-Wesley
Reading, M A . 1985.

150

http://jasmin.sourceforge.net/
https://play.google.com/store/apps/details?id=org.openintents.f

[176] Pfleeger, C . P.; Pfleeger, S. L . : Security in computing. Prentice H a l l Professional
Technical Reference. 2002.

[177] P i t t s , D . ; B a l l , B . ; et a l . : Red Hat Linux. Sams. 1998.

[178] Qian , C ; Luo , X . ; Shao, Y . ; et a l . : O n tracking information flows through j n i i n
android applications. In Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on. I E E E . 2014. pp. 180-191.

[179] Racine, J . : The cygwin tools: a G N U toolkit for windows. 2000.

[180] Ra taboui l , S.: Android NDK: Beginner's Guide. Packt Publ i sh ing L t d . 2015.

[181] Reps, T. ; Horwi tz , S.; Sagiv, M . : Precise interprocedural dataflow analysis v ia

graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. A C M . 1995. pp. 49-61.

[182] Reshetova, E . ; Karhunen, J . ; N y m a n , T . ; et a l . : Security of OS-level v i r tual iza t ion
technologies: Technical report. arXiv preprint arXiw.l407.4245. 2014.

[183] Rhee, K . ; Jeon, W . ; W o n , D . : Security requirements of a mobile device management
system. International Journal of Security and Its Applications, vol . 6, no. 2. 2012:
pp. 353-358.

[184] R i sh , I.: A n empir ical s tudy of the naive Bayes classifier. In IJCAI 2001 workshop
on empirical methods in artificial intelligence, vol . 3. I B M New York . 2001. pp.
41-46.

[185] Rushby, J . ; et a l . : A trusted computing base for embedded systems. In Proceedings
7th DoD/NBS Computer Security Conference, sn. 1984. pp. 294-311.

[186] Russello, G . ; Jimenez, A . B . ; Nader i , H . ; et a l . : F i redro id : Hardening security i n
almost-stock android. In Proceedings of the 29th Annual Computer Security
Applications Conference. A C M . 2013. pp. 319-328.

[187] Russinovich, M . E . ; Solomon, D . A . ; A l l c h i n , J . : Microsoft Windows Internals:
Microsoft Windows Server 2003, Windows XP, and Windows 2000. vol . 4. Microsoft
Press Redmond. 2005.

[188] Salehi, M . ; Daryabar, F . ; Tadayon, M . H . : Welcome to Binder : A kernel level attack
model for the Binder i n A n d r o i d operating system. In Telecommunications (1ST),
2016 8th International Symposium on. I E E E . 2016. pp. 156-161.

[189] Salinas, A . B . ; Esteban, M . C ; Herber, T . : M e t h o d and apparatus for
communicat ing data packets from an external packet network to a mobile radio
station. October 22 2002. uS Patent 6,469,998.

[190] Samarat i , P. ; D i Vimerca t i , S. D . O : Access control: Policies, models, and
mechanisms. Lecture notes in computer science. , no. 2171. 2001: pp. 137-196.

[191] Samarat i , P.; de Vimerca t i , S. O : Access control: Policies, models, and mechanisms.
In International School on Foundations of Security Analysis and Design. Springer.
2000. pp. 137-196.

151

[192] Sandhu, R . S.: Role-based access control. 1997.

[193] Sandhu, R . S.; Samarat i , P.: Access control: principle and practice.
Communications Magazine, IEEE. vo l . 32, no. 9. 1994: pp. 40-48.

[194] Schreckling, D . ; Kost ier , J . ; Schaff, M . : K y n o i d : real-time enforcement of
fine-grained, user-defined, and data-centric security policies for android, information
security technical report, vol . 17, no. 3. 2013: pp. 71-80.

[195] Schreiber, T . : A n d r o i d binder. A shorter, more general work, but good for an
overview of Binder, http:/'/www. nds. rub.
de/media/attachments/files/2012/03/binder. pdf 2011.

[196] Schwartz, E . J . ; Avgerinos, T . ; Brumley, D . : A l l you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In Security and privacy (SP), 2010 IEEE symposium on. I E E E . 2010. pp.
317-331.

[197] Schwarz, B . ; Debray, S.; Andrews, G . : Disassembly of executable code revisited. In
Reverse engineering, 2002. Proceedings. Ninth working conference on. I E E E . 2002.
pp. 45-54.

[198] Shabtai , A . ; Fledel , Y . ; K a n ó n o v , U . ; et a l . : Google android: A comprehensive
security assessment. IEEE Security & Privacy, vol . 8, no. 2. 2010: pp. 35-44.

[199] Shalabi , S. M . ; D o l l , C . L . ; Rei l ly , J . D . ; et al . : Access control list. December 5 2011.
uS Patent A p p . 13/311,278.

[200] Shanker, A . ; L a i , S.: A n d r o i d port ing concepts. In Electronics Computer Technology
(ICECT), 2011 3rd International Conference on, vol . 5. I E E E . 2011. pp. 129-133.

[201] Shen, F . ; Vishnubhot la , N . ; Todarka, C ; et a l . : Information flows as a permission
mechanism. In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. A C M . 2014. pp. 515-526.

[202] Shin , W . ; K iyomoto , S.; Fukushima, K . ; et a l . : A formal model to analyze the
permission authorizat ion and enforcement i n the android framework. In Social
Computing (SocialCom), 2010 IEEE Second International Conference on. I E E E .
2010. pp. 944-951.

[203] Sickert, S.: Linear Temporal Logic . Archive of Formal Proofs, vol . 2016. 2016.

[204] Smalley, S.; Cra ig , R . : Security Enhanced (SE) A n d r o i d : Br ing ing Flexible M A C to
A n d r o i d . In NDSS, vol . 310. 2013. pp. 20-38.

[205] Smalley, S.; R 2 X , T . M . : The case for S E A n d r o i d . National Security Agency
(NSA). 2011.

[206] Spivey, J . M . ; A b r i a l , J . : The Z notation. Prentice H a l l Hemel Hempstead. 1992.

[207] Spride, E : Dro idBench - Benchmarks.
h t t p : / / s s e b l o g . e c - s p r i d e . d e / t o o l s / d r o i d b e n c h / . 2017.

152

http://sseblog.ec-spride.de/tools/droidbench/

[208] Sta l lman, R . M . ; M c G r a t h , R . : GNU Make: A Program for Directed Recompilation,
Version 3. 79. 1. Free Software Foundat ion. 2002.

[209] Stevens, W . R. ; Fenner, B . ; Rudoff, A . M . : UNIX network programming, vol . 1.
Addison-Wesley Professional. 2004.

[210] Stroustrup, B . : The C++ programming language. Pearson Educa t ion India. 1995.

[211] Sun, M . ; Zheng, M . ; L u i , J . ; et a l . : Design and implementat ion of an android
host-based intrusion prevention system. In Proceedings of the 30th Annual Computer
Security Applications Conference. A C M . 2014. pp. 226-235.

[212] Takahashi, T . ; Nakao, K . ; Kanaoka , A . : D a t a model for android package
information and its appl icat ion to risk analysis system. In Proceedings of the 2014
ACM Workshop on Information Sharing & Collaborative Security. A C M . 2014. pp.
71-80.

[213] Tan, D . J . ; Chua , T . - W . ; Th ing , V . L . ; et a l . : Securing android: a survey, taxonomy,
and challenges. ACM Computing Surveys (CSUR). vol . 47, no. 4. 2015: page 58.

[214] Tolone, W . ; A h n , G . - J . ; P a i , T. ; et a l . : Access control i n collaborative systems.
ACM Computing Surveys (CSUR). vol . 37, no. 1. 2005: pp. 29-41.

[215] Tr ipp , O. ; R u b i n , J . : A Bayesian Approach to Pr ivacy Enforcement in Smartphones.
In USENIX Security, vol . 14. 2014. pp. 175-190.

[216] Turuani , M . : The C L - A t s e protocol analyser. In International Conference on
Rewriting Techniques and Applications. Springer. 2006. pp. 277-286.

[217] V a n Rossum, G . ; Drake, F . L . : The python language reference manual. Network
Theory L t d . . 2011.

[218] VANCO, B . M . ; A r o n , L . : Dynamic Security Po l i cy Enforcement on A n d r o i d .
International Journal of Security and Its Applications, vol . 10, no. 9. 2016: pp.
141-148.

[219] Veite, A . ; Veite, T . : Microsoft virtualization with Hyper-V. M c G r a w - H i l l , Inc.. 2009.

[220] Veite, A . T. ; Veite, T . J . ; Elsenpeter, R . C ; et a l . : Cloud computing: a practical
approach. M c G r a w - H i l l New York . 2010.

[221] Vidas , T. ; Vot ipka , D . ; Chr i s t in , N . : A l l Your D r o i d A r e Belong to Us: A Survey of
Current A n d r o i d At tacks . In WOOT. 2011. pp. 81-90.

[222] Vise , D . : The google story. Strategic Direction, vol . 23, no. 10. 2007.

[223] V o n Oheimb, D . ; Möde r she im , S.: A S L a n - H — a formal security specification
language for distr ibuted systems. In Formal Methods for Components and Objects.
Springer. 2011. pp. 1-22.

[224] Waldspurger, C . A . : M e m o r y resource management i n V M w a r e E S X server. ACM
SIGOPS Operating Systems Review, vol . 36, no. SI. 2002: pp. 181-194.

[225] Wang, X . ; Sun, K . ; Wang, Y . ; et a l . : DeepDroid : Dynamica l ly Enforcing Enterprise
Pol icy on A n d r o i d Devices. In NDSS. 2015.

153

[226] Wells, G . : The Future of i O S Development: Evalua t ing the Swift P rogramming
Language. 2015.

[227] W u , C . ; Zhou, Y . ; Pate l , K . ; et a l . : A i r B a g : Boost ing Smartphone Resistance to
Malware Infection. In NDSS. 2014.

[228] W W W Pages: System Permissions.
http://developer.android.com/guide/topics/security/permissions.html.

[229] W W W Pages: 99.6 percent of new smartphones run A n d r o i d or i O S .
https://www.theverge.com/2017/2/16/14634656/android-ios-market
-share-blackberry-2016. 2017.

[230] W W W Pages: A n d r o i d Security Overview.

https://source.android.com/security/. 2017.

[231] W W W Pages: Apache Harmony Project, http://harmony.apache.org/. 2017.

[232] W W W Pages: D a l v i k Executable format.
https://source.android.com/devices/tech/dalvik/dex-format . 2017.

[233] X u , R . ; Sa'idi, H . ; Anderson, R . J . : Auras ium: pract ical pol icy enforcement for
android applications. In USENIX Security Symposium, vol . 2012. 2012.

[234] Yaghmour, K . : Embedded Android: Porting, Extending, and Customizing. " O ' R e i l l y
Med ia , Inc.,,. 2013.

[235] Y a n , L . - K . ; Y i n , H . : DroidScope: Seamlessly Reconstruct ing the O S and Da lv ik
Semantic Views for Dynamic A n d r o i d Malware Analys is . In USENIX security
symposium. 2012. pp. 569-584.

[236] Yang , S.; Y a n , D . ; W u , H . ; et a l . : Static control-flow analysis of user-driven
callbacks i n A n d r o i d applications. In Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on, vol . 1. I E E E . 2015. pp. 89-99.

[237] Yang , X . ; Sang, N . ; Alves-Foss, J . : Shortening the Boot T ime of A n d r o i d O S .
Computer, vol . 47, no. 7. 2014: pp. 53-58.

[238] Yang , Z . ; Yang , M . : Leakminer: Detect information leakage on android w i th static
taint analysis. In Software Engineering (WCSE), 2012 Third World Congress on.
I E E E . 2012. pp. 101-104.

[239] Y i , W . ; Pettersson, P. ; Daniels, M . : Au tomat ic verification of real-time
communicat ing systems by constraint-solving. In Formal Description Techniques
VII. Springer. 1995. pp. 243-258.

[240] Youngdale, E . : Ke rne l korner: The E L F object file format by dissection. Linux
Journal, vol . 1995, no. 13es. 1995: page 15.

[241] Y u , X . ; Chen, B . ; Wang, Z. ; et a l . : Mob ihydra : Pragmat ic and mult i- level plausibly
deniable encryption storage for mobile devices. In International Conference on
Information Security. Springer. 2014. pp. 555-567.

154

http://developer.android.com/guide/topics/security/permissions.html
https://www.theverge.com/2017/2/16/14634656/android-ios-market
https://source.android.com/security/
http://harmony.apache.org/
https://source.android.com/devices/tech/dalvik/dex-format

[242] Yue, Y . ; Guo , L . ; et a l . : U N I X F i l e System. In UNIX Operating System. Springer.
2011. pp. 149-185.

[243] Zandbergen, P . A . ; Barbeau, S. J . : Posi t ional accuracy of assisted gps data from
high-sensitivity gps-enabled mobile phones. Journal of Navigation, vol . 64, no. 03.
2011: pp. 381-399.

[244] Zettel, D . - I . J . : D y n a m i c L i n k i n g in C + + under SunOS 4.1, Solaris 2.4 and L i n u x
1.3. 1996.

[245] Zhao, Z . ; Osono, F . C . C : "TrustDroid , , : Preventing the use of SmartPhones for
information leaking in corporate networks through the used of static analysis taint
t racking. In Malicious and Unwanted Software (MALWARE), 2012 7th
International Conference on. I E E E . 2012. pp. 135-143.

[246] Z h i - A n , Y . ; Chun-Miao , M . : T h e development and applicat ion of sensor based on
android. In Information Science and Digital Content Technology (ICIDT), 2012 8th
International Conference on, vol . 1. I E E E . 2012. pp. 231-234.

[247] Zhu, H . ; X i o n g , H . ; Ge , Y . ; et a l . : Mobi le app recommendations wi th security and
privacy awareness. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. A C M . 2014. pp. 951-960.

155

Appendices

156

Appendix A

Pseudocodes

1 / *
2 * On 64-bit platforms where user code may run
3 * in 32-bits the d r i v e r must
4 * t r a n s l a t e the buffer (and l o c a l binder) address es
5 * a p r o p r i a t e l y .
6 * /
7
8 s t r u c t b i n d e r _ w r i t e _ r e a d {
9 / * bytes to write */

10 s i g n e d l o n g w r i t e _ s i z e ;
11 / * bytes consumed by d r i v e r */
12 s i g n e d l o n g write_consumed;
13 u n s i g n e d l o n g w r i t e _ b u f f e r ;
14 / * bytes to read */
15 s i g n e d l o n g r e a d _ s i z e ;
16 / * bytes consumed by d r i v e r */
17 s i g n e d l o n g read_consumed;
18 u n s i g n e d l o n g r e a d _ b u f f e r ;
19 };

L i s t ing A.l: Pseudocode of binder_write_read structure (defined i n binder.h)

1 s t r u c t b i n d e r _ t r a n s a c t i o n _ d a t a {
2 / * The f i r s t two are only used for bcTRANSACTION
3 * and brTRANSACTION,
4 * i d e n t i f y i n g the target and contents
5 * of the t r a n s a c t i o n .
6 * /
7 u n i o n {
8 / * target d e s c r i p t o r of command t r a n s a c t i o n */
9 s i z e _ t h a n d l e ;

10 / * target d e s c r i p t o r of return t r a n s a c t i o n */
11 v o i d * p t r ;
12 } t a r g e t ;
13
14 v o i d * c o o k i e ; /* target object cookie */
15 u n s i g n e d i n t code; /* t r a n s a c t i o n command */
16
17 / * General information about the t r a n s a c t i o n . */
18 u n s i g n e d i n t f l a g s ;

157

19 p i d _ t s e n d e r _ p i d ;
20 u i d _ t s e n d e r _ e u i d ;
21 / * number of bytes of data */
22 s i z e _ t d a t a _ s i z e ;
23 / * number of bytes of o f f s e t s */
24 s i z e _ t o f f s e t s _ s i z e ;
25
26 / * If t h i s transaction i s i n l i n e , the data immediately
27 * follows here; otherwise, i t ends with a pointer to
28 * the data buffer.
29 * /
30 u n i o n {
31 s t r u c t {
32 / * transaction data */
33 const v o i d * b u f f e r ;
34 / * o f f s e t s from buffer to f l a t _ b i n d e r _ o b j e c t
35 * s t r u c t s
36 * /
37 const v o i d * o f f s e t s ;
38 } p t r ;
39 u i n t 8 _ t buf [8] ;
40 } d a t a ;
41 };

Lis t ing A.2: Pseudocode of bind.er_transaction_d.ata structure (defined in binder.h)

1 c l a s s S m a l l B l o c k {
2 u n s i g n e d l o n g s t a r t ; // Start Address
3 char block[SMALL_BLOCK_SIZE];
4 };
5
6 c l a s s MemBlock {
7 u n s i g n e d l o n g s t a r t ; // Start Address
8 u n s i g n e d char hash [32] ; // Counted Hash Value
9 i n t s i z e ; // Size of Memory Block

10 i n t f d S r c ; // Source F i l e Descriptor
11 T a i n t e d F i l e f p S r c ; // F u l l Path of Source F i l e
12 };
13
14 / / L i s t of Tainted Memory Block
15 std::vector<MemBlock *> t a i n t e d L i s t ;
16 / / Blocks of Stored Information
17 s t d : : v e c t o r < S m a l l B l o c k *> s m a l l B l o c k s ;

Lis t ing A . 3 : Pseudocode of data structures for taint ing mechanism

158

http://bind.er_transaction_d.ata

Appendix B

Source Code of Verification Models

1 < d e c l a r a t i o n >
2 // c o n s t a n t s of command type
3 const i n t open_ p u b l i c = 1
4 const i n t open_ p r i v a t e = 2
5 const i n t r ead_ p u b l i c = 3
G const i n t r ead_ p r i v a t e = 4
7 const i n t w r i t e _ p u b l i c = 5
8 const i n t w r i t e _ p r i v a t e = 6
9 const i n t share _ c o n t e n t = 7

10 const i n t seek_ p o s i t i o n = 8
11 const i n t copy = 9
12 const i n t c l o s e _ p u b l i c = 10;
13 const i n t c l o s e _ p r i v a t e = 11;
14
15 // shar e d command v a r i a b l e
16 i n t command = 0;
17
18 // s y n c h r o n i z a t i o n c h a n n e l s
19 chan read_command;
20 chan next_command;
21 chan u s e r _ a c t i o n ;
22 b r o a d c a s t chan r e a d ;
23 < / d e c l a r a t i o n >

Lis t ing B . l : Uppaa l source code of variables definition

1 <template >
2 <name x="5" y ="5">FSMRequired</name>
3 < d e c l a r a t i o n > < / d e c l a r a t i o n >
4 < l o c a t i o n i d = " i d 2 3 " x="-528" y="-160">
5 <name x= ii -538" y="-190">Cpr</name>
6 < / l o c a t i o n >
7 < l o c a t i o n i d = " i d 2 4 " x="-808" y="-160">
8 <name x= II -818" y="-190">Spr</name>
9 < / l o c a t i o n >

10 < l o c a t i o n i d = " i d 2 5 " x="-520" y="-280">
11 <name x= II -536" y="-264">Cpu</name>
12 < / l o c a t i o n >
13 < l o c a t i o n i d = " i d 2 6 " x="-808" y="-280">
14 <name x= II -824" y="-264">Spu</name>

159

15 < / l o c a t i o n >
16 < l o c a t i o n i d = " i d 2 7 " x="-976" y="-232">
17 <name x="-986" y=" -262" >s</name>
18 < / l o c a t i o n >
19 < i n i t r e f = " i d 2 7 " />
20 < t r a n s i t i o n >
21 <source r e f = " i d 2 6 " />
22 < t a r g e t r e f = " i d 2 6 " />
23 < l a b e l k i n d = " g u a r d " x="-896" y="-416">
24 command == r e a d _ p u b l i c I I
25 command == w r i t e _ p u b l i c I I
26 command == s h a r e _ c o n t e n t
27 < / l a b e l >
28 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-824" y="-368">
29 r e a d ?
30 < / l a b e l >
31 < n a i l x="-776" y="-344" />
32 < n a i l x="-848" y="-344" />
33 < / t r a n s i t i o n >
34 < t r a n s i t i o n >
35 <source r e f = " i d 2 4 " />
36 < t a r g e t r e f = " i d 2 4 " />
37 < l a b e l k i n d = " g u a r d " x="-920" y="-88">
38 command == r e a d _ p r i v a t e I I
39 command == w r i t e _ p r i v a t e
40 < / l a b e l >
41 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-840" y="-56">
42 re a d ?
43 < / l a b e l >
44 < n a i l x="-840" y="-88" />
45 < n a i l x="-776" y="-88" />
46 < / t r a n s i t i o n >
47 < t r a n s i t i o n >
48 <source r e f = " i d 2 5 " />
49 < t a r g e t r e f = " i d 2 6 " />
50 < l a b e l k i n d = " g u a r d " x="-712" y="-360">
51 command == o p e n _ p u b l i c
52 < / l a b e l >
53 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-648" y="-336">
54 re a d ?
55 < / l a b e l >
56 < n a i l x="-528" y="-336" />
57 < n a i l x="-736" y="-336" />
58 < / t r a n s i t i o n >
59 < t r a n s i t i o n >
60 <source r e f = " i d 2 3 " />
61 < t a r g e t r e f = " i d 2 4 " />
62 < l a b e l k i n d = " g u a r d " x="-712" y="-120">
63 command == o p e n _ p r i v a t e
64 < / l a b e l >
65 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-656" y="-104">
66 re a d ?
67 < / l a b e l >
68 < n a i l x="-544" y="-120" />

160

69 < n a i l x="-736" y="-120" />
70 < / t r a n s i t i o n >
71 < t r a n s i t i o n >
72 <source r e f = " i d 2 6 " />
73 < t a r g e t r e f = " i d 2 5 " />
74 < l a b e l k i n d = " g u a r d " x="-752" y="-304">
75 command == c l o s e _ p u b l i c
76 < / l a b e l >
77 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-688" y="-280">
78 r e a d ?
79 < / l a b e l >
80 < n a i l x="-672" y="-280" />
81 < / t r a n s i t i o n >
82 < t r a n s i t i o n >
83 <source r e f = " i d 2 4 " />
84 < t a r g e t r e f = " i d 2 3 " />
85 < l a b e l k i n d = " g u a r d " x="-760" y="-184">
86 command == c l o s e _ p r i v a t e
87 < / l a b e l >
88 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-688" y="-160">
89 r e a d ?
90 < / l a b e l >
91 < n a i l x="-680" y="-160" />
92 < / t r a n s i t i o n >
93 < t r a n s i t i o n >
94 <source r e f = " i d 2 7 " />
95 < t a r g e t r e f = " i d 2 4 " />
96 < l a b e l k i n d = " g u a r d " x="-1008" y="-160">
97 command == o p e n _ p r i v a t e
98 < / l a b e l >
99 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-928" y="-184">

100 read?
101 < / l a b e l >
102 < n a i l x="-976" y="-160" />
103 < / t r a n s i t i o n >
104 < t r a n s i t i o n >
105 <source r e f = " i d 2 7 " />
106 < t a r g e t r e f = " i d 2 6 " />
107 < l a b e l k i n d = " g u a r d " x="-1024" y="-304">
108 command == o p e n _ p u b l i c
109 < / l a b e l >
110 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-944" y="-280">
111 r e a d ?
112 < / l a b e l >
113 < n a i l x="-976" y="-280" />
114 < / t r a n s i t i o n >
115 </template>

Lis t i ng B .2 : Uppaa l source code of FSMRequi redProcess

1 <template>
2 <name x="5" y="5">FSMImplementation</name>
3 < d e c l a r a t i o n > < / d e c l a r a t i o n >
4 < l o c a t i o n i d = " i d 0 " x="-112" y="112">
5 <name x="-120" y="128">Cpr</name>

161

6 < / l o c a t i o n >
7 < l o c a t i o n i d = " i d l " x="192" y="-8">
8 <name x="176" y="-40">Wpr</name>
9 < / l o c a t i o n >

10 < l o c a t i o n i d = " i d 2 " x="-112" y="-8">
11 <name x="-120" y="-40">Spr</name>
12 < / l o c a t i o n >
13 < l o c a t i o n i d = " i d 3 " x="-112" y="-232">
14 <name x="-128" y="-264">Cpu</name>
15 < / l o c a t i o n >
16 < l o c a t i o n i d = " i d 4 " x="200" y="-112">
17 <name x="184" y="-96">Wpu</name>
18 < / l o c a t i o n >
19 < l o c a t i o n i d = " i d 5 " x="-112" y="-112">
20 <name x="-120" y="-96">Spu</name>
21 < / l o c a t i o n >
22 < l o c a t i o n i d = " i d 6 " x="-288" y="-64">
23 <name x="-312" y="-72">s</name>
24 < / l o c a t i o n >
25 < i n i t r e f = " i d 6 " />
26 < t r a n s i t i o n >
27 <source r e f = " i d l " />
28 < t a r g e t r e f = " i d l " />
29 < l a b e l k i n d = " g u a r d " x="272" y="-40">
30 command == r e a d _ p r i v a t e I I
31 command == w r i t e _ p r i v a t e ||
32 command == s e e k _ p o s i t i o n
33 < / l a b e l >
34 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="328" y="8">
35 r e a d ?
36 < / l a b e l >
37 < n a i l x="232" y="32" />
38 < n a i l x="272" y="-8" />
39 < n a i l x="232" y="-48" />
40 < / t r a n s i t i o n >
41 < t r a n s i t i o n >
42 <source r e f = " i d 2 " />
43 < t a r g e t r e f = " i d 0 " />
44 < l a b e l k i n d = " g u a r d " x="-104" y="40">
45 command == c l o s e _ p r i v a t e
46 < / l a b e l >
47 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-48" y="56">
48 r e a d ?
49 < / l a b e l >
50 < / t r a n s i t i o n >
51 < t r a n s i t i o n >
52 <source r e f = " i d 5 " />
53 < t a r g e t r e f = " i d 3 " />
54 < l a b e l k i n d = " g u a r d " x="-104" y="-192">
55 command == c l o s e _ p u b l i c
56 < / l a b e l >
57 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-56" y="-176">
58 r e a d ?
59 < / l a b e l >

162

60 < / t r a n s i t i o n >
61 < t r a n s i t i o n >
62 <source r e f = " i d 4 " />
63 < t a r g e t r e f = " i d 4 " />
64 < l a b e l k i n d = " g u a r d " x="200" y="-248">
65 command == s h a r e _ c o n t e n t ||
66 command == r e a d _ p u b l i c I I
67 command == w r i t e _ p u b l i c I|
68 command == w r i t e _ p r i v a t e ||
69 command == copy ||
70 command == s e e k _ p o s i t i o n
71 < / l a b e l >
72 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="264" y="-152">
73 r e a d ?
74 < / l a b e l >
75 < n a i l x="248" y="-80" />
76 < n a i l x="272" y="-120" />
77 < n a i l x="240" y="-152" />
78 < / t r a n s i t i o n >
79 < t r a n s i t i o n >
80 <source r e f = " i d 3 " />
81 < t a r g e t r e f = " i d 5 " />
82 < l a b e l k i n d = " g u a r d " x="-336" y="-256">
83 command == o p e n _ p u b l i c
84 < / l a b e l >
85 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-272" y="-240">
86 r e a d ?
87 < / l a b e l >
88 < n a i l x="-200" y="-232" />
89 < n a i l x="-200" y="-176" />
90 < / t r a n s i t i o n >
91 < t r a n s i t i o n >
92 <source r e f = " i d 0 " />
93 < t a r g e t r e f = " i d 2 " />
94 < l a b e l k i n d = " g u a r d " x="-352" y="88">
95 command == o p e n _ p r i v a t e
96 < / l a b e l >
97 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-280" y="104">
98 r e a d ?
99 < / l a b e l >
100 < n a i l x="-184" y="112" />
101 < n a i l x="-184" y="48" />
102 < / t r a n s i t i o n >
103 < t r a n s i t i o n >
104 <source r e f = " i d l " />
105 < t a r g e t r e f = " i d O " />
106 < l a b e l k i n d = " g u a r d " x="-20" y="110">
107 command == c l o s e _ p r i v a t e
108 < / l a b e l >
109 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="40" y="128">
110 read?
111 < / l a b e l >
112 < n a i l x="168" y="112" />
113 < / t r a n s i t i o n >

163

114 < t r a n s i t i o n >
115 <source r e f = " i d 2 " />
116 < t a r g e t r e f = " i d l " />
117 < l a b e l k i n d = " g u a r d " x="-56" y="-40">
118 command == r e a d _ p r i v a t e I I
119 command == w r i t e _ p r i v a t e
120 < / l a b e l >
121 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="16" y="-8">
122 read?
123 < / l a b e l >
124 < / t r a n s i t i o n >
125 < t r a n s i t i o n >
126 <source r e f = " i d 4 " />
127 < t a r g e t r e f = " i d 3 " />
128 < l a b e l k i n d = " g u a r d " x="-40" y="-256">
129 command == c l o s e _ p u b l i c
130 < / l a b e l >
131 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="16" y="-232">
132 r e a d ?
133 < / l a b e l >
134 < n a i l x="120" y="-232" />
135 < / t r a n s i t i o n >
136 < t r a n s i t i o n >
137 <source r e f = " i d 5 " />
138 < t a r g e t r e f = " i d 4 " />
139 < l a b e l k i n d = " g u a r d " x="-48" y="-144">
140 command == r e a d _ p u b l i c I I
141 command == w r i t e _ p u b l i c
142 < / l a b e l >
143 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="8" y="-112">
144 r e a d ?
145 < / l a b e l >
146 < / t r a n s i t i o n >
147 < t r a n s i t i o n >
148 <source r e f = " i d 6 " />
149 < t a r g e t r e f = " i d 2 " />
150 < l a b e l k i n d = " g u a r d " x="-312" y="-8">
151 command == o p e n _ p r i v a t e
152 < / l a b e l >
153 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-248" y="8">
154 r e a d ?
155 < / l a b e l >
156 < n a i l x="-288" y="-8" />
157 < / t r a n s i t i o n >
158 < t r a n s i t i o n >
159 <source r e f = " i d 6 " />
160 < t a r g e t r e f = " i d 5 " />
161 < l a b e l k i n d = " g u a r d " x="-312" y="-136">
162 command == o p e n _ p u b l i c
163 < / l a b e l >
164 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-248" y="-112">
165 r e a d ?
166 < / l a b e l >
167 < n a i l x="-288" y="-112" />

164

168 < / t r a n s i t i o n >
169 </template>

Lis t ing B . 3 : Uppaa l source code of FSMImplementa t ionProcess

1 <template>
2 <name x="5" y="5">User</name>
3 < d e c l a r a t i o n > < / d e c l a r a t i o n >
4 < l o c a t i o n i d = " i d l l " x="-824" y="-368">
5 <name x="-834" y="-398">i</name>
6 < / l o c a t i o n >
7 < l o c a t i o n i d = " i d l 2 " x="-720" y="-208">
8 <name x="-730" y="-238">h</name>
9 < / l o c a t i o n >
10 < l o c a t i o n i d = " i d l 3 " x="-704" y="-128">
11 <name x="-714" y="-158">g</name>
12 < / l o c a t i o n >
13 < l o c a t i o n i d = " i d l 4 " x="-992" y="-128">
14 <name x="-1002" y="-158">f</name>
15 < / l o c a t i o n >
16 < l o c a t i o n i d = " i d l 5 " x="-1256" y="-128">
17 <name x="-1266" y="-158">e</name>
18 < / l o c a t i o n >
19 < l o c a t i o n i d = " i d l 6 " x="-1200" y="-200">
20 <name x="-1210" y="-230">d</name>
21 < / l o c a t i o n >
22 < l o c a t i o n i d = " i d l 7 " x="-760" y="-424">
23 <name x="-770" y="-454">j</name>
24 < / l o c a t i o n >
25 < l o c a t i o n i d = " i d l 8 " x="-704" y="-480">
26 <name x="-714" y="-510">k</name>
27 < / l o c a t i o n >
28 < l o c a t i o n i d = " i d l 9 " x="-1256" y="-480">
29 <name x="-1266" y="-510">c</name>
30 < / l o c a t i o n >
31 < l o c a t i o n i d = " i d 2 0 " x="-1216" y="-424">
32 <name x="-1226" y="-454">b</name>
33 < / l o c a t i o n >
34 < l o c a t i o n i d = " i d 2 1 " x="-1152" y="-368">
35 <name x="-1162" y="-398">a</name>
36 < / l o c a t i o n >
37 < l o c a t i o n i d = " i d 2 2 " x="-992" y="-328">
38 <name x="-1002" y="-358">s</name>
39 < / l o c a t i o n >
40 < i n i t r e f = " i d 2 2 " />
41 < t r a n s i t i o n >
42 <source r e f = " i d 2 1 " />
43 < t a r g e t r e f = " i d 2 2 " />
44 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1136" y="-336">
45 r e a d ?
46 < / l a b e l >
47 < n a i l x="-1152" y="-312" />
48 < / t r a n s i t i o n >
49 < t r a n s i t i o n >
50 <source r e f = " i d 2 0 " />

165

51 < t a r g e t r e f = " i d 2 2 " />
52 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1208" y="-320">
53 r e a d ?
54 < / l a b e l >
55 < n a i l x="-1216" y="-288" />
56 < / t r a n s i t i o n >
57 < t r a n s i t i o n >
58 <source r e f = " i d l 9 " />
59 < t a r g e t r e f = " i d 2 2 " />
60 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1248" y="-288">
61 r e a d ?
62 < / l a b e l >
63 < n a i l x="-1256" y="-256" />
64 < / t r a n s i t i o n >
65 < t r a n s i t i o n >
66 <source r e f = " i d l 8 " />
67 < t a r g e t r e f = " i d 2 2 " />
68 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-752" y="-304">
69 r e a d ?
70 < / l a b e l >
71 < n a i l x="-704" y="-264" />
72 < / t r a n s i t i o n >
73 < t r a n s i t i o n >
74 <source r e f = " i d l 7 " />
75 < t a r g e t r e f = " i d 2 2 " />
76 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-800" y="-336">
77 r e a d ?
78 < / l a b e l >
79 < n a i l x="-760" y="-304" />
80 < / t r a n s i t i o n >
81 < t r a n s i t i o n >
82 <source r e f = " i d l l " />
83 < t a r g e t r e f = " i d 2 2 " />
84 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-896" y="-352">
85 r e a d ?
86 < / l a b e l >
87 < n a i l x="-824" y="-328" />
88 < / t r a n s i t i o n >
89 < t r a n s i t i o n >
90 <source r e f = " i d l 2 " />
91 < t a r g e t r e f = " i d 2 2 " />
92 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-880" y="-264">
93 r e a d ?
94 < / l a b e l >
95 < / t r a n s i t i o n >
96 < t r a n s i t i o n >
97 <source r e f = " i d l 3 " />
98 < t a r g e t r e f = " i d 2 2 " />
99 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-752" y="-256">
100 r e a d ?
101 < / l a b e l >
102 < n a i l x="-704" y="-256" />
103 < / t r a n s i t i o n >
104 < t r a n s i t i o n >

166

105 <source r e f = " i d l 4 " />
106 < t a r g e t r e f = " i d 2 2 " />
107 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-984" y="-208">
108 r e a d ?
109 < / l a b e l >
110 < / t r a n s i t i o n >
111 < t r a n s i t i o n >
112 <source r e f = " i d l 5 " />
113 < t a r g e t r e f = " i d 2 2 " />
114 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1248" y="-184">
115 r e a d ?
116 < / l a b e l >
117 < n a i l x="-1256" y="-232" />
118 < / t r a n s i t i o n >
119 < t r a n s i t i o n >
120 <source r e f = " i d l 6 " />
121 < t a r g e t r e f = " i d 2 2 " />
122 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1072" y="-288">
123 r e a d ?
124 < / l a b e l >
125 < n a i l x="-1176" y="-240" />
126 < / t r a n s i t i o n >
127 < t r a n s i t i o n >
128 <source r e f = " i d 2 2 " />
129 < t a r g e t r e f = " i d l l " />
130 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-920" y="-392">
131 u s e r _ a c t i o n !
132 < / l a b e l >
133 < l a b e l k i n d = " a s s i g n m e n t " x="-944" y="-408">
134 command = w r i t e _ p r i v a t e
135 < / l a b e l >
136 < n a i l x="-944" y="-368" />
137 < / t r a n s i t i o n >
138 < t r a n s i t i o n >
139 <source r e f = " i d 2 2 " />
140 < t a r g e t r e f = " i d l 2 " />
141 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-848" y="-192">
142 u s e r _ a c t i o n !
143 < / l a b e l >
144 < l a b e l k i n d = " a s s i g n m e n t " x="-896" y="-208">
145 command = s e e k _ p o s i t i o n
146 < / l a b e l >
147 < n a i l x="-896" y="-208" />
148 < / t r a n s i t i o n >
149 < t r a n s i t i o n >
150 <source r e f = " i d 2 2 " />
151 < t a r g e t r e f = " i d l 3 " />
152 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-784" y="-104">
153 u s e r _ a c t i o n !
154 < / l a b e l >
155 < l a b e l k i n d = " a s s i g n m e n t " x="-800" y="-120">
156 command = copy
157 < / l a b e l >
158 < n a i l x="-864" y="-128" />

167

159 < / t r a n s i t i o n >
160 < t r a n s i t i o n s
161 <source r e f = " i d 2 2 " />
162 < t a r g e t r e f = " i d l 4 " />
163 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-984" y="-104">
164 u s e r _ a c t i o n !
165 < / l a b e l >
166 < l a b e l k i n d = " a s s i g n m e n t " x="-1024" y="-120">
167 command = s h a r e _ c o n t e n t
168 < / l a b e l >
169 < n a i l x="-888" y="-128" />
170 < / t r a n s i t i o n >
171 < t r a n s i t i o n >
172 <source r e f = " i d 2 2 " />
173 < t a r g e t r e f = " i d l 5 " />
174 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1168" y="-152">
175 u s e r _ a c t i o n !
176 < / l a b e l >
177 < l a b e l k i n d = " a s s i g n m e n t " x="-1200" y="-168">
178 command = c l o s e _ p u b l i c
179 < / l a b e l >
180 < n a i l x="-1016" y="-128" />
181 < / t r a n s i t i o n >
182 < t r a n s i t i o n >
183 <source r e f = " i d 2 2 " />
184 < t a r g e t r e f = " i d l 6 " />
185 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1144" y="-224">
186 u s e r _ a c t i o n !
187 < / l a b e l >
188 < l a b e l k i n d = " a s s i g n m e n t " x="-1176" y="-240">
189 command = c l o s e _ p r i v a t e
190 < / l a b e l >
191 < n a i l x="-1016" y="-200" />
192 < / t r a n s i t i o n >
193 < t r a n s i t i o n >
194 <source r e f = " i d 2 2 " />
195 < t a r g e t r e f = " i d l 7 " />
196 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-872" y="-448">
197 u s e r _ a c t i o n !
198 < / l a b e l >
199 < l a b e l k i n d = " a s s i g n m e n t " x="-904" y="-464">
200 command = w r i t e _ p u b l i c
201 < / l a b e l >
202 < n a i l x="-936" y="-424" />
203 < / t r a n s i t i o n >
204 < t r a n s i t i o n >
205 <source r e f = " i d 2 2 " />
206 < t a r g e t r e f = " i d l 8 " />
207 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-864" y="-504">
208 u s e r _ a c t i o n !
209 < / l a b e l >
210 < l a b e l k i n d = " a s s i g n m e n t " x="-904" y="-520">
211 command = r e a d _ p r i v a t e
212 < / l a b e l >

168

213 < n a i l x="-944" y="-480" />
214 < / t r a n s i t i o n >
215 < t r a n s i t i o n >
216 <source r e f = " i d 2 2 " />
217 < t a r g e t r e f = " i d l 9 " />
218 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1152" y="-504">
219 u s e r _ a c t i o n !
220 < / l a b e l >
221 < l a b e l k i n d = " a s s i g n m e n t " x="-1184" y="-520">
222 command = r e a d _ p u b l i c
223 < / l a b e l >
224 < n a i l x="-976" y="-480" />
225 < / t r a n s i t i o n >
226 < t r a n s i t i o n >
227 <source r e f = " i d 2 2 " />
228 < t a r g e t r e f = " i d 2 0 " />
229 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1152" y="-448">
230 u s e r _ a c t i o n !
231 < / l a b e l >
232 < l a b e l k i n d = " a s s i g n m e n t " x="-1176" y="-464">
233 command = o p e n _ p r i v a t e
234 < / l a b e l >
235 < n a i l x="-992" y="-424" />
236 < / t r a n s i t i o n >
237 < t r a n s i t i o n >
238 <source r e f = " i d 2 2 " />
239 < t a r g e t r e f = " i d 2 1 " />
240 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1120" y="-392">
241 u s e r _ a c t i o n !
242 < / l a b e l >
243 < l a b e l k i n d = " a s s i g n m e n t " x="-1160" y="-408">
244 command = o p e n _ p u b l i c
245 < / l a b e l >
246 < n a i l x="-1096" y="-368" />
247 < / t r a n s i t i o n >
248 </template>

Lis t ing B.4 : Uppaa l source code of user process

1 <template>
2 <name x="5" y="5">UserPublic</name>
3 < d e c l a r a t i o n > < / d e c l a r a t i o n >
4 < l o c a t i o n i d = " i d 2 8 " x="-1000" y="-528">
5 <name x="-1010" y="-558">a</name>
6 < / l o c a t i o n >
7 < l o c a t i o n i d = " i d 2 9 " x="-1224" y="-528">
8 <name x="-1234" y="-558">s</name>
9 < / l o c a t i o n >

10 < l o c a t i o n i d = " i d 3 0 " x="-864" y="-440">
11 <name x="-874" y="-470">i</name>
12 < / l o c a t i o n >
13 < l o c a t i o n i d = " i d 3 1 " x="-864" y="-352">
14 <name x="-874" y="-382">h</name>
15 < / l o c a t i o n >
16 < l o c a t i o n i d = " i d 3 2 " x="-968" y="-312">

169

17
18
1!)
20
21
22
23
24
2r,
20
27
28
2!)
30
31
32
33
34
35
36
37
38
39
10
11
12
13
44
45
10
17
18
19
50
51
52
53
5 1
55
56
57
58
59
60
(il
62
63
64
65
66
«7
68
69
70

-978" y="-342">g</name>

x =
r

x =
y=

x =
y=

x =
y=

x =
y=

x =

y=

/>
1 id.28 1

1 id.38 1

/>

/>

<name x
< / l o c a t i o n >
< l o c a t i o n i d = " i d 3 3

<name x="-1202
< / l o c a t i o n >
< l o c a t i o n i d = " i d 3 4

<name x="-1304
< / l o c a t i o n >
< l o c a t i o n i d = " i d 3 5

<name x="-1002
< / l o c a t i o n >
< l o c a t i o n i d = " i d 3 6

<name x="-1194
< / l o c a t i o n >
< l o c a t i o n i d = " i d 3 7

<name x="-1304
< / l o c a t i o n >
< l o c a t i o n i d = " i d 3 8

<name x="-1090
< / l o c a t i o n >
< i n i t r e f = " i d 2 9
< t r a n s i t i o n >

<source r e f
<t a r g e t r e f
< l a b e l k i n d

r ead?
< / l a b e l >

< / t r a n s i t i o n >
< t r a n s i t i o n >

<source r e f
<t a r g e t r e f
< l a b e l k i n d

u s e r _ a c t i o n !
< / l a b e l >
< l a b e l k i n d = " a s s i g n m e n t " x

command = o p e n _ p u b l i c
< / l a b e l >

< / t r a n s i t i o n >
< t r a n s i t i o n >

<source ref=
< t a r g e t ref=
< l a b e l kind=

r e a d ?
< / l a b e l >

< / t r a n s i t i o n >
< t r a n s i t i o n >

<source ref=
< t a r g e t ref=
< l a b e l kind=

-1192" y="-312">
-342">f</name>

-1280" y="-376">
-384">e</name >

-992" y="-480">
-510">j</name >

-1184" y="-472">
-502">c</name>

-1280" y="-408">
-424">d</name>

-1080" y="-408">
-438">b</name >

s y n c h r o n i s a t i o n " x= 1008"

i d 2 9 " />
id 2 8 " />
s y n c h r o n i s a t i o n " 1152" y="-552">

-1192" y="-568">

i d 3 0 " />
id 3 8 " />
s y n c h r o n i s a t i o n " -952" -432">

1 i d 3 8 " />
'idSO" />
s y n c h r o n i s a t i o n "

u s e r _ a c t i o n !
< / l a b e l >
< l a b e l k i n d = " a s s i g n m e n t " x='

command = w r i t e _ p r i v a t e
< / l a b e l >

-856"

-840" y="-408">

-424">

170

71 < n a i l x="-864" y="-384" />
72 < n a i l x="-864" y="-416" />
73 < / t r a n s i t i o n >
74 < t r a n s i t i o n >
75 <source r e f = " i d 3 7 " />
76 < t a r g e t r e f = " i d 3 8 " />
77 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1240" y="-432">
78 r e a d ?
79 < / l a b e l >
80 < / t r a n s i t i o n >
81 < t r a n s i t i o n >
82 <source r e f = " i d 3 6 " />
83 < t a r g e t r e f = " i d 3 8 " />
84 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1128" y="-456">
85 r e a d ?
86 < / l a b e l >
87 < / t r a n s i t i o n >
88 < t r a n s i t i o n >
89 <source r e f = " i d 3 5 " />
90 < t a r g e t r e f = " i d 3 8 " />
91 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1016" y="-464">
92 r e a d ?
93 < / l a b e l >
94 < / t r a n s i t i o n >
95 < t r a n s i t i o n >
96 <source r e f = " i d 3 1 " />
97 < t a r g e t r e f = " i d 3 8 " />
98 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-936" y="-360">
99 r e a d ?
100 < / l a b e l >
101 < / t r a n s i t i o n >
102 < t r a n s i t i o n >
103 <source r e f = " i d 3 2 " />
104 < t a r g e t r e f = " i d 3 8 " />
105 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1048" y="-352">
106 r e a d ?
107 < / l a b e l >
108 < / t r a n s i t i o n >
109 < t r a n s i t i o n >
110 <source r e f = " i d 3 3 " />
111 < t a r g e t r e f = " i d 3 8 " />
112 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1144" y="-360">
113 r e a d ?
114 < / l a b e l >
115 < / t r a n s i t i o n >
116 < t r a n s i t i o n >
117 <source r e f = " i d 3 4 " />
118 < t a r g e t r e f = " i d 3 8 " />
119 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1240" y="-384">
120 r e a d ?
121 < / l a b e l >
122 < / t r a n s i t i o n >
123 < t r a n s i t i o n >
124 <source r e f = " i d 3 8 " />

171

125 < t a r g e t r e f = " i d 3 1 " />
126 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-840" y="-328">
127 u s e r _ a c t i o n !
128 < / l a b e l >
129 < l a b e l k i n d = " a s s i g n m e n t " x="-856" y="-344">
130 command = s e e k _ p o s i t i o n
131 < / l a b e l >
132 < n a i l x="-864" y="-296" />
133 < / t r a n s i t i o n >
134 < t r a n s i t i o n >
135 <source r e f = " i d 3 8 " />
136 < t a r g e t r e f = " i d 3 2 " />
137 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1040" y="-288">
138 u s e r _ a c t i o n !
139 < / l a b e l >
140 < l a b e l k i n d = " a s s i g n m e n t " x="-1056" y="-304">
141 command = copy
142 < / l a b e l >
143 < n a i l x="-1072" y="-312" />
144 < / t r a n s i t i o n >
145 < t r a n s i t i o n >
146 <source r e f = " i d 3 8 " />
147 < t a r g e t r e f = " i d 3 3 " />
148 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1168" y="-288">
149 u s e r _ a c t i o n !
150 < / l a b e l >
151 < l a b e l k i n d = " a s s i g n m e n t " x="-1232" y="-304">
152 command = s h a r e _ c o n t e n t
153 < / l a b e l >
154 < n a i l x="-1096" y="-312" />
155 < / t r a n s i t i o n >
156 < t r a n s i t i o n >
157 <source r e f = " i d 3 8 " />
158 < t a r g e t r e f = " i d 3 4 " />
159 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1352" y="-312">
160 u s e r _ a c t i o n !
161 < / l a b e l >
162 < l a b e l k i n d = " a s s i g n m e n t " x="-1392" y="-328">
163 command = c l o s e _ p u b l i c
164 < / l a b e l >
165 < n a i l x="-1280" y="-328" />
166 < / t r a n s i t i o n >
167 < t r a n s i t i o n >
168 <source r e f = " i d 3 8 " />
169 < t a r g e t r e f = " i d 3 5 " />
170 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-904" y="-488">
171 u s e r _ a c t i o n !
172 < / l a b e l >
173 < l a b e l k i n d = " a s s i g n m e n t " x="-936" y="-504">
174 command = w r i t e _ p u b l i c
175 < / l a b e l >
176 < n a i l x="-920" y="-448" />
177 < n a i l x="-920" y="-480" />
178 < / t r a n s i t i o n >

172

179 < t r a n s i t i o n >
180 <source r e f = " i d 3 8 " />
181 < t a r g e t r e f = " i d 3 6 " />
182 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1152" y="-496">
183 u s e r _ a c t i o n !
184 < / l a b e l >
185 < l a b e l k i n d = " a s s i g n m e n t " x="-1184" y="-512">
186 command = r e a d _ p u b l i c
187 < / l a b e l >
188 < n a i l x="-1080" y="-472" />
189 < / t r a n s i t i o n >
190 < t r a n s i t i o n >
191 <source r e f = " i d 3 8 " />
192 < t a r g e t r e f = " i d 3 7 " />
193 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1320" y="-488">
194 u s e r _ a c t i o n !
195 < / l a b e l >
196 < l a b e l k i n d = " a s s i g n m e n t " x="-1352" y="-504">
197 command = o p e n _ p u b l i c
198 < / l a b e l >
199 < n a i l x="-1280" y="-472" />
200 < / t r a n s i t i o n >
201 </template>

Listing B.5: Uppaal source code of user process limited to public file operations

1 <template>
2 <name x="5" y="5">UserPrivate</name>
3 < d e c l a r a t i o n > / / P l a c e l o c a l d e c l a r a t i o n s h e r e .
4 < / d e c l a r a t i o n >
5 < l o c a t i o n i d = " i d 3 9 " x="-1920" y="-280">
6 <name x="-1930" y="-310">a</name>
7 < / l o c a t i o n >
8 < l o c a t i o n i d = " i d 4 0 " x="-2112" y="-280">
9 <name x="-2122" y="-310">s</name>

10 < / l o c a t i o n >
11 < l o c a t i o n i d = " i d 4 1 " x="-1672" y="-352">
12 <name x="-1682" y="-382">d</name>
13 < / l o c a t i o n >
14 < l o c a t i o n i d = " i d 4 2 " x="-1864" y="-312">
15 <name x="-1874" y="-342">e</name>
16 < / l o c a t i o n >
17 < l o c a t i o n i d = " i d 4 3 " x="-2016" y="-320">
18 <name x="-2026" y="-350">f</name>
19 < / l o c a t i o n >
20 < l o c a t i o n i d = " i d 4 4 " x="-1728" y="-464">
21 <name x="-1738" y="-494">c</name>
22 < / l o c a t i o n >
23 < l o c a t i o n i d = " i d 4 5 " x="-2016" y="-464">
24 <name x="-2026" y="-494">g</name>
25 < / l o c a t i o n >
26 < l o c a t i o n i d = " i d 4 6 " x="-1864" y="-408">
27 <name x="-1874" y="-438">b</name>
28 < / l o c a t i o n >
29 < i n i t r e f = " i d 4 0 " />

173

30 < t r a n s i t i o n >
31 <source r e f = " i d 3 9 " />
32 < t a r g e t r e f = " i d 4 6 " />
33 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1944" y="-336">
34 re a d ?
35 < / l a b e l >
36 < / t r a n s i t i o n >
37 < t r a n s i t i o n >
38 <source r e f = " i d 4 0 " />
39 < t a r g e t r e f = " i d 3 9 " />
40 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-2064" y="-264">
41 u s e r _ a c t i o n !
42 < / l a b e l >
43 < l a b e l k i n d = " a s s i g n m e n t " x="-2096" y="-280">
44 command = o p e n _ p r i v a t e
45 < / l a b e l >
46 < / t r a n s i t i o n >
47 < t r a n s i t i o n >
48 <source r e f = " i d 4 5 " />
49 < t a r g e t r e f = " i d 4 6 " />
50 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1984" y="-440">
51 r e a d ?
52 < / l a b e l >
53 < / t r a n s i t i o n >
54 < t r a n s i t i o n >
55 <source r e f = " i d 4 4 " />
56 < t a r g e t r e f = " i d 4 6 " />
57 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1816" y="-464">
58 r e a d ?
59 < / l a b e l >
60 < / t r a n s i t i o n >
61 < t r a n s i t i o n >
62 <source r e f = " i d 4 1 " />
63 < t a r g e t r e f = " i d 4 6 " />
64 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1736" y="-360">
65 r e a d ?
66 < / l a b e l >
67 < / t r a n s i t i o n >
68 < t r a n s i t i o n >
69 <source r e f = " i d 4 2 " />
70 < t a r g e t r e f = " i d 4 6 " />
71 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1856" y="-368">
72 re a d ?
73 < / l a b e l >
74 < / t r a n s i t i o n >
75 < t r a n s i t i o n >
76 <source r e f = " i d 4 3 " />
77 < t a r g e t r e f = " i d 4 6 " />
78 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1936" y="-368">
79 r e a d ?
80 < / l a b e l >
81 < / t r a n s i t i o n >
82 < t r a n s i t i o n >
83 <source r e f = " i d 4 6 " />

174

84 < t a r g e t r e f = " id.41 " />
85 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1664" y="-416">
86 u s e r _ a c t i o n !
87 < / l a b e l >
88 < l a b e l k i n d = " a s s i g n m e n t " x="-1744" y="-432">
89 command = w r i t e _ p r i v a t e
90 < / l a b e l >
91 < n a i l x="-1672" y="-408" />
92 < / t r a n s i t i o n >
93 < t r a n s i t i o n >
94 <source r e f = " i d 4 6 " />
95 < t a r g e t r e f = " i d 4 2 " />
96 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1792" y="-296">
97 u s e r _ a c t i o n !
98 < / l a b e l >
99 < l a b e l k i n d = " a s s i g n m e n t " x="-1832" y="-312">
100 command = s e e k _ p o s i t i o n
101 < / l a b e l >
102 < n a i l x="-1776" y="-368" />
103 < n a i l x="-1776" y="-312" />
104 < / t r a n s i t i o n >
105 < t r a n s i t i o n >
106 <source r e f = " i d 4 6 " />
107 < t a r g e t r e f = " i d 4 3 " />
108 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-2136" y="-368">
109 u s e r _ a c t i o n !
110 < / l a b e l >
111 < l a b e l k i n d = " a s s i g n m e n t " x="-2184" y="-384">
112 command = c l o s e _ p r i v a t e
113 < / l a b e l >
114 < n a i l x="-2016" y="-400" />
115 < / t r a n s i t i o n >
116 < t r a n s i t i o n >
117 <source r e f = " i d 4 6 " />
118 < t a r g e t r e f = " i d 4 4 " />
119 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1832" y="-544">
120 u s e r _ a c t i o n !
121 < / l a b e l >
122 < l a b e l k i n d = " a s s i g n m e n t " x="-1864" y="-560">
123 command = r e a d _ p r i v a t e
124 < / l a b e l >
125 < n a i l x="-1856" y="-520" />
126 < n a i l x="-1728" y="-520" />
127 < / t r a n s i t i o n >
128 < t r a n s i t i o n >
129 <source r e f = " i d 4 6 " />
130 < t a r g e t r e f = " i d 4 5 " />
131 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-2016" y="-544">
132 u s e r _ a c t i o n !
133 < / l a b e l >
134 < l a b e l k i n d = " a s s i g n m e n t " x="-2056" y="-560">
135 command = o p e n _ p r i v a t e
136 < / l a b e l >
137 < n a i l x="-1944" y="-520" />

175

138 < n a i l x="-2016" y="-520" />
139 < / t r a n s i t i o n >
140 </template>

Lis t ing B .6 : Uppaa l source code of user process l imi ted to private file operations

1 <template>
2 <name x="5" y="5">Reader</name>
3 < d e c l a r a t i o n > < / d e c l a r a t i o n >
4 < l o c a t i o n i d = " i d 7 " x="-840" y="-232">
5 <name x="-840" y="-216">a</name>
6 < / l o c a t i o n >
7 < l o c a t i o n i d = " i d 8 " x="-840" y="-344">
8 <name x="-850" y="-374">s</name>
9 < / l o c a t i o n >

10 < i n i t r e f = " i d 8 " />
11 < t r a n s i t i o n >
12 <source r e f = " i d 7 " />
13 < t a r g e t r e f = " i d 8 " />
14 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-800" y="-304">
15 r e a d !
16 < / l a b e l >
17 < n a i l x="-808" y="-288" />
18 < / t r a n s i t i o n >
19 < t r a n s i t i o n >
20 <source r e f = " i d 8 " />
21 < t a r g e t r e f = " i d 7 " />
22 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-976" y="-304">
23 next_command?
24 < / l a b e l >
25 < n a i l x="-872" y="-288" />
26 < / t r a n s i t i o n >
27 </template>

Lis t ing B .7 : Uppaa l source code of reader

1 <template>
2 <name x="5" y="5">Writer</name>
3 < d e c l a r a t i o n > < / d e c l a r a t i o n >
4 < l o c a t i o n i d = " i d 9 " x="-1000" y="-416">
5 <name x="-1000" y="-400">a</name>
6 < / l o c a t i o n >
7 < l o c a t i o n i d = " i d l 0 " x="-1000" y="-520">
8 <name x="-1010" y="-550">s</name>
9 < / l o c a t i o n >

10 < i n i t r e f = " i d l 0 " />
11 < t r a n s i t i o n >
12 <source r e f = " i d 9 " />
13 < t a r g e t r e f = " i d l 0 " />
14 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-968" y="-488">
15 next_command!
16 < / l a b e l >
17 < n a i l x="-968" y="-472" />
18 < / t r a n s i t i o n >
19 < t r a n s i t i o n >

176

20 <source r e f = " i d l 0 " />
21 < t a r g e t r e f = " i d 9 " />
22 < l a b e l k i n d = " s y n c h r o n i s a t i o n " x="-1120" y="-488">
23 u s e r _ a c t i o n ?
24 < / l a b e l >
25 < n a i l x="-1032" y="-472" />
26 < / t r a n s i t i o n >
27 </template>

Lis t ing B .8 : Uppaa l source code of writer

1 <system>
2 FSMTmplementationProcess = FSMImplementation () ;
3 F S M R e q u i r e d P r o c e s s = F S M R e q u i r e d () ;
4 R e a d e r P r o c e s s = Reader () ;
5 W r i t e r P r o c e s s = W r i t e r () ;
6
7 // What User p r o c e s s w i l l be used
8 U s e r P r o c e s s = User () ;
9 / / U s e r P r o c e s s = U s e r P u b l i c () ;

10 / / U s e r P r o c e s s = U s e r P r i v a t e () ;
11
12 // L i s t one or more p r o c e s s e s to be composed i n t o a system.
13 system F S M I m p l e m e n t a t i o n P r o c e s s , F S M R e q u i r e d P r o c e s s ,
14 R e a d e r P r o c e s s , W r i t e r P r o c e s s , U s e r P r o c e s s ;
15 </system>

Lis t ing B .9 : Uppaa l source code of system definition

177

