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Abstract

This thesis analyses privacy protection on mobile devices and presents the method for
protecting these data against information leakage. The security is focused on using the
mobile device for personal purposes and also for the working environment. The concept of
the design solution is implemented in the form of prototype. Model of implementation is
verified with the model of required behavior. The thesis also consists of experiments with
prototype and verification experiments on defined models.

Abstrakt

Tato prace analyzuje ochranu citlivych dat na mobilnich zarizenich a predstavuje metodu
pro ochranu téchto dat pfed moznosti iiniku informaci ze zafizeni. Ochrana se zaméruje na
vyuzivani zafizeni, jak pro osobni icely, tak i v pracovnim prostredi. Koncept navrzeného
feSeni je implementovan ve formé prototypu. Model implementace je verifikovin s mod-
elem pozadovaného chovani. Soucéasti prace jsou experimenty s prototypem a experimenty
zameétrené na verifikaci mezi danymi modely.
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Chapter 1

Introduction

Nowadays, mobile devices are an essential part of our everyday lives since they enable us
to access a large variety of services. In recent years, the availability of these mobile services
has significantly increased due to the different form of connectivity provided by mobile
devices. In the same trend, the number and typologies of vulnerabilities exploiting these
services and communication channels have increased as well.

Therefore, mobile devices may now represent an ideal target for hackers.

As the number of vulnerabilities and, hence, of attacks increase, there has been a cor-
responding rise of security solutions proposed by researchers. Related to the popularity of
mobile devices and also many services that these devices provide the need of protection of
user’s data are required from the mobile device operating systems [183]. The mobile device
is usually controlled by the person who is the owner of the current device.

This person uses its device as a personal device, which means that the content of the mo-
bile device is not explicitly restricted against data leakage, even the private data could be
sensitive. There are many mechanisms for protecting the user against data leakage, these
tools are built into operating systems or can be additionally installed [98]. The user can
work with the device in two modes - public and protected. During working with a public
method, the user does not have access to sensitive information and also protected applica-
tions. The switch between these modes is usually at the boot time of the device. In some
situations, this switching mechanism can be considered as a disadvantage.

There is need of users to use their devices in the working environment, and there exist
many solutions to provide this approach, and also these solutions try to prevent the data
against its leakage. For instance, the bring your own device (BYOD) approach [29] or mobile
device management (MDM) approach [(61]. These approaches usually have administration
access to the device and can control the device remotely.

These principles can installed and then administration routine can be done without
user’s knowledge. Th whole device is under the administration of the working institution.
The advantage of this principle is that the user work with the device in one mode, which
is usually protected and all data are considered as protected. However, the institution can
control the sensitive data it also has access to personal data of the owner of the device.

1.1 Goals

The goal of this thesis is to investigate privacy protection on mobile devices and current
solutions provided by the manufacturer of these devices, operating system vendors, third-



party institutions, and researchers. Moreover, the investigation covers the software vendors
primarily creators of operating systems and their approach to protecting users against data
leakage. This thesis concerned with mobile device operating systems, their protection and
possibility of enhanced security in the area of information leakage. End users usually use
these devices and operating systems for providing a connection with other users, sending
messages, using the internet, playing music or movies, taking photos, and work with it.
The focus here is on combining mobile device as a personal device and also using it as a work
device. This concept covers privacy protection against data leakage. A user is usually an
individual unique person, and mostly the only owner of the invention and the possibility of
using the personal device at work has its benefits.

Overview of research in this area, possible vulnerabilities and protection against data
leakage can also be considered as one of the goals. Besides, there is presented the topic
with the threats that are well known and are still valid. In order to understand what issues
and protection mechanism are available during these days, the investigation should consider
the technical background of a modern operating system with the aim on mobile devices.
Moreover, it should also cover approaches to protection, security aspects and the whole
protection mechanism implemented in these operating systems.

The investigation of vulnerabilities, properties leading to protection against these vul-
nerabilities and also defining the novel concept, formal model describing the required be-
havior, possible prototype implementation as proof of concept and even the verification of
application against behavior needed is the primary goal. The focus of this thesis is the def-
inition of the novel approach of using a mobile device as a personal device and also as
a work device. The additional value should be that the user has a power of deciding which
data is considered as personal and which information is private. Moreover, the institution
in which the device is used does not have the control over the device and does not have
access to personal data of an owner of the mobile device. This approach determines that
the thesis is focused on levels of security with properties such as confidentiality, integrity,
and protection.

The formal model of required behavior can be created after the research of current state
of protection in the area of mobile devices, exploration of technical details of approaches to
this field of security provided by operating systems and also a definition of the behavior.
Model of implementation that can be created with the implementation of the prototype
should satisfy required properties. To prove that these features are fulfilled the verification
of these models are presented.

The verification can be presented on mathematical bases, or existing verification tool can
be used. To use existing verification tool, the small research in this area is needed, because
there are plenty of verification tools that are general for any verification, or specifically
focused on any field. To provide the results from that tool the convenient one should be
presented.

1.2 Contribution

The contribution of this thesis is in two things. The first one is the definition of general
protection model (model of required behavior), which should consider the need of working
with available information on personal basis and another type of information that is marked
as private. The personal information or data is marked as public and private data could
be then marked as private. The contribution of this work is to provide a possible approach
of using the one mobile device for both use cases (personal device and working device)



without any restriction, or without rebooting the machine into a secured mode. Moreover,
the security in case of protection against data leakage should be possible without any
modification of the operating system. Note that the applications should provide the same
functionality as before.

The differences should be apparently visible during protection mode only. The general
protection models should be defined formally, with the operating system independence.
Therefore this system can be used on any platform even outside mobile world. In contrast,
the model of implementation can be operating system dependent related to the creation of
this model is based on the implementation of the prototype. This prototype needs to be
implemented for the specific operating system with its specifics on security aspects, such as
installation applications, access rights, data protection, and other kinds of implementation
techniques. The contribution should be confirmed during the verification phase of imple-
mentation model with the model of required behavior. Also, experiments of the verification
process discuss the possible results, and implementation experiments summarize findings
related to the prototype.

Chapter 2 provides introduction into privacy protection on mobile devices. This chapter
also describes the complete overview of enhancements of protection user’s private informa-
tion. Additionally, there is the description of security threats targeted at the mobile world.
These threats are split into few categories in which the privacy is protected in a differ-
ent approach. In the second part of the chapter, the protection against discussed security
threats are presented.

The chapter 3 discuss protection principles used in modern operating systems. These
principles are not limited to mobile operating systems only, but they have also used on
desktop or server machines. The first part of the chapter is focused on fundamental proper-
ties of a security system with the discussion about confidentiality, integrity, and availability.
Access control models are defined formally, and their implementation covers the second part
of that chapter.

Mobile operating system architecture is presented in the chapter 4. During this chapter,
the general privacy protection defined in the chapter 3 is presented as the implementation
of one of the most used operating system for mobile devices. The user data protection is
presented through all levels of an operating system with the detail description of the im-
plementation solution. This chapter can be considered as technical background for the im-
plementation of the prototype.

The main idea of this thesis is presented in the chapter 5 that is focused on the definition
of access rights model. This chapter discusses the related work in this area of protection
user’s data and their approaches. The contribution of this thesis starts with this chapter.
The most important part of this chapter is the model of required behavior, which is defined
formally. This formal model can be then used as the model used in the verification process
of the implementation.

Next chapter 6 presents the technical details of the operating system, which have an im-
pact on the required behavior. The system design is described together with the prototype
implementation which should satisfy the requirement presented in the previous chapter.
The inseparable part of this chapter is the description of a framework that helps define
the correct security layer. The second part of this chapter describes the formal model of
implementation, that is the simplified model used in a verification process. The model is
presented in a similar format as the model of required behavior.

A verification process is described in the chapter 7, in which model of required behavior
and model of implementation are verified with the aim of security properties. This chapter



introduces the verification tools that can be used for checking two models. The specification
of models in the format of the tool is presented, and other necessary parts for the verification
process are defined.

Chapter 8 shows the verification experiments on already defined models. These experi-
ments are considered as an example of possible verification processes between two models.
They are focused on general verification of available file operations, and their classification
according to a definition. These experiments are evaluated, and the results are discussed
at the final stage of each experiment section.

Implementation experiments are presented in the chapter 9, which covers the exper-
iments on a real mobile device and operating system simulator. The implementation is
tested via randomly chosen and freely available applications, which are installed and then
tested with the implementation solution. The results of these experiments are then col-
lection and evaluated. The main focused is considered on the data leakage, but also on
properties such as performance measurement.

The last chapter 10 of this thesis is dedicated to a conclusion.



Chapter 2

Privacy Protection

This chapter covers the overview of privacy protection on mobile devices. Moreover, this
chapter describes the privacy protection enhancement designed by other researchers, secu-
rity specialists, and developers among mobile devices. Additionally, there is the summary
of the proposals, and other research works in recent years in this area. A primary aim of
this part is related to the leakage of data. Thus, the aim can be seen in two categories -
privacy protection enhancement and privacy leakage detection [171]. An approach aimed
to privacy protection enhancement can be implemented in the system layer and also in
the application layer. The system-level enhancement performs the deficiency of privacy
protection mechanism. For instance, coarse granularity access control which allows sensi-
tive data to be leaked out of the device through the implicit data flow. Moreover, relatively
sophisticated privacy leakage detection techniques such as taint analysis and flow control
analysis many kinds of research have applied machine learning to detect the information
leakage.

There are papers related to security survey on mobile devices such as [129, , .
They are focused on threats, vulnerabilities, and related solutions in the mobile world.
A set of tools have been developed by Enck et al. [73] to handle the security issues of
applications available through application market. Major security fields have been analyzed,
characterized and categorized by Tan et al. [213].

Privacy protection on mobile devices can be categorized in many different aspects. For
instance, these selections can be based on threats, platform architecture levels, hardware
and software security accesses, operating systems and its models. The first part of this
chapter is going to cover the selection privacy based on privacy security threats related to
sensitive data access, and then it follows with the leakage information possibilities.

2.1 Privacy Security Threats

As was discussed earlier, the mobile device is an important part of human life, and there-
fore users store private and sensitive data on it. Due to the mobile operating platform,
the amount of malicious applications on this platform is increasing year by year. It is not
only the issue of one platform but the whole mobile world. In these days the mobile de-
vice with the operating system is just tool to handle usual routines such as phone calls,
sms/mms messaging, internet access, camera, music/movie player, and other available func-
tionalities. However, this list of features is not complete. Users want more than limited
functionality provided by the manufacturer. This need is the reason for the available ap-



plications provided by the third-party developers. Additionally, these applications enhance
the functionality of the device. In contrast, these applications need access to the device
hardware through drivers and also access to the system information and sometimes access
to the private or sensitive information, such as location, contact list, emails, messages and
many other data available on the device. Information or data available on the device can be
categorized into four groups, the main idea has been proposed by Midi et al. [160]. These
four groups are device resources, user data, system information and application data.

Device Resources

Current modern mobile devices come to the market with many hardware units to provide
the specific feature to the user. For instance, one of these units can be near field commu-
nication (NFC) [127], global position system (GPS) [243], camera and other sensors which
enable applications to accomplish complex functions and services, such as phone navigation
[152]. In contrast to desirable properties of all sensors and hardware units, there is also
a possible risk for the user. For example, the NFC hardware unit is used in these days for

payment access control and ticketing (micropayment) [151]. According to NFC, Haselsteiner
et al. [102] found possible NFC threats, such as eavesdropping [119], data corruption, data
modification, data insertion, man-in-the-middle attack [65], these attacks or threats are

available because the principle of this technology is based on wireless communication.

Another manner of sensitive information detection related to resources available on
a modern mobile device has been found by Dey et al. [67]. They found that hard-
ware imperfection during fabrication process makes each accelerometer sensor chip unique.
The uniqueness is in the response that each chip response is different to the same motion
stimulation. This knowledge makes the device to easily track a user over space and time
because this motion stimulus creates a unique fingerprint of the user.

User Data

User data is produced when any user uses the device. Therefore, a user is using the basic
services of a mobile device, including sms/mms messages, contact list, phone records and
other mobile features. Felt et al. [77] found that the most common malicious behavior
is the stealing of personal information of users. Additionally, the most instant messaging
software request access to the contact list and use the address book to recommend friends
to users. Although it becomes convenient, attackers can utilize this method to obtain
the user’s privacy information automatically.

System Information

System information consists of various sources of the current mobile device. These infor-
mation could be international mobile equipment identity (IMEI) [125], international mobile
subscriber identity (IMSI)[189], phone number, Wi-Fi media access control (MAC) address
[59], etc. Some information can uniquely identify a mobile device, namely, identify a unique
user. According to permissions of the operating system applications installed on the device
can access this information. Related to the research of Achara et al. [1], they found that
permission which allows access to the state of wireless connection can not only identify
the user with MAC address but can also obtain their coarse-grained location information
without requesting the permission for location.



Application Data

Applications create various data related to the user’s interest and cookies in the case of
internet browser. Although on every modern operating system aimed to mobile devices
is application sandbox mechanism available to ensure the isolation between applications,
there are still some means for malware [37] to gather and analyze these data. Recently,
more applications use browser kernel to show the hypertext markup language (HTML) [166]
content within them. However, the trend in the development of mobile applications raises
in the idea of developing an application for all platforms. The main solution to this idea is
to use the browser kernel to handle view part of the application in HTML, and the logic
is maintained by JavaScript [79]. Approaches to developing application through more than
one operating system are out of the scope of this thesis, but some additional information
can be found in [9, 85, 150].

One feature of this approach is that provides a way for JavaScript in a browser kernel
to invoke application code when the application enables the kernel. This principle allows
the web page to access functionality and also data exposed by the application, which un-
doubtedly increases application’s attack. This vulnerability has been published by Chin et
al. [55] on webview [39].

2.2 Privacy of Communication Channels

Related to a weakness of privacy communication channels, researchers try to handle this
security breaches and propose the tools and mechanisms to protect a user against privacy
leakage. In this section are two types of leakage. One is related to permission escalation,
which is aimed at some operating system privacy issue. The second one is an informal
overview of possible collusion attack.

Permission Escalation

This security issue is related mainly to an operating system and is described as an applica-
tion with fewer permissions (a non-privileged caller) is not restricted to access components
of a more privileged application (a privileged callee) [(2].

Sandbox Sandbox Sandbox
Application A Application B Application C
Granted permissions: - Granted permissions: p1 Granted permissions: -
Al A2 Bl B2 C1 [p1] C2 [p2]
i N A A
I
| |
| SR, V2SR, V U, V.U . V. SN RIPI, v AN V (U ——_
x X * X X Reference monitor
Android Middleware

Figure 2.1: Component-based permission escalation attack [(2]



In other words, operating system security architecture does not ensure that a caller
is assigned at least the same permissions as a callee. Figure 2.1 shows the situation in
which privilege escalation attack becomes possible. Applications A, B and C' are assumed
to run on an operating system, each of them is isolated in its sandbox. Application A has
no granted permissions and consists of components A1 and A2. Application B is granted
a permission pl and consists of components Bl and B2 . Permission labels protect neither
B1 nor B2 and thus can be accessed by any application. Both, Bl and B2 can access
components of external applications protected with the permission label pl since in general,
all application components inherit permissions granted to their application. Application C
has no permissions granted, it consists of components C'1 and C2. Components C1 and C2
are protected by permission labels pl and p2, respectively, that means that component C'1
can be accessed only by components of applications which possess pl, while component C2
is accessible by components of applications granted permission p2.

As can be seen in figure 2.1, component Al is not able to access C'l component, since
pl permission is not granted to the application A. Nevertheless, data from component
A1l can reach component C1 indirectly, via the Bl component. Indeed, component B1
can be accessed by component Al since component Bl is not protected by any permission
label. In turn, component B1 is able to access C'1 component since the application B and
consequently all its components are granted pl permission [(2].

Collusion Attack

Attackers accomplish malicious behavior by colluding applications and therefore indirectly
escalate their permissions. Collusion attack can escape those detection technology designed
for a single application. Collusion attack has been revealed by the Marforio et al. [153].
They implemented and analyzed much covert and overt communication channel that enables
applications to collude.

2.3 Privacy Protection Mechanisms

According to the weakness of privacy protection mechanisms on mobile devices, researchers
try to improve the system privacy at different levels. These levels are described in the fol-
lowing sections.

Privacy Protect Enhancement

Enhancement of privacy can be one on system layer, which is related to operating system
and also on the application layer. The application layer is based on third-party develop-
ers and also on execution platform which is the operating system. Lets firstly describe
the system layer and after that the application layer security enhancements.

System Layer

The operating system provides a set of permission to limit applications access to sensitive
resources [7, |. But the concept of all-or-nothing feature make it weak [7]. There is an
approach which provides appropriate authorization for access system resources. Design and
implementation of this approach are based on graph-theoretical algorithm [39]. Moreover,
Shen et al. [201] proposed flow permission mechanism provide users additional context on
how the applications leverage the standard permissions and resources.
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From another point of view of security - isolation. The isolation technique has been
used in Solaris operating system [2], Linux based operating system [117], etc. Applications
or processes can not interact with each other in an isolated environment because protect
application data. Better isolation is achieved with the solution called AirBag [227]. It is
a lightweight operating-system level virtualization approach which is designed to isolate and
prevent malware from infecting systems or stealthily leaking private information. However,
numerous system events are isolated at AirBag boundary as result of confining the untrusted
application to communicate with other legitimate applications and services running on
the native run-time, which will affect the certain functionality of untrusted applications.
This solution is focused on isolating privacy information on data level or process level.

A similar approach has been proposed by Lange et al. [132] which is called Crossover.
Crossover is based on L4Android [133] and provides a framework which defines the re-
quirements and properties of a secure and usable user interface to manage several different
operating system environments on one device.

To provide a safe business environment based on BYOD principle [163], Wang et al.
[225] proposed an enterprise-level security policy enforcement mechanism called DeepDroid.
It is a fine-grained system which modifies the system services responsible for access rights.
Enterprise administrators can dynamically enforce fine-grained system services and resource
access control policy. Although, various works of privacy protection enhancement, such as
TrustDroid [245], using a different security policy, it is approximately the same approach
where they hook and how they enforce a policy.

For mobile operating system exists at least two proposals of policy enforcement pub-
lished by Backes et al. [27] and Heuser et al. [105] respectively proposed the Android secu-
rity framework (ASF) and Android security modules (ASM) framework, providing a pro-
grammable interface to develop another novel protection mechanisms. The main difference
between ASF and ASM is that the ASF is deployed in the bottom of existing ASF, allowing
third-party developers to supplement or replace the existing platform security mechanism,
while ASF enhances the system security and privacy through applications.

To be sure, that data is unable to use, when other access control mechanisms such as
authentication or file access are compromised, data encryption technology can guarantee
that data is not possible to read. Implementation of a practical system of encryption on
mobile devices is published by Yu et al. [241]. This proposal is called MobiHydra, and
the implementation is based on plausibly deniable encryption [10], featuring multilevel de-
niability on mobile devices. A user can choose to store sensitive data at different deniability
levels and can hide data without rebooting in this system. Besides, to focus on the entire
file system encryption, there is another proposal called MobiPluto [51] which is based on
a principle of denying the existence of sensitive data stored on the mobile device.

Another type of security protection is security authentication. An Authentication is pre-
sented on a mobile device on many levels, but the first one is the key to open the device for
usage. This principle is usually done by personal identification number code, pattern lock,
face recognition, or any other features which could uniquely identify the user of the device.
Chiang et al. [53] proposed a new multiple-layer graphical password scheme, which allows
users to draw their passwords across multiple layers through the ,,warp-cells.“ This approach
avoids unlocking the device by brute force. A different approach for a low participation of
authentication mechanism proposed Li et al. [138]. This proposal uses a classifier to learn
the owner’s finger movement pattern. It can continuously re-authenticates the current user
without interrupting user-smart-phone interactions.
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Application Layer

The current privacy protection enhancement research on application layer mainly covers
two aspects: recommendation to the users to fewer risk applications according to their risk
level, and taking a positive response to defense mechanisms, such as monitoring application’s
behavior while they are running.

The application risk assessment introduces machine learning methods to privacy pro-
tection. For instance, Peng et al. [174] use probabilistic generative models for risk scoring
schemes, and identify several models ranging from the simple Naive Bayes models [134]
to advanced hierarchical mixture models. Moreover, Zhu et al. [217] developed a recom-
mendation system that considers both the application’s popularity and the privacy threat.
This solution is based on the work of [174]. Different from using permission to assess risk
an automated framework called RISKMON was presented by [116]. This framework scores
the risk based on user’s coarse expectations and application’s behavior. Although, machine
learning needs a huge amount of training data and therefore the data model which contains
information which facilitated risk analysis was created by [212].

Monitoring run-time process is helpful for users to understand the privacy data flow
and detect the malicious behavior. For instance, the FireDroid [186] monitoring tool serves
as a monitor process which controls the execution of native codes and prevents privacy
leakages. It is working transparently to a user. Moreover, intrusion detection system
based on a host can report and interrupt malicious activity in real-time. This mechanism
improves the defense of the host system. To prevent intrusion by performing run-time
policy enforcement on system-level, the Patronous - security architecture system proposed
by Sun et al. [211].

Privacy Leakage Detection

Private leakage detection research is focusing primarily to taint analysis, control flow anal-
ysis, and virtualization. Also, some researchers introduce machine learning principles to
privacy leakage detection.

Taint analysis includes static and dynamic taint parts. It should taint the sensitive
information firstly, and then analyze the data flow through taint tracking or alias analysis
algorithm. A novel static taint analysis system called FlowDroid [23]. This system is con-
text, flow and objects sensitive while precisely modeling life-cycle, it can adequately handle
callbacks invoked by the framework. Unfortunately, it only enforces taint analysis between
single components. Another proposal, which is based on TaintDroid [72] is NDroid [175]
and it performs dynamic taint analysis. This system is designed for checking information
flows through Java native interface (JNI) [91]. NDroid can work together with TaintDroid
to track information flows from selected sources to specified sinks in applications.

Applications which are framework-based and event-driven which lead to traditional
control flow analysis are no longer adaptive. In order to tackle this issue, the new pro-
gram representation was proposed, and it is named callback control-flow graph (CCFG)
[236]. An algorithm presented for CCFG is based on construction through context-sensitive
control-flow analysis of callbacks. Moreover, automated privacy leakage detection system
called AAPL [148] based on the multiple special static analysis techniques including flow
identification and joint flow tracking. Additionally, AAPL uses peer voting to filter out
legitimate privacy disclosures purifying the detection results. The cons of the AAPL are
an impossibility to detect disclosures caused by Java reflection [80], code encryption, or
dynamical code loading.
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The most mobile applications are written in a programming language which is not
the same as the programming language used to develop a kernel of the operating sys-
tem. For instance, Android applications are usually developed using Java programming
language [92], while the underlying kernel is implemented by C programming language
[121]. The similar approach is with the operating system iOS [110]. The kernel of iOS
is also implemented by C programming language and applications are developed in Swift
programming language [226]. Virtualization technologies are necessary for this area and
provide a virtual execution environment for dynamic detecting privacy leakage behavior
while preventing other applications from being infected. Compared with static analysis, it
has a higher precision as the behavior is detected at run-time. For instance, DroidScope
[235] is one of many malware analysis detection platform. It is based on top of quick em-
ulator (QEMU) [31] (multiple-host emulator for multiple-targets), and it can reconstruct
the operating system-level and also virtualization-level semantic views. Apart from this,
DroidScope provides a set of APIs to help researchers implement custom analysis plugins.

Installation packages of the available mobile applications contain compressed much in-
formation, that can be helpful for researchers. For instance, requested permissions, graphi-
cal user interface, and compiled code. Additionally, the data flows gained by the traditional
methods such as methods described in this section - taint analysis and control flow analysis
can be trained as features for machine learning. This approach was proposed by Tripp et
al. [215] based on the Bayesian notion of statistical classification. These classifications have
conditioned the with judgment whether a release point is legitimate on the evidence arising
at that point. Another similar solution called MUDFLOW [21] can detect abnormal flows
in possibly malicious applications through learning abnormal and normal flows of sensitive
information from trusted applications.

2.4 Summary

The introduction into the privacy protection on mobile devices has been covered in this
chapter. There were also presented some other work of researchers, security specialist
and developers with a focus on security threats and vulnerabilities. These projects are
trying to solve the security breaches, malware protection, vulnerability protection or just
move the security on mobile devices into a more secure sphere. The aim of the thesis is
the protection against data leakage, and these presented projects are related to this topics.
Specifically, the second part of this chapter discussed the protection and also detection of
privacy leakage.

In order to understand the theoretical background around this topic, the next chapter
discusses the protection mechanism used primarily on an operating system level, but these
principles are also used on the higher levels of a software stack. These mechanism related
to the protection are not limited to mobile operating systems.
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Chapter 3

Operating System Protection

This chapter introduces the operating system protection mechanism widely used and dis-
tributed with a responsibility to protect users, applications against security breaches, mal-
ware infection and also against information leakage [128]. The operating system itself is
a software that communicates directly with hardware or hardware drivers. The main prin-
ciple is to provide hardware features to users of this system. The security on the operating
system level is mainly focused on protection mechanism and its control access.

Protection mechanisms control access to a system by limiting the types of file access per-
mitted to users. Also, protection has to ensure that only processes that have gained proper
authorization from the operating system can operate on memory segments, the processor,
and other computer resources.

Protection is provided by a mechanism that controls the access to applications, pro-
cesses, or users to the resources defined by a computer system. These mechanisms have
to provide a means for specifying the controls to be imposed together with a means of
enforcing them.

Security ensures the authentication [$3] of system users to protect the integrity of the in-
formation stored in the system, as well as the physical resources of the computer system.
The security system prevents unauthorized access, malicious destruction or alteration of
data, and accidental introduction to inconsistency.

As computer systems have become more sophisticated and pervasive in their applica-
tions, the need to protect their integrity has also grown. Protection was initially conceived
as an adjunct to multi-programming operating systems, so those untrustworthy users might
safely share a standard logical to, such as a directory of files, or share a joint physical
concerning, such as memory. Modern protection concepts have evolved to increase the re-
liability of any complex system that makes use of shared resources.

The most obvious reason to have protection mechanisms is the need to prevent the mis-
chievous, intentional violation of an access restriction by a user. Of more general impor-
tance, however, is the need to ensure that each application component active in a system
uses system resources only in manners consistent with stated policies. The requirement is
an absolute one for a reliable system.

Protection can improve reliability by detecting latent errors at the interfaces between
component subsystems. Early detection of interface errors can often prevent contamination
of a healthy subsystem by a malfunctioning subsystem. Moreover, an unprotected resource
cannot defend against use by an unauthorized or incompetent user. A protection-oriented
system provides means to distinguish between authorized and unauthorized usage.
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The role of protection in a computer system is to provide a mechanism for the en-
forcement of the policies governing resource use. These procedures can be established in
a variety of ways. Some are fixed in the design of the system, while others are formulated
for the management of the system. Still, others are defined by the individual users to pro-
tect their files and applications. A protection system has to have the flexibility to enforce
a variety policies.

Policies for resource use may vary by application, and they may change over time.
For these reasons, protection is no longer solely of the designer of an operating system.
The application programmer needs to use protection mechanisms as well, to guard resources
created and supported by an application subsystem against misuse.

3.1 Fundamental Properties of Secure System

The basis of computer security issues is made up of three fundamental properties. They
describe the accessibility of the system, the correctness of any manipulation of any object
on the system and to what extent information considered sensitive is kept secret. The prop-
erties are called availability, integrity and confidentiality and they will be described in this
section. The definitions are from these sources [11, 12]. Each section will begin with
a discussion and proceed with the definition of the current term.

Confidentiality

To keep data and its existence secret is a challenge that many organizations put a significant
amount of time and money. To keep data confidential is a major concern too, for instance,
intelligence agencies and the military, where information is often made available to personnel
on a need to know basis. Cryptography is an important part of the implementation of private
systems. A sensitive example of the use of confidentiality is the medical records that are
stored in medical databases. In these databases, information about one’s emotional health
inherited diseases, and more is stored. Most people consider this information to be very
private and do not want anybody but perhaps their doctor to know about it.

Definition 3.1.1. Let X be a set of entities and let I be some information. Then I has
the property of confidentiality with respect to X if no member of X can obtain information
about X.

Integrity

In most commercial environments, the integrity of information is more important than to
protect it from unauthorized access, although that too is an important issue. For instance
the importance of integrity in a bank’s transaction records or the contents of a gas station’s
selling record. There exist two main categories of integrity mechanisms:

o detective integrity mechanisms
e preventive integrity mechanisms

Detective integrity mechanisms are used to detect any unauthorized modification to
information. The mechanism may give a detailed report under which circumstances the in-
formation’s integrity was affected: by whom and what part of the information that was

15



affected, or it may just report that the data has been changed and mark the data as no
longer trustworthy.

Preventive integrity mechanisms try to maintain the integrity of any information by
blocking any unauthorized attempts to modify it. This mechanism also includes the case
when a user that has been authorized to modify some information in a certain way tries to
alter it in an unauthorized manner.

Definition 3.1.2. Let X be a set of entities and let I be some information. Then I has
the property of integrity with respect to X if all members of X trust [

Availability

One of the most basic aspects of a system is its availability. If a subject is unable to
utilize the services provided, the service may just as well not exist. Any interruption in
the availability of the system’s parts will make the availability of the entire system to fail.

Definition 3.1.3. Let X be a set of entities and let I be a resource. Then I has the property
of availability with respect to X if all members of X can access I.

3.2 Trusted Computing Base

In the security, the world is using the term trusted systems rather than secure systems.
These systems that have formally stated security requirements and reach these require-
ments. At the core of every trusted system is a minimal trusted computing base (TCB)
[176, | which is defined by hardware and software necessary for enforcing all the secu-
rity rules. The ability of a trusted computing base to enforce a security policy correctly
depends foremost on the integrity, correctness, and protection of the mechanisms imple-
menting the elements of the TCB itself. Similarly, a network trusted computing base
(NTCB) [12] is defined as the totality of protection mechanisms within a network including
hardware, firmware, and software, the combination of which is responsible for enforcing
a network-wide security policy.

A mechanism is a term used to refer to a specific paradigm, model, or a construct that
is used in the implementation of a particular service. A security service enforcing a policy
is, therefore, a combination of security mechanisms. Trust in a TCB means the components
and mechanisms are implementing the enforcement of controls dictated by a security policy
behave expectedly. The expectation here is that the TCB should not subvert the policy
that it is designed to enforce. Essential to the element of trust in the TCB is its correctness
and overall system integrity.

The general method of defining the boundaries of a TCB is that any software, firmware,
or a hardware component that can subvert a security policy is considered to be part of an
applicable TCB or NTCB. Breaching a TCB is usually accomplished by carrying an attack
that the designer of the TCB had not anticipated. Building an ideal TCB, therefore, requires
exhausting all possible attacks. While it may seem that the elements of network TCB are
scattered and disjoint, in practice trust is a continuous concept throughout that follows
the information flow. Applicable trust properties should remain invariant when information
is residing on a storage system, within a thread of execution, during an exchange of data
across address spaces, or while in transmission over a network.

Since the TCB is working to specification, the system security cannot be compromised
even when something else is wrong. An essential part of the TCB is the reference monitor
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[10]. A reference monitor is the TCB component of a computing system that mediates
every access of a subject to a resource following a security policy that governs such access.
The policy may be implemented in the form of rules and attributes associated with a registry
of subjects and a registry of objects. The rules can be static access rights (permissions),
roles, or dynamically deduced rights.

Figure 3.1 illustrates the concept of an access-control reference monitor. In addition to
the mediation of access, a reference monitor should not be bypassed at all times, should sup-
port isolation of the security services from untrusted processes, maintain system integrity,
and prevent from tampering by users or system processes.

Reference
monitor

Principal Operation

Resource

TCB confinement

Figure 3.1: A reference monitor concept of access control citeandersonl972computer

The reference monitor footprint should be kept small enough to be susceptible to rigor-
ous verification methods. The gate-keeper approach of the reference monitor makes it an
ideal component for the generation of audit trails reflecting access attempts to the resources
within its confines.

3.3 Users, Principals, Subjects, and Objects

The term wuser in computing has been traditionally equated with a human being. Its
use conveys a unique association between a computing system and an entity that can
be a human being or some programmable agent. User information is encapsulated in an
account, sometimes referred to as a profile. A user account contains information about
authentication as well as authorization credentials and may contain a set of attributes
describing the user (such as a name, a serial number, an organization name, and so forth).
Fach user account is associated with an identifier that must be unique in the naming space
of the underlying computing system.

While a user represents an entity external to a computing system, a principal refers
to an entity’s internal representation of a computing system. Each user may have several
principals associated with it. Each principal, on the other hand, is associated with one user
only. The principal construct defines the run-time association between a computing task
and a particular user and encapsulates a subset of the entitlements of that user. The scope
of entitlement is dependent on the application to which the user is signed.

A subject is the term used to identify a running process, a program in execution. Each
subject assumes the identity and the privileges of a single principal. A principal may launch
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several processes within a single login session and thus will be associated with multiple
subjects, each of which inherits the identity of the login session. Figure 3.2 illustrates
the relationships between a user, principal, and a subject, defined by [37].

An object refers to a passive entity (i.e., one that is an information receptacle such as
a file, or a record in a database). An object, however, may indicate an active device from
the system’s resource pool (such as a network printer, or further can be a programmable
service that is managed as a resource).

Session Principal Session
Principal

Figure 3.2: Relation between a user (primary principal), a principal, and a subject [35]

It is worth noting that in many cases it merely encounter the basic scenario in the rela-
tionships among a user, principal, and subject where the user, the principal, and the subject
are all the same. In the security literature, the term principal is used to mean an active
entity that is capable of causing information to be retrieved, changed or flown between
controlled objects of a computing environment.

3.4 Access Control

An important requirement of any information management system is to protect data and
resources against unauthorized disclosure (secrecy) and unauthorized or improper modifi-
cations (integrity), while at the same time ensuring their availability to legitimate users (no
denial-of-service). Enforcing protection, therefore, requires that every access to a system
and its resources be controlled and that all and only authorized accesses can take place.
This process goes under the name of access control. The development of an access control
system requires the definition of the regulations according to which access is to be controlled
and their implementation as functions executable by a computer system. The development
process is usually carried out with a multi-phase approach based on the following concepts:

e Security policy - it provides the high-level rules according to which access control
have to be regulated.

e Security model - it defines a formal representation of the access control security
policy and its working. The formalization allows the proof of properties on the security
provided by the access control system being designed.

e Security mechanism - it determines the low-level functionality (defined in software
or hardware) that implements the controls imposed by the policy and formally stated
in the model.

18



The three concepts above correspond to a conceptual separation between different levels
of abstraction of the design and provides the traditional advantages of multi-phase software
development. In particular, the separation between policies and mechanisms introduces an
independence between protection requirements to be enforced on the one side, and mecha-
nisms are enforcing them on the other. It is then possible to discuss protection requirements
independently of their implementation, and also compare various access control policies as
well as different mechanisms that enforce the same policy, and design mechanisms able to
enforce multiple policies.

This latter aspect is particularly important: when a mechanism is tied to a specific
policy, a change in the policy would require changing the whole access control system,
mechanisms able to enforce multiple policies avoid this drawback. The formalization phase
between the policy definition and its implementation as a mechanism allows the definition
of a formal model representing the policy and its working, making it possible to define
and prove security properties that systems enforcing the model will enjoy. Therefore, by
proving that the model is secure and that the mechanism correctly implements the model.
The implementation of an exact mechanism is far from being trivial and is complicated by
the need to cope with possible security weaknesses due to the implementation itself and by
the difficulty of mapping the access control primitives to a computer system. The access
control mechanism has to work as a reference monitor (see figure 3.1), that is, a trusted
component intercepting every request to the system.

Even the definition of access control policies (and their corresponding models) is far from
being a trivial process. One of the major difficulty lies in the interpretation of, often complex
and sometimes ambiguous, real-world security policies and their translation in well defined
and unambiguous rules enforceable by a computer system. Many real-world situations have
complex policies, where access decisions depend on the application of different rules coming,
for instance, from laws, practices, and organizational regulations. A security policy has to
capture all the different regulations to be enforced and, also, has to also consider possible
additional threats due to the use of a computer system. Access control policies can be
grouped into three main classes:

e Discretionary acess control (DAC)[139] policies control access based on the iden-
tity of the requester and on access rules stating what requesters are allowed to do (or
not allowed to do).

¢ Mandatory access control (MIAC)[111] policies control access based on mandated
regulations determined by a central authority.

¢ Role-based access control (RBAC)[192] policies control access depending on
the roles that users have within the system and on rules stating what accesses are
allowed to users in given roles.

Discretionary and role-based policies are usually coupled with (or include) an adminis-
trative policy that defines who can specify authorizations/rules governing access control.
Discretionary Access Control

Discretionary policies enforce access control by the identity of the requesters and explicit
access rules that establish who can or cannot, execute which actions on which resources.
They are called discretionary as users can be given the ability to pass on their privileges to
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File 1 File 2 File 3 Application 1
User 1 | own, read, write | read, write execute
User 2 read read, write
User 3 read execute, read

Table 3.1: Access matrix

other users, where granting and revocation of privileges is regulated by an administrative
policy.

Access Matrix Model

The access matrix model proposed by Lampson [131] provides a framework for describing
discretionary access control. It is based on protection of resources within the context of op-
erating systems. The model was subsequently formalized by Harrison, Ruzzo, and Ullmann
(HRU model) [101], who developed the access control model proposed by Lampson with
the goal of analyzing the complexity of determining an access control policy. The original
model is called access matrix since the authorization state, meaning the authorizations are
holding at a given time in the system, is represented as a matrix. The matrix, therefore,
gives an abstract representation of protection systems.

A first step in the development of an access control system is the identification of
the objects to be protected, the subjects that execute activities and request access to objects,
and the actions that can be executed on the objects, and that must be controlled. Subjects,
objects, and actions may be different in different systems or application contexts. For
instance, in the protection of operating systems, objects are typically files, directories, or
applications. In contrast, in database systems, objects can be relations, views, and or
stored procedures. It is interesting to note that subjects can be themselves objects (this
is the case, for instance, of executable code and stored procedures). A subject can create
additional subjects (e.g., children processes) in order to accomplish its task. The creator
subject acquires control privileges on the created processes (e.g., to be able to suspend or
terminate its children).

In the access matrix model [131], the state of the system is defined by a triple (S, 0, A),
where S is the set of subjects, who can exercise privileges. O is the set of objects, on
which privileges can be exercised (subjects may be considered as objects, in which case
S C O) and A is the access matrix, where rows correspond to subjects, columns correspond
to objects, and entry Als, o] reports the privileges of s on 0. The type of the objects and
the actions executable on them depend on the system. By simply providing a framework
where authorizations can be specified, the model can accommodate different privileges.
For instance, in addition to the traditional read, write, and execute actions, ownership
(i.e., property of objects by subjects), and control can be considered. Table 3.1 depicts an
example of access matrix.

Changes to the state of a system are carried out through commands that can execute
primitive operations on the authorization state, possibly depending on some conditions.
The HRU formalization identified six primitive operations that describe changes to the state
of a system. These operations, whose effect on the authorization state are defined in
the following definitions [191], correspond to adding and removing a subject, adding and
removing an object, and adding and removing a privilege.
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Definition 3.4.1. operation enter r into A[s,o] [191]:

conditions: s € S,0 € O
new state: Q Foperation Q
S'=S
0 =0
Aqls,0] = Als,ol U {r}
Aq[si, 05) = Alsi, 04],Y(si,05) # (s,0)

Definition 3.4.2. operation delete r from A[s, o] [191]:

conditions: s € S,0€ O
new state: Q Foperation Q
S'=S
O =0
A'[s,0] = Als,o]\{r}
A'[si,oj] = A[s;, 05],Y(si,05) # (s,0)

Definition 3.4.3. operation create subject s’ [191]:

conditions: s’ ¢ S

new state: Q Foperation Q'
S'=Su{s'}
O =0uU/{s}
A'ls,0] = A[s,0]Vs € S,0€ O
A'ls', o) =0,Yo € O
Als,s1=0,Vse s

Definition 3.4.4. operation create object o' [191]:

conditions: o' ¢ O
new state: Q Foperation Q'
S'=S
O' =0u{d}
A'ls, 0] = Als,0],Vs € S,0€ O
A'ls,d] =0,Vs e S

Definition 3.4.5. operation destroy subject s’ [101]:

conditions: s’ € S
new state: Q Foperation Q'
S" = S\{s'}
0" =O\{s'}
A'ls,0] = Als,0],Vs € S",0 € o'
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Definition 3.4.6. operation destroy object oy [191]:

conditions: o' € 0,0 ¢ S
new state: Q Foperation Q
S =S
O = O\{o1}
A'ls,0] = A[s,0],Vs € S',0 € O’

Each command has a conditional part and body and has the form defined in the follow-
ing listing 3.1 with n > 0,m > 0. There 1/,...,r,, are actions, op/,...,op,, are primitive
operations, while s, ..., s,, and ¢, ..., o,, are integers between 1 and k. If m = 0, the com-
mand is without conditional part.

command c(x1,...,dg)
if r; in Alzs,x01] and
ro in Alzs,Z.2] and

m in A[Tsm, Tom]

then op;
op2
OPn

end.

Listing 3.1: Form of the command

For instance, the following command presented in listing 3.2 creates a file and gives
the creating subject ownership privilege to it.

command CREATE(creator ,file)

create object file

enter Own into A[creator,file]
end.

Listing 3.2: Create command [191]:

Following commands expressed in listing 3.3 allow an owner to grant to others, and
revoke from others, a privilege to execute an action on his/her files.

command CONFER,(owner , friend, file)
if Own in A[owner,file]
then
enter a into A[friemnd,file]
end.

command REVOKE,(owner , ex-friend, file)
if Own in A[owner,file]
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then
delete a from A[ex-friend, file]
end.

Listing 3.3: Grant permission command [191]:

Note that the variable a from listing 3.3 is not a parameter, but an abbreviation for
defining many similar commands, one for each value that a can take (e.g. CONFER;cqq4,
REVOKE,i). Since commands are not parametric actions, a different command needs
to be specified for each action that can be granted and or revoked, depicted in definition
3.4.7.

Definition 3.4.7. Let Q F,, Q" denote the execution of operation op on state Q, resulting
in state Q. The execution of command c¢(aq,...,a;) on a system state Q = (5,0, A) causes
the transition from state Q to state Q' such that 3Qq,...,Q, for which Q Fopr Q1 Fops
- Fopr Qn = Q', where opj} ...op;, are primitive operations op; ...op, in the operational
part of the command ¢, in which actual parameters a; are substituted for each formal

parameters x;,t = 1,...,k.
If the conditional part of the command is not verified, then the command has no effect

and Q = Q'.

Although the HRU model does not include any built-in administrative policies, the pos-
sibility of defining commands allows their formulation. Administrative authorizations can
be specified by attaching flags to access privileges. For instance, a copy flag, denoted *, at-
tached to a privilege may indicate that the privilege can be transferred to others. Granting
of authorizations can then be accomplished by the execution of a command.

Implementation of Access Matrix

Even though the matrix represents a quite good conceptualization of authorization, it is
not appropriate for implementation. In a general system, the access matrix will be usually
enormous in size and sparse, because most of its cells are with the empty value. Storing
the matrix as a two-dimensional array is, therefore, a waste of memory space. There are
well known three approaches of implementation:

e Authorization table[7(] - Access matrix in which the non-empty cells are reported
with three columns, corresponding to subjects, actions, and objects, respectively.
Each tuple in the table is related to authorization. The authorization table approach
is used in database management systems, where authorizations are stored as relational
tables of the database.

e Access control list[199] - The matrix is stored by columns. Each object is associated
with a list indicating, for each subject, the actions that the subject can perform on
the object.

e Capability[211] - The matrix is stored by rows. Each user has associated a list,
called capability list, indicating, for each object, the accesses that the user is allowed
to exercise on the object.

Capabilities and access control lists (ACLs) [191, | present advantages and disad-
vantages concerning authorization control and management. In particular, with ACLs, it is
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immediate to check the authorizations holding on an object, while retrieving all the autho-
rizations of a subject requires the examination of the ACLs for all the objects. Analogously,
with capabilities, it is immediate to determine the privileges of a subject, while retrieving
all the accesses executable on an object requires the examination of all the different ca-
pabilities. These aspects affect the efficiency of authorization revocation upon deletion of
either subjects or objects. In a system supporting capabilities, it is sufficient for a subject
to present the appropriate capability to gain access to an object.

It represents an advantage in distributed systems since it permits to avoid repeated
authentication of a subject: a user can be authenticated at a host, acquire the appropriate
capabilities and present them to obtain accesses at the various servers of the system.

Mandatory Access Control

Mandatory security policies enforce access control by regulations mandated by a central
authority. The most common form of mandatory policy is the multilevel security policy,
based on the classifications of subjects and objects in the system. Objects are passive entities
storing information. Subjects are active entities that request access to the objects. Note
that there is a distinction between subjects of the mandatory policy and the authorization
subjects considered in the discretionary policies. While authorization subjects typically
correspond to users (or groups), mandatory policies make a distinction between users and
subjects.

Users are human beings who can access the system, while subjects are processes (i.e.,
applications in execution) operating on behalf of users. This distinction allows the pol-
icy to control the indirect accesses (leakages or modifications) caused by the execution of
processes.

Security Classifications

In multilevel mandatory policies [191], an access class is assigned to each object and subject.
The access class is one element of a partially ordered set of classes. The partial order
is defined by a dominance relationship, which it is denoted with >. While in the most
general case, the set of access classes can simply be any set of labels that together with
the dominance relationship defined on them form a partially ordered set, most commonly
an access class is defined as consisting of two components: a security level and a set of
categories. The security level is an element of a hierarchically ordered set, such as top
secret (TS), secret (S), confidential (C'), and unclassified (U), where TS > S > C > U.
The set of categories is a subset of a unordered set, whose elements reflect functional,
or competence areas, for instance, military systems, financial systems, and other types of
systems.

The dominance relationship > is then defined as: an access class ¢; dominates (>)
an access class co if the security level of ¢ is greater than or equal to that of ¢ and
the categories of ¢; include those of cs.

Formally, given a totally ordered set of security levels £, and a set of categories C,
the set of access classes is AC = £ x P(C)!, and Ve1 = (£1,C1),ca = (L£2,C2) : ¢1 > co <=
L1 > L9 NC1 D Cy. The two classes ¢; and ¢o such that neither ¢; > ¢9 nor ¢s > ¢; holds
are said to be incomparable. The source of definition is journal [191]. It is easy to see that

!The symbol P denotes the powerset, thus 7(C) means the powerset of C.
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the dominance relationship so defined on a set of access classes AC satisfies the following
definitions:

Definition 3.4.8. Relationship definitions [191]

e Reflexivity: Va € AC : x >

Transitivity: Vz,y,z € AC:x >y, y> 2= x> 2

Antisymmetry: Ve, y e AC: x>y, y>x =z =1y
e Existence of a least upper bound:

Vr,y € AC : Az € AC
z>xand z >y
VteAC:t>zandt>y—1t> =z

e Existence of a greatest lower bound:

Vr,y € AC : Az € AC
r>zandy >z
Vie AC:x>tandy>t=— 22>t

Access classes defined as above together with the dominance relationship between them
therefore define a lattice [(4]. Figure 3.3 determines the security lattice obtained considering
security levels TS and S, with T'S > S and the set of categories { Nuclear, Army}. The se-
mantics and use of the classifications assigned to objects and subjects within the application
of a multilevel mandatory policy is different depending on whether the classification is in-
tended for a secrecy or an integrity policy.

TS, {Army, Nuclear}

TS, {Army} TS, {Nuclear}

S, {Army} S, {Nuclear}

S, {

Figure 3.3: Example of security lattice [190]
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Secrecy-based Mandatory Policies

A mandatory secrecy policy controls the direct and indirect flows of information to prevent
leakages to unauthorized subjects. Here, the semantics of the classification is as follows.
The security level of the access class associated with an object reflects the sensitivity of
the information contained in the object, that is, the potential damage that could result from
the unauthorized disclosure of the information. The security level of the access class asso-
ciated with a user, also called clearance, reflects the user’s trustworthiness not to disclose
sensitive information to users not cleared to see it. Categories define the area of competence
of users and data and are used to provide finer-grained security classifications of subjects
and objects than classifications provided by security levels alone. They are the basis for
enforcing restrictions, for instance confining subjects to access the information they need
to know to perform their job.

Users can connect to the system at any access class dominated by their clearance. A user
connecting to the system at a given access class originates a subject at that access class.
For instance, with reference to the lattice in figure 3.3, a user cleared (T'S,{Nuclear}) can
connect to the system as a (S,{Nuclear}), (TS,0), or (TS,0) subject. Requests by a subject
to access an object are controlled concerning the access class of the subject and the object
and granted only if some relationship, depending on the requested access, is satisfied. In
particular, two principles, first formulated by Bell and LaPadula [34], have to be satisfied
to protect information confidentiality:

e No-read-up - A subject S can only read an object O if S > O and S has discretionary
access to O. Discretionary access means that a subject has clearance to read can be
accessed, and make downgrading of a piece of information’s security classification
impossible. In other words, a subject is allowed a read access to an object only if
the access class of the subject dominates the access class of the object.

e No-write-down - A subject S can write to an object O if O > S and S has discre-
tionary access to O. It means that a subject is allowed a write access to an object
only if the access class of the subject is dominated by the access class of the object.

Satisfaction of these two principles prevents information from flowing from high-level
subjects/objects to subjects/objects at lower levels, thereby ensuring the satisfaction of
the protection requirements, for instance, no process will be able to make sensitive infor-
mation available to users not cleared for it. It is described in figure 3.4, where four accesses
classes composed only of a security level (7S, S, C, and U) are taken as an example. Note
the importance of controlling both reads and write operations, since both can be improperly
used to leak information.

Regards to the no-write-down principle, it is clear now why users are allowed to connect
to the system at different access classes. Thus they can access information at different
levels (provided that they are cleared for it). Note that a lower class does not mean ,less*
privileges in absolute terms, but only less reading privileges (see figure 3.4).

However users can connect to the system at any level below their clearance, the strict
application of the no-read-up and the no-write-down principles may result too rigid. Real
world situations often require exceptions to the mandatory restrictions. For instance, data
may need to be downgraded, for instance, data subject to embargoes that can be released
after some time. Also, information released by a process may be less sensitive than the in-
formation the process has read. For instance, a procedure may access personal information
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Figure 3.4: Information flow for secrecy [193]

regarding the employees of an organization and return the benefits to be granted to each
employee. While the personal information can be considered secret, the benefits can be
considered Confidential. In order to respond to situations like these, multilevel systems
should then allow for exceptions, loosening or waiving restrictions, in a controlled way, to
processes that are trusted and ensure that information is sanitized (meaning the sensitivity
of the original information is lost).

Note also that DAC and MAC policies are not mutually exclusive, but can be applied
jointly. In this case, access to be granted needs both, the existence of the necessary au-
thorization for it, and also to satisfy the mandatory policy. Intuitively, the discretionary
policy operates within the boundaries of the mandatory policy - it can only restrict the set
of accesses that would be allowed by mandatory access control alone.

The secrecy based control principles just illustrated summarize the basic axioms of
the security model proposed by David Bell and Leonard LaPadula[34]. There are some
concepts of the model formalization to give an idea of the different aspects to be taken into
account in the definition of a security model. In this model a system is composed of a set
of subjects S, objects O, and actions A, which includes read and write. A write actions in
this context behave as write-only or append operation.

The model also assumes a lattice L of access classes and a function: A : SUO — L that,
when applied to a subject (object respectively) in a given state, returns the classification of
the subject (object respectively) in that state. A state v € V is defined as a triple (b, M, \),
where b € P(S x O x A) is the set of current accesses (s,0,a), M is the access matrix
expressing discretionary permissions same as in the HRU model, and X is the association
of access classes with subjects and objects. A system consists of an initial state vy, a set
of requests R, and a state transition function 7" : V x R — V that transforms a system
state into another state resulting from the execution of the request. Intuitively, requests
capture acquisition and release of accesses, granting and revocation of authorizations, as
well as changes of levels.

The model then defines a set of axioms stating properties that the system must satisfy
and that express the constraints imposed by the mandatory policy. The first version of
the Bell and LaPadula model stated the following criteria:
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e simple property - A state v satisfies the simple security property if
Vs € S,0€ 0 : (s,0,read) € b= A(s) > A(0).

e *_-property - A state v satisfies the *-security property if
Vs € S,0€ 0 :(s,0,write) € b= (o) > A(s).

The two axioms above correspond to the no-read-up and no-write-down principles that
were described in section 3.4. A state is then defined to be secure if it satisfies both
the simple security property and the *-property. A system (v, R, T') is secure if and only if
every state reachable from vg by executing one or more finite sequences of requests from R
is state secure. In the first formulation of their model, Bell and LaPadula provide a basic
security theorem (BST), which states that a system is secure when its initial state vg is
secure, and also the state transition T is security preserving, that is, it transforms a secure
state into another secure state.

Integrity-based Mandatory Policies

The mandatory policy that was discussed above protects only the confidentiality of the in-
formation, and there is no control enforced on its integrity. Low classified subjects could
still be able to enforce improper indirect modifications to objects they cannot write. Start-
ing from the principles of the Bell and LaPadula model, Biba [10] proposed a dual policy
for safeguarding the integrity, which controls the flow of information and prevents subjects
from modifying information they cannot write indirectly.

Similarly, as for secrecy, each subject and object in the system is assigned an integrity
classification. The classifications and the dominance relationship between them are de-
fined as before. Example of integrity levels can be: high important (HI), medium impor-
tant (MI), and low important (LI). The semantics of integrity classifications is as follows.
The integrity level associated with a user reflects the user’s trustworthiness for inserting,
modifying, or deleting information. The integrity level associated with an object reflects
both the degree of trust that can be placed on the information stored in the object and
the potential damage that could result from unauthorized modifications of the information.
Again, categories define the area of competence of users and data. Access control is enforced
according to the following two principles:

e No-read-down - A subject is allowed to a read access to an object only if the access
class of the object dominates the access class of the subject.

e No-write-up - A subject is allowed to a write access to an object only if the access
class of the subject dominates the access class of the object.

Satisfaction of these principles safeguards integrity by preventing information stored in
low objects (and therefore less reliable) to flow to higher, or incomparable, objects. This
principle is illustrated in figure 3.5, where classes composed only of integrity levels (HI, MI,
and LI) are taken as an example.

Role-based Access Control

Role-based access control (RBAC) is an alternative to traditional DAC and MAC policies
that are attracting increasing attention, particularly for commercial applications. The main
motivation behind RBAC is the necessity to specify and enforce enterprise-specific security
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Figure 3.5: Information flow for integrity [193]

policies in a way that maps naturally to an organization’s structure. In fact, in a large
number of business activities, a user’s identity is relevant only from accountability. For
access control purposes it is much more important to know what a user’s organizational
responsibilities are, rather than who the user is. The conventional discretionary access
controls, in which individual user ownership of data plays such an important part, are
not a good fit. Neither is the full mandatory access controls, in which users have security
clearances, and objects have security classifications. Role-based access control tries to fill
in this gap by merging the flexibility of explicit authorizations with additionally imposed
organizational constraints.

Essentially, role-based policies require the identification of roles in the system, where
a role can be defined as a set of actions and responsibilities associated with a particular
working activity. The role can be widely scoped, reflecting a user’s job title, for instance,
secretary, or it can be more specific, reflecting, for instance, a task that the user needs to
perform, such as order processing. Then, instead of specifying all the accesses, each user is
allowed to execute, access authorizations on objects are specified for roles. Users are then
given authorizations to adopt roles (see figure 3.6). The user playing a role is allowed to
execute all accesses for which the role is authorized. In general, a user can take on different
roles on different occasions. Also, the same role can be played by several users, perhaps
simultaneously.

It is important to note the difference between groups and roles. Groups define sets of
users while roles define sets of privileges. There is a semantic difference between them - roles
can be ,activated“ and ,deactivated” by users at their discretion, while group membership
always applies, that is, users cannot enable and disable group memberships and correspond-
ing authorizations at their will. However, since roles can be defined which correspond to
organizational figures, for instance, secretary, chair, and faculty, the same mechanism can
be seen both as a group and as a role. The role-based approach has several advantages.
Some of these are discussed below.

e Authorization management - Role-based policies benefit from a logical indepen-
dence in specifying user authorizations by breaking this task into two parts - assign-
ment of roles to users, and assignment of authorizations to access objects to roles.
It greatly simplifies the management of the security policy. When a new user joins
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Figure 3.6: Role-based access control [190]

the organization, the administrator only needs to grant her the roles correspond-
ing to her job. If afterward a user’s job changes, the administrator simply has to
change the roles associated with that user. When a new application or task is added
to the system, the administrator needs only to decide which roles are permitted to
execute it.

Hierarchical roles - In many applications, there is a natural hierarchy of roles, based
on the familiar principles of generalization and specialization. Figure 3.7 illustrates
an example of role hierarchy. Fach role is represented as a node, and there is an arc
between a specialized role and its generalization. The role hierarchy can be exploited
for authorization implication. For instance, authorizations granted to roles can be
propagated to their specializations, such as the secretary role can be allowed all ac-
cesses granted to adm-staff. Authorization implication can also be enforced on role
assignments, by allowing users to activate all generalizations of the roles assigned to
them. For instance, a user allowed to activate secretary will also be allowed to activate
role adm-staff. Authorization implication has the advantage of further simplifying au-
thorization management. Note however that not always implication may be wanted,
as propagating all authorizations is contrary to the least privilege principle.

Least privilege - Roles allow a user to sign on with the least privilege required for
the particular task she needs to perform. Users authorized to powerful roles do not
need to exercise them until those privileges are needed. It minimizes the possible
danger of damage due to inadvertent errors, or intruders masquerading as legitimate
users.

Separation of duties - Separation of duties refer to the principle that no user
should be given enough privileges to misuse the system on their own. For instance,
the person authorizing a paycheck should not be the same person who can prepare
them. Separation of duties can be enforced either statically by defining conflicting
roles, that is, roles which cannot be executed by the same user or dynamically by
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enforcing the control at access time. An example of dynamic separation of duty
restriction is the two-person rule. The first user to execute a two-person operation can
be an authorized user, whereas the second user can be any authorized user different
from the first.

e Constraints enforcement - Roles provide a basis for the specification and enforce-
ment of further protection requirements that real-world policies may need to express.
For instance, cardinality constraints can be specified, that restrict the number of users
allowed to activate a role or the number of roles allowed to exercise a given privilege.
The constraints can also be dynamic, that is, be imposed on roles activation rather
than on their assignment. For instance, while several users may be allowed to acti-
vate role chair, a further constraint can require that at most one user at a time can
activate it.

Employee
Adm-gtaff /hstaﬁ’
Secretary Dean Chair Faculty Researcher

Figure 3.7: An example of hierarchy [190]

Role-based Access Control Model

The role-based access control model [78] is defined regarding four model components: core
RBAC, hierarchical RBAC, static separation of duty relations and dynamic separation of
duty relations. Core RBAC defines a minimum collection of elements, element sets, and
relations to completely achieve a role-based access control system. It includes user-role
assignment and permission-role assignment relations, considered fundamental in an RBAC
system. Moreover, core RBAC introduces the concept of role activation as part of user’s
session within a computer system. The core of role-based access control is required in
any RBAC system, but the other components are independent of each other and may
be implemented separately or not even used. Each model component is defined by these
sub-components:

e A set of basic element sets.

e A set of RBAC relations involving those element sets (containing subsets of Cartesian
products denoting valid assignments).

e A set of mapping functions that yield instances of members from one element set for
a given instance from another element set.
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Core role-based access control model element sets and relations are defined in figure 3.8.
Core includes sets of five basic data elements called users (USERS), roles (ROLES), objects
(OBJ), operations (OPS), and permissions (PRMS). The model as a whole is fundamentally
defined regarding individual users being assigned to roles and permissions being assigned to
roles. As such, a role is a means for naming many-to-many relationships among individual
users and permissions. Moreover, the core model includes a set of sessions (SESSIONS)
where each session is a mapping between a user and an activated subset of roles that are

assigned to the user.
Permission e e
Assignment (PA) PRMS

Figure 3.8: The core of role-based access control [75]

Assignment (UA)

user_sessions

A user is defined as a human being. Although the concept of a user can be extended
to include machines, networks, or intelligent autonomous agents, for simplicity reasons
the description is limited to a user as a person. A role is a job function within the context
of an organization with some associated semantics regarding the authority and responsibility
conferred on the user assigned to the role. Permission is an approval to operate on one or
more protected objects. An operation is an executable image of an application, which upon
invocation executes some function for the user. The types of operations and objects that
RBAC controls are dependent on the type of system in which they will be implemented.
For instance, within a file system, operations might include read, write, and execute, on
the other type of system such as a database management system, operations might include
insert, delete, append, and update.

The purpose of any access control mechanism is to protect system resources. However,
in applying RBAC to a computer system, the description is about protecting objects. Con-
sistent with earlier models of access control an object is an entity that contains or receives
information. For a system that implements RBAC, the objects can represent information
containers, for instance, files or directories in an operating system, and columns, rows,
tables, and views within a database management system. An objects can represent ex-
haustible system resources, such as printers, disk space, and CPU cycles. The set of objects
covered by RBAC includes all of the objects listed in the permissions that are assigned to
roles.

Central to RBAC is the concept of role relations, around which a role is a semantic
construct for formulating policy. Figure 3.8 illustrates user assignment (UA) and permission
assignment (PA) relations. The arrows indicate a many-to-many relationship, for instance,
a user can be assigned to one or more roles, and a role can be assigned to one or more users.
This arrangement provides great flexibility and granularity of assignment of permissions
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to roles and users to roles. Without these conveniences, there is an enhanced danger
that a user may be granted more access to resources that is needed because of limited
control over the type of access that can be associated with users and resources. Users may
need to list directories and modify existing files, for example, without creating new files,
or they may need to append records to a file without modifying existing records. Any
increase in the flexibility of controlling access to resources also strengthens the application
of the principle of least privilege.

Each session is a mapping of one user to possibly many roles, that is, a user establishes
a session during which the user activates some subset of roles that he or she is assigned.
Each session is associated with a single user, and each user is associated with one or more
sessions. The function session__roles gives information about the roles activated by the ses-
sion, and the function user sessions give us the set of sessions that are associated with
a user. The permissions available to the user are the permissions assigned to the roles that
are activated across all the user’s sessions. Figure 3.8 can be described in the following
definitions 3.4.9.

Definition 3.4.9. Core role-based access control [78]

e USERS,ROLES,OPS, and OBS the required sets, user, roles, operations, and ob-
jects, respectively.

e UACUSERSXxROLES, a many-to-many mapping user-to-role assignment relation.

e assigned_users : (r : ROLES) — 2USEES the mapping of role r onto a set of users.
Formally: assigned_users(r) = {u € USERS|(u,r) € UA}.

e PRMS = 2(0PSx0BS) the get of permissions.

e PAC PRMS x ROLES, a many-to-many mapping permission-to-role assignment
relation.

e assigned_permissions(r : ROLES) — 2PEMS the mapping of role 7 onto a set of
permissions. Formally: assigned_permissions(r) = {p € PRMS|(p,r) € PA}.

e Op(p: PRMS) — {op C OPS}, the permission-to-operation mapping, which gives
the set of operations associated with permission p.

e Ob(p : PRMS) — {ob € OBS}, the permission-to-object mapping, which gives
the set of objects associated with permission p.

e SESSIONS, the set of sessions.

o user_sessions(u : USERS) — 25FSSIONS " the mapping of user u onto a set of
sessions.

o session_roles(s : SESSIONS) — 2FOLES " the mapping of sessions s onto a set of
roles. Formally: session_roles(s;) C r € ROLES)|(session_users(s;),r) € UA).

e available_session_perms(s : SESSIONS) — 2PEMS “the permissions available to

a user in a session, U,.csession roles(s) @55igned_permissions(r).
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As was already described, the basic element sets in core RBAC are USERS, ROLES,
OPS, and OBS. Of these element sets, OPS and OBS are considered predefined by the un-
derlying system for which is the access control deployed. For instance, a banking system
may have predefined transactions (OPS) for savings deposit and others, and predefined
data sets (OBS) such as saving files, addresses, and other necessary data. Administrators
create and delete USERS and ROLES, and establish relationships between roles and ex-
isting operations and objects. Required function definitions (taken from RBAC standard
[78]), which creates the complete functional specification of this access control mechanism
follows. The notation used in the formal specification of the RBAC requirements is a subset
of Z notation [206]. The only major change is the representation of a schema:

Schema — Name(Declaration){Predicate; . ..; Predicate}.

Definition 3.4.10. Add user [78]

AddUser(user : NAME){
user ¢ USERS
USERS' = USERS U user

user_sessions' = user__sessions U user — ()}
Definition 3.4.11. Delete user [75]

DeleteUser(user : NAME){
user € USERS
[Vs € SESSIONS e s € user__sessions(user) = DeleteSession(s)]
UA"=UA\ {r: ROLES e user — r}
assigned_users' = {r : ROLES o1 — (assigned_users(r) \ {user})}
USERS' = USERS \ {user}}

Definition 3.4.12. Add role [78]

AddRole(role : NAME){
role ¢ ROLES
ROLES' = ROLES U {role}
assigned_ users’ = assigned_users U {role — 0}

assigned_permissions’ = assigned_ permissions U {role — (0} }
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Definition 3.4.13. Delete role [7§]

DeleteRole(role : NAME){
role € ROLES
[Vs € SESSIONS e role € session_roles(s) = DeleteSessions(s)]
UA =UA\ {u:USERS eu — role}
assigned_users’ = assigned_users \ {role — assigned_users(role)}
PA" = PA\ {op: OPS,o0b: OBS e (op,ob) — role}
assigned_permissions’ = assigned__permissions\
{role — assigned__permissions(role)}
ROLES' = ROLES \ {role}}

Definition 3.4.14. Assign user [73]

AssignUser(user,role : NAME){
user € USERS;role € ROLES; (user — role) ¢ UA
UA = UAU {user — role}
assigned_users' = assigned_users \ {role — assigned_users(role)}U

{role — (assigned_users(role) U{user})}}
Definition 3.4.15. Deassign user [78]

DeassignU ser(user, role : NAM E){
user € USERS;role € ROLES; (user — role) € UA
[Vs: SESSIONS e s € user__sessions(user) A role € session__roles(s)
= DeleteSessions(s)]
UA = UAN\ {user — role}
assigned_users’ = assigned_users \ {role — assigned_users(role)}U

{role — (assigned_users(role) \ {user})}}

Other relevant definitions, such as grant permission, revoke permission, create a session,
delete a session, add an active role, drop an active role, and many others are described in
the RBAC standard by D. F. Ferraiolo et al. [78].

3.5 Virtual Machine

The term virtualization has many meanings, and aspects of virtualization permeate all
aspects of computing. Virtual machines are one instance of this trend. Generally, with
a virtual machine, guest operating systems and applications run in an environment that
appears to them to be native hardware, and that behaves toward them as native hardware
would, but that also protects, manages, and limits them. This section delves into the uses,
features, and implementation of virtual machines. Virtual machines can be implemented
in several ways, and this section describes these options. One option is to add virtual
machine support to the kernel. Additionally, hardware features provided by the CPU and
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even by I/O devices can support virtual machine implementation, so it is discussed how
those features are used by the appropriate kernel modules.

The fundamental idea behind a virtual machine is to abstract the hardware of a single
computer (the CPU, memory, disk drives, and network interface cards) into several differ-
ent execution environments, thereby creating the illusion that each separate environment
is running on its private computer. In the case of virtualization, there is a layer that cre-
ates a virtual system on which operating systems or applications can run. Virtual machine
implementations involve several components. At the base is the host, the underlying hard-
ware system that runs the virtual machines. The virtual machine manager (VMM) (also
known as a hypervisor) creates and runs virtual machines by providing an interface that is
identical to the host. Each guest process is provided with a virtual copy of the host (see
figure 3.9). Usually, the guest process is, in fact, an operating system. A single physical
machine can thus run multiple operating systems concurrently, each in its virtual machine.

Note that with virtualization, the definition of ,joperating system® blurs. For instance,
consider VMM software such as VMware ESX [224]. This virtualization software is in-
stalled on the hardware, run when the hardware boots, and provides services to applica-
tions. The services include traditional ones, such as scheduling and memory management,
along with new types, such as migration of applications between systems. Furthermore,
the applications are in fact guest operating systems. Is the VMware ESX VMM an operat-
ing system that, in turn, runs other operating systems? Certainly, it acts as an operating
system. For clarity, however, it is called the component that provides virtual environments
a VMM. The implementation of VMMs varies greatly. Options include the following:

processes
processes
processes processes
prograrnming/' u
~ interface kernel kernel kernel
lamal VM1 VM2 | vm3
virtual machine

manager

hardware
hardware

Figure 3.9: Non-virtual machine (left), Virtual machine (right) [175]

e Hardware-based solutions that provide support for virtual machine creation and man-
agement through firmware. These VMMs, which are commonly found in mainframe
and large to mid-sized servers, are generally known as type 0 hypervisors. The exam-
ples of these systems are IBM LPARs [114] and Oracle LDOMs [155].

e Operating-system-like software built to provide virtualization, including VMware
ESX, Joyent SmartOS [99], and Citrix XenServer [220]. These VMMs are known
as type 1 hypervisors.
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e General-purpose operating systems that provide standard functions as well as VMM
functions, including Microsoft Windows Server [187] with HyperV [219] and RedHat
Linux [177] with the KVM [121] feature. Because such systems have a feature set
similar to type 1 hypervisors, they are also known as type 1.

e Applications that run on standard operating systems, but provide VMM features to
guest operating systems. These applications, which include VMware Workstation
[18] and Fusion, Parallels Desktop [162], and Oracle Virtual-Box [170], are type 2
hypervisors.

The variety of virtualization techniques in use today is a testament to the breadth,
depth, and importance of virtualization in modern computing. Virtualization is invaluable
for data-center operations, efficient application development, and software testing, among
many other uses.

Features of Virtual Machine

Several advantages make virtualization attractive. Most of them are fundamentally related
to the ability to share the same hardware yet run several different execution environments
(that is, different operating systems) concurrently. One crucial advantage of virtualization
is that the host system is protected from the virtual machines, just as the virtual machines
are protected from each other. A virus inside a guest operating system might damage that
operating system but is unlikely to affect the host or the other guests. Because each virtual
machine is almost completely isolated from all other virtual machines, there are almost no
protection problems. A potential disadvantage of isolation is that it can prevent sharing
of resources. Two approaches to providing sharing have been implemented. First, it is
possible to share a file-system volume and thus to share files. Second, it is possible to
define a network of virtual machines, each of which can send information over the virtual
communications network. The network is modeled after physical communication networks
but is implemented in software. Of course, the VMM is free to allow any number of
its guests to use physical resources, such as a physical network connection (with sharing
provided by the VMM), in which case the allowed guests could communicate with each
other via the physical network.

One feature common to most virtualization implementations is the ability to freeze, or
suspend, a running virtual machine. Many operating systems provide that basic feature for
processes, but VMMSs go one step further and allow copies and snapshots to be made of
the guest. The copy can be used to create a new VM or to move a VM from one machine
to another with its current state intact. The guest can then resume where it was, as if on
its original machine, creating a clone. The snapshot records a point in time, and the guest
can be reset to that point if necessary (for example, if a change was made but is no longer
wanted). Often, VMMSs allow many snapshots to be taken. For instance, snapshots might
record a guest’s state every day for a month, making restoration to any of those snapshot
states possible. These abilities are used to good advantage in virtual environments.

A virtual machine system is a perfect vehicle for operating-system research and devel-
opment. Typically, changing an operating system is a difficult task. Operating systems are
large and complex programs, and a change in one part may cause obscure bugs to appear
in some other part. The power of the operating system makes changing it particularly dan-
gerous. Because the operating system executes in kernel mode, a wrong change in a pointer
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could cause an error that would destroy the entire file system. Thus, it is necessary to test
all changes to the operating system carefully.

Furthermore, the operating system runs on and controls the entire machine, meaning
that the system must be stopped and taken out of use while changes are made and tested.
This period is commonly called system-development time. Since it makes the system un-
available to users, system-development time on shared systems is often scheduled late at
night or on weekends, when system load is low.

A virtual-machine system can eliminate much of this latter problem. System program-
mers are given their virtual machine, and system development is done on the virtual ma-
chine instead of on a physical machine. Normal system operation is disrupted only when
a completed and tested change is ready to be put into production.

Another advantage of virtual machines for developers is that multiple operating systems
can run concurrently on the developer’s workstation. This virtualized workstation allows for
rapid porting and testing of programs in varying environments. Besides, multiple versions
of a program can run, each in its isolated operating system, within one system. Similarly,
quality- assurance engineers can test their applications in multiple environments without
buying, be powering, and maintain a computer for each environment.

A significant advantage of virtual machines in production data-center use is system
consolidation, which involves taking two or more separate systems and running them in
virtual machines on one system. Such physical-to-virtual conversions result in resource
optimization since many lightly used systems can be combined to create one more heavily
used a system.

Consider, too, that management tools that are part of the VMM allow system admin-
istrators to manage many more systems than they otherwise could. A virtual environment
might include 100 physical servers, each running 20 virtual servers. Without virtualiza-
tion, 2,000 servers would require several system administrators. With virtualization and its
tools, the same work can be managed by one or two administrators. One of the tools that
make this possible is templating, in which one standard virtual machine image, including
an installed and configured guest operating system and applications, is saved and used as
a source for multiple running VMs. Other features include managing the patching of all
guests, backing up and restoring the guests, and monitoring their resource use.

Virtualization can improve not only resource utilization but also resource management.
Some VMMs include a live migration feature that moves a running guest from one physical
server to another without interrupting its operation or active network connections. If
a server is overloaded, live migration can thus free resources on the source host while not
disrupting the guest. Similarly, when host hardware must be repaired or upgraded, guests
can be migrated to other servers, the evacuated host can be maintained, and then the guests
can be migrated back. This operation occurs without downtime and interruption to users.

Think about the possible effects of virtualization on how applications are deployed. If
a system can quickly add, remove, and move a virtual machine, then why install applica-
tions on that system directly? Instead, the application could be pre-installed on a tuned
and customized operating system in a virtual machine. This method would offer several
benefits for application developers. Application management would become more com-
fortable, less tuning would be required, and technical support of the application would be
more straightforward. System administrators would find the environment easier to manage
as well. Installation would be simple, and redeploying the application to another system
would be much more comfortable than the usual steps of uninstalling and re-installing. For
widespread adoption of this methodology to occur, though, the format of virtual machines
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must be standardized so that any virtual machine will run on any virtualization platform.
The ,,Open Virtual Machine Format; is an attempt to provide such standardization, and it
could succeed in unifying virtual machine formats.

Virtualization has laid the foundation for many other advances in computer facility
implementation, management, and monitoring. Cloud computing, for example, is made
possible by virtualization in which resources such as CPU, memory, and I/O are provided
as services to customers using Internet technologies. By using APIs, a program can tell
a cloud computing facility to create thousands of VMs, all running a specific guest operating
system and application, which others can access via the Internet. Many multiuser games,
photo-sharing sites, and other web services use this functionality.

In the area of desktop computing, virtualization is enabling desktop and laptop com-
puter users to connect remotely to virtual machines located in remote data centers and
access their applications as if they were local. This practice can increase security because
no data are stored on local disks at the user’s site. The cost of the user’s computing resource
may also decrease. The user must have networking, CPU, and some memory, but all that
these system components need to do is display an image of the guest as its runs remotely.
Thus, they need not be expensive, high-performance components. Other uses of virtual-
ization are sure to follow as it becomes more prevalent and hardware support continues to
improve.

3.6 Summary

This chapter discussed the protection on operating system level and the theory about
the protection mechanisms such as access control principles, models, and virtualization.
The most of these protection mechanisms were presented formally. These mechanisms are
the cornerstone of the security through all platforms. The decision which of these principles
are used is the provider of the platform. These principles are heavily used and modified for
the specific purposes on mobile devices.

Operating systems designed for mobile devices required a different approach compared
to operating systems designed for desktop computers. Moreover, implementation of selected
mechanism can differ from one vendor of an operating system to another. Implementation
solution should be confirmed by the verification process with the model of required behavior
or in this case the model definition of for example access control. The main difference is
the ability to save as much power as possible, which has an impact on almost every aspect
of the operating system. Algorithms are redesigned to consume less memory as possible,
and the user experience persists.

The last part of this chapter discusses the virtual machine and its features. The virtual
machine is a critical part of the operating system of a mobile world where it is used.
The next chapter discusses the mechanism presented in this chapter applied in the world
of mobile operating systems on a selected mobile platform.

39



Chapter 4

Mobile Platform Architecture

This chapter consists of the description of open source available mobile platform archi-
tecture. It is focused on open source solution because implementation details are part of
already presented principles. According to the aim of the thesis, the Android platform has
been chosen as the reference platform. The main reasons for this choice are open source,
large community, possibility to modify the system and test it in the simulation environ-
ment or the real devices, and other reasons related to law and trademarks. Everything that
the platform offers is free of charge.

The mobile platform architecture follows up the previous chapter, which was about
protection of operating systems. There is more detailed information about the mentioned
concepts, and the details are targeted to the Android platform, which is currently the most
popular and widespread operating system on the world [229].

Android is an application execution platform for mobile devices comprised out of an op-
erating system, core libraries, development framework and necessary applications. The An-
droid architecture stack contains the whole platform levels which correspond to security
levels. The overall architecture is illustred in figure 4.1.

Android operating system is built on top of a Linux kernel. The Linux kernel is respon-
sible for executing core system services such as memory access, process management, access
to the physical device through drivers, network management, and security. Atop the Linux
kernel is the virtual machine called Dalvik virtual machine [168, 70] (or the successor of
Dalvik called Android runtime (ART) virtual machine [56]) along with necessary system
libraries. The Dalvik/ART virtual machine is a register-based execution engine used to run
Android applications.

Android is comprised of several mechanisms playing a role in the security checking and
enforcement. Like any modern operating system, many of these tools interact with each
other, exchanging information about subjects (applications/users), objects (different appli-
cations, files, devices), and operations to be performed (read, write, and delete). Frequently,
enforcement occurs without incident, but occasionally, things slip through the cracks, afford-
ing an opportunity for abuse. This chapter discusses the security design and architecture
of chosen Android platform.

4.1 Virtual Machine

To achieve run-time support a diverse set of mobile devices and applications have to be
sandboxed for security, performance, and reliability, a virtual machine is a distinct tech-
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Figure 4.1: General Android system architecture [65]

nology to be used. The virtual machine does not necessarily satisfy the requirements with
the limited processor power and also limited memory, that characterize most mobile de-
vices. Virtual machine developers have favored stack-based architecture over register-based
architectures. It is mostly due to the simplicity of implementation, ease of writing a com-
piler back-end. Virtual machines are originally designed to host a single language and
density. Executable applications are invariably smaller than applications for register-based
architectures. The simplicity and code density comes at the cost of performance.

Given that the virtual machine is running on devices with constrained processing power,
the choice of a register-based architecture seems appropriate. The virtual machine on
Android platform relies on the Linux kernel for underlying functionality such as threading
and low-level memory management. Each application runs in its process with its instance
of the virtual machine. Implementation has been written so that a device can run multiple
instances of virtual machines efficiently. The overall architecture of the application package
which has the compressed behavior in the form of dez file, which is similar to a collection of
compressed class data (compiled java source code). This dex file is the input for the virtual
machine.

ART is an application run-time environment provides the execution of applications
on the Android operating system. It is the follower of the previous version of the vir-
tual machine for this platform - Dalvik. Replacing Dalvik performs the translation of
the application’s byte-code into native instructions that are later executed by the run-time
environment.

The history of evolution starts with the trace-based just-in-time compilation in Dalvik,
optimizing the execution of applications by continually profiling forms each time they are
processed and dynamically compiling frequently executed short segments of their byte-
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code into native machine code. While Dalvik interprets the rest of the application’s byte-
code, native execution of those short byte-code parts, called traces, provides significant
performance improvements.

In contrast, the ART introduces the use of ahead-of-time compilation by compiling
entire applications into native machine code upon their installation. By eliminating inter-
pretation of trace-based just-in-time compilation, it improves the execution efficiency and
reduces the power consumption, which results in enhanced battery on mobile devices. At
the same time, ART brought faster execution of applications, improved memory allocation
and garbage collection mechanisms, and more accurate profiling of applications. To keep
backward compatibility, ART uses the same input byte-code format as Dalvik, supplied
through dex files as part of the installation package.

At the last version (currently 8.0) of the Android operating system, the just-in-time
compiler introduced with improvements related to code profiling into ART, which contin-
uously improve the performance of Android applications as they run.

4.2 Sandbox

The model based on application isolation in a sandbox environment. It means that each
application executes in its environment and is unable to influence or modify execution of any
other application. Application sandboxing is performed at the Linux kernel level. To achieve
isolation, Android utilizes standard Linux access control mechanisms. Each application
installation package apk is during installation assigned with a unique user identification
number (user ID). This approach allows the platform to enforce standard file access rights
as it is known from Linux based operating systems. Since each file is associated with its
owner’s user ID, applications cannot access files that belong to other applications without
being granted appropriate permissions. Each file can be assigned read, write and execute
access permission. Since the root/administrator user owns the system files, applications
are not able to act maliciously by accessing or modifying critical system components. On
the other hand, to achieve memory isolation, every application is running in its process
(see figure 4.2), i.e., each application has its memory space assigned. Additional security is
achieved by utilizing memory management unit (MMU) [2%], a hardware component used
to translate between virtual and physical address space. This way an application can not
compromise system security by running native code in privileged mode, i.e., the application
is unable to modify the memory segment assigned to the operating system.

The presented isolation model provides a secure environment for application execution.
However, restrictions enforced by the model also reduce the overall application functionality.
For example, useful features could be achieved by accessing critical systems such as access
to network services, camera or location services. Furthermore, exchange of a data and
functionalities between applications enhanced the capabilities of the development frame-
work. The shared user ID and permissions are two mechanisms, introduces by the Android
platform, which can be used to lift the restrictions enforced by the isolation model.

The mechanism must provide sufficient flexibility to the application developers, but
also preserve the overall system security. Two applications can share data and application
components, i.e., activities, content providers, services and broadcast receivers. For exam-
ple, an application can run an activity belonging to other application or access its files.
The shared user ID allows applications to share data and application components. To be
assigned with a shared user ID the two applications must be signed with the same digital
certificate. In effect, the developers can bypass the isolation model restrictions by signing
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applications with the corresponding private key. This approach is not recommended to
use usually, but in specific cases only. However, since there is not a central certification
authority, the developers are responsible for keeping their private keys secure. By sharing
the user ID, applications gain the ability to run in the same process. The recommended
alternative to the shared user ID approach is to use Android permissions. In addition to
sharing data and components, the permissions are used to gain access to critical system
modules. Each application can request and define a set of permissions. It means that
each application can expose a subset of its functionality to other applications if they have
been granted the corresponding permissions. Besides, each application can request a set of
permissions to access other applications or system libraries.

Permissions are granted by the operating system during installation and can be changed
afterward manually. There are four types of permissions: normal, dangerous, signature and
signature-or-system. Standard permission give access to isolated application-level func-
tionalities. These functionalities have little impact on the system or user security and
are therefore granted without an explicit user’s approval. The following section describes
permissions in more detail.

4.3 Permissions

However, the user can review which permissions are requested before application installa-
tion, he must agree with all requested permission, or the installation is aborted. As was
discussed in the previous section there are four groups or types of permissions. An example
of a mormal level permission is access to the phone’s vibration hardware unit. Since it is
an isolated functionality, i.e., user’s privacy or other applications cannot be compromised,
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it is not considered an impact on the system in the area of security. On the other hand,
a dangerous level permission provides access to private data and critical system function-
ality. For example, by obtaining a dangerous permission, an application can use telephony
services, network access, location information or gain access to other private data. Since
a dangerous permission level presents a high-security risk, the user is prompted to confirm
set of requested permissions before installation of an application. Android has the all-or-
nothing architecture for permission granting in the meaning of installation of applications.
There is a possibility to change permissions in the settings after the successful installation
process.

Applications can access only the resources for which they have permission. Further, it
is observed that most of the applications ask for more permissions then they needed. They
can misuse it for malicious activities and information leakage. Signature permission level
can be granted to the application signed with the same certificate as application declaring
the permission. The signature permission level is in effect a refinement of the shared user
ID approach and provides more control in sharing application data and components. On
the other hand, signature-or-system permission level extends the signature permission level
by granting access to the applications installed in the Android system image [93]. However,
caution is required since both the signature and signature-or-system permissions will allow
access rights without asking for the user’s explicit approval.

Permission Model

This section formally specifies the Android permission scheme by identifying the system
elements and describing their relationships. The Android permission scheme is represented
via entity-relationship model which it has been used to model RBAC. The formal model is
taken from Wook Shin et al. who explained the whole permission model and its proof in
the paper [202]. The three major entities of the Android permission scheme are as follows:

e APPS, the set of applications
e COMPS, the set of application components

e PERMS, the set of permissions

Component-based construction of an application and declared, used, and enforce per-
missions can be represented in the relationships among the entities.

e COMPOSE C APPSxCOMPS, an 1:N relationship that expresses the composition
of applications.

e composes : (ecmp : COMPS) — APPS, the mapping of component cmp onto its
parent application.

e DECLARE C APPS x PERMS, an 1:N relationship that maps an application to
a set of permissions declared by the application.

e declaredBy : (p: PERMS) — APPS, the mapping of permission p to an application
that declares the permission.

e USE C APPS x PERMS, a N:M relationship that depicts permissions used by
applications.
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e uses : (app : APPS) — 2PFRMS “the mapping of application app to a set of permis-
sions that app uses.

e AENFORCE C APPS x PERMS, a N:M relationship that illustrates the permis-
sions that are enforced by applications.

e aEnforces : (app : APP) — QPERMS " the mapping of application app to a set of
permissions that app enforces.

e CENFORCE C COMPS x PERMS, a N:M relationship that illustrates the per-
missions that are enforced by application components.

e cEnforces : (cmp : COMPS) — 2PEEMS " the mapping of component cmp to a set
of permissions that ¢mp enforces.

- H | o< ; .
Cardinalities  pangatory One Mandatory Many Optional Many ~Key | Entity Type Relation— ‘

|
% uses USE usedBy %

cOmposes declares
COMPS B>}+COMPOSE-H- APPS [—H—DECLARE-)<] PERMS
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LAENFORCEJ

aEnforces aEnforcedBy

cEnforces CENFORCE cEnforcedBy

Figure 4.3: Entities and relations in the Android permission scheme [202]

Figure 4.3 shows the entities and the relations in the form of an Entity-Relationship
diagram. The types and meanings of those figures not listed can be easily inferred. The fol-
lowing is a more detailed explanation of the cardinality constraints in the diagram. An ap-
plication is composed of one or more components, and the components are introduced into
a system as the application is installed on the system. Therefore, in the COMPOSE
relation, each element composes one application, and the application is composedO f one
or more components. An application declares some permissions or none. Declared per-
missions by an application are introduced into a system as the application is installed.
Therefore, in DECLARE, an application optionally declares multiple permissions, while
each permission has to be declaredBy an application. The relation USE, AENFORCE,
and CENFORCE are optional N-to-M relationships. An application can use or enforce
some permissions. A component can enforce some permissions, as well. Conversely, per-
mission can be used or executed by an application, or enforced by an element. None of
the use or enforcement relations is mandatory.

The execution of a privileged operation on a protected resource object may require
a permit. Therefore, the notion of permission is related to both operations and objects.
The relations determine what kind of permission is required and when the permission
needs to be checked. Figure 4.4 depicts the relations between permissions, operations,
and objects. Note that applications and components correspond to objects in the figure,
then the specification of the interactions between them follows. The additional entity and
relation need to be added:
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e OPS, the set of operations.

e EXWITH C OPS x PERMS, a N:M relationship that describes the permissions
enforced on operations.

o cxecuteWith : (op : OPS) — 2PFEMS the mapping of operation op to a set of
permissions.

The definition of a permission includes the relation with a set of operations and the re-
lation with a set of objects. However AEN FORCE and CENFORCE can be collected
from the manifest information, the former, EXW ITH, can be obtained from concrete im-
plementation, source codes of the Android framework and applications. For instance, when
an activity component sets up its enforce-permission in the manifest file, it does not mean
the permission is always checked whichever action is performed on the activity. When it
gets started, the permission checking routines embedded in relevant API calls are triggered.
Android’s documentation guides the execution of which operation leads to the permission
test. The relationship with operations can also be made when an application explicitly
invokes check permission functions in its code.

OBJS ;=
ENFORCE —————( |
SR enforces COMPS

PERMS

T

EXWITHH{—_ OPS
executedWith

Figure 4.5: Android permissions (refined) [202]

The relations in figure 4.4 can be refined and redrawn in terms of components, as
shown in figure 4.5. The new optional N:M relation, EN FORCE reflects CENFORCE
when a component enforces permissions, or AENFORCE when a component does not

enforce permissions by itself. The mapping enforce : (emp : COMPS) — 2PERMS 1apg
a component cmp to the set of permissions obtained by expression 4.1.
{p: PERMS]| (4.1)

(cEnforces(cmp) = 0 = p € cEnforces(emp))V
(cEnforces(cmp) # 0 = p € aEnforces(composes(cmp))}
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The interaction between components is composed of operations that one element per-
forms on the other. When the user calls one performer scmp, the other ocmp, and the sort
of operation op, it can then denote the interactive process as a tuple of (semp, ocmp,op).
Some of the actions are protected by permissions. Let the procedure that guards the consent
protected operations as checkAccess which has the type of checkAccess : (semp,ocmp :
COMPS,op: OPS) — BOOL.

The check Access tests the legitimacy of the interactive operation by calculating if semp
owns all of the permissions that ocmp enforces regarding op. If so, it returns TRUFE,
otherwise FALSFE.

The set of permissions that ocmp enforces on op can be calculated by expression 4.2.

{p: PERMS]|p € enforces(ocmp) A p € executedWith(op)} (4.2)

The set of permissions that scmp uses can be obtained by using composes() and uses()
functions.

Vp: PERMS,p € enforces(ocmp) A\ p € executedW ith(op) (4.3)

= p € uses(composes(scmp))

Finally, the definition of checkAccess() which returns TRUE only if the condition
expression 4.3 is satisfied.

4.4 Architecture Levels

According to Android architecture presented in figure 4.1 which is split into several levels,
there is a similar distribution of security levels. The following section describes each of this
security level from bottom to top. The core security principle of Android platform is that
an adversary application should not harm the operating system resources, the user, and
other applications. To procure the execution of this principle, the platform being a layered
operating system exploits the provided security mechanisms of all the levels. Focusing on
security, Android combines two level enforcement approaches: at the Linux kernel level and
the application framework level (see figure 4.6).

Application 1 Application 2 Application layer
AAA

IPC
Middleware layer
File-system -

Socket

Linux kernel layer

DAC

Figure 4.6: Levels of Android security enforcement [71]
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The Linux kernel enforces the isolation of applications and operating system components

exploiting standard Linux facilities [165] (process separation and DAC [139] over network
socket and file system). This isolation is imposed by assigning each application a separate
user ID and group identifier (GID) [19%], as was discussed in section 4.2. Such architectural

decision enforces running each application in a separate process. Thus, due to the process
isolation implementation in Linux, by default applications cannot interfere each other and
have limited access to the facilities provided by the operating system.

Therefore, application sandbox ensures that an application can not drain the operat-
ing system resources and can not interact with other applications [230]. The enforcement
mechanism provided at the kernel layer efficiently sandboxes a request from other applica-
tions and the system component. At the same time, an active communicating protocol is
required to allow developers to reuse application components and interact with the operat-
ing system units. This contract is called inter-process communication (IPC) [$6] because it
facilitates the interactions between different processes. In the case of Android, this proto-
col is implemented as the middleware between two architecture levels (see figure 4.6) with
a particular driver released at the kernel level. The security on this level is provided by
the IPC reference monitor [74]. The reference monitor mediates all communication between
processes and controls how the applications access the components of the system and other
applications. In Android, IPC reference monitor follows MAC principle [144].

Each application by default is run in a low-privileged application sandboxes. Thus,
an application has access to a limited set of system capabilities. The operating system
controls the access of applications to the system resources that may adversely impact user
experience. This control is implemented in different forms, some of them are considered
in details in the following parts of this section. There is also a subset of protected system
features (e.g., camera, telephony or location functionality), the access to which should be
provided to third-party applications. However, this access should be provided in a controlled
manner. In case of Android, such control is realized using permissions. Each sensitive
interface, which allows access to the protected system resources, is assigned with permission
- a unique security label. Moreover, preserved features may also include components of other
applications. To make the use of protected characteristics, the developer of an application
must request the corresponding permissions in the file AndroidManifest.xml which is an
inseparable part of each application.

During the installation process of an application, the operating system parses this file
and presents the user a list of the permissions declared in this file. The installation of an
application occurs according to all-or-nothing principle, meaning that the application is
installed if all permissions are accepted. Otherwise, the application will no be installed at
all. The permissions are granted just at the installation time, and there is a choice to allow
or deny selected permissions in the settings manually. As an example of the permission
format, consider an application that needs to send sms messages.

In this case, the AndroidManifest.xml file has to contain at least the tag depicted by
the listing 4.1:

<uses-permission android:name="android.permission.SEND_SMS" />

Listing 4.1: SMS permission in AndroidManifest.xml

It is required to put the label with the specific meaning of the permission into tag
uses-permission. An attempt of an application to use a feature, which permission has not
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been declared in the AndroidManifest.xml file will typically result in a trowing of a security
exception. Following sections are aimed into an introduction to the levels of architecture
presented in figure 4.6.

Linux Kernel

In Android platform, Linux kernel [154] is responsible for process management, memory
control, communication subsystem, file-system administration etc. While operating system
mostly relies on the original version (“vanilla,) of Linux kernel functionality, several cus-
tom changes, which are required for the system operation, have been proposed to this level.
Among them binder [195] - a driver, which provides the support for custom remote proce-
dure call or inter-process communication mechanism on Android, ashmem - a replacement
of the standard Linux shared memory functionality, wakelocks - a mechanism that prevents
the system from going to sleep are the most notable ones [234].

Although these changes proved to be very useful in case of mobile operating systems,
they are still out of the main branch of the official Linux Kernel.

One of the most widely known open-source projects, Linux has proved itself as a secure,
trusted and stable piece of software being researched, attacked and patched by thousands
of people all over the world. Not surprisingly, Linux kernel is the basis of the Android
operating system. Android relies on Linux not only for process management, memory
control, communication subsystem, file-system administration. It is also one of the most
critical components of the Android security architecture. Linux kernel is responsible for
provisioning application sandboxing and enforcement of some permission.

Application Sandbox

Let consider the process of an application installation in details. Applications are dis-
tributed in the form of apk package files. A package consists of a virtual machine executable
resources, native libraries and a manifest file, and is signed by a developer signature. Three
central mediators may install a package on a device in the stock operating system:

e Google Play
e Package installer

e Android debug brigde (ADB) install

Google play is a unique application that provides the user with a capability to look
for a use uploaded to the application market by third-party developers along with a pos-
sibility to install it. Although it is also a third-party application, because of being signed
with the same signature as the operating system, it has access to protected components of
Android, which other third-party applications lack for. In case of the user installs appli-
cations from other sources he usually implicitly uses Package installer application. This
system application provides an interface that is used to start a package installation process.
The last named item adb install is the utility, which is provided by operating system, it is
mainly used by third-party application developers. While the former two mediators require
the user to agree with the list of permissions during the installation process, the latter
installs an application quietly. That is why it is mainly used in developer tools aiming at
installing an application on a device for testing. This process is shown in the upper part of
figure 4.7.
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Figure 4.7: Android Security Architecture - Application installation possibilities [71]

Figure 4.7 shows a more detailed overview of the Android security architecture with
the aim on application installation possibilities. The process of provisioning application
sandbox at the Linux kernel level is the following.

During the installation process, each package is assigned a unique user identifier (UID)
and a group identifier (GID) [195] that are not changed during application life on a mobile
device. Thus, in Android, each application has a corresponding Linux user [117].

Username follows the format app z, and UID of that user is equal to the value Pro-
cess.FIRST APPLICATION_UID + =z, where Process. FIRST APPLICATION_UID is
the constant corresponds to constant with value 10 000.

For instance, in figure 4.7 app1.apk package receives during the installation process user-
name with value application_ 1, and UID equal to 10 001. In Linux, all files in memory are
subjects for discretionary access control (DAC). Access permissions are set by a developer
of application or by an owner of a file for three types of users: the owner of the file, the users
who are in the same group with the owner and all other users. This approach is the same
as in the Linux based operating systems. For each type of users, a tuple of reading, write
and execute permissions are assigned. Format is usually illustrated as (r-w-z) tuple.

Hence, so as each application has its UID and GID, Linux kernel enforces the application
execution within its separate address space. Besides that, the application unique UIDs and
GIDs are used by Linux kernel to enforce a clean separation of device resources such as
memory, and CPU between different applications. Each application during the installation
process also receives its home directory. Default path is usually set to the following target
/data/data/package__name, where the package name is the name of an Android package,
for example cz.aron.lukas.
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Concerning Android, this folder is considered as internal storage, in which an application
keeps its private data. Linux permissions assigned to this directory allows only the “owner,,
application to manipulate the files in this directory, including the creation of new files. It
should be mentioned there are some exceptions. The applications, which are signed with
the same certificate, can share data between each other, may have the same UID or can
even run in the same process. These architectural decisions set up effective and efficient
application sandbox on top of Linux kernel level. This type of sandbox is base and straight-
forward on the verified discretionary access control model. Luckily, so as the sandbox is
enforced on the Linux kernel level, native code and operating system applications are also
subjects to there constraints described in this chapter.

Permission Enforcement

It is possible to restrict the access to some system capabilities by assigning the Linux user
and group owners to the components that implement this functionality. This type of re-
strictions can be applied to system resources such as files, drivers, and sockets. Android
uses file-system permissions and Android specific kernel patches known as Paranoid net-
working [71] to restrict the access to system features such as external storage, camera, and
network sockets. Applying file-system permissions to files and device drivers it is possible to
limit processes in accessing some functionality of a device. For instance, such technique is
applied to restrict access to applications to a device camera. The permissions to /dev/cam
device driver is set to 0660, with root owner and camera owner group. It means that only
processes run as root or which are included in camera group, can read from and write to this
device driver. Thus, only applications which are included into camera group can interact
with the camera. The mappings between permission labels and corresponding groups are
defined in the file frameworks/base/data/etc/platform.zml. The excerpt of the mapping file
platform.zml is presented in the following listing 4.2.

<permissions>

<permission name="android.permission.INTERNET" >
<group gid="inet" />
</permission>

<permission name="android.permission.CAMERA" >
<group gid="camera" />
</permission>

<permission name="android.permission.READ_LOGS" >
<group gid="log" />
</permission>
</permissions>

Listing 4.2: The mapping between permission labels and Linux groups

During the installation process are set the groups of the installed application. If an
application request access to a camera feature and the user approve this request, the ap-
plication is assigned to a camera Linux group GID (see the listing 4.2). Therefore, this
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application receives a possibility to read information from /dev/cam device driver. There
are several points in Android where file-system permissions to files, drivers, and Unix sock-
ets are set in: ¢nit process, init.rc configuration file, the ueventd.rc configuration file and
system ROM file-system configuration file.

In traditional Linux based distributions, all processes are allowed to initiate a network
connection. At the same time, for mobile operating systems the access to networking ca-
pabilities has to be controlled. In order to implement this control, proper kernel patches
have been added that limit the access to network facilities only to the processes that be-
long to specific Linux groups or have specific Linux capabilities. These Android-specific
patches of the Linux kernel have obtained the Paranoid name networking. For instance,
for AF_INET socket address family, which is responsible for network communication, this
check is performed in kernel/net/ipv4 /af _inet.c file. The following listing 4.3 shows the part
of the af inet.c file, which is related to checking the access rights by the assignment to
the specific Linux group. The following lines describe the function which calls the checking
function to ensure the legitimate access to the requested feature.

#ifdef CONFIG_ANDROID_PARANOID_NETWORK
#include <linux/android_aid.h>

static inline int current_has_network(void)

{
return in_egroup_p (AID_INET) || capable (CAP_NET_RAW);

}
#else

static inline int current_has_network(void)

{
return 1;
}
#endif
/%
* Create an imet socket.
*/

static int inet_create(struct net *net, struct socket *sock,
int protocol,int kern)

{

if (!current_has_network())
return -EACCES;

Listing 4.3: Paranoid networking patch (af_inet.c file)
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The mapping between the Linux groups and permission labels fro Paranoid networking
are also set in the platform.xzml file, see listing 4.2. Similar patches are also applied to restrict
the access to IPv6 protocol [63] and bluetooth [38]. The constants used in these checks are
hard-coded in the kernel and specified in the kernel/include/Linuz/android__aid.h header
file, expressed in listing 4.4. Thus, at the Linux kernel level, the Android permissions are
enforced by checking if an application is included into a special predefined group. Members
of this group have access to the protected functionality. During the installation process of
an application, when a user agreed all requested permissions, the application is included in
the corresponding Linux groups and, hence, receives access to the protected functionality.

/% AIDs that the kernel treats differently */
/* was NET_BT_ADMIN x/

#define AID_OBSOLETE_000 KGIDT_INIT (3001)

/* was NET_BT */

#define AID_ OBSOLETE_001 KGIDT_INIT (3002)

#define AID_INET KGIDT_INIT (3003)
#define AID NET_RAW KGIDT_INIT (3004)
#define AID NET_ADMIN KGIDT_INIT (3005)

/% read bandwidth statistics */

#define AID NET BW_STATS KGIDT_INIT (3006)

/% change bandwidth statistics accounting */
#define AID NET BW_ACCT KGIDT_INIT (3007)

Listing 4.4: Hard-coded constants in the kernel level (android_ aid.h file)

Native User-space

By the native user-space is understand as all user-space components that run outside of
the virtual machine and do not belong to the Linux kernel layer. The first component of this
layer is called - Hardware abstraction layer (HAL) [12]. HAL is blurred between the Linux
kernel and native user-space layers. In Linux, drivers for hardware are either embedded into
the kernel or loaded dynamically as modules to the kernel. Although Android is built on
top of Linux kernel, it exploits a very different approach to support new hardware. Instead,
for each type of hardware Android defines an API that is used by upper layers to interact
with the current type of hardware.

The suppliers of hardware have to provide a software module that is responsible for
the implementation of the API defined in Android for this particular type of equipment.
Thus, this solution allows system not to embed all possible drivers into the kernel anymore
and to disable the dynamic module loading kernel mechanism. Additionally, such archi-
tectural solution lets hardware suppliers select the license, under which their drivers are
distributed.

Kernel finishes its booting procedure by starting one user-space process called init [234].
This process is responsible for starting all other processes and services, along with per-
forming some operations in the operating system. For instance, if a critical service stops
answering, the init process can reboot it. This process performs operations in accordance
to the init.rc [234] configuration file. The toolbox includes essential binaries, which provide
shell utility functionality in Android [231].
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The operating system also relies on many vital daemons (long running background ser-
vices). It starts them during system start-up and preserves them running when the system
is working. For instance, rild - the radio interface layer daemon, which is responsible for
communication between base-band processor and other systems, service-manager - contains
an index of all binder services running in the system, adbd - Android debug bridge that
serves as a connection manager between host and target equipment. The last but not least
component in native user-space is set of native libraries. There are two types of native
libraries: native libraries that come from external projects and developed within the plat-
form itself. These libraries are loaded dynamically and provide various functionality for
processes.

Booting Process

To understand what procedures provision security on the native user-space level, at first
the booting sequence of the device should be considered. It should be mentioned that
during the first steps this course may vary on different devices, but after the Linux kernel
is loaded the routine is usually the same.

The flow of the booting process is shown in figure 4.8.

step 1 [ Boot ROM ]
|
v
step 2 [ Boot loader ]
I
Y
step 3 [ Linux kernel ]
I
Y
step 4 [ Init process ]
step 5 *
v Runtime
\ \ [ Service manager ] *
[[ Daemons ] A [ Zygi)te
[ Virtual machine
step 6
Y
[ Service manager ] [ System server ]
A
) " Y
[_[ System services ]“‘[_[ Surface flinger ]

Figure 4.8: Android boot sequence

When a user powers on a mobile device then the CPU of the device will appear in
a non-initialized state. In this case, a processor starts executing commands beginning from
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a hard-wired address in the memory. This address usually points to a piece of code in

the write-protected memory of the CPU, where boot ROM [237] is located. This routine is
marked as step 1 in figure 4.8. The main target of the code resided on boot ROM is to detect
a media, where bootloader [173] is located. After the detection is done, boot ROM loads

the bootloader into internal memory, which is available immediately after device powers
on and performs a jump operation to the full code of the bootloader. The bootloader is
illustrated as step 2 in figure 4.8. The bootloader sets up external random access memeory,
file-system, and network support. After that, it loads Linux kernel into the memory a passes
the execution rights to it. Linux kernel initializes the environment to run another code
(usually written in C language [121]), activates interruption controllers, sets up memory
management units, defines scheduling, loads drivers and mounts root file-system. This step
is illustrated in figure 4.8 with step 3 label.

When memory management units are initialized, the system is ready to use virtual
memory and run user-space processes [107]. Starting from this step, the process does not
differ from the one that occurs on desktop computers running on Linux platform. The first
user-space process, which is an ancestor of all processes in the Android operating system,
is init. The executable of this program is located in the root directory of the file-system.
To achieve additional settings of the init process there is configuration file ¢nit.rc¢ which is
written using a language called Android Init Language [204] and is also located in the root
directory of the file-system. This configuration file can be imagined as a sequence of com-
mands, which execution is triggered by the predefined events. The commands written in
the init.rc configuration file defines global system variables, sets up basic kernel parame-
ters for memory management configuration file-system. From the security, perspective is
more important that it be also responsible for the basic file-system structure creation and
the assignment of the owners and the file-system permissions to the created nodes.

Additionally, the init process is responsible for starting several essential daemons and
processes. An executed process in Linux by default is run with the same permissions and
with the same UID as an ancestor. In Android, init is started with the UID equals to
zero, which means with the root privileges. Besides that, all descendant processes should
run with the same UID. Fortunately, the privileged processes may change their UIDs to
the less privileged ones. Thus, all descendants of the init process may use this functionality
specifying the UID and the GID of a forked process. The owner and group id are also
defined in the init.rc configuration file. The whole creation of init process is inside step 4
in figure 4.8.

Another core process launched by this init process is called Zygote [12]. A Zygote is
a special process that has been warmed-up. It means that the process has been initialized
and linked against the core libraries. A Zygote is an ancestor for all processes (except the init
process). When a new application is started, the request for the new process is handled
by the Zygote. The Zygote process is forked and after that, the parameters corresponding
to a new application such as UID, GIDs, and name, are set for the forked child process.
The acceleration of a new process creation is achieved because there is no need to copy
core libraries into the new process. The memory of a new process has a principle “copy-
on-write,, [75] protection, meaning that the data will be copied from the Zygote process
to a new one only if the latter tries to write into the protected memory. Core libraries
cannot be changed. They are retained only in one place reducing memory consumption
and the application start-up time. The Zygote process is part of the booting sequence as
and is shown in figure 4.8 inside step 5.
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The first process, which is run using Zygote is System Server illustrated in figure 4.8
in step 6. This process, at first, runs native services, such as Surface flinger [113] and
Sensor service [161]. After the services are initialized, a callback is invoked, which starts
the remaining services. All these services are then registered with the Service manager

[246].

File-system

However, Android operating system is based on top of Linux kernel. Its file-system hierarchy
does not comply with file-system hierarchy standard [5] that defines the file-system layout of
Unix-based systems [212]. Android and Linux based operating system have some directories
in common, for instance /dev, /proc, /sys, /etc, /mnt, etc. The purpose of these folders
is the same as in Linux. Moreover, there are folders, such as /system, /data and /cache,
which cannot be found in the Linux based systems. These folders are the core parts of
Android platform.

During the build of the Android platform, three image files are created: system.img,
userdata.img and cache.img [200]. These images provide the core functionality of the op-
erating system and the ones that are flashed on a mobile device. In the course of booting
the system, the init process mounts these images to the predefined mounting points, such
as /system, /data and /cache correspondingly.

The partition /system incorporates the entire Android operating system except for
the Linux kernel, which itself is located inside the /boot partition. This folder contains
the sub-directories /system/bin and /system/lib that contain core native executable pro-
grams and shared libraries respectively. Additionally, this partition encompasses all system
applications that are built with the system image. To achieve that the content of this
partition cannot be changed at run-time, thus the image is mounted in the read mode only.
Hence, /system partition is mounted as read-only, it can not be used for storing any data.
For this purposes, the separate partition /data is allocated and is responsible for storing
user data or information changing over the time. For instance, /data/app directory contains
all apk files of installed applications, while /data/data folder encloses the home directories
of the applications.

The /cache partition is responsible for storing frequently accessed data and application
components. Additionally, the operating system over-the-air updates [142] are also stored
on the partition before being run. So as /system, /data and /cache folders are formed
during the compilation of Android platform, the default rights and owners to the files and
folders contained on these images have to be defined at compilation time (before compi-
lation). It means that the users and groups (UIDs and GIDs) should be available during
the compilation of this operating system images.

Native Executable Protection

Some native binary applications are assigned with setuid and setgid access rights without
user notification. These binaries are usually part of the system.img partition, which was
discussed in the previous section. The settings for files and folders is stored in the file
/system /code/libcutils/fs__config.c which is located on every Android device. The excerpt
of this file is mentioned in listing 4.5. For instance, the su program has the rights set.
This public utility allows a user to run another program with the specified UID and GID.
In Linux based operating systems this functionality is usually used to run applications
with super-user privileges. According to listing 4.5 the binary /system/zbin/su is assigned
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with the access rights defined in number format (also called as flags) as is the definition of
access rights on the Linux based systems. There is also another configuration file on every
Android-based device, which is located in /android_ filesystem__config.h. This file contains
the settings of ownership and groups to the daemons, sockets, system server, and hardware
drivers.

static const struct fs_path_config android_files[] = {
{ 00644, AID_SYSTEM, AID_SYSTEM, O, "data/app/*" },
{ 00644, AID MEDIA RW, AID MEDIA RW,0, "data/media/*" },
{ 00644, AID_SYSTEM, AID_SYSTEM, O, "data/app-private/*" },
{ 00644, AID_APP, AID_ APP, 0, "data/data/*x" },
{ 04750, AID_ROOT, AID_SHELL, 0, "system/xbin/su" 1},
{ 06755, AID_ROOT, AID_ROOT, 0, "system/xbin/librank" },
{ 06755, AID_ROOT, AID_ROOT, 0, "system/xbin/procrank" 1},
{ 06755, AID_ROOT, AID_ROOT, 0, "system/xbin/procmem" },
{ 04770, AID_ROOT, AID_RADIO, O, "system/bin/pppd-ril" 3},

Listing 4.5: Default permissions and owners (fs_ config.c file)

Usually, in Linux, an executable application is run with same privileges as the process
that has started it. The mentioned access flags allow a user to run a program with the priv-
ileges of an executable owner or group [52]. Thus, in this case, the binary /system/xbin/su
utility will be run as a root user. The root privileges allow the program to change its UID
and GID to the ones specified by a user. After that, su may start the provided program
with the specified UID and GID. Therefore, the program will be started with the required
UID and GID.

In this case of privileged programs, it is required to restrict the circle of applications
to have access to such utilities. In this regard, without such restrictions, any application
may run this su program and obtain the root level privileges. In order to achieve this
restriction on a native user-space level, there is implement the approach that compares UID
of the calling program with the list of the UIDs allowed to run the restricted applications.
Thus, the su executable application obtains the current UID of the process, which is equal
to the UID of the process calling it, and it compares this UID with the predefined list of
allowed UIDs.

Therefore, only if the UID of calling process is equal to constant AID ROOT or AID
SHELL, then the required su utility will be started. To perform such check, the list of UID
constants is required. These constants can be found inside android_filesystem__config.h
file. Additionally, starting version 4.3 of Android operating system, the core developers
use a principle of capabilities for Linux kernel system [182]. It allows them to additionally
restrict the privileges of the programs that are required to run with root privileges. For
instance, in the considered case of the su utility, it is not required to have all privileges of
the root user. For this utility, it is enough to have a possibility to change the current UID
and GID. Therefore, this program requires only CAP_SETUID and CAP_SETGID root
capabilities to operate correctly.
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Application Framework

Dalvik/Art is a registry-based virtual machine, and it allows the operating system to execute
Android applications, which are written using Java language. During the build process,
Java classes are compiled into a dex files that are interpreted by the virtual machine.
The implementation of the virtual machine was specifically designed to be run in constrained
environments. Additionally, the virtual machine provides functionality to interact with
the rest of the system, including native binaries and libraries.

To accelerate the process of initialization, Android exploits a specific component called
zygote[205]. Tt is a particular “pre-warmed,, process that has all core libraries linked in.
When a new application is about to run, Android forks a new process from zygote and sets
the parameters of the process according to the specification of the launched application.
This approach allows the operating system no to copy linked libraries into a new process,
thus, speeding up application launching operation. Java core libraries, which are used in
Android, are borrowed from Apache Harmony project [231].

System services are one of the most critical parts of the operating system. Android comes
with some system services that provide underlying mobile operating system functionality
to be used by application developers in their applications.

For instance, PackageManagerService [30)] is responsible for managing packages within
the operating system, which means installation, update, deletion, etc..

Using JNI - java native interface [91] interfaces system services can interact with the dae-
mons, toolbox binaries and native libraries of the native user-space layer. The public API
to system services is provided via Android framework libraries. This API is used by appli-
cation developers to interact with system services.

Binder Framework

As was described in previous chapters, all applications are run inside application sandbox.
The sandboxing of the applications is provisioned by running all applications in different
processes with different Linux identities. Additionally, system services are also run in sep-
arate processes with more privileged identities that allow them to get access to different
parts of the system protected using Linux kernel DAC capabilities [193]. Therefore, an
inter-process communication (IPC) [3] framework is required to organize data and signals
exchange between different processes. In Android, a special framework called binder [3, ]
is used for inter-process communication. The standard POSIX system V [137] IPC frame-
work is not supported by the Android implementation of the Bionic libc library. Moreover,
additionally to the binder framework for some special cases Unix domain sockets [209] are
used for communication with the Zygote daemon.

The binder framework was explicitly developed to be used in the Android operating
system. It provides the capabilities required to organize all types of communication between
processes in this system. Even the mechanisms, such as intents and content providers, well-
known to application developers, are built on top of the binder framework. This framework
provides the variety of features, such as the possibility to invoke the methods on remote
objects as if they were local, synchronous and asynchronous method invocation, ability to
send file descriptors across processes [195].

The communication between the processes is organized according to synchronous client-
server model [11]. The client initiates a connection and waits for a reply from the server
side. Thus, the communication between the client and the server can be imagined as they
are executed in the same process thread. It provides a developer with the possibility to
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invoke methods on remote objects as they were local. The communication model through
binder is presented in figure 4.9.
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Figure 4.9: Binder communication model

In figure 4.9, the application in process A, which acts as a client, wants to use the behav-
ior exposed by a service, which runs in the process B. All communication between clients and
services using the binder framework happens through the Linux kernel driver /dev/binder.
The permissions to this device driver are set to world readable and writable. Hence, any
application can write to and read from this device. To conceal the peculiarities of the binder
communication protocol, the libbinder [135] library is used in Android platform. It provides
the facilities to make the process of interaction with the kernel drive transparent for an ap-
plication developer. In particular, all communications between a client and a server happen
through proxies on the client side and stubs on the server side. The proxies and the stubs
are responsible for marshaling [119] and unmarshaling [119] the data and the commands
sent to the binder driver.

In order to make use of proxies and stubs, a developer just defines as Android interface
definition language (AIDL) interface [157] that is transformed into a proxy and a stub during
the compilation of the application. On the server side, a separate binder thread is invoked
to process a client request. Technically, each service (sometimes called binder service) [167]
is exposed using the binder mechanism and assigned with a token. The kernel driver ensures
that this token represented as a numeric value (usually 32 bits long) is unique across all
processes in the system. Therefore, this token is used as a handle to a binder service.
Therefore, it is possible to interact with the service. However, to start using the service
the client at first has to discover this token value. The discovery of service’s handle occurs
using binder’s context manager [71]. The service manager is the implementation of binder’s
context manager on Android platform. The context manager is a special binder service
with the predefined handle value equal to zero.

Whereas it has a fixed handle value, any part of the system can find it and call its
methods. Context manager acts as a name service [54] providing the handle of a service
using the name of this service. In order to achieve this behavior, each service has to be
registered within context manager. For instance, the service can use a specific method of
the ServiceManager class. Thus, a client has to know only the name of a service which
it needs to communicate with. Using context manager the client receives the token which
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is later used for the interactions with the required service. The binder driver allows only
a single context manager to be registered in the system. Therefore, the service manager
is one of the first services started during booting sequence. The components of service
manager ensure that only the privileged system identities are allowed to register services.
The binder framework does not impose any security by itself. At the same time, it provides
the facilities to procure the security in Android.

The binder driver adds the UID and the PID of the sender process to each transaction
automatically. Therefore, each application in the system has its UID. Then this value can be
used to identify the calling party. The receiver of the call can check the obtained values and
decide if the transaction should be completed. The receiver can get the UID, and the PID
of the sender using the specific method calls [3]. Additionally, a binder handle can also
behave as a security token due to its uniqueness across all the processes and the obscurity
of its value [1].

Permissions

As considered in previous chapters, in Android each application by default obtains its
UID and GID system identities. Additionally, there are also a number of the identities
hard-coded in the operating system. These identities are used to separate the components
of the Android operating system using DAC enforced on top of the Linux kernel level,
thus increases the overall security of the operating system. Among these identities, AID
SYSTEM stands out. This UID is used to run the System server, the component that
unites the services provided by the Android system.

The System server has privileged access to the operating system resources, and each
service runs within the System server. It provides the controlled access to a particular func-
tionality to other system components and applications. The controlled access is backed by
the permission management. It is connected to binder framework which provides the abil-
ity to get the UID and the PID of the sender on the receiver side. In general case, this
functionality can be exploited by a service to control consumers that want to connect to
the service. It can be achieved by comparing the UID and or PID of a consumer with the list
of UIDs allowed by the service. However, in Android, this functionality is implemented in
a slightly different manner. Each critical method of a service is guarded with a particular
label called permission. Before running the method a check if the calling process is assigned
with the required permission is performed. If the calling process has the required permis-
sion, then the service invocation will be allowed. Otherwise, a security check exception will
be thrown.

For instance, if a developer wants to provide its application with a possibility to send
sms message it is required to add the specific record (uses-permission) into application’s
AndroidMainfest.xml file, these user-permissions were depicted in listing 4.1. Android also
provides a set of individual calls that allow checking at run-time if a service consumer
has been assigned with permission. The permission model described so far provides an
efficient way to enforce security. At the same time, this model is ineffective because it
considers all the permission as equal. In the case of mobile operating systems, the provided
capabilities may not always be equal in the security sense. For instance, the capability to
install applications is more critical than the ability to send sms messages, which in turn is
more dangerous than the setting an alarm or vibrating of the device.

This issue is addressed in Android by introducing the security levels of permissions.
There are currently four possible levels of permission: normal, dangerous, signature and
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stgnature-or-system. The level of permissions is either hard-coded into the Android operat-
ing system (for system permissions) or assigned by a developer of a third-party application
in the declaration of a custom permission (inside AndroidManifest.zml file). To be granted,
the normal permission has to be just requested in application’s manifest file. The danger-
ous permissions, besides to be requested in the manifest file, have to be also approved by
a user during installation or upgrade process. In this case, during the installation of an
application, the user is displayed with the set of permissions requested by the package. If
the user approves them, then the application will be installed. Otherwise, the installation
is aborted.

The signature permission is granted by the system if the application requested the per-
mission be signed with the same signatures as the application that has declared it. The de-
tails about usage of application signatures are considered in the following section. The signature-
or-system permission is granted either if the application is requesting and the declaring
the permission are signed with the same certificate or the requesting application is located
on the system image. For instance, the vibrating capability will be protected with the per-
mission of the normal level, send sms messages functionality will be guarded with the dan-
gerous permission level and package installation ability will be secured with the signature-
or-system permission level.

System Permission Definition

System permissions, which are used to protect Android operating system functionality, are
defined in the framework’s AndroidManifest.zml file located in frameworks/base/core/res
folder of the Android sources. An excerpt of this file with several permission definition
examples is shown in listing 4.6.

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="android" coreApp="true"
android:sharedUserId="android.uid.system"
android:sharedUserLabel="@string/android_system_label">

<!'-- Allows access to the wvibrator.
<p>Protection level: mnormal
-=>
<permission android:name="android.permission.VIBRATE"
android:label="@string/permlab_vibrate"
android:description="@string/permdesc_vibrate"
android:protectionLevel="normal" />

<!'-- Allows an application to send SMS messages.
<p>Protection level: dangerous
-=>
<permission android:name="android.permission.SEND_SMS"
android:permissionGroup="android.permission-group.SMS"
android:label="@string/permlab_sendSms"
android:description="@string/permdesc_sendSms"
android:permissionFlags="costsMoney"
android:protectionLevel="dangerous" />

<!'-- @SystemApt Allows an application to install packages.
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http://schemas.android.com/apk/res/android

<p>Not for use by third-party applications. -->
<permission android:name="android.permission.INSTALL_PACKAGES"
android:protectionLevel="signature|privileged" />

</manifest>

Listing 4.6: The definition of the system permissions

In these examples the permission declarations are shown used to protect vibrator of
the device, sending sms messages and package installation functionality. By default, the de-
velopers of third-party applications do not have access to the functionality protected with
system permissions of levels signature and signature-or-system. This behavior is ensured in
the following approach. The application framework package is signed with the platform cer-
tificate. Thus, the applications requiring the functionality protected with the permissions
of these levels have to be signed with the same platform certificate. However, the access to
the private key of this certificate is available only to the builders of the operating system,
usually hardware suppliers, or telecommunication operators.

Permission Management

The system service PackageManagerService [204] is responsible for the application man-
agement on Android platform. This service assists with the installation, uninstallation,
and update of applications on the mobile device. Another important role of this service is
permission management. It can be considered as a policy administration point. It stores
the information that allows checking if an Android application is assigned with a particular
permission. Additionally, during the installation and upgrade processes of application, it
performs a bunch of checks to ensure that the integrity of permission model is not violated
during these routines.

Moreover, it also acts as a policy decision point. The methods of this service are
the last elements in the chain of the permission checks. It is not considered the operation
of PackageManagerService here, but there are sources for details of this service [109, ].
PackageManagerService stores all information related to permissions of third-party appli-
cations in the file /data/system/packages.xml. This file is used as a persistent storage
between the restart of the system. However, at run-time, all information about permissions
is preserved in random access memory (RAM) allowing to increase the responsiveness of
the system. This information is collected during the boot sequence (see figure 4.8) using
data stored in the packages.zml file for third-party applications and through parsing system
applications.

Applications

Android application is a software that runs on Android platform and provides most of
the functionality available to the user. The stock of operating system is shipped with some
built-in applications called system applications. They are usually provided by the devel-
oper of the operating system in the case of Android it is Google [222] and other types of
system applications are provided by the suppliers of the mobile devices. These applications
compiled as a part of Android open source project (AOSP) [6] built process. Moreover,
the user may install user applications from numerous application markets to extend the ba-
sic functionality of the operating system.
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Application Components

Applications on the Android platform are distributed in the form of package apk file.
A package consists of virtual machine executable files, resource files, a manifest file and
native libraries. The package has to be signed by the developer of the application. To
sign the package developer usually use a self-signed certificate. Each application can be
built from several components which are provided by the platform. In the case of Android,
there are four component types: activity, service, broadcast receiver and content provider.
The separation of an application into the components support the reuse of application parts
between application and also division of the application into more logical parts.

e Activity is an element of a user interface. The activity usually represents a screen,
which a user can interact with.

e Service is a background worker. The service can run indefinite time. The most famous
example of a service is a media player, that plays music in the background while a user
is working with the device.

e Broadcast receiver is a component of an application that receives messages and starts
a workflow according to the obtained message.

e Content provider is the last component that provides the ability to store and retrieve
data. it also permits to share a set of data with another application.

Hence, the Android applications consist of different components. There is no central en-
try point unlike any programming language, such as Java programs with the main method.
Regards to missing the central point, all components need to be declared inside the Android-
Manifest.zml file by the developer of an application. There is an exception for broadcast
receivers because they can be defined dynamically inside Java code of the application. Ex-
ample of the application’s AndroidManifest.zml file is in listing 4.7. This application is
composed of one activity.

<?xml version="1.0" encoding="UTF-8" />

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="cz.aron.lukas.testapp"
android:versionCode="1"
android:versionName="1.0">

<uses -permission
android:name="android.permission.SEND_SMS"

/>
<application
android:icon="@drawable/ic_launcher"

android:label="@string/app_name">

<activity android:name=".TestActivity"
android:label="@string/app_name">
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<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category
android:name="android.intent.category.LAUNCHER"
/>
</intent-filter>
</activity>
</application>
</manifest>

Listing 4.7: Example of AndroidManifest.zml file

The operating system provides a variety of methods to invoke the components of ap-
plications. A new activity is started by using one of these methods startActivity and
startActivityForResult. Services are started through the method startService. In this case,
called service invokes its method onStart. When a developer is going to establish a connec-
tion between a component and a service he invokes the method bindService and the onBind
method is invoked in the called service.

Broadcast receivers are started when an application or system component send a special
message using the methods sendBroadcast, sendOrderedBroadcast and sendStickyBroadcast.
Content providers are invoked by the requests from the content resolver. All other compo-
nent types are activated through intents. The intent is a special mean of communication-
based on the binder framework, which was already described earlier.

Intents are passed into the methods that perform component invocation. The called
component can be invoked by two different types of intent - an explicit intent or an implicit
intent. For the first intent type, the developer realizes picking the functionality in the com-
ponent of his application and calls the component using the component name data field of
the explicit intent. The other approach is to invoke a component of any other application,
in this case, he has to be sure that this application is installed on the system.

Basically, from the developer’s point of view, there is no difference between interac-
tions of components inside one application or among components of a different application.
For the second intent type, the developer transfers the right to choose the appropriate
component to the operating system. The intent object contains some information in its
fields, such as action, data and Category. According to this information, using Intent filters
the operating system chooses the proper component that may process the intent.

An intent filter defines the “template,, of intents the component can process. Further-
more, the same application can define an intent filter that will process intents from other
components.

Permissions on The Application Level

Permissions are used for protecting access to the system resources. The developers of third-
party applications can also use custom permissions to guard the access to the components
of their applications.

These permissions have to be defined inside AndroidManifest.xml file, an example of
custom permission is in listing 4.8.
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<permission android:name="cz.aron.lukas.permission.mypermission"
android:label="@string/mypermission_label"
android:description="@string/mypermission_description"
android:protectionlLevel="dangerous"

/>

Listing 4.8: Example of custom permission (part of AndroidManifest.xml file)

The declaration of custom permission is similar to the one of the system permissions.
To illustrate the usage of custom permissions let refer to figure 4.10.

Application 2
Application 1
L Cl:pl Cc3
Uses-permission: pl /_I/V
C2: p2
X —

Figure 4.10: Permission enforcement to guard the components of third-party applications

The application 2 consisting of three components wants to protect access to two of
them: C71 and C2. To achieve this goal the developer of the application 2 has to declare
two permission labels pI, p2 and assign them to protect components correspondingly. If
a developer of the application 1 wants to obtain access to the component C1 of the ap-
plication 2, it must be defined that the application requires permission pI. In this case,
the application 1 receives a possibility to use the components CI1 and C8 of the appli-
cation 2. When the application has not specified the required permission, the access to
the component guarded with this permission is prohibited, it is illustrated in figure 4.10.

For invoking of the components of the application is responsible ActivityManagerService.
To enforce the security application components, in the framework methods, which are used
to invoke the components, the special hooks are placed. These hooks check if an application
has permission to call the required component.

These checks end in the PackageManagerServer class with the checkUidPermission
method. Thus, the actual permission enforcement happens on the application framework
level that is considered as a trusted part of the Android operating system. Hence the check
cannot be bypassed by applications. More information about how the components are
called and permission checks can be found in [228].

4.5 Summary

This chapter presented the architecture of one of the most used mobile operating system
on mobile devices from the security point of view. The central part of this chapter was
the description of platform layers used for protecting the user’s data or privacy. There was
the overview of security mechanisms, such as virtual machine, permission-based system and
all layers of the architecture focused on security aspects of the platform. The most of this
chapter was the detailed explanation of security aspects, related to the aim of this thesis,
which is the protection user’s data against data leakage. At this point, the data can be
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sent outside the device within user actions, or by application logic through many paths.
This chapter discusses these paths and also the permission models, which each application
needs to follow.

Related to the open source of the platform, such as Android is, the snippets of a real
source code of implementation were presented for the specific sections. The detail de-
scription of source code was aimed into arts that can influence the resulting solution of
a prototype. Also, the operating system should not be modified the prototype needs to
follow presented security properties and rules defined by the vendor.

The mobile operating system is the cornerstone for this thesis and can be considered as
technical background for the implementation solution of a prototype. The next chapter is
focused on a presentation the idea of the work and the definition of the concept.
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Chapter 5

Definition of Access Rights Model

This chapter describes the main idea of this thesis which protects a user against leakage
of privacy data from a mobile device. The core of this thesis is the formal definition of
the novel approach to protecting data against leakage, but remain the functionality of
the mobile device. The first step is to introduce the whole concept less formally and then
describe the formal model.

The main concept is built upon the BYOD principle [163]. It means that a mobile device
can be used as a personal device and also as a work device at the same time. The main
issue with this principle is the security aspect. Moreover, the information which could be
sensitive or corporate is taken outside the protected environment or company. The weakest
point is the user and its device which is used for both purposes (personal and also work
device).

Current solutions related to this area are mainly focused on two approaches. The first
one is that the device is entirely administrated by the company - MDM principle [183].
The second one is supported by the manufacturer of the device. Manufacturer provides
the decision at the boot time which mode the user would like to use - secured or unsecured.
This approach is not convenient to a user who needs to switch between two modes all
the time when requested data from one mode in another one and vice-versa. When the user
does not want to care about these modes and still require to apply BYOD principle, there
is a possibility to use one of the taint mechanisms that work on the following information
flow and mechanism which handle the access to the data according to few aspects, such
as position or data classification. More information about these tainting mechanism is
described in the following sections.

5.1 Concept

This thesis is aimed at the BYOD principle with the ability to dynamically change the per-
missions which are granted to the application during installation. These permissions, al-
ready described in the earlier chapter), are dynamically changed according to the input
files which the user requires to handle the current application. At the first phase, the files
on the mobile devices need to be grouped into at least two primary categories - public and
private.

When a user needs to work with its files (lets marked them as public files) with a current
application the application remains with the same permissions as it has from the installa-
tion phase. The dynamic changing of permissions appears while using the files marked as
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private. The same application which was used for public files can be used for private files
as well. During opening this private file, the application recognizes that the file is marked
as private and dynamically change permissions. All permissions which allowed the leakage
file content from the device are denied at the application level. If the user wants to open
more files, the application can work in two separate modes depends on the current working
file. The public file is also able to be shared with other components, applications or even
outside the device. On the other side, the private file is not able to be shared at all.

For example, the user has application Text editor which can work with the classical
text files. Moreover, the application can send the opened file via various services outside
the device through email, blue-tooth or internet connection. If the user opens the file marked
as public, the application remains the same behavior as it was developed for. However,
during the opening of a private file, the application is not able to send the file outside
the device, but the functionality with the file remains.

Many implementations can handle the concept of this idea with modification of the op-
erating system, which is not a convenient solution for a massive user base of the operating
system. The required solution should be considered as a layer between operating system
and application layer. The implementation of prototype discusses the solution which can
be done by this way with some limitations. All works related to this topics are not able
to provide this behavior without modification of the operating system. The next section
discusses the solution of the taint tracking principles with the focus on solution related to
dynamically changing permissions of other researchers.

5.2 Related work

This chapter contains the related work in security area focusing on permission flow tracking,
changes in permission models, and related topics to this thesis. Besides, there are also
covered kernel and sandbox modifications which are related to permission enforcement
or logging mechanism. Data flow or permission flow tracking systems exist in two basic
categories - static analysis and dynamic analysis. Hence, both categories are covered in this
chapter.

5.2.1 Detection of Privacy Sensitive Information

According to research [115] there are dynamic analysis and static analysis to approach of
malware detection. There is a possibility that a malicious developer can make his appli-
cation to circumvent the detection of malware. To solve these problems, they focused on
detection method using log output which is dynamic analysis. Linux debugging utility
named strace [120] monitors system calls used by an application in Android.

There is a method performing malware detection by analyzing system calls that are
obtained using the strace. Behavior using services of the kernel can be detected by this
method. However, there is a problem that system call is not issued in the behavior which
does not use services of a kernel, and it is impossible to detect such behavior. They focused
on the fact that when API that retrieves the phonelD (unique phone identifier) is invoked, it
is processed with a remote procedure call. It was proposed a method logging the invocations
under the API by inserting Log.v method.

The logging by this technique cannot be avoided even if modification of API is performed
on the caller side. Therefore, it is impossible to circumvent the detection even if a devel-
oper has malicious intent. Because this proposed method is implemented within Android
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framework layer, a malicious application developer cannot interfere with modifications in
this layer. In the current paper, they implemented proposal method tentatively and ran
the application which acquires phonelD on the Android emulator. As a consequence, they
confirmed record of invocation behavior of the phonelD acquisition API empirically.

Proposal techniques can be used to grasp a behavior of an Android application. As
a countermeasure for Android malware, an examination of an application using proposal
method can be applied. For example, distribution of malware may be prevented if Android
market vendors examine applications in advance.

5.2.2 Overview of Information Flow Tracking Techniques

This article [116] covers the overview of flow tracking techniques and its comparison. Taint
analysis techniques are used for tracking the information flow and possible leakage on
Android [72, , , , |. The taint analysis [1410] is data flow analysis technique

that is popularly used to track the flow of sensitive information. In the taint analysis
sources and sinks of sensitive data are predefined. Taint sources are nothing but the sources
of sensitive information. In the context of Android taint, sources can be account, email,
contact, calendar, database, file, location log, phone state, sms/mms, settings and unique
identifiers, such as IMEI. Whereas taint sinks are points, from which data can leak out of
the system. Common taint sinks in Android are the internet, publicly accessible storage,
and others. Memory card, an inter-process communication message, and sms transmission.
Taint tracking discovers whether there is a route from source to sink. If source data reaches
the sink, it is identified as instances of data leakage. There are two approaches for taint
analysis:

e Dynamic taint analysis

e Static taint analysis

Many papers have been proposed based on dynamic taint analysis [196]. The dynamic
analysis can monitor code as it is being executed. It can provide precise security analysis
based upon runtime information as it only considers single execution at a time. This
approach of dynamic taint analysis observes the flow of information between sources and
sinks. Any data value, which is derived from taint source, is marked as tainted and other
values are left untainted. Taint propagation policy determines the flow of tainted data as
the program executes. Under tainting and over tainting of sensitive information can lead
to false positives and false negatives [17]. The dynamic taint analysis has performance
overheads on Android as real-time monitoring of applications is performed. It provides
detailed information on the specific run, but cannot provide complete information of all
possible execution path of the program. This approach has to be implemented on the actual
Android device or virtual Android device for real-time processing.

The static taint analysis approach is also proposed by many types of research in their
works [82, 89, , |. This static taint analysis approach tries to cover all possible
execution paths of the program. The complete code is statically analyzed without the need
for its execution, generally, control flow graph (CFG) of a program is created. The CFG
is used to trace the flow of sensitive information from sources to sinks. Modern static
taint analyzers convert programs code into some intermediate representation, which can be
effectively processed to generate CFG and call graphs [32].
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The static analysis takes more time to analyze the program than dynamic analysis as it
processes complete code and all execution paths. However, it has no real-time performance
overhead as processing is done statically before the code is being executed. The static
taint analysis on Android can be performed by extracting android package of all installed
applications and then processing them outside of the mobile device. Also, it can be done
at application market level.

TaintDroid

According to the article which presented TaintDroid proposal [72], a system-wide dynamic
taint tracking system for Android. It can track multiple sources and sinks simultaneously.
Mobile device users are notified at the runtime when sensitive information leaves the system.
TaintDroid modifies the Dalvik virtual machine of Android to introduce variable level taint
tracking in it using shadow variables. Each variable size is doubled from 32 bits to 64 bits
with modified stack format. These extra 32 bits are used to store a taint tag. The taint
tag is a value used to identify the sensitive information (e.g., location, IMEI number). For
tracking taint sources TaintDroid does variable level tracking for interpreted code, method
level tracking for native code, message level tracking for inter-process communication and
file level tracking for secondary storage files. Taint tags are added to taint sources, and
when it reaches to taint sinks, these tags are processed to identify which information is
being leaked through that sink. In the Android operating system, each application runs
in its sandbox with its user id (already discussed earlier), Dalvik virtual machine instance
and set of permissions assigned to it [108].
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Figure 5.1: TaintDroid architecture within Android [72]

Figure 5.1 shows trusted and untrusted application running in their respective sandboxes
on top of the kernel. Taint source is marked in the trusted application which is then
mapped in the virtual taint map by the modified Dalvik virtual machine. The binder which
is responsible for inter-process (inter-application) communication carries tainted data to
the binder hook of untrusted application. The tainted data is then mapped and propagated
in the corresponding virtual taint map of untrusted application related to the data flow
rules. When the untrusted application invokes the taint sink specified library, tag from
the tainted data is retrieved, and an event is reported to the user.
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TaintDroid has a specific instruction set that requires a custom data-flow logic for
taint propagation. Definition of taint markings, taint tags and variables follows, and taint
propagation is presented in the following lines.

Definition 5.2.1. Universe of Taint Markings £[72]

Let each taint marking be a label [. They assume a fixed set of taint markings in any
particular system. Example privacy-based taint markings include location, phone number,
and microphone input. They define the universe of taint markings £ to be the set of taint
markings considered relevant for an application of TaintDroid.

Definition 5.2.2. Taint Tag [72]

A taint tag is a set of taint markings. A taint tag ¢ is in the power set of £, denoted 2%,
which includes (). Each variable has an associated tag that is dynamically updated based
on logic rules.

Definition 5.2.3. Variable [72]

A variable is an instance of one of the five variable types - method local variable, method
argument, class static field, class instance field, and an array. Variable types have different
representations. The local and argument variables correspond to virtual registers, denoted
vy. Class field variables are denoted as f, to indicate a field variable with class index .
f» alone indicates a static field. Instance fields require an instance object and are denoted
vy(sx), where v, is the instance object reference variable. Finally, v,[.] denotes an array,
where v, is an array object reference variable.

Definition 5.2.4. Virtual Taint Map Function 7(.) [72]

Let v be a variable. 7(v) returns the taint tag ¢ for variable v. 7(v) can also be used to
assign a taint tag to a variable. Retrieval and assignment are distinguished by the position
of 7(.) with respect to the <— symbol. When 7(v) appears on the right-hand side of <+,
7(v) retrieves the taint tag for v. When 7(v) appears on the left-hand side, 7(v) assigns
the taint tag for v. For example, 7(v1) < 7(v2) copies the taint tag from variable v to vy.

Definitions provide the primitives required to define run-time taint propagation for
Dalvik VM. Table 5.1 captures the example of propagation logic, the extended version
of propagation logic was presented in [72]. The table enumerates abstracted versions of
the byte-code instructions specified in the Dalvik documentation [232]. Register variables
and class fields are referenced by vx and fx, respectively. R and E are the return and ex-
ception variables, respectively, maintained within the interpreter. A, B, and C are constants
in the byte-code.

Op Format Op Semantics Taint Propagation Description

const va C va «~ C T(va) < 0 Clear va taint

move v4 VB VA < UB T7(va) < 7(vB) Set v4 taint to vp
throw v4 E vy, T(E) + 1(va) Set exception taint
sput va fm fB+va 7(fB) + 7(va) Set field fp taint to va
sget va fB va < fB 7(va) < 7(fB) Set v4 taint to field fr
iput va vg fe  vB(fc) < va T(ve(fe)) + T(va) Set field fe taint to va

Table 5.1: Example of taint propagation logic [72]

The taint propagation logic uses conservative data-flow semantics for constant, move,
arithmetic, and logic instructions. Destination register values are always entirely over-
written. Therefore the taint tag is set explicitly for each instruction. Constant values are
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considered untainted and therefore do not contribute to the taint tag of the destination reg-
ister. The interpreter maintains “hidden registers,, for return and exception values. These
registers require taint tag storage and corresponding propagation logic. The arithmetic and
logic operations include unary negation, binary arithmetic, bit shifts, and bit-wise AND
and OR.

TaintDroid tracks information flows at real-time for privacy monitoring, and it has 14%
performance overhead on a processor bound micro-benchmark. TaintDroid implementation
needs building a custom ROM, i.e., patched version of the Android operating system requir-
ing customized system release. TaintDroid has been integrated into CyanogenMod ROM
[120] and the solution has been successfully released on Samsung Galaxy devices. Golam
Swar [25] presented a collection of attackers on TaintDroid exploring its effectiveness and
limitations. Here, the author successfully applied generic classes of anti-taint methods to
circumvent TaintDroid.

AppFence

Peter Hornyack et al. [111] created AppFence tool to block sensitive information leakage
using dynamic taint analysis approach. Instead of providing only notification to the user
like TaintDroid, this tool blocks the application from sending sensitive data. AppFence
could change the permission architecture of the Android operating system. It can provide
to the user an option for restricting some permissions of the application. It implements
two techniques data shadowing and exfiltration blocking to restrict the application from
leaking sensitive information. The data shadowing substitutes shadow data in place of
sensitive data to prevent it from exposure and exfiltration blocks network transmission that
is carrying sensitive information. AppFence identified total eleven permissions referring to
twelve essential sources of sensitive information for taint tracking.

,
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Figure 5.2: AppFence architecture [111]

The solid boxes in figure 5.2 are selected components introduced by AppFence in An-
droid architecture for exfiltration blocking. The shadowing is done by modifying existing
resource manager and file system components of Android. AppFence implementation is cur-
rently available for Android version 2.1 only, which is very old and unused version in these
days. However this work can be marked as deprecated or obsolete, it still has the significant
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contribution to the Android security and to taint the permissions with blocking operations.
It has side effects on the application functionality, sometimes proper operations also get
blocked and applications crash. This approach needs clear-cut differentiation between when
to use shadowing and when to use exfiltration. It prevents the application from loading
non-system native libraries. The application that can detect the presence of these security
control may refuse main functionality until these controls are deactivated. In order to run
this solution, there is the same requirement as in the TaintDroid proposal which means
a special release of Android operating system with modified libraries and also other parts
of the system to control the permissions flow.

Kynoid

Daniel Schreckling et al. [194] proposed Kynoid, which is real-time enforcement of fine-
grained, user-defined and data-centric security policy. It is based on user-defined security
policies defined for data items stored in shared resources. The core idea of Kynoid is to
implement a middleware between application and the data as shown in figure 5.3 to provide
policy enforcement functionality.
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Figure 5.3: Kynoid architecture [194]

Kynoid is based on TaintDroid to integrate a lightweight policy tracker in sandboxing
mechanism on Android platform. It tries to make the TaintDroid approach fine-grained to
support efficient permission system which allows critical and non-critical data. TaintDroid
supports 32 different tags in 32 bits field introduced in shadow variable, which can refer to
at most 32 different data sources. Whereas Kynoid uses these 32 bits for identifiers, each
variable in Android can be assigned a different identification number which is again mapped
with a policy. It allows Kynoid to finer-grained tracking by having total 232 mappings for
security policies. However, this approach creates a tremendous amount of runtime and
memory overhead which is addressed by using dependency graph in Kynoid.

The dependency graph is evaluated at the sink to derive exact security policy. Kynoid
blocks the connections which are leaking information at monitored sinks as per policy de-
fined. Implementation is done by modifying Dalvik virtual machine for taint tracking and
Kynoid system service for policy database and identification numbers mapping. For inter-
process policy tracking, identifiers of source variables are mapped to the identifiers of desti-
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nation variable of another application. Sinks are monitored in similar kind of architecture
that of TaintDroid to detect information leak. Kynoid claims to be giving a competitive
performance on benchmark tests against TaintDroid while providing finer granularity of
taint tracking policy, but it exists only as a prototype implementation. Also, Kynoid needs
to analyze the impact of indirect flows to the overall performance.

LeakMiner

Zhemin Yang et al. [238] proposed LeakMiner, static taint analysis approach to scan appli-
cations on market site. As shown in figure 5.4, LeakMiner takes installation apk package
file of the Android application and converts it to Java bytecode for additional processing. It
also extracts the metadata from manifest file (part of the apk package file). Only reputable
sources and sinks are considered in this approach for taint analysis. Permitted interfaces will
be analyzed as Android only allows interfaces which are granted in permissions. The man-
ifest file provides granted permissions for that application which is extracted as metadata.
The call graph is generated from the transformed bytecode.
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Figure 5.4: LeakMiner overall architecture [238]

To model Android activity lifecycle [112] callbacks and multiple entry points, different
call graphs are linked to the root function node. In the taint propagation possible paths of
sensitive data to taint sinks such as a network or local logging system are discovered and
then reported to the user. Pointer analysis is applied to add some string context information
to source and sink points. LeakMiner approach does not support implicit information flow
leakage. It is not context sensitive which causes many false positives, precision is very less,
about 50 %. On an average, each application takes approximately 2.5 minutes for analysis.

FlowDroid

Christian Fritz et al. [382] presented FlowDroid, highly precise taint analysis tool for Android
applications. It takes the Android apk installation package file as input for processing and
does the static taint analysis. This approach models entirely Android application life-
cycle [112] precisely to handle callbacks. It is context sensitive as well as flow, field, and
object-sensitive. Source and sink for targeted Android version are identified by using SuSi
framework [22].

Detection of source, sink and entry-point is done by parsing manifest file, dex files and
zml layout files extracted from the application apk installation file. FlowDroid generates
main dummy method from parsed data as shown in figure 5.5. Taint analysis is performed
on this graph to discover paths from source to sink. All the discovered paths are then
reported to the user. IFDS framework [181] (interprocedural, finite, distributive, subset)
is used to formulate interprocedural data flow analysis problem which creates exploded
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Figure 5.5: Overview of FlowDroid [32]

supergraph. FlowDroid ignores dynamic loading and reflection. It treats JNI [91] code as
a black box and explicit taint propagation rules are defined for common native methods.
It lacks taint tracking for intra-application and inter-application communication.

Also, the current implementation of FlowDroid ignores reflective calls and dynamically
loaded codes. Along with FlowDroid, authors also proposed DroidBench [207] which is
the very specific test suite for Android containing a set of vulnerable applications. On
the DroidBench evaluation, FlowDroid outperformed other commercially available tools.
It detected all seven data leaks of insecure bank application (the vulnerable application
used for evaluation purposes). It also performed well on java specific benchmark suites.
FlowDroid is highly precise static taint analysis tool, recently it is improved to support
implicit flows, and it is available as an open source. It works on a computer where Android
application apk files are given as input for analysis.

TrustDroid

TrustDroid presented by Zhibo Zhao et al. [245] addresses BYOD [163] privacy issues
protecting leakage of corporate data. It can operate on the server (offline) as well as on
the Android mobile device (real time). In offline mode, the static analysis is performed on
applications that causes no performance issues for the mobile device. To operate efficiently
in a realtime mode, it implements different levels of granularity. Static semantic analysis
on the compiled bytecode is done for the data flow tracking. Taint propagation rules are
defined for primitive data, object references, inter-process communication, native libraries
and secondary storage.

Android bytecode is converted to the simple intermediate textual representation using
Jasmin syntax format [159]. From the aspects of semantic analyzing Android bytecode is
converted to the tree structure, which is again processed to generate call graph. This call
graph is processed to discover source to sink paths. In order to generate the tree structure
parser is built based on open source ANTLR parser generator [172]. TrustDroid taint
tracking engine is composed of source and sink definition sets, file scanner, tag management
system and an interface between these components. The engine scans output of semantic
analyzer by using the file scanner and then performs the taint tracking.

TrustDroid can work as a standalone application on the mobile device with permissions
to access the file system and scans apk installation files (which are available on the current
mobile device). Limitations of this approach are inability do to analysis of dynamically
loaded code and JNI [91] code. According to the author, this work can be extended further
for the inter-process communication taint tracking. Authors have not included the results
related to the performance against benchmarks of vulnerable applications. Also, it is not
available as open source.
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5.2.3 Summary of Related Work

All related work mentioned above is related to the tainting mechanism that has been chosen
for this thesis. The main reason for this is the ability to improve mobile security without
modification of the operating system. For this purpose is the mechanism of tainting with
the mediation or inter-mediation of the process the certain way. These researchers are
the cornerstone for the implementation of the prototype.

The implementation framework is not covered in this section but is mentioned in
the chapter 6 and this framework is based on the knowledge introduced in this chapter. It
is beyond this thesis to compare which solution is better against other, but there are men-
tioned the essential parts that could be used to prepare the proof of concept implementation
- prototype in this case.

All related works have in common that are required root privilege access to the system
to modify it. The modification is necessary for providing the required behavior which is
taint mechanism. The question for this thesis is: is it possible to provide tainting principle
without this administrator rights? The answer is in the following chapters.

5.3 Model of Required Behavior

This part informs about the required behavior defined formally to model the concept of
the presented approach to protection. Since a user has a limited amount of files on the device
there exists an easy way of modeling this behavior via the finite set of states and or finite
sets of automata for each file separately. There are only two categories of files in the required
solution. Thus the two types of automata are necessary or one with decision logic. Note
that the decision logic is not considered as part of this work. The reason is that each user
is individual and the categorization of files are different in various use cases.

Unfortunately, the model would not be considered as fulfilling required behavior in situ-
ations where a user changes a number of files on the device. This use case is a usual behavior
of each mobile device user. Moreover, the formal definition should consider the almost un-
limited amount of files available on a device. The formal definition is from preceding reasons
split into two parts. The first part of the formal model is deterministic finite state machine
(FSM) representing actions performed on the files from the user or application point of view.
Automaton defined in figure 5.6 consists of five states, which defines the state of the file
and also the decision of into which category the file belongs. The states have the following
meaning: s - start, Spu - start public, Spr - start private, Cpu - close public, and Cpr -
close private.

Figure 5.6 describes the automaton for file operations. The top branch is related to
the public files, and the bottom branch is related to private files. This automaton is
considered for the one specific file on the system. In order to cover all files in the system,
this automaton needs to be defined independently for each file available on the device
and also for new ones created in the future. The formal definition of this automaton is
FSM = (Q,%,0,s, F), where

e Q= {s,Spu, Spr,Cpu,Cpr} - is a finite set of states.

e ¥ = {open_ public, open__private, share__content, read__public, read_ private,
write__public, write__private, close_public, close_private} - is a finite input alpha-
bet.
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Figure 5.6: Required behavior on file level defined by finite state machine

e § - is a state-transition function of type Q x ¥ — 29.
e s € () - is an initial state

e FC Q,F ={s,Cpu,Cpr} - is the set of final states.

States of the automaton define the working status of the file, and the transition between
states identify the required behavior on file. The file can be opened as public or private. It
is not allowed to work with one file with both approaches at one time. The file is marked as
private or public, and the future changes are not considered in this model. For that purpose
from a formal point of view, the history is required to repeatable working with the same file.
It is depicted by the transition between states s into one of the states Spu, Spr and there is
not possible to provide the transition back to the state s. Transition called share_ content
handle the availability of sharing the file outside of the device in all possible way. During
this transition it is possible to send this file as an attachment to the email, share the file
via any connection such as the internet, bluetooth, mobile network or through any other
application feature.

Its initial state then defines the history of the file (after the original initial state s and
open file operation). This decision logic should be defined by the classification logic which
is not part of this thesis. When the decision is to make, then the file is defined as public or
private the following operations are allowed.

Final states are marked with a double border in figure 5.6 and these states inform that
the specific file was not open or it was successfully closed. The FSM is deterministic. Each
state has exactly one transition for each possible input. The definition of state-transition
function 4 is defined in the table 5.2.

The second part of the formal model is the higher view over the possible transitions
on file. As was already discussed, the FSM needs to be defined independently for each file
available on the device. To model that behavior the automaton presented by Alan Turing
[104] - Turing machine (TM) was chosen. In order to define the formal model by the TM
which simulates the FSM (see figure 5.6), the logic needs to be defined.
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d(s,open__public) = {Spu} d(s, open__private) = {Spr}
d(Spu, close__public) = {Cpu} d(Spr, close__private) = {Cpr}
d(Cpu, open__public) = {Spu} d(Cpr,open__private) = {Spr}
d(Spu, read__public) = {Spu} d(Spr,read_private) = {Spr}
d(Spu, write__public) = {Spu} d(Spr, write_private) = {Spr}
d(Spu, share__content) = {Spu}

Table 5.2: Required definition of state-transition function (¢) for FSM.
For clear solution the TM has two tapes, the first one is input tape with the operation

sequence flow of available files and the second tape (state tape) handle the state of the FSM
for the specific file. The overview of designed TM is shown in figure 5.7.

input tape: | |jopen_public | lopen_private | Iread_private | liclose_public|...|A

Turing Machine
logic, control states

f reading head

state tape: | §|A|A|A|A|A|A]|A....
A

reading/writing head

Figure 5.7: Example of Turing machine with two tapes

In order to have the connection between the operations on files and its states there
needs to exist the transformation of each file into the unique sequence of one symbol.
The definition of the transformation is depicted in definition 5.3.1.

Definition 5.3.1. Let N is a set of positive integer values, F' = {Fy, Fy,..., F,,} be a set
of files available on the mobile device, where n is a count of these files (n € Ny). There
exist mapping function transform, that maps Vf € F,3p € Ny = transform(f) = p. In
other words, each element file f € F'is paired with exactly one element of the set of positive
integer values p € Ny V p > 0 by the mapping function transform.

The positive integer can be expressed as the sequence of symbol I, which defines
the power value of the element p.

For instance the positive integer value p = 2,p € N, is transformed into sequence
of symbols I into the following string: II. According to the transformation mentioned
above, each possible file operation has a prefix with the unique sequence of symbols I. This
approach determines which operation is applied to the specific file. For instance operation
open__public for file defined by unique sequence I has the format I1open_ public.

There is the connection between the file operation and the file on which the operation is
applied. Operations on the files defined by this approach are the input alphabet on the first
tape of the Turing machine.

The whole formal definition of Turing machine as a model is TM = (Q, X, A, T, 4, s, F),
where

e Q=1{1,2,3,4, A, R} - is a finite set of states.
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A - is a blank symbol of the tape denoting the unused space on the input tape.

¥\ {A} - is the set of input symbols, that is, the set of symbols allowed to appear in
the initial tape contents. This alphabet appears on the first tape only.

I' = {Spu, Spr, Cpu, Cpr} - is a finite set of tape alphabet symbols which appear on
the second tape only.

§:(Q\F)xZU{x} xTU{+} - Q@ xT'U{L, R, _} - is a transition function, where
* is any symbol, L is left shift, R is right shift, and _ is no-operation symbol.

e s € (@Q,s =1 - is the initial state.

F CQ,F ={A,R} - is the set of final states.

According to using two tapes, the two reading heads are necessary to read values from
both tapes at the same time. However, this operation can be simulated as a sequence
of two atomic operations provided reading one symbol on the first tape and then reading
one symbol on the second tape, it is more transparent to perform such operation via two
reading heads. When reading or writing is omitted (no operation is provided at the specific
moment) on one of the selected tapes of the TM the (_), symbol is used.

The allowed input symbols on input tape are the files represented in the form of se-
quences of symbol I, as was already defined, and the name of operations on these files.
Legal input can be defined as regular expression 5.1. After reading the symbol from the in-
put tape (first tape of TM), the reading head moves to the right automatically.

Y = I't[open_ public|open_ private|share_ content|read_ public|read_private (5.1)

|write__publiclwrite__private|close__public|close__private]

This regular expression 5.1 defines all possible combination of files with available oper-
ations and thus defines the whole input alphabet 3. The second alphabet I' of TM which
is related to the second tape is the same set from the set of states presented with FSM
illustrated in figure 5.6. The reason is that on the second tape the TM simulates the FSM
for each file. In more details, the input tape is the source of all possible operations on any
files available on the device and the second type is the logic for each file already defined by
the FSM.

The connection between the operation on the specific file and the second tape defines
the sequence of the symbols I. This sequence defines the index of the cell where a state of
FSM is saved on the second tape. For instance, the sequence on the first tape in the format
I11open public operates with the third cell of the second tape.

From the definition of TM, the tape is bounded from the left side (both tapes). To
handle the move to the leftmost position let define the specific symbol, such as ($) which is
the first cell (with index equal to zero) of the second tape denoting that this is the leftmost
cell which cannot be used. Its a boundary and the tape cells start after this symbol. Related
to the movement to the leftmost cell the transition should be defined for each symbol which
is not equal to the boundary symbol. Turing machine which models the required behavior
is presented in figure 5.8.

Related to figure 5.8 and its transitions are defined as a tuple, where the first part is
the reading from input tape and the second part denotes reading from the second tape.
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Figure 5.8: Turing machine models required behavior

The writing operation is defined after the (/) symbol, and the result is written onto second
tape (or movement is performed). The transition follows the formal definition of §. Also,
there appears the symbol of (x) which defines wild-card with the meaning that it does not
matter on the symbol under the reading head. Note that the symbol of the star (x) is used
only if the more specific transition is not possible. This type of transition has the lowest
priority because it is usually used to halt the TM.

For the clarity of the condition on the transition is defined in the form of expression (—$)
denoting that until the symbol under the reading head is not equal to boundary symbol
the reading head will continue with the specific operation. Specifically this expression is
used in the state 4 in which the reading head is moved to the boundary of the state tape
and the transition from state 4 into state 1 defines the starting position of the state tape.

The transition between states 2 and 3 is defined as operation (op) on the file with the re-
quired transformation in definition 5.3.1. The reading head on input tape read previous
state (old__state) of FSM (or starting symbol A, on FSM defined as state s) from the second
tape and provide operation of FSM with resulting new state (new__state) which is written
to the second tape.

Note that its very important to clarify the difference between symbols () and (x).
The reading operation defined on the first tape (input tape) is usually composed of two
primitive operations - reading and moving the reading head one position to the right. In
turn, the two operating symbols have a different meaning. The star symbol (%) means
wild-card for any symbol available on the current tape, which does not cover the movement
operation. It helps the logic with moving reading head on the second tape.

For instance, when the reading head on the second tape needs to move to the first
position of the tape and the reading head on the first tape persists on the same position.
Otherwise, the symbol (_) determines the operation that provides no action, sometimes
called no-operation.

The last missing part of this formal model, which is the definition of transition function
d, is depicted in table 5.3.
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LA %) ={(A,_)}

2,1,%) ={(2,R)}

4,%,-$) = {(4 L)}

2, open__private, A) = {(3, Spr)}

1L1,x)={(2,R)} (1,
1, % (2,
o
E2 ,open__private, Cpr) = {(3, Spr)}
(4,
(2,
(2,

) = {(R, )}
305) = {(4, 1))
2, open__public, A) = {(3, Spu)}

2, open__public, Cpu) = {(3, Spu)}
close_public, Spu) = {(3,Cpu)}
2, share__content, Spu) = {(3, Spu)}
2, read__public, Spu) = {(3, Spu)}
2, write__public, Spu) = {(3, Spu)}

2, close__private, Spr) = {(3,Cpr)}
4,%,8) ={(1, )}
2, read__private, Spr) = {(3, Spr)}
2, write__private, Spr) = {(3, Spr)}

S 3 3 3 S 9 & &9

o
o
4(3,
o
o
6(2,
o
6(2,
6(2,

Table 5.3: Required definition of state-transition function (¢) for TM.

As was described the automaton works with a specific format of input - a name of
the operation with a prefix of any amount symbols I (at least one). During the reading
of these symbols from input tape, the reading head on the state tape moves its head
to the right with the same amount of movement as some symbols I. In this approach,
the reading head of state type has the correct position of the cell which defines the state of
the FSM for the specific file defined on the input tape. After the file follows the operation
on file and this operation has to satisfy the required behavior previously defined by FSM
or by transition function 9.

Automaton halts when there is the wrong symbol on input tape, unsupported transition
within FSM, and or wrong file transformation. There are two finite states, the first one
- A is state denoting acceptance of the input. The whole input tape needs to be read,
and if the reading was successful according to file transformation and following all FSM
transitions, the machine accepts operation sequences on files. Otherwise, the machine halts
in the second finite state - R with the meaning that the input was not valid and the state
of the whole TM is rejected.

5.4 Summary

This chapter introduced the main idea of this thesis. There were introduced other work of
researchers in the similar areas with the focus on mobile devices. Related to other work
that can provide similar protection, but not in a dynamical way as it is required, moreover
there is not any paper describing the prototype which does not implement the required
behavior without modification of the underlying operating system.

The most important part of this chapter is the definition of the idea that is the cor-
nerstone of implementation solution. Therefore the model of required behavior was defined
formally, and this model can be used for the verification purposes. The model of required
behavior was split into two working parts, in which the first one (finite state machine)
defines the behavior on specific file categories. The transitions of this automaton are de-
scribed in the format of file operations. To be able to work with the dynamically changing
environment (files can be removed or new ones created) the Turing machine simulates this
finite state automaton on the second tape. A mathematical definition was presented in
the form of Turing automaton that simulates the unlimited amount of files on the second
tape, which represents the finite state automaton with required behavior. To determine
which file is defined by which automaton the transformation function which maps file into
sequence symbols I, were presented during this chapter as well.
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As was already mentioned the next chapter discusses the implementation of the proto-
type, which should follow the model of required behavior. Therefore, the model of imple-
mentation solution is also part of the next chapter.
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Chapter 6

Implementation of Prototype and
its Model

In this part of the thesis is described an implementation of the proposed mediator between
applications and the operating system. The implementation of prototype consists of the de-
sign of the solution, used a framework to handle mediation and last but not least the model
of the implementation. Besides, this model should be in contrast with the model of required
behavior, presented in the previous chapter.

However, there are many other works related to improving security specifically with
the aim of taint tracking as was described earlier. There are still gaps which are not
covered by other work. For example, the novel approach is made by changing permission
enforcement according to open files during application. Moreover, this approach could be
moved into another level not to limit the decision on file level only. The logic could be
improved and defined on any other input of the application. It is related to taint the low-
level system call allowance or denying automatically. It is what is covered in this chapter
and precisely in the following sections.

6.1 Framework

The implementation framework for the prototype is called Aurasium [233]. The whole
project has been developed since 2012 as an intern project at the University of Cambridge.
The central philosophy is a mechanism of unpacking android application package - apk file,
injection of monitoring code into the application and then put the modified files back to
the package file. It does not require any administrator (root) access. In order to attach
code, which runs inside the sandbox, the project exploits operating system architecture of
mixed java and native code execution and introduces interposition code by libc library [123].
In order to mediate almost all types of interactions, this approach seems one of the best,
because this library is the main point of interaction between the Android operating system
and applications.

The framework is split into three main parts. As was already introduced, there has to
be partly responsible for manipulating with a apk files. This automated repackaging sys-
tem is called pyA PKRewriter and as the name advises the application is written in Python
programming language [217]. Second and essential part of the Aurasium framework is
the monitoring code included in ApkMonitor application that intercepts an application’s
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interactions with the system and the Aurasium’s Security Manager application, which en-
abling convenient handling of policy decision of all repackaged application on the device.

The framework structure is shown in figure 6.1 and starting with the sandboxing code,
the top layer of the framework is written in Java language [92]. The aim is to create
a well-documented and easy-to-use abstraction layer on top of a cumbersome native layer
of the framework. The lower layer provides interface for other possible programs and
delegates all requests to the low-level part of the framework implemented in a native C++
language [210]. This layer consists of few shared objects that do all the magic work, such
as communication with the virtual machine or establishing the mechanism for inter-process
communication.

Process Boundary

Application Code

Framework Code - Java

—( Java Native Interface ]—

Framework Code - Native (C++)

(libandroidruntimc.soj

[Aurasium}

[]ibm.so} []ibc.so] {]ibstdc++.soj

Kernel Boundary

| Linux Kernel |

Figure 6.1: Aurasium framework structure [233]

The second part of Aurasium framework, the Python script for repackaging utilizes
the previously mentioned sandboxing code and deploys it to the Android apk application
installation package file. According to figure 6.2, besides the sandboxing code, Aurasium
has to include also several additional parts to apk file in order to provide the functionality.

Android Package (.apk)

D Tod Aurasium
ecolr.ngl ed 4 classes.dex | | resources.arsc Native
smali files Library

uncompiled resources ¢
Aurasium -
Java Code Aurasium
AndroidManifest.xml 7| Component
Declaration

Figure 6.2: Aurasium repackaging system [233]

The last part of the framework is called Aurasium security manager (ASM) as was al-
ready introduced. ASM handles the policy decisions centrally, which means that all repack-
aged applications can be maintained at one place. Security policy is based on the decision
of application or user. Application decision works transparently without user interaction,
while the user decision is consented by a dialog window and can be remembered and use
by default during next application run. Since the project is introduced and publicly doc-

84



umented in [233] only superficially, the more significant part of the information is hidden
and have to be obtained by research or source code analysis.

Principle of Mediation

Aurasium mediation mechanism is based on the interposition code of Android’s standard
library called libc [123, |. This library is used when the upper layer of the framework
wants to interact with the operating system. It is located directly on top of the Linux
kernel and initiates appropriate system calls into the kernel that completes the required
operation.

The library is directly mapped in logical address space (LAS) [11] of each process of
every Android application using dynamic linking mechanism. Overview of the mapping
into LAS is shown in figure 6.3. This approach is maintained by C++ linker ld.so [244],
which interconnects arranged compile code of libc library with the framework libraries code
in the LAS. In the Linux as well as in the Android operating system, each compiled library
located in the LAS, and shared object files on the disk are in the executable and linking
format (ELF) [210], thus the library could be shared and therefore mapped anywhere in
the LAS. To achieve injection of the library into LAS the mechanism of position independent
code (PIC) [197] has been used.

ELF File ELF File
Sections Sections
Read-only Pages Read-write Pages Read-only Pages Read-write Pages
Physlcal I LI | 1 ] 1T 1
2] = 2
Address Space: E' o s £ E o =
GEE_58 S.8 GEE_ 58 8. &
£55=2%722 854 Somm=25 28 BC58
S£9T"| a5 T HTL 9w aes s Ww9o
L J L ] L J L |
N I S B S I B IR P
gica . THFE
. - : w = S
Address Space: Text Segment Data Segment BSS Segment g v 5

Figure 6.3: Mapping into process’s logical address space [233]

For this purpose, ELF object file dispose dynamic symbol table (DST) [33] in .dynsym
section containing all of the file’s imported and exported symbols used by linker to fill
the prepared read-write pages. In more details, .got and .dynamic sections are used - .got
section contains global offset table [50] and is used by setup functions in procedure linkage
table to retrieve the real target address of the remote function. Section with .dynamic is
used to tag the values during linking process.

Since the global offset table is located at the fixed distance from the text segment,
instructions in the code can jump to the correct offset entry even if the library has been
mapped to the arbitrary address. Firstly, the linker collects and maps all the libraries
code and data into the LAS of a process, and after that, it fills the global offset table with
absolute addresses to ensure communication between modules and libraries.
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Hence, Aurasium goes through every loaded ELF file and overwrites its global offset
table entries with pointers to its monitoring functions. Functions themselves then mediate
calls to actual library functions after they have completed monitoring if it is necessary.
However, there is no direct possibility to modify LAS directly using java code, Aurasium
implemented these interposition routines in C++ language, exactly as the ld.so loader.
This approach is possible due to JNI [91] and Android’s native development kit (NDK)
[180] which ensures interaction between java and native C++ code.

The mediation is used to dynamically monitor the application behavior and enforce
the fine-grained security policy. Aurasium introduces policies that protect the device from
untrusted applications and their attempts to access sensitive information, leaking to the out-
side world or modifying it, to abuse sms service or network connection as-as to escalate
privilege [62] and gain the root access. All these refinements against standard built-in secu-
rity policy on Android can be categorized into three main groups - privacy policy, network
policy and privilege escalation policy.

The purpose of the privacy policy is to enhance user’s privacy. This is related to ac-
cessing the private data which are available on the current mobile device, such as IMEI
[125], IMSI [189], phone number, location of the device (and user probably), sms/mms
messages, phone conversations or contact list, etc. The network policy enables finer-grained
interaction with the network. For example, only particular web domains or set of IP [31]
addresses can be accessed. Furthermore, Aurasium also proposes IP blacklisting provided
by the Bothunter [91] network monitoring tool to harvest information about malicious de-
vices with the specified IP addresses. The last category, privilege escalation policy, is used
to secure the vulnerability introduced by Aurasium interposition.

Static Analysis

Aurasium’s code is distributed under GNU general public license [111] and freely available
on the GitHub [60] server. Currently, analysis of the code is the only way to obtain more
detailed information about this framework. The most important part of the code is in
the native Android application called ApkMonitor. It contains all the sandboxing code, that
is later attached to the selected application which should be hardened. The most profound
part of this application is written in C/C++ language and is called Aurasium native library
[233]. Tt contains two types of code - the code for preparing the interposition during start-
up and the code performing the mediation. The interposition code has to execute before
any Android component is stated, this the solution is robust enough. Android API defines
the application component for this purpose, which is called before every other component
and can be used to include global initialization for an application. However, the most of
the applications do not need to utilize this component, which is used in Aurasium.

Aurasium framework has to include the component called ApiHook.java also in the An-
droidManifest.xml declarations. Since the implementation rewrites the LAS od the appli-
cation’s process, it has to be performed in the C/C++ language (apihook.cpp). The first
operation is the analysis of the LAS and reading of the memory sections (stored in memmap
[113] array. In the next step, each ELF file is accordingly mapped into soinfo structure,
which is used for patching and relocation of the addresses of libc functions to “hook,-
mediates functions. A “hook,, function (files with the prefix “hook_,, in the name) repre-
sents the second type of a native code - it performs the mediation. This function replaces
the standard libc functions with the mediation code and delegates further processing to
lower layers in the end.
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Aurasium tries to minimize the amount of native code because it is generally difficult
to write a test for this code. For that reason, Aurasium has all the policy logic in the Java
programming language and has been built upon many helper functions in the standard
Android framework. However, including Java code into existing apk installation package is
not trivial and requires some intermediate steps. In Android, all application’s Java code has
to be compiled to single file called classes.dex which contains byte-code for virtual machine
similarly to java class file, but contains all compiled java files. Therefore, there is a need to
dis-assembly the dex file, insert Aurasium’s sandboxing code and re-assembly it again back
to create a new classes.dex file. Fortunately, there exists an open-source reverse-engineering
tool to perform such task, which will be examined and described in the following section.
This tool is also used in Aurasium framework.

Regarding AndroidManifest.xml file, all components started in the application have to
be declared in this file and therefore, also the modification of this file is part of repackaging
already discussed apk file. This principle of this approach is to attach application class
declaration in the manifest file, which will be instantiated by run-time whenever the appli-
cation is about to start. It enforces the global offset table change (delegating the Aurasium
native library) before any other parts of the original application run.

The second part of Aurasium, automated repackaging script, utilizes a combination of
effective text processing of Python programming language and exploitation of Java and
binary third-party console applications for Android development and hacking, which will
be analyzed in next chapter in more details. All parts of the Aurasium framework are in-
terconnected by using Bash shell interpreter [28] of Unix operating system [26]. In the first
phase, the content of apk installation file is validated (using script Singer.py) and obtained
using reverse-engineering tool apktool.jar. The next step is launching the RegriterMain.py
the script, which injects the monitoring code. This essential script copies the Aurasium
native library into /jni folder and adds new declaration <Application> into AndroidMani-
fest.xml file.

In the next part, the apk installation file is packed again. Finally, the last part of
the system is a Python script for the application signing since every application is required
to have a valid signature. Signature in Android does not ensure the data integrity or con-
fidentiality but serves as proof of authorship. For example, user-defined permissions of
signature protection level type are granted automatically to the application packages with
the same signature, as was discussed earlier. Thus, Aurasium re-signs applications using
a new self-signed certificate maintaining a one-to-one mapping between original certificates
to equivalence classes of authorship among applications. Anyhow, this case is unique, and
Aurasium usually applied to standalone applications where application updates a coopera-
tion between more applications are not common.

6.2 Design of Prototype

The design of the solution should focus on private user data, and it is restriction outside
the device. This restriction should be performed without affecting the original behavior
of applications, which implies dynamic policy enforcement and use of tainting mechanism.
Related to the theoretical amount of work, the implementation of the prototype is limited
to focus only on files and tracking it is duplicates which can also be provided to sensitive
Android components which are called before leaving the system.

In the following text of this section is the design of the solution which should pretend
or completely deny the leakage of the data through these sinks. The solution is designed
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according to the concept of the limitation to the files only. These files are categorized into
two primary groups - public, private. Public files are standard files which do not need any
restrictions. On the other hand, the private files should be restricted, and the leakage should
be impossible. The design of prototype does not include the categorization of the files.
It can be done by some classification, which is not the scope of this thesis. To handle
the membership files to groups, there are already exists two folders on the disk partition
which are named as groups. For instance, files which are public are saved inside public
folder, otherwise they are saved in private folder.

The work is built upon the Aurasium framework and accomplish the policy enforcement
using the monitoring system calls. The framework contains monitoring hooks for several
Android system calls which are listed in the following table 6.1.

IPC Network System File
ioctl() | connect() dlopen() open() | fopen() read()
close() | getaddrinfo() | fork() write()

Table 6.1: Aurasium intercepted system calls

Binder

In order to perform the required mediation, the part of the Android middle-ware called
the Binder needs to be rewritten. Binder provides a high-level abstraction on the top of
traditional, modern operating system services. Also, it also accomplishes binding functions
and data from one execution environment to another. OpenBinder [27] is customized to
provide inter-process communication as was described in the section 4.4. Interposition
code needs to be placed in the suitable position on the original binder implementation.
Therefore, there is important to understand the concepts of the mechanism and to analyze
the architecture of this part of the system.

The communication between two processes is ensured by binder objects (BO), which
are instances of classes that implement ioctl-based binder interface. The most important
method which is defined in the interface is transact(int code, Parcel data, Parcel
reply, int flags). The appropriate callback method in the binder object is called
onTransact (). The interface can be further extended by additional business operations as
was described in section 4.4.

The communication is processed as follows. Each BO has a local and global identifier.
The local identifier is unique in the process, and the global identifier is created when the BO
is passed to another process using binder driver. Binder driver works like a network switch
and persists the mapping from a local identifier to a global identifier in the table struc-
ture and translate it transparently, similarly than the mapping using ARP protocol [106].
The Binder framework communication uses the client-server model. However, the process
can implement the server, as well as the client so that the communication can be still bi-
directional. The binder client invokes an operation on remote binder object called binder
transaction, thus, can involve sending or receiving data over the binder protocol.

In Android, the binder driver performs the communication indirectly and it is exposed
through /dev/binder file. Simple API is based on operations open(), release(), poll(),
mmap(), flush() and ioctl(), etc. The first parameter is the file descriptor number which
identifies currently open file and it is used in /proc/<pid>/fd/<fd> file. The second pa-
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rameter specifies the doctl() command. The five important ¢octl() commands are listed
bellow.

e BINDER_WRITE_READ - sends zero or more binder operations, then waits (blocking
waiting) to receive incoming operations and returns with a result

e BINDER_SET_WAKEUP_TIME - sets the time at which the next user-space event is sched-
uled to happen in the calling process

e BINDER_SET_IDLE_TIMEQUT - sets the time thread will remain idle

e BINDER_SET_REPLY_TIMEQOUT - sets the time threads will block waiting for a reply
until the time out

e BINDER_SET_MAX_THREADS - sets the maximum amount of threads that the driver is
allowed to create for that process’s thread pool

The most communication is done through ioctl(binderFD, BINDER_WRITE_READ, &bwd)
operation, where the binderFD is used to access the binder file and bwd is a structure for
binder read/write operations defined in listing A.1. The illustration of the binder transac-
tion is illustrated in figure 6.4.

The commands for a driver are called binder call (BC) and the commands for the BP are
called binder return (BR) commands. Both commands abbreviation are used as a prefix
of the name of binder driver commands (see the table 6.2). Each command is a couple
consisting of operation code and data.

These commands (couples) are stored in the binder transaction data structure de-
picted in appendices listing A.2. When the transaction is inline, the data is directly stored
in the structure. Otherwise, the structure contains a pointer to the data buffer. The list of
available binder driver commands, which are stored in the buffers (read__buff, write_buffer
is listed in table 6.2.

write__buffer read__buffer

BC_TRANSACTION, BC_REPLY, BR_NOOP, BR_TRANSACTION_COMPLETE,
BC_ACQUIRE_RESULT, BC_FREE_BUFFER, BR_INCREFS, BR_ACQUIRE, BR_RELEASE,
BC_INCREFS, BC_ACQUIRE, BR_DECREFS, BR_TRANSACTION, BR_REPLY,
BC_RELEASE, BC_DECREFS, BR_FAILED_REPLY, BR_DEAD_REPLY,
BC_INCREFS_DONE, BC_ACQUIRE_DONE, BR_DEAD_BINDER, BR_ERROR,
BC_ATTEMPT_ACQUIRE, BC_REGISTER_LOOPER, | BR_OK, BR_ACQUIRE_RESULT, BR_FINISHED,
BC_ENTER_LOOPER, BC_EXIT_LOOPER, BR_ATTEMPT ACQUIRE, BR_SPAWN_LOOPER,
BC_REQUEST_DEATH_NOTIFICATION, BR_CLEAR_DEATH_NOTIFICATION_DONE,
BC_CLEAR_DEATH_NOTIFICATION,

BC_DEAD_BINDER_DONE

Table 6.2: Binder driver commands

The binder transaction is a passing data from the client to the service, while binder
reply is a passing data from the service back to the client. This behavior of binder driver
interaction is in figure 6.5. The whole binder framework mechanism is transparent to
the Android developer since the binder transaction is performed as a local function call
using thread migration. It is ensured by the proxies and stubs, which are auto-generated
helper classes from AIDL files. Proxy is the helper class performing the transformation Java
code into low-level commands for the binder driver. The stub works in reverse to proxy and
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automatically parses and performs read commands on the service side. The overview of this
mechanism was mentioned in section 4.4 and the principle of proxy and stub is illustrated

in figure 4.9.
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Figure 6.5: Binder Driver interaction
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Since the binder driver is implemented on the low-level layer using C programming lan-
guage, there is required the layer responsible for encapsulation of high-level Java objects.
This is secured by Parcel container and corresponding Parcelable interface. A procedure for
converting this high-level data structures into parcels is called marshaling. The mechanism
of marshaling and also unmarshalling, as the reverse process of marshaling, is the respon-
sibility of the proxy and stub components.

System Design

Design of the system is based on previously defined binder modification and Aurasium
framework. Related to previous chapters it is evident that the solution is based on taint
analysis principle, the tainting is based on the principle used in TaintDroid. In order to
perform complete memory tainting, the tracking of each atomic memory operation is needed.
This approach in programmer’s point of view means each variable assignment, modification
or unset have to be tracked. It is possible through monitoring of instructions on the level
of machine operations. The approach introduced by TaintDroid monitors instructions on
the virtual machine level., because all possibly malicious applications are run inside virtual
machine environment. As was discussed, TaintDroid uses virtual taint map (VITM) which is
responsible for mirroring the address space but does not contain the content of the memory.
It represents the division of the memory into two groups - public and protected. The tainted
files are marked in VTM before the tainting process starts. Afterwards, every copying of
memory invokes copying blocks in VI'M. Since the applications, which run on a separate
virtual machine can exchange data, TaintDroid introduces message-level tainting principle.

This prototype is focused on the integration of two granularities of tainting the file and
data level. The message-level taint principle (data exchange between components) from
TaintDroid is used for the final policy enforcement. Usage of the message tainting is mainly
at the final stage of the enforcement that is the restriction because Aurasium framework in-
tercepts only single applications and cannot monitor the unhardened applications. Tainting
principle on the file-level and also data-level mentioned in this section use the mentioned
principle of VI M.

File-level tainting between the operating system’s files and a memory can be performed
in a full scope, because Aurasium framework can intercept this communication in a full scale
using these system calls fopen(), open(), write() and read(). Also, the function fopen()is not
used only for opening files, but also for obtaining the mode of the opened file. This mode is
used for designing the tainting customization. When the untainted memory block is written
to the tainted file in append mode, the file remains tainted. However, when the untainted
memory is written to the file in write mode, the file is untainted as well, because the content
of the file is overwritten by the content of the untainted memory. The operations open() and
read() are use for tainting the memory blocks as well as new files. The blocks in memory
filled from the tainted file are marked same as the file is marked. This means that data in
memory filled from the tainted file is marked tainted as well. Moreover, data in memory
are also directly propagated.

Aurasium can intercept only specific places (system calls) and not the instruction itself.
It is impossible to implement full-range memory-level tainting as is introduced by the Taint-
Droid solution. This is replaced by the newly designed data-level tainting concept. This
concept together with the file-level tainting is illustrated in figure 6.6. The content of
the file is read and tagged using a hash function to assign a unique number. This tag, along
with the size of a block is used during the writing unknown memory block into the file.
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Fach unknown memory block is tested concerning any existing hash and marked tainted if
the hash matches. Subsequently, the file is marked as tainted accordingly.

Application Hash map | | | | | |
logic

hash_match = true

address | | | |
space

\
read()f \write() S\ write() write()
\\
\
Operating
system

Figure 6.6: Design of data/file level tainting

In figure 6.6 are private files represented as file descriptors on the operating system level,
and they have the bold border. The first file description (fd1) is the user selected private
file that is read into the memory. In this case, the hash of the private file is computed and
saved into the hashmap situated at the application logic level. When there is a command
to save this content of the memory into different file represented as second file descriptor
(fd2). This file is also marked as private and tainted. On the other hand, if the content
of the memory does not have calculated hash inside hashmap it means, that this file is not
considered as private and the tainting is not required. This behavior is illustrated with file
description number three (fd3).

The final policy enforcement is performed using the interception of ioctl() system call.
Moreover, when the BR_TRANSACTION command, which consists of destination component
content provider, is read, all the read() system calls for the tainted files are in the mode of
restriction. The prototype is proposed to secure the user-selected files or folders as an entity,
which is intended to be invariable such as images, pictures or movie clips. Documents that
are often changed can be restricted for opening, or there can be assigned individual rights
for opening inside hardened applications, and the files are encrypted for other applications
(unhardened ones). In this inverse mode, data is protected with unhardened applications
and uncovered and possibly exploited by the hardened applications. The inverse mode is
designed as optional, and it is not part of the prototype.

Unknown memory block which will be written to a file is compared against the tainted
memory blocks which are smaller than the unknown memory block, and the memory block
which is being read from the file has been divided into smaller units with separate hash
value. Design of data structure with the same meaning as TaintDroid’s VI'M has is imple-
mented as a simple array of memory blocks. These blocks are an interconnection between
the file system level and application logic performing described data-tainting. In order to
implement this approach, each memory block is considered as tainted or untainted. The ap-
plication can store only tainted data, and other will be implicit. Initially, the user-selected
files are marked as tainted, and during the tainting process, the other files and new blocks
are added. Each memory block has assigned only one file which is the source of its data,
one counted hash value (hashtag), but many destination files to which this data is written.
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In regard to tainting customization, the file modes need to be stored, because read() and
write() functions do not dispose with this information in the passed arguments. Implemen-
tation code of the designed data structures focuses on tainting process which was described
in this section are expressed in listing A.3.

In regards to the configuration possibilities, the primary purpose is to allow a user to
select and marked privet files and folders. Tainting based on hashing principle can be
used in situations where the low memory consumption is the most crucial parameter while
the content-based scanning in the case of tiles which need more robust security mechanism.
In order to achieve better decision, the selection mechanism was prepared in which the user
can choose the private file/folder.

In some specific cases, there is also need to disable the tainting at all due to perfor-
mance slowdown or extreme battery power consumption. The restriction can be performed
explicitly as well as dynamically. For the protection against theft or unauthorized users
the specific restriction can be used, sometimes it is called static restriction. For instance,
this situation can be described as parental control. Dynamic enforcement can be realized
using confirmation screen, and it is useful for its flexibility. It is also appropriate to con-
sider the configuration of permanent restriction where the selected protected files cannot be
even read by the unhardened application which using encryption of the files and only hard-
ened applications have the key for decryption. The configuration settings can be assigned
to all applications centrally or individual applications separately. Graphical screen with
the configuration settings can be injected into hardened applications using the first phase
of Aurasium framework - modifying the installation package. In this case, the application
configuration is individual for each application. In order to have the central control over all
hardened application, the graphical screen is resolved as a single central application, which
needs to be installed before any modified application. This approach is preferred according
to proof of concept solution and also the ability to control multiple applications (modified
applications only) at one place.

6.3 Implementation

In order to implement the prototype solution the development environment needs to be
set up, the only working combination for the Aurasium project in these days is Windows
operating system, Linux operating system and Eclipse integrated development environment
(IDE) [19]. Moreover, the Android studio plugin [66] is required to install into Eclipse IDE,
which is provided by the Android maintainers. The reason for the restriction of using
Eclipse IDE is the full support of Android NDK [180] and Aurasium’s dependency on
the Android package directory structure used by older Ant building system [103]. Some
parts of the Aurasium system are written for Windows Cygwin Linux environment [179]. For
instance, the Makefile [20%] for creating code bundles for repackaging. Windows platform is
also used for the Eclipse IDE, virtualization of the Android operating system and the whole
development. The Linux is primarily used for standalone repackaging scripts which are
the part of the Aurasium and are strictly connected to this operating system.

The next stage is to support at least Android version 4, which is considered as revolu-
tionary compared to older ones. The next versions of Android are built on the changes in
this version, and the following updates will not be so complicated. The currently supported
version of the Aurasium framework is 2.3.3. In this case, the changes need much work, and
this is the challenge of this work. The issues related to this improvements are application
crashes during run-time, wrong initialization and linking of the JNI library and or more
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complex issues related to dynamic linking in the Android 4 and the following Android 5
version. The result of this stage is the functional built-in ApkMonitor application running
on the Android version 4, 5, and 6, which are the most wide-spread Android versions in
these days. A particular part of the second phase is the reconstruction of the repackaging
script, which generates the corrupted installation packages as default. Even the process
finishes successfully. The package is corrupted.

The last part of the implementation covers the selection of examined several open-
source, an available application which is simple enough to enable editing and sharing data.
The most appropriate turned out to be the simple file manager OI File Manager [169]
(application 1), which is publicly available on the Google Play [145]. This application has
been manually modified. In more details, the ApkMonitorActivity.java has been injected
instead of the original version, this java file is called after the mediation of system call is
started. The information base for this step has been introduced in section 6.1.

Aurasium is capable of intercepting various system calls. Only limited set of them is
relevant to the topic of this thesis. Those are the system calls ioctl(), open(), fopen(),
read() and write(), and they were introduced in the section 6.2. The most important
collected information is the time when the Android API performs the calls and the content
of the passed arguments. In order to implement the required behavior, there is the need to
follow some parameters of the system calls. These parameters are listed with the functions
in the table 6.3 of function prototypes.

Function prototypes

int open(const char *pathname, int flags, ...);

FILE *fopen(const char *path, const char *mode);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int ioctl(int fd, unsigned long request, ...);

Table 6.3: Function prototypes of system calls

System calls have been examined using gdb debugger, LogCat messages and logging to
a file. Debugging is the best method for tracking the sequence of the code in the time,
LogCat messages are the most usable, but the logging to a file is the most appropriate way
because there can be persistently stored also a very long sequence of the calls for the further
analysis.

Function 7octl()

However the Android project repackages the application singly, there is no possibility to
track the full communication from the one binder object to another and vice versa as
was illustrated shown in figure 6.5. The communication can be tracked between hardened
application and the binder driver as is shown in figure 6.7

Even the implementation of the Aurasium mediation is performed via rewriting the octl()
function and its operations as the result on the call commands BC_TRANSACTION and
BC_REPLY, induced transactions from the hardened application are intercepted only as
the remote calls BC_TRANSACTION and BR_REPLY. The another half of communication is
ensured within the delegated original ioctl() function which is outside the application as is
depicted in figure 6.8.
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Figure 6.8: Interception overview - detail view

During the attempt of application to use standard Android API, such as share data
through available channels like internet, there is sent an intent with action ACTION_SEND
or ACTION_SENDTO to reference monitor. The application does not perform this opera-
tion itself, even if it has declared required permissions in its manifest file. There are capture
messages which are sent to various external components or received in the hardened appli-
cation. The majority of messages is in the outward direction and are also invoked during
the idle state. The list of the most important ones are listed in the table of captured call
transactions 6.4 and table of captured return transactions 6.5.

However, some internal components are called by external components. It is the case
of the following components, which are externally triggered by the Android system or
external application. The external component [ContentProvider sends the messages to
perform specific user operation such as querying data provided by the hardened application.
Therefore these messages are suitable triggers for security policy enforcement.
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Interface Description

IPackageManager | Class for retrieving various information related to the application
and packages that are installed on the current device.

TActivityManager | Interact with the overall activities running in the system.

IWindowManager | Interface for communication between application and the window
manager.

IServiceManager | Interface grants basic operating system services, message passing,
and inter-process communication.

IInputManager Interface provides information about input devices and key layout.

IPowerManager Class ensures a control of the power state of the device.

IWindowSession Interface that convey the communication between application and
the window manager.

Table 6.4: Captured call transactions
Interface Description
IInputContext Interface from an input method to the application, allowing it to

provides modifications on the current input field and other inter-
actions with the application.

It encapsulates data and provides it to applications. This is used
only if the application needs to share data.

IContentProvider

Table 6.5: Captured return transactions

Functions open() and fopen()

The difference between functions open() and fopen() is that the first one is a system call
function, while fopen() is a high-level wrapper which uses buffering and simple interface
- it is usually represented as a library call in C language. During implementation and
experiments, there was captured calling of the function open() and only after the first start
of the application. Since opening and closing files are time-consuming operations, Android
manages to keep the files open over the entire life-cycle of the application and even after
the opening another files. Opened files are closed when the application is shut down, which
does not mean the idle state of the application, but the shut down of the process end
removal from the memory.

Functions read() and write()

The system provides the ability to read the content of the file into the logical address space
of the process and also reverse operation that is writing the content of the memory into
the file. Since these functions are low-level, the whole file is read or written at once when
one of this operation is called. In the case of application 1, the whole content of the files in
the opened folder is read before the real opening of any file from the folder.

Logging

All previously defined functions have been monitored and captured through the logging
mechanism, specifically the logging to the file. As was discussed before logging to the file
is the most appropriate mechanism to capture the whole sequence of system calls. An-

96



other possible approach can be the Android LogCat messages or debugger. According to
the amount of data and the need of further analysis the logging to the file is the only method
which covers all required parameters. In regards to the logging mechanism, the one file of
system calls is not considered as well-arranged and for this purpose insufficient. In order
to define the clean structure of the log file, the proposed log files define the division into
following categories (and also into different files) listed in table 6.6.

Log file name Description

log.txt Monitoring of system calls and related memory blocks.
log_taint_ map.txt | Monitoring of snapshots of taint hashmap.
log_java.txt Monitoring of Parcel content for final restriction.
log_ error.txt Additional logs with the error priority.
log_debug.txt Additional logs with the debug priority.

Table 6.6: Summary of log files

Tainting Principle Used in Prototype

Related to the Aurasium framework which is divided into few parts, as was described in this
chapter, the resultant solution of the prototype is follow the same principles. Therefore,
the resulting solution consists of implementation in native code, byte-code, and scripting
languages. The implementation in native code provides fast handling of tainting mechanism.
Byte-code is primarily used to access the ioctl() function for required restriction and also for
the implementation of configuration, see section 6.4. Scripting languages such as Python
or Bash are used for repackaging phase, injecting the code, to sing the application and to
create an installation package.

About tainting principle, the solution is implemented in C/C++ programming lan-
guages in order to achieve the best efficiency. The life cycle of the hardened application
starts with the creating of log files or overwriting the existing ones when the application is
repeatedly started. The next step is to load the configuration (see section 6.4), after that,
the application is in monitoring mode. The main purpose of the monitoring is to track
appropriate system calls such as open(), read(), write() and close(), which leads to changes
in the content of the proposed tainting structures. This principle is illustrated in figure 6.9.

The resulting code is compiled into the single module into resulting apihook.o object file.
The connection is then ensured by using the delegation mechanism and calling the corre-
sponding handling functions before and after the current system call operation. The code of
Aurasium framework can be rewritten to another version and reconnected easily. The ap-
plication has to track its state statically, which implies to the usage of static variables.
Unfortunately, even the C/C++ compiler retains the variable store during the whole appli-
cation run, the scope of the variable use is limited according to initialization point. When
the variable is initialized globally, it is not available and or accessible outside the file. There-
fore, there is necessary to use global variables, which are included in all required files inside
header file using keyword eztern.

In order to create structures for tainting the C++ standard library is used, specifically
the std::vector is used for the list of user-selected private files, the list of tainted files,
the list of memory blocks and the lost of blocks of stored information called small blocks.
The memory block represents a specific part of logical address spaced of a process whose
content has been obtained from on specific file - source file. A memory block is defined with
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Figure 6.9: Overview of the proposed tainting system

a start address and its size and is linked to one counted hash value, several small blocks
and source files. Another data structure uses to store the information about open files is
std::map. The key values of the structure are the file descriptor numbers of the currently
open files. Its usage is primarily for efficiency, because the same information can be obtained
from the /proc/<pid>/fd/<fd> file. The map is used in read() respectively write() function,
because the user selects the file paths while this system calls use the file descriptor.

Tainting principle starts with an empty list of tainted memory blocks and captures
the open() system call. When this event occurs, the necessary information about a file is
stored in a map of open files. If this opened file is the user-selected private file, the read()
event causes the creation and storing the new tainted memory blocks into the list. There is
stored 256 bites long hash calculated by SHA-256 [155] hashing algorithm for the file-based
scanning. The other approach - content-based scanning is implemented using small blocks,
as was described earlier. The small block represents the part of the file content that is used
for memory tainting. When the stored small block is found in the logical address space
during the writing the content of the memory to the file then the resulting file is marked
as tainted as well. The size of the small block is defined during the compilation process
and depends on the usage of the application. The size should be sufficiently large to satisfy
the probability of veracity of the statement, see definition 6.3.1. The size should be as large
as possible, but small enough in order to provide sufficient granularity for tainting the parts
of files. It is influenced by the variability of the media types. For instance, the images used
to be more variable than plain text files.

Definition 6.3.1. Let set F' = {F}, F5,..., F,} is a set of private and tainted files, where
n is the amount of theses files and Vz € {1,2,...,bAmount(Fy)} : by(Fy) is a Small Block
of a file F;, where bAmount(Fy;) is an amount of created Small Blocks for the file Fy, d €
{1,2,...,n} and b, is a function which maps a file to its z-th small block.

Finally, let be a reflexive, symmetric, and transitive relation R that is a transitive closure
of a relation which contains all couples of two files that are dependant in a way one has
been created from another. Then, Vdy,dy € {1,2,...,n}Ve € {1,2,...,bAmount(Fy ) }Vy €
{1, 2., bAmount(ng)} : [(bm(Fdl)) = by(ng)] = (Fdh ng) € R.
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In other words, the statement definition 6.3.1 claims, that if there is found a match
between two small blocks, it should indicate that corresponding files are the same or one
file has been created from another. Unfortunately, there can still be two files which have
the similar or even the same content and the creation of these files was done independently.

The mode of the open file becomes an essential part of the process of tainting files. It
is related to the particular case when the write() function is called to write the content
of the memory which is not tainted. When this memory is not tainted, and the content
is written to the private file, which is opened in append mode, the file remained tainted
and marked as private. The reason is that the previous content of the file is considered as
private even that the content of the memory that is appended to this file is not considered
as private. The different situation occurs, when the private file is opened in the standard
write mode. In the same situation (untainted content of the memory is written to the file),
the file is not marked as private, because the classical write mode will rewrite the content
of the file with the new content of the memory, which is considered as not private (not
tainted) and in this case the resulting file is not marked as tainted anymore.

The main operation is the estimation of the presence of private data. Using file-tainting,
the hash of the block, which is being written, is counted and compared to all stored hashes
in the hashmap structure. In the case of content-based scanning, all small blocks of all
memory blocks are compared on every position of the current block. This principle is
depicted in figure 6.10.
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Figure 6.10: Principle of content-based scanning

The restriction of the tainted files is interposed in two places. The first one is the hard-
ened application and the application which performs the sharing action. The second one is
between the external application and the file itself. These types of restriction are referred as
a restriction methods in the configuration activity. The first type of this restriction method
is called communication mediation and is based on the Java programming language and it
implements the prepared Aurasium’s interface and parsing mechanism. This code is there-
fore interlaced with the original one in the APIHook.java file. Java code operations require
the knowledge of which files are considered as tainted. In order to fulfill this requirement
the methods IsTaintedFile(), GetRestrictionMethod() and GetRestriction Type() have been
implemented using JNI framework. This implementation also includes the global variables
definition in C/C++ code.

For instance, the list of variables defined for this purpose contains SCANNING_TYPE,
RESTRICTION_TYPE, RESTRICTION_METHOD, THREAT_LEVEL, and ENABLE_LOGGING. The re-
striction is invoked during the Aurasium’s on_BC_TRANSACTION callback function. The life
cycle of this approach starts with the checking of a descriptor. If the name of the descriptor
is equal to android.content.IContentProvider (described in the table 6.5) and the transac-
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tion name is QUERY _TRANSACTION, then the hardened application’s query() function
is called. Illustration of this process is described in figure 6.11.

> ProviderRecord 3. Create > EmailProvider
(EmailProvider) ”

4. Return IBinder

IBinder < IContentProvider.Stub
A
6. query()
5. Return IBinder R

»{ IContentProvider.Proxy

ContentResolver

|
|
2. Look up Authority !
T
|
|

Client application process

Figure 6.11: Content provider interaction

The second restriction method called File protection provides the restriction outside
of the hardened application. It is related to invocations of the application by hardened
applications and specifically by sending Android’s SEND_ACTION command. The implemen-
tation of an external application which responses to such action command depends on its
author. It can access the shared content using standard ContentProvider API, or it can
access the files directly on the file memory system. For instance, this is the case of ap-
plications such as Google+, Hangouts, MailDroid, because the previous restriction is not
efficient. The solution is the extension of the original application design with the falsified
files. When the application wants to share the file, this file is moved to another location,
and the new empty file is created in the same directory which is available to access by
other applications instead of accessing the original file. The name of a backup file is usually
created by adding the dot prefix and pe suffix. For instance the example of backup file with
the name file is /pat/to/file/.file.pe.

Another approach can be creating the backup file in the specially protected location.
However, the lifetime of this file should be as smallest as possible, especially during the op-
eration of external sharing application. In this prototype, the protected file is returned to
its original state immediately after the hardened application is restored and there is new
open() system function call on the file. In the case of chosen Application 1, the process
is transparent, and the file is not visible to the user. The steps of implementation usually
follow this order. Arguments from the query() function are read as the first step. After
that, the content of the second argument - unified resource identifier is compared to the all
user-selected tainted files. The restriction is then performed according to user settings de-
fined in the configuration or by the configuration application. The communication can be
restricted implicitly, or the configuration dialog is shown.

In order to ensure the restriction mechanism, the new parcel is created, and this par-
cel replaces passed arguments with the blank values. Regarding to the designed explicit
restriction, this is implemented as the reaction on the read() function event. Moreover,
the read buffer is overwritten or cleaned. This approach can be achieved by a modification
of the operation on the buffer parameter of this system call. In the case of overwriting
there is modified only the content referenced by the third parameter.
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6.4 Configuration

Configuration is implemented as standalone Android application that is capable of defining
the protected private files and administration of configuration. The selection of private
files is provided by open source project Android file dialog. The graphical user inter-
face is divided into two main basic parts called fragments. The first fragment informs
the user about selected private files, and there is also a possibility to change the selec-
tion. The second fragment defines the administration of configuration for the hardened
applications. The principle of communication with the hardened applications is based on
configuration file usually called private_files.conf and the content, as the name prompts,
contains the list of selected private files. This file is currently located inside folder /data/-
data/cz.vutbr.aron.privatefiles /files, as it is the default location used by function onFile-
Output() that is used for opening the private files associated with the main context of
the application package. The configuration file is opened within MODE_WORLD_READABLE
mode according to access by the configuration application and also by hardened applica-
tions.

This method of manipulating with data is convenient for prototype or testing purposes
only. It usually works on the level of operating system and can be therefore directly accessed
by interposed hook functions written in native code. The hardened applications load and
maintain the state of current configuration at the beginning of the process and during its
run-time. Manipulation with the configuration file is insured by Utility.java file provides
the basic functionality such as loadFromFile() and saveToFile().

The fragment with the configuration setting is extending the PreferenceFragment. This
implementation of Android API automatically creates the graphical interface known from
the Android standard setting screens and remembers the settings utilizing the Android Pref-
erenceManager. Moreover, there is also the implementation of the feature that listens to
changed-preference event and maps the saved, shared preferences immediately into the con-
figuration file. Configuration screen can set the tainting, type of restriction, a method of
restriction, type of data falsifying and logging feature. In order to achieve this ability,
the configuration file has the first line definition of mentioned parameters. The structure
of the file is depicted in listing 6.1, in which the shortcut Restr means restriction.

<Tainting><Restr. Type><Restr. Method><Threat Level><Logging>
<Absolute Path to the Private File or Folder>
<Absolute Path to the Private File or Folder>

Listing 6.1: The structure of configuration file

The protection of configuration application and also configuration files are not part of
this prototype, and in this case, it can be the weak point of the solution. However, this
prototype should determine that the proposed concept can implement and the behavior of
the permission enforcement is dynamically changed during the file manipulation.

6.5 Implementation Limitation

This section describes the limitation of proposed implementation. The implementation does
not cover the protection against leakage in all circumstances. This section describes a few
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cases in which the protection can be weak or does not work at all. Note that this thesis
and mainly this chapter is focused on implementation of the prototype, which should define
proof of concept. The implementation can contain bugs, errors or vulnerabilities. Let’s
discuss three main topics related to limitation of the implementation.

Modification of Applications

In regards to concept, the implementation is defined as a layer between an operating system
and the user. Moreover, the installation and usage of the prototype do not require adminis-
trator access (root access). Owner of the device (or the user) can choose which applications
communicates with the underlying operating system via the prototype. The BYOD princi-
ple is defined as using a personal mobile device in the working environment. There should be
a definition of control which application is required to be modified by the Aurasium frame-
work with the prototype implementation. In order to circumvent any required restriction,
the application can be omitted from that modification or removed from the device and
installed again without related system function hooks.

Pre-installed Applications

The second limitation is related to pre-installed applications on the system level. Vendor
of the operating system provides a set of applications that are present on the platform.
Applications usually persist on the platform and they cannot be removed by standard
principle. These applications can be modified with the script and system calls hooks can
be added, but this needs to be done on the image of the related operating system for
the specific mobile device. Also, this image needs to be installed on the mobile device.
Related to BYOD, the user usually has already functional mobile device with an already
installed operating system.

Tainting of File Content

Implementation of tainting the file content is handled on the prototype level. The content of
the file is split into small blocks, as was already discussed earlier in this chapter. These small
blocks have a specific size, and for each block, the SHA-256 hash is calculated. The hash
value is saved and compared during the write operation. The result of the comparison is
the category of the file - public or private. In order to circumvent this protection, the smaller
amount of unit needs to be shared/send. For instance, the text document can be shared
through any channel split by letters. This technique takes as long as the document has
letters.

6.6 Model of Implementation

The formal definition of implementation can be described in the very similar deterministic
FSM as was required. The formal model expresses the file taint mechanism described in
the previous sections of this chapter. As was already described in the concept of this work
the files should be divide into two categories - public and private. The decision logic is not
part of this work, but in the prototype, the user has the power to select files and mark
them as private. For the model specification, this action is considered as automatic within
the opening of the file, and the file remains in the same category for the whole life-cycle of
the automaton.
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The FSM defines the behavior of one specific file on the mobile device. In order to handle
all available files (and new ones as well) the amount of automaton is equal to some files
on the mobile device. Therefore the same principle as in the model of required behavior is
used - the FSM is simulated by the TM with two tapes and two independent reading heads.
The first tape (input tape) contains the input file operations (with the same transformation
as was described in definition 5.3.1), the second tape (state tape) consisting of FSM state
on the specific file. Note that the formal model is not the precise model of implementation.
The reason is that the model is used in the verification process and the results of verification
need to be computed in a reasonable amount of time.

The formal definition of finite state automaton for implementation solution is defined
as FSM = (Q,%,0,s, F'), where

o Q= {s, Spu, Spr, Wpu, Wpr, Cpu, Cpr} - is a finite set of states

o ¥ = {open_ public, open__private, read_ public, read__private, write__public,
write__private, share__content, copy, seek__position, close__public, close__private} - is
a finite input alphabet

e § - is a state-transition function of type Q x ¥ — 29
e s € () - is an initial state
o FC Q,F ={s,Cpu,Cpr} - is the set of final states

Figure 6.12 describes the finite state automaton of the implementation. The top half
is defined as working with public files, and the bottom part is for working with private
files. Note that the implementation handle this operation according to their parameters or
file path, but for the formal model is more transparent with two possible transitions. As
was described the decision logic in the state s is defined by the user selection. The history
of the file persists during the first transition from state s into one of the possible states -
Spu, Spr. The meaning of the states is: s - start, Spu - start public, Spr - start private,
Wopu - work with public, Wpr - work with private, C'pu - closed public and Cpr - closed
private.

The main logic is provided during operations (transitions) on states Wpu or Wpr, which
defines the implementation logic layer, already presented. This layer consists of guarding
the content of opened files, working with files memory blocks and managing file operations.

Transitions or state-transition function defines the user operations with any application.
The sequence of user operations can be described as a sequence of system functions which
are already defined as the set of input alphabet . The definition of state-transition function
0 is depicted in table 6.7.

Note that the transition called share is one of all possibilities for sharing provided by
the operating system and also installed applications. According to many possible shar-
ing methods, the model has only one transition name which wraps all possible choices.
Moreover, this sharing method is available during public file operations, because all shar-
ing methods use ioctl() function, which can be stopped inside hardened application by
the implementation of the prototype.

This FSM defines the behavior for one specific file on the mobile device. To control all
possible files, the TM can be used, and the same principle as during the model of required
behavior is defined here as well. Therefore the model of the TM is the same, and it is

illustrated by figure 6.13. The whole formal definition of Turing machine as a model is
™™ = (Q,%,A,T,0,s, F), where
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Figure 6.12: Finite state machine defines the implementation behavior for file operations.

o
o
o
o
o
o
o
o
o
o
i

s, open__private) = {Spr}
Spr,read_private) = {Wpr}
Spr,write__private) = {Wpr}
Spr, close__private) = {Cpr}
Wopr, read_private) = {Wpr}
Wopr, write_private) = {Wpr}
Wopr, seek__position) = {Wpr}
Wopr, close__private) = {Cpr}
C'pr,open__private) = {Spr}
Wpu, seek__position) = {Wpu}

s, open__public) = {Spu}

Spu, read__public) = {Wpu}
Spu, write__public) = {Wpu}
Spu, close__public) = {Cpu}
Wpu, read_public) = {Wpu}
Wpu, write__public) = {Wpu}
Wpu, write__private) = {Wpu}
Wpu, close__public) = {Cpu}
Cpu, open__public) = {Spu}
Wpu, share__content) = {Wpu}
Wpu, copy) = {Wpu}

o
o
o
o
o
o
o
o
o
o

Table 6.7: Definition of state-transition function (9).

close_public

open_public Z ™\

share_content,
read_public,
write_public,

read_public, write_private,
write_public > Wp copy,

seek_position
A
read_private, ” Wp

write_private

close_public

read_private,
write_private,
seek_position

close_private

open_private \ </ = close_private

e Q=1{1,2,3,4, A, R} - is a finite set of states.

A - is a blank symbol of the tape denoting the unused space on the input tape.

¥\ {A} - is the set of input symbols, that is, the set of symbols allowed to appear in
the initial tape contents. This alphabet appears on the first tape only.

I' = {Spu, Spr, Wpu, Wpr, Cpu, Cpr} - is a finite set of tape alphabet symbols which
appear on the second tape only.

§:(Q\F)x B U{x} xTU{x} = Q@ xTU{L,R,__} - is a transition function, where
* is any symbol, L is left shift, R is right shift, and _ is no-operation symbol.

s € Q,s =1 - is the initial state.

F CQ,F ={A,R} - is the set of final states.
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The allowed input symbols on input tape are the files represented in the form of se-
quences of symbol I, as was already defined in definition 5.3.1, and the name of operations
on these files. Legal input can be defined as regular expression 6.1. After reading the symbol
from the input tape (first tape of TM), the reading head moves to the right automatically
when the reading possible according to state-transition function.

Y = I't[open__public|open_ private|read_public|read_private|write_public (6.1)

|write__private|share__content|seek__position|copy|close_public|close__private]

The second tape of the TM simulates finite state automaton for implementation in each
cell of this tape. Therefore the cell of the second tape consists of empty symbol A denoting
that with the specific file representing the sequence of symbol I and pointing to this cell
with empty symbol was not already used (opened). Otherwise, the symbol of the same cell
can have only one of the allowed symbols defined by I'.

(1, /R

{, *)/R ‘ (op, old_state)/new_state,
: 2

(op, A)/new_state

M/
*, 9/ (*, /L
*, =$)/L

Figure 6.13: Turing machine defines implementation behavior

Transition function between states of TM is defined by the ¢ in the table 6.8. Moreover
the symbols (_) and (x) have the specific meaning. The symbol of star denotes the wild-
card for any symbol on the tape. On the other hand, the symbol (__) means no-operation
on the reading head, in other words, the reading head remains in the same position.

Turing machine for implementation behavior halts in two possible use cases. The first
one defined by the reading the whole input tape and when there is no input (the symbol A
is on the input tape) thus the transition into the accepting state A is performed.

The second halting the TM is during the wrong input tape symbol, such as the operation
without the prefix of symbols I or not allowed the sequence of steps defined in the finite
state automaton for implementation. In this case, the transition into rejecting state R is
performed.
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file:///write_private/share_content/seek_position/copy/close_public/close_private

LI %) ={(2,R)}
L= 7*) = {( )}
3,%,%) = {(4, L)}

s 5(1,4,%) = {(4, )}
s 5(2.1,%) = {(2, R)}

5( 5(47 *7_'$) = {(4 L)}

5(2, open public, A) = {(3, Spu)} 5(2, open__private, A) = {(3, Spr)}
3(2, open__public, Cpu) = {(3, Spu)} d(2, open__private, Cpr) = {(3,Spr)}
0(2, read__public, Spu) = {(3, Wpu)} 0(2, read__private, Spr) = {(3, Wpr)}
0(2, write__public, Spu) = {(3, Wpu)} 0(2, write__private, Spr) = {(3, Wpr)}
0(2, read__public, Wpu) = {(3, Wpu)} 3(2, read__private, Wpr) = {(3, Wpr)}
0(2, write__public, Wpu) = {(3, Wpu)} 0(2, write__private, Wpr) = {(3, Wpr)}
0(2, write_private, Wpu) = {(3, Wpu)} (2, copy, Wpu) = {(3, Wpu)}

3(2, close__public, Wpu) = {(3, Cpu)} 3(2, close__private, Wpr) = {(3,Cpr)}
3(2, close__public, Spu) = {(3,Cpu)} 3(2, close__private, Spr) = {(3,Cpr)}
3(2, seek__position, Wpu) = {(3, Wpu)}  6(2, seek__position, Wpr) = {(3, Wpr)}
5(2, share__content, Wpu) = {(3, Wpu)} (4, %) ={(1,_)}

Table 6.8: definition of state-transition function (J).

6.7 Summary

This chapter presented the system design that should satisfy the model of required behav-
ior. The description covers the implementation details about the prototype of the solution,
which defines its behavior that is required. At the beginning of the chapter, the framework
which was used for the prototype was introduced with its capabilities and limits. The prin-
ciples of the proposed solution for the specific mobile platform was defined in technical
aspects and programming point of view. Design and the implementation of the proto-
type define the required behavior and discuss new approaches to the solution. There were
presented two types of tainting principle, and one of them was implemented.

The second part of this chapter describes the formal model of the implementation.
In order to simplify the verification process, the model of implementation was defined
in the same format like the model of required behavior has. The Turing machine defines
the ability to model the unlimited amount of files, and the behavior is described by the finite
state automaton, that is simulated by the Turing machine.

Next chapter discusses the verification process, that should confirm or deny the satis-
faction of implementation model with the model of required behavior.
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Chapter 7

Formal Verification

In the context of software systems, formal verification [156] is the act of proving or dis-
proving the correctness of proposed systems or underlying parts of the intended systems
to a particular formal specification or property using formal methods (particular kind of
mathematically based techniques for the specification).

The verification of software systems is done by providing a formal proof of an abstract
formal model of the system, the correspondence between the formal model and the nature
of the system being otherwise known by construction.

Related to the thesis, the verification process was chosen in order to prove or disprove
that the implementation solution satisfies the required behavior. There exist other ap-
proaches of proving behavior between two models in a less formal way, such as debugging
or testing for required behavior and demonstration of its results with few examples. Veri-
fication seems better format for that proves related to the results of existing tools. These
tools usually provide the answer about the required properties satisfaction. Since these
properties are usually satisfied one sentence is enough. Otherwise, the counterexample is
usually provided, which is more helpful than just one sentence about disproving, which is
the result of other techniques (debugging or testing). Next sections discuss the verification
approaches and selection of the conventional method and software for verifying implemen-
tation of the prototype (its model) and the model of required behavior. Description of
existing software tools dedicated to verification is also part of this chapter. Therefore,
there is no need to write own verification tool, because there are lots of existing solutions
aimed at this area.

7.1 Verification Approaches

The verification process can be performed in various formats related to the formal model
definition. One approach and formation is model checking [57], which consists of a system-
atically exhaustive exploration of the mathematical model. Mathematical models used for
model checking are possible finite state machines, but also for some infinite models where
infinite sets of states can be represented efficiently finitely by using abstraction or taking
advantage of symmetry. It consists of exploring all states and transitions in the model, by
using smart and domain-specific abstraction techniques to consider whole groups of states
in a single operation and reduce computing time.

The properties to be verified are often described in temporal logic [21], such as linear
temporal logic (LTL) [203], property specification language [136], or computational tree
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logic (CTL) [97]. The advantage of model checking is that it is often fully automatic.
However, its primary disadvantage is that it does not work in general scale to large systems,
symbolic models are typically limited to a few hundred bits of state, while explicit state
enumeration requires the state space being explored to be relatively small.

There exist many tools for model checking verification in these days. Besides these tools,
general purpose formal verification tool can be used to verify two models. However, it is
better and more intuitive to use one of the existing tool explicitly designed for verification
two models. One of the well known general purpose verification tools can be considered Spin
[108]. Spin targets the efficient verification of multi-threaded software, not the verification
of hardware circuits. The tool supports a high-level language to specify systems descriptions
called PROMELA (short for PROcess MEta LAnguage). Spin has been used to trace logical
design errors in distributed systems design, such as operating systems, data communications
protocols, switching systems, concurrent algorithms, railway signaling protocols, control
software for spacecraft or nuclear power plants. The tool checks the logical consistency of
a specification and reports on deadlocks, race conditions, different types of incompleteness,
and unwarranted assumptions about the relative speeds of processes.

Another tool for modeling, validation, and verification of real-time systems called Up-
paal [30] is a parallel composition of timed automata extended with data types (bounded
integers or arrays). It is appropriate for systems that can be modeled as a collection of
non-deterministic processes with finite control structure and real-valued clocks, communi-
cating through channels or shared variables. Typical application areas include real-time
controllers and communication protocols, in particular, those where timing aspects are
critical. Uppaal consists of three main parts: a description language, a simulator, and
a model-checker. The description language is a non-deterministic guarded command lan-
guage with data types (e.g., bounded integers, and arrays). It serves as a modeling or
design language to describe system behavior as networks of automata extended with clock
and data variables. A simulator is a validation tool which enables examination of possible
dynamic executions of a system during early design (or modeling) stages and thus provides
an inexpensive mean of fault detection before verification by the model-checker which covers
the exhaustive dynamic behavior of the system. The model-checker can check invariant and
reachability properties by exploring the state-space of a system, i.e., reachability analysis
concerning symbolic states represented by constraints.

Tools dedicated to the verification of security are for instance Cryptyc [96], Scyther [58],
LySa [15] and Choreographer [90]. There are also tools targeting on a wide use and appli-
cability to practical issues such as AVISPA tool suite [11], and AVANTSSAR platform [13].
AVISPA (automated validation of internet security protocols and applications) is a tool
funded by the European Union, which provides a push-button, industrial-strength tech-
nology for the analysis of large-scale Internet security-sensitive protocols and applications.
AVISPA uses several different model-checking approaches. Protocol models are written in
the high-level protocol specification language (HLPSL). Protocols are specified in HLPSL
regarding their roles, using control flow patterns, data structures, alternative adversary
models, as well as different cryptographic primitives and their algebraic properties. HLPSL
specification has a declarative semantics based on Lamport’s temporal logic of actions[130]
and an operational semantics defined regarding a rewrite-based formalism called the inter-
mediate format. Once the model of the system is specified in HLPSL, AVISPA translates
it into the intermediate format, which is an input format for AVISPA back-end model
checkers.
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AVISPA utilizes four back-end tools for validation of security protocols: On-the-fly
model-checker (OFMC), constraint-logic-based attack searcher (CL-AtSe), SAT-based model-
checker (SATMC), and tree automata based on automatic approximations for the analysis
of security protocols (TA4SP). The advantage of having multiple back-ends is that only one
model can be specified and it can be analyzed with four different tools.

AVANTSSAR (automated validation of trust and security of service-oriented architec-
tures) is a follow-up project of AVISPA, introducing new languages for describing mod-
els, the AVANTSSAR specification languages ASLan++ and ASLan. ASLan++ [223] is
a high-level formal language similar to the HLPSL, used for specifying security-sensitive
service-oriented architectures, their associated security policies, and their trust and security
properties. Translation formally defines the semantics of ASLan++ to ASLan, the low-level
specification language that is the input language for the back-ends of the AVANTSSAR
Platforms - OFMC, CL-AtSe, and SATMC:

e OFMC [32] combines many techniques to enable the efficient analysis of security prop-
erties. First, OFMC uses lazy data types as a simple way of building efficient on-the-fly
model checkers for security properties with very large, or even infinite, state spaces.
A lazy data type is one where data constructors build data without evaluating their
arguments. Second, OFMC models the adversary in a lazy fashion, where adversary
communication is represented symbolically and solved during a search. Third, while
OFMC performs verification for a bounded number of sessions, it works with symbolic
session generation, which avoids enumerating all possible ways of instantiating possi-
ble sessions. Fourth, OFMC exploits a state-space reduction technique, inspired by
partial-order reduction, called constraint differentiation [164]. Constraint differentia-
tion works by eliminating certain kinds of redundancies that arise in the search space
when using constraints to represent and manipulate the messages that may be sent
by the adversary. Finally, OFMC also provides some limited support for handling
different equation specified operators on messages.

e Cl-Atse [216] represents protocol states symbolically as collections of non-ground facts,
which record the states of different threads, the messages sent to the network, and
the adversary knowledge. In particular, constraints are used to describe what the dif-
ferent agents know, and a constraint calculus is used to solve for what they can know,
from messages previously exchanged, i.e., the calculus is used to solve a variant of
the non-ground intruder deduction problem. CL-Atse was designed to allow the easy
integration of new deduction rules and operator properties.

e SATMC [15] is an open platform for model checking of security services. SATMC re-
duces the problem of checking whether a protocol is vulnerable to attacks of bounded
length to the satisfaction of ability of a propositional formula which is then solved by
a state-of-the-art SAT solver. It is done by combining a reduction technique of proto-
col insecurity problems to planning problems and SAT-reduction techniques developed
for planning and Lamport’s Temporal Logic that allows for leveraging state-of-the-art
SAT solvers. SATMC provides some distinguishing features, including the ability to
check the protocol against complex temporal properties (e.g., fair exchange); analyze
protocols (e.g., browser-based protocols) that assume messages are carried over secure
channels.

Another approach is deductive verification [13]. It consists of generating from the system
and its specifications (and possibly other annotations) a collection of mathematical proof
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obligations, the truth of which imply conformance of the system to its specification, and
discharging these obligations using either interactive or automatic theorem provers. This
approach has the disadvantage that it typically requires the user to understand in detail
why the system works correctly, and to convey this information to the verification system,
either in the form of a sequence of theorems to be proved or in the form of specifications
of system components (e.g. functions or procedures) and perhaps sub-components (such as
loops or data structures).

7.2 Verification Tool Selection

Related to the topic of this thesis the Uppaal verification tool was chosen. The graph-
ical user interface dedicated to describing the model in the form of the automaton (or
more cooperating automata in the form of processes) seems satisfactory for the required
purposes. The Uppaal is a toolbox for validation (via graphical simulation) and verifica-
tion (via automatic model-checking) of real-time systems. It consists of two main parts:
a graphical user interface and a model-checker engine. The graphical user interface is used
for creating models for simulation and or verification. These models need to be specified
in the format of Uppaal, that is described in this section with examples, and there are
also mentioned the differences related to unified modeling language (UML) [09], that is
considered as the standard modeling language.

The engine part of Uppaal tool is dedicated to verification, and it is by default executed
on the same computer as the user interface, but can also run on a more powerful server. For
this thesis, the same machine is used for creating models, simulation and also verification.
Formal models presented in previous chapters can be defined in the format or language
of Uppaal with some minor modifications. In order to provide this transformation from
the formal definition of automata into the Uppaal format, the resulting format needs to be
defined.

The idea is to model a system using timed automata [3], simulate it and then verify
properties on it. Timed automata are finite state machines with time (clocks). The formal
definition of timed automaton can be expressed as TA = (L,ly, C, A, E, I), where

e [ is a set of locations,

e [y € L is the initial location,

C' is the set of clocks,

A is the set of actions, co-actions, and internal T-actions,

E € LxA xB(C)x2%x L is a set of edges between locations with and action,
a guard and a set of clocks to be reset,

e [: L — B(C) assigns invariants to locations.

A system consists of a network of processes that are composed of locations. Transitions
between these locations define how the system behaves. The simulation step consists of
running the system interactively to check that it works as intended. Then Uppaal can ask
the verifier to check reachability properties, i.e., if a particular state is reachable or not. It
is called model-checking, and it is an exhaustive search that covers all possible dynamic be-
haviors of the system. More precisely, the engine uses on-the-fly verification combined with
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a symbolic technique reducing the verification problem to that of solving simple constraint
systems [239, 134]. The verifier checks for simple invariants and reachability properties for
efficiency reasons. Other properties may be checked by using testing automata [I115] or
the decorated system with debugging information [113].

The description language of Uppaal, which is based on graphical user interface, differs
from standard UML representation of finite state automaton. Some major differences are
presented in figure 7.1.

Working BrokenDown Working BrokenDown

money > 1000

money > 1000, moeny -= 100

money -= 100

UnderRepair UnderRepair

Figure 7.1: Example of Models with action

Note that these two models define the same automaton. The significant difference is
the initial state, which is defined in UML (left image) in figure 7.1 depicted by the first
arrow from no-where and on the right side of the same figure is the automaton in the Uppaal
format with initial state marked as the location with double border. The double border is
used in UML for the finite state, which is not explicitly defined in Uppaal tool. Finite state
in Uppaal can be presented as a location from which does not exist any other transition to
another state.

The transition between states can contain the condition which is called guard in Uppaal.
When the condition is evaluated as positive (correct) the transition is enabled. Otherwise,
this transition is not enabled, and the system remains in the same state. When a variable
is part of a condition, it needs to be declared as a local variable of the state machine
model or global variable of the system. Guards can restrict the possible state changes
by disabling transitions. However, it can also extend the possible transition. In order to
form more complex transitions, these actions can be assigned to the transition. An action
and the transition are executed together. Actions are usually tided with a variable which
updates.

A system in Uppaal is composed of concurrent processes, each of them modeled as
an automaton. The automaton has a set of locations (states). Transitions are used to
change location. To control when to take a transition (to “fire,, it), it is possible to have
a guard and a synchronization. A guard is a condition on the variables and the clocks
saying when the transition is enabled. There are two different types of synchronization:
synchronization on simple channel or on broadcast channel. Both synchronizations require
the declaration of the channel of the synchronization: message sending is realized on these
channels. The synchronization mechanism in Uppaal is a hand-shaking synchronization:
two processes take a transition at the same time, one will have an a/ and the other an
a?, with a being the synchronization channel. When taking a transition, two actions are
possible: assignment of variables or reset of clocks.
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There is a synchronization on a single channel a only if there is a process (state machine)
with an actual location from where there is an outgoing enabled edge (enabled transition)
on which a/ is set, and there is the other process with an enabled transition on which a? is
set. This is depicted in figure 7.2. In the frames there are parts (locations) of the different
processes, the top locations are the actual states of the processes. As far as the process
in the left frame can send a synchronization message and the other process can receive it,
the synchronization is enabled, and both transitions are executed together. However, if
there were not a synchronization message sending transition or a receiver transition, then
the synchronization would be disabled, and the transitions are also disabled.

OO

al a?

Figure 7.2: Simple synchronization example in Uppaal tool

If there are multiple receivers on the channel, the synchronization is executed only
with one of them (chosen randomly). Broadcast synchronization happens between one
sender and multiple receivers (amount of receivers could be zero and more). The receiver
behaves similarly to the simple synchronization (if the transition is enabled and there is
a synchronization message, the transition can fire). However, there is a difference from
the sender point: sender can execute the transition with synchronization if there are multiple
receivers and all of the receiver processes execute the synchronization transition.

7.3 Verification Models

Two formal model was defined in previous chapters, and these models need to be verified.
More precisely, the model of implementation needs to be verified with the model of required
behavior. However, these models were defined formally as Turing machine automata, and
both have the second tape with the simulation of deterministic finite state automaton.
According to the fact that both models have the same Turing machine, the verification
process is focused on model checking of presented deterministic finite state automata. Tur-
ing machine was used in both cases in order to handle multiple files on a mobile device.
For verification process is convenient to have a static amount of files which is not changing
during the process. Moreover, Turing machines perform the same behavior for both models
- model of required behavior and model of implementation. Since there are no differences
between Turing machines, the verification of this automaton is omitted.

Note that proposed model of implementation is weaker than the precise model. There-
fore more vulnerabilities can be found, and it is expected behavior. In order to be more
precise, the model can be adjusted, and a process of verification can be started again.

Definition of models is provided in the format of Uppaal tool, which was already de-
scribed in this chapter. Models are verified with a user process. The user process is another
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finite state machine, which is non-deterministic. A user is simulated by this machine, which
sends commands to both models. These commands are depicted randomly by the definition
of non-deterministic transition by Uppaal. For the thesis, three types of user are created.
The first one is a general user, which sends a sequence of all possible operations defined by
expression 7.1 to both models (model of required behavior and model of implementation).
The second one is limited to work with public files only (sends operations which are related
to public file only). The last one is the same but sends operation limited to private file
usage.

operations = {open__public, open__private, read_public, read__private, write_ public,

write__private, share__content, seek__position, copy, close__public, close__private} (7.1)

Commands Declaration

In order to verify working with a sequence of commands defined in expression 7.1, there
needs to exist declaration of these commands. Unfortunately, Uppaal does not support data
types such as string or array of characters. Therefore, the set of commands can be encoded
into numbers. Each command has its constant value. This value can be then assigned to
share variable called command. This command variable has initially zero value, which does
not belong to any command.

Example of declaration these commands is described in listing 7.1.

// shared command variable
int command = 0;

// constants of command type
const int open_public = 1;
const int open_private
const int read_public

const int read_private
const int write_public
const int write_private =
const int share_content
const int seek_position
const int copy =
const int close_public

const int close_private

non L | I [
o ee e we we we

-

’

= = O 00 N0 O WwN

= O -

’

Listing 7.1: Declaration of variables for verification

Synchronization Channels

To set required behavior in Uppaal tool mechanism for synchronization was defined. These
two mechanisms are finite state automaton, which is waiting for the synchronization com-
mand and the fire another synchronization signal through a different channel. The reason
for that is the update of the variable is provided as the last part of the transition. For
instance lets have two states and one transition with condition that a == 3, waiting for
channel a?, and with update the variable a = 4. The evaluation is defined as when the signal
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arrives from channel a, and the condition is evaluated as true, then the update is performed.
In order to have two processes (state machines) synchronized with message passing value
through shared variable, it is required to define another process (state machine).

The definition of channels is depicted on listing 7.2. Declaration of channels, constants,
and the shared variable command is defined on the global level. The reason is that each
process (each model of automaton) can access its values and the synchronization is provided
for the whole system.

// synchronization channels
chan read_command;

chan next_command;

chan user_action;

broadcast chan read;

Listing 7.2: Declaration of channels for verification

Unfortunately Uppaal tool does not support value passing through the channels [30],
but this can be simulated by shared variable and few synchronization mechanism. Note
that it is not clean to do read!, x = 8 and read?, y = z, where read is a channel and z, y
are variables.

For this thesis, two synchronization processes are needed. The first one is situated
between user model (definition follows in this section) and shared command variable, which
holds the message. Note that the user sends commands to the model of required behavior
and also to the model of implementation via the shared command variable. The user
does not read the value. It is one direction flow of information. When the user sends its
command, there is need to be written, and afterward, these models can read the value.
The mechanism of the synchronization can be defined as two state finite state automaton,
called as the Write process illustrated in figure 7.3.

user_action? next_command!

-

Figure 7.3: Write process synchronization model

Figure 7.3 describe the automaton which is waiting for a signal from the channel called
user__action? that is sent from user model. After that, the transition from the initial
location is performed. After that, the second transition is executed, and the signal is sent
through the channel next command.

Similar automaton is used for reading a value from the shared variable command.
The Reader process also has two states with transition related to channel reaction only.
This process waits for new value in the command variable and the event from the Write pro-
cess. When event through next command channel arrives, and the next step is produced,
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the broadcast channel read fire the event to the model of required behavior, the model of
implementation, and to the user model. The first two models read the value an if is it
possible perform the transition between their states. The user model just goes back to its

initial state and can produce next command.

next_command? read!

-

Figure 7.4: Reader process synchronization model

Figure 7.4 shows the automaton for synchronizing the reading of shared variable com-
mand. The automaton waits for a signal on channel next command? that is sent from
the Writer process. Afterwards, the transition from the initial state is performed. The next
transition in this process sends the signal through the channel read! to subscribers of this
channel.

Model of User

A user is unpredictable part of the verification process, and therefore it is defined as a non-
deterministic automaton. The reason for non-determinism is that the transition is chosen
randomly by the Uppaal verification engine. There is no defined pattern of the sequence of
commands that the user should provide. The set of all available commands was defined by
expression 7.1 and the general user model should be able to send each command to waiting
models (model of required behavior and model of implementation).

More precisely, the user model should provide the step of its automaton, and the result
writes into the shared variable command. Then synchronization processes perform their
tasks. The general user model is illustrated in figure 7.5. Note that there appear two lines
on some transitions, the reason is that the first line defines the update of shared variable
command during the transition and also sending the signal on the channel user_action to
its listeners.

The user model starts its execution in s state. Since there is no guard on any transition
from state s the Uppaal chose randomly which transition will be done. Each transition
from state s is defined as sending the signal through channel user action. The receiver
of this channel is the Writer process. The result of the transition is the change of shared
variable command.

After the successful transition into any state except the state s the execution of this au-
tomaton is blocked until the signal from channel read arrives. The read channel synchronize
the reading of the value of shared variable in all processes.

The model of behavior and also the model of implementation cannot provide their
first transition without the decision of file type (public or private). The synchronization
processes (Writer and Reader) were defined, and user model (user process) provides the be-
havior of a prospective user. These processes are necessary for performing model checking
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Figure 7.5: General user nodel for verification

on two formal models defined in previous chapters. The models are defined in the Uppaal
format in the following sections.

Verification Model of Required Behavior

A model which defines required behavior was defined in the formal format consisting of
Turing machine for handling multiple files on the mobile device and the decision logic
formally defined as finite state automaton. This automaton is described in the Uppaal
format and marked as the required behavior model. The model is illustrated in figure 7.6.

Note that the model is equal to its formal definition. The evident difference is that
the Uppaal model does not have finite states. This model is modeled as a never-ending
finite state machine. This aspect cannot be considered as the wrong model. Moreover,
this difference does not have any impact on the verification results. The model has on its
transitions one guard (condition), which can be identified by the symbol of equality (==)
and communication with synchronization channel read?. Some transitions can be done via
more than one specific command.

Therefore more choices are defined by OR symbol (||). The synchronization channel
read is waiting for the Reading process, which informs about new command presented in
the shared variable command.
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Figure 7.6: Model of required behavior in Uppaal format

Verification Model of Implementation

A formal model of implementation has the same feature with Turing machine. Moreover,
the Turing machine has the same behavior as the model of required behavior has. The main
implementation logic is defined as finite state automaton, and this logic is also presented in
the Uppaal format in figure 7.7. File operations are mainly defined in the states Wpu and
Wor.

These two states operate not on file level, but with memory, that is tainted, and the flow
of data is handled in the implementation. The model of implementation in Uppaal format
does not have a finite state, as was already described earlier.

States Cpu and Cpr are finite in the formal model and the reason is that during these
states opened file is released from memory. However, users usually do not close file manually,
but they close the application itself which perform closing operation on behalf of a user.
Model in Uppaal tool is defined as a process which is opened application with a file, and
the life-cycle is never ended. The verification process is not focused on the finite states, but
to the whole behavior of model related to required behavior.

7.4 Summary

This chapter introduces verification process as the measurement of the checking the prop-
erties represented as primary states between the model of required behavior and model of
implementation. During this chapter, the verification tools were described, and Uppaal was
chosen as an appropriate tool for model checking in order to verify proposed solution with
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Figure 7.7: Model of implementation in Uppaal format

the model of required behavior. The implementation details of verification process with
the variables and command declarations were described, and source code presented.

Moreover, the models were specified in the format of the Uppaal and synchronization
processes needed for verification process were also described. These synchronization pro-
cesses were used for simplifying the message passing between a user and the models. In
order to define the user, the additional model was introduced. This model performs sending
the commands to both checking models.

The next chapter provides verification experiments with these models inside Uppaal

verification tool.
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Chapter 8

Verification Experiments

This chapter introduces verification experiments based on models, which are processes
in the verification tool. Models were defined by the graphical user interface and then
simulated. The next phase of confirmation that the implementation solution model satisfy
required behavior is called verification. Verification is focused on user actions that are
sends to both models (model of required behavior and model of implementation). Result
of the verification process is the report consisting of required behavior defined by formulas
defined in this chapter and their results provided by Uppaal engine.

Aim of the verification experiments is confirmation that the implementation satisfy
required behavior. Otherwise the Uppaal engine should find the counterexample. When
counterexample is found, the discussion about that occurrence is provided. Since the model
of implementation in any rule does not satisfy the required behavior does not necessarily
means that the implementation is wrong.

There are two possible explanation before the experiments starts. The first case can be
that the model of implementation is simplified and does not cover the whole functionality of
implementation. In this case the model can be justified or updated in the specific sections,
that does not fulfill the required behavior. The second reason can be identified on the side of
model of required behavior, which for example does not provide transition for specific user
command. In this case the model of required behavior has different state than the model of
implementation. The results of each experiment in this chapter are discussed with attention
to details, when any verification rule does not confirm required behavior.

Verification experiments are based on Uppaal query language [36], which is based on
time computational tree logig (TCTL) quantifiers [95]. In very short description, the queries
available in the Uppal verifier engine are:

o E<> p: there exists a path where p eventually holds.

A[] p: for all paths p always hold.

E[] p: there exists a path where p always holds.

A <> p: for all paths p will eventually hold.

e p —> q: whenever p holds ¢ will eventually holds.

where p and ¢ are state formulas. For example formula PI.cs means that the process
(a state machine) P is in the state ¢s. The full grammar of the query language is available
in the on-line help of Uppaal tool. Moreover Uppal verification tool provides verification
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for these properties: reachability, safety and liveness property, which uses the previously
defined queries. During this chapter three examples of verification are presented. These
verification examples should provide introduction into verification of two models, in which
the user provides sequence of commands to both models and these models should be in
consistent state. The consistency is checked by properties defined in Uppaal query language.

Related to definition of synchronization models, user model, and both models that are
verified (model of required behavior and model of implementation), the following sections
uses the terms model and process in the same meaning. The reason is that the formal
model presented in Uppaal format is during verification process transformed into process.

8.1 Experiment 1

The first verification experiments is focused on the basic model checking which relates be-
tween states of the required behavior automaton and implementation automaton. The ver-
ification is dedicated to check if both models are in the same states when user sends com-
mands (file operations) into application. The experiment uses user model as was defined in
previous section, and it is called UserProcess B.4.

Moreover, model of required behavior is named FSMRequiredProcess B.2, model of im-
plementation is called F'SMImplementationProcess B.3. In addition, the verification process
have synchronization processes presented earlier. Each state machine is defined as process
in the Uppaal verification tool.

In order to check the consistency of initial states of automata, the rules depicted on
listing 8.1 are used. In other words this mean that the model of required behavior (FSM-
RequiredProcess) is in the same initial state as the model of implementation (FSMImple-
mentationProcess).

A[] FSMRequiredProcess.s imply FSMImplementationProcess.s

A[] FSMImplementationProcess.s imply FSMRequiredProcess.s

Listing 8.1: Verification rule for initial states

Next rules depicted in listing 8.2 verify the states related to opened file. Since the file
is open as public in the model of required behavior it is not possible to have the same file
opened as public in the model of implementation and vice versa. In details, when the model
of required behavior is in state Spu (working with public file), the model of implementation
should not be in the state Spr or Wpr (working with private file). The same should be
valid for working with private file in model of required behavior with state Spr and model
of implementation and states Spu or Wpu.

A[] not (FSMRequiredProcess.Spu and
(FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr))

A[] not ((FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr)
and (FSMRequiredProcess.Spu))

A[] not (FSMRequiredProcess.Spr and
(FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu))
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A[] not ((FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu)
imply (FSMRequiredProcess.Spr))

Listing 8.2: Verification rules for opened file

In addition, working state of file in model of required behavior is named as Spu or Spr
(according to file category). The same state is expected in the state of implementation, thus
next two rules are presented. Related to implementation details (and also formal model)
the working status for file can be selected in one of the possible combination of states Spu
and Wpu or Spr and Wpr. These properties are verified with following rules presented in
listing 8.3.

A[] FSMRequiredProcess.Spu imply
(FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu)

A[] (FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu)
imply FSMRequiredProcess.Spu

A[] FSMRequiredProcess.Spr imply
(FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr)

A[] (FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr)
imply FSMRequiredProcess.Spr

Listing 8.3: Verification rules for working states of file

Another part of this experiment is focused on closing file operation. The opened file
should be always closed by the user, otherwise the system will close the file when the ap-
plication is closed. In the formal definition of both models, the user is able to close the file
with the operation related to category of the file. Private file should be closed by the oper-
ation close__private and public file with operation close_public. Related to this fact and
formal definition of models, model of required behavior should be in one of these states
Cpu or Cpr (according to open file category) and the model of implementation has to be
in the same state, because the verification works with both models in the same manner.
Verification rules expressed in listing 8.4 also check for correct file operation (command
sent by the user model).

A[] FSMRequiredProcess.Cpu and FSMImplementationProcess.Cpu

A[] FSMRequiredProcess.Cpr and FSMImplementationProcess.Cpr

A[] (FSMRequiredProcess.Cpu and command == close_public)
imply (FSMImplementationProcess.Cpu and command == close_public)

A[] (FSMRequiredProcess.Cpr and command == close_private)
imply (FSMImplementationProcess.Cpr and command == close_private)

Listing 8.4: Verification rules for closing file
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Experiment 1 Results

The rules mentioned in the previous section were collected together and were run on the sys-
tem consisting of all related processes (models and their synchronization models). This was
focused on basic states transition and the distinguish between public and private file in
both models. For the purpose of general verification the user model with the ability of ran-
dom choosing command with the meaning of file operation was used. In order to provide
the process of verification through all possible combination of command this user model
seems the right choice. The consistency was verified through the states related to opening
and closing file and also for working statuses. The closing file was also verified through
the checking of command value sent by user model. The results presented in listing 8.5 of
the experiment is described as log file from Uppaal tool.

A[] FSMRequiredProcess.s imply FSMImplementationProcess.s
Property is satisfied.

A[] FSMImplementationProcess.s imply FSMRequiredProcess.s
Property is satisfied.

A[] not (FSMRequiredProcess.Spu and
(FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr))
Property is satisfied.

A[] not ((FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr)
and (FSMRequiredProcess.Spu))
Property is satisfied.

A[] not (FSMRequiredProcess.Spr and
(FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu))
Property is satisfied.

A[] not ((FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu)
imply (FSMRequiredProcess.Spr))
Property is satisfied.

A[] FSMRequiredProcess.Spu imply
(FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu)
Property is satisfied.

A[] (FSMImplementationProcess.Spu or FSMImplementationProcess.Wpu)
imply FSMRequiredProcess.Spu
Property is satisfied.

A[] FSMRequiredProcess.Spr imply
(FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr)
Property is satisfied.

A[] (FSMImplementationProcess.Spr or FSMImplementationProcess.Wpr)
imply FSMRequiredProcess.Spr

Property is satisfied.

A[] FSMRequiredProcess.Cpu and FSMImplementationProcess.Cpu
Property is satisfied.

A[] FSMRequiredProcess.Cpr and FSMImplementationProcess.Cpr
Property is satisfied.
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A[] (FSMRequiredProcess.Cpu and command == close_public)
imply (FSMImplementationProcess.Cpu and command == close_public)
Property is satisfied.

A[] (FSMRequiredProcess.Cpr and command == close_private)
imply (FSMImplementationProcess.Cpr and command == close_private)
Property is satisfied.

Listing 8.5: Results of verification experiment 1

This experiment shows that the general required behavior of implementation method
should be satisfied. The results should not be considered that the model of implementa-
tion is perfectly correct, the reason is that the verification of all possible combination of
states were not checked and also the model of implementation is defined from the higher
perspective and some details are omitted. In order to be more precise the model can be
adjusted.

8.2 Experiment 2

This experiment is focused on the verification of the same models as the previous exper-
iment. Moreover, this experiment is limited to private file operations only. There should
be checked that the model of implementation does not provide any space for data leak-
age through available file operations, system operations, or other available features. For
the purpose of this verification the general user process was modified. Basically the same
models are verified and the presence of synchronization models are required.

In order to be sure, that the required part of verified models will be used, which means
the subset of available commands related to the private files is considered in this experiment.
User model needs to be modified in order to provide at least the control transition at
the beginning of the verification process. The control transition is the only one possible
command that is send to checking models and this command is open_ private.

command = open_private command = read_private

user_action! user_action!
g [«

command = write_private
user_action!

command = close_private
user_action!

@ > g
command = open_private command = seek_position

user_action! user_action!

Figure 8.1: User model for private file operations in Uppaal format
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For performance purposes and the requirement for control transitions on the user pro-
cess, a set of allowed file operations were limited to union of sets of available transition
operations defined by FSMRequiredProcess (model of required behavior) and FSMImple-
mentationProcess (model of implementation). This approach removes operations with pub-
lic files, which in this case perform the waiting of these checking automata, because there is
not defined the transition for this kind of operations. Updated model of user is defined in
Uppaal format and illustrated in figure 8.1. One type of transitions defined on this model
consist of two lines, which denotes updating of share variable command and sending the sig-
nal to listeners of synchronization channel user action. The second type of transition is
the waiting for the signal on channel read until the content of the variable command is read.
Source code of user process focused on private file operations is defined in listing B.6.

According to figure 8.1, the initial state is s and the only available transition is via
the command open_ private as was already described. The next is the synchronization
transition, which checks that the command value has been read. Following transitions are
randomly selected as in the general user model used in the Experiment 1. The set of rules
from Experiment 1 is still valid even for this limited user model.

The rules that verify the reachability of states related to opening or working with public
files are presented on listing 8.6. Rules are specified as provide satisfied result when these
states are not possible to reach. The formula can be also presented in the opposite way,
for instance the result is considered as satisfied when required states are reached via any
transition.

A[]] not (FSMRequiredProcess.Spu or FSMImplementationProcess.Spu or
FSMImplementationProcess.Wpu)

A[]] not (FSMRequiredProcess.Cpu or FSMImplementationProcess.Cpu)

Listing 8.6: Verification rules for reachability states related to public file operations

The reachability of the state Spr in both checking models (model of required behavior
and model of implementation) is defined by the transition with the only one command
open__private. This consistency is checked by the rule expressed in listing 8.7. From this
state the file operations can be performed on the file. The reason is that in this point
the existing file is opened (or new one will be created in near future with file operation
write__private).

A<> (FSMRequiredProcess.Spr and command == open_private)
imply (FSMImplementationProcess.Spr and command == open_private)

A<> (FSMImplementationProcess.Spr and command == open_private)
imply (FSMRequiredProcess.Spr and command == open_private)

A<> not ((FSMRequiredProcess.Spr and command == open_public)
imply (FSMImplementationProcess.Spr and command == open_public))

A<> not ((FSMImplementationProcess.Spr and command == open_public)
imply (FSMRequiredProcess.Spr and command == open_public))

Listing 8.7: Verification rules for reachability Spr state
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The model of required behavior defines available transitions on already opened file as
read_ private and write_private and the automaton persist in the same state Spr. In
order to provide any file operations which can be taint by the prototype the model of
required behavior has its own state for working with the file. This difference should not be
considered as malfunction or any other kind of vulnerability. However, the amount of all
possible operations should be verified with these rules presented in listing 8.8.

A<> (FSMRequiredProcess.Spr and command == read_private)

imply (FSMImplementationProcess.Wpr and command == read_private)
A<> (FSMImplementationProcess.Wpr and command == read_private)

or (FSMImplementationProcess.Spr and command = read_private)
A<> (FSMRequiredProcess.Spr and command == write_private)

imply (FSMImplementationProcess.Wpr and command == write_private)
A<> (FSMImplementationProcess.Wpr and command == write_private)

imply (FSMRequiredProcess.Spr and command == write_private)
A<> (FSMRequiredProcess.Spr and command == seek_position)

imply (FSMImplementationProcess.Wpr and command == seek_position)
A<> (FSMImplementationProcess.Wpr and command == seek_position)

imply (FSMRequiredProcess.Spr and command == seek_position)

Listing 8.8: Verification rules for file operations during working with file

There are no more possible transition commands available. Commands related to closing
file were already tested during the experiment 1.

Experiment 2 Results

Results expressed in listing 8.9 of this experiment are presented in the form of log from
Uppaal tool in the same format as in the Experiment 1. This experiment was focused on
transition logic between states and checking models. These states and transitions defined
in the model of required behavior should be consistent with the model of implementation.
Model of implementation has different state for working with file, the reason is checking
the file content as was presented in the prototype. However, there are differences in models,
the protection of private files should be preserved.

A[] not (FSMRequiredProcess.Spu or FSMImplementationProcess.Spu or
FSMImplementationProcess.Wpu)
Property is satisfied.

A[] not (FSMRequiredProcess.Cpu or FSMImplementationProcess.Cpu)
Property is satisfied.

A<> (FSMRequiredProcess.Spr and command == open_private)
imply (FSMImplementationProcess.Spr and command == open_private)

Property is satisfied.

A<> (FSMImplementationProcess.Spr and command == open_private)
imply (FSMRequiredProcess.Spr and command == open_private)
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Property is satisfied.

A<> not ((FSMRequiredProcess.Spr and command == open_public)
imply (FSMImplementationProcess.Spr and command == open_public))
Property is satisfied.

A<> not ((FSMImplementationProcess.Spr and command == open_public)
imply (FSMRequiredProcess.Spr and command == open_public))
Property is satisfied.

A<> (FSMRequiredProcess.Spr and command == read_private)
imply (FSMImplementationProcess.Wpr and command == read_private)
Property is satisfied.

A<> (FSMImplementationProcess.Wpr and command == read_private)
or (FSMImplementationProcess.Spr and command = read_private)
Property is satisfied.

A<> (FSMRequiredProcess.Spr and command == write_private)
imply (FSMImplementationProcess.Wpr and command == write_private)
Property is satisfied.

A<> (FSMImplementationProcess.Wpr and command == write_private)
imply (FSMRequiredProcess.Spr and command == write_private)
Property is satisfied.

A<> (FSMRequiredProcess.Spr and command == seek_position)
imply (FSMImplementationProcess.Wpr and command == seek_position)
Property is satisfied.

A<> (FSMImplementationProcess.Wpr and command == seek_position)
imply (FSMRequiredProcess.Spr and command == seek_position)
Property is not satisfied.

Listing 8.9: Results of verification experiment 2

According to results depicted in listing 8.9, the last rule is not satisfied. The reason
is the the command seek_ position is not defined in the model of required behavior and
the automaton can not provide transition. Seek operation defined on file is defined as
moving the position in already opened file, which is used for reading or writing from/to
the file. This file operation is not considered as vulnerability in the purpose of the thesis.
There are two possible ways in order to satisfy the last rule. The first approach is to adjust
the model of required behavior with the adding the missing file operation into corresponding
transition and the second one is to remove the operation from the model of implementation,
and also update the implementation solution in order to deny this system function call. Note
that, related to implementation of the prototype, this system call was not appeared during
working with prototype.

8.3 Experiment 3

The last experiment related to verification is focused on the public file operations. General
requirements targeted on participants are the same as in previously described experiments,
in other words the model of required behavior, model of implementation, user model and
synchronization models are mandatory for this experiment. The user model is updated for
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this type of experiment in very similar way as the user model is modified in the experiment
2.

The current user model has control over the initial state and the first transition with
command equal to open_ public and than other commands are chosen randomly. The illus-
tration in figure 8.2 describe the modification of general user model. During transition can
be updated the share variable command and the signal for waiting processes user__action.
The second type of transition is waiting for signal on the synchronization channel read.

command = open_public

@ user_action! -
>\ a
read? a

command = read public command = write_public
R _lp user_action!
user_action! read?
l command = write_private

command = open_public
user_action!

user_action!

command = seek_position
user_action!

command = copy

command = share_content user_action

user_action!
command = close_public
user_action!

Figure 8.2: User model for public file operations in Uppaal format

Figure 8.2 with automaton begins its execution in the state s and generates the user
action with command open_ public, as is required for this experiment. When the signal
with this command is confirmed and read, there are all possible commands that appear
on the public part of the model of implementation and model of required behavior. Model
checking is based on checking of all possible commands that are send to the verified models.

This experiment is focused on working with public files and their ability to influence
private files. There should not be possible to set opened public file as private. In the words
of automaton, there should not be a path from public states of automaton (Spu, Wpu, and
C'pu) into private states of the same automaton (Spr, Wpr, and Cpr). Moreover, there
should be also consistency between model of required behavior and model of implementa-
tion. Rules for checking reachability properties for private states of automaton, which use
updated user model with public file operations, is described on listing 8.10. Source code of
user process focused on public file operations is defined in listing B.5.

E<> not (FSMRequiredProcess.Spr or FSMImplementationProcess.Spr or
FSMImplementationProcess.Wpr)

E<> not (FSMRequiredProcess.Cpr or FSMImplementationProcess.Cpr)

Listing 8.10: Verification rules for reachability of private states
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These rules describe two three private states that should not be possible to reach via
available commands. In addition, when the automata (FSMRequiredProcess and FSMIm-
plementationProcess) are in the state Spu, it is not possible to reach private states even
thought the general user model is used. Related to modified user model, the accessibility
of state Spr needs to be verified in order to cover the correct opening of the private file.
The rules presented on listing 8.11 checks for this property.

A<>

A<>

A<>

A<>

(FSMRequiredProcess.Spu and command == open_public)
imply (FSMImplementationProcess.Spu and command == open_public)

(FSMImplementationProcess.Spu and command == open_public)
imply (FSMRequiredProcess.Spu and command == open_public)

not ((FSMRequiredProcess.Spu and command == open_private)
imply (FSMImplementationProcess.Spu and command == open_private))

not ((FSMImplementationProcess.Spu and command == open_private)
imply (FSMRequiredProcess.Spu and command == open_private))

Listing 8.11: Verification rules for accessibility the state Spr

The next verification rules presented in listing 8.12 check for consistency of operations
related to public file, such as read_ public, write__public and share__content. These oper-
ations are available in both models and should perform safe file operations.

A<>

A<>

A<>

A<>

A<>

A<>

(FSMRequiredProcess.Spu and command == read_public)

imply (FSMImplementationProcess.Wpu and command == read_public)
(FSMImplementationProcess.Wpu and command == read_public)

imply (FSMRequiredProcess.Spu and command == read_public)
(FSMRequiredProcess.Spu and command == write_public)

imply (FSMImplementationProcess.Wpu and command == write_public)
(FSMImplementationProcess.Wpu and command == write_public)

imply (FSMRequiredProcess.Spu and command == write_public)
(FSMRequiredProcess.Spu and command == share_content)

imply (FSMImplementationProcess.Wpu and command == share_content)
(FSMImplementationProcess.Wpu and command == share_content)
imply (FSMRequiredProcess.Spu and command == share_content)

Listing 8.12: Verification rules for public file operations

The model of implementation defines three additional transition compared to model of
required behavior and these transitions should be also verified. Verification rules for these
properties are depicted on listing 8.13. The first transition command seek_ position was
already discussed in the previous experiment. This system call function can be considered
as safe, because it just define the position inside the file. Another specific transition related
to model of implementation is called copy, this is special case of sharing data, which is not
available as feature for private file operations.
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A<> (FSMImplementationProcess.Wpu and command == seek_position)
imply (FSMRequiredProcess.Spu and command == seek_position)

A<> (FSMRequiredProcess.Spu and command == seek_position)
imply (FSMImplementationProcess.Wpu and command == seek_position)

A<> (FSMImplementationProcess.Wpu and command == copy)
imply (FSMRequiredProcess.Spu and command == copy)

A<> (FSMRequiredProcess.Spu and command == copy)
imply (FSMImplementationProcess.Wpu and command == copy)

A<> (FSMImplementationProcess.Wpu and command == write_private)
imply (FSMRequiredProcess.Spu and command == write_private)

A<> (FSMRequiredPRocess.Spu and command == write_private)
imply (FSMImplementationProcess.Wpu and command == write_private)

Listing 8.13: Verification rules for additional implementation public file operations

In order to correctly handle this situation the specific mechanism was implemented
and described in chapter with prototype. The last different transition write_ private can
influence private files. This transition defines that a content of any public file can be saved
as private file. From the security point of view this property limits the available operations
and does not provide any security breach or possible data leakage. Moreover, there is
a possibility of updating private file, this case is under control of implementation.

Experiment 3 Results

Presented rules were collected and used in Uppal verification tool, the results are expressed
on listing 8.14. There are more unsatisfied rules then in previous experiments. However,
there are differences between model of required behavior and model of implementation
and results confirms this fact, the content of files should be protected and private file
content should not be shared or copied. Implementation provides the ability to update
already opened private file with content of opened public file, this can be expressed by
the transition on public file with command write_ private. This behavior is not explicitly
described by the model of required behavior. The implementation provides the ability to
write the public content of the memory into the private file, but with the restriction focused
on append mode.

E<> not (FSMRequiredProcess.Spr or FSMImplementationProcess.Spr or
FSMImplementationProcess.Wpr)
Property is satisfied.

E<> not (FSMRequiredProcess.Cpr or FSMImplementationProcess.Cpr)
Property is satisfied.

A<> (FSMRequiredProcess.Spu and command == open_public)
imply (FSMImplementationProcess.Spu and command == open_public)
Property is satisfied.

A<> (FSMImplementationProcess.Spu and command == open_public)

imply (FSMRequiredProcess.Spu and command == open_public)
Property is satisfied.
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A<> not ((FSMRequiredProcess.Spu and command == open_private)
imply (FSMImplementationProcess.Spu and command == open_private))
Property is satisfied.

A<> not ((FSMImplementationProcess.Spu and command == open_private)
imply (FSMRequiredProcess.Spu and command == open_private))
Property is satisfied.

A<> (FSMRequiredProcess.Spu and command == read_public)
imply (FSMImplementationProcess.Wpu and command == read_public)
Property is satisfied.

A<> (FSMImplementationProcess.Wpu and command == read_public)
imply (FSMRequiredProcess.Spu and command == read_public)
Property is satisfied.

A<> (FSMRequiredProcess.Spu and command == write_public)
imply (FSMImplementationProcess.Wpu and command == write_public)
Property is satisfied.

A<> (FSMImplementationProcess.Wpu and command == write_public)
imply (FSMRequiredProcess.Spu and command == write_public)
Property is satisfied.

A<> (FSMRequiredProcess.Spu and command == share_content)
imply (FSMImplementationProcess.Wpu and command == share_content)
Property is satisfied.

A<> (FSMImplementationProcess.Wpu and command
imply (FSMRequiredProcess.Spu and command
Property is not satisfied.

share_content)
share_content)

A<> (FSMImplementationProcess.Wpu and command
imply (FSMRequiredProcess.Spu and command
Property is not satisfied.

seek_position)
seek_position)

A<> (FSMRequiredProcess.Spu and command == seek_position)
imply (FSMImplementationProcess.Wpu and command == seek_position)
Property is satisfied.

A<> (FSMImplementationProcess.Wpu and command == copy)
imply (FSMRequiredProcess.Spu and command == copy)
Property is not satisfied.

A<> (FSMRequiredProcess.Spu and command == copy)
imply (FSMImplementationProcess.Wpu and command == copy)
Property is satisfied.

A<> (FSMImplementationProcess.Wpu and command == write_private)
imply (FSMRequiredProcess.Spu and command == write_private)
Property is not satisfied.

A<> (FSMRequiredProcess.Spu and command == write_private)
imply (FSMImplementationProcess.Wpu and command == write_private)
Property is satisfied.

Listing 8.14: Results of verification experiment 3
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Rules which were not satisfied are related to the transitions with commands, that are
not defined in the model of required behavior. The model of required behavior can be
adjusted to handle these missing file operations. In contrast, the model of implementation
can be more strict and some operations can be removed from model and restricted in its
implementation in order to have consistency.

8.4 Summary

This chapter presented verification experiments, which were verified by Uppaal verifica-
tion tool. Models (model of required behavior and model of implementation) described in
the Uppaal format were verified via sending commands by the User model. User model was
split into three categories - general user model, public user model and private user model.
Each experiment uses different user model. Verified properties were focused on consistency
of states between checking models and their transition commands. Next chapter provides
experiments related to implementation solution.

Verification goals were defined with the Uppaal Query Language and within this lan-
guage security properties are defined, but not explicitly. This thesis is focused on data
protection with the ability of avoidance data leakage from the device. Results of the Ex-
periment 1 described that there is not possible to provide file operations from different
category on already opened file. In other words, for public file it is not possible to use file
operations dedicated to private file and vice versa.

The Experiment 2 was focused on the private file category and Experiment 3 on the pub-
lic file category. Both experiments shows that there is limited set of available operations,
that can be performed on each file. Experiments shows that the model of implementation
should satisfy the basic requirements defined by model of required behavior.

Experiments shows that the state of both checking automata are in consistent states,
which means that content of private file should be kept on the device. Related to to model of
implementation, there is no transition defined for sharing, copying or writing the content of
private file into other place than the private file itself. However, the results of experiments
were almost satisfied, it does not mean that the implementation solution is without errors
or completely without vulnerabilities. The model of implementation was simplified in order
to provide the results in convenient time and also in order to avoid state space explosion.
For the purpose of the thesis the model should be considered as sufficient.
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Chapter 9

Implementation Experiments

The theoretical part is covered, and the prototype was implemented, and this chapter
introduces the experiments on randomly downloaded Android applications and the applying
restriction in the way of limitation of permission enforcement related to open input files.
The selection of the application was made to handle input in the file format. For instance, it
does not make any sense to modify application which is not related to file manipulation such
as game-based applications, internet browser, an alarm or any other kind of applications
without a file on the input.

There are evaluated results from intercepted system calls with the obtained theoretical
knowledge, described in earlier. Experiments are concerned with the assembly testing
with the real selected applications such as IO File Manager (application 1) or Ted Text
Editor (application 2). The system calls are monitored within the Aurasium framework
in a real Android environment. The implemented hook functions have been integrated
into the testing application. Thus, it is capable of reading and writing from/to the file.
The result of the testing has been recorded by design into the log files.

Also, the content of the log taint_map.tzt has been significant, because there is tracked
the content of all tainting structures in a time that is the only relevant output of taint-
ing the process. The final restriction is tested performing the black-box approach with
the manually repackaged Application 1 and Application 2.

The manual repackaging is necessary in the case of experiments with the ability to
perform a step-by-step process of the execution and debugging possibility. When the appli-
cation is repacked by an automated script, the result of this is installed application package
without access to the source code with the following compilation and therefore the de-
bugging process is not available. Concerning application 1, the tainting mechanism has
been tested. Final restriction is based on two different methods and communication with
the configuration activity. For instance, the tainting mechanism, in this case, performed
actions such as mode, copy, rename, open, and send to test the real hardened application.
Operation of removal (delete) is not considered as necessary in the manner of the aim of
this prototype experiments.

The second of the proposed application 2 is used primarily for testing of specific restric-
tion. There are conducted three scenarios such as opening the unprotected (public) file,
opening the protected (private) file in empty data falsifying mode and opening the protected
file in a fake data forging type. The primary purpose of these experiments is to focus on
data sharing (sending) via various possible channels, such as bluetooth, Wi-Fi, SMS, and
email. Note that the sharing is the specific name for sending data to other available applica-
tions or other devices connected by open protocols. The method name sharing comes from
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the technical aspects of a mobile operating system, in this case, Android. Each sharing
method was tested on various types of media files that are usually available on the mobile
device. For instance, these file format consists of text files, images, animated images, movie
clips, music files, various document files and other types of specific data.

9.1 Sharing Methods

The required behavior of the sharing method is depicted in the table 9.1. There are cov-
ered the most useful methods available on the mobile device that is in factory reset state.
Related to Android mobile operating system, the factory state of the device contains a se-
lection of applications, which provide the ability to share or communicating via various
channels. These applications are selected expressed in this table 9.1 and they are consid-
ered as required for implementation experiments.

Sharing method Application Outcome without | Outcome with re-
restriction striction

Email Gmail Email is sent Email is not sent

Bluetooth Bluetooth applica- | File is sent (to paired | File is not sent (to

tion device) paired device)

SMS/MMS Messages SMS/MMS is sent with | SMS/MMS is not sent
attachment

Instant Messag- | Google+ Message with attach- | Message is not sent

ing ment is sent

Cloud Google Drive File is uploaded File is not uploaded

Table 9.1: Required behavior of sharing method

The interception of the pre-installed application is not considered as satisfactory even
the installation package modification was complete without errors. The required behavior
has been confirmed in the unrestricted mode, but with the restriction, these application is
not even started. From the security perspective, it has the same behavior as the purpose of
the thesis require. In contrast, there is no guarantee when the application starts successfully
that the behavior is decent as proposed.

To confirm this, it is necessary to randomly select and download another application
from the official Google Play market with the same amount of sharing methods. These
third-party applications are set as default endpoints of the sharing methods. Applications
which are not pre-installed on the device as default are repacked successfully and modified in
the same way as the default ones. Also, there are some measure results from the experiments
described in the table 9.2.

9.2 Repackaging of Application

As was already discussed, the default applications for sharing data through various channels
are failing in the restricted mode. Applications of other vendors are successfully modified
and when the user attempts to share data through application 1 via channels described
in the table 9.2. A test was performed on the application 1 repackaged using automatic
Aurasium script, and the result has the expected isomorphic behavior. The application
graphical user interface responds as expected and the private data are protected in all
testing cases.
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Sharing method Application Outcome without re- | Outcome with re-
striction striction
Email Gmail Email is sent Application is not
started
Email.cz Email is sent Application is started
with empty attachment
Bluetooth Bluetooth  applica- | File is sent (to paired de- | File sending failed on
tion vice) sending device
SMS/MMS Messages SMS/MMS is sent with | Application is  not
attachment started
Textra SMS SMS/MMS is sent with | Application is started
attachment without attachment
Instant Messaging | Google+ Message with attach- | Application is  not
ment is sent started
Hangouts+ Message with attach- | Application is not
ment is sent started
Facebook Messenger | Message with attach- | Application is started
ment is sent without attachment
Cloud Google Drive File is uploaded Application is not
started
Dropbox File is uploaded Application is started
with empty attachment
to upload

Table 9.2: The results of sharing method on third party Applications

This script is part of the Aurasium project, and the overall evaluation of the mod-
ification process of application packages is depicted in table 9.3 introduced by [233], in
which the row in the table modifies the applications downloaded from the official appli-
cation market (Google Play). The second row depicts the same applications downloaded
from the third-party application market, and 1260 of 3491 were malicious. The results of
repackaging script are nearly 100% even the applications are malicious.

Repackaging success rate
99.6% (3476)
99.8% (1258)

Amount of applications
3491
1260

Type of Application

Application store corpus

Malware corpus

Table 9.3: Repackaging evaluation results [233]

Repackaging process introduces the negligible part of the Java code, and the result
size of the introduced code in C language is under 50 KB. It is not relevant compared to
the vast libraries, and another code is already included in the implementation of Aurasium
project. The size of the application package increase as expected. More details about
the size overhead and their comparison can be found in [233].

9.3 Performance Overhead

In regards to the performance evaluation, the test has been conducted on real Android
device LG G4 with 1.8 GHz processor (6 cores), 32 GB of internal memory, and 3 GB of
system memory (RAM). Start-up time of hardened applications is considerably changed.
Aurasium’s over-writing of the global offset table entries is time-consuming operation and
lasts about 10 s as is shown in the table 9.4.
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Application | Original (ms) Repackaged (ms)
Application 1 | 729 | 830 | 645 | 11132 | 10238 | 10694
Application 2 | 1016 | 1056 | 1184 | 11187 | 11040 | 11236

Table 9.4: Start-up time overhead on repackaged applications

The performance of the selected applications and actions was tested on the original
version of applications (before repackaging) and after the repackaging process with the in-
active tainting and restriction and then with the tainting mechanism and current restriction.
The target of this evaluation is to identify the application performance from the user per-
spective and detection of unexpected performance issues. These issues can lead to the dis-
covery of unknown errors and covert vulnerabilities. To determine real performance values
the logging mechanism is disabled during measurement. The reason is to have accurate
performance values as possible. There is also calculated the overhead of the repackaged
application with active functional protection. The performance of restricting was tested
on two sharing actions. The first one is the ability to share data through email client and
sending away from the device. Bluetooth was the second action with the ability to send any
files to a paired (trusted) device. The results of this performance experiments are divided
into the sharing methods.

Method Original [ms] Inactive [ms] Active [ms]
Mediation 1079 | 1047 | 922 | 1469 | 1258 | 1515 | 1320 | 1368 | 1336
File protection | 1079 | 1047 | 922 | 1469 | 1258 | 1515 | 1226 | 1297 | 1351

Table 9.5: Performance of Sharing method through Email

Table 9.5 with the experiments related to the email sharing defines time measurement
the performance overhead. Columns describe the states of the application such as original
state that is the application without any modifications related to tainting. States named
inactive and active means the restriction of the application which can be enabled or disabled,
but the application is modified in the way of performing the tainting mechanism through
the Aurasium framework. These columns are the same for the second sharing method which
is bluetooth and its results are in table 9.6. The overhead in this table is significantly
more arduous than in the email sharing method. This overhead is caused by different
implementation and reaction on an unexpected condition in the restriction.

Method Original [ms]| | Inactive [ms] Active [ms]
Mediation 445 | 382 | 508 | 992 | 953 | 914 | 985 | 961 | 1000
File protection | 445 | 382 | 508 | 992 | 953 | 914 | 1144 | 1047 | 1063

Table 9.6: Performance of Sharing method through Bluetooth

Time from table 9.5 and table 9.6 are read from Android log messages defined for
the tainting process. As is shown both tables the time of processing is more related to
the application that is responsible for handling the action of the sharing than the method
of restriction. The tainting performance was tested for combinations of scanning type and
protection of copied file regarding configuration. Moreover, there is measured a duration
of a paste action between the start and the end of the copy process. This processes time
duration is depicted on table 9.7 and table 9.8. The first table contains the duration of
copying for the untainted files and the second for tainted files.
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Scanning Original [ms] Inactive [ms] Active [ms]
File-based 2394 | 2479 | 2421 | 2675 | 2643 | 2647 | 2787 | 2608 | 2778
Content-based | 2394 | 2479 | 2421 | 2675 | 2643 | 2647 | 2665 | 2784 | 2586

Table 9.7: Tainting performance during copying of untainted file

Scanning Original [ms] Inactive [ms] Active [ms]
File-based 2394 | 2479 | 2421 | 2675 | 2643 | 2647 | 2707 | 2626 | 2596
Content-based | 2394 | 2479 | 2421 | 2675 | 2643 | 2647 | 2792 | 2735 | 2663

Table 9.8: Tainting performance during copying of tainted file

In regards to a user, the results are satisfactory in this case, because the performance of
the hardened application remains almost without any time overheads. The table also details
the difference between original application and the same application with modification in
its inactive and active restrictions state.

The last experiment is focused on the performance of file opening and reading process
during increased threat level mode. The worst case results are obtained during the active
protection with fake data falsifying because the data needs to be overwritten in the system
memory as was described earlier. A faster method is reached with the empty falsifying
protection in comparison to the previous method. Unfortunately, there is still about 20%
performance overhead against the original unmodified application. Experiment duration
times are recorded in the table 9.9.

Data type | Original [ms] Inactive [ms] Active [ms]
Empty data | 736 | 732 | 704 | 1881 | 1425 | 1357 | 948 | 859 | 816
Fake data 736 | 732 | 704 | 1881 | 1425 | 1357 | 1901 | 1438 | 1513

Table 9.9: Duration of file opening during increased threat level

9.4 Summary

To summarize the performance experiments, the start-up time overhead of repackaged
applications is the most prominent performance drawback. Otherwise, there can be some
slowdowns which are almost transparent to the user and does not represent an obstacle for
usage. The average time overhead is in most cases similar in compared to the proposed
interception actions in Aurasium framework.

Implementation of the prototype has its limitation. First of all, some applications with
activated restriction behave correctly in a secure manner but the not responding state
which results in the application failure is not required behavior. To perform user-friendly
responds the prototype should be improved and the implementation should be prepared
entirely different for each version of the Android operating system.

The main weakness of the solution is the mandatory process of repackaging the appli-
cation. There is no possibility of tainting the function calls provided by the system itself.
Even the development mode of the system does not provide this feature. In that case,
the repackaging of the applications is necessary to obtain the control over the function calls
or the whole behavior. It is still not complete for the setup the environment with the full
control. When these hardened applications are installed, and the configuration is prepared
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for the restriction and if the Aurasium framework is missing the management of the applica-
tion in the meaning of tainting is not working properly. Moreover, if the whole environment
is set up as required and the user would like to do something that is not available with
the restriction, he can uninstall the Aurasium application or just re-install the application
itself with the original one from the official application market store.

This prototype does not cover all situations that can be achieved on the device. For
the full protection (even with the application fails during restriction mode) the Aurasium
framework and configuration application need to be installed within the system image of
the system. The same is achieved by the vendors of the mobile devices. These vendors usu-
ally ad a few applications to the original operating system, such as graphical user interface,
and third-party applications.

The implementation of the prototype shows the possibility that this approach of dy-
namically changing the rights of the application is reachable without administration rights,
but with limitation to follow specific rule set.
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Chapter 10

Conclusion

This thesis analyses the security threats on a mobile device with the focus on privacy
protection in the data leakage area. The novel approach of working with sensitive data was
presented and defined formally. Moreover, the prototype was introduced, and its model
verified through model checking. The high-level goal of this thesis was investigated privacy
protection on a mobile device and current solutions provided by the manufacturers of these
devices and to find a method of improving the protection of sensitive information.

The contribution of this thesis can be divided into two parts. The first one defines
the concept of required behavior to working with public and private files on the same
device, presented in chapter 5. The concept consists of restriction mechanism which controls
the application system calls and decides if the system call is performed or not related to
the opened file. The idea is based on the BYOD principle, which defines the usability of
the personal mobile device in the working environment. The concept discussed all related
topics such as the design of the required behavior, a framework that can be used and
also the implementation of the prototype. The prototype implementation is considered as
proof of concept, that was firstly defined by the formal method, described in chapter 6.
The prototype was implemented on the open-source platform, which was also identified in
the thesis from the security and architecture point of view.

The second contribution of this thesis is verification of presented models to prove that
the implementation solution satisfies the required behavior, demonstrated in chapter 7.
Model of required behavior and model of implementation were defined and later used for
the formal verification process. The formal method was chosen to provide the possibility of
portability to other platforms.

The verification was defined in the Uppaal platform, and both models were transformed
into the format of this tool. Examples of verification process demonstrate the usability of
the proposed method, presented in chapter 8.

Further research can be focused on finding a more specific solution for protecting user
data. For instance, artificial intelligence can be considered in this area, at least for the cat-
egorization of files into two groups - public and private. Moreover, artificial intelligence
can be used to decide which system call can be allowed or denied for a specific file. It is
a new era of controlling the content of a mobile device, but the user is considered a person,
and there could be very difficult to categorize files and the behavior of user without any
knowledge about the user and also the working environment.

The results presented in this thesis were published as a chapter in the book [16], inter-
national conferences [17, 18, 19, 100] and in the journals [20] and [218].
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Appendix A

Pseudocodes

1 /x*
2 * On 64-bit platforms where user code may run
3 % in 32-bits the driver must
4 * translate the buffer (and local binder) addresses
5 * apropriately.
6 */
7
8 struct binder _write_read {
9 /% bytes to write */
10 signed 1long write_size;
11 /* bytes consumed by driver */
12 signed 1long write_consumed;
13 unsigned long write_buffer;
14 /* bytes to read */
15 signed 1long read_size;
16 /% bytes consumed by driver */
17 signed 1long read_consumed;
18 unsigned long read_buffer;
19 };
Listing A.1: Pseudocode of binder_write_read structure (defined in binder.h)
1 struct binder_transaction_data {
2 /% The first two are only used for bcTRANSACTION
3 * and brTRANSACTION,
4 * tdentifying the target and contents
) * of the transaction.
6 */
7 union {
8 /* target descriptor of command transaction */
9 size_t handle;
10 /* target descriptor of return transaction */
11 void *ptr;
12 } target;
13
14 void *cookie; /* target object cookie */
15 unsigned int code; /% transaction command */
16
17 /% General information about the transaction. */
18 unsigned int flags;
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19 pid_t sender_pid;

20 uid_t sender_euid;

21 /* number of bytes of data */

22 size_t data_size;

23 /% number of bytes of offsets */

24 size_t offsets_size;

25

26 /% If this transaction is inline, the data immediately
27 *¥ follows here; otherwise, it ends with a pointer to
28 * the data buffer.

29 */

30 union {

31 struct {

32 /* transaction data */

33 const void *buffer;

34 /% offsets from buffer to flat_binder_object
35 * structs

36 */

37 const void xoffsets;

38 } ptr;

39 uint8_t buf [8];

40 } data;

41 };

Listing A.2: Pseudocode of binder_transaction_data structure (defined in binder.h)

1 class SmallBlock {

2 unsigned long start; // Start Address

3 char block [SMALL_BLOCK_SIZE];

4 3}

5

6 class MemBlock {

7 unsigned long start; // Start Address

8 unsigned char hash([32]; // Counted Hash Value
9 int size; // Size of Memory Block

10 int fdSrc; // Source File Descriptor

11 TaintedFile fpSrc; // Full Path of Source File
12 3}

13

14 // List of Tainted Memory Block

15 std::vector<MemBlock *> taintedList;
16 // Blocks of Stored Information

17 std::vector<SmallBlock *> smallBlocks;

Listing A.3: Pseudocode of data structures for tainting mechanism
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Appendix B

Source Code of Verification Models

1 <declaration>

2 // constants of command type
3 const int open_public = 1;
4 const int open_private = 2;
5 const int read_public = 3;
6 const int read_private = 4;
7 const int write_public = 5;
8 const int write_private = 6;
9 const int share_content = 7;
10 const int seek_position = 8;
11 const int copy = 9;
12 const int close_public = 10;
13 const int close_private = 11;
14

15 // shared command variable
16 int command = O0;

17

18 // synchronization channels
19 chan read_command;

20 chan next_command;

21 chan user_action;

22 broadcast chan read;

23 </declaration>

Listing B.1: Uppaal source code of variables definition

1 <template>

2 <name x="5" y="5">FSMRequired</name>

3 <declaration></declaration>

4 <location id="id23" x="-528" y="-160">
5 <name x="-538" y="-190">Cpr</name>
6 </location>

7 <location id="id24" x="-808" y="-160">
8

<name x="-818" y="-190">Spr</name>
9 </location>
10 <location id="id25" x="-520" y="-280">
11 <name x="-536" y="-264">Cpu</name>
12 </location>
13 <location id="id26" x="-808" y="-280">
14 <name x="-824" y="-264">Spu</name>
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
55
56
o7
o8
99
60
61
62
63
64
65
66
67
68

</location>

<location id="id27" x="-976" y="-232">
<name x="-986" y="-262">s</name>

</location>
<init ref="id27" />
<transition>
<source ref="id26" />
<target ref="id26" />

<label kind="guard" x="-896"
command == read_public ||
command == write_public |
command == share_content

</label>

<label kind="synchronisation"
read?

</label>

<nail x="-776" y="-344" />

<nail x="-848" y="-344" />

</transition>
<transition>
<source ref="id24" />
<target ref="id24" />

<label kind="guard" x="-920"
command == read_private |
command == write_private

</label>

<label kind="synchronisation"
read?

</label>

<nail x="-840" y="-88" />
<nail x="-776" y="-88" />
</transition>
<transition>
<source ref="id25" />
<target ref="id26" />

<label kind="guard" x="-712"
command == open_public

</label>

<label kind="synchronisation"
read?

</label>

<nail x="-528" y="-336" />
<nail x="-736" y="-336" />
</transition>
<transition>
<source ref="id23" />
<target ref="id24" />
<label kind="guard" x="-712"
command == open_private
</label>

y="-416">
I
x="-824"
y=u_88u>
I
x="-840"
y="—360">
x="-648"
y="-120">

y="—368">
y="—56">
y="—336">

<label kind="synchronisation" x="-656" y="-104">

read?
</label>
<nail x="-544" y="-120" />
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69 <nail x="-736" y="-120" />

70 </transition>

71 <transition>

72 <source ref="id26" />

73 <target ref="id25" />

74 <label kind="guard" x="-752" y="-304">
75 command == close_public

76 </label>

7 <label kind="synchronisation" x="-688" y="-280">
78 read?

79 </label>

80 <nail x="-672" y="-280" />

81 </transition>

82 <transition>

83 <source ref="id24" />

84 <target ref="id23" />

85 <label kind="guard" x="-760" y="-184">
86 command == close_private

87 </label>

88 <label kind="synchronisation" x="-688" y="-160">
89 read?

90 </label>

91 <nail x="-680" y="-160" />

92 </transition>

93 <transition>

94 <source ref="id27" />

95 <target ref="id24" />

96 <label kind="guard" x="-1008" y="-160">
97 command == open_private

98 </label>

99 <label kind="synchronisation" x="-928" y="-184">
100 read?

101 </label>

102 <nail x="-976" y="-160" />

103 </transition>

104 <transition>

105 <source ref="id27" />

106 <target ref="id26" />

107 <label kind="guard" x="-1024" y="-304">
108 command == open_public

109 </label>

110 <label kind="synchronisation" x="-944" y="-280">
111 read?

112 </label>

113 <nail x="-976" y="-280" />

114 </transition>

115 </template>
Listing B.2: Uppaal source code of FSMRequiredProcess

1 <template>

2 <name x="5" y="5">FSMImplementation</name>
3 <declaration></declaration>

4 <location id="idO0" x="-112" y="112">

5 <name x="-120" y="128">Cpr</name>
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
o7
o8
99

</location>

<location id="id1" x="192" y="-8">
<name x="176" y="-40">Wpr</name>

</location>

<location id="id2" x="-112" y="-8">
<name x="-120" y="-40">Spr</name>

</location>

<location id="id3" x="-112" y="-232">
<name x="-128" y="-264">Cpu</name>

</location>

<location id="id4" x="200" y="-112">
<name x="184" y="-96">Wpu</name>

</location>

<location id="id5" x="-112" y="-112">
<name x="-120" y="-96">Spu</name>

</location>

<location id="id6" x="-288" y="-64">
<name x="-312" y="-72">s</name>

</location>

<init ref="ideé" />

<transition>

<source ref="id1i" />
<target ref="id1" />

<label kind="guard" x="272" y="-40">
command == read_private ||
command == write_private ||
command == seek_position

</label>

<label kind="synchronisation" x="328"
read?

</label>

<nail x="232" y="32" />

<nail x="272" y="-8" />

<nail x="232" y="-48" />
</transition>
<transition>

<source ref="id2" />

<target ref="ido" />

<label kind="guard" x="-104" y="40">

command == close_private

</label>

<label kind="synchronisation" x="-48"
read?

</label>

</transition>
<transition>
<source ref="id5" />
<target ref="id3" />

<label kind="guard" x="-104" y="-192">

command == close_public

</label>

<label kind="synchronisation" x="-56"
read?

</label>
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60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

</transition>
<transition>

<source ref="id4" />
<target ref="id4" />
<label kind="guard" x=

command =
command
command
command
command
command
</label>

<label kind="synchronisation"

read?
</label>
<nail x="248"
<nail x="272"
<nail x="240"
</transition>
<transition>

share_c

n 200 n
ontent

read_public |

write_p
write_p
copy ||

seek_position

<source ref="id3" />
<target ref="id5" />
<label kind="guard" x=

command =
</label>

<label kind="synchronisation"

read?
</label>
<nail x="-200
<nail x="-200
</transition>
<transition>

y=u_80u

y="_120"
y=n_152n
= open_pu

y="-232
y="-176

<source ref="id0" />
<target ref="id2" />
<label kind="guard" x=

<label kind="synchronisation"

command =
</label>

read?
</label>
<nail x="-184
<nail x="-184

</transition>
<transition>

open_pr

y="112"
y="48"

<source ref="id1" />
<target ref="id0" />
<label kind="guard" x=

command =
</label>

close_p

ublic
rivate

/>
/>
/>

n _336 n
blic

n />
n />

n _352 n
ivate

/>
/>

n _20 n
rivate

y="_248">

x="264"

y=n_152u>

y=ll _256" >

y="88">

y=u110u>

<label kind="synchronisation" x="40"

read?

</label>
<nail x="168"

</transition>

y="112"

/>
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114 <transition>

115 <source ref="id2" />

116 <target ref="id1" />

117 <label kind="guard" x="-56" y="-40">
118 command == read_private ||

119 command == write_private

120 </label>

121 <label kind="synchronisation" x="16" y="-8">
122 read?

123 </label>

124 </transition>

125 <transition>

126 <source ref="id4" />

127 <target ref="id3" />

128 <label kind="guard" x="-40" y="-256">
129 command == close_public

130 </label>

131 <label kind="synchronisation" x="16" y="-232">
132 read?

133 </label>

134 <nail x="120" y="-232" />

135 </transition>

136 <transition>

137 <source ref="idb5" />

138 <target ref="id4" />

139 <label kind="guard" x="-48" y="-144">
140 command == read_public ||

141 command == write_public

142 </label>

143 <label kind="synchronisation" x="8" y="-112">
144 read?

145 </label>

146 </transition>

147 <transition>

148 <source ref="id6" />

149 <target ref="id2" />

150 <label kind="guard" x="-312" y="-8">
151 command == open_private

152 </label>

153 <label kind="synchronisation" x="-248" y="8">
154 read?

155 </label>

156 <nail x="-288" y="-8" />

157 </transition>

158 <transition>

159 <source ref="id6" />

160 <target ref="id5" />

161 <label kind="guard" x="-312" y="-136">
162 command == open_public

163 </label>

164 <label kind="synchronisation" x="-248" y="-112">
165 read?

166 </label>

167 <nail x="-288" y="-112" />
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168
169

</transition>

</template>

Listing B.3: Uppaal source code of FSMImplementationProcess

<template>

<name x="5" y="5">User</name>
<declaration></declaration>

<location id="id11"

x="-824" y="—368">

<name x="-834" y="-398">i</name>

</location>
<location id="idi12"
<name x="-730"
</location>
<location id="id13"

x="-720" y="—208">

y="-238">h</name>

x="-704" y="—128">

<name x="-714" y="-158">g</name>

</location>
<location id="id14"
<name x="-1002"
</location>
<location id="id15"
<name x="-1266"
</location>
<location id="id1ié"
<name x="-1210"
</location>
<location id="id17"
<name x="-770"
</location>
<location id="idi18"

x="-992" y="—128">
y="-158">f</name>

x="-1256" y="-128">
y="-158">e</name>

x="-1200" y="-200">
y="-230">d</name>

x="-760" y=u_424u>

y="-454">j</name>

x="-704" y="—480">

<name x="-714" y="-510">k</name>

</location>
<location id="id19"
<name x="-1266"
</location>
<location id="id20"
<name x="-1226"
</location>
<location id="id21"
<name x="-1162"
</location>
<location id="id22"
<name x="-1002"
</location>
<init ref="id22" />
<transition>

x="-1256" y="-480">
y="-510">c</name>

x="-1216" y="-424">
y="-454">b</name>

x="-1152" y="-368">
y="-398">a</name>

x="-992" y="—328">
y="-358">s</name>

<source ref="id21" />
<target ref="id22" />

<label kind="synchronisation"

read?
</label>
<nail x="-1152"
</transition>
<transition>

y=||_3:|_2|| />

<source ref="id20" />
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51
52
53
54
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
<nail x="-1216" y="-288" />
</transition>
<transition>
<source ref="id19" />
<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
<nail x="-1256" y="-256" />
</transition>
<transition>
<source ref="id18" />
<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
<nail x="-704" y="-264" />
</transition>
<transition>
<source ref="id17" />
<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
<nail x="-760" y="-304" />
</transition>
<transition>
<source ref="id11" />
<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
<nail x="-824" y="-328" />
</transition>
<transition>
<source ref="id12" />
<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id13" />
<target ref="1id22" />
<label kind="synchronisation"
read?
</label>
<nail x="-704" y="-256" />
</transition>
<transition>
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x="-1208"
x="-1248"
x="-752"
x="-800"
x="-896"
x="-880"
x="-752"

y="-320">
y="-288">
y="-304">
y="-336">
y="-352">
y="-264">
y="-256">



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

<source ref="id14" />
<target ref="id22" />

<label kind="synchronisation" x="-984" y="-208">

read?
</label>
</transition>
<transition>
<source ref="id15" />
<target ref="1id22" />

<label kind="synchronisation" x="-1248" y="-184">

read?
</label>
<nail x="-1256" y="-232" />
</transition>
<transition>
<source ref="id16" />
<target ref="1id22" />

<label kind="synchronisation" x="-1072" y="-288">

read?
</label>
<nail x="-1176" y="-240" />
</transition>
<transition>
<source ref="id22" />
<target ref="id11i" />

<label kind="synchronisation" x="-920" y="-392">

user_action!

</label>

<label kind="assignment" x="-944" y="-408">
command = write_private

</label>

<nail x="-944" y="-368" />
</transition>
<transition>
<source ref="id22" />
<target ref="id12" />

<label kind="synchronisation" x="-848" y="-192">

user_action!

</label>

<label kind="assignment" x="-896" y="-208">
command = seek_position

</label>

<nail x="-896" y="-208" />
</transition>
<transition>
<source ref="id22" />
<target ref="id13" />

<label kind="synchronisation" x="-784" y="-104">

user_action!

</label>

<label kind="assignment" x="-800" y="-120">
command = copy

</label>

<nail x="-864" y="-128" />
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159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

</transition>
<transition>
<source ref="id22" />
<target ref="id14" />

<label kind="synchronisation" x="-984" y="-104">

user_action!

</label>

<label kind="assignment" x="-1024" y="-120">
command = share_content

</label>

<nail x="-888" y="-128"

</transition>
<transitiomn>
<source ref="id22" />
<target ref="id15" />

/>

<label kind="synchronisation" x="-1168" y="-152">

user_action!

</label>

<label kind="assignment" x="-1200" y="-168">
command = close_public

</label>

<nail x="-1016" y="-128"

</transition>
<transition>
<source ref="id22" />
<target ref="id16" />

/>

<label kind="synchronisation" x="-1144" y="-224">

user_action!

</label>

<label kind="assignment" x="-1176" y="-240">
command = close_private

</label>

<nail x="-1016" y="-200"

</transition>
<transition>
<source ref="id22" />
<target ref="id17" />

/>

<label kind="synchronisation" x="-872" y="-448">

user_action!

</label>

<label kind="assignment" x="-904" y="-464">
command = write_public

</label>

<nail x="-936" y="-424"

</transition>
<transition>
<source ref="id22" />
<target ref="id18" />

/>

<label kind="synchronisation" x="-864" y="-504">

user_action!

</label>

<label kind="assignment" x="-904" y="-520">
command = read_private

</label>
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213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

<nail x="-944" y="-480" />
</transition>
<transition>
<source ref="id22" />
<target ref="id19" />

<label kind="synchronisation" x="-1152" y="-504">

user_action!

</label>

<label kind="assignment" x="-1184" y="-520">
command = read_public

</label>

<nail x="-976" y="-480" />
</transition>
<transition>
<source ref="id22" />
<target ref="id20" />

<label kind="synchronisation" x="-1152" y="-448">

user_action!

</label>

<label kind="assignment" x="-1176" y="-464">
command = open_private

</label>

<nail x="-992" y="-424" />
</transition>
<transition>
<source ref="id22" />
<target ref="id21" />

<label kind="synchronisation" x="-1120" y="-392">

user_action!

</label>

<label kind="assignment" x="-1160" y="-408">
command = open_public

</label>

<nail x="-1096" y="-368" />
</transition>
</template>

Listing B.4: Uppaal source code of user process

<template>

<name x="5" y="5">UserPublic</name>

<declaration></declaration>

<location id="id28" x="-1000" y="-528">
<name x="-1010" y="-558">a</name>

</location>

<location id="id29" x="-1224" y="-528">
<name x="-1234" y="-558">s</name>

</location>

<location id="id30" x="-864" y="-440">
<name x="-874" y="-470">i</name>

</location>

<location id="id31" x="-864" y="-352">
<name x="-874" y="-382">h</name>

</location>

<location id="id32" x="-968" y="-312">
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17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70

<name x="-978" y="-342">g</name>

</location>
<location id="id33"
<name x="-1202"
</location>
<location id="id34"
<name x="-1304"
</location>
<location id="id35"
<name x="-1002"
</location>
<location id="id36"
<name x="-1194"
</location>
<location id="id37"
<name x="-1304"
</location>
<location id="id38"
<name x="-1090"
</location>
<init ref="id29" />
<transition>

x="-1192" y="-312">
y="-342">f</name>

x="-1280" y="-376">
y="-384">e</name>

X=" _992" y:" _480l|>
y="-510">j</name>

x="-1184" y="-472">
y="-502">c</name>

x="-1280" y="-408">
y="-424">d</name>

x="-1080" y="-408">
y="-438">b</name>

<source ref="id28" />
<target ref="id38" />

<label kind="synchronisation"

read?
</label>

</transition>
<transition>

<source ref="id29" />
<target ref="id28" />

<label kind="synchronisation"

user_action!

</label>

<label kind="assignment" x="-1192"
command = open_public

</label>

</transition>
<transition>

<source ref="id30" />
<target ref="id38" />

<label kind="synchronisation"

read?
</label>

</transition>
<transition>

<source ref="id38" />
<target ref="id30" />

<label kind="synchronisation"

user_action!

x="-1152"

x="-952"

x="-1008" y="-520">

y="-552">

y=n_568n>

y=u_432u>

x="-840" y=n_408n>

</label>

<label kind="assignment" x="-856" y="-424">
command = write_private

</label>
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71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

<nail x="-864" y="-384" />
<nail x="-864" y="-416" />
</transition>
<transition>
<source ref="id37" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id36" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id35" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id31" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id32" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id33" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id34" />
<target ref="id38" />
<label kind="synchronisation"
read?
</label>
</transition>
<transition>
<source ref="id38" />
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x="-1240" y="-432">

x="-1128" y="-456">

x="-1016" y="-464">

x="-936" y=|| -360">

x="-1048" y="-352">

x="-1144" y="-360">

x="-1240" y="-384">



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

<target ref="id31" />
<label kind="synchronisation" x="-840" y="-328">
user_action!

</label>

<label kind="assignment" x="-856" y="-344">
command = seek_position

</label>

<nail x="-864" y="-296" />

</transition>
<transition>

<source ref="id38" />

<target ref="id32" />

<label kind="synchronisation" x="-1040" y="-288">
user_action!

</label>

<label kind="assignment" x="-1056" y="-304">
command = copy

</label>

<nail x="-1072" y="-312" />

</transition>
<transition>

<source ref="id38" />

<target ref="id33" />

<label kind="synchronisation" x="-1168" y="-288">
user_action!

</label>

<label kind="assignment" x="-1232" y="-304">
command = share_content

</label>

<nail x="-1096" y="-312" />

</transition>
<transition>

<source ref="id38" />

<target ref="id34" />

<label kind="synchronisation" x="-1352" y="-312">
user_action!

</label>

<label kind="assignment" x="-1392" y="-328">
command = close_public

</label>

<nail x="-1280" y="-328" />

</transition>
<transition>

<source ref="id38" />

<target ref="id35" />

<label kind="synchronisation" x="-904" y="-488">
user_action!

</label>

<label kind="assignment" x="-936" y="-504">
command = write_public

</label>

<nail x="-920" y="-448" />
<nail x="-920" y="-480" />

</transition>
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179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

<transition>

<source ref="id38"
<target ref="1d36"

/>
/>

<label kind="synchronisation" x="-1
user_action!
</label>
<label kind="assignment" x="-1184"
command = read_public
</label>
<nail x="-1080" y="-472" />
</transition>
<transition>
<source ref="id38" />
<target ref="id37" />
<label kind="synchronisation" x="-1
user_action!
</label>
<label kind="assignment" x="-1352"

command =
</label>
<nail x="-1280"
</transition>
</template>

Listing B.5: Uppaal source code of user process limited to public file operations

<template>

open_public

y=|| _472" />

<name x="5" y="5">UserPrivate</name>
<declaration>// Place local declarations here.

</declaration>
<location id="id39"
<name x="-1930"
</location>
<location id="id40"
<name x="-2122"
</location>
<location id="id41"
<name x="-1682"
</location>
<location id="id42"
<name x="-1874"
</location>
<location id="id43"
<name x="-2026"
</location>
<location id="id44"
<name x="-1738"
</location>
<location id="id45"
<name x="-2026"
</location>
<location id="id46"
<name x="-1874"
</location>

<init ref="id40" />

x="-1920" y="-280">
y="-310">a</name>

x="-2112" y="-280">
y="-310">s</name>

x="-1672" y="-352">
y="-382">d</name>

x="-1864" y="-312">
y="-342">e</name>

x="-2016" y="-320">
y="-350">f</name>

x="-1728" y="-464">
y="-494">c</name>

Xx="-2016" y="-464">
y="-494">g</name>

x="-1864" y="-408">
y="-438">b</name>
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

<transition>
<source ref="id39" />
<target ref="id46" />

<label kind="synchronisation" x="-1944" y="-336">
read?
</label>
</transition>
<transition>
<source ref="id40" />
<target ref="id39" />
<label kind="synchronisation" x="-2064" y="-264">
user_action!
</label>
<label kind="assignment" x="-2096" y="-280">
command = open_private
</label>
</transition>
<transition>
<source ref="id45" />
<target ref="id46" />
<label kind="synchronisation" x="-1984" y="-440">
read?
</label>
</transition>
<transition>
<source ref="id44" />
<target ref="id46" />
<label kind="synchronisation" x="-1816" y="-464">
read?
</label>
</transition>
<transition>
<source ref="id41" />
<target ref="id46" />
<label kind="synchronisation" x="-1736" y="-360">
read?
</label>
</transition>
<transition>
<source ref="id42" />
<target ref="id46" />
<label kind="synchronisation" x="-1856" y="-368">
read?
</label>
</transition>
<transition>
<source ref="id43" />
<target ref="id46" />
<label kind="synchronisation" x="-1936" y="-368">

read?
</label>
</transition>
<transition>
<source ref="id46" />
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84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

<target ref="id41" />
<label kind="synchronisation" x="-1664" y="-416">
user_action!

</label>

<label kind="assignment" x="-1744" y="-432">
command = write_private

</label>

<nail x="-1672" y="-408" />

</transition>
<transition>

<source ref="id46" />

<target ref="id42" />

<label kind="synchronisation" x="-1792" y="-296">
user_action!

</label>

<label kind="assignment" x="-1832" y="-312">
command = seek_position

</label>

<nail x="-1776" y="-368" />
<nail x="-1776" y="-312" />

</transition>
<transition>

<source ref="id46" />

<target ref="id43" />

<label kind="synchronisation" x="-2136" y="-368">
user_action!

</label>

<label kind="assignment" x="-2184" y="-384">
command = close_private

</label>

<nail x="-2016" y="-400" />

</transition>
<transition>

<source ref="1id46" />

<target ref="1id44" />

<label kind="synchronisation" x="-1832" y="-544">
user_action!

</label>

<label kind="assignment" x="-1864" y="-560">
command = read_private

</label>

<nail x="-1856" y="-520" />
<nail x="-1728" y="-520" />

</transition>
<transition>

<source ref="id46" />

<target ref="id45" />

<label kind="synchronisation" x="-2016" y="-544">
user_action!

</label>

<label kind="assignment" x="-2056" y="-560">
command = open_private

</label>

<nail x="-1944" y="-520" />
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138 <nail x="-2016" y="-520" />
139 </transition>
140 </template>

Listing B.6: Uppaal source code of user process limited to private file operations

1 <template>

2 <name x="5" y="5">Reader</name>

3 <declaration></declaration>

4 <location id="id7" x="-840" y="-232">
) <name x="-840" y="-216">a</name>
6

7

8

</location>
<location id="id8" x="-840" y="-344">
<name x="-850" y="-374">s</name>

9 </location>

10 <init ref="id8" />

11 <transition>

12 <source ref="id7" />

13 <target ref="id8" />

14 <label kind="synchronisation" x="-800" y="-304">
15 read!

16 </label>

17 <nail x="-808" y="-288" />

18 </transition>

19 <transition>

20 <source ref="id8" />

21 <target ref="id7" />

22 <label kind="synchronisation" x="-976" y="-304">
23 next_command?

24 </label>

25 <nail x="-872" y="-288" />

26 </transition>

27 </template>

Listing B.7: Uppaal source code of reader

1 <template>

2 <name x="5" y="5">Writer</name>

3 <declaration></declaration>

4 <location id="id9" x="-1000" y="-416">
) <name x="-1000" y="-400">a</name>

6 </location>

7 <location id="id10" x="-1000" y="-520">
8

<name x="-1010" y="-550">s</name>
9 </location>
10 <init ref="idi10" />
11 <transition>
12 <source ref="id9" />
13 <target ref="id10" />
14 <label kind="synchronisation" x="-968" y="-488">
15 next_command!
16 </label>
17 <nail x="-968" y="-472" />
18 </transition>
19 <transition>
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20 <source ref="id10" />

21 <target ref="id9" />

22 <label kind="synchronisation" x="-1120" y="-488">
23 user_action?

24 </label>

25 <nail x="-1032" y="-472" />

26 </transition>

27 </template>

Listing B.8: Uppaal source code of writer

1 <system>

2 FSMImplementationProcess = FSMImplementation();
3 FSMRequiredProcess = FSMRequired ();

4 ReaderProcess = Reader ();

5 WriterProcess = Writer ();
6

7

8

// What User process will be used

UserProcess = User ();
9 //UserProcess = UserPublic();
10 //UserProcess = UserPrivate();
11
12 // List one or more processes to be composed into a system.
13 system FSMImplementationProcess, FSMRequiredProcess,
14 ReaderProcess, WriterProcess, UserProcess;

15 </system>

Listing B.9: Uppaal source code of system definition
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