
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

DYNAMIC MESH NETWORK IMPLEMENTED
IN MICROPYTHON ON TOP OF ESP-NOW
PROTOCOL
DYNAMICKÁ MESH SÍŤ V MICROPYTHONU VYUŽÍVAJÍCÍ ESP-NOW PROTOCOL

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. JINDŘICH ŠESTÁK
AUTOR PRÁCE

SUPERVISOR Mgr. KAMIL MALINKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Master's Thesis Specification |||||||||||||||||||||||||
24845

Student: Šesták Jindřich, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Computer Networks
Title: Dynamic Mesh Network Implemented in Micropython on Top of ESP-NOW

Protocol
Category: Security
Assignment:

1. Study existing secure loT mesh protocols (802.11s, Bluetooth mesh, ESP-WIFI-MESH,
painlessMesh), focus on comparison of various approaches.

2. Design a self-organizing mesh network protocol that allows nodes to be connected without
the need for a predefined structure (at least 10 nodes). The protocol will support two modes:
stand-alone and connected to an external network.

3. Implement the proposed protocol and demo project. The implementation should be available
for the micropython port on the ESP32 series of MCUs.

4. Test and evaluate its effectiveness. Demonstrate a function of the protocol on a selected use
case such as automatic light control for large spaces. Evaluate your results and suggest
possible improvements/extensions.

Recommended literature:
• ESP-WIFI-MESH https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-

guides/mesh.html
• ESP-BLE-MESH https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/esp-

ble-mesh/ble-mesh-index.html
• PainlessMesh https://gitlab.eom/painlessMesh/painlessMesh/-/wikis/home
• 802.11s https://www.ieee802.Org/802_tutorials/06-November/802.11s_Tutorial_r5.pdf
• Micropython foresp32 https://docs.micropython.org/en/latest/esp32/quickref.html
• ESP-NOW https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

reference/network/esp_now.html
• The Raft Consensus Algorithm https://raft.github.io/

Requirements for the semestral defence:
• Items 1 and 2

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malinka Kamil, Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: November 3, 2021

Master's Thesis Specification/24845/2021/xsesta05 Page 1/1

https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/esp-
https://gitlab.eom/painlessMesh/painlessMesh/-/wikis/home
https://www.ieee802.Org/802_tutorials/06-November/802.1
https://docs.micropython.org/en/latest/esp32/quickref.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
https://raft.github.io/
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to create a dynamic mesh network using E S P 3 2 microcontrollers
for IoT and sensor networks. The mesh consists of several nodes interconnected i n a tree
structure and is able to overcome node failures. This is fulfilled by creating a new mesh
solution that is able to operate wi th and without an Internet connection. The use of
M i c r o P y t h o n enables asynchronous operations to be run in a non-blocking manner. The
project is buil t on top of two protocols, proprietary E S P - N O W and common W i F i . The
solution brings possibilities for quick mesh applicat ion development, but it is l imi ted by
memory consumption. The functionality was tested by the creation of a demo applicat ion
wi th three pract ical scenarios for home use.

Abstrakt
Cílem t é t o p r á c e je vy tvo ř i t fungující dynamickou mesh síť na E S P 3 2 microkontrolerech
pro využ i t í v IoT a senzorových sí t ích. Mesh síť se s k l á d á z někol ika uz lů mezi sebou propo
jených do s t r omové s t ruktury a je schopna se v y p o ř á d a t i z p á d e m k te rého l iv z uz lů . To je
za j i š těno v y t v o ř e n í m nového mesh řešení , k t e r é je schopno fungovat s p ř i p o j e n í m k Inter
netu i bez p ř ipo jen í . P o u ž i t í M i c r o P y t h o n umožňu je a s y n c h r o n n í zp racován í neblokuj íc ím
z p ů s o b e m . Projekt je postaven p o m o c í dvou komun ikačn í ch p ro toko lů , p r o p r i e t á r n í h o E S P -
N O W a b ě ž n é W i F i komunikace. Řešen í p ř ináš í možnos t i rych lého vývoje mesh apl ikací ,
ale je si lně l imi továno p a m ě t í m ik rokon t ro l e rů . F u n k č n o s t řešení by la o t e s t o v a n á p o m o c í
v y t v o ř e n é demo aplikace se sadou t ř ech tes tovac ích s céná řů pro d o m á c í použ i t í .

Keywords
Mesh network, E S P 3 2 microcontroller, E S P - N O W protocol, IoT, Espressif, M i c r o P y t h o n ,
sensor networks, mesh applicat ion

Klíčová slova
Mesh síť, E S P 3 2 mikrokontroler, E S P - N O W protocol, IoT, Espressif, M i c r o P y t h o n , sen
zorové síťě, mesh aplikace

Reference
Š E S T Á K , J ind ř i ch . Dynamic mesh network implemented in micropython on top of ESP-
NOW protocol. Brno , 2022. Master 's thesis. Brno Univers i ty of Technology, Facul ty of
Information Technology. Supervisor M g r . K a m i l M a l i n k a , P h . D .

Rozšířený abstrakt
Cílem t é t o p r á c e je navrhnout nové řešení pro mesh s í tě na mik roč ipech E S P 3 2 pro senzorové
a IoT s í tě a p ř e d e v š í m pro rychlý a s n a d n ý vývoj mesh apl ikac í . P o ž a d a v k e m na řešení
je, aby jej bylo m o ž n é uplatnit jak v s a m o s t a t n é m m ó d u bez p ř í s t u p u k dalš í sí t i , tak
v m ó d u p ř i p o j e n é m k Internetu. Tato n a v r ž e n á mesh síť se s k l á d á z někol ika uz lů mezi
sebou p ropo jených do s t r omové s t ruktury a je schopna se v y p o ř á d a t i z p á d e m k te réhokol i
z uzlu .

P r á c e byla z a d a n á firmou Espressif Systems (Czech) s.r.o. (dá le jen Espressif) a ta si
vy tyč i la u rč i t é požadavky . J e d n í m z nich je použ i t í b e z d r á t o v é h o p r o p r i e t á r n í h o protokolu
E S P - N O W za loženého na Management W i F i r ámc ích . D r u h ý m p o ž a d a v k e m bylo použ i t í
M i c r o P y t h o n u . M i c r o P y t h o n je vysokoúrovňový jazyk a nab íz í velmi s n a d n ý a rych lý vývoj
apl ikací . Současně je c í lem t é t o p ráce zjistit jeho l imi ty a možnos t i ve svě tě ves tavěných
s y s t é m ů na mik roč ipech E S P 3 2 . Jsem si vědom, že pro vývoj takto n á r o č n ý c h s y s t é m u jsou
vhodně j š í progr, ve k t e rých již exis tuj í řešení mesh sys t ému .

V r á m c i p r á c e byly p r o s t u d o v á n y a k t u á l n í řešení mesh sí t í a by ly p o u ž i t y pro p řeh led
v l a s t n o s t í a ná s l edný v ý b ě r konk ré tn í ch p o ž a d a v k ů pro m é řešení . S t r o m o v á topologie byla
v y b r á n a pro lepší p ř e h l e d n o s t a m e n š í p o č e t spo jen í mezi uzly. Spolu s t í m t o krokem je
n e z b y t n é mí t v sít i cen t r á ln í kořenový uzel. V kombinaci s touto topologi í je v h o d n é použ í t
směrován í z p r á v s m ě r e m k cíli n a m í s t o p r i m i t i v n í h o broadcastu za úče lem snížení p o č t u
zp ráv na sít i .

Mé řešení je postaveno na dvou protokolech, E S P - N O W a b ě ž n é W i F i . Výše z m í n ě n ý
E S P - N O W protokol, je v y ž á d á n v z a d á n í . P r o velikost z p r á v pouze 250 b y t ů je použ i t
pouze ke s b ě r u informací o o s t a t n í c h uzlech a jako zák l ad pro s a m o t n é formování stromu.
V jeho režii je k r o m ě j i ného i p ř í p r a v a a p ř idáván í nových m i k r o č i p ů do mesh s í tě . Tento
proces se nazývá Provis ioning a je č a s t ý m p r o b l é m e m IoT zař ízení . V m é p rác i jsem navrhl
nový protokol Mesh Protected Setup (M P S) u rčen spec iá lně pro p ř i dáván í nových uzlů.
P o p o u h é m s t i sknu t í t l a č í t k a je M P S proces ak t ivován a dojde k p ř e d á n í t a j n é h o mesh
klíče n o v é m u uzlu . Ten p o m o c í tohoto klíče m ů ž e komunikovat s o s t a t n í m i uzly v mesh
síti .

P o d pravomoc E S P - N O W protokolu s p a d á i volba kořenového uzlu . V n á v r h u řešení je
p o p s á n o jak by m ě l a volba kořenového uz lu p r o b í h a t , avšak z d ů v o d ů kompl ikaci s firmwarem,
je tento proces pouze s imulován a kořenový uzel je definován staticky v konf iguračn ím
souboru.

D r u h ý m protokolem je W i F i k o m u n i k a č n í protokol. Řešen í využ ívá vlastnosti m i k r o č i p ů
E S P 3 2 , k t e r é d i sponuj í d v ě m a W i F i r o z h r a n í m i . Jedno r o h r a n í je pro ro l i stanice a d r u h é
funguje jak p ř í s t u p o v ý bod (A P) nebo-li W i F i router. W i F i protokol slouží p ř e d e v š í m
pro tvorbu s t r omové struktury. D íky jeho m o ž n o s t i p ř e n á š e t až 1500 b y t ů dat je v y b r á n
i pro p ř e n o s dat už iva te l em definované aplikace. W i F i spo jen í mezi j e d n o t l i v ý m i uzly
se zač íná formovat teprve až se zvolí kořenový uzel. Ten jako p r v n í poš le své W i F i úda je
s y n o v s k ý m uzlů a ty se př ipo j í k jeho A P r o z h r a n í a t í m vznikne hrana mezi uz ly ve s t romové
s t r u k t u ř e .

Mesh síť se u m í vyrovnat s p á d e m kteréhokol i z uz lů . K detekci p á d u o tcovského
uzlu dojde do 10 sekund, což je nás ledováno k o m p l e t n í m restartem uzlu . Detekce p á d u
synovského uz lu je složitější a je na n i t ř e b a 26 až 30 sekund. Po p á d u synovského uz lu
je z m ě n a o s t r u k t u ř e p r o p a g o v a n á a nás ledníc i m r t v é h o uz lu mohou bý t opě t za řazen i
do s t r omové s t ruktury na j i n é m mís tě .

P ro ověření funkčnost i v y t v o ř e n é mesh s í tě byla i m p l e m e n t o v á n a i j e d n o d u c h á demon
s t r ačn í aplikace. T a k a ž d é m u uz lu n á h o d n ě vybere barvu L E D diody a po stisku t l a č í t k a

je tato barva p ř e p o s l á n a o s t a t n í m u z l ů m s í tě , k t e r é začnou sví t i t stejnou barvou. Tato
aplikace funguje i jako vzor pro tvorbu už iva te l ských p r o j e k t ů pro fungování na t é t o mesh
síti .

V p rác i bylo ověřeno, že řešení funguje a mesh síť je opravdu schopna se vyrovnat
s p á d e m n ě k t e r é h o z uzlů . P r o g r a m o v á n í v M i c r o P y t h o n je velice s n a d n é , ale nen í bez
p r o b l é m ů . Kvůl i š p a t n é k o m p a t i b i l i t ě firmwaru na mik roč ipy E S P 3 2 - B u d d y a verzích M i
c roPython se m i n e p o d a ř i l o použ í t 4 M B ex t e rn í P S R A M p a m ě t i . Zp ř í s t upn i l jsem pouze
111 K B R A M p a m ě t i pro haldu v M i c r o P y t h o n u . Tento l imi t z n a č n ě omezuje výs ledky
p ráce . M ý m t e s t o v á n í m jsem ověřil plnu funkčnost a s tabi l i tu na 6 uzlech př i provozu 24
hodin. Ve scénář ích jsem uzly odpojoval a zase př ipo jova l abych ověřil schopnost v y r o v n á n í
se s p á d e m uzlu a p r ů b ě ž n ě měn i l barvy L E D diody p o m o c í d e m o n s t r a č n í aplikace. Bohuže l
už př i 7 uzlech docháze lo v důs l edku neefekt ivního využ íván í p a m ě t i k c h y b á m a samovol
n é m u restartu uz lů v důs l edku nedostatku p r o s t ř e d k ů pro zp racován í velkého m n o ž s t v í
zp ráv . P ř e d p o k l á d á m , že o p r a v e n í m chyby kompat ib i l i ty firmwaru by mesh síť mohla fun
govat na mnohem více uzlech. Avšak řešení v M i c r o P y t h o n n e m ů ž e d o s á h n o u t kapacity
jako a k t u á l n í řešení v jazyce C , j ehož m o ž n o s t í je p ropo jen í až 1000 uzlů .

I p ře s p r o b l é m y s m n o ž s t v í m uzlů , je řešení v h o d n é pro rych lý n á v r h a odzkoušen í
aplikace pro tvorbu p r o t o t y p ů finálních řešení na j iných p l a t fo rmách . N á v r h mesh sí tě
popisuje nové způsoby volby kořene a v y t v o ř e n ý M P S protokol pro provisioning je s n a d n ý
způsob d y n a m i c k é h o p ř idáván í nových uz lů do s í tě . Až na n e d o s t a t e č n ý p o č e t uz lů , je
z a d á n í sp lněno . Řešen í je p o r t o v a t e l n é na mikrokontrolery rodiny E S P 3 2 z d ů v o d u použ i t í
p r o p r i e t á r n í h o protokolu E S P - N O W a l i m i t u p a m ě t i .

Dynamic mesh network implemented in micropy-
thon on top of E S P - N O W protocol

Declaration
I hereby declare that this Diploma 's thesis was prepared as an original work by the author
under the supervision of M g r . K a m i l M a l i n k a P h . D . and I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

J ind ř i ch Šes t ák
M a y 16, 2022

Acknowledgements
I would like to thank my supervisor M g r . K a m i l M a l i n k a P h . D . for his help i n this project.
M y thanks also belong to M r . Sergei Silnov who was my external consultant from company
Espressif for his comments and remarks and engagement through out the whole project.

Contents

1 Introduction 3

2 Mot ivat ion 4

3 Espressif tools 6

3.1 E S P 3 2 microcontroller 6
3.1.1 Specification 6
3.1.2 W i F i module 8

3.2 E S P - N O W protocol 9
3.2.1 Frame format 9
3.2.2 Funct ional i ty 10

4 M i c r o P y t h o n 12
4.1 Overview 12
4.2 Libraries and modules 12
4.3 Async io 13

5 State of the art 15
5.1 Mesh network 15

5.1.1 Topology 15
5.1.2 Abi l i t ies of mesh 16
5.1.3 Standard 802.11s 17

5.2 E S P - W I F I - M E S H 19
5.2.1 Topology 19
5.2.2 Root election 20
5.2.3 Mesh formation 20
5.2.4 Rou t ing 21

5.3 PainlessMesh 21
5.3.1 Topology 21
5.3.2 Root election 21
5.3.3 Mesh formation 22
5.3.4 Rou t ing 22

5.4 E S P - B L E - M E S H 23
5.4.1 Topology 23
5.4.2 M e s h formation 23
5.4.3 Rou t ing 23

5.5 Summary 23

1

6 M e s h Protocol Design 26
6.1 Specification 26
6.2 Overview 28
6.3 Topology 3 0

6.4 Mesh Format ion 30
6.5 Root Node election 31
6.6 Rou t ing 32
6.7 Self-healing 33

7 Implementation 35
7.1 Concept 35
7.2 E S P - N O W Core 36
7.3 W I F I Core 39
7.4 Demo App l i ca t i on 41
7.5 Other useful modules 42
7.6 Use and deployment 43

8 Testing and limitations 44
8.1 Tests 44
8.2 Compar ison wi th existing solution 47

8.3 L i m i t s and improvements 48

9 Conclusion 50

Bibl iography 51

A Contents of the D V D 54

2

Chapter 1

Introduction

Smart devices and smart homes are increasingly popular nowadays. A smart device is
a device connected to a network that can be managed remotely. A m o n g these devices
belong smart electronic devices like washing machines, heat control, and others. M a n y
technologies focus on developing smart homes and connecting devices together. Networks
of many devices are called mesh networks. Another use of the mesh network is for sensor
monitoring. Such technology can be used for better i rr igat ion of crop fields, temperature
control i n warehouses, or effective light control in offices.

Currently, there are many solutions for mesh networks connecting smart devices. These
solutions are not compatible and often use special and expensive devices w i th new special
ized standards that programmers have to learn. Some solutions are developed on cheap
microcontrollers and use a common W i F i connection. However, these solutions are not
versatile enough.

In this thesis, there are proposed new mesh network protocols for connecting small
and inexpensive microcontrollers from the E S P 3 2 family. Th is solution promises the au
tonomous function of devices online and offline, al lowing devices to function in remote areas
without the Internet connection.

The goal of this thesis is to design a new mesh network protocol that maintains micro
controllers E S P 3 2 and connects them. These connected devices can run applications such
as light control in warehouses. It aims to develop a single approach of managing devices
connected to the Internet as well as a stand-alone network of devices in remote areas wi th
out an Internet connection. The proposed mesh should be able to operate on its own and
even overcome failures of some microcontrollers and continue working. It attempts to create
a platform for quick and easy prototype development of mesh applications.

In the chapter 3 there is a description of a microcontroller E S P 3 2 and E S P - N O W
communicat ion protocol which are used for mesh creation. Mesh networks, principles, and
existing solutions for E S P 3 2 microcontrollers are described i n chapter 5.1. Th is chapter
offers a summary of three existing solutions and a debate on specific aspects of each solution,
which is followed by my own proposed mesh design, including explanations of several key
parts and overall functionality. Based on the design, the implementat ion i n M i c r o P y t h o n
is described in detail in its own chapter 7. Testing and evaluation of the designed network
can be found in chapter 8.

3

Chapter 2

Motivation

In recent years, there is a boom in smart home devices and the Internet of Things i n general.
M a n y companies are t ry ing to develop their functioning protocols. However, due to lack
of respect and late publishing of the standard, no solution is following i t . Therefore, these
solutions are not compatible. Furthermore, these solutions for E S P 3 2 are not versatile
enough as they often offer mesh networks only i n environments w i th W i F i A P or only
without it.

The mot ivat ion for this project is lack of easy and flexible mesh network solution. M i -
croPython programming language is very popular and it is expected that the programming
community w i l l have interest in this project for use in homes.

The assignment from the company specifies the use of M i c r o P y t h o n as the company
aims to meet the possibilities and l imitat ions of M i c r o P y t h o n on E S P 3 2 boards. M i c r o P y
thon should offer easier reprogramming and improvements for more specific use-cases. The
company also requires to use the proprietary E S P - N O W protocol. Because this protocol is
currently supported only on ESP8266 and E S P 3 2 microchips family, the development aims
only for E S P 3 2 boards and por tabi l i ty on a different platform is not currently possible.

The solution should be automatic and self-organising, meaning that the mesh w i l l
form its connection without prior configuration. Dynamic mesh networks should be able
to act on changes i n the mesh. Meaning the addi t ion of nodes i n the existing mesh is
possible and the mesh w i l l reorganise on node failures, which is called self-healing.

Right now, there are at least three mesh network solutions working on microcontrollers
of family E S P 3 2 [34]. F i r s t , E S P Bluetooth L o w Energy Mesh is based on Bluetooth
technology. In this mesh, nodes are connected to as many devices as they possibly can.
The mesh is without any structure and uses flooding as the only way of t ransmit t ing
messages. PainlessMesh is a l ibrary in C+-1- language that offers smal l and fast deployment
of the mesh using a W i F i interface. Nodes create few connections to other nodes. A n d
the mesh uses routing instead of flooding to reduce number of packets. The th i rd solution
is E S P - W I F I - M E S H , which also uses a W i F i interface i n mesh and routes packets. Th is
solution is more reliable and faster. These solutions are described i n detail i n section 5.
This thesis is note-worthy because it aims to develop single mesh network protocol that
can manage mesh networks connected to W i F i access points or a stand-alone mesh network
without an Internet connection.

A Mesh network is a network in which every node communicates w i th each other. This
can be achieved either by flooding through messages by broadcast or by unicast routing. The
decision to use the routing reduces the number of packets in the network. In a completely
connected mesh network, there would be too many routes between two nodes. In order

4

to reduce this number, a structure is created in the mesh. That structure takes form of
a tree topology, i n which there is only one path between every two nodes. This changes
the meaning of routing a l i t t le and as such it is better to use switching when there is only
one path to choose. A Mesh network that routes the traffic needs a root node, which
manages the mesh and is often connected to the Internet. However, this created an issue
wi th the root node election.

Our solution uses a combination of two technologies. E S P - N O W protocol [28] is used
to collect information about nodes i n the mesh. P r io r to W i F i connection and t ransmit t ing
of data, the mesh is formed based on the collected information from E S P - N O W . The mesh
requires a root node, which can be elected automatical ly using an index based on l ink
quality. After the root node is elected, it manages and directs the further forming of the
mesh. In the process of formation, nodes connect to each other through above mentioned
W i F i . Node is connected to only a subset of nodes it sees and the a im is to form connections
wi th nodes w i t h the best signal.

This project brings another solution to mesh networks for E S P 3 2 microcontrollers. W i t h
the use of M i c r o P y t h o n , it aims to become more popular for community projects and spread
to more users. A new way of forming the mesh is presented. Addi t ional ly , this solution
can work either w i th a connection to the Internet or without it , while there is no need for
manual reconfiguration. The mesh is formed without any prior setup except key credentials.

This work aims to develop a universal solution mainly for home use for I T enthusiasts
and hobbyists. B u t it could be used for quick and easy development of mesh applications
for mock-ups and prototyping.

5

Chapter 3

Espressif tools

This chapter contains descriptions of tools and devices developed by a company Espressif
Systems (Czech) s.r.o. (from now on only Espressif) [35] needed for this thesis. The company
develops low-cost S o C 1 microcontrollers and IoT solutions. These microcontrollers contain
many peripheral interfaces and G P I O s ideal for various scenarios and complex applications.
Th is chapter first overviews an E S P 3 2 microcontroller 3.1. Then there is a description of
an E S P - N o w protocol that provides connectivity between E S P 3 2 microcontrollers i n the
section 3.2.

3.1 ESP32 microcontroller

E S P 3 2 is a series of low-cost and low-power SoC that has wireless connectivity through W i F i
and Bluetooth . This series of microcontrollers was introduced i n 2016. It is a successor of
the former microcontroller E S P 8 6 6 . The newer E S P 3 2 has bigger memory, better C P U , and
better management of wireless interface than the former ESP8266 . M a n y variants of E S P 3 2
boards have been released. There are two different versions of the E S P 3 2 microcontroller
in Figure 3.1 for demonstration. Different versions can have different devices, peripherals,
and some support embedded flash, but they are code-compatible and share the same S D K 2 .
In Figure 3.2 there is a function diagram of E S P 3 2 . It overviews and shows what modules
are there i n E S P 3 2 and what peripherals microcontrollers can operate.

3.1.1 Speci f icat ion

The E S P 3 2 used i n the development and implementat ion of this thesis is specific E S P 3 2 -
B u d d y [33]. E S P 3 2 - B u d d y has an addi t ional 4 M B of S R A M , otherwise, the specification
of core elements of the E S P 3 2 boards family is s imilar . F u l l specification can be found
in ESP32-Series Datasheet [34]. Important features are:

• Wi f i supports standards 802.11 b / g / n , 2.4 G H z and up to 150 M b p s

• Bluetooth v4.2 w i th B L E 3 support

1 SoC - System on Chip is an integrated circuit containing CPU, R A M , storage, and peripheral interfaces
and consumes a little energy.

2 SDK - Software Development Kit is one package or collection of software tools for developing certain
applications.

3 B L E - Bluetooth Low Energy is Bluetooth mode that consumes a little energy. That ensures longer
duration of the device connected to battery.

G

• Processor Xtensa single-/dual-core 32-bit L X 6 microprocessor, operating at 240
M H z

. 448 K B R O M , 520 K B S R A M , 16 K B S R A M in R T C

• 34 programmable G P I O s

• 12-bit A D C w i th up to 16 channels

. two 8-bit D A C

• four SPI, two I2S, two I2C, three U A R T interfaces, P W M modules, H a l l sensor

• Cryptographic hardware acceleration: A E S , S H A - 2 , R S A , E C C , R N G

(a) ESP32-S2-DevKitM-l
with internal WiFi antenna.

Source:4

Figure 3.1: There are many different versions
purchase of microchip only is also available.

(b) ESP32 C A M with
connected camera and SD

card port. Source:5

of E S P 3 2 boards for different purposes, but

Espressif ESP32 Wi-Fi & Bluetooth Microcontroller — Function Block Diagrarr

Clock generator

RF transmit

Cryptographic hardware acceleration

Bluetooth
baseband

Bluetooth
link

controller

Wi-Fi
baseband

Wi-Fi
MAC

Core and memory

Xtensa LX6 microprocessor
32-bit; dual-core or single-core

ROM
Read-only memory

RTC and low-power management subsystem

Ultra-low-power
co-processor

Recovery
memory

Embedded flash memory
:luded In ESP32-PICO-D4 system-in-package QFN rr

Peripheral
interfaces

l2C
Inter-Integra ted Ore

Temperature senso
Internal; range of -40°C to 125"

DAC
Digital-to-analog converter

SPI
Serial Peripheral Interface

SDIO
Secure Digital Input Output

UART

DC
DC

D C
DC

Touch sensors
en capacitive-sensing inputs

SAR ADC
Successive appro*, analog-to-digi ital conv.)

Figure 3.2: Funct ion diagram of E S P 3 2 microcontroller includes modules for C P U and
R A M , cryptography, peripheral interfaces, wireless communications and a low power man
agement subsystem. Source: 6

4https://docs, espressif .com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-
guide-devkitm-1-vl.html

5 h t t p s : //www.nabto.com/guide-to-iot-esp-32

7

https://docs
http://www.nabto.com/guide-to-iot-esp-32

In Figure 3.3 there are the front side and backside of the E S P 3 2 - B u d d y microcontroller.
In addi t ion to the previous specification, E S P 3 2 - B u d d y has useful peripherals such as a tem
perature and humidi ty sensor, L E D diode, an O L E D screen and 16 M B of flash memory
for storage [32]. In addi t ion, it is provided wi th three pushable buttons [33]. E S P 3 2 W i F i
module supports layer two of I S O / O S I communicat ion model using M A C addresses. M A C
addresses are permanently wri t ten into part of the memory and are unique for every E S P 3 2
board. This address is often used as a unique identifier and this project also uses it as
an identifier for each board.

(a) ESP32-Buddy front side (b) ESP32-Buddy back side

Figure 3.3: E S P 3 2 - B u d d y board wi th a description. Source:[33]

3.1.2 W i F i m o d u l e

The W i F i module consists of two interfaces, one station and one access point [34]. The W i F i
can be set i n one of these modes or both simultaneously. The station mode or interface
can connect to the other network, for example, to a W i F i router. Important is that each
board can have only one connection through the station interface to the other network.
O n the other hand, E S P 3 2 can act as an access point, meaning that it w i l l create its own
W i F i network and other W i F i devices can connect to it [25]. It is called Soft access point
because E S P 3 2 does not need to be connected to the Internet and therefore does not have to
provide an Internet connection. It is possible to combine these two approaches and ESP32s
can act as stations and as access points at once and can create the structure of wireless
networks. There is a l imi t of m a x i m u m connected devices to the access point interface to
only 10 nodes, which is mentioned i n question 20 of W i - F i Frequently Asked Questions [37].
In Figure 3.4 there are shown these three modes of W i F i interface operation.

6https://commons, wikimedia. org/wiki/File:Espressif_ESP32_Chip_Function_Block_Diagram. svg

8

https://commons

Station
Access Point

(a) Station mode
can connect to
other networks.

Station
Access Point

Station
Access Point

Station
Access Point

(b) Acces point mode form
its own network.

Station
Access Point

f \
Station

Station
Access Point Access Point

T T

Station
Access Point

Station
Access Point

(c) Combination of two WiFi
interfaces.

Figure 3.4: E S P 3 2 supports three modes of W i F i functionality: station mode, access point
mode and combination of both.

3.2 E S P - N O W protocol

E S P - N O W is a low-power connectionless communicat ion protocol that allows mult iple de
vices to communicate w i th each other without the need for an access point (W i F i router).
The E S P - N O W protocol uses I E E E 802.11 Management Frames [3]. These frames tend to
manage networks and can be sent to devices that are not connected to any access point.
A m o n g Management frames belong such frames as Beaconning message [3], which the access
point sends to announce its presence and SSID to other devices. Pa i r ing between devices
wi th E S P - N O W needs to be done before their communicat ion can start. After pair ing,
the communicat ion can be secure, peer-to-peer, and persistent.[29] The protocol operates
on the second layer of the I S O / O S I communicat ion model and uses M A C addresses for
addressing.

3.2.1 F r a m e format

E S P - N O W is a wireless communicat ion protocol that uses W i F i antennas for t ransmit t ing
small packets. App l i ca t ion data t ransmit ted through E S P - N O W is encapsulated i n a special
Management frame called a Vendor-Specific A c t i o n frame. Due to the smal l size of packets
i n combination wi th connectionless communicat ion and therefore lower t ransmit t ing time,
the protocol is ideal for smart light and sensor networks and other IoT networks.

The format of a Vendor-Specific A c t i o n data frame can be seen i n Figure 3.5. The M A C
header of the packet is not full as defined by 802.11 standards (figure 3.6) but contains only
the first 24 bytes, which represent the following fields: Frame Cont ro l , Dura t ion , Dest inat ion
M A C address, Source M A C address, Basic Service Set I D 7 , Sequence Cont ro l . The rest of
the fields of the vendor-specific frame consists of the following values [28]:

• T h e Category Code field is set to a value 127, that indicates vendor-specific cate
gory.

7Basic Service Set ID is set to broadcast M A C address 0xff:0xff:0xff:0xff:0xff:0xff.

9

MAC Header | Category Code | Organization Identifier | Random Values | Vendor Specific Content | FCS |

7-255 bytes 4 bytes

| Element ID | Length | Organization Identifier | Type | Version | Body |

1 byte 1 byte 3 bytes 1 byte 1 byte 0-250 bytes

Figure 3.5: The format of vendor-specific action frame and of Vendor Specific Content field.
Source: [28]

• T h e Organisation Identifier field has a unique identifier value 0xl8fe34 set by
Espressif.

• T h e R a n d o m Value field contains randomly generated bytes to prevent relay at
tacks.

• T h e Vendor Specific Content

— The Element ID has value of 221 that indicates a vendor specific element.

— The Length is a length of Organisat ion Identifier, Type , Version and Body.

— The Organisat ion Identifier field has value 0xl8fe34 (see upper field).

— The Type has value ^, that is reserved for E S P - N O W .

— The Version field is set to the version of E S P - N O W protocol.

— The B o d y field contains data. Users can define their own data structures to be
sent through E S P - N O W .

• T h e Frame Check Sequence (FCS) is an error-detecting code calculated from the
whole frame.

Frame Duration Address Address Address Sequence Address QoS HT Frame FCS
Control

Duration
1 2 3 Control 4 Control Control Body

FCS

2 Bytes 2 Bytes 6 Bytes 6 Bytes 6 Bytes 0-2Bytes 6 Bytes 0-2Bytes 0-4Bytes <Variable> 4 Bytes

Figure 3.6: 802.11 Generic Frame body.

3.2.2 F u n c t i o n a l i t y

The M A C address of the destination device must be registered before sending any data
through the E S P - N O W protocol. Th is process of registration is called adding a peer. The
same applies to broadcast communicat ion. Address 0xff:0xff:0xff:0xff:0xff:0xff must be also
registered before sending broadcast messages. O n the other hand, to receive data through
the E S P - N O W protocol, there is no need to register the M A C address of the sender. The

10

maximum number of paired devices wi th encrypted communicat ion is six. The total number
of a l l peer devices (encrypted and unencrypted) is twenty.

For the proper working of the protocol, it is necessary to register callback functions
wi th sending and receiving functions. However, these callback functions run in high-priori ty
W i F i tasks and it is recommended to not do t ime-consuming operations i n these callback
functions [28]. E S P - N O W can transmit at most 250 bytes of data i n one packet. W h e n
there is a need to transmit more data i n more packets, it is desirable to wait for the callback
function of the previous sending frame to end.

For packet security, E S P - N O W uses C C M P 8 protocol for packet encryption [1]. How
ever, the sender and receiver must have the same pre-shared key configured. The device
operates wi th P r i m a r y Master K e y P M K and several L o c a l Master Keys . Each key is 16
bytes long [30]. P M K encrypts L M K wi th symmetric block cypher A E S - 1 2 8 . There can be
a m a x i m u m of six L M K keys, meaning that there are at most six encrypted connections be
tween peers. If the L M K key for the peer is not set, encryption of the vendor-specific action
frame is not supported. Broadcast and multicast communicat ion are always unencrypted.

8 C C M P - Counter Mode Cipher Block Chaining Message Authentication Code Protocol or Counter
Mode C B C - M A C Protocol or C C M mode Protocol is the standard encryption protocol in WiFi Protected
Area II (WPA II) standard.

11

Chapter 4

MicroPython

M i c r o P y t h o n is an implementat ion of a Py thon3 programming language optimised to run
on microcontrollers. Some of the core P y t h o n libraries are part of this language, but it
also includes modules that allow low-level hardware access to the programmer. Because
microcontrollers have l imi ted resources of memory and R A M , there are tips and pieces of
advice on how to get the most of the resources 1.

4.1 Overview

The main advantage of M i c r o P y t h o n is the same as that of Py thon , its simplicity. It is easy
to learn and write code. Fans of this project have emerged and created a whole community
dedicated to spreading and evolving M i c r o P y t h o n . Officially, there is only support for
a specialised microchip P y B o a r d , but the community has created support for E S P 3 2 and
ESP2866 microcontrollers.

The whole instal lat ion of M i c r o P y t h o n includes a P y t h o n compiler to bytecode and
a runtime interpreter. The program is compiled to bytecode and then executed. There is
an option to instal l only the runtime interpreter of M i c r o P y t h o n , then it is necessary to
precompile the program to bytecode on other devices. Programs can be wri t ten i n a file
and saved on a device or there is an interactive R E P L 2 available.

A framework E S P - I D F is needed for the instal lat ion of M i c r o P y t h o n on E S P boards.
Detai led instal lat ion of M i c r o P y t h o n is provided as a guide by Espressif company [10].
M i c r o P y t h o n runs as a task under the E S P - I D F . The E S P - I D F framework is buil t on top
of the F r e e R T O S operating system. R T O S (Real-Time Operat ing System) is an operating
system wi th a scheduler of tasks according to their pr ior i ty w i t h cr i t ical ly defined time
constraints. O n l y one task can run at a t ime on one C P U , other tasks must wait.

4.2 Libraries and modules

M i c r o P y t h o n includes many original Py thon3 libraries and modules such as os or time. B u t
due to memory and R A M constraints, some modules are only a subset of original Py thon3
modules and some had to be re-implemented for microcontrollers [8]. A new l ibrary machine

1Tips and advice, how to save R A M and memory https://docs.micropython.org/en/latest/
ref erence/constrained.html.

2 R E P L - Read evaluated print loop is an interactive command-line environment for straight execution of
a program.

12

https://docs.micropython.org/en/latest/

allows access to hardware devices of the microchip and its peripherals that communicate
wi th the outside world. Classes implemented in this l ibrary are for example Pin, ADC and
SPI. For communicat ion wi th other devices, there is a l ibrary bluetooth

The essential l ibrary for this project is the network l ibrary. This module implements
class WLAN that enables communicat ion wi th the network and configuration for station
mode, access point mode and a combination of bo th on the W i F i interface. In station
mode, the board can connect to other networks. Using access point mode, E S P 3 2 can
create its network [14]. Below 4.1 is a smal l example of the code of using a network l ibrary
to configure the W i F i interface i n mode and to connect the device to a W i F i network.

def wlan_connect(ssid=;lMYSSID', password='MYPASS') :
import network
wlan = network.WLAN(network.STA_IF)
i f not wlan.activeO or not wlan.isconnectedO :

wlan.active(True)
print('connecting to:', ssid)
wlan.connect(ssid, password)
while not wlan.isconnectedO :

pass

print('network config:', wlan.ifconfig())

Lis t ing 4.1: Funct ion to connect to a W i F i network using network l ibrary. Source:[14]

4.3 Asyncio

Programming language P y t h o n can be used wi th module asyncio for asynchronous pro
gramming. In M i c r o P y t h o n this module is called uasyncio which implements concurrency.
Concurrency is defined as the abi l i ty of tasks to run i n an overlapping manner [26].

One example of the concept of concurrency is parallel ism on multi-core processors.
In parallelism, mult iple operations are executed at the same time, but each runs on a
different core. P y t h o n implements parallel ism through module multiprocessing.

Another example of concurrency is threading, which is also part of P y t h o n . Threading
is more similar to asyncio than multiprocessing. In this implementat ion of concurrency,
mult iple threads take turns executing their instructions on a single-core processor. Usually,
one process opens mult iple threads. One thread runs for some time and the processor
decides when to switch the content to another thread. Threads have some overhead because
they need more memory and context switching consumes t ime and C P U instructions.

In the implementat ion of concurrency using asyncio (or uasyncio) library, coroutines
are scheduled to run i n an overlapping but non-blocking manner using cooperative mul t i
tasking [26] on single-core processors. A big difference to threading is that the programmer
decides when and where tasks should wait and yield resources like C P U to other tasks. That
means that the task can not be interrupted i n the middle of computing unless it wants to
(the programmer wants to). In this case, programmers do not have to worry about thread
safety by using locks and mutexes to avoid race conditions or deadlocks [5]. In Figure 4.1
there can be seen different approaches to computing on single-core processors.

Asynchronous concurrency is ideal for I / O operations when a programmer knows that
there is an operation that waits for something to happen. For example, when a program in i -

3 h t t p s : //devopedia.org/asynchronous-programming-in-python

13

I/O
Wai t ing Request 1 Request 2 Request 3

CPU
Processing

(a) Single-threaded process

I/O
Wai t ing

C P U
Process ing

Request 1

Request 2

Thread 1

Request 3

Thread 2 '
2 Thread 3

Time-

(b) Multi-threaded process
with GIL acquired by current thread

I/O
Wai t ing

CPU
Processing

Request 1

Request 2
1 > Request 3

>

r * Y

rime •

(c) Single-threaded process
with asyncio

Figure 4.1: Compar ison of different computing concepts. Source: , originally from [5]

tiates H T T P requests to the server, it does not have to wait for a response. It can continue
working on some other tasks and when the program receives a response from an H T T P
server, it can be scheduled to continue working. The programmer defines coroutines and
events for which coroutines have to wait. The controller and manager of tasks is an asyn
chronous event loop. The event loop maintains lists of tasks i n their states (i.e. tasks
ready to run, tasks wait ing, ...) and schedules tasks to continue executing as can be seen
in Figure 4.2.

Figure 4.2: Asynchronous event loop manages asyncio tasks and select task to be run. The
event loop continues un t i l there are no more tasks to run. Source: [18]

Asynchronous computing uses new keywords. K e y w o r d async for asynchronous function
definitions and keyword await for giving up C P U to other tasks. Awai t keyword signals
to the event loop that it is safe to switch the context to another coroutine [18]. It works
similar ly to yield in Py thon , when it does not return, it just yields an actual object and
then continues computing (i.e. generator i n Py thon) .

14

Chapter 5

State of the art

This chapter looks closely at a mesh network wi th a connection to E S P 3 2 boards. F i rs t ,
there is a section about mesh networks as a whole. There is also a short view into the W i F i
standard I E E E 802.11s [2]. Later on, three existing solutions are presented and compared
to get a better view of different approaches. A l though there is an existing standard, neither
of these solutions follows it , main ly because of its complexity and delays i n its publishing.
Therefore, the solutions are vendor specified and not compatible. Th is project focuses only
on wireless technologies, so from now on the terms, Wireless Mesh Network and Mesh
Network w i l l be interchangeable if it is not said otherwise. Very popular solutions of mesh
network protocols and technologies are ZigBee and L o R a W a n , etc., but these are not covered
in this project, because they have their own proprietary I E E E radio standards, other than
Bluetooth or W i F i 802.11.

5.1 Mesh network

A wireless mesh network is a network of nodes that communicate without a physical con
nection like opt ical cable or Ethernet cables U T P 1 . A node i n networking terminology is
a device that can transmit and receive data [39]. Each node can communicate w i t h ev
ery other node in the mesh. Nodes use wireless communicat ion which allows connection
many-to-many without said wires. Cables are not too expensive, but the price of switches
and routers increases wi th the number of available ports, so wireless networks are cheaper
and scalable [15]. In addit ion, w i t h wireless communication, it is much easier to add and
remove a device to a network without the need to physically connect a new device. Some
mesh technologies can extend the range of W i F i access points and offer W i F i connections
to clients that are far away. O r they can work as sensor networks, where many nodes across
a large M l CB. send sensor updates to the mesh.

5.1.1 T o p o l o g y

In a full (true) mesh topology, nodes connect to as many nodes as they can, but this
is usually harder than other implementations. O n the other hand, i n the par t ia l mesh
topology, nodes connect only to a smal l subset of available nodes, so there are not so many
connections.

1 U T P - Unshielded Twisted Pair is a type of wiring when two conductors are twisted together for better
performance.

15

Figure 5.1: Topologies of meshes w i t h 5 nodes: full mesh, par t ia l mesh, tree topology.

Networks can be viewed as a graph, where nodes are vertices and connections between
nodes are edges i n a graph. In graph theory, a full mesh topology represents a complete
graph where every node is interconnected w i t h every other node. P a r t i a l mesh is a sub-graph
of the full mesh. A special type of par t ia l mesh is a tree topology. The tree is a spanning
tree of a complete graph that contains a l l the nodes but only the lowest number of edges
to form a fully connected g raph 2 . Different mesh topologies can be seen i n Figure 5.1.

Several same nodes form a mesh, but there can also be different types of devices par
t ic ipat ing in the mesh. In the mesh network, it is important to know that a l l nodes are
equal i n means of capability, therefore every node can efficiently participate in the relaying
of frames and computing.

Meshes can be peer-to-peer or infrastructure. In peer-to-peer meshes, nodes communi
cate direct ly w i t h other nodes wi th in their range and relay messages further in the mesh.
A n y of the nodes that are i n the range of other networks can transfer data to an external
network (i.e. Internet).

Infrastructure meshes have a special node called a root node, which is a central point
that bears more responsibility than other nodes. The root node can manage the mesh
network and decide if and where to add a new node, what to do wi th the failed node, route
traffic to the external network and more. However, every node of the mesh network should
be able to take over the role of the central node without any difficulties. Tha t means that
even if there is a central point, a single point of failure is el iminated. A single point of
failure is one point in the network that relies on this point. If the point fails down, the
whole network stops working. This ensures the availabil i ty of the mesh network and its
resilience [6].

5.1.2 A b i l i t i e s of mesh

Mesh networks have the capabil i ty of self-organising and self-healing, meaning that they
can reorganise and operate on their own without the intervention of administrators. Meshes
can overcome the failures of nodes dur ing runtime without manual configuration. Nodes
can be added to the mesh during runtime to enlarge the mesh's range across the area.
Self-organising and self-healing are important to create dynamic networks where nodes can
fail or be added to the mesh. The mesh network has to solve fail of the root node i n the
infrastructure mesh and replace h i m wi th another node as can be seen i n Figure 5.2.

Transmission of messages i n mesh networks is done either by flooding or routing. F lood
ing uses broadcast as a way of relaying messages and is used i n peer-to-peer mesh networks.
This type of communicat ion is simple to implement. Every node just forwards the frame

2 Connected graph is an undirected graph in which there is a path from one node to another for all nodes
and vice versa.

16

Figure 5.2: Self-healing can overcome failures of nodes and even a failure of a root node.
In infrastructure mesh, a new root node must be appointed.

to its neighbours. Th is ensures that the frame w i l l be delivered to the destination through
mult iple paths. W i t h flooding, there is a risk of loop and broadcast storms, which overload
network resources and the network becomes congested 3 . Th is issue can be overcome by
controlling the flood of frames using the sequence number i n frames [22].

Rou t ing propagates the frame along a path by hopping from one node to the other
unt i l the frame reaches a destination node. It is harder to manage a mesh network wi th
routing because there has to be a routing algori thm that computes a l l paths to destination
nodes. A n d when some node fails down, the routing algori thm must recompute a l l paths.
However, because the mesh has many connections between nodes, it is ensured that there
is always some path between nodes i n the mesh. In Figure 5.3 there are shown diagrams
of flooding and routing. Rou t ing algorithms have to find a new route after a direct l ink
becomes unavailable.

Figure 5.3: F lood ing , rout ing and rout ing in par t ia l mesh. F lood ing uses broadcast and
frame floods the network. Message is delivered to destination from several paths. W h e n
nodes use routing method, every node knows best path to the destination and sends only
one frame.

5.1.3 S t a n d a r d 802.11s

Standard I E E E ' 1 802.11 is a family of norms and standards for the transmission of ra
dio signals in wireless networks. For common W i F i communicat ion standards, I E E E
802 .11a /b /g /n are used. In table 5.1 there is a comparison between these versions of

3Network congestion causes for example packet loss, decrease throughput and packet delays.
4 I E E E - Institute of Electrical and Electronics Engineers is the international association for education

and technical advancement of telecommunications and other fields.

17

the 802.11 standards. Standard 802.11a uses 5 G H z radio frequency, 802.11b and 8 0 2 . l l g
operate on 2 ,4GHz frequency, and standard 8 0 2 . l l n uses both 5 and 2 ,4GHz.

Table 5.1: Compar ison of 802.11 standards

Version Release date Frequency M a x . Rate
802.11a 1999 5 G H z 5 4 M b i t / s
802.11b 1999 2 .4GHz 11Mbi t / s
802.11g 2003 2 .4GHz 5 4 M b i t / s
802.11g 2009 2 . 4 / 5 G H z 600Mbi t / s

There are many amendments to these standards to provide better security and efficiency
for W i F i devices. I E E E 802.11s defines the principles of how wireless devices should inter
connect and communicate to form a wireless local mesh network [6]. Due to the complexity
of mesh networks, another consideration had to have been solved and this delayed the final
version of the 802.11s standard for several years. D u r i n g this t ime, many vendors came up
wi th their own proprietary solutions based on their terminology and technology. Because of
that, there is not a unified mesh network technology [17] and solutions are not compatible.

Types of nodes

A s is stated i n [6] there are several types of mesh nodes:

• S ta t ion(STA) is a node that does not participate i n mesh organising or frame for
warding. This node connects to the mesh through Mesh A P .

• Mesh P o i n t (M P) node supports the mesh network and participates in mesh organising.
It interconnects to another M P v ia peer links.

• Mesh access p o i n t (M A P) combines M P wi th the functionality of the access point.
Therefore, it supports communicat ion wi th stations.

• Mesh P o r t a l (M P P) is a node through which the mesh network is connected to other
networks.

Mesh Point

MP

*
Mesh Portal

Mesh AP
Station

MP

AP
w A *

MP

AP

STA

STA

STA

Figure 5.4: The 802.11s network architecture and different types of nodes i n mesh network.

In Figure 5.4 there can be seen the structure of the mesh network and the roles of node
types. Mesh Po r t a l node needs to implement L 3 routing protocol to correctly route packets

18

from the mesh network to the outside network and vice versa. In infrastructure mesh, the
Mesh Po r t a l node is a candidate to be a root node.

M e s h formation

Mesh Point sends beacon messages for new nodes to be able to see a mesh network. In the
beacon frame, there are two characteristics of the mesh. Mesh I D is the identification
number or name of the mesh network. Mesh profile is another value that tells new nodes
what routing protocol and metrics the mesh uses. After a new Mesh Point receives this
beacon frame, it w i l l establish a peer connection wi th the closest Mesh Point already i n the
mesh if it can participate i n the rout ing protocol and metrics and begins to support the
mesh.

Rout ing

According to the standard 802.11s mesh network should support two rout ing protocols. The
first and default one, the H y b r i d wireless mesh protocol, combines the approach of flexible
on-demand route discovery and efficient pro-active routing. It uses airt ime as a metric.
The second and optional rout ing protocol is Rad io Aware Opt imised L i n k State Rou t ing
Protocol . More information can be found at [6].

Note that routing in mesh networks may be difficult. M a n y connections from many
routes and therefore maintaining rout ing tables is memory and C P U demanding. Nodes
can frequently fail down or be added to the mesh and change the topology of the mesh,
after that re-computation of routes is needed.

5.2 E S P - W I F I - M E S H

E S P - W I F I - M E S H is a proprietary networking protocol developed by an I T company Espres-
sif. A s stated in documentat ion [31], the protocol is buil t atop the W i F i protocol and allows
nodes to spread over large areas. Nodes are situated in a single W L A N . This protocol is
autonomous and implements self-organising and self-healing features.

Tradi t ional W i F i requires that the stations are i n the range of W i F i access point or
router (A P) to be able to communicate w i th other networks. Th is protocol is used to offer
W i F i connections for the nodes outside the range of A P . E S P - W I F I - M E S H network can
span over large areas as the nodes can connect and relay messages to A P and back.

5.2.1 T o p o l o g y

E S P - W I F I - M E S H combines mult iple W i F i networks to form a single W L A N . E S P 3 2 board
uses a combination of both W i F i modes (see 3.1.2), to act simultaneously as stations and as
access points, thus enlarging the span of the W L A N network. Nodes and their connections
form a tree and therefore there has to be a root node on top of the tree. It is important to
emphasise that only the root node has complete information about the mesh. The depth
of the tree can be l imi ted. The l imi ta t ion of the tree depth together w i th the number of
allowed chi ld nodes indicates how many nodes there can be i n the mesh.

On ly the root node connects the external network to the mesh and relays packets in and
out of the mesh. The root node has several chi ld nodes. Leaf nodes are nodes i n the
max imum depth layer of a tree and they can not have any chi ld nodes. They can only
transmit or receive packets. Intermediate parent nodes are nodes between the root node

19

Figure 5.5: E S P - W I F I - M E S H topology enlarges W i F i internet connection beyond the range
of A P (router). Root node is connected to the A P . Leaf nodes are at m a x i m u m depth. Idle
nodes are yet to be added to the mesh. Changed, originally from [31].

and chi ld nodes. They are connected to their parent node (or root node i n the first layer)
and can have mult iple chi ld nodes. Idle nodes are nodes that have not joined the mesh yet.
Tree mesh topology of E S P - W I F I - M E S H can be seen in Figure 5.5.

5.2.2 R o o t e lect ion

The root node can be elected i n two different ways. There is an option for the user to define
a designated root node. The designated root node directly connects to a W i F i A P and the
election process is skipped. Every node i n the mesh must abandon the root election process
to prevent the election of a new root node, thus causing root node conflict. Nodes must
wait for the designated root node to propagate itself using beacon frames.

The automatic root election process depends on W i F i A P R S S I send through the
beacon frames of the W i F i router. The election process composes of several iterations.
In the first i teration, every node propagates the R S S I value of the W i F i A P it receives
to the neighbouring nodes. Every node then compares other R S S I values received from
neighbours and selects the best one. In the second iteration, nodes propagate the best-
selected R S S I value together w i th the ID of the node R S S I value originated from and
on and on. After the last i teration, nodes check their vote percentage and i f some node
has a count of votes above some threshold, it is selected as the root node. For automatic
formation, the W i F i A P is necessary, but after the mesh is formed, the mesh network does
not need W i F i A P anymore. [31]

5.2.3 M e s h f o r m a t i o n

Nodes send their W i F i beacon frames to inform other nodes about themselves. New idle
nodes listen to these beacons. Idle nodes can have mult iple possible parent choices. Fi rs t ly ,

5 RSSI - Received Signal Strength Indication measures power presented in the signal. Values are
in dBm (Decibel-milliwatts) units.

20

it takes into consideration the depth of the possible parents and chooses the shallowest one.
If the depth of the two best possible parent nodes is the same, then it prefers the one wi th
the fewest chi ld nodes. Accord ing to E S P - W I F I - M E S H documentation, the first decision
criteria ensures that the mesh minimises the depth of a tree and the second cri teria balance
the chi ld nodes between nodes on the same tree level.

5.2.4 R o u t i n g

Because the mesh has a structure of a tree, it would be ineffective to broadcast packets in the
whole tree, instead of rout ing hop-by-hop is used. E a c h node i n the mesh has information
about its descendants (sub-tree) and where they are i n the tree. The routing table consists
of sub-tables related to each chi ld node wi th their subnet. Node also knows its parent
node. If there is a record of destination M A C addresses in the routing table, the node sends
a packet to the correct chi ld node. If no M A C address in his routing table matches the
destination M A C address of a packet, the node forwards the packet to his parent and hopes
the parent knows the destination M A C address. Th is continues un t i l the packet reaches the
root node. Because the root node is on the top of the tree, it knows the whole topology.

5.3 PainlessMesh

The PainlessMesh l ibrary offers an easy solution to the creation of a simple mesh network
on E S P 8 2 6 and E S P 3 2 boards. The l ibrary is wri t ten i n C + + language. The mesh can
function without any planning, central node or W i F i router. The PainlessMesh l ibrary uses
J S O N i n its messages because J S O N is human readable and therefore easy to debug. Self-
organising and self-healing features are implemented in the mesh. Another useful feature is
t ime synchronisation is also implemented. The PainlessMesh l ibrary was developed i n 2016
as a G i t L a b project [7].

5.3.1 T o p o l o g y

The PainlessMesh l ibrary constructs a star-like network topology, as can be seen i n F i g
ure 5.6, where nodes are equal. The composit ion of several stars together forms a tree
structure. Nodes can act as a station and as an access point simultaneously (see 3.1.2).
Nodes can connect to only one access po in t 6 interface of another node. The root node
is optional . A n d nodes are equal. Nodes i n the centre do not have any advantage over
peripheral nodes (unlike in E S P - W I F I - M E S H where the root node has more information
about the network). Nodes exchange their lists of connections and subconnections of their
child nodes wi th other nodes, thus every node knows the whole topology. Topology updates
are sent every 3 seconds.

5.3.2 R o o t e lect ion

B y default, there is no need for a root node and a mesh can form and function without
it. Nodes can instantly self-organise into the mesh. However, opt ional ly there is a function
wi th which a static setting of a root is possible. The formation of the mesh can be sped up
by tel l ing a l l the other nodes that there is a root node in the mesh. The setting of the root

6Access point references an interface of ESP32 that is able to form a downstream connection. The access
point in ESP-WIFI-MESH refers to a WiFi router access point.

21

Figure 5.6: PainlessMesh topology forms a star. Source: [7].

node is for topological reasons. Because of the nature of mesh formation, nodes can form
several l i t t le independent clusters or sub-meshes and not a single mesh, which is shown
in Figure 5.7. Documentat ion [7] explains that nodes then randomly disconnect and t ry to
form different connections w i t h other nodes to form one single mesh containing a l l nodes.
This process is t ime demanding and random, therefore there is no prognosis of how long it
can take.

5.3.3 M e s h f o r m a t i o n

Node serves as an access point for other nodes to connect to and simultaneously acts as
a s tat ion and connects to the other's node access point interface. The l imi t of a station
(child) nodes of one access point interface on E S P 3 2 boards is 10 as it is said i n the F A Q
forum in question 20 [37]. Nodes that are not i n the mesh scan for the available access
point. The connection to an access point takes into consideration two factors. Fi rs t ly ,
a node can connect to the node that is not present i n the list of connections. It ensures
that there are no loops i n the mesh. Therefore, there is no danger of a broadcast s torm
occurring. Secondly, it w i l l connect to the node w i t h the best R S S I signal.

Figure 5.7: Wrong choices of upstream connection can lead to formation of several separate
small mesh networks.

5.3.4 R o u t i n g

Every node informs its neighbours about a l l its connections and subconnections of its child
nodes every 3 seconds. Eventually, every node w i l l know the whole topology. Because the
mesh is in the form of a star or a tree topology, there exists only one possible path between
two nodes. Th is makes routing simple. Rou t ing is s imilar to the routing process i n the
E S P - W I F I - M E S H protocol, but every node knows the complete topology of the network.

22

5.4 E S P - B L E - M E S H

Another mesh networking solution provided by the company Espressif is E S P - B L E - M E S H ' .
A s said i n documentation [27], this solution is optimised for large-scale networks. E S P - B L E -
M E S H protocol is based on Bluetooth L o w Energy radio technology and is buil t on top of
Bluetooth Mesh [40]. M a n y different devices w i t h different types of Bluetooth standards
can be part of the mesh. Cont ra ry to the previous two solutions, the nodes i n this mesh
have a free W i F i interface, but they can only use station mode. The foregoing statement
means that a node can be part of the mesh while simultaneously being connected to a W i F i
router.

5.4.1 T o p o l o g y

Compare wi th previous technologies, E S P - B L E - M E S H forms a fully connected peer-to-peer
mesh without a root node. Nodes are connected to many other nodes wi th in their range.
This mesh can contain thousands of nodes. Nodes sent heartbeat messages to let other
nodes determine the topology of the subnet. Actual ly , the topology is much more complex
and contains four types of nodes [23]. Nodes are alive stations, but low power nodes are
in a sleep mode and come alive once in a while. Fr iend nodes store messages for low power
nodes and when the low power node comes alive, the friend node sends a l l the messages
designated to the node. Relay nodes forward messages further to the mesh.

5.4.2 M e s h f o r m a t i o n

After the nodes are up and running, they do not form a mesh instantly. There is a need
for provisioning. In documentation [27] there is a guide on how to establish a new mesh.
Provis ioning is the process of adding a new device to the B L E mesh. This process requires
a provisioner device, such as a common smartphone wi th nRF Mesh applicat ion, that
provides data to a new node that allows it to become part of the mesh. The provisioner
device sets the network cryptographic key for the mesh. After provisioning, there can be
a phase of configuration, when the applicat ion key can be set.

5.4.3 R o u t i n g

E S P - B L E - M E S H does not use routing in the mesh. It uses flooding instead. Because nodes
have many to many connections, there are several paths through which data flows. The key
to managed flooding is that each node sends one message to a l l the other nodes i n range,
but only special nodes called relays can re-transmit the message further. A message floods
the mesh and it is ensured that every node receives the message. This solution is supposed
to transfer a smal l amount of data. The main use is for sensor or control networks. Special
node called mesh gateway is used to transmit data between Bluetooth and non-Bluetooth
network [23].

5.5 Summary

This section sums up and compares the previously mentioned solutions. There were no
information about the exact m a x i m u m number of nodes i n the meshes, except 1000 nodes

7 E S P - B L E - M E S H - Espressif Bluetooth Low Energy Mesh

23

on the E S P - W I F I - M E S H commercial webpage [36]. The theoretical number of nodes in the
mesh is l imi ted by the memory resources on the chip. In E S P 3 2 forum [13], it is said, that
the estimated theoretical l imi t is about 6 levels w i t h 6 chi ld connections, which together
gives about 6 5 nodes which is 7776 nodes. W i t h each level, there is also a need to retransmit
the packets, which can i n E S P - W I F I - M E S H up to 30 ms of delay. [13]. B u t w i t h this many
nodes, the delay of the message w i l l rapidly increase due to the occupation of the W i F i
channel. A n d this can also lead to packet loss.

Table 5.2: E S P - W I F I - M E S H vs. PainlessMesh vs. E S P - B L E - M E S H

Features E S P - W I F I - M E S H PainlessMesh E S P - B L E - M E S H

Technology W i F i W i F i Blue tooth
Topology Tree Star(tree) F u l l mesh

A d d i t i o n a l device W i F i router/— — Provisioner (smartphone)
Root node & Always Opt iona l —

Elec t ion cri teria R S S I / manual M a n u a l —
Nodes' Knowledge Subtree Whole —

Rout ing Subtable Complete table F lood ing

In table 5.2 there is a comparison of these three mesh protocols. E S P - B L E - M E S H uses
Bluetooth radio transmission as only one of the three, thus having a free W i F i interface
that can operate only in station mode. A s the other two solutions use W i F i modules to
form a mesh, i n neither of the three solutions, the nodes do not have a free access point
interface of the W i F i module. Therefore, they can not provide an Internet connection to
client devices (laptops, smartphones, etc.).

E S P - B L E - M E S H needs to provision (add) nodes to the mesh manually using an addi
t ional device. PainlessMesh can function on its own, but it is recommended to manually
set the root node i n the mesh for quicker and more efficient mesh formation. For E S P -
W I F I - M E S H to organise autonomously, there is a need for W i F i access point routers to
automatical ly select a root node. After that, a W i F i router is no longer needed. W h e n
there is no W i F i router, a manual configuration of a root node is required.

A l though E S P - W I F I - M E S H can work both wi th and without a router, it can not
autonomously elect a root node without a router. PainlessMesh does not need a root
node, but setting the root node is recommended for better network formation. Moreover,
PainlessMesh can not communicate w i th other networks like the Internet, al though it could
when the root node is set manual ly because it would have a free station interface to connect
to router W i F i . E S P - B L E - M E S H is a good solution for sensor networks, but t ransmit t ing
large packets v ia Bluetooth is not recommended.

A l l three above solutions are developed for E S P boards. E S P - B L E - M E S H is a really
simple full mesh network, without addi t ional complexity. However, due to its s impl ic i ty and
use of flooding, it is quite inefficient, because every node must receive and forward a l l the
messages. The destination node w i l l receive the packet several times from mult iple nodes
which ensure delivery. This blocks a lot of bandwidth and floods the network wi th many
packets. O n the contrary, E S P - W I F I - M E S H and PainlessMesh have some internal structure
and use routing which generates fewer packets and nodes process only messages destined
for them. A l though routing needs more memory for the routes and the computat ion of the
routes needs some overhead, I th ink it is s t i l l more efficient than flooding. For example in a
full mesh wi th N nodes, the flooding would always generate N - l messages as every node

24

except the receiver would retransmit the message. B u t the m a x i m u m height of a non-full
binary tree is N . This means that even i n a very simple structure mesh wi th nodes connected
in line (a tree wi th max one chi ld node), the worst-case scenario is when the node at the
beginning wants to send data to the node on the end is s t i l l N - l packets. B u t every other
node that wants to communicate w i t h the end node would trigger fewer packets as the path
between nodes would be shorter. A n d the direct neighbour would trigger only one packet,
an example of five nodes can be seen in Figure 5.8

(a) Using flooding every (b) Using routing even
node resends the packet in line of nodes structure

again generating additional generates worst case
load. scenario the same amount

of messages.

Figure 5.8: F lood ing i n full mesh generates N - l messages i n the network. Rou t ing can
generate the same amount for worst case of communicat ion when two nodes on opposite
ends of line of structure wants to communicate. B u t for other possible communicat ion,
there are less packets generated

It is possible to have an unstructured mesh that uses routing, but due to many routes, it
would generate a bigger computat ion load to store them and decide on the best route. A l so
in structure mesh, it is possible to use flooding. A node would send packets both upstream
and downstream. It could be useful when information on the nodes is inconsistent and the
node doesn't have a complete topology. To deliver the message node would send it every
possible way and hope that some other node may know the correct path.

The topology would require selecting only one root node i n order to avoid problems
shown in PainlessMesh 5.7 and thus the creation of mult iple meshes. This one root node
has a free stat ion network interface available and can connect to the router W i F i access
point and offer an Internet connection to the mesh. The root node can be viewed as a single
point of failure, but it is not true as meshes should have the self-healing abi l i ty to overcome
any node failure and reorganise.

25

Chapter 6

Mesh Protocol Design

In this chapter, there is a description and requirements of a new mesh network protocol.
The goal is to create one mesh protocol that can function i n two modes autonomously
without a predefined structure. The first mode is when the mesh is connected to the W i F i
access point. The other one is the stand-alone mode when the mesh does not have access to
external networks. There is a deep look into the features of a newly designed mesh network
protocol. The functioning of a mesh network is presented wi th processes for self-healing
and self-organising the mesh network. Neither of the foregoing mesh network solutions
is versatile enough for the mesh to be able to self-organise itself w i t h and without W i F i
routers autonomously.

The goal of this section is to define a new mesh protocol. This project uses E S P 3 2 - B u d d y
boards and therefore the mesh is wireless. Mesh network consists of nodes of E S P 3 2 - B u d d y
boards and connects them together into one object. Nodes connect to each other and one
node can communicate w i th every other node in the same mesh.

6.1 Specification

K e y points of specification from the assignment were created by the company Espressif
together w i th my supervisor. The mesh has the following requirements:

• Two modes of the mesh have to be supported:

— Stand-alone mode supports the mesh i n remote places without the presence
of a W i F i access point router of another network. For example, on farms or
in warehouses.

— Connected mode of mesh operates wi th a W i F i access point i n the range of the
mesh network. Mesh can communicate w i th devices outside the mesh network,
either i n the same L A N network or i n the outside world.

• The network of nodes should be able to self-organise itself autonomously without
previously predefined structure wi th both modes.

• Use of E S P 3 2 boards and M i c r o P y t h o n are required

• The mesh should be bu i ld on top of the E S P - N O W protocol.

• The mesh network has to be able to manage at least 10 nodes.

26

The mesh protocol has been designed and some new specifications were set to a i m for
better mesh performance, list of the new specifications is below in items. Together w i th the
E S P - N O W protocol operating i n broadcast, the W i F i socket connection w i l l be established
for one to one communicat ion. Tree topology is chosen in order to create fewer connections
wi th W i F i protocol and because the E S P 3 2 microchips support a m a x i m u m of 10 connec
tions to W i F i A P interface [37]. In an unordered mesh, it would create an undefined and
random connection. Tree topology is more transparent as there is only one path between
nodes and addi t ional computat ion is not needed, so instead of rout ing it just switches the
packet to the peer on a pa th to the destination. It is also better to manage and understand
as the root node can manage the tree.

W i t h the topology there is no need to flood W i F i packets and routing is supported
to reduce the traffic i n the network. Tha t said, W i F i uses routing. B u t E S P - N O W uses
flooding because it is connections less and doesn't need prior configuration or settings. Using
E S P - N O W protocol, later on, the W i F i connections can be established. Due to only 250
bytes of payload i n E S P - N O W protocol, it is not used for topology or applicat ion messages
which can grow i n size. Hence it serves as a base layer for getting the information about the
nodes i n the area. W i F i protocol w i t h the abi l i ty to transport up to 1500 bytes on E S P 3 2
w i l l be sufficient to transport big appl icat ion data and topology messages. A basic summary
is below:

• Tree topology wi th root node where every node knows whole topology.

• E S P - N O W protocol is used for management. Mesh uses W i F i only for topology
updates and applicat ion data. They work simultaneously.

• Combina t ion of flooding in E S P - N O W protocol and routing in W i F i .

• Self-healing abi l i ty w i l l deal w i th failures of nodes already presented in the mesh.

Operations and approaches to both Connected and Stand-alone modes are the same
in order to create one transparent solution. The state diagram of the nodes i n the mesh can
be seen i n Figure 6.1. Nodes can be i n four different states while being inside or outside
the mesh. Node is considered i n the mesh network while i n idle or in tree state. Otherwise,
the node is outside the mesh.

Provision Claimed into tree Node breaks down

Figure 6.1: State diagram of nodes and transitions between states.

27

6.2 Overview

The goal is to create one mesh protocol that can function i n two modes autonomously,
connected to the W i F i A P and Stand-alone without the Internet connection. This versatile
approach is lacking i n existing solutions. A s for any mesh network, it should implement
self-organising features for autonomous organising. We added a harder requirement for the
mesh to be able to self-heal.

For a collection of information about nodes and for adding nodes into the mesh network,
the proprietary E S P - N O W protocol is used. This protocol is buil t on top of I E E E 802.11
Management Frames. For topology updates and applicat ion data transmission, a common
W i F i protocol is used. This means that for periodic messages the mesh uses low power
protocol E S P - N O W and for bigger data t ransmit t ing the W i F i is used. W i t h these two
wireless protocols, the mesh uses both broadcast flooding i n E S P - N O W and unicast routing
for W i F i .

K e y stages in creating a new mesh are listed here:

• Provis ion process is needed to distribute the key to the nodes.

• Col lect ion of information about the nodes i n the same mesh.

• Root node election i n order to create a tree.

• Creat ion of links i n the tree represents the creation of connection using W i F i interfaces
on the parent node and chi ld node.

For easy and not t ime demanding provisioning of nodes, we proposed the Mesh Protected
Setup (M P S) 6.4 method of adding nodes to already installed mesh. There is s t i l l a need to
manually set the key credentials for message signing and encryption but only on the first
node. The addi t ion of nodes to the mesh is done by pressing the but ton on E S P 3 2 boards.

Database of nodes
N2 | centrality, RSSI

Figure 6.2: Nodes are in mesh, but i n idle state. They collect database of a l l the nodes in the
mesh. Root node is selected as the one most i n the centre of the mesh. O n l y E S P - N O W
communicat ion is active. N o applicat ion can run.

28

Nodes wi th key credentials send periodic updates through broadcast. Receiving nodes
update their node database and retransmit these advertisements. Th is way nodes collect
information about a l l the nodes wi th credentials, ergo nodes i n the mesh. If nodes didn' t
receive advertisements about certain nodes for some amount of time, it considers h i m dis
connected and wipes out the record from the database.

The advertisement contains nodes centrality value (viz. equation 6.1) and R S S I signal
to W i F i A P if it is to be connected mesh. W h e n nodes are idle, they collect information
about neighbours which is seen i n Figure 6.2. They can be also used for provisioning new
nodes into the mesh using mentioned M P S protocol.

Nodes then enter the root election phase where they need to settle on one root node.
After this is done, W i F i protocol is enabled. The root configures its A P network interface
and sends its A P identifications to chi ld nodes s t i l l using E S P - N O W . C h i l d nodes receive
this identification and connect through their S T A network interface to the root node. The
root and chi ld node has established a W i F i connection or l ink i n the topology and the root
node can start sending topology updates and applicat ion data to the chi ld node. The child
nodes then start their own A P network interface and send identifications about their W i F i
A P network interface to their children. A n d this way at least one W i F i connection on a l l
nodes is created and this forms the tree structure as can be seen in Figure 6.3.

! { } ESP-NOW broadcast
<—>. WiFi connection

Root Node
Firstl level

Second level

Third level

Figure 6.3: Nodes create tree topology of W i F i connections between themselves. They s t i l l
use E S P - N O W broadcast to be able to add new nodes. The node is fully functioning when
it is included i n tree and its W i F i connections are active, then the applicat ion can run.

Using the W i F i root node sends periodic topology updates to his children. The children
then update their topology and send this updated topology to their children. This way, the
topology is propagated to the mesh. Every node knows the whole topology and therefore
is able to route the generated traffic in the right direction. W h e n a node is inside tree
topology, the applicat ion can run on the node.

29

6.3 Topology

F u l l mesh network topology has a lot of possible routes which ensures quick delivery. How
ever, it is also impract ica l because a high number of connections can be hard to manage,
set up, and monitor. I have decided that the tree topology would be better to manage
and organise. In tree topology, there are fewer packets generated as the message is routed
between connections. Tree topology forms fewer connections, is structured, and probably
better to understand and debug. In case of a failure of a node, the mesh can self-heal itself
and reorganise the tree to keep the full functionality. The mesh should overcome even the
failure of the root node. The idea to create a tree has been inspired by E S P - W I F I - M E S H
solution 5.2.

6.4 Mesh Formation

Mesh formation is d ivided into two stages where the new foreign node is transformed into
the idle state (provisioning) and then the idle node can be added to the tree topology, see
figure 6.1.

The mesh needs an identifier i n order to divide two meshes i n the same area. B u t there
is a problem w i t h delivering this key to other nodes safely on the network.

The provisioning of the new node is done by a newly proposed Mesh Protected Setup
or M P S 6.4 method. There is s t i l l a need to manual ly set the key credentials for message
signing and encryption but only on the first node. The addi t ion of nodes to the mesh
is done by pressing the but ton on E S P 3 2 boards. Using broadcast handshake both new
node and node wi th credentials register each other w i th predefined L M K security key for
encryption i n E S P - N O W protocol. Then they securely exchange key credentials in a secure
E S P - N O W unicast. They are registered only for this exchange process due to the l imi t of
registered devices, therefore one node in the mesh can one by one send credentials to a l l
the other nodes.

The message i n E S P - N O W is considered val id and accepted for further processing i f
and only the H M A C [20] hash sign of the message matches the computed sign by the key
credentials. Otherwise, messages are dropped. The M P S process was inspired by the W i F i
W P S method on W i F i access points, where a device can be connected to a W i F i router
using pressing the W P S but ton on both the device and the router. After the M P S process,
the node is present i n the mesh, but it isn't i n the tree topology, it is i n the idle state.

Nodes send advertisements broadcasts and collect the database in order to select the
root node. After the root election, the root node selects random nodes from the close
neighbours, that are not i n the tree (currently only the root node is i n the tree) and sends
them his W i F i A P interface credentials. Nodes receive this and connect to the root node
A P interface as stations. The root is informed by this addi t ion. The root updates the tree
topology and starts to send periodic topology updates to his chi ld nodes. W h e n chi ld nodes
receive the tree topology update, they know they are in the tree topology and they can also
select close neighbours and send them their own W i F i A P interface credentials. This way
the tree topology is formed

°WPS - WiFi Protected Setup is a standard which allows a device to be temporally connected to the
network without the knowledge of the pre-shared key.

30

SYN
Button pressed

ADD_PEER(LMK)

DEL_PEER(LMK)

Button pressed

ADD_PEER(LMK)

DEL_PEER(LMK)

Broadcast
Unicast

N10

- ^ N \ v \ x
11
I I

/ /
N10

- ^
\ *
1 1
I i

/ /

Figure 6.4: Mesh Protected Setup (M P S) for exchanging security key for message signing
uses broadcast for registering a peer. Secure key is transferred v i a ciphered unicast. After
this exchange new node can process and send messages signed by mesh security key.

6.5 Root Node election

The root node should be the node most in the centre of the mesh in Stand-alone mode. This
is because, from the centre node, a shallower tree is formed than from an edge node. If the
mesh is supposed to be i n connected mode, it elects the root node based on R S S I value to the
W i F i router A P because only the root node has a free station network interface in order to
connect to the router. A s a l l nodes periodical ly advertise themselves and their neighbours.
Later on, a l l nodes have the same information as a l l other nodes i n the mesh. This is
called convergence when a l l nodes have the same content i n the database of nodes. The
advertisement messages are sent through E S P - N O W broadcast and contain these values:

• Node ID is a node identification that is represented by M A C address.

• Value of a function that determines the node's centrality (how much in the centre of
the mesh the node is) for root node election i n Stand-alone mode. It consists of neigh
bours and R S S I to the neighbours of the node. Accord ing to how many neighbours

31

and how close (RSSI value) they are to the node, it is possible to determine the node
the most i n the centre of the mesh. This value can lead to some local minimums, but
at least it is sufficient to elect a root node i n every si tuation. A function definition is
as follows, where Xi is one of the visible neighbours from the set of visible neighbours
X :

centralitv = — = (6.1)
x%J\RSSIx-\

• R S S I value to the W i F i access point (A P) . If W i F i A P is not present i n the range or
the mesh operates i n Stand-alone mode, the value is zero. The use of this value is to
select the root node i n Connected mode.

• F l a g that determines i f the root is already elected. It is used for new nodes to
inform them to not start root election. It tells them to just wait un t i l they are
incorporated into the tree topology.

On ly messages from provisioned nodes are processed. After there are no new additions
to the node database, the node can trigger the root election. It searches through database
values and values of itself and selects the best record. If the node is the best record, it
triggers the root election process 6.5a, when it sends the root propagation packet of itself,
otherwise, it does nothing. W h e n the node receives the root propagation, it compares the
received root candidate w i th its database and propagates the best one further into the
mesh 6.5b. If there are two equal candidates, the process selects the one wi th a lower M A C
address. Every node can consequently propagate better and better candidates un t i l every
node has the same proposed root node wi th the best values, so the root is elected. Dur ing
this process, the database of nodes would not allow wr i t ing i n order to not change the
values dur ing the root election.

The root node election is non-preemptive, meaning that even when a better root can
didate appears, it cannot trigger a new root election or depose the existing root. Once the
root node is elected, it stays the root node unt i l it breaks down.

6.6 Routing

Every node forms its own rout ing table that is composed of topology updates from the
parent node. These updates are the same and a l l the nodes have the same topology.
Al though , there can be some inconsistency w i t h propagation delays into lower layers. For
example, when a new node connects to the parent, the parent informs the root node about
the topology change. The root node in the next periodic update starts to propagate a new
tree topology. B u t there can be delays unt i l a l l the nodes receive the new topology. B u t
meanwhile, they can receive packets from the new node. In order to not drop the packet,
the chi ld node sends a packet, which it knows no route to, to his parent node and hopes
that the parent already has the new topology. This process can continue unt i l the packet
reaches the root node, which knows the topology at the moment and therefore has the
route.

The routing is not much of rout ing because there are no mult iple routes to the desti
nation. Tree structure guarantees that there is only one possible path between two nodes.
Therefore nodes can compute their rout ing table as subtrees. They know about their own

32

(a) Node N l triggers root election and claims it (b) Other nodes respond with suggestion node
should be the root. N2 as better candidate.

:' (Root:N2)
(c) Node N l accepts because N2 is better

candidate and root can be established.

Figure 6.5: Close up on the central nodes. Root election process is the same i n both modes.
In Stand-alone mode it depends on centrality value. In Connected mode it depends on R S S I
to W i F i router value.

children and parent node. F r o m topology, they can see what descendants nodes are con
nected to what chi ld node and mark as the next-hop its direct chi ld node. For other nodes
(nodes that are not descendants and are not i n topology), it marks the next hop as the
parent node.

6.7 Self-healing

Self-healing abi l i ty allows a mesh to continue working whenever some node breaks down.
The mesh should overcome even root node failure. Be aware that topology breaks only on a
W i F i level because E S P - N O W st i l l broadcast advertisement messages. In this design, it
is proposed that when some node breaks down, other nodes behave differently depending
on the relation to the broken node. W h e n the chi ld node breaks down, the parent w i l l
notify the root node about the topology change. The whole subtree (all the descendants)
behind the broken node is dropped and the parent erases his connection to a dead chi ld.

33

Dead node and
broken links

N8 H i r*

j ; ESP-NOW broadcast
-> WiFi connection

Root Node

Firstl level

Second level

Third level

New connection

Figure 6.6: W h e n node N 4 breaks down, the parent node N 3 notifies the root node and a l l
the descendants are dropped from the topology. The chi ld node N 5 resets its S T A interface
and waits to be claimed by different parent node N6 .

The root node propagates the new topology to the tree and other nodes w i l l be notified
about the change.

F rom the opposite point of view, when a parent node breaks down, the chi ld loses its
connection through W i F i to the mesh. Therefore it has to reset its S T A interface i n order
to be able to connect to the different parent nodes, so it waits un t i l some node claims it
back into the tree.

W i t h that said when the leaf node breaks down, it triggers only topology updates. W h e n
the intermediate node breaks down, its children reset their S T A interfaces and wait to be
claimed by a different parent node meanwhile the parent node of the dead node informs
the root about the change, an i l lustrat ion of the break of the intermediate node can be
seen i n Figure 6.6. In the worst case, when the root node breaks down, consequently every
node disconnects and resets its A P interface. W i t h no root node i n the mesh, it w i l l trigger
a new root election.

34

Chapter 7

Implementation

This chapter focuses purely on the implementat ion of the mesh protocol i n M i c r o P y t h o n
on E S P 3 2 - B u d d y boards. The use of M i c r o P y t h o n was defined by the assignment from the
company in order to explore its possibilities and l imitat ions. It also tries to demonstrate the
use of M i c r o P y t h o n for quick prototyping even on microcontrollers. The use of the required
proprietary E S P - N O W protocol l imits the por tabi l i ty of this solution to only E S P 3 2 and
E S P 8 2 6 boards.

The use of M i c r o P y t h o n is not memory efficient compared to the E S P - I D F framework
which uses C and C + + . Therefore boards wi th bigger memory are required. In my project,
I used E S P 3 2 - B u d d y that have 4 M B of S P I R A M . Unfortunately, due to problems wi th
compat ibi l i ty w i th M i c r o P y t h o n , I was forced to use the firmware wi th only 1 1 1 K B of
R A M memory for M i c r o P y t h o n heap, which is approximately 36x less than the board is
capable of. I used build-GENERIC type of firmware and version of M i c r o P y t h o n from
specific c o m m i t 1 .

M i c r o P y t h o n is an implementat ion of a Py thon3 programming language optimised to
run on microcontrollers. Some of the core P y t h o n libraries are part of this language,
but it also includes modules that allow low-level hardware access to the programmer like
l ibrary machine. For this project, the essential libraries are espnow for E S P - N O W protocol
operations and l ibrary network for directing and managing W i F i network interfaces.

Centre point of implementat ion is asynchronous event loop which is implemented i n uasyn-
cio module. In this implementation, coroutines (==tasks) are scheduled to run in an over
lapping but non-blocking manner using cooperative mult i tasking on single-core processors,
similar to threading. B u t the biggest advantage over threading is, that i n asyncio the pro
grammer himself decides when and where should one task yields its resources like C P U to
the other tasks. Furthermore, the task cannot be interrupted i n the middle of computing
unless it wants to, therefore there is no need to worry about locks, mutexes, race conditions
and deadlocks, unlike threading. The asynchronous event loop manages tasks and schedules
tasks to be run.

7.1 Concept

E S P 3 2 - B u d d y boards belong to the E S P 3 2 family, but are specially designed for E S P -
W I F I - M E S H development 5.2. They have 4 M B of S P I R A M for bigger memory. They

commit b67384616b87fb56bl26fd9befe23225dl84091d, but due to the re-base of glenn-g20 git branch,
the commit is no longer available. This commit is saved on the medium supplied to this thesis.

35

also have already connected peripherals. More information about hardware point of view
of the E S P 3 2 - B u d d y boards can be found i n Section 3.1.

• L E D on p in 25.

• Left but ton on p in 32.

• Reset (middle) but ton.

• Right but ton on p in 0.

• O L E D display uses I 2 C communicat ion wi th data channel (S D A) on port 18 and clock
channel (S C L) on port 23.

The main functionality and logic of the mesh network are implemented i n two key
parts (cores). I learned how to write big and complex projects i n M i c r o P y t h o n from the
bachelor thesis of Be . Josef Ko lá ř on Coordina t ion of MicroPython-based IoT by means
of N O D E - R E D [19]. I have been inspired by the thesis and my cores have synchronous
blocking start functions which just schedules main task run as is demonstrated in example
of code 7.1. The ma in task waits for the right events and schedules addi t ional cr i t ical tasks.
A more detailed description of important parts of the code follows.

class EspNowCore:
def s t a r t (s e l f) :

self.loop.create_task(self._run())

async def _run(self):
self.esp.add_peer(self.BROADCAST)
self.loop.create_task(self.on_message()) # Receive messages
await self.added_to_mesh() # Wait for MPS.

Lis t ing 7.1: Core classes have blocking start function which schedules asynchronous entry
point function run which then register further tasks.

E S P - N O W core is a base layer and can run on its own. W i F i core waits for concrete
events to take place in E S P - N O W core and after the event, it proceeds and schedules
coroutines into the asynchronous loop and enables W i F i interfaces for communicat ion.
User-defined applicat ion imports W i F i core module and have to execute W i F i core's start.
The start function executes both cores and the user applicat ion can be run as needed. W h e n
a node is connected to the tree topology, the appl icat ion can communicate w i t h other nodes.
Modu le hierarchy and its functions can be seen i n Figure 7.1.

7.2 E S P - N O W Core

Class EspNowCore implements procedures and functions related to the base layer of the
mesh protocol. This class takes care of communicat ion based on the E S P - N O W protocol.
It is the first step i n creating communicat ion on the W i F i layer. T h i s core is called from
wi th in W i F i core. These important sections are further described:

• A d d broadcast M A C address into E S P - N O W communicat ion.

36

Application

WifiCore.startO -

WifiCore

EspNowCore

User defined app

Connections, tree topology,
Self-healing

Claim children

MPS, Database, root election,

Figure 7.1: The project consists of three major modules. E a c h module is responsible for
subset of working mesh. For mesh to start working, user s imply has to ini t Wi f iCore and
run its start function which takes care of everything mesh related.

• Wai t un t i l it has a key for message H M A C - S H A 2 5 6 signing. Serves as an integrity
and authentication check for messages.

• Dis t r ibute the key through Mesh Protected Setup process 6.4. Act ivate by a but ton
pressed for 4,25-8,5 seconds and run for 45 seconds.

• Send periodic beacon advertisement 6.5 every 5 seconds. Manage database of nodes.
Retransmit information about other nodes every 13 seconds.

• Root node election is only simulated but not implemented. The root node is set
statically in the configuration file.

• Send A E S - 1 2 8 encrypted node's W i F i A P SSID and password to chi ld nodes. Th is
function is triggered by W i F i core but uses E S P - N O W protocol.

A s the first step node has to add_peer address into E S P - N O W communicat ion. Every
device adds broadcast M A C address 0xff:0xff:0xff:0xff:0xff:0xff i n order to send and to listen
to every other node i n the

Then the core waits un t i l it has the key credentials needed for message signing and
verification. The key credential is important to distinguish two independent meshes that
can overlap (neighbours i n apartments). Messages are signed using H M A C algori thm [20]
wi th S H A 2 5 6 from the official l ibrary hashlib, which is supported by hardware acceleration,
to verify the integrity and authenticate messages to be sure that message was generated by
some node in the mesh wi th the same key.

For the receive function to be lightweight, the messages are only received i n the loop
function and they are registered i n another coroutine for future processing as can be seen
in the i l lustrat ion below 7.2. This way it is ensured that no t ime demanding act ion takes
place i n the cr i t ica l receive function.

O n one node it is necessary to set key credentials into a configuration file and upload
the file to one board. Other nodes can be added during runtime using buttons through
Mesh Protected Setup (M P S) protocol described in the previous chapter 6.4. B u t t o n has
to be pressed for 4,25s to 8,5s and this allows M P S process only for 45 seconds. The new

37

node tries to obtain the key credential. The nodes register each other for encrypted unicast
communicat ion i n the E S P - N O W protocol. For this secure communicat ion, there is a need
for predefined P r i m a r y Master K e y (P M K) and L o c a l Master K e y (L M K) , these keys are
in the configuration file for a l l the nodes the same. P M K encrypts L M K using A E S - 1 2 8
and L M K encrypts messages wi th C C M P method [28].

async def on_message(self):

Wait for messages. Light weight function to not block recv process.
Further processing in~another coroutine.
n n n

while True:
buf = await self.esp.read(250)

self.loop.create_task(\
self.process_message(msg, digest, msg_len))
Process message in~another coro.

Lis t ing 7.2: on_message function only reads the E S P - N O W packet and creates new corou
tine for each packet. Th is way i n the function there are no t ime demanding operations.
This principle is the same i n W i F i receiving messages.

Nodes send periodic beacon advertisement every 5 seconds w i t h function advertise.
Neighbour nodes on first contact immediately resend advertisements from other nodes to
inform a l l the mesh. The nodes retransmit other nodes every 13 seconds to reduce the
load on the network. After the node didn ' t receive advertisements about any node for 26
seconds (twice of 13 seconds to give a second chance), it considers h i m dead and wipes the
record from the database.

The root node election is not automatic. It has to be stat ically set i n the configuration
file. For the root node election, the nodes have to scan the network for the R S S I signal of
neighbouring nodes. B u t i n the R T O S system responsible for real-time action, the procedure
for scanning the W i F i runs on the same thread as the process of receiving messages. In other
words, when a node scans the network, it cannot receive messages and they are dropped.
Accord ing to number 3 Frequently Asked Question forum on E S P 3 2 [37], the scanning
procedure for 13 channels takes 2,04 seconds. This scan should be run every t ime before
the advertisement is sent (every 5 seconds). This means that scanning would block 40,8%
of the t ime and the percent of messages would be dropped. A workaround could be that
instead of root election based on R S S I to neighbours, only the number of direct ly visible
neighbours would be used. This could be done using T T L or A G E field i n advertisement
packets. Th is workaround was not implemented yet.

In order to create W i F i connection, the chi ld node must receive W i F i credentials of
the parent node. Parent node therefore sends these W i F i A P interface credentials en
crypted wi th A E S Cipher Block Cha in ing from cryptol ib l ibrary [9] mode through function
c la im children. The chi ld node then informs the W i F i core and further functionality is
executed there. The E S P - N O W core remains its full functionality and cores run i n parallel
using asyncio.

38

7.3 W I F I Core

The second centre part of my program is class Wi f iCore which implements the creation of
W i F i connections between nodes and thus creates tree topology. This is the main part of
the mesh. This class takes care of and implements these key processes:

• Connect to parent node's W i F i A P interface, create socket connection.

• Start its own W i F i A P and open socket for future children. Randomly t ry to c la im
a node that is not i n the tree topology. It uses EspNowCore .c l a im_ch i ld ren function

• Parent nodes send topology periodical ly to children.

• Detect ion of dead node and self-healing.

• Rou t ing of messages.

Node accepts only first W i F i credentials from node and tries to connect to his W i F i A P
interface and creates a socket connections. Socket connection is created wi th asyncio func
tions asyncio.open connection. Credentials are sent using EspNowCore .c l a im_ch i ld ren
function. The parent has static open port number 1234. Node checks and tries to c la im
new children nodes every 7 seconds.

After that, the node can configure its own A P interface and open a socket on port 1234
for chi ld nodes to be able to connect to it w i th asyncio.start_server. Then it randomly
selects nodes that are not i n the tree topology yet and sends them his W i F i A P credentials
using EspNowCore .c l a im_ch i ld ren function.

Resend in
direction

Detection < 10 seconds

No

Send

Detection 26-30 seconds

Yes

Figure 7.2: The project consists of tree major modules. E a c h module is responsible for
subset of working mesh. For mesh to start working, user s imply has to ini t Wi f iCore and
run its start function which takes care of everything mesh related.

39

Nodes send topology i n periodic intervals every 7 seconds to their chi ld nodes. The
root node sends to his children, and the children send to theirs and so on. This could
take t ime un t i l tree change is detected. For this purpose, the topology changes (new and
dead nodes) are propagated immediately. The values of 7 seconds for topology propagation
together w i th periodic advertisements in EspNowCore and neighbour advertisement every
13 seconds, were experimentally chosen. The intention of these values was to select prime
numbers in a hope that the intervals would interleave one another as l i t t le as possible so
the burst on the node would not be as high as it would wi th even numbers.

C h i l d nodes are notified of the dead server port of their parent after approximately 10
seconds and they reset themselves in order to be able to create a new parent connection
on the same I P address and the same port number. Otherwise, a new socket connection
would not be able to open. Unfortunately detecting dead chi ld nodes is not an easy task.
This cannot be detected using sockets on the parent side i n M i c r o P y t h o n nor using a l is t ing
of connected devices to the W i F i A P interface. Instead of that, I use information from
the base layer of EspNowCore . W i t h sending messages to chi ld nodes, I test that the
i s_peer_al ive function. If peer is i n a database of nodes in EspNowCore.neighbours I know
that the peer has been active. If the M A C address is not listed there, it indicates that
the peer didn ' t send an advertisement for 26 seconds. Therefore i n theory dead child
node should be detected after 26 seconds, but due to switching of coroutines and awaiting
instruction and delays, it takes about 30 seconds to detect a dead chi ld node. The flow
diagram of detecting a dead peer is shown in Figure 7.2. Every descendant node of the
dead node is purged from the tree topology wi th the a im to c la im them on a new posit ion
in the tree and a new topology is propagated.

W i t h every topology change, the rout ing table (or switching table) is updated. Nodes
process messages only destined to them and broadcast messages. Other messages are resent
in the right direction to the destination node. The user can define an applicat ion in which
the messages are destined to specific nodes and mesh would be able to route the packets to
the specific destination. The applicat ion can use two functions for sending packets listed
below in 7.3

async def send_to_nodes(self, msg, nodes=None):
Send to d i r e c t l y connected nodes. Used for broadcast messages

i f nodes i s None:
nodes = [self.parent] + list(self.children_writers.keys())

for node in~nodes:
writer = self.get_writer(node)
await self.send_msg(node, writer, msg)

async def send_to_all(self, msg):
Send d i r e c t l y to every node in~the mesh.

nodes = self.tree_topology.root.get_all() + \
[self.tree_topology.root.data]

nodes.remove(self.id)
for node in~nodes:

msg.packet["dst"] = node
await self.resend(msg, msg.packet)

Lis t ing 7.3: Two functions for sending the applicat ion data are defined.

40

7.4 Demo Applicat ion

For purpose of verifying and testing that the mesh network works and nodes are intercon
nected, I developed a smal l applicat ion. This applicat ion controls the L E D and changes the
colour of the diode. This applicat ion serves as a demo and a basic template can be seen
in l is t ing 7.4

A s E S P 3 2 - B u d d y has three pushable buttons, one is for hard reset and one for M P S
procedure, the board has one but ton left. I use this but ton on p in 32 to trigger a change
of colour. The interrupt is registered to this but ton press and interrupt executes function
bl ink. In ini t ial isat ion, every board randomly selects its colour for a l l the time. W h e n this
but ton is pressed, the node sets its colour to its ini t colour and sends the order to every
other node to set their colour of L E D to the same. This means that we can see how the
nodes change their colour i n real-time as the orders flow through mesh and route to every
other node.

Class for applicat ion has to define App.process function to process the applicat ion pack
ets. It is also necessary that before applicat ion communication, the Wi f iCore class needs
to be ini t ial ised and the function WifiCore.s tar t needs to be run. The app can function
without a W i F i connection yet established but the information would not be sent to the
nodes.

class BlinkApp:
def i n i t (s e l f) :

self . wif icore = WifiCoreO

def s t a r t (s e l f) :

self.wificore.start()

async def process(self, AppMsg): # Function must be named l i k e t h i s .

async def b l i n k (s e l f) :

msg = AppMessage(self.wificore.id, " f f f f f f f f f f f f " , {"blink":colour})
await self.wificore.send_to_nodes(msg)

Lis t ing 7.4: Source code of a demo applicat ion B l i n k A p p class for L E D bl inking. For user
defined applicat ion, user has to ini t Wi f iCore and run its start function. The function
process has to be defined.

I used U S B - H U B station wi th 7 U S B ports to connect and run several boards at the
same time as is represented i n Figure 7.3. I was provided two of these station and overall
14 E S P 3 2 - B u d d y boards from Espressif company. For development purposes I used the
U S B - H U B station and for testing I used more real scenarios.

41

Figure 7.3: U S B - H U B station wi th 7 ports used for running the mesh network on E S P 3 2 -
B u d d y boards w i t h demo applicat ion during development. L E D s wi th the same colour
indicates that the mesh is working and the colour was propagated to a l l the nodes.

7.5 Other useful modules

For the purpose of this project, a few addi t ional modules were created to support the overall
functionality of both cores. A m o n g these modules are:

hmac.py which implements H M A C class for message signing. It uses the S H A 2 5 6 hash
algori thm. This module was not wri t ten for this thesis. It was taken from G i t H u b reposi
tory [21]. Nodes process messages that are signed wi th the same mesh key.

messages.py module defines classes for messages both in E S P - N O W and W i F i commu
nication and defines functions for packing and unpacking messages to send them properly.
Messages for E S P - N O W have a str ict ly defined structure and are packed using struct l i
brary to pack messages into bytes. It uses less space than W i F i messages. To the packed
E S P - N O W messages, EspNowCore adds a sign wi th mesh key credential which is always 32
bytes long. W i F i messages are packed using J S O N for serialisation which was inspired by
PainlessMesh solution [7]. There is defined one class for user applicat ion which is A p p M e s
sage. The ini t ia l isat ion takes three parameters. Source and destination M A C address and
the message itself. The message has to be a dict ionary or an already packed J S O N object.

net.py file implements two classes that overshadow original network. WLAN and esp-
now.ESPNow classes. They implement only some subset of original functions and are used
in bo th cores. Or ig ina l classes are s t i l l accessible through properties of these overshadowing
classes, but i n the project, I use only the newly defined functions to overshadow low-level
implementation.

42

oled_display.py is a module for manipulat ion and wr i t ing to O L E D display. This module
was taken from the tu tor ia l HowToElectronics [4]. The O L E D display is used by Wif iCore
to print basic information about the posit ion of the node i n the tree. M A C address together
w i th parent node is printed. It also prints the depth of the node i n the tree. Demonstrat ion
of use od O L E D display is shown i n Figure 7.4.

Figure 7.4: O L E D display on E S P 3 2 - B u d d y boards is used to show M A C address of the
node (ID), M A C address of the parent node (Par) and depth i n the tree the node is (Depth).

pins.py file defines numbers of G P I O pins and ini t ia l isat ion of L E D diode. It also offers
the function to initialise the but ton on E S P 3 2 and register an interrupt handler. These
handler functions are used for processing the push but ton interrupt in the M P S process
and i n the B l i n k A p p applicat ion.

tree.py is a module for Tree and TreeNode classes. The Tree class represents the tree
topology and is saved on each node i n the tree. It also supplies functions that can create
a Tree instance from a J S O N object.

7.6 Use and deployment

How to use this project was shown i n Demo applicat ion 7.4. For automatic ini t ia l isat ion
and the start of the project it is useful to use boot.py and main.py that executes at the boot
of the device. A basic overview of the deployment of the user programs to microcontrollers
can be found at the official website of M i c r o P y t h o n [10] or on R a n d o m Nerd Tutorials [24].
The big advantage is that when the board reset itself, it automatical ly reads instructions
from boot.py and main.py and can start working again without the need to manual ly reset
or upload the program again.

After 29 seconds of no new addi t ion through M P S into the mesh, the root is elected
which takes some amount of t ime. Then at worst every 7 seconds new layer of chi ld is added.
In to ta l 29+7*L seconds where L is the height of the tree. Be aware that connection to
W i F i A P of parent node takes unknown amount of time.

43

Chapter 8

Testing and limitations

Users must be aware, that impor t ing modules consumes memory. W h e n the module is com
piled into the bytecode, the bytecode is stored in R A M and the compilat ion itself requires
memory. After impor t ing a l l the needed modules and ini t ia l is ing EspNowCore , Wif iCore
and B l i n k A p p , the memory usage is around 5 6 K B out of 1 1 1 K B . This size could be reduced
by memory profiling and improvements [11] like using module array1 or memoryview2.

Dur ing the implementat ion phase, I used the U S B - H U B station as shown i n Figure 7.3.
B u t when nodes are so close to each other, it could lead to misbehaviour. In order to
test real-life scenarios, I distr ibuted nodes around the house and tr ied to run the mesh
wi th more real-life use cases. The dis t r ibut ion should simulate the distances and signals
of nodes. E S P 3 2 - B u d d y board can be plugged into any U S B port, I use mobile chargers,
laptop and U S B - H U B station.

In the testing scenarios, I defined the m a x i m u m number of chi ld nodes for each node
as two, i n order to demonstrate tree structure. E S P 3 2 boards can mainta in at most 10
connections on their A P interface.

8.1 Tests

Six nodes for 24 hours

Firs t use case was w i t h six nodes that run over one day. Firs t ly , a l l six nodes were plugged
into the U S B - H U B station and debug outputs i n R E P L consoles were watched. The debug
prints i n the configuration file can enable such information as received messages and send
messages and addi t ional actions. After 15 minutes w i th a stable and working mesh, the
nodes were turned off and distr ibuted around the house. O n l y two nodes were left i n the
U S B - H U B and every other node was stationed i n a different room. One node was always
connected to the laptop i n order to monitor debug prints in the R E P L console.

For the next 24 hours, the tree structure and stabil i ty of nodes were mapped. Dur ing
this t ime no node experienced node failure and the mesh network was stable. The tree
structure was marked down as it was, and after the night it was checked wi th the current
tree structure again. If the mesh had failed or collapsed, it would have reconstructed itself
very l ikely i n a different constellation because claiming of children and forming of the tree
structure is randomised. This way, it can be said wi th certainty, that the mesh was stable

1 h t t p s : //docs.micropython.org/en/vl.10/library/array.html
2 h t t p s : //docs.micropython.org/en/vl.lO/library/builtins.html?highlight=

memoryvi ew#memoryvi ew

44

http://micropython.org/en/vl.10/library/array.html
http://micropython.org/

and didn ' t re-organise itself. Nodes were intentionally turned down in order to verify the
process of self-healing as can be seen i n Figure 8.1. The mesh managed to repair itself
even w i t h mult iple turned down nodes. A n d also when mult iple nodes turned back on.
Throughout the day, the change of L E D colour was triggered on several nodes to ensure
the nodes are really connected and resending packets.

W h e n a node is turned down, it has to stay down for at least 26-30 seconds for the
mesh to self-heal. After the node goes down, its chi ld nodes discover its parent is dead after
less than 10 seconds and they restart. B u t the chi ld nodes can function on the E S P - N O W
layer, but in order to get back to the W i F i tree structure, they have to wait for about
26-30 seconds because the grandparent discovers the dead parent after 26-30 seconds and
only after that t ime the parent is erased from the whole tree together w i th its descendants.
Therefore the chi ld nodes are free to be claimed by other nodes.

W h e n the root node was turned down, after 8 seconds a l l the nodes restarted them
selves and waited to be claimed. W h e n a node detects a dead parent node, it tears down
its connection to its chi ld nodes and based on that the chi ld nodes restart themselves im
mediately (they do not have to wait for addi t ional 8 seconds to detect their dead parent
node). Because root election is manual ly set, they d id not elect a new root node, but the
root node had to be turned back on.

[OnTopologyPropagate]
'3c71bfe48b89'

•3c71bfe48dll'
'3c71bfe48bb9'
'3c71bfe48d05'

'3c71bfe48ebd'
'3c71bfe48eb5'

(a) Tree structure

[OnTopologyPropagate]
'3c71bfe48b89'

'3c71bfe48ebd'
'3c71bfe48eb5'

(b) 3c71bfe48dll turned off for at least 30
seconds

[OnTopologyPropagate]
'3c71bfe48b89'

'3c71bfe48ebd'
'3c71bfe48eb5'
'3c71bfe48bb9'

'3c71bfe48d05'

(c) Descendants reclaimed after 26-30 seconds

[OnTopologyPropagate]
'3c71bfe48b89'

'3c71bfe48ebd'
'3c71bfe48eb5'

' 3 c 7 1 b f e 4 8 d l l '
'3c71bfe48bb9'

'3c71bfe48d05'

(d) 3c71bfe48dl 1 turned on and claimed

Figure 8.1: Demonstrat ion of self-healing when in full tree topology one node is turned
down, mesh self-heals and claims dead node's descendants. Then the dead node is turned
back on and claimed back into the tree.

Seven nodes for 24 hours

Testing wi th seven nodes was a l i t t le bit complicated. The mesh at first worked successfully.
B u t some nodes randomly restarted themselves and deformed the mesh. W h e n connected to
the R E P L interface on my laptop, the G u r u Medi ta t ion Er ro r [38] mainly caused by Load-
Prohibi ted exception was printed i n the R E P L . This exception occurs when a pointer to
an object is corrupted 8.2. Us ing the backtrace information, I was able to repair most errors,

45

but not a l l and the problem remains i n lower frequency. Another G u r u Medi ta t ion Er ro r
was Ilegallnstruction which indicates wrong instruct ion in Program Counter Register.

[SEND] d ra ined and done

Core 0 r e g i s t e r dump:
PC : 0x400da389 PS : 0x00060030 A0 : 0x80083434 A l : 0x3f fccab0
A2 : 0x00000002 A3 : 0x3f fec3e0 A4 : 0x3 f f fd2b0 A5 : 0x00O0000e
A6 : OxOOOOOOle A7 : 0x00000000 A8 : 0x00000008 A9 : 0xdd304e01
A10 : 0x3f4048d0 A l l : 0x3 f f cca f0 A12 : 0x3ffccaeO A13 : 0x3f402670
A14 : 0x00000010 A15 : 0x00000008 SAR : 0x0000000a EXCCAUSE: 0x0000001c
EXCVADDR: 0xdd304el9 LBEG : 0x400827cl LEND : 0x400827c9 LCOUNT : 0x00000027

Backtrace:0x400da386:0x3f fccab0 0x40083431: 0x3f fccae0 0x40084983: 0x3f fccb20 0x400dca91:0x
50 0x400e3179:0x3ffccc70 0x400845f9:0x3f fccc90 0x400dc6e8:0x3ffccd30 0x400e3049:0x3ffccdf l
0845f9 :0x3f fcceb0 0x400dc6e8 :0x3 f f cc f50 0x400e3049:0x3f fccf80 0x400e3179:0x3f fccfa0 0x409
0x3f fcd0d0 0x400dc6e8:0x3f fcd l70 0x400e3049 : 0x3 f f cd l a0 0x400e3072 : 0 x 3 f f c d l c 0 0x4O0f03d7:0

ELF f i l e SHA256: 009e7c06444b5b69

R e b o o t i n g . . .
e t s Jun 8 2016 00:22:57

Figure 8.2: G u r u Medi ta t ion E r r o r L o a d Prohib i ted occurs when seven and more nodes
resonance together and cause packet burst on some node.

The problem could be caused by low memory size. W i t h seven boards start ing at once,
they are synchronised and send messages at the same time like a burst. Th is means that
the boards receive many messages at once, and there is probably low memory to save a l l of
them and process them at once. This is probably caused by my implementation of creating
a task for each message i n order to have the receive message function as light-weight as
possible 7.2 or by the wrong M i c r o P y t h o n implementation.

Errors and restarts occur randomly throughout the life of the mesh, but mainly i n the
beginning. Later when the mesh is formed, the restarts occur very sparely. F r o m the second
half-hour of functioning, the errors occur min imal ly (I noticed on average two errors i n one
hour). This means that the mesh found its stable state and the bursts of messages were
lower.

W h e n the restarts happen after the tree is formed, there is a problem wi th dead node
detection and self-healing, because, in order to detect a dead chi ld node, it has to stay dead
for at least 26 seconds. B u t nodes restart themselves immediately. W h i c h leads to wrong
or t ime-long detection of dead connection. W h e n the node is not dead for 26 seconds, the
information about its failure is known from the socket instance. B u t detecting a dead child
node through the socket takes from 2:20 to 2:40 minutes according to my measures. This
means that the failed node recovers, and its descendants reset themselves, but they a l l must
wait for 2:30 minutes in order to be wiped from the tree topology and to be claimed again
in a different place i n the tree.

E i g h t a n d m o r e nodes

W i t h more than seven nodes, the problems w i t h G u r u Medi t a t ion Er ro r grow stronger and
stronger. W i t h eighth nodes, the problem is so severe, that the mesh and nodes cannot find

46

a ca lm state and they experience G u r u Medi ta t ion Er ro r throughout the whole life of the
mesh very often. The mesh is stable for a while, nodes form a tree, but then some of them
restart. I measured that the full eighth node tree was working at most for 15 minutes unt i l
some of the nodes break down.

I t r ied to test the mesh wi th ten nodes as was requested in the assignment but unfortu
nately, w i th this many nodes, the mesh is not stable at a l l and nodes reset themselves very
often and randomly. Overa l l w i th ten nodes, there was definitely more t ime spent on re
bui lding the tree and reconnecting due to the errors than the mesh spent t ime functioning
w i t h a l l the nodes as it should.

8.2 Comparison with existing solution

The E S P 3 2 - B u d d y boards are not commercial ly available. They were produced only for
the development of the E S P - W I F I - M E S H 5.2 on E S P 3 2 boards. Even though there are set
exact intervals to trigger some actions, they occur around the t ime and not exactly in a
given time, because delays and asyncio operations can postpone some actions. I run several
t ime measurements and the t ime results are that:

• 6-8 seconds from turning on the board to start ing the program (import ing modules
and libraries, ini t ia l isat ion of network and E S P - N O W interfaces).

• 35 seconds unt i l the root election process is simulated.

• 7,5-8 seconds un t i l the node sends the first c la im to the possible chi ld node.

• 5-8 seconds un t i l the chi ld connects to the parent's W i F i and opens the socket con-
nection(time to connect to the W i F i A P can vary quite a lot) .

• 26-30 seconds unt i l the dead chi ld node is detected using E S P - N O W advertisements
database of nodes.

• 8-10 seconds unt i l the dead parent node is detected using sockets.

• 2:20-2:40 minutes unt i l the dead chi ld node is detected when the chi ld immediately
restarts itself. It is detected by socket t imeout on server side (parent node).

For the chi ld to be considered dead, it must stay dead for 26 seconds in order to be
wiped out from the tree. If the chi ld fails down and comes back up right away without the
needed 26 seconds period, the mesh notices the wrong or failed W i F i connection thanks to
the socket after much longer.

F rom the results above, the mesh elects its root after 41-43 seconds. Th i s t ime could
be reduced to only 6-8 seconds because the election is only simulated and is statically set
in the configuration file. W i t h every 12,5-16 seconds a new layer (level) of nodes can be
added to the tree. I measured the per-hop latency of W i F i messages to an average of 174
milliseconds.

Let 's assume that my design can take up to 100 nodes in order to make a comparison
to E S P - W I F I - M E S H 5.2 and see the results i n Table 8.1. There is a comparison wi th time
measures. It tells us that M i c r o P y t h o n cannot measure in speed point of view, at least
not normal M i c r o P y t h o n (there are special code emitters to speed up execution 3) . B u t be

3https://docs.micropython.org/en/latest/reference/speed_python.html - special Native or Viper
code emitters can speed up some suitable code several times.

47

https://docs.micropython.org/en/latest/reference/speed_python.html

aware that this is merely a simulation and times for bui ld ing the mesh and the per-hop
latency would probably increase wi th more load on the node, due to the switching of tasks
and scheduling. M y solution can effectively work wi th only six nodes, due to the memory
l imits and E S P - W I F I - M E S H has 36x more memory than my boards.

Table 8.1: Lets assume 100 nodes wi th max 6 children for each node and max 6 layers
in the mesh (depth) for comparison w i t h existing solution E S P - W I F I - M E S H [31].

Category M i c r o P y t h o n Mesh E S P - W I F I - M E S H

B u i l d t ime 103.5-123 s < 60 s
Heal ing T ime 26-30 s < 5 s

Per H o p latency 174 ms 10-30 ms

I have computed rate of bits/seconds and number of messages send by each node.

rate{bit/second) = 117, 2 + 31, 9 + (74, 8 + 34, 3 * N) * C (8.1)

rate(packets/minute) = 20, 5 + 4, 6 * N + 8, 5 * C (8.2)

Where N represents the to ta l number of nodes in the mesh and C represents the number
of chi ld nodes. W i t h a working mesh wi th 10 nodes and a max of 2 children, the rate is
984,7 bps and 83,5 packets per minute on each node. Together the 10-mesh produces 9847
bps and 835 packets per minute. L o w rates are because the E S P - N O W advertise packets
are smal l (52B) and topology propagation of 260 Bytes is sent only 8,5x i n one minute.
These values are for mesh working only, addi t ional load is added by the user applicat ion
and messages it sends.

8.3 Limits and improvements

The biggest l imi ta t ion of this solution is the memory. E S P 3 2 - B u d d y microcontrollers have
4 M B of R A M but due to the wrong compat ibi l i ty w i th M i c r o P y t h o n , only 1 1 1 K B of R A M
is accessible. The modules themselves without any runtime act ivi ty take about 5 5 K B of
memory. Probab ly due to the R A M l imits , the solution is stable only for a m a x i m u m of
six nodes i n the mesh. W i t h seven nodes the mesh is formed after some time of restarts.
For more than 8 nodes the mesh is not stable and the formation and repairs of the mesh
consume more t ime than the mesh working itself w i th a l l the nodes.

The root election is set stat ically because there is a problem wi th W i F i scanning net
works, which takes between 2 and 2,5 seconds. Even though i n M i c r o P y t h o n W i F i scan
is defined in another thread, i n R T O S it runs i n the same thread as receiving incoming
packets, therefore, it blocks the receiving. I came up wi th a solution to overcome this issue,
that the root election would not be based on the R S S I signal of neighbours but s imply on a
number of visible neighbours (using T T L or Age flag). I am aware that this type of root
election can lead to electing some locally op t imal root, but it is a better solution in most
cases than a random root election, because it tries to form a shallower tree.

Detection of dead connection needs to be rethought and improved i n order to know
dead peer i n a shorter t ime and to be able to detect dead peer even after it boots up and
starts propagating itself again in E S P - N O W protocol.

18

The L M K and P M K key for secure E S P - N O W communicat ion during the M P S process
of exchange signing credentials must be predefined i n the J S O N configuration file because
these values have to be the same on both devices.

F rom the low-level implementat ion of E S P - N O W and network interfaces, they must
operate on the same channels. Th is means that when the mesh is i n connected mode to the
Router, a l l the nodes are on the same channel as other users' devices. Even though node
sends not many packets, when there are more nodes, they send many l i t t le packets and this
could lead to delays i n t ransmit t ing due to C S M A / C A 4 because devices would always wait
for a free channel.

E S P 3 2 boards can offer a m a x i m u m of 10 stations to be connected to one A P interface.
This means that the m a x i m u m number of chi ld nodes is l imi ted to 10 nodes. Also randomly
claiming children can lead to the isolation of some nodes, because the parent node can c la im
whichever node he wants. B u t some nodes can see only this part icular parent node. W h e n
the parent randomly chooses nodes, it could leave the node isolated without any other
node to c la im it because no one else sees it directly (a l i t t le similar to PainlessMesh root
problem 5.7). This is probably not going to happen i n home uses, but it is possible in use
cases wi th bigger distances (farms, warehouses,...).

A l i t t le improvement would be inserting a Web server like microdot [16] on at least one
node i n order to set mesh key and W i F i router credentials dynamical ly during the runtime,
instead of changing the configuration file and uploading it to the board.

There haven't been any power consumption measurements to know how long can device
operate on a battery, but W i F i operations consume a lot of energy. The W i F i communica
t ion is a power bottleneck [12], as the R f antenna is used constantly. Th is can be improved
by implementing N T P ' ' protocol for devices to come alive at certain intervals and sleep
in the meantime.

4Carrier-sense multiple access with collision avoidance (CSMA/CA) is a method for wireless devices to
avoid collisions on the channel by beginning transmission only after the channel is sensed to be idle. When
the node transmits the packet, it transmits the data in its entirety.

5 Network Time Protocol is used for time synchronisation.

49

Chapter 9

Conclusion

The goal of this thesis is to create a dynamic mesh network using E S P 3 2 microcontrollers for
IoT and sensor networks that are capable of working wi th or without an Internet connection.
The new mesh network protocol was designed and implemented i n M i c r o P y t h o n as was
requested by the assignment from the company Espressif. I have chosen this mesh should
form a tree structure for better management. Together w i th the tree, there is a need for
a root node. Mesh can overcome node failures.

In this work, the current solutions were studied and based on the information a new mesh
network was designed. It supports both modes, stand-alone and connected to an external
network. A firmware w i t h M i c r o P y t h o n together w i th an asynchronous loop pr imar i ly for
network I / O operations was created. Furthermore, a demo applicat ion has been created
to demonstrate the functionality of the solution. It is important that user-defined applica
tions can be created, according to the demo, to run on the mesh network for sensor and
management purposes.

To test the effectiveness and functionality, the tree testing scenarios have been com
pleted wi th mesh deployment in a home environment. Dur ing the implementat ion on E S P 3 2
boards, I encountered problems wi th the compat ibi l i ty of firmware and versions of M i c r o P y
thon. It results in a low capacity of memory. This l imi ted the use case scenarios to be able
to work without trouble only on 6 nodes, not 10 as it is requested i n the assignment. Fur
ther optimisations can make this implementat ion more efficient. However, M i c r o P y t h o n
solution probably cannot achieve robustness w i th 1000 nodes of other solutions using C or
C + + languages.

Col laborat ion wi th an external consultant was very beneficial and throughout this
project, I learned how to develop complex network systems from scratch. This work was
also presented at the Student's conference of innovations E x c e l @ F I T in Brno . I have won
two diplomas. One from a professional panel for the creation of pract ical useful results and
the second one is from the company Espressif for extraordinary work. For this conference,
I have wri t ten a scientific paper and prepared a presentation i n front of an audience.

I would like to continue my work and improve it because it could be useful for I T
hobbyists and I made it publ ic ly available on the platform G i t H u b . A big improvement
would be solving problems wi th compat ibi l i ty on firmware and M i c r o P y t h o n , i n order to
use full memory capacity. M y work could be improved by implementing the proposed
automatic root election process. Another improvement would be creating an algori thm for
adding chi ld nodes for the purpose of not creating isolated nodes.

50

Bibliography

[1] I E E E Standard for information technology-Telecommunications and information
exchange between systems-Local and metropoli tan area networks-Specific
requirements-Part 11: Wireless L A N M e d i u m Access Con t ro l (M A C) and Phys ica l
Layer (P H Y) specifications: Amendment 6: M e d i u m Access Cont ro l (M A C) Security
Enhancements. IEEE Std 802.1H-2004. 2004, p. 1-190. D O I :
10 .1109/IEEESTD.2004.94585.

[2] I E E E Standard for Information Technology-Telecommunications and information
exchange between sys tems-Local and metropoli tan area networks-Specific
requirements Par t 11: Wireless L A N M e d i u m Access Con t ro l (M A C) and Phys ica l
Layer (P H Y) specifications Amendment 10: Mesh Networking. IEEE Std
802.118-2011 (Amendment to IEEE Std 802.11-2007). 2011, p. 1-372. D O I :
10.1109/IEEESTD.2011.6018236.

[3] I E E E Standard for Information technology—Telecommunications and information
exchange between systems L o c a l and metropoli tan area networks—Specific
requirements - Par t 11: Wireless L A N M e d i u m Access Cont ro l (M A C) and Phys ica l
Layer (P H Y) Specifications. IEEE Std 802.11-2016 (Revision of IEEE Std
802.11-2012). 2016, p. 1-3534. D O I : 10.1109/IEEESTD.2016.7786995.

[4] A D M I N . MicroPython: Interfacing 0.96,, OLED display with ESP32. M a r 2021.
Available at:
https: //how2electronics. com/micropython- i n t e r f a c i n g - oled-display-esp32/.

[5] A N D E R S O N , J . Speed Up Your Python Program With Concurrency - Real Python.
Available at: https:/ /realpython.com /python-concurrency.

[6] C O N N E R , W . S., K R U Y S , J . , K I M , K . and Z U N I G A , J . C . IEEE 802.11s Tutorial
[Overview of the Amendment for Wireless L o c a l A r e a Mesh Networking]. 2006.
Available at:
https://www.ieee802.org/802_tutorials/06-November/802.lls_Tutorial_r5.pdf.

[7] C O O P D I S , E . v. L . PainlessMesh [release/1.4.9]. G i t L a b , 2019 [Online]. Available at:
https: //gitlab.com/painlessMesh/painlessMesh/-/wikis /home.

[8] D A M I E N P . G E O R G E , P . S. MicroPython Documentation. 2021. Available at:
h t t p : / / do cs .mi cr opython. org/en/ v l . 10/mi cr opython- do cs .pdf.

[9] D A M I E N P . G E O R G E , P . S. Cryptolib - cryptographic ciphers. M a y 2022. Available
at: h t t p s : / /mic ropy thon-glenn20 . r ead thedocs . io/en/latest / l i b ra ry /
c rypto l ib .h tml?highl ight=aes.

51

https://realpython.com/python-concurrency
https://www.ieee802.org/802_tutorials/06-November/802.lls_Tutorial_r5.pdf

[10] D A M I E N P . G E O R G E , P . S. Getting started with MicroPython on the ESP32. A p r
2022. Available at:
https: //docs.micropython.org/en/latest/esp32/tutorial/intro.html.

[11] D A M I E N P . G E O R G E , P . S. Maximising MicroPython speed. A p r 2022. Available at:
https: //docs.micropython.org/en/latest/reference/speed_python.html.

[12] E N G I N E E R S , L . M . Insight into ESP32 sleep modes & their power consumption. Last
Minu te Engineers, Dec 2020. Available at:
https: //lastminuteengineers.com/esp32-sleep-modes-power-consumption/.

[13] E S P R E S S I F S Y S T E M S , E . - M . f. Mesh size limts. 2018. Available at:

https: //esp32.com/viewtopic.php?t=5919.

[14] G L E N N 2 0 . MicroPython port to the ESP32 - Glenn20/micropython. Available at:
https: //github.com/glenn20/micropython/tree/espnow-g20/ports/esp32.

[15] G O M E Z , C . and P A R A D E L L S , J . Wireless home automation networks: A survey of
architectures and technologies. IEEE Communications Magazine. 2010, vol . 48,
no. 6, p. 92-101. D O I : 10.1109/MCOM.2010.5473869.

[16] G R I N B E R G , M . The impossibly small web framework for Python and MicroPython.
2019. Available at: https://github.com/miguelgrinberg/microdot.

[17] H E N R Y , J . and B U R T O N , M . 802.11S mesh networking. 2011.

[18] H U N T , J . Concurrency with AsyncIO. Springer International Publ ish ing, 2019.
407-417 p. I S B N 978-3-030-25943-3.

[19] K O L Á Ř , J . Koordinace IoT na bázi MicroPythonu pomocí Node-RED. Brno , C Z ,
2019. B a k a l á ř s k á p ráce . Vysoké učen í technické v B rně , Faku l ta in formačních
technologi í . Available at: https://www.fit.vut.cz/study/thesis/21632/.

[20] K R A W C Z Y K , H . , B E L L A R E , M . and C A N E T T I , R . HMAC: Keyed-hashing for message

authentication. R F C Edi to r , 1997. D O I : 10.17487/RFC2104. Available at:
https: //www.rfc-editor.org/ inf o/rf c2104.

[21] M A Z Z E L L A , D . Micropython package for doing fast elliptic curve cryptography,
specifically digital signatures. 2021. Available at:
https: //github.com/dmazzella/ucrypto.

[22] R A M A K R I S H N A N , K A R T H I K . An Improved Model for the Dynamic Routing Effect
Algorithm for Mobility Protocol. Ontario, Canada, 2004. Master 's thesis. Universi ty
of Waterloo.

[23] R O B I N H E Y D O N , V . Z . Mesh profile. Bluetooth® Specification. Mesh Work ing Group .
2017.

[24] S A N T O S , S. Getting started with MicroPython on ESP32 and ESP8266. M a y 2019.
Available at:
https: //randomnerdtutorials. com/getting- start ed-micropython-esp32-esp8266/.

52

http://micropython.org/en/latest/esp32/tutorial/
http://micropython.org/en/latest/reference/speed_python.html
https://github.com/miguelgrinberg/microdot
https://www.fit.vut.cz/study/thesis/21632/
http://www.rfc-editor.org/

[25] S A N T O S , S. and S A N T O S , R . Esp32 useful Wi-Fi library functions (Arduino IDE).

Available at:

https: //randomnerdtutorials.com/esp32-usef ul-wi-f i - f unctions-arduino/#l.

[26] S O L O M O N , B . Async 10 in Python: A Complete Walkthrough - Real Python.

Available at: https://realpython.com/async-io-python.

[27] S Y S T E M S , E . ESP-BLE-MESH. Available at: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-guides/esp-ble-mesh/ble-mesh-index.html.

[28] S Y S T E M S , E . ESP-Now. Available at: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-reference/network/esp_now.html.

[29] S Y S T E M S , E . ESP-NOW Overview: Espressif Systems. Available at:

https: / / www.espressif.com/en/products/sof tware/esp-now/overview.

[30] S Y S T E M S , E . ESP-NOW User Guide. Available at: https://www.espressif.com/
sites/default/files/documentation/esp-now_user_guide_en.pdf.

[31] S Y S T E M S , E . ESP-WIFI-MESH. Available at: https://docs.espressif.com/
proj ects/esp-idf/en/stable/esp32/api-guides/esp-wif i-mesh.html.

[32] S Y S T E M S , E . ESP32-Buddy. Available at: https:
//docs, espressif .com/pro jects/esp-mdf/en/latest/hw-ref erence/esp32-buddy. html.

[33] S Y S T E M S , E . ESP32 Buddy User Guide. Available at: https:
//github.com/espressif/esp-mdf/tree/master/examples/development_kit/buddy.

[34] S Y S T E M S , E . ESP32 Series Datasheet. Available at: https:
//www.espressif .com/sites/def a u l t / f iles/documentation/esp32_datasheet_en.pdf.

[35] S Y S T E M S , E . Espressif's AWS IOT Expresslink solution. Available at:

https: //www.espressif .com/.

[36] S Y S T E M S , E . Mesh Development Framework - ESP-WIFI-MESH. Available at:

https: //www.espressif .com/en/products/sdks/esp-wif i-mesh/overview.

[37] S Y S T E M S , E . Wi-Fi:Frequently asked questions. Available at:

https: //docs.espressif. com/pro jects/espressif-esp-faq/en/latest/software-
framework/ wif i.html.

[38] S Y S T E M S , E . Fatal Errors. M a y 2022. Available at: https://docs.espressif.com/
pro j ects/esp- idf/en/latest/esp32/api-guides/f a t a l - e r r o r s.html#id3.

[39] W A Q A S , A . and K A S H I F , A . M . An investigation of Routing Protocols in Wireless

Mesh Networks (WMNs) under certain Parameters. Kar l skrona , Sweden, 2009.

Master 's Thesis. Blekinge Institute of Technology, Kar l sk rona Campus, Sweden.

[40] W O O L L E Y , M . Bluetooth Mesh networking. Blue tooth S I G , 2020. Available at:

https:
//www.bluetooth.com/wp-content/uploads/2019/03/Mesh-Technology-Overview.pdf.

53

https://realpython.com/async-io-python
https://docs.espressif.com/projects/
https://docs.espressif.com/projects/esp-
http://www.espressif.com/
https://www.espressif.com/
https://docs.espressif.com/
http://www.espressif
http://www.espressif
http://www.espressif
https://docs.espressif.com/
http://www.bluetooth.com/wp-content/uploads/2019/03/Mesh-Technology-Overview.pdf

Appendix A

Contents of the D V D

The enclosed D V D medium contains the following files:

• doc / - source files of this text for D i p l o m a thesis.

• micropython_616.z ip / - copy of G i t H u b repository from glenn-g20/ branch of M i -
c roPython w i t h working E S P - N O W support on E S P 3 2 - B u d d y boards. Th is version
is probably re-based and unavailable.

• codes/ - source codes of implementat ion in M i c r o P y t h o n together w i th Readme file
w i th a guide.

• thesis.pdf - P D F of this thesis.

54

