
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

KNIHOVNA A SADA NASTROJU PRO POUZITI
DNSSEC NA SERVERU
LIBRARY AND TOOLS FOR SERVER-SIDE DNSSEC IMPLEMENTATION

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Be. JAN VČELÁK
AUTHOR

VEDOUCÍ PRÁCE Ing. PETR MATOUŠEK, Ph.D.
SUPERVISOR

BRNO 2014

Abstrakt
Tato práce se zabývá analýzou současných open source řešení pro zabezpečení DNS zón
pomocí technologie DNSSEC. Na základě provedené rešerše je navržena a implementována
nová knihovna pro použití na autoritativních DNS serverech. Cílem knihovny je zachovat
výhody stávajících řešení a vyřešit jejich nedostatky. Součástí návrhu je i sada nástrojů
pro správu politiky a klíčů. Funkčnost vytvořené knihovny je ukázána na jejím použití
v serveru Knot DNS.

Abstract
This thesis deals with currently available open-source solutions for securing DNS zones
using the DNSSEC mechanism. Based on the findings, a new DNSSEC library for an
authoritative name server is designed and implemented. The aim of the library is to keep
the benefits of existing solutions and to eliminate their drawbacks. Also a set of utilities to
manage keys and signing policy is proposed. The functionality of the library is demonstrated
by it's use in the Knot DNS server.

Klíčová slova
DNS, DNSSEC, správa klíčů, politika podepisování, Knot DNS, OpenDNSSEC, BIND,
NSD, PowerDNS

Keywords
DNS, DNSSEC, key management, signing policy, Knot DNS, OpenDNSSEC, BIND, NSD,
PowerDNS

Citace
Jan Včelák: Library and Tools for Server-Side DNSSEC Implementation, diplomová práce,
Brno, F IT V U T v Brně, 2014

Library and Tools for Server-Side DNSSEC
Implementation

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Petra
Matouška, Ph.D., technické konzultace probíhaly se zaměstnanci sdružení CZ.NIC. Uvedl
jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

Jan Včelák
27. května 2014

Poděkování
Děkuji všem, kteří se mnou měli trpělivost při psaní této práce. Také děkuji kolegům ze
sdružení CZ.NIC, kteří mi ochotně odpovídali na dotazy z praxe, pomohli mi rozhodnout
navrhované alternativy nebo jakkoli přispěli svými nápady a připomínkami k výsledné
podobě této práce.

© Jan Včelák, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 1

2 Domain Name System 2
2.1 DNS Data Model 2

2.1.1 Domain Names 3
2.1.2 Domains and Subdomains 3
2.1.3 Resource Records 4
2.1.4 Zones 5

2.2 Operation of DNS 6
2.2.1 Types of DNS Servers 6
2.2.2 DNS Root Zone 8

2.3 DNS Protocol 9
2.3.1 DNS Message Format 9
2.3.2 Transporting DNS Messages 10
2.3.3 Extension Mechanisms for DNS 11

3 Domain Name System Security Extensions 12
3.1 DNSSEC Threat Analysis 14
3.2 Public-key Cryptography 16
3.3 DNSSEC Resource Records 17

3.3.1 Initial Version of DNSSEC 17
3.3.2 Second Version of DNSSEC 18

3.4 Securing the Zone 20
3.5 Proving the Answer Validity 22

4 Existing D N S S E C Implementations 23
4.1 BIND 23
4.2 NSD 27
4.3 PowerDNS 27
4.4 OpenDNSSEC 29
4.5 Knot DNS 31
4.6 Yadifa 31
4.7 Existing Implementations Summary 32

5 D N S S E C Library Design and Implementation 33
5.1 Use Cases for the Library 34
5.2 Design Goals 34
5.3 Utilities 37

5.4 Cryptographic Operations 38
5.4.1 Selection of a Cryptographic Library 39
5.4.2 Key and Signatures Encoding 40

5.5 Signing State Persistence 42
5.5.1 Signing State Persistence Model 42
5.5.2 Signing State Store Abstraction 45

5.6 Project Structure and Testing 47

6 Conclusion 49

A DNS Messages Format i
A . l DNS Message i

A . 1.1 Message Header Format i
A.1.2 Question Entry Format hi
A . 1.3 Resource Record hi
A.1.4 O P T Resource Record iv

A.2 DNSSEC Resource Records v
A.2.1 D N S K E Y Resource Record v
A.2.2 RRSIG Resource Record v
A.2.3 N S E C Resource Record vi
A.2.4 DS Resource Record vii
A.2.5 NSEC3 Resource Record vii
A.2.6 N S E C 3 P A R A M Resource Record vii i

B Content of the D V D ix

Chapter 1

Introduction

The Domain Name System (DNS) is a critical part and one of the fundamental building
blocks of the Internet. It is used not only for address resolution, but it is essential for e-mail
delivery, network service location, and it can store almost any kind of data in general.
Currently, almost every communication in the Internet starts with a DNS query.

The DNS system was not designed to provide strong security. It contains only a sim
ple protection against various packet interception attacks, which still allows an attacker
to modify the response message transmitted from a server to a client. To prevent these
kind of attacks, the Domain Name System Security Extensions (DNSSEC) mechanism was
proposed and implemented.

DNSSEC uses public-key cryptography to ensure the integrity and authenticity of the
data in the answer messages. It has been designed and deployed gradually due to various
problems identified at the time of the technology adaptation. As a result, a lot of existing
DNSSEC tools have accustomed to certain mechanisms, which are suboptimal and have
been preserved mainly for historical reasons.

At the moment, there are various open-source libraries oriented on DNSSEC validation.
But there is no one to provide server-side DNSSEC management. The aim of this thesis is
to design and implement an open-source DNSSEC library, which will cover the functionality
necessary for securing DNS zones using the DNSSEC technology. The library is intended
to be used by authoritative name servers, zone signing utilities, and other software for ma
nagement of DNSSEC at the zone operator side. Great emphasis will be put on eliminating
the problems of existing solutions.

At the beginning of this thesis, the DNS and DNSSEC are described. The explanation of
the DNS is limited to the features required for understanding of D N S S E C mechanisms, that
is the architecture of the DNS and the communication protocol. The DNSSEC description
includes the motivation for the DNSSEC deployment, analysis of threats the technology is
able to prevent, and how the public-key cryptography is applied to achieve these goals. The
information is primarily focused on the aspects relevant for authoritative name servers.

Then, in order to define the requirements for the new library, existing open-source
DNSSEC solutions with a similar specialization are analyzed and their advantages and
drawbacks are identified. Based on the findings and use cases for the library, the new
library is designed. Also a set of utilities to be distributed with the library is proposed.

Finally, the DNSSEC library is implemented and it's functionality demonstrated with
the Knot DNS server.

1

Chapter 2

Domain Name System

This chapter describes the principles of the Domain Name System (DNS), which are ne
cessary for understanding of DNSSEC mechanisms. The description covers the DNS data
model, the architecture of the system, and the protocol operation.

In early 1980s, T C P / I P protocol suite was developed and became the standard for com
munication on an experimental wide-area computer network A R P A N E T , predecessor of the
Internet. When the T C P / I P protocol was implemented in Berkeley's BSD Unix operating
system, the connection to A R P A N E T became possible for a lot more organizations. The
number of hosts within the network started to grow rapidly [1].

The IP protocol uses numeric IP addresses to identify hosts in the network. As num
eric addresses are difficult to remember, hosts were assigned names and name-to-address
mappings were put into a single file HOSTS. TXT. The file was maintained by Network Infor
mation Center (NIC) and every member of the network could fetch an up-to-date version of
this file from a well-known F T P server [27, 28]. The process of retrieving of an IP address
from a hostname is called address resolution. This approach to the resolution process is
still available on most Unix operating systems, where the mappings are usually set in the
/ e t c /hos t s file.

The downside of a single file with name-to-address mappings is a bad scalability. A copy
of the file has to be present on every host, the lookup performance gets worse with more
hosts, and there is no mechanism to notify the hosts about the source file modification. In
addition, the hostnames must be unique and there was no authority, which could work out
arisen conflicts. The DNS delivered a solution for these problems.

2.1 D N S Data Mode l

Domain Name System is a hierarchical and distributed database representing the whole
domain name space. The domain name space forms a tree structure and is usually depicted
as an inverted tree — the root node is on the top and the leaf nodes are at the bottom.
This tree is called the zone tree and each node in the tree is uniquely identified by a domain
name which can contain data in a form of resource records. Example zone tree is shown in
Figure 2.1.

2

com

vut muni

fit fa fi sci

I
merlin

merlin, fit. vutbr. cz.

Figure 2.1: Example zone tree. Each node in the zone tree is identified by a label, a subtree
within the node represents a domain. Complete domain names are built from leaves to the
root node as shown on the leaf node merlin.

2.1.1 Domain Names

A domain name is a network resource identifier, which was designed to be independent
on the network protocol family [45, 46]. Domain names are not required to include any
network identifiers, addresses, routes, or similar information.

The name consists of labels separated by a dot character (ASCII code 0x2e). Each
label is 1 to 63 bytes in length, except for the root label, whose size is zero. The label
corresponds with a node in the zone tree. It can contain only letters (ASCII code ranges
0x41-0x5a and 0x61-0x7a), digits (ASCII code range 0x30-0x39), and hyphen character
(ASCII code 0x2d). The label must also begin and terminate with a letter or digit only.
Originally, the labels were restricted to start with a letter, but this restriction was relaxed
later []. Internationalized domain names (IDN) are encoded into base character set using
Punycode algorithm []. However in reality, the rules for domain names are not obeyed
strictly (e.g., the SRV records often involve labels starting with an underscore).

Complete domain names are built from the leaf nodes up to the root node. The root
node is represented by an empty label. Therefore a complete domain name is terminated
by a dot, however the last dot is often omitted in end-user interactions. To simplify the
implementation, the total length of the domain name including the label terminators must
not exceed 255 bytes.

A complete domain name uniquely identifies a network resource. The comparison of
labels is done in a case-insensitive manner [17], while the DNS tries to preserve the case
whenever possible [].

Example of a domain name is m e r l i n . f i t . vutbr .cz., which is composed of five labels:
mer l in , f i t , vutbr, cz, and empty label representing the root node.

2.1.2 Domains and Subdomains

The dots in the domain names mark hierarchy levels and can be also viewed as organiza
tional levels. These levels are called domains. A domain includes those parts of a zone
tree, which are at the level or below the level of the domain name specifying the domain.
Domains within another domain are called subdomains.

For example, domain name f i t . v u t b r . c z is a subdomain of vu tb r . cz , cz, and root
domains (as can be seen in Figure 2.1).

3

http://fit.vutbr.cz
http://vutbr.cz

2.1.3 Resource Records

Each node in a zone tree includes a set of resource information. The set can be empty.
Each member of the set is called resource record (RR) and has the following attributes:

• Owner — complete domain name of the node, where the R R is stored;

• Type — identifier of the type of the data held by the RR;

• Class — identifier of the protocol family;

• Time to live (TTL) — time interval the record can be kept in cache; and

• Resource data — variable data determined by the R R type.

Basic Resource Records

The DNS defines a lot of R R types. Some of the types from the original design were
obsoleted and some new were added later. To explain the DNS data model, the following
R R types have to be pointed out:

• SOA (Start Of Authority)

The record specifies information about the zone authority. It contains a domain
name of a primary name server, an e-mail contact of a domain administrator, a serial
number of the zone content, and timing data related to zone refreshing and caching.

• NS (Name Server)

The record specifies a domain name of an authoritative name server for the zone.

• A (IPv4 Address)

The record specifies an IPv4 address of a host.

• A A A A (IPv6 Address)

The record has the same meaning as the A record, but it is used for IPv6 addresses.

• C N A M E (Canonical Name)

The record specifies an alias of a domain name to another. When the DNS resolver
is processing a query and reaches this record, the query is restarted and continues
from the domain name pointed to by the C N A M E R R data. The answer includes all
resolved records, including aliases.

• D N A M E (Delegation Name)

The record has the same meaning as the C N A M E record, but also creates aliasing for
all subdomains.

• P T R (Pointer)

The record has the same meaning as the C N A M E record, but the query is not restarted
when the processing reaches this record. P T R records are usually used for reverse
address resolution (retrieving a domain name from an IP address).

4

Wildcard Resource Records

The DNS also defines a wildcard R R . The leftmost label of it's domain name is represented
by an asterisk character (ASCII code 0x2a). The wildcard domain name matches a domain
name, if the wildcard label is removed and the remaining labels match with the suffix of
the domain name being compared.

If the name server is processing a query and there is no matching record in the zone,
wildcard RRs are matched. If there is a match, the name server synthesizes a new R R
with the domain name from the query and the resource data copied from the wildcard RR.
The synthesized record is returned in a response. The wildcard matching is limited to zone
boundaries and a subdomain delegation cancels the effect of the wildcard.

The above mentioned rules imply, that the wildcard R R can match multiple labels and
a better matching R R has always priority over the wildcard one.

2.1.4 Zones

The DNS is organized into units called zones []. The concept of zones allows to delegate
parts of the domain name space to different authorities. Zones are also essential to achieve
a true distribution of information within the DNS system. Each zone contains authoritative
information for an individual domain. The highest node in the zone tree inside the zone is
called the zone origin or the zone apex [23].

There is an authoritative name server for every zone. And every zone contains exactly
one SOA R R in the apex node. A new child zone can be created only by a delegation, which
means putting another name server in charge of a subdomain within the existing parent
zone. This is done by creating NS records in the parent zone, which hold domain names of
the name servers authoritative for the child zone. The place in the parent zone, where the
delegation happens, is called the zone cut or the delegation point [3].

If the domain name of the authoritative name server for the child zone is located inside
that zone itself, the parent zone has to include a glue record, which is usually an A and an
A A A A record with the address of the server. The glue records are not authoritative.

Master Files

The content of the zone is specified in a textual representation in a master file []. The
format of the master file is quite simple and will be explained on the following example for
zone example. com:

$TTL l h
$0RIGIN example.com.

@ SOA ns.example.com. admin.example.com. 1234 1200 180 2419200 3600

ns

NS

A

ns.example.com.

192.168.0.1

sub NS ns.sub.example.com.

ns.sub A 192.168.1.1

0 A 192.168.0.2

www CNAME 0

http://ns.example.com
http://admin.example.com

host A 192.168.0.3
fe80: :3 AAAA

*. tes t A 192.168.0.4
192.168.0.5 z . t e s t A

The first line sets the default T T L of the RRs in the zone. The second line sets the
origin domain name, which is appended to relative domain names appearing in the master
file. A relative domain name is a name, which is not terminated by a dot. The symbol @
(ASCII code 0x40) at any occurrence stands for the current origin.

The SOA record on line 4 states that the primary name server for the zone has a
domain name ns. example. com, the administrator e-mail address is adminOexample. com,
the zone serial is 1234, slave name servers should refresh zone content every 20 minutes
(1200 seconds) and retry every 3 minutes (180 seconds) if the master server is not available.
Data in the zone are valid for 28 days (2419200 seconds) if no authoritative name server
can be contacted. And the last value expresses that a denying response (RR does not exist)
can be cached for one hour (3600 seconds).

Line 5 specifies the only authoritative name servers for the zone, and it's IP address is
specified on line 6.

Line 8 expresses the delegation of the zone sub. example. com to a name server with
domain name ns. sub. example. com. Line 9 contains a glue record for the delegation,
because the name server is within the delegated zone.

Line 11 states that the IPv4 address of example.com is 192.168.0.2 and the next line
creates an alias www.example.com for the same host. Lines 13 and 14 specify IPv4 and
IPv6 address of host . example. com.

Line 16 shows a wildcard R R . The server will respond to a query for an A record of
a . tes t .example. com, b . c . test .example. com, and other similar domain names with a
synthesized R R carrying IP address 192.168.0.4. But the answer for an A record query
of z . test .example.com will contain IP address 192.168.0.5. The server will return a
denying response to a query for x . z . t e s t . example. com name.

Domain Name System uses the client-server model. In the DNS terminology, the clients are
called resolvers and the servers are called name servers. The process of retrieving resource
record data for a domain name is called resolution.

2.2.1 Types of D N S Servers

Basically, there are two types of name servers:

• Authoritative — provide authoritative data and non-recursive resolution; and

• Recursive — provide non-authoritative data and recursive resolution.

2.2 Operation of D N S

6

http://example.com
http://www.example.com

Authoritative Name Server

Authoritative name servers hold source information managed in the domain name space.
Each zone has at least one authoritative DNS server, which provides the information for the
whole domain associated with the zone. The authoritative name server can also delegate
the authority for a subdomain to another name server.

There can be multiple authoritative servers for one zone. One of them is always a master
server, the others are slave servers. A l l of these servers can provide authoritative answers
for the maintained zone. The domain name of the master server is specified in the SOA
record and every name server has an NS record. A l l these records are retained in the zone
apex. The NS records and necessary glue records must be also present in the parent zone.

The master server stores original content of the zone. Slave servers usually use a DNS
zone transfer mechanism to get an identical copy of the zone from the master.

Existence of multiple authoritative name servers for a zone increases robustness and
performance of the DNS. Unavailability of one server should not directly affect operation
of the other servers. Additional enhancement in these areas can be achieved by running
multiple name servers as a shared unicast node [26]. This approach is used by the Internet
root servers and some national domains administrators.

Non-recursive Resolution

Authoritative name servers provide non-recursive resolution only. There are three possibil
ities for a queried domain name affiliation with the zone:

• If the domain name belongs to the zone, the server will respond with an answer
containing matching RRs.

• If the domain name belongs to a delegated zone, the server will respond with the
referral information (NS and glue records).

• If the domain name lies outside the zone and any delegated zone, the server will
indicate an error in the response.

Recursive Name Servers

Recursive name servers do not serve authoritative information for any zone. Their purpose
is to provide recursive query resolution for other DNS clients. As their functionality overlaps
with clients functionality, they are alternatively called recursive resolvers, recursors, or just
resolvers.

Usually, these servers also implement caching functionality. RRs retrieved from authori
tative servers during the processing of the query are stored for a certain amount of time,
which is designated by a T T L value of the R R . The caching is sparsely implemented as a
separate component and installed ahead of particular authoritative or recursive server.

Recursors are theoretically not required for the functionality of the DNS, although
caching can relieve the authoritative servers of excessive load. They also make the use of
stub resolvers possible. Stub resolvers are simple resolvers incapable of recursive resolution
and are usually used in base system libraries or in embedded devices.

7

Recursive Resolution

The recursive resolution consist of one or more non-recursive resolutions. The first contacted
server is the root server. If the server responds with a delegation, the query is resent to one
of the name servers in the delegation. This server is the next server in the zone delegation
chain. The process is repeated until an authoritative server for the domain name in question
is reached. At that moment, the resolution is complete.

The recursive resolution is usually performed by recursive name servers or specialized
libraries. A necessary prerequisite for the resolution is the knowledge of the root server IP
addresses. These addresses are part of the initial cache, which is called hints. At least one
root server has to be known by the resolver to bootstrap the access to the DNS.

2.2.2 D N S Root Zone

The content of the root zone of the Internet is maintained by Internet Assigned Num
bers Authority 1 (IANA) and served by thirteen authorities []. Each authority is re
sponsible for one root server node identified by a domain name in the range between
a.root-servers .net and m.root-servers .net. The list of current addresses of the root
nodes is distributed by InterNIC 2 licensed by Internet Corporation for Assigned Names and
Numbers 3 (ICANN). Originally, there were only thirteen servers. At the moment of writing
this thesis, the root zone is served by 542 servers spread around the world 4 .

Top Level Domains

The root domain consists of the top level domains (TLDs), which are usually delegated to
other subjects [47]. The initial TLDs are:

• world-wide generic domains — com, edu, net, org, and int;

• United States generic domains — gov and mil; and

• national domains — mostly two letter country codes from ISO-3166.

I C A N N later approved more generic TLDs, which are currently present in the root zone
(e.g., aero, info, name, jobs, etc.). Usage of some of these domains can be limited by
regulations issued by I C A N N . It is also very likely, that new TLDs will be added in the
future. The approval process for new domains is currently going on. There are not any
non-technical limitations upon new TLDs, except for domains test, example, invalid,
and localhost, which are reserved to be used in documentation and for testing [22].

Infrastructure Domains

The root zone also includes special T L D arpa, which was intended to be used only tem
porarily to ease the translation from A R P A N E T hostnames [48, 49]. In the year 2000, the
arpa domain was redesigned []. The original name derived from A R P A N E T is now an
abbreviation for Address and Routing Parameter Area Domain.

1http://iana.org
http://www.int erni c.net/zone s/named.cache

3

http://www.icann.org/

http://www.root-servers.org

8

http://iana.org
http://www.int
http://www.icann.org/
http://www.root-servers.org

The arpa domain serves as a base domain for infrastructure subdomains and provides
name space for translation from protocol derived hostnames to service names []. The
most important domains within arpa T L D are:

• in-addr. arpa — translation of IPv4 addresses to hostnames [];

• i p 6 . arpa — translation of IPv6 addresses to hostnames []; and

• el64.arpa — translation of international telephone numbers to VoIP URIs [25].

The complete list of current TLDs and related procedures can be found on dedicated website
of I A N A 5 .

2.3 D N S Protocol

As historically there was no definition for the size of byte, all DNS standards and memos
use octets as a size unit. One octet is an information consisting of eight bits. In this thesis,
a byte is used when referring to size and has the same interpretation as an octet.

The term wire format refers to the arrangement of the data when sending them through
the network. Conventionally, network byte order is used.

2.3.1 D N S Message Format

A l l communications within the DNS are carried in a single format called a message. Basic
structure of the message is shown in Figure A . l .

The message has a fixed-size Header section, a variable-sized Question section, and then
three variable-sized sections Answer, Authority, and Additional. The entries within the last
three sections carry RRs and always have the same format. The size of the RRs can vary
as well. The count of the entries within the variable sized sections is set in the header.

Usual DNS queries are initiated by a DNS client which prepares the message by filling
the header and the question section. A name server receives the message, updates the
header, keeps the question section intact, and inserts RRs into the last three sections as
needed.

The header wire format is shown in Figure A.2 and the fields are explained in A.1.1,
including operation and response codes. Additional response codes were defined later for the
purpose of dynamic updates [56], secret key transaction authentication [57], and extension
mechanisms [].

Question Section

The Question section entry wire format is shown in Figure A.3 . The entry specifies a R R
to be retrieved from the server. The meaning of the fields in the question entry is explained
in A . l . 2 .

The Q T Y P E field can contain a specific R R type or a special value 255 to request all
RRs matching the Q N A M E and Q C L A S S .

Almost the only used class being used for R R is the Internet class (IN, value 1). Other
valid classes include the Chaos class (CH, value 3), which is used by some name servers
to report information about the server status []. There are also some other classes, but
these are insignificant for the purpose of this thesis.

5

https://www.iana.org/domains

9

https://www.iana.org/domains

Resource Record

The R R wire format is shown in Figure A.4. The format of the first three fields is the same
as the format of the question section. The other fields are new. Their meaning is clarified
in A.1.3.

Domain Names

The limitations on domain names were already described in 2.1.1. They are present in the
message in the question section as Q N A M E field, R R sections as N A M E field, and may
also appear in R D A T A field of some RRs.

Domain names are stored as a sequence of labels. Each label starts with one byte
specifying the length of the encoded label. The domain name must be always terminated
with an empty root label, which is in fact a zero byte.

As the size of a DNS message is limited, the DNS has a compression mechanism to
eliminate a repetition of domain names in the message. Domain names can therefore be
encoded in a compressed form. This form can be always used in Q N A M E and N A M E fields.
Compression in R D A T A is usually allowed, but it depends on the individual R R type.

The compressed domain names are terminated by a compression pointer instead of a
root label. The compression pointer consists of two bytes. The first two bits are ones to
indicate the pointer, the rest of the value specifies the offset into the DNS message. The
processing of the domain name continues at that offset. The sequence of labels before the
compression pointer can be empty and multiple compression pointers can be chained when
encoding one domain name.

2.3.2 Transporting D N S Messages

The DNS assumes that messages will be transmitted as datagrams over connectionless U D P
or in a reliable stream over T C P . The service is provided on port 53 both for U D P and
T C P .

U D P Transport

Datagram communication is preferred for queries due to lower overhead and better perform
ance. The standard sets maximal size of the message to be carried over U D P to 512 bytes
(on application layer [9]). If the message is larger than this limit, the name server sets T C
(truncated) flag in the message header and provides only a partial answer.

T C P Transport

T C P is used for messages not fitting into the U D P size limit or when a reliable transfer is
required (e.g., for zone transfers). Transmitted DNS messages are prefixed with a two byte
length field with the length of the message, which will follow. This creates a size limitation
of 64 kilobytes for a message on T C P . This is believed to be sufficient for regular queries
and there is no mechanism defined to handle larger answers.

As for zone transfers, the data are usually larger than T C P message limit and therefore
the transfer is split into multiple messages. The first and the last messages are recognized
due to a presence of the same SOA R R [].

10

2.3.3 Extension Mechanisms for D N S

The original DNS protocol includes a number of fixed fields whose range does not allow
the protocol to grow. It also puts excessive limitations on DNS message size for datagram
transport and does not allow advertising of capabilities between communicating sites. To
solve these problems, the Extension Mechanisms for DNS (EDNS) was introduced [].
It provides backward-compatible mechanism for extending the protocol. The E D N S is a
necessary prerequisite for DNS Security Extensions (DNSSEC).

The E D N S defines two communicating sites — requestor and responder. The requestor
is the side that sends a request, the responder is the name server or other DNS component
that responds to questions. The E D N S is a hop-by-hop extension, which means that the
EDNS content in the message is settled for each pair of hosts involved in the resolution
process.

To provide the backward compatibility, the E D N S introduces pseudo R R type OPT,
which may be added into the additional data section of the request. If a compliant resolver
receives such request, it must include the O P T record in the response as well. Since the
O P T record does not carry any DNS data and only contains control information for the
processed transaction, it must not be cached, forwarded, or stored in a master file.

The wire format of O P T R R matches the wire format of other RRs and therefore can
be parsed by E D N S non-compliant host. Yet EDNS specifies a different meaning of some
fields to save a space in the message. The new meaning of the fields is described in A . 1.4.

The following fields are essential for the DNSSEC operation:

• E D N S version

The requestor should always set version to the lowest implemented level capable of
expressing a transaction to maximize compatibility with the responder. On the other
hand, responder should set the value to the highest available implemented version,
but not higher than the value received in the query. This allows the requestor to
learn a maximal supported version of E D N S if the query cannot be resolved because
unsupported E D N S version.

• Maximal Payload Size

The maximal payload size in the O P T record specifies the maximal size of a DNS
message in bytes, which can be reassembled and delivered by the network stack of
the communicating part, which sent the message. Values lower than 512 are treated
as equal to 512 (a maximal message size without EDNS) .

• E D N S flags

EDNS(O) specifies only one flag called D N S S E C O K (DO) []. Setting this bit
in the query indicates, that the requestor is able to handle DNSSEC security RRs.
Otherwise, security RRs are not included in the response unless explicitly queried for.
Responder copies the value of the bit into the response.

11

Chapter 3

Domain Name System Security
Extensions

Domain Name System Security Extensions (DNSSEC) is a mechanism for assuring integrity
of DNS data and authentication of its origin. The chapter summarizes security threats
DNSSEC can prevent, an application of public-key cryptography in DNSSEC, new resource
record types introduced by DNSSEC, and a procedure of securing of a DNS zone.

In 1990, Steven Bellovin wrote an article about abusing the DNS system for system
break-ins []. The publication of the article was withheld for over four years by the au
thor, because it described serious vulnerabilities, for which there there was no feasible fix.
However the secrecy appeared to be pointless, as the article leaked anyway and there were
reports that the same technique was used by hackers earlier. Former publication might
have helped to find the solution sooner. The article describes two problems:

1. Host name based authentication

At the time, the software used to employ the hostname based authentication. When
the client initiated a connection to a server, the server took the client's IP address
and translated the IP address to a hostname. If the obtained hostname was on the
list of allowed hosts, the client was authenticated.

This worked fine with static hostname mappings. But the DNS uses two separate trees
— the first for name-to-address mapping (starting in the root domain) and the second

for address-to-name mapping (starting in in-addr.arpa domain). The consistency
of these trees is not a matter of the DNS. As the reverse mappings are in control of
the IP address owner, they could be modified to return a false domain name and thus
pass through the authentication.

The fix for this vulnerability was simple. Applications performing a hostname based
authentication were modified to check both reverse P T R and forward A RRs. If
the hostnames in the records did not match, the authentication failed. However the
hostname based authentication is fundamentally flawed and authentication based on
cryptography should be used instead. At the time, Kerberos authentication mechan
ism was already available.

2. DNS Additional Section Handling

The described problem resides in the handling of DNS messages by caching name
servers. The RRs in the additional section of DNS messages were usually put into the

12

cache without checking. But the content of the additional section must be carefully
investigated before acceptance.

A n attacker can ask a caching name server (or can persuade another host to do so)
for an arbitrary record within a subdomain of a domain controlled by the attacker,
say host. sub .attacker .test. During the recursive resolution, the authoritative
name server for domain attacker .test will return a response with a list of name
servers authoritative for the subdomain. These records might be accompanied with
glue records. The attacker can include a victim's hostname in the list of name servers
with fraud A glue record. Accepting this glue record results in a DNS cache poisoning.

Hijack of InterNIC Domain

In the year 1997, Eugene Kashpureff managed to hijack InterNIC domain and redirect it
to his own AlterNIC domain for a few days []. He abused a vulnerability in BIND name
server, which allowed poisoning of the cache by placing any RRs into the additional section
of DNS messages. As a result, concept of bailiwicks was introduced [59]. It specifies domain
names for which R R in the additional section can be accepted.

The other way of causing a cache poisoning is to forge an answer from a name server.
The validity of a DNS response is verified by checking the random transaction ID in the
header of the message and sometimes by checking the question section. The attacker must
guess all these information and send the bogus packet with a proper timing. If the attacker
is not successful, the correct answer will be cached and there is no chance to attack the
same hostname until the T T L of the cached response expires.

Bypassing Bailiwicks

In the year 2008, Dan Kaminsky explained how to bypass the bailiwicks and the data stored
in the cache, thus allowing the attacker to try to poison the cache at any time [36]. The
possibility to perform the attack much faster makes cache poisoning very dangerous.

Let's say the attacker wants to insert a wrong A R R for domain www.victim.test into
the resolver's cache. The attacker asks the resolver for non-existing domain within the same
domain (e.g., nx-0.victim.test) and immediately sends a fake response, which contains
a NS record in authority section pointing to hostname www.victim.test and a glue record
in the additional section with a fake address.

If the attacker is successful in guessing the transaction ID and the fake response is
delivered before the correct one, the attack is successful. As all the domain names in
the packet belong to the same bailiwick, the glue record will be added into the cache
(possibly replacing existing entry). If the packet is not accepted by the server, the attacker
can immediately repeat the attack by asking for another non-existing domain name (e.g.,
nx-1 .victim.test by increasing the counter).

As a defence against Kaminsky's attack, the resolvers implemented randomization of
source ports. The port number is used in addition to transaction ID to check the validity
of the response. The attacker's odds to guess a transaction ID are 1 : 2 1 6 , with added port
number the odds drop to 1 : 2 3 2 .

IP Fragmentation Attack

In the year 2012, Amir Herzberg and Haya Shulman drew attention to a possible cache
poisoning attack based on the IP fragmentation [29]. The attack has relatively low technical
complexity, but requires on a lot of preconditions to be satisfied [30].

13

http://www.victim.test
http://www.victim.test

Basically, the attacker needs to persuade an authoritative name server to send a frag
mented response to a query initiated by a recursive name server, whose cache the attacker
intends to tamper. The fragmentation can be enforced by sending a spoofed I C M P packet
to the authoritative server or by using a specially constructed R R in a valid zone controlled
by the attacker. Ideally, a message will be split into two fragments and the attacker aims
to forge the second one.

As the U D P and the DNS header will be always in the first IP fragment, the attacker
need not to guess the DNS transaction ID nor the query source port. The problem reduces
to guessing of a 16-bit IP datagram identification. In addition, the U D P packet checksum
must be left intact, which is relatively simple due to the used checksum algorithm.

3.1 D N S S E C Threat Analysis

The first version of DNSSEC has been designed without a specific list of threats against
which DNSSEC should protect. Therefore it was not possible to verify that it meets it's
design goals. The detailed analysis was written in 2000 [5]. The informational memo states
some basic assumptions about DNSSEC:

• Data in the DNS are public. DNSSEC offers no protection against data disclosure.

• Client authentication is out of scope of DNSSEC.

• The solution is backward compatible and can coexist with secure unaware DNS com
ponents.

• DNSSEC provides data integrity and data origin authentication.

• Digital signatures are used to support the desired services.

DNSSEC takes following threats into account:

• Packet Interception

Packet interception includes monkey-in-the-middle attacks, eavesdropping combined
with spoofed responses. Unencrypted U D P packets make this kind of attacks quite
easy. DNSSEC does not provide any encryption, because it would bring high pro
cessing cost per message and also for establishing and maintaining a bilateral trust
between all parties. In addition, this would provide only hop-to-hop security, not
end-to-end security. DNSSEC offers end-to-end data integrity check, which is more
useful for DNS resolutions.

• ID Guessing and Query Prediction

This kind of threat is very similar to Packet Interception, except that the attacker
does not have to be on a transit or a shared network. On the other hand, the attack
works only if the attacker is able to guess the transaction ID of the message and the
source port used by the client. Theoretical maximal amount of combinations for these
values is 2 3 2 , although practically the search space is smaller because transaction IDs
and port numbers can be predicted from previous traffic or from known state of the
client. Sometimes the attacker can even influence these allocations.

14

• Name Chaining

Name Chaining attacks are subset of cache poisoning attacks. This kind of threat
involves RRs which have domain names in R D A T A held. Modification of these RRs
lets the attacker to feed the victim's cache with bad data or subvert subsequent
decisions based on these names. Worst examples in this class of RRs are C N A M E ,
D N A M E , and NS RRs, as they can be used to redirect the victim's query. RRs
like M X and SRV can be modified to trigger further DNS lookups or redirect new
connections to services. As a corner case, address records like A and A A A A can be
used in these attacks — these records do not have domain names in R D A T A , but can
be used in reverse address resolution.

• Betryal by Trusted Server

This threat is very similar to Packet Interception, except that the client sends the
packets to the attacker voluntarily. The manipulation with DNS messages can be
caused by wrongly conhgured resolvers, which may use other untrusted name servers
to resolve the queries on their behalf. Or the messages can be modified intentionally
by the internet service provider, regardless the purpose is legitimate or not.

• Denial of Service

DNSSEC does not offer protection against Denial of Service attacks. In fact, checking
of signatures increases processing cost of each message and in some cases increases
the number of messages needed to answer the query. Therefore DNSSEC makes
the problem worse. In addition, signed responses are much longer than originating
queries, which puts name servers as risk of being used as amplifiers for this kind of
attacks.

• Authenticated Denial of Domain Names

Absence of R R which causes an action other than immediate failure constitutes a real
threat, although severity of these threats is arguable. This is a case for M X , SRV,
and probably other type of records. DNSSEC includes mechanism, which can prove
which domain names exist in the zone, and which R R types exist at those names.

• Wildcards

The processing of wildcard RRs is relatively complicated and therefore creates some
risk itself. The applicability of wildcard synthesis rules must be verified. This can
be done by proving the existence of the wildcard record itself and also by proving
non-existence of R R for the exact name in a query. Therefore this mechanism is
dependent on Authenticated Denial of Domain Names.

DNSSEC can be supported by transaction security, which is not a part of DNSSEC, but
was designed in parallel to it. Transaction security provides authentication between two
directly communicating components of the DNS. That can be used to authenticate dynamic
updates (DDNS), zone transfers, and to secure communication between a stub resolver
and a trusted validating resolver. Multiple mechanisms providing transaction security are
available:

• TSIG — uses one way hashing and shared secret [57].

• SIG(O) — depends on public-key cryptography [16].

15

GSS-TSIG — utilizes Generic Security Service A P I [40] (e.g., Kerberos).

3.2 Public-key Cryptography

DNSSEC relays on public-key cryptography (also called asymmetric cryptography). It uses a
concept of two separate signing keys. The first key is called public and the second is called
private. Both keys are mathematically bound and can be used only for complementary
operations — if a public key is used to encrypt a message, only a corresponding private key
can be used to decrypt the cypher text and vice versa.

The name of the key matches with the secrecy, in which the key must be kept. The pri
vate key should be known only by the owner of the key because some encryption algorithms
allow to derive the public key from the private one.

Basically, public-key cryptography can be used for:

• Secrecy

Public-key cryptography can ensure confidentiality between to communicating parties.
Each party must have a pair of a private and a public key. Private keys are known
only by the key owners. Public keys are known by everyone (including any third
party).

The messages to be transfered over an insecure channel are usually encrypted twice.
The first encryption is done using the private key of the sender, the second encryption
is performed with a public key of the receiver. The encrypted message can then be
decrypted only by the receiver, again in two decryption cycles - first by the private
key of the receiver, then by the public key of the sender.

Technically, only the encryption using a public key of the receiver is sufficient to ensure
the secrecy of the transfered message. The purpose of the first encryption cycle is to
prove the identity of the sender. This mechanism is safe only if both parties are sure
about the ownership of the public keys.

• Digital signatures

Public-key cryptography can also ensure authenticity, integrity, and non-repudiation.
In this case, the mechanism is usually supported by a one way hashing function.

A hash of the message to be signed is computed. This hash is then encrypted with
private key of the signer and the resulting cypher text is the digital signature. The
digital signature is usually attached to the message. Anyone who knows the public
key of the sender can decrypt the digital signature, recompute the hash of the original
message, and compare the results. If both hashes are the same, the message was not
modified and must have been signed by the sender, because we assume that the sender
is the only owner of the private key.

• Key agreement

Certain algorithms can be also used for key agreement, where two parties can establish
a shared secret key over an insecure communication channel. The key can be then
used for encryption using symmetric cryptography.

First, both parties exchange their public keys. Then each party uses it's private key
and the public key of the other party to compute the new key value. The resulting
key value is the same on both sides.

16

In order to use public-key cryptography effectively, a Public Key Infrastructure (PKI) is
required. It is a system of certificate authorities, that perform certificate management, key
management, and token management functions for a community of users in an applications
of asymmetric cryptography [52]. It includes hardware, software, people, policies, and
procedures.

3.3 D N S S E C Resource Records

DNSSEC builds a subset of P K I on top of existing DNS infrastructure. P K I works with
certificates, which are objects that truly identify an owner of a public key. Validation
of certificates is performed by certification authorities (CA), which prove the validity of
the certificate by digitally signing the content of the certificate using the CA's key. The
CAs posses their own certificates as well, and these certificates are usually signed by other
CAs. The validation of a certificate is performed by following the chain of signatures in the
certificate, until a valid signature of a trusted C A is found.

DNSSEC introduces several new R R types, which allow to store public keys in the zone
and digitally sign the content of the zone. The presence of the public key in the zone
associates the key and the zone. In a zone delegation, parent public key can be used to sign
the key for the child zone using the same mechanism. Some public keys have to be set in the
resolver configuration as trusted anchors and are used as a starting point when doing the
validation. The trusted anchor and public keys successfully validated at delegation points
create a trust chain.

3.3.1 Initial Version of D N S S E C

The design and deployment of DNSSEC was quite slow. The initial draft was published
in 1997 [21] and the final version of D N S S E C was published in 1999 [18]. At that time,
BIND 9 was the first and only DNSSEC capable name server implementation. However the
deployment of D N S S E C was stalling.

DNSSEC added three new R R types: K E Y for storing public keys, SIG for storing
signatures, and N X T as an auxiliary R R required for authenticated denial of domain names.

Each DNS zone is usually managed by a different authority, therefore every secured zone
was expected to contain a K E Y RR, which holds a public key for validation of signatures
within that zone. To achieve a validation across delegation points, the K E Y R R in a child
zone must be signed by a private key of it's parent zone. This signature must be present in
the child zone, otherwise the signature would not be considered authoritative. The parent
zone can optionally contain the key and signature for the child zone as well. However, if a
secure zone contained insecure delegations, the zone had to include a special null key and
it's signature for each of these insecure delegations.

The experiments showed that this mechanism carried a lot of problems, mostly with key
handling. When a zone administrator needed to change a signing key, the new key had to
be submitted to a parent zone administrator, the new signature was submitted back, and
finally inserted into the zone. In addition, the change of a signing key required to re-sign all
keys for every delegation in the zone and to publish the new signatures in the child zones,
which was found almost impossible, especially for TLDs . If the child zone got out-of-sync
from it's parent zone, resolvers could recognize the RRs in the child zone as bogus.

17

3.3.2 Second Version of D N S S E C

Attempts to solve individual problems of DNSSEC were not very successful and finally a
new version of DNSSEC was created, initially called DNSSEC-bis. The final version was
published in 2005 in three separate documents [2-4] and made all the old DNSSEC memos
obsolete.

The new D N S S E C is incompatible with the old one, but is very similar. It simplifies the
RRs for keys and solves the problems with key handling at delegation points by introducing
another R R type DS, which certifies the signing key for a child zone but is kept in the parent
zone.

Resource Record Set

The granularity of signatures in DNSSEC is limited to resource record sets. A R R set is a
group of RRs which belong to the same domain name and have the same type, class, and
T T L value. Originally, the T T L value could be different for each record within the set, but
it was causing partial replies from caching name servers and these replies did not indicate
truncation. Because of this, different T T L s in a R R set were deprecated [23].

Canonical Representation

The signature validation requires data to be in the exactly same format and order as when
they were signed. However, ordering of RRs in the DNS is irrelevant, domain names are
case insensitive, and also domain name compression applies during the transfer. For the
purpose of signing, DNSSEC defines the canonical representation of domain names, RRs,
and their sets.

The conversion to the canonical representation consists of the following steps:

1. Domain names are ordered by individual labels, starting with the most significant
(rightmost) ones. First, all uppercase ASCII letters are converted to lowercase and
then each label is treated as unsigned left-justified byte string. The absence of a byte
sorts before a zero value byte. If two labels match exactly, the sorting continues with
next less significant labels.

2. A l l domain names in the R R (owner and R D A T A fields) must be absolute, without
compression, and all uppercase ASCII letters in them are converted to lowercase.
If the domain name is a wildcard name, it has to be in its original form with no
substitution. The T T L field is also set to it's original value.

3. The RRs within a set are sorted by treating R D A T A field of the canonical form of
each R R as a left-justified sequence of unsigned bytes, while absence of a byte sorts
before a zero byte.

D N S S E C Resource Records

The D N S S E C documents add following R R types into the DNS:

• D N S K E Y R R holds a public key. It is not intended to use this type of record for
storing arbitrary public keys, but only keys that directly relate to the DNS infrastruc
ture. The public key can be used by a validating resolver to authenticate R R sets.

18

The format of D N S K E Y R D A T A is shown in Figure A.7, the meaning of the fields is
explained in A.2.1.

• R R S I G R R contains a digital signature of a R R set. It also specifies a validity
interval of the signature and information necessary to identify the key used for signing.
The name and class of the signed R R set is determined by the name and class of the
RRSIG R R itself, type and T T L value are included in R D A T A . The format of R D A T A
is shown in Figure A.8, the meaning of the fields is explained in A.2.2.

• N S E C R R is required for authenticated denial of domain names. The record is
created for all existing domain names in the zone, which has authoritative data or a
delegation point. It lists two domain names and proves, that no other domain name
exists between these two names in canonical ordering of the zone. The format of the
record is shown in Figure A.9, the meaning of the fields is explained in A.2.3.

• DS (Delegation Signer) R R refers to a D N S K E Y and is used to authenticate that
D N S K E Y during delegation. The pair of DS and D N S K E Y records have the same
owner name, but are stored in different locations. The DS record is stored in the
parent zone, the D N S K E Y is stored in the child zone. The records are considered
authoritative at these locations. The format of the DS record is shown in Figure A.10,
the meaning of the fields is explained in A.2.4.

N S E C 3 Resource Records

The N S E C records meet the requirements for authenticated denial of existence, however
it make the zone content enumerable, which was not possible prior DNSSEC. One N S E C
record lists two names that follow each other in the canonical ordering of the zone. A l l
NSEC records in the zone create a closed N S E C chain. By querying for the N S E C record
of the zone apex and by following the names in Next Domain Name field, the zone content
can be enumerated trivially. The enumerated zone can be used to reveal registrant data,
which many registrars may have legal obligations to protect. Use of N S E C renders these
policies unenforceable.

As a solution for this problem, NSEC3 has been introduced [41]. In principle, it uses
cryptographic hashes instead of domain names. In addition, it eases the manipulation with
NSEC chain for unsecured delegations. N S E C records must exist for each delegation in
the zone and the N S E C chain has to be updated with every change in these delegations.
NSEC3 introduces opt-out, which allows to exclude insecure delegations from the NSEC3
chain. Addition, removal, or modification of insecure delegation then have no effect on
existing NSEC3 chain.

NSEC3 adds two more R R types:

• N S E C 3 R R has the same meaning as N S E C R R . The record must exist for each
domain name in the zone, which contains authoritative data. If opt-out is not used,
an NSEC3 R R must also exist for each domain name containing only an insecure
delegation.

For the purpose of NSEC3, the domain names (called original) are cryptographically
hashed and used to construct new domain names (called hashed). The hash of the
original domain name is encoded in base32hex [34]. By appending a zone apex to the
encoded hash, a domain name to be used as an owner of the NSEC3 R R is constructed.

19

The N S E C chain is created by canonical ordering of original domain names, NSEC3
chain is created on the same principle but from hashed domain names.

The format of the NSEC3 R D A T A is shown in Figure A . 11, the meaning of the fields
is explained in A.2.5.

• N S E C 3 P A R A M R R has the same format as the initial portion of NSEC3 record,
which can be seen in Figure A . 12. It should contain the same values as used in
NSEC3, but the Flags field has to be zero (opt-out flag must not be set). The record
is always present in the zone apex and serves as a hint for the authoritative name
server to use NSEC3. It is not used by validators nor resolvers.

3.4 Securing the Zone

The process of securing a zone using DNSSEC is called zone signing. Zone signing requires
certain operations to be performed in the zone and may also require changes of delegation
in the parent zone.

D N S K E Y Resource Records

In order to sign a zone, one or more signing keys have to be generated. The D N S S E C
validation protocol does not distinguish between different types of D N S K E Y s , but usually
following roles of keys are differentiated [39]:

• Key Signing Key (KSK) is used to sign D N S K E Y resource recods in the zone apex
only. K S K D N S K E Y s usually have Secure Entry Point flag set in R D A T A .

• Zone Signing Key (ZSK) is used to sign all other records in the zone.

• In Single-Type Signing Scheme, all keys are used to sign all records, regardless
their type.

The reasons to separate K S K and ZSK roles are purely operational. K S K s are used
as trust anchors and any change of the trust anchor is relatively complicated because
interaction with the parent zone is necessary. As the change spawns across multiple zones,
it is slower because of multiple levels of caching. In case the parent zone is not secured,
change of the K S K requires reconfiguration of resolvers.

K S K s are also used less frequently, which makes it possible to store the private keys
offline or enforce other stronger security policy. Once a D N S K E Y R R set is signed, all keys
in the set can be used as ZSKs. These keys are equally valid. If a ZSK is compromised or
if there is another reason to change it, the rollover is much simpler because only a change
within the zone is needed.

The zone should include all D N S K E Y RRs used to sign the zone. In certain situations
it may contain no D N S K E Y s (when the zone is used as an island of security and the keys
are configured on resolvers), or D N S K E Y s which have not been used for signing yet (key
pre-publishing for faster key rollovers).

20

R R S I G Resource Records

The signature has a form of RRSIG R R . Each authoritative R R in a zone must be signed,
except for other RRSIG records. Each of these records must be signed using at least one
D N S K E Y of each algorithm in the D N S K E Y R R set in the zone apex.

The validating resolver performs the validation by taking all RRSIGs of a covered RR,
and tries to validate at least one signature by some matching and trusted D N S K E Y . If
a key, for which the signature is valid is found, the result of the validation is a success.
Otherwise, the signature is considered invalid.

These definitions creates important assumptions for key and algorithm rollovers. In case
of a key rollover, keys and signatures can be published independently. In case of algorithm
change, the signatures must be always pre-published without a public key.

N S E C Resource Records

For authenticated denial of existence, a complete N S E C or NSEC3 chain has to exist in the
zone. During N S E C to NSEC3 rollover, both chains may exist simultaneously.

The N S E C record is created for every domain name holding authoritative data and also
where the NS records for delegation reside. They must not be created for domain names,
which do not have any RRs. The bitmap consists only of authoritative RRs present at the
name (including N S E C and RRSIG) and NS record in case of delegation point. No glue
records are included.

The T T L value of N S E C RRs must be equal to minimum T T L in the zone SOA RR.

N S E C 3 Resource Records
The NSEC3 record is created for every domain name, where authoritative data or secure
delegation NS records exist. The insecure NS records need not be covered by NSEC3, but
this actuality must be indicated by the opt-out flag. The record must be also created for
empty non-terminal owner names, which lead to another NSEC3 covered domain name.
A n empty non-terminal can emerge for example when the zone contains RRs with c.test
and a.b.c.test owners, but no RRs with a.b.test owner. The bitmap must contain only
authoritative RRs present at the original name. As NSEC3 records are stored as hashed
names, the bitmap will never contain NSEC3 record and may not include RRSIG record,
if there are no other authoritative records at the original name.

Internally, NSEC3 domain names should be kept separately from other domain names.
Therefore there is no limitation on creating RRs with owner names colliding with NSEC3
hashes. As a result, explicit queries for NSEC3 records are not possible.

The T T L value of NSEC3 record is set on the same basis as for N S E C records.

N S E C 3 P A R A M Resource Records

The N S E C 3 P A R A M R R is present only in the zone apex and indicates, that the authorita
tive server should use NSEC3 for authenticated denial of existence, instead of N S E C . Flags
field of N S E C 3 P A R A M must be zero, otherwise the record should be considered invalid.
The existence of the record has no meaning for validation.

21

DS Resource Records

The DS R R is used to establish a connection in a trust chain between a parent zone and
a child zone. It refers to a D N S K E Y used as a secure entry point for the zone (KSK or
any other key in case of Single-Type Signing Scheme). The record is generated from the
D N S K E Y and submitted to the parent zone administrator. The record is then inserted into
the parent zone and signed by the parent zone D N S K E Y .

The DS and N S E C records are the only records, which are authoritative in the zone at
a delegation point.

3.5 Proving the Answer Validi ty

DNSSEC requires E D N S for DO flag (DNSSEC OK) and to allow transport of larger
messages over U D P without truncation. DNSSEC also defines two new flags A D (Authentic
Data) and C D (Checking Disabled) in the DNS message header, as shown in Figure A.2.
The flags have the following meaning in DNSSEC:

• The D O flag is set in the query and indicates, that the requestor is able to handle
DNSSEC security RRs. The responder copies the value of D O flag into the response
message.

If the D O flag is set, the response must include all RRSIG records to authenticate the
answer, necessary N S E C or NSEC3 records if the response is a denial of existence, and
DS records in case of a zone delegation. These records are placed in the Authority
section. Optionally, D N S K E Y records for the zone apex can be included in the
Additional section, but their inclusion must not cause a DNS message truncation.

In case the D O flag is not set, security RRs are not included in the response unless
explicitly queried for (with the exception for NSEC3 records).

• The A D flag is controlled by a name server and ignored in queries. Setting of this
flag indicates, that the responding name server considers the data in the answer and
authority sections to be authentic.

Security aware authoritative name server can set this flag (even without checking
the signatures), when explicitly configured by a system administrator. Otherwise it
should clear this flag.

Security aware recursive name server must set this flag only if it can fully authenticate
the RRs by validating the RRSIGs. In case of answering from insecure zone, the flag
must be cleared. If the validation fails on secure zone, the server returns server failure
R C O D E in the message header.

• The C D flag is controlled by resolver and name server copies the bit into the response.
Setting this flag disables signature validation in security aware name servers.

As the A D flag can be modified by an attacker, the flag should not be trusted. In order
to validate a RR , the resolver has to build and validate a whole chain of trust. In case of
a stub resolver, the forwarding resolver needs to be trusted and so the connection to it.

22

Chapter 4

Existing DNSSEC
Implementations

This chapter analyzes existing open-source solutions for management of D N S S E C on an
authoritative server side. The analysis is limited to identification of supported features,
supplied tools, and different approaches for the DNSSEC signing. As the results will be
used during the design of the new DNSSEC library, the analysis tries to highlight advantages
and drawbacks of these solutions, especially from the perspective of a zone operator.

4.1 B I N D

BIND (Berkeley Internet Name Domain) 1 is the hrst DNS name server implementation,
which was written at the University of California as a result of D A R P A grant [53]. Later,
the project was taken over by Paul Vixie, founder of Internet Systems Consortium (ISC).
ISC maintains and develops BIND until now.

At the moment, BIND versions 9 is actively being used and developed. BIND 9 was
started in 2000 and fully supports DNSSEC. It provides tools for key maintenance, zone
signing, and validation. It supports NSEC3, key rollover, automatic signing of dynamic
zones, DNSSEC Look-aside Validation (DLV), and automatic updates of trust anchors.

The ISC also worked on BIND version 10, but this project was discontinued in Apr i l
2014 due to a lack of resources [50]. Consequently, the BIND 10 was renamed to Bundy 2

and left for the open-source community. Bundy uses brand new modular architecture and
is designed more as a framework. Although it brings a lot of new features (like support
for SQL backend), the project is at the time of writing this thesis not mature and a lot of
features are incomplete. The DNSSEC support in Bundy is limited to serving of pre-signed
zones only. In the following text, BIND 9 is meant when referred to BIND without explicitly
stating the version.

BIND provides a few elementary utilities, which are necessary for D N S S E C signing:

• dnssec-keygen generates a new DNSSEC key pair. Two hies are created as a result.
E.g., Ktest.com.+007+56463.key and Ktest.com.+007+56463.private. The part
test. com is the zone name, 007 identifies the algorithm (in this case R S A with SHA1,
capable of NSEC3), and 56463 is the key tag of D N S K E Y . The .key hie contains a

x

https://www.isc.org/downloads/bind/
2

http://bundy-dns.de/

23

http://Ktest.com
https://www.isc.org/downloads/bind/
http://bundy-dns.de/

public key as a D N S K E Y R R in the master file format, the .private file contains a
private key in a custom BIND format and optionally D N S K E Y timing metadata.

• dnssec-dsfromkey generates DS record set from existing keys. The record is printed
in the master file format.

• dnssec-settime changes timing metadata of an existing key. BIND specifies a pub
lication date (when the D N S K E Y is added into the zone), activation date (when the
key is started to be used for signing), inactivation date (when the key is stopped being
used for signing), deletion date (when the key is removed from the zone), and option
ally revocation date (when the self-signed key is added into zone with a revocation
flag set).

• dnssec-revoke is a one-purpose utility for setting a revocation flag of an existing
D N S K E Y . From the view of BIND, it means creating a new key because revocation
flag causes a change of its key tag.

• dnssec-signzone generates N S E C or NSEC3 chain, computes signatures, and prod
uces a newly-signed master file. The keys to be used for signing must be specified
explicitly or a directory with set of keys can be provided instead. The utility will
sign the zone with all keys, whose D N S K E Y s are present in the master input file,
unless smart signing is used. The smart signing mode utilizes timing metadata of the
keys — it updates D N S K E Y records in the zone and performs the signing with active
private keys only.

The process of key generating is manual and setting the timing metadata can be tricky.
Therefore BIND includes another set of tools, which can help to minimize potential pro
blems:

• dnssec-verify verifies validity of signatures and completeness of a N S E C chain for a
given zone master file.

• dnssec-checkds retrieves DS records for a given zone from the DNS and checks
whether the records successfully verify given signing keys.

• dnssec-coverage analyzes given keys for one zone. The tool prints all upcoming key
events based on the timing metadata and informs about problems, which can cause
breaking of the chain of trust.

BIND also supports signing keys stored in hardware security modules (HSM) for the
purpose of private key protection or signing acceleration. The access to the keys is provided
via P K C S #11, which is a cryptographic token software interface standard []. B IND
includes following tools to cooperate with HSMs:

• pkcsll-keygen generates new key pair in the P K C S #11 device.

• pkcsll-list lists all objects in the P K C S #11 device and their identifiers (label and
ID).

• pkcsll-destroy erases all objects in the P K C S #11 device.

24

• dnssec-keyfromlabel creates BIND compatible key files from a key stored in P K C S
#11 device. The source key is identified by the label. The created public key has
the same format as a public key generated by dnssec-keygen. But private keys on the
H S M are sensitive and usually cannot be exported, the new private key file contains
just a reference to the key on the H S M device and timing metadata.

Wi th the help of these tools, BIND can operate in following DNSSEC modes:

• Serving of pre-signed zone

This is the simplest case. BIND is given a pre-signed master file produced by the
dnssec-signzone utility. Configuration for the zone contains no special setting:

zone "example.com" IN {

type master;

f i l e "zones/example.com.signed";

};

In this case, the zone must be static. The zone is under full control of the zone
administrator, who is required to re-sign and reload the zone regularly to keep the
signatures valid. This is also the only mode supported by BIND 10 and some other
simple DNSSEC-aware name server implementations.

• Automatic signing using Dynamic DNS update method

In this configuration, BIND must be aware of the location of the signing keys, as the
signing keys can be exchanged at runtime using DDNS. This will reflect in the zone
configuration:

zone "example.com" IN {

type master;

f i l e "dynamic/example.com";

update-policy local; # enable DDNS

key-directory "keys"; # signing keys location

};

BIND provides nsupdate utility for sending DDNS updates. For example, to add
another ZSK, following commands can be issued in nsupdate prompt:

> server 127.0.0.1 53

> add example.com. 3600 IN DNSKEY 256 3 7 AwEAAZwcR0GiozZymHD3AJV5k...

> send

The server will add the D N S K E Y and if the private key is available in the key direc
tory, new signatures will be added. This method can be also used to configure N S E C
and NSEC3. To change NSEC3 hashing parameters, following update can be sent:

> delete example.com. IN NSEC3PARAM

> add example.com. 0 NSEC3PARAM 1 1 10 C01DCAFE

25

http://example.com
http://example.com
http://example.com
http://example.com
http://example.com

In this case, all existing N S E C 3 P A R A M records are removed and a new one is created.
If no N S E C 3 P A R A M records are in the zone, BIND will use N S E C for authenticated
denial. Also note, that setting the opt-out flag in N S E C 3 P A R A M is not valid. In
fact, BIND will add a correct N S E C 3 P A R A M without the flag into the zone, but the
flag will be set in NSEC3 records and insecure delegations will not be covered.

This configuration provides the same functionality as the dnssec-signzone non-smart
signing, which is virtually performed after each DDNS change. To request an imme
diate re-signing of the zone, use the BIND server control utility:

$ rndc sign example.com

Also, BIND stores all dynamic changes including related D N S S E C records in it's own
binary format for better performance. To write down the changes to a master file,
use:

$ rndc flush

• Fully automatic zone signing

A n improved version of the previous solution is the fully automatic zone signing. It
can be enabled by adding auto-dnssec option into the zone configuration:

zone "example.com" IN {

type master;

f i l e "dynamic/example.com";

update-policy local;

key-directory "keys";

auto-dnssec maintain; # or: allow

};

The possible values of auto-dnssec are allow and maintain:

— allow value: In this case, the records in a zone are being re-signed in a smart
way when a DDNS update is received and when rndc sign command is invoked.
Thus in addition to previous DDNS solution, D N S K E Y records are maintained
and signatures generated automatically according to timing metadata.

— maintain value: Behaves the same as allow, but does not wait for rndc resign.
The zone is signed automatically when loaded for the first time and whenever
necessary — based on the timing data. The key directory is rescanned for new
keys metadata once an hour (can be customized), or when rndc loadkeys is
invoked.

The maintenance of a D N S S E C zone using BIND in the most advanced mode is quite
easy, but a lot of manual interventions are still necessary. The keys have to be generated
regularly and their timing metadata have to be set correctly. And any manual action can
lead to configuration errors rendering the zone invalid. However, the tools for detecting
these situations are included.

26

http://example.com

4.2 N S D

NSD (Name Server Daemon) 3 is a simple, high performance, and authoritative-only name
server by NLnet Labs. Under the hood, it uses the ldns 4 library from the same authors.

The server supports DNSSEC pre-signed zones only. Therefore it cannot be used for
serving secured dynamic zones. The zone administrator is also responsible for generating of
the keys and keeping the signatures up to date. The utilities for DNSSEC are not provided
by NSD, but ldns library. Some of the utilities are heavily inspired by utilities from BIND,
but may not provide perfectly equivalent functionality:

• ldns-keygen, ldns-signzone, ldns-revoke, and ldns-key2ds are tools created as a
replacement for dnssec-keygen, dnssec-signzone, dnssec-revoke, and dnssec-dsfromkey.
The generated keys use the same format as keys used by BIND, which allows the
usage of BIND generated keys with NSD and vice versa. However timing metadata
and P K C S #11 keys are not supported by any ldns-based tool.

• ldns-test-edns checks if a target server supports DNSSEC by sending it a query
with DNSSEC O K flag set in E D N S .

• ldns-walk retrieves all domain names in a zone by performing N S E C enumeration.
Of course, this is possible only on DNSSEC signed zones which use N S E C .

• drill is a full featured DNS lookup utility inspired by dig from BIND tools. Be
sides other things, drill allows signatures chasing (printing the whole DNSSEC trust
chain from the root domain to the last RRSIG), which is very useful when debugging
problems in D N S S E C validation.

There are also other utilities included in ldns, but are not related to DNSSEC or provide
just a subset of functionality provided by other tools, especially by drill. Many of these
utilities were initially created to demonstrate functionality of ldns library and were not
intended to be used in a real life.

NSD was designed as a lightweight and fast server and combined with the tightly bound
ldns utilities creates a self-sufficient solution for serving simple static D N S S E C secured
zones.

4.3 PowerDNS

PowerDNS 5 is mainly developed by PowerDNS.COM. It started as a closed source project
and in 2002, the source codes were subsequently opened. It provides functionality of both
authoritative and recursive name servers and provides lot of flexibility due to various sto
rage backends. It was designed for name servers operating very large amounts of zones.
Unfortunately, the documentation is spares and often missing important bits.

Enabling D N S S E C in PowerDNS is quite easy, signing is performed within the server and
no third party utilities are required. However, not all backends are supported. Basically,
DNSSEC can be operated in three modes:

3

https://www.nlnetlabs.nl/projects/nsd/
4

https://www.nlnetlabs.nl/projects/ldns/
5

https://www.powerdns.com/

27

http://PowerDNS.COM
https://www.nlnetlabs.nl/projects/nsd/
https://www.nlnetlabs.nl/projects/ldns/
https://www.powerdns.com/

• Serving pre-signed zone

This is the basic mode, when PowerDNS provides only responses from pre-signed zone
loaded into the backend, or retrieved from a zone transfer.

• Front signing

In this mode, all D N S S E C related records are synthesized on the fly and cached
in the memory. The database contains only unsigned RRs. If NSEC3 is used for
authenticated denial, the database might also store hashed name with each domain
name for better performance.

Front signing is also applicable for zones retrieved from another master server.

• BIND-mode operation

PowerDNS implements a backend, which allows serving of zones from BIND compa
tible configuration files. Originally, the backend was started as a demonstration of
versatility of PowerDNS, but later gained in importance. As the backend itself does
not support a storage of metadata, this mode provides separate SQLite in-file storage
for key the material.

PowerDNS comes with a separate tool for DNSSEC control, called pdnssec. To enable
DNSSEC, just one command has to be issued:

$ pdnssec secure-zone example.com

One K S K and one ZSK are generated and immediately set as active. N S E C is used for
the authenticated denial. The active keys and DS records can be displayed with:

$ pdnssec show-zone example.com

Zone is not presigned

Zone has NSEC semantics

keys:

ID = 1 (KSK), tag = 58474, algo = 8, bits = 2048 Active: 1 (RSASHA256)

KSK DNSKEY = example.com IN DNSKEY 257 3 8 AwEAAcybilSSIWCNvU0iKeulrzB42...

DS = example.com IN DS 58474 8 1 ec5e2d5b0901f61465299... ; (SHA1 digest)

DS = example.com IN DS 58474 8 2 e26fcd4a97e739d8e56... ; (SHA256 digest)

DS = example.com IN DS 58474 8 4 8327aalld305el97el... ; (SHA-384 digest)

ID = 2 (ZSK), tag = 12133, algo = 8, bits = 1024 Active: 1 (RSASHA256)

To enable NSEC3, following commands are required:

$ pdnssec set-nsec example.com '1 0 10 C01DCAFE'

$ pdnssec rectify-zone example.com

The first command switches authenticated denial to NSEC3. The parameters for hash
ing are not required and the server will choose them randomly if not specified. The second
command is needed by some backends only, and updates the ordering of hashed domain
names.

The pdnssec command provides a bunch of subcommands to manage the keys, but no
timing metadata nor hardware modules are supported:

28

http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com

• generate-zone-key generates a new private key in BIND format.

• add-zone-key generates a new private key and imports it into a key database.

• import-zone-key imports an existing key in BIND format into a key database.

• activate-zone-key and deactivate-zone-key activate or deactivate a key.

• export-zone-dnskey and export-zone-key export a key pair in a BIND format.

• remove-zone-key deletes a private key from a key database.

DNSSEC in PowerDNS can be enabled very easily and no third party utilities are
required. However all key maintenance operations have to be performed manually and also
the configuration options are very limited. Only the parameters of automatically generated
keys for newly secured zones can be set. Signature lifetime is harcoded — all synthesized
RRSIGs have inception time at most a week in the past and expire at least two weeks in
the future (the turnover happens always on Thursday midnight U T C , because POSIX time
starts on Thursday midnight).

4.4 O p e n D N S S E C

OpenDNSSEC 6 is a project developed in collaboration of subjects: .SE (The Internet In
frastructure Foundation), NLnet Labs, Nominet, Kirei , SURFnet, SIDN, John Dickinson,
and many others. Unlike the previously described solutions, OpenDNSSEC is not a name
server, but a tool for handling the entire process of zone signing automatically, including
key management and a timing of operations. Only a few operations must be performed by
the zone operator.

The main idea is to separate zone signing from the name server. OpenDNSSEC takes
unsigned zones and provides signed zones to a name server running aside, which then serves
the signed zones. Any security aware name server can be used for this purpose.

The solution is not key-centric, but policy-centric. OpenDNSSEC allows definition of
multiple sets of rules, which are assigned to individual zones. The set of rules is called Key
and Signing Policy (KASP) and includes:

• Signing parameters

Allows configuration of the signature refresh interval, the validity period, and the
expiration time jitter (may split signer engine load for large zones). Also the inception
time offset can be added to eliminate a possible time skew on resolvers.

• Authenticated denial parameters

Switches between N S E C and NSEC3. For NSEC3, the hash algorithm, the iteration
count, the opt-out flag, and the salt length can be specified. The salt cannot be
user-defined, but is generated randomly at specified intervals.

• General key parameters

Sets T T L of D N S K E Y records, the safety interval for key D N S K E Y changes, and the
interval of old keys purging. Also, the keys can be generated separately for each zone
or can be shared between all zones using the K A S P .

6

https://www.opendnssec.org/

29

https://www.opendnssec.org/

• K S K and ZSK parameters

Specifies the used algorithm, the key bit length, the key rollover interval, and the
location of private key storage.

• Zone information

Zone information sets the data propagation delay from master to slave servers, which
must be taken into account during key rollovers. Also the SOA T T L and the serial
update policy must be specified.

• Parent zone information

In order to provide a safe ZSK rollover, the propagation delay of the DS record to the
parent zone must be specified, and also the T T L s of the DS record and the parent
SOA.

OpenDNSSEC operates in two separate cooperating processes:

• K A S P enforcer

This process is responsible for the key management. It generates new private keys in
the key storage, controls the key backup, association of the zones with policies, keeps
track of used keys and manages key rollovers by choosing current signing keys.

• Signer engine

This process performs the zone signing itself. It reuses old unexpired signatures,
creates new, maintains the N S E C or NSEC3 chain, and updates the SOA record
according to the K A S P .

The signer engine uses a generalised interface for zone retrieval of unsigned zones and
distribution of signed zones, called adapters. OpenDNSSEC currently provides adapters
for static master files, full zone transfers (A X F R) , and incremental zone transfers (IXFR).

The simplest configuration (with master files) reads the unsigned zones from one direc
tory and stores them in a second directory. When the signing is complete, the signer can
execute an arbitrary command, which may tell the name server to reload the zone file.

Zone transfer may be used when the zone is dynamically updated using DDNS. It re
quires a hidden master server, which retrieves the DDNS updates and provides the unsigned
zone to OpenDNSSEC via the zone transfer. The signed zone is then passed to a real mas
ter server. Unfortunately, the delays between DDNS update and change publication can be
longer than with the solution performing the signing within the name server.

OpenDNSSEC can be used to build a very robust signing solution due to the separation
of all components. This allows to include additional components into the process, like
automatic auditing. OpenDNSSEC also supports hardware security modules on a very
high level. In fact, only P K C S #11 devices can be used as a key storage. The SoftHSM
software token, which was created as a part of the project, can be used for small deployments
and in a testing environment.

A n intervention of the zone administrator is required for ZSK rollovers, when the DS
record publication must be performed in the parent zone. Additionally, OpenDNSSEC can
monitor backups of private keys and the K A S P can be configured not to use any key, which
was not backed up. The backup is another action, which must be performed manually.
Otherwise, OpenDNSSEC can operate autonomously.

30

4.5 Knot D N S

Knot DNS is an authoritative-only name server developed by CZ.NIC Labs. It is designed
for high-performance and non-stop operation, even for very large T L D zones. Support for
DNSSEC pre-signed zones was included in the first beta release in 2011. Experimental
support for automated signing is included since version 1.4, which was released in January
2014.

Server configuration for pre-signed zones is simple:

zones {

example.com {

f i l e "/var/lib/knot/example.com.signed";

}

}

For automated DNSSEC signing, the signing keys have to be generated and signing must
be enabled in the configuration file. Knot DNS does not provide utilities for key generating
yet, but supports keys in the BIND format including the timing metadata. Therefore
dnssec-keygen (and optionally dnssec-settime) from BIND project can be used. A l l keys for
a zone must be placed in one directory. Then, dnssec-enable and dnssec-keydir options
in configuration file must be set properly:

zones {

example.com {

f i l e "/var/lib/knot/example.com";

dnssec-keydir "/var/lib/knot/keys";

dnssec-enable on;

}

}

When the zone is loaded into the server, the DNSSEC related RRs in the zone are
updated. According to timing metadata in key files, D N S K E Y s are published and RRSIGs
updated or generated. If the zone contains N S E C 3 P A R A M RR, NSEC3 is used instead of
N S E C . The NSEC3 opt-out is not supported and thus all insecure delegations are always
signed.

Automatic signatures also apply to DDNS updates. However, automatic signing cannot
be used with zones retrieved by a zone transfer.

4.6 Yadifa

Y A D I F A 8 is a lightweight authoritative name server by E U R i d . It supports DNSSEC only
via pre-signed zones loaded from master files. Some configuration options for automatic
signatures are already accepted, but have no effect. Y A D I F A does not provide any signing
utilities, therefore utilities from BIND or ldns must be used.

7

https://www.knot-dns.cz/
8

http://www.yadif a.eu/

31

https://www.knot-dns.cz/
http://www.yadif

BIND Knot DNS PowerDNS NSD Yadifa OpenDNSSEC
Serving signed zone
Tools for signing
Key files support
P K C S #11 support
Automatic signing
DDNS signing
Key management

Table 4.1: The overview of available DNSSEC features of the compared software.

No special configuration options are needed for serving a pre-signed zone:

<zone>

domain example.com

type master

f i l e example.com.db.signed

4.7 Exist ing Implementations Summary

The Table 4.7 visualizes available DNSSEC features in the analyzed solutions. A l l so
lutions in the table are authoritative server implementations, except for OpenDNSSEC.
OpenDNSSEC uses different approach and works as a DNSSEC signing service.

A l l of the servers support DNSSEC at least in the simplest form, which is a serving of
pre-signed zone. BIND and NSD also provide tools for creating such a zone. BIND, Knot
DNS, and Power DNS additionally support some mechanism for automatic zone signing. In
case of BIND and Knot DNS, the server creates all DNSSEC RRs before serving the zone.
In case of PowerDNS, the DNSSEC RRs are synthesised at the time of answering. At the
moment, no described server supports automated key management.

</zone>

32

Chapter 5

DNSSEC Library Design
and Implementation

This chapter describes use cases and design goals for the new D N S S E C library and auxiliary
tools. The design goals are based on the requirements for the use of the library in the Knot
DNS authoritative name server, and also on the results of existing solution analysis. The
chapter also covers some implementation details of the library, namely the used cryptog
raphic backend, conversion of key and signature formats, and existing abstraction layers.
In the end, the project structure and testing is explained.

Most available open-source solutions for DNSSEC use manually generated signing keys.
Security policy regarding the rollover of these keys is mostly enforced by hand as well. In
a better case, timing metadata are attached to the keys and the process is performed semi-
automatically. Although utilities for verification of the settings are available, the whole
process is still prone to user errors. The verification utilities may also miss some special
cases, like algorithm rotation.

Except for custom scripts, the only solution for automatic and safe key management is
OpenDNSSEC with Key And Signature Policy (KASP) . The K A S P steers the key exchange
according to the policy itself, which is a much intuitive abstraction, than the timestamps
in key files. On the other hand, OpenDNSSEC is fragile in corner cases, when the zone
operator needs to perform some operation entirely by hand.

The library, which is the objective of this work, aims to create a basis allowing to build
solutions providing the same comfort as the K A S P in OpenDNSSEC, while preserving the
flexibility of timing metadata in BIND key files. Because of this, K A S P concept will be
adapted but modified to allow overriding or suppressing of automatically performed actions.

The library will be initially used with Knot DNS. Therefore, the included functionality
will primarily provide functions covering D N S S E C operations performed by authoritative
name servers. The support for procedures performed only by resolvers is not a priority and
may be a subject of future extensions of the library. Wi th respect to possible usage in other
name servers, the library must provide such a level of abstraction, which will not create
restrictions upon the internal structures used by the name server.

The new library will be accompanied with a set of tools, which will facilitate the ma
nagement of a K A S P and manipulate keys, and tools generally useful for troubleshoot
ing DNSSEC. Also simple alternatives for common DNSSEC tools (e.g., dnssec-keygen,
dnssec-signzone) may be added to demonstrate the functionality of the library.

33

5.1 Use Cases for the Library
To define the basic outlines of the library, the lifetime of a secure zone can be taken as a
starting point. Operations performed with the DNSSEC R R will provide some hints.

1. Define K A S P for the zone. The prerequisite for securing a zone is the definition of
the K A S P for that zone. The policy defines the signing scheme, the key parameters,
and the signature parameters.

2. Create the signing keys. The next step in securing the zone is the generating of an
initial key set as specified in the K A S P . In case of moving from one DNSSEC solution
to another, the existing keys might be imported instead. The keys are stored in a key
store.

3. Establish trusted chain. To establish a trusted chain with a parent zone, D N S K E Y
records must be included in the zone and corresponding DS records must be published
in the parent zone. These records are derived from the public keys. The published
DS records may also include standby keys.

4. Create records for authenticated denial. When D N S K E Y records are in place,
the chain of records for authenticated denial must be added into the zone. If the
hashed authenticate denial is used, the salt for hashing must be generated before
that.

5. Sign the zone. A l l authoritative R R sets in the zone must be signed. The process
covers identification of authoritative R R sets, conversion of these sets into the ca
nonical format, selection of private keys, creating the signatures, and adding RRSIG
records into the zone. The selection of the keys is dependent on the state of key and
on the signed R R type.

6. Maintain the zone signatures. Expiring signatures in the zone must be refreshed
in time. Also new or updated RRs must be created. Changes of the zone structure
influence the N S E C or NSEC3 chain, which must reflect the changes as well.

7. Maintain the keys. The K A S P defines a key rollover interval. Prior to the key
rollover, the server must request a new key to be generated. The rollover usually
consists of multiple steps, which are split by delays required for data propagation and
a cache expiration. The new keys may be backed up, the old keys are usually purged.

5.2 Design Goals

• Key storage

The library will provide interface for key storage, which will be tightly bound to
the K A S P . The storage must provide space for public keys, private keys, and their
metadata. The metadata will contain parameters used in D N S K E Y records (flags
and algorithm identification), timing information mapping the past and future states
of the key in it's lifetime (e.g., created, published, active, retired, dead, etc.).

The storage will also provide mechanisms for retrieval of keys by the key tag (likely
non-unique identifier), by other unique identifier (e.g., cryptographic hash of public
key), and the current lifetime period.

34

Key generating

Given the key storage, the library will provide an interface for generating of new key
pairs according to given parameters into the storage.

Key importing and exporting

Library will provide interface for key pairs importing and exporting. Portable P K C S
#8 format will be used for private keys []. For public keys, D N S K E Y and DS
export format is a must.

Private keys in P K C S #11 device

The storage must allow to store private keys on hardware security modules and use
P K C S #11 interface to work with these keys.

Support for offline keys

The key store will support offline keys, where the private key is available only tem
porarily or never. Temporary availability could be the case for security hardware
modules. And in some secure environments, K S K s are stored on a separate device
and ZSKs are signed there. For this purpose, the library will support storing of
pre-signed D N S K E Y sets.

Support for standby keys

To be able to perform fast K S K rollover in case of an emergency, standby keys are
often used. The DS for these keys is published in the parent zone, but the ZSK key
does not appear in the zone until the rollover is initiated. The library will support
this operation.

Signing schemes support

Based on the data in a key store, the library will determine, which signing scheme is
used and provide hints to the name server when choosing keys to be used. Primarily,
K S K — Z S K signing scheme and single type signing scheme will be supported.

Bit map construction for authenticate denial

NSEC and NSEC3 records contain a bit map field encoding R R types present at the
domain name in the zone. The library will implement an interface for comfortable
construction of these maps. As the rules for inclusion of individual types are slightly
different for N S E C and NSEC3 at delegation points, the checks will be included.

N S E C 3 hash operations

For the purpose of NSEC3, the library interface will include random salt generating
and domain name to hash conversion functions.

Low level signing and verification

The signatures in DNSSEC may use different encoding than specified in X.509 [6, 19].
The X.509 format is used by most cryptographic libraries. The library will provide
transparent interface for encoding and validating arbitrary data in the format used
by DNSSEC.

35

Resource record set signing and verification

As server implementations use specialized structures for storage of zone data, the
abstraction will provide signing of raw data and RRs in the wire format. Organizing
the process of signing within the zone will remain the responsibility of the name server.

Auxiliary functions for signing and verification

The keys used to sign new, updated, or expired R R sets depend on the type of the
records, their location, and on used signing scheme. The library will provide interface
for choosing the correct keys based on these circumstances.

The comparision of time expressions in signatures requires serial number arithmetic
[], because short data types are used []. Helper functions performing this arithmetic
will be included as well.

Key and Signature Policy

The policy must include parameters for signing, authenticated denial, key lifetime,
and key rollover. OpenDNSSEC also defines other parameters related to delays of
data propagation to slave servers and the parent zone. These parameters can be
probably determined more precisely by the name server using the library, however
the utilities working with the K A S P outside the server process would not have these
information. Consequently, these parameters will be optionally included in the K A S P
as well and may be updated by the name server.

Also, the K A S P storage will provide space for holding custom parameters related to
the policy. The name server could use them arbitrarily. For example, the K A P S can
contain zone operator e-mail address to be used to inform about emergency situations.
This approach will allow to store all related information on once place and not to
spread them between the K A S P and the server configuration hie.

K A S P override mechanism

The library will provide interface to override key lifetime state enforced by the K A S P ,
which in fact enables manual control over the key as used in BIND name server.

Key rollovers

Zone maintenance also comprises rollovers of keys, which is a process controlled by
the K A S P . The rollover is a sequence of changes to D N S K E Y records and also R R
signatures in the whole zone. The set of keys used at a given time will be determined
by retrieving the keys from key storage by their lifetime state. The rollover events
can happen independently on the name server operation, but need not be executed
in real time. Their late execution will not cause any harm.

The library will provide a set of functions, which will be used to handle these events.
The name server will retrieve the next K A S P event and it's details, perform the
requested operation not soon than at the planned time, and finally mark the event as
executed. At that point, the library will update key states, which may determine the
next rollover events.

SIG(O) transactions signing and verification

The DNS allows transaction signing using multiple mechanisms. SIG(O) is a mech
anism, which is similar to R R signing [6]. Although transaction signing is out of

36

DNSSEC scope, the library will provide interface for DNS messages signing and veri
fication using SIG(O).

• Abstraction for K A S P and key storage

The library will provide abstraction for K A S P and key storage backend. To store
only data for a few zones, storage on the file system might be sufficient. In case of
large amount of zones, other backends might scale better (e.g., SQL database). It
will be possible to choose a key storage backend at runtime, and even to use multiple
storages at a time.

The library implementation will contain one backend for storage on the file system
in a human readable and standardized format (e.g., JSON, Y A M L) . Other backends
might be added by third parties.

• Construction of trust chain

While the construction of trust chain is not in a scope of authoritative name servers,
the interface for construction and verification of the trust chain will be added. The
interface is going to be needed by some of the accompanying utilities. And possibly
will make the library more attractive to validating resolvers.

5.3 Utilit ies

• K A S P management utility

As the library provides abstraction for K A S P storage, an utility will be provided to
control the K A S P from a command line. Generally, the utility will enable:

— Creating, listing, and deleting policies.

— Displaying of policy parameters, and modifying these parameters.

— Managing of zone-to-policy mappings.

— Exporting and importing of the policies.

• Key management utility

Although the key storage is tightly bound to K A S P , the key management will be
provided by a separate utility. The utility will allow:

— Listing existing keys for a zone.

— Listing upcoming rollover events for a zone.

— Manually generating, importing, and exporting the keys.

— Generating keys in advance according to K A S P (for standby K S K) .

— Displaying details for a key.

— Overriding K A S P by setting the key lifetime parameters.

• Utility for D N S K E Y R R sets signing on isolated device

If the policy requires the private K S K to be present on a machine isolated from the
name server, another tool will be added and provide functionality to:

37

— Export the public keys and metadata describing the timing of the upcoming
rollovers.

— Sign the key sets in the rollover by selected K S K and export them.

— Import the signed key sets into the key storage.

• Private key conversion utility

Most of the current name servers supporting DNSSEC signing adopted the BIND key
format. The public key file contains D N S K E Y R R in a zone master file format. The
private key stores values used in the cryptographic algorithm and timing information
for management of the key rollover. A l l data are encoded as ASCII text, which makes
it both human readable and easy to parse by custom scripts.

The BIND keys fulfill their purpose when the keys are rolled manually. The public key
can just be copied into the zone and the timestamps in private key can be modified
with a text editor. However, no manual modifications make sense in case of the
automatic rollover managed by a K A S P . Also, the BIND key format is not supported
by cryptographic libraries and complicated conversion must be performed.

The library will store the private keys in P K C S #8 format, which is a standard format
for storing private key information and is supported by most cryptographic libraries.
In addition, the format allows protection of the key material with encryption and a
pass phrase. To cooperate with other DNSSEC components capable using only BIND
key format, a conversion utility will be distributed with the library.

• D N S S E C hash calculation utility

DNSSEC uses various hashes at multiple places. The utility will allow:

— Compute key tag from D N S K E Y record.

— Compute DS record from D N S K E Y record.

— Compute NSEC3 hash from given domain name and hash parameters.

• Signature chain testing utility

For testing of DNSSEC setup, a simple resolving utility will be added. This utility
will display the chain of trust and a sequence of DS and D N S K E Y records used to
validate the RRSIG.

• Zone signing and verification

Utilities similar to dnssec-signzone and dnssec-verify will be added, which will use
the K A S P as a source for signing information. The utility will probably depend on
external zone parser library (most likely zscanner from Knot DNS).

5.4 Cryptographic Operations

A n essential part of the DNSSEC specification relies on cryptographic operations. As
there are huge differences in interfaces of various cryptographic libraries, a selection of
the backend library had to be performed at an early stage of the design. The choice
also determined some mechanisms for manipulation with key material and also conversions
between supported encoding formats.

38

5.4.1 Selection of a Cryptographic Library

The initial specification for the library contained a layer, which would make usage of dif
ferent cryptographic libraries possible. However, this requirement was identified to be su
perfluous. A n additional abstraction layer would complicate the implementation needlessly
with just a little added value. Therefore, only a one cryptographic backend is supported.
Following cryptographic libraries were considered:

• OpenSSL

OpenSSL 1 is a library used by most existing open-source DNSSEC software. It pro
vides functions for general purpose cryptography and high performance. Unfortu
nately, the library interface is relatively unstable, which causes problems when com
piling the software on multiple systems with different versions of the library. In
addition, the documentation is often incomplete and the source code itself is difficult
to read.

Also, OpenSSL does not support cryptographic tokens accessible via P K C S #11 inter
face. The support for P K C S #11 can be enabled using external engine engine-pkcsll2

developed as a part of the OpenSC project. However the external engine is compli
cated to use and I was not able to make it work with SoftHSM software token, ePass
2000 hardware token, nor Sun SCA6000 cryptographic accelerator.

• Mozilla Network Security Services

The Mozilla N S S 3 library was initially designed to be used in the Mozilla Suite. From
this reason, a lot of the internal operations work only with a global context (e.g., state
of P K C S #11 tokens). Therefore multiple uses of the library within one application
cannot be isolated very well. Similarly to OpenSSL, the documentation of the library
is very poor.

The support for P K C S #11 by the Mozilla NSS is very good. However, even the
low level public key operations require an X.509 certificate, which are not used in
DNSSEC. That would make the library very problematic to use, because an artificial
certificate would have to be created.

• GnuTLS

The G n u T L S 4 library provides a very good alternative for the previously mentioned l i
braries. It offers an abstract interface for performing public key operations using both
software keys and hardware devices, including the P K C S #11 ones. The documenta
tion of the library is well organized and often contains theory basics with references
to literature. In addition, the A P I is illustrated with a lot of examples.

At the moment, DNSSEC allows signing with the RSA, DSA, E C D S A , and GOST
algorithms. A l l these algorithms, except of GOST, are supported by the referenced libraries.
The GOST algorithm is usually supported only through an external patch. From this point
of view, the libraries provide equivalent functionality.

x

https://www.openssl.org
2

https://www.opensc-project.org/opensc/wiki/engine_pkcsll
3

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
4

http://gnutls.org

39

https://www.openssl.org
https://www.opensc-project.org/opensc/wiki/engine_pkcsll
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
http://gnutls.org

In the end, the GnuTLS library was chosen as a best solution for the designed library.
The main reason is a good documentation, satisfactory support for P K C S #11, and last but
not least to increase the diversification between available open-source DNSSEC solutions.

5.4.2 K e y and Signatures Encoding

Nowadays, most Internet protocols use Transport Layer Security (TLS) to provide com
munication security between the communicating parties. The T L S protocol uses X.509
format to encode certificates, keys, and signatures [12, 15]. For this reason, the cryptog
raphic libraries (including GnuTLS) primarily use the X.509 format when managing keys
and performing signing operations.

DNSSEC adapts a custom format for encoding of keys and signatures. Consequently,
various conversions need to be performed within the DNSSEC library.

Format of D N S S E C Private Keys

The DNSSEC specification does not define a specific format for private keys since these
keys are not directly used in the DNS protocol. Historically, the format was appointed
by BIND as a first implementation of DNSSEC. The BIND private key contains algorithm
parameters encoded in Base64.

A n example of a BIND private key follows:

Private-key-format: vl.3

Algorithm: 3 (DSA)

Prime(p): t+xj7VAqPe5ubujgchnk3Y2JqReYyv3077iLaXxuelNCf9gKEM7dnlRMTYg8VA...

Subprime(q): /BlDeI7HSoKK00TPKNTyxVgCk/M=

Base(g): cL0aNeGPPJsTq7GGyl47e2QAT6rW7uvUKEoXUFk6Ddo8p0BkigBRHku9b62ecDi...

Private_value(x): R+ErDDVccN01pzbaxIQP2MTuv5U=

Public_value(y): g0DdNlaNHXgytZWGqhHavieY0z269sYDy2edp0HvV0ks+vQEQeAyUav...

Created: 20140425184418

Publish: 20140425184418

Activate: 20140425184418

The format is easily processable by user scripts and allows inclusion of additional fields,
e.g. key usage timing metadata. However, the key cannot be used in other applications
without conversion to standardized format. In addition, for E C D S A keys, a corresponding
public key cannot be derived from the private key file in the BIND format.

The designed DNSSEC library uses X.509 P E M format to store private keys. This
format is processable by most cryptographic libraries and tools supplied with these libraries.
It cannot keep additional data — in this case, timing metadata and an identification of
the cryptographic hash function. However, this information can be bound to the zone
configuration. As a result, the key can be reused by multiple zones and the library need
not to distinguish between different types of key stores (e.g., the P K C S #11 allows to store
custom attributes alongside a private key, but the attributes are immutable).

The private key in X.509 P E M format, matching with the previously shown BIND key,
looks like:

40

BEGIN PRIVATE KEY

MIHGAgEAMIGoBgcqhkj00AQBMIGcAkEAt+xj7VAqPe5ubujgchnk3Y2JqReYyv30

77iLaXxuelNCf9gKEM7dnlRMTYg8VAuCuZpsHkteGDDjxJqYZMN7TwIVAPwZQ3iO

xOqCijjkzyjU8sVYApPzAkBwvRol4Y88mx0rsYbLXjt7ZABPqtbu69QoShdQWToN

2jynQGSKAFEeS71vrZ5w0LwRtwQzm90uNSzzQ+G7d32/BBYCFEfhKwwlXHDTtac2

2sSED9jE7r+V

END PRIVATE KEY

Format of D N S S E C Public Keys

Public keys in D N S S E C appear as D N S K E Y RRs, which were already described in sec
tion 3.3. The key material is stored within the Public key field of the D N S K E Y R R and
it's format depends on the used algorithm [19, 20, 31]. Basically, public key attributes are
just encoded as byte strings of defined width and padding. The GnuTLS library supports
public key raw attributes import and export, and the designed DNSSEC library utilizes
this interface to read and write the D N S K E Y RRs.

The BIND stores public keys in a zone master file format. The public key file for the
example private key would contain:

example.com. IN DNSKEY 256 3 3 APwZQ3i0x0qCijjkzyjU8sVYApPzt+xj7VAqPe5ub...

The key can be included into the zone simply by adding the file content into the zone
master file. This is a significant advantage, when the zone is signed manually using the
command line tools. However, this property is no longer needed if the keys are maintained
automatically. As the designed DNSSEC library aims to perform automated key mainten
ance, the ability to manipulate public keys in zone master file format is not included.

Format of D N S S E C Signatures

The DNSSEC signature is held within the Signature field of RRSIG R R . Similarly to the
public keys, the format of the signature depends on used algorithm:

• For the R S A algorithm, the signature is represented by one value, which is encoded
the same way as in X.509 certificates [20, 35]. This was intended to make standard
cryptographic libraries easier to use.

• For the D S A and E C D S A algorithm, a conversion is required [6, 19, 31]. In this
case, the signature consists of two values usually called r and s. In the X.509 speci
fication, the storage of these values is described by the Dss-sig-value (and identical
Ecdsa-sig-value) A S N . l structure. D N S S E C encodes the signature values as byte
strings on a fixed width. For future extensions, the D S A signature is supplemented
with a one-byte value t, copied from the public key.

The X.509 signatures are encoded using Distinguished Encoding Rules (DER) standard.
Internally the GnuTLS library uses Libtasnl5 library to perform the encoding. Unfortu
nately, no public interface is provided to access the raw signature parameters. In order
to write and validate the D S A and E C D S A signatures in DNSSEC, this functionality was
implemented as a part of the DNSSEC library.

5

https://www.gnu.org/software/libtasnl/

41

http://example.com
https://www.gnu.org/software/libtasnl/

The Libtasnl library includes a utility, which converts a textual A S N . l definition into
a C source code. The resulting code can can be used to initialize the Libtasnl parser
or encoder. This is a very comfortable way to access complex binary structures, however
the structures used in the D S A and E C D S A signatures are fairly plain. For this reason,
the Libtasnl library was not use and a simple one-purpose parser for Dss-sig-value was
implemented as a part of the DNSSEC library.

Key Identifiers

There is no standardized way to identify a cryptographic key. Usually for this purpose,
cryptographic libraries adapt hashing of some part of the public key and identify the key
using the result. In the designed DNSSEC library, following key identifiers can be used:

• Key Tag

DNSSEC defines a simple 16-bit hash value called key tag, which is calculated from
the D N S K E Y RRs and appears in the RRSIG and DS RRs [4]. The key tag is not a
unique identifier of the public key. It is used only to limit the possible candidate keys
during signature validation and DNSSEC trust chain building.

• Key ID

In order to identify a key uniquely, the DNSSEC library introduces a key ID. The key
ID is a SHA-1 hash value computed from the public key. In this context, the public
key means a Subject Public Key Info structure in the X.509 specification, encoded
in the binary D E R format. The key ID can be used to select a key unambiguously
during the signing. As the value is computed only from a public key, the identifier is
independent on D N S K E Y flags or hashing algorithm changes.

5.5 Signing State Persistence

As the DNS system is decentralized, an authoritative server has only a limited knowledge
about the data maintained by other servers. And generally, there is no way to track changes
made in a specific zone.

The DNSSEC records in a zone are bound together at the level of the zone (RRSIG and
D N S K E Y RRs) and at the zone cut level (D N S K E Y and DS RRs). Although the records
are semantically bound, resolvers handle all records individually. This fact makes some
DNSSEC operation complicated, especially key rollovers. From this reason, the D N S S E C
library has to keep some additional information for each zone and consult that information
before invoking any change to an authoritative data.

5.5.1 Signing State Persistence Mode l

In order to preserve the DNSSEC validation chain in all situations, the key states has to
be considered from the point of view of a caching resolver and the longest possible caching
periods have to be taken into account. This expects knowledge of data propagation delays,
exact times of D N S K E Y RRs publication, and T T L times of related DNSSEC RRs.

Figure 5.1 shows a simplified E R diagram with entities involved in storing the signature
policy and state of the zone signing. The meaning of the individual entity types will be
explained.

42

Figure 5.1: Simplified E R diagram of entities involved in key and signature policy persist
ence.

The Policy Entity Type

The policy is a definition of zone signing configuration. The configuration covers all the
information, which need not be altered, when the zone content changes. Therefore the
policy can be shared by multiple zones. The policy consists of:

• Key parameters:

— T T L of D N S K E Y records;

— algorithm and private key length for ZSK and K S K ; and

— lifetime for ZSK and K S K (how often the keys are rolled over).

• RRSIG parameters:

— validity time;

— refresh time (interval prior expiration, when the signature renewed); and

— expiration time jitter (to avoid mass expiration of zone records).

• NSEC3 parameters:

— option to enable NSEC3 (otherwise N S E C is expected);

— option to enable of Opt-out flag;

— salt length and hash function iteration count; and

— salt rollover time.

• Parent zone parameters:

— SOA record T T L and minimal T T L ; and

— DS record T T L .

• Data propagation delays:

— master to slaves propagation delay;
— inception offset (to reduce issues with time synchronization); and

— D N S K E Y publish and retire safety interval (prolongs each key rollover step).

The Zone Entity Type

The Zone entity type represents a state of a signing for a particular zone. The state is
determined by a policy and a set of keys with their timing metadata.

43

The Key Entity Type

The Key entity type represents a key instance used with the zone, and includes:

• D N S K E Y R D A T A

In order to build a D N S K E Y R R to be inserted into the zone, the Key entity stores
a complete D N S K E Y R D A T A . The zone name is used as a domain name for the RR,
the T T L value is taken from the policy specification.

• Key timing attributes

The designed DNSSEC library does not use a fixed number of states to describe a key
lifetime (unlike OpenDNSSEC), but uses various timing attributes (like BIND). The
timing attributes track the usage of the key in the zone, based on which a current
state of a key is resolved. The attributes are:

— Publish — The time when the D N S K E Y R R is included into the zone.

— Activate — The time the key is started to be used for signing.

— Retire — The time the key is no longer used to create signatures.

— Remove — The time when the D N S K E Y R R is removed from the zone.

And the values of the attributes are limited by a few constraints:

Publish < Remove A Activate < Retire

There are no constraints on the Publish versus Activate attributes. This allows model
ing of exceptional states, where an RRSIG R R for one key appears in the zone before
the D N S K E Y R R for the same key. This particular situation is required for key
algorithm rollover [], and unfortunately cannot be performed by OpenDNSSEC.

Also, the use of the timing attributes instead of fixed states eases a transition from
the BIND software.

• Reference to a private key store

The reference to a private key store has to be specified in order to use the key to
create new signatures. In special cases, this might not be necessary (e.g., when the
key is retired after migration from other DNSSEC signing solution).

The Private Key Store Entity Type

The type represents an instance of a private key store. The private keys are stored apart
from the public keys for several reasons:

• A n isolated storage for private keys increases the security. The private key is loaded
only if required for signing.

• The keys can be shared by multiple zones, which is a practice of some DNS hosting
providers.

• The private keys are immutable and can be stored on immutable storage.

• The K S K can be stored offline, and attached only when the key rotation happens.

44

5.5.2 Signing State Store Abstraction

The library encompasses two parallel abstraction layers, which allow implementation of
different storage backends:

• a layer for signing state storage; and

• a layer for private key storage.

These two abstraction layers have to be implemented separately because of a support
for cryptographic tokens. The tokens do not serve only as a storage for key material, but
perform certain cryptographic operations individually. This method makes a unified access
to a key storage impossible (without exposing the underlaying cryptographic layer).

Signing State Store Abstraction Layer

The signing state store abstraction layer corresponds with the E R diagram in Figure 5.1,
excluding the Private key store entity type. The meaning of the individual entities was
already described.

Currently, the interface is incomplete. Only a default implementation for the signing
state store is exposed in the public interface of the library, the abstraction layer is available
only internally and is subject to change:

• K A S P — The private key store specification is not included. As the key store ab
straction layer is separate, a method of instantiation of the storage is not decided yet.
This is especially problematic for non-default implementation.

• Policy — The structures for specification of signing policy are in a state of a draft
and are not used by other entities yet.

• Zone and Key - The structures are generally complete.

The default implementation of the signing state store uses textual files, which are re
tained on the file system as usual. The content of the files is written in Y A M L (YAML Ain't
Markup Language^), which is a data serialization format with a human readable notation.
There are a lot of Y A M L libraries, which allow to process the format in many popular
languages. Thus the administrators can comfortably process the files both manually and
automatically by custom programs or scripts.

A n example of signing state file for zone example.com may contain:

policy: default

keystore: default

keys:

- id: 788ele2d37ab359899735349e38442cc8d038795

ksk: false

algorithm: 3

public_key: APwZQ3i0x0qCijjkzyjU8sVYApPzt+xj7VAqPe5ubujgchnk3Y2JqReY...

publish: 2014-04-25 18:44:18

active: 2014-04-25 18:44:18
6

http://www.yaml.org/

45

http://example.com
http://www.yaml.org/

Public library interface

\
Default directory

key store
Custom

key store

PKCS # 8
key store

PKCS # 1 1
key store

Internal key store abstraction

Figure 5.2: Key store abstraction A P I in the DNSSEC library.

Any implementation for the zone state store must be able to reconstruct he Zone and
Key entities. The default implementation stores all necessary fields within the zone state
file, except the name of the zone. The name of the zone is taken from the filename (in this
case zone_example.com.yaml). In the example, the lines one and two refer to a policy and
an implicit key store, the line three introduces a list of key instances. The D N S K E Y R D A T A
for each key are reconstructed from the ksk, algorithm, and publicJzey fields. The publish
and active fields specify a current state of the key. The id field contains a key ID, which
can be computed from the public key and therefore represents a redundant information.
However, the field is handy for the administrator to ease a lookup of the private key without
additional tools.

Private Key Store Abstraction Layer

The private key store abstraction layer is shown in Figure 5.2. Basically, two methods for
accessing the keys are distinguished:

• P K C S #8 key store (software key)

In this case, the key store provides a key material encoded in the unencrypted P E M
format. The key material is passed to the GnuTLS library, which directly performs
the cryptographic operation.

For this purpose, the DNSSEC library contains an additional abstraction layer to allow
to use a custom key store. Essentially, an implementation for key store initialization
and key material access has to be provided. For convenient use of the library, a default
key store implementation is available, which stores the private keys in a directory and
uses the key identifiers as filenames.

• The P K C S #11 key store (cryptographic token)

Cryptographic tokens can be used with the DNSSEC library via the P K C S #11
interface. The access to the token is accomplished using a dynamic library, which
has to be provided by the vendor of the individual token and which implements the

46

http://zone_example.com.yaml

interface defined by P K C S #11. The key store is initialized with a configuration
string identifying the dynamic library, token, and slot.

Usually, the cryptographic operation with the private key is carried out on the token
and the application just picks up the result. This approach increases the security
of the private key, because the key material should not leak into the application.
Some hardware tokens also contain specialized acceleration chips, which offer better
encryption performance than software computation of the signatures.

5.6 Project Structure and Testing

The DNSSEC library was developed as a separate project since the beginning. However,
as the library is expected to be used by the Knot DNS server primarily, the source code of
the library is maintained in the Knot DNS code repository. This is intended to ease A P I
changes in the D N S S E C library, until the library is feature complete and stable enough.

A snapshot of the repository with the sources is part of the appendix B . The code of
the DNSSEC library is located in the directory dnssec within the repository and integrates
into Knot DNS build process, which uses G N U Autotools 7 build system. The D V D also
contains a virtual machine image with prepared environment to compile and test the Knot
DNS and the DNSSEC library.

Library Dependencies

The D N S S E C library depends on:

• the GnuTLS library for cryptographic operations;

• the Nettle 8 library for Base64 conversion;

• modified Circular Linked Lists from the L i b U C W 9 library;

• the L i b Y A M L 1 0 library for Y A M L parsing and writing; and

• the C T A P Harness 1 1 library for unit testing.

Source Code Organization

Internally, the source code is split into the following directories:

• lib — the resulting libdnssec library;

• shared — static library used internally by libdnssec and utilities;

• util — library utilities; and

• tests — unit tests for the internal library and libdnssec.
7

http://www.gnu.org/software/software.en.html
8

http://www.lysator.liu.se/~nisse/nettle/nettle.html
9

http://www.ucw.cz/libucw/
10

http://pyyaml.org/wiki/LibYAML
n

http://www.eyrie.org/~eagle/software/c-tap-harness/

47

http://www.gnu.org/software/software.en.html
http://www.lysator.liu.se/~nisse/nettle/nettle.html
http://www.ucw.cz/libucw/
http://pyyaml.org/wiki/LibYAML
http://www.eyrie.org/~eagle/software/c-tap-harness/

Documentation

The documentation of the library is generated using Doxygen . Both internal and public
data structures and functions are documented. Also, code samples with a description
are provided. The source code of unit tests can be considered as an additional source of
examples, if the expected behavior is unclear.

Unit Testing

For execution of the unit tests, the C T A P Harness library was adopted, as the same library
is already used by the Knot DNS software. The unit test cover most of the internal and
public interface of the library.

Functional testing

The functional testing can be taken into account in case of the designed utilities and the
library consumers. As the utilities are largely incomplete at the moment, they are not
tested at all. However, Knot DNS has a quite large suite of functional tests, which was
used to test the library from the point of the library consumer. The functional tests of
Knot DNS were supplemented by manual testing, which currently could not be performed
automatically due to the incomplete utilities.

;

http://www.stack.nl/~dimitri/doxygen/

48

http://www.stack.nl/~dimitri/doxygen/

Chapter 6

Conclusion

The D N S S E C designers intended to create a solution, which is backward compatible with
secure unaware components of the DNS and which do not increase a message processing
cost on a server side excessively. As a result, a DNS zone is secured simply by adding
specialized resource records into the zone, which are understood and handled by D N S S E C
aware components.

Creation of the DNSSEC records is a straightforward process defined by the D N S S E C
specifications. However, complications may appear because of the architecture of the DNS.
Any change to DNSSEC records in a zone must not invalidate existing data, which could
be present in remote caches. Therefore, the data propagation delays and cache lifetime has
to be always taken into account.

The first DNSSEC implementations required a zone operator to perform a lot of actions
manually. Wi th current utilities, nearly all of the actions can be automated. But still in
most cases, the key management remains under a manual control of a zone operator. A l l
authoritative DNS servers researched in this thesis accepted this concept, where the keys
determine the zone signing policy.

A new concept was introduced in the OpenDNSSEC project. The project does not
implement a name server, but a service to be run independently and to prepare secured
zones to be served by any DNSSEC-enabled name server. OpenDNSSEC uses Key And
Signature Policy (KASP) to define the rules for the zone signing and in addition for the
key management. K A S P specifies variables, which are a necessary precondition for a fully
automated DNSSEC signing.

In this thesis, a new D N S S E C library and auxiliary utilities were designed. The so
lution is inspired by existing open-source DNSSEC software and focuses on high-level of
automation and prevention of mistakes. The key features of the new library include:

• automatic key management based on the K A S P concept;

• support both for software encryption and hardware security modules;

• abstraction for custom implementation of the key and zone signing state storage; and

• error-resilient interface for zone signing and signing policy enforcement.

At the moment, the implementation covers the low-level signing interface, key manage
ment interface, abstraction for key and signing state storage, and a base code for the policy
definition. The designed utilities are rather prototypes.

49

In order to validate the functionality of the implementation, the existing DNSSEC code
in the Knot DNS server was ported to the new library. The server utilizes the default
implementation of the key and signing state store, the low-level DNSSEC signing interface,
and the interface for TSIG transactional security. The TSIG support was added into the
library aside from the original design, because it was the last feature in Knot DNS, which
depended on the OpenSSL library.

Although the library provides all operations required for use in Knot DNS, the overall
solution cannot be used comfortably especially due to the missing utility for key manage
ment. A n implementation of this utility is therefore a top priority for future work on the
library. Afterwards, the signing policy needs to be implemented, which is a key feature for
the automation of high-level D N S S E C operations. The progress on the other components
of the library will be arranged by the needs in the Knot DNS software.

50

Bibliography

[1] P. Albitz and C. Liu . DNS and BIND. 5th. O'Reilly, May 2006, p. 640. ISBN:
978-0-59-610057-5.

[2] R. Arends et al. DNS Security Introduction and Requirements. R F C 4033 (Proposed
Standard). Internet Engineering Task Force, Mar. 2005. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 0 3 3 . t x t .

[3] R. Arends et al. Protocol Modifications for the DNS Security Extensions. R F C 4035
(Proposed Standard). Internet Engineering Task Force, Mar. 2005. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 0 3 5 . t x t .

[4] R. Arends et al. Resource Records for the DNS Security Extensions. R F C 4034
(Proposed Standard). Internet Engineering Task Force, Mar. 2005. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 0 3 4 . t x t .

[5] D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS).
R F C 3833 (Informational). Internet Engineering Task Force, Aug. 2004. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 8 3 3 . t x t .

[6] L . Bassham, W. Polk, and R. Housley. Algorithms and Identifiers for the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. R F C 3279 (Proposed Standard). Internet Engineering Task Force, Apr.
2002. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 2 7 9 . t x t .

[7] S. M . Bellovin. "Using the Domain Name System for System Break-ins". In:
Proceedings of the Fifth Usenix UNIX Sercurity Symposium (June 1995). DOI:
10.1.1.178.5616.

[8] R. Braden. Requirements for Internet Hosts - Application and Support. R F C 1123
(I N T E R N E T S T A N D A R D) . Internet Engineering Task Force, Oct. 1989. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 1 1 2 3 . t x t .

[9] R. Braden. Requirements for Internet Hosts - Communication Layers. R F C 1122
(I N T E R N E T S T A N D A R D) . Internet Engineering Task Force, Oct. 1989. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 1 1 2 2 . t x t .

[10] R. Bush. Delegation of IP6.ARPA. R F C 3152 (Best Current Practice). Internet
Engineering Task Force, Aug. 2001. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 1 5 2 . t x t .

[11] D. Conrad. Indicating Resolver Support of DNSSEC. R F C 3225 (Proposed
Standard). Internet Engineering Task Force, Dec. 2001. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 2 2 5 . t x t .

[12] D. Cooper et al. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. R F C 5280 (Proposed Standard). Internet
Engineering Task Force, May 2008. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 5 2 8 0 . t x t .

51

http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc3833.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc3152.txt
http://www.ietf.org/rfc/rfc3225.txt
http://www.ietf.org/rfc/rfc5280.txt

A . Costello. Punycode: A Bootstring encoding of Unicode for Internationalized
Domain Names in Applications (IDNA). R F C 3492 (Proposed Standard). Internet
Engineering Task Force, Mar. 2003. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 4 9 2 . t x t .

J . Damas, M . Graff, and P. Vixie. Extension Mechanisms for DNS (EDNS(O)). R F C
6891 (I N T E R N E T S T A N D A R D) . Internet Engineering Task Force, Apr. 2013. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 6 8 9 1 . t x t .

T. Dierks and E . Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. R F C 5246 (Proposed Standard). Internet Engineering Task Force, Aug. 2008.
U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 5 2 4 6 . t x t .

D. Eastlake 3rd. DNS Request and Transaction Signatures (SIG(0)s). R F C 2931
(Proposed Standard). Internet Engineering Task Force, Sept. 2000. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 9 3 1 . t x t .

D. Eastlake 3rd. Domain Name System (DNS) Case Insensitivity Clarification. R F C
4343 (Proposed Standard). Internet Engineering Task Force, Jan. 2006. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 3 4 3 . t x t .

D. Eastlake 3rd. Domain Name System Security Extensions. R F C 2535 (Proposed
Standard). Internet Engineering Task Force, Mar. 1999. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 5 3 5 . t x t .

D. Eastlake 3rd. DSA KEYs and SIGs in the Domain Name System (DNS). R F C
2536 (Proposed Standard). Internet Engineering Task Force, Mar. 1999. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 5 3 6 . t x t .

D. Eastlake 3rd. RSA/SHA-1 SIGs and RS A KEYs in the Domain Name System
(DNS). R F C 3110 (Proposed Standard). Internet Engineering Task Force, May
2001. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 1 1 0 . t x t .

D. Eastlake 3rd and C. Kaufman. Domain Name System Security Extensions. R F C
2065 (Proposed Standard). Internet Engineering Task Force, Jan. 1997. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 0 6 5 . t x t .

D. Eastlake 3rd and A . Panitz. Reserved Top Level DNS Names. R F C 2606 (Best
Current Practice). Internet Engineering Task Force, June 1999. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 6 0 6 . t x t .

R. Elz and R. Bush. Clarifications to the DNS Specification. R F C 2181 (Proposed
Standard). Internet Engineering Task Force, July 1997. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 1 8 1 . t x t .

R. Elz and R. Bush. Serial Number Arithmetic. R F C 1982 (Proposed Standard).
Internet Engineering Task Force, Aug. 1996. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c l 9 8 2 . t x t .

P. Faltstrom and M . Mealling. The E.164 to Uniform Resource Identifiers (URI)
Dynamic Delegation Discovery System (DDDS) Application (ENUM). R F C 3761
(Proposed Standard). Internet Engineering Task Force, Apr. 2004. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 7 6 1 . t x t .

T. Hardie. Distributing Authoritative Name Servers via Shared Unicast Addresses.
R F C 3258 (Informational). Internet Engineering Task Force, Apr. 2002. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 2 5 8 . t x t .

52

http://www.ietf.org/rfc/rfc3492.txt
http://www.ietf.org/rfc/rfc6891.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2931.txt
http://www.ietf.org/rfc/rfc4343.txt
http://www.ietf.org/rfc/rfc2535.txt
http://www.ietf.org/rfc/rfc2536.txt
http://www.ietf.org/rfc/rfc3110.txt
http://www.ietf.org/rfc/rfc2065.txt
http://www.ietf.org/rfc/rfc2606.txt
http://www.ietf.org/rfc/rfc2181.txt
http://www.ietf.org/rfc/rfcl982.txt
http://www.ietf.org/rfc/rfc3761.txt
http://www.ietf.org/rfc/rfc3258.txt

K . Harrenstien, M . Stahl, and E . Feinler. DoD Internet host table specification. R F C
952. Internet Engineering Task Force, Oct. 1985. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 9 5 2 . t x t .

K . Harrenstien, M . Stahl, and E . Feinler. Hostname Server. R F C 953 (Historic).
Internet Engineering Task Force, Oct. 1985. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 9 5 3 . t x t .

A . Herzberg and H . Shulman. "Fragmentation Considered Poisonous". In: Computer
Research Repository (2012). U R L : h t tp : / / a rx iv .o rg /abs /1205 .4011 .

T. Hlaváček. IP fragmentation attack on DNS. R I P E 67. Athens, Oct. 16, 2013.
U R L : h t t p s : / / r i pe67 . r i pe .ne t / p r e sen t a t i ons /240 - ip f r aga t t ack .pd f .

P. Hoffman and W. Wijngaards. Elliptic Curve Digital Signature Algorithm (DSA)
for DNSSEC. R F C 6605 (Proposed Standard). Internet Engineering Task Force,
Apr. 2012. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 6 6 0 5 . t x t .

G. Huston. Management Guidelines & Operational Requirements for the Address
and Routing Parameter Area Domain („arpau). R F C 3172 (Best Current Practice).
Internet Engineering Task Force, Sept. 2001. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 1 7 2 . t x t .

" IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) Base Specifications, Issue 7". In: IEEE Std 1003.1-2008
(Revision of IEEE Std 1003.1-2004) (2008). D O l : 10.1109/IEEESTD.2008.4694976.
U R L : http:/ /pubs.opengroup.org/onlinepubs/9699919799/.

S. Josefsson. The Basel6, Base32, and Base64 Data Encodings. R F C 4648
(Proposed Standard). Internet Engineering Task Force, Oct. 2006. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 6 4 8 . t x t .

B . Kaliski. PRCS #1: RSA Encryption Version 1.5. R F C 2313 (Informational).
Internet Engineering Task Force, Mar. 1998. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 3 1 3 . t x t .

D. Kaminsky. Black Ops 2008: It's The End Of The Cache As We Know It. Black
Hat. Japan, 2008. U R L : h t tps : / /www.blackhat .com/presenta t ions/bh- jp-
08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-Black0ps.pdf.

D. Karrenberg. DNS Root Name Servers Frequently Asked Questions. Version 2.
Feb. 2008. U R L : h t t p : / /www. i soc .o rg /b r i e f ings /020 / .

J . Klensin. IAB Statement on Infrastructure Domain and Subdomains. May 2000.
U R L : ht tp:/ /www.iab.org/documents/correspondence-reports-
documents/docs2000/iab-statement-on-infrastructure-domain-and-
subdomains-may-2000/.

O. Kolkman, W. Mekking, and R. Gieben. DNSSEC Operational Practices, Version
2. R F C 6781 (Informational). Internet Engineering Task Force, Dec. 2012. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 6 7 8 1 . t x t .

S. Kwan et al. Generic Security Service Algorithm for Secret Key Transaction
Authentication for DNS (GSS-TSIG). R F C 3645 (Proposed Standard). Internet
Engineering Task Force, Oct. 2003. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 6 4 5 . t x t .

53

http://www.ietf.org/rfc/rfc952.txt
http://www.ietf.org/rfc/rfc953.txt
http://arxiv.org/abs/1205.4011
https://ripe67.ripe.net/presentations/240-ipfragattack.pdf
http://www.ietf.org/rfc/rfc6605.txt
http://www.ietf.org/rfc/rfc3172.txt
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc2313.txt
https://www.blackhat.com/presentations/bh-jp-
http://www.isoc.org/briefings/020/
http://www.iab.org/documents/correspondence-reports-
http://www.ietf.org/rfc/rfc6781.txt
http://www.ietf.org/rfc/rfc3645.txt

B. Laurie et al. DNS Security (DNSSEC) Hashed Authenticated Denial of Existence.
R F C 5155 (Proposed Standard). Internet Engineering Task Force, Mar. 2008. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 5 1 5 5 . t x t .

D. Lawrence. Obsoleting IQUERY. R F C 3425 (Proposed Standard). Internet
Engineering Task Force, Nov. 2002. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 3 4 2 5 . t x t .

E . Lewis and A . Hoenes. DNS Zone Transfer Protocol (AXFR). R F C 5936
(Proposed Standard). Internet Engineering Task Force, June 2010. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 5 9 3 6 . t x t .

C. Macavinta. AlterNIC takes over InterNIC traffic. C N E T News. July 14, 1997.
U R L : h t tp : / / news .cne t . com/Al te rNIC- takes -ove r - In t e rNIC- t r a f f i c /2100-
1033_3-201382.html.

P. Mockapetris. Domain names - concepts and facilities. R F C 1034 (I N T E R N E T
S T A N D A R D) . Internet Engineering Task Force, Nov. 1987. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 1 0 3 4 . t x t .

P. Mockapetris. Domain names - implementation and specification. R F C 1035
(I N T E R N E T S T A N D A R D) . Internet Engineering Task Force, Nov. 1987. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 1 0 3 5 . t x t .

J . Postel. Domain Name System Structure and Delegation. R F C 1591
(Informational). Internet Engineering Task Force, Mar. 1994. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 1 5 9 1 . t x t .

J . Postel. Domain names plan and schedule. R F C 881. Internet Engineering Task
Force, Nov. 1983. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 8 8 1 . t x t .

J . Postel and J . Reynolds. Domain requirements. R F C 920. Internet Engineering
Task Force, Oct. 1984. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 9 2 0 . t x t .

V . Risk. ISC concludes BIND 10 development with Release 1.2: Project renamed
'Bundy'. Apr. 17, 2014. U R L : h t t p s : / / w w w . i s c . o r g / b l o g s / i s c - c o n c l u d e s - b i n d -
10-development-with-release-l-2-project-renamed-bundy/.

R S A Laboratories. PKCS #11: Cryptographic Token Interface Standard. 2009. U R L :
h t tp : / /www.emc.com/emc-p lus / r sa - labs / s tandards - in i t i a t ives /pkcs -11-
cryptographic- token- interface-s tandard.htm.

R. Shirey. Internet Security Glossary, Version 2. R F C 4949 (Informational). Internet
Engineering Task Force, Aug. 2007. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 9 4 9 . t x t .

D. B . Terry et al. The Berkeley Internet Name Domain Server. Tech. rep. E E C S
Department, University of California, Berkeley, May 1984. U R L :
http:/ /www.eecs.berkeley.edu/Pubs/TechRpts/1984/5957.html.

S. Turner. Asymmetric Key Packages. R F C 5958 (Proposed Standard). Internet
Engineering Task Force, Aug. 2010. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 5 9 5 8 . t x t .

P. Vixie. A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY).
R F C 1996 (Proposed Standard). Internet Engineering Task Force, Aug. 1996. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c l 9 9 6 . t x t .

P. Vixie et al. Dynamic Updates in the Domain Name System (DNS UPDATE).
R F C 2136 (Proposed Standard). Internet Engineering Task Force, Apr. 1997. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 1 3 6 . t x t .

54

http://www.ietf.org/rfc/rfc5155.txt
http://www.ietf.org/rfc/rfc3425.txt
http://www.ietf.org/rfc/rfc5936.txt
http://news.cnet.com/AlterNIC-takes-over-InterNIC-traffic/2100-
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1591.txt
http://www.ietf.org/rfc/rfc881.txt
http://www.ietf.org/rfc/rfc920.txt
https://www.isc.org/blogs/isc-concludes-bind-
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-
http://www.ietf.org/rfc/rfc4949.txt
http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/5957.html
http://www.ietf.org/rfc/rfc5958.txt
http://www.ietf.org/rfc/rfcl996.txt
http://www.ietf.org/rfc/rfc2136.txt

P. Vixie et al. Secret Key Transaction Authentication for DNS (TSIG). R F C 2845
(Proposed Standard). Internet Engineering Task Force, May 2000. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 8 4 5 . t x t .

S. Woolf and D. Conrad. Requirements for a Mechanism Identifying a Name Server
Instance. R F C 4892 (Informational). Internet Engineering Task Force, June 2007.
U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 8 9 2 . t x t .

C. Wright. "Understanding Kaminsky's DNS Bug". In: Linux Journal (July 25,
2008). U R L :
h t tp : / /www. l inux j ournal.com/content/understanding-kaminskys-dns-bug.

55

http://www.ietf.org/rfc/rfc2845.txt
http://www.ietf.org/rfc/rfc4892.txt
http://www.linuxj

Appendix A

DNS Messages Format

A . l D N S Message

Header

Question

Answer

Authority

Additional

Resource records

Figure A . l : General structure of a DNS message.

A . 1.1 Message Header Format

2 3 4 5 6 7 9 10 11 12 13 14 15

0

2

4

6

8

10

ID

QR O P C O D E A A T C R D R A Z A D C D R C O D E

Q D C O U N T

A N C O U N T

N S C O U N T

A R C O U N T

Figure A.2: Wire format of header field in DNS message.

The header has a fixed size of 96 bytes. The purpose of each field:

• The ID field holds a transaction identifier set by the client at random. The server
copies the identifier into the response message.

• The Q R is the Query/Response flag. In case the message is a query, the flag is
cleared. For answers, the flag is set.

i

The O P C O D E specifies operation code set by client and preserved by server in the
reply message.

— Value 0 means standard query.

— Value 1 means inverse query. This operation is obsolete [].

— Value 2 means status query.

— Value 4 means notify message [].

— Value 5 means update message [56].

The A A (Authoritative Answer) flag indicates that the answer was issued by name
server which is authoritative for the domain name in question. The flag is valid only
in answers.

The T C (Truncated) flag indicates that the message was truncated due to maximal
allowed size of the message. The flag is valid only in answers.

The R D (Recursion Desired) flag indicates that the client desires recursive resolution
of the query. The value is preserved by the server in the reply message.

The R A (Recursion Available) flag indicates that the name server is capable of re
cursive resolution. The flag is valid only in answers.

The Z is reserved for future use and must be zero.

The A D (Authentic Data) flag is ignored in queries. It indicates, that the responding
component considers the data in the answer and authority section to be authentic.
This flag is was defined in DNSSEC specification.

The C D (Checking Disabled) flag is set in the query and copied into response. It
disables DNSSEC checking on the security aware resolver.

The R C O D E value is a response code. The content of the field is ignored in questions.

— Value 0 means No Error.

— Value 1 means Format Error.

— Value 2 means Server Failure.

— Value 3 means Non-existent Domain.

— Value 4 means Not Implemented.

— Value 5 means Query Refused.

The Q D C O U N T holds the number of entries in Question section.

The A N C O U N T holds the number of RRs in Answer section.

The N S C O U N T holds the number of RRs in Authority section.

The A R C O U N T holds the number of RRs in Additional section.

ii

A.1.2 Question Entry Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q N A M E

Q T Y P E (2)

Q C L A S S (2)

Figure A.3: Wire format of question section entry in DNS message.

The meaning of the fields:

• The Q N A M E specifies the domain name in question.

• The Q T Y P E specifies R R type to be returned.

• The Q C L A S S specifies class (protocol family identifier) of the RR.

A . 1.3 Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N A M E

T Y P E (2)

C L A S S (2)

T T L (4)

R D L E N G T H (2)

R D A T A

Figure A.4: Wire format of resource record in DNS message.

The meaning of the fields:

• The N A M E specifies domain name to which the R R belongs.

• The T Y P E specifies the type of RR.

• The C L A S S specifies the class of the RR.

• The T T L specifies time interval in seconds, how long the R R can be cached and
considered valid.

• The R D L E N G T H specifies length of the R D A T A field in bytes.

• The R D A T A contains the data carried by the RR. The format of the data is deter
mined by the T Y P E and C L A S S fields.

ii i

A . 1.4 O P T Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E X T E N D E D - R C O D E V E R S I O N

D O Z

Figure A.5: Format of T T L field of O P T resource record in EDNS.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0: O P T I O N - C O D E

2: O P T I O N - L E N G T H

4: O P T I O N - D A T A

Figure A.6: Wire format of E D N S option, which is used in O P T R D A T A .

The content of O P T R R fields:

• The N A M E value must be the root domain (one byte with value 0x00).

• The T Y P E identifies the O P T R R (value 41).

• The C L A S S has a meaning of Maximal U D P payload size.

• The T T L was split into multiple fields, described in Figure A.5.

• The R D L E N G T H specifies length of the R D A T A field in bytes.

• The R D A T A contains a sequence of additional EDNS options. Format of each option
is shown in Figure A.6.

The former T T L field contains:

• The E X T E N D E D - R C O D E field extends the existing four bits of R C O D E in mes
sage header for upper eight bits, thus creating 12-bit code. If the value is zero,
unextended R C O D E is used.

• The V E R S I O N field indicates a version of E D N S used.

• The D O (DNSSEC OK) flag is allocated for DNSSEC purposes.

• The Z field is reserved for future use and must be zero.

The meaning of the option fields:

• The O P T I O N - C O D E value identifies the option.

• The O P T I O N - L E N G T H value specifies the size of the data assigned to the option.

• The O P T I O N - D A T A contains the option data.

iv

A.2 D N S S E C Resource Records

A.2.1 D N S K E Y Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Flags Protocol Algorithm

Public Key

Figure A.7: Wire format of D N S K E Y R D A T A .

The meaning of the fields:

• The Flags field determines the type of the key. Only bits 7 and 15 in the flags are
allocated, other bits are reserved and must be zero. Bit 7 is the Zone Key flag and
if set, the key can be used for verification of RRSIG RRs. Bit 15 is the Secure Entry
Point flag and it serves just as a hint for resolvers, that the key is most likely used
to sign other keys.

• The Protocol field must contain value 3, otherwise the key must be ignored.

• The Algorithm field contains algorithm identifier. The list of defined algorithms is
maintained by I A N A .

• The Public Key field contains public key material in a format depending on a used
algorithm.

A.2.2 R R S I G Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

4

8

12

16

Type covered Algorithm Labels

Original T T L

Signature Expiration

Signature Inception

Key tag

Signer's name

Signature

Figure A.8: Wire format of RRSIG R D A T A .

The meaning of the fields:

• The Type Covered field identifies the type of the R R set, that is covered by the
signature.

• The Algorithm field identifies the algorithm used to create the signature.

• The Labels field contains a number of labels in the owner domain name of the original
RR , excluding the root label and wildcard label. The field is used by the resolver to
identify RRs synthesised from wildcard.

• The Original T T L field holds the T T L value of the covered R R as it appears in
the authoritative zone. The original value is required because the caching resolver
decrements T T L value of cached R R set, and the validating resolver must be able to
reconstruct it's canonical representation.

• The Signature Expiration and Inception fields reduce the validity period of the
signature. Both fields are expressed as a POSIX time (number of seconds since the
Epoch [])• A comparison of these values must be performed using Serial number
arithmetic [], as the time expression can overflow the 32 bit value.

• The Key Tag field contains a key tag of used key, which is a simple hash value of
D N S K E Y R D A T A . This field is intended to ease the selection of key for signature
validation.

• The Signer's Name field contains a domain name of the D N S K E Y , which should be
used for validation. The name must match with the name of the zone of the covered
R R set.

• The Signature field contains the digital signature. The format of this field depends
on the algorithm in use. The digital signature is calculated from a concatenation of
the RRSIG R D A T A without the Signature field, and all RRs in the covered R R set,
which must be in canonical form.

A.2.3 N S E C Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0: Next Domain Name

Type Bit Maps

Figure A.9: Wire format of N S E C R D A T A .

The meaning of the fields:

• The Next Domain Name field contains the owner name of the N S E C R R following
the current one in canonical ordering of the zone. If the record is the last one in the
ordering, the field contains the name of the zone apex (which is always the first name
in the ordering).

• The Type Bit Maps field encodes all R R types, which exist in the zone, have the
same owner as the N S E C RR, and are authoritative or serve as a delegation point.

As the R R space is usually very sparse and only a few R R types are used in practice,
a special encoding is used. The 16 bit R R type space is split into 256 windows. Each

vi

window (8 high order bits) represents a bitmap (8 low order bits), which is 32 bytes
long.

Only a windows with at least one active RR, and only a bytes from the beginning
of the window to the last used byte of the window are encoded. The window is
represented as one byte with the window number, one byte specifying the length
of the bitmap, and then individual bytes of the bitmap. The Type Bit Maps field
contains a sequence of windows encoded in this form.

A.2.4 DS Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0: Key Tag A l | jorithm Digest Type

4: Dig 'est

Figure A.10: Wire format of DS R D A T A .

The meaning of the fields:

• The Key Tag and Algorithm fields list the values from exactly named fields of
D N S K E Y record referred to.

• The Digest Type field identifies the cryptographic algorithm used to compute the
digest in the next field. It also determines the length of the next field. The only valid
value is 1, which means SHA-1 algorithm and 20 bytes long digest.

• The Digest field contains a digest computed from a concatenation of the owner name
and D N S K E Y R D A T A .

A.2.5 N S E C 3 Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0: Hash Algorithm Flags Iterations

4: Salt length Salt . . .

Hash length Next hashed owner name . . .

Type bit maps

Figure A . l l : Wire format of NSEC3 R D A T A .

The meaning of the fields:

• The Hash Algorithm field identifies the cryptographic algorithm used for hashing.
The list of supported algorithms is maintained by I A N A .

• The Flags field contains flags, which can indicate different processing. Currently only
the defined flag is the Opt-Out flag, which is the least significant bit of the field.

vii

If the Opt-Out flag is set, the NSEC3 record covers zero or more insecure delegations.
Otherwise it does not cover any insecure delegation.

• The Iterations field contains a number of additional times, the hash function is
performed.

• The Salt length field contains a length of Salt field in bytes.

• The Salt field contains a binary data, which are added to the original owner name
before hashing.

• The Hash length field contains a length of Next Hashed Owner Name field.

• The Next Hashed Owner Name field contains the raw hash used to construct a
next hashed owner name in NSEC3 chain. If the NSEC3 record is the last record in
the chain, the field contains a hash for the first name in the chain.

• The Type Bit Maps has the same meaning and uses the same format as in N S E C
RRs.

A.2.6 N S E C 3 P A R A M Resource Record

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hash Algorithm Flags Iterations

Salt length Salt . . .

Figure A.12: Wire format of N S E C 3 P A R A M R D A T A .

The meaning of the fields is equivalent with the fields used in NSEC3 RR.

vii i

Appendix B

Content of the DVD

The attached D V D contains the following directories:

• sources — snapshot of Knot DNS source codes with the DNSSEC library;

• docs — DNSSEC library interface documentation and samples;

• tests — results of the library testing;

• virt — virtual image in O V F format with GNU/Debian Linux and preconhgured
environment to run the Knot DNS server and to reproduce the tests; and

• latex — source code of this thesis in the DLgX format.

ix

