Czech University of Life Sciences Prague Faculty of Economics and Management Department of Information Engineering

Bachelor Thesis

Linux Distributions

Motlatsi Ernest Dube

Declaration
I declare that I have worked on my bachelor thesis titled "Linux Distributions" by myself
and I have used only the sources mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break copyrights of any their person.
In Prague on 20/03/2017

Acknowledgement	
Acknowledgement I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my won this thesis.	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork
I would lid to thank doc. Ing Arnošt Veselý for the advice and support during my wo	ork

Linux Distributions

Summary

The main characteristics of Linux distributions will be described. Mainly their support of different kinds of filesystems, the way of their installation and administration, provided graphical interfaces, hardware compatibility, universality of its use, security etc.

At the end suitable application fields of Linux distributions will be discussed

Keywords: Linux Distributions

Contents

1	Intı	troduction1				
2	Des	sktop Enviroments	. 2			
	2.1	GNOME	. 2			
	2.1	.1 System minimum requirements	. 5			
	2.2	KDE	. 5			
	2.2	.1 System minimum requirements	. 8			
3	Lin	ux File System	. 9			
3.1 Brief Description of what journaling is						
	3.2	Table of file systems	10			
	3.3	Editing Files	10			
	3.4	Fragmentation	11			
	3.5	File system Structure	11			
4	Ins	tallation	13			
	4.1	Ubuntu Installation	13			
	4.1	.1 System minimum requirements	14			
	4.2	Fedora Installation	15			
	4.2	.1 System minimum requirements	16			
	4.3	Suse Installation	16			
	4.3	.1 System Minimum Requirements	18			
	4.4	Debian Installation	18			
	4.4	.1 System Minimum requirements	21			
5	Ap	plication fields of Linux distributions	22			
	5.1	Servers	22			
	5.2	Scientific Desktops	23			
	5.3	Graphical desktops	24			
	5.4	Mobile Phones	24			
	5.5	Mobile Internet Devices	25			
6	Co	nclussion	26			
7	Ref	ferences	27			

List of pictures

GNOME sample diagram 1
GNOME sample diagram 2
KDE sample diagram 1
KDE sample diagram 2
Create Bootable USB diagram
Fedora Installation diagram
Install the live image to your hard drive diagram
Suse Installation diagram
Debian Installer diagram

List of tables

- 2.1.2 System Minimum Requirements
- 2.2.3 System Minimum Requirements
- 3.2 Table of file systems

1 Introduction

Linux distribution which is often abbreviated as distro is nothing other than an operating system (OS) made from a software collection normally referred to as package. This package is based on Linux Kernel.

Users of Linux can obtain their operating system by downloading one of the linux distribution which are available for a wide variaty of systems ranging from embedded systems and personal computers (for example linux Ubuntu) to pewerful supercomputers (for example (Rocks cluster distribution)

Linux distribution is build of Kernel which i would write bit about it in this thesis. It also comprises of GNU tool and libraries, documentation, window system of which the most common is x window system, windows manager and a desktop environment.

Most of the software included are what we normally refere to as free and open source which are made available in binaries or in source code . By that we generally refere to a program in which the source code is available to the general public for use and or modification from its origininal design free of charge. Open source code is typically created a collaborative effort in which programmers improve upon the code and share the changes withing the community. Almost six hundred Linux distributions exist, with close to five hundred out of those in active development. Because of the huge availability of software, distributions have taken a wide variety of forms, including those suitable for use on desktops, servers, laptops, notebooks, mobile phones and tablets, as well as minimal environments typically for use in embedded systems. There are commercially backed distributions, such as Fedora (Red Hat), openSUSE (SUSE) and Ubuntu (Canonical Ltd.), and entirely community-driven distributions, such as Debian, Slackware, Gentoo and Arch Linux. Most distributions come ready to use and pre-compiled for a specific instruction set, while some distributions (such as Gentoo) are distributed mostly in source code form and compiled locally during installation.

Because there are so many Linux distributions out there, I will only focus on four types on this thesis, mainly Ubuntu, Fedora, Suse and Debian. I will write about installation guide lines per each distribution. I will also write about file systems, graphical interface and hardware components per each distribution named above. Last but not least, I will touch a bit about the possibility offered by Linux to customize ones taste of desktop environmet.

2 Desktop Enviroments

When it comes to desktop environment for linux distributions, there are so many choices and this thesis will cover only two most populer namely GNOME and KDE. However it is worth mentioning atleast the most populer available out there as well which are Unity, Cinnamon, MATE, Xfce, and LXDE. All of them does offer sophisticated point and click graphical user interface often abbriviated as (GUI). All of them are on the same level with the desktop environments found in Windows and Mac OS X. Suprisingly when you ask which one is best, you will often get multitudes of different answers. So the question of which one is best will always remain and be individualistic.

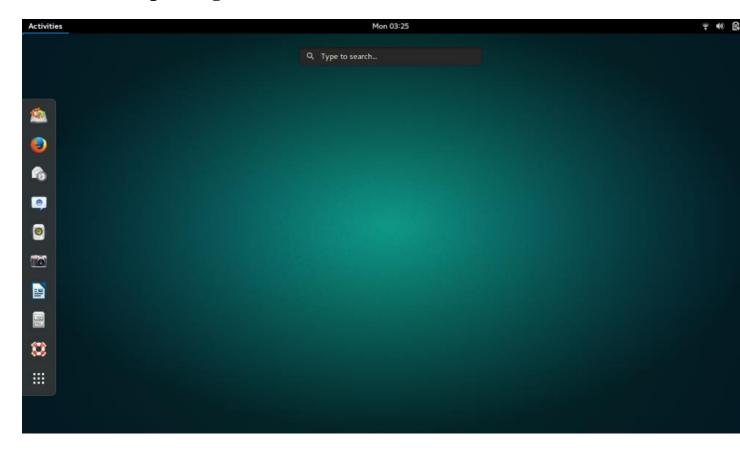
The best thing about desktop environments is that you can have more than one installed on your computer or machine. Each time you login there will be a possibility of which one you want to use at that time.

Each desktop environment comes with its own set of applications. Should it happen that more than one desktop environment is istalled, one will notice a couple of more extras on the menu. What i mean by that is for example, GNOME use Nautilus as its default browser while KDE uses Dolphine. So if you have both on the same machine namely KDE and GNOME you will notice both on the menu no matter what environment you are running at that time.

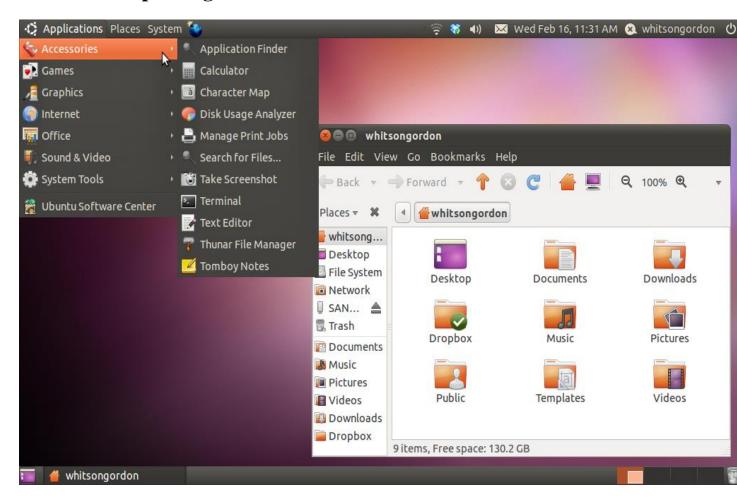
Apart from that, each desktop environment has its own set of application that one can download and istall from the distro's package manager. It is worth mentioning also that it is possible to use set of application from one environment to another however most people choose to use applications tailoered specifically for the environment they are using just because they will have tighter intergration with the desktop environment. For example, GNOME users prefer to use Pidgin as their IM client, while KDE users tend to use Kopete. That said, certain apps—Firefox, Chrome, and the GIMP come to mind—are designed with the GTK toolkit (upon which GNOME and XFCE are based), but are often used across other desktop environments, simply because they're the best at what they do. In the end, it's individual that is why Linux will always be on top because of multitude personalization options it offers.

2.1 GNOME

GNOME is desktop environment that is composed entirely of free and open source software and it was originally an acronym for GNU Network Object Model Environment


It is the most popular Linux desktop environment out there and it is most likely the preferred one or the familiar one on Ubuntu users. It does not consume large chunk or portion of system resources. One can say it is very low on system resources and **very** simple to use hence great news for new Linux users especially those who not sound technically, not outstanding technically so to say.

Having said that, that doesn't mean advanced Linux users wont like it. It has quite a few advanced settings that will enable to configure their desktop environment to their most liking. It features a top bar holding (from left to right) an Activities button, an application menu, a clock and an integrated system status menu. The application menu displays the name of the application


in focus and provides access to functions such as accessing the application's preferences, closing the application, or creating a new application window. The status menu holds various system status indicators, shortcuts to system settings, and session actions including logging out, switching users, locking the screen, and suspending the computer.

Clicking on the Activities button, moving the mouse to the top-left hot corner or pressing the Super key brings up the Overview. The Overview gives users an overview of current activities and provides a way to switch between windows and workspaces and to launch applications Notifications appear from the bottom of the screen.

GNOME sample diagram 1

GNOME sample diagram 2

It should also be mentioned that GNOME has a wealth of applications which are designed for its desktop, but they can also be used in the other desktop environments as well;

Following are a few applications and components of GNOME:

Window Manager: Mutter (GNOME 3.x shell)

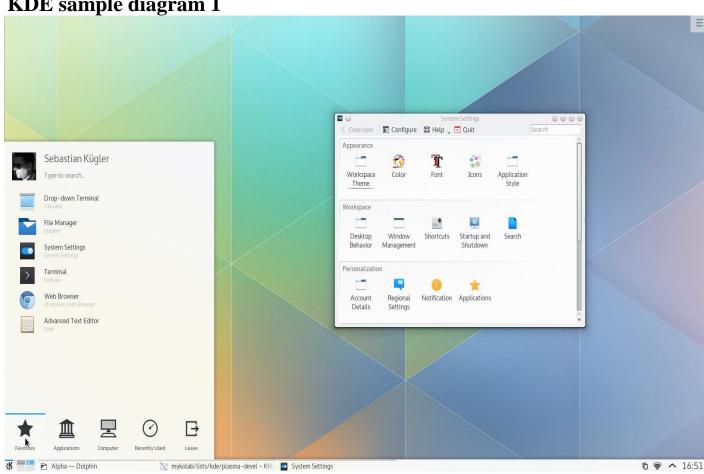
File Manager: Nautilus

Office Suite: GNOME Office (which includes AbiWord and Gnumeric

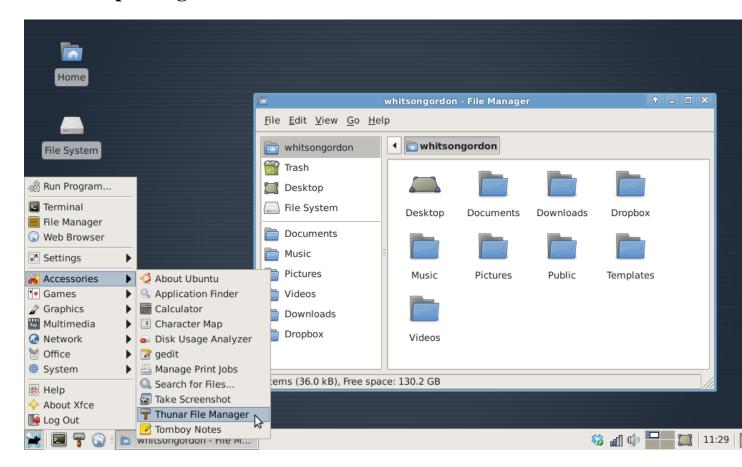
Music Player: Rhythmbox Video Player: Totem CD/DVD Burner: Brasero Games: GnomeGames Widget Toolkit: GTK +

2.1.1 System Minimum Requirements

Required RAM	768 MB
Required CPU	400 MHz


2.2 KDE

KDE is another most populer desktop environment out there, perhaps second most populer. Unlike GNOME which i have discussed above, it is more resource-heavy, ie it consumes relatively large chunk of machine or computer recources as compared to GNOME. Ontop of that, it is a bit more complex than GNOME.


It focuses more about adding lots of functionality and evolving weather be for complete beginners or advanced users other than focusing on simple user interface. However it is probably most good looking desktop environments out there and it has a very cool widget-based desktop built in to the environment.

Its menus are set up very much like Windows, with one main menu located in the bottom left corner of the taskbar from which you launch apps and view settings. KDE actually has a ton of different configuration options available from this menu, but it's pretty hard to navigate, even if you're comfortable with computers and Linux in general (especially when the settings are part of the desktop widgets, which also manage everything you see in the taskbar). There are just so many different preference panes and settings that it can take awhile to figure out where the settings you want to tweak are located. It also has a few characteristics that will confuse new users—like the fact that dragging and dropping files *always* results in it asking you whether you'd like to move a file or copy a file—that you can't seem to change. If you're an advanced user looking for a lot of configuration options, KDE is a great choice—just know that there will be a learning curve, even if you're fairly advanced user.

KDE sample diagram 1

KDE sample diagram 2

The current **official** Software Compilation consists of the following packages, many of which contain multiple applications and/or libraries:

- a) KDE-Libs: The software libraries that compose the KDE Developer Platform, required by all KDE applications.
- b) KDE-Base:

Runtime: Additional software components required by many KDE Applications to perform properly.

Applications: Applications that are central to a basic desktop experience, such as a file manager or webbrowser.

Workspace: The KDE Workspaces that provide the tools and user environments for a Desktop, Netbook or Mobile experience

- c) KDE-Plasma-Addons: Additional themes and applets for the desktop and panel.
- d) KDE-Network: Networking applications such as an instant messenger and download manager.
- e) KDE-Pim: Mail client, addressbook, organizer and groupware integration.
- f) KDE-Graphics: Document viewer, image viewer and selected other graphics applications.
- g) KDE-Multimedia: Includes a video player as well as different audio players.

Phonon: Multimedia layer that supports different backends, on different operating systems, for multimedia output.

- h) KDE-Accessibility: Applications to improve computer access for disabled people such as a text-to-speech system.
- i) KDE-Utilities: Useful utilities like an archiving tool and a calculator.
- j) KDE-Edu: Education and science applications.
- k) KDE-Games: Classic and modern games.
- 1) KDE-Toys: KDE's fun stuff.
- m) KDE-Artwork: Additional icons, styles, wallpapers, screensavers and window decorations.
- n) KDE-Admin: Various tools to aid with system administration.
- o) KDE-SDK: Script and tools which simplify development of KDE applications.
- p) KDE-Bindings: bindings for various programming languages (Python, Ruby, Perl, Java...).

2.2.1 System minimum requirements

Required RAM	512 MB	
Required CPU	1GHz	

3 Linux File System

When it comes to Linux distribution, one of the very important things that new users should be aware or know about it is the file system. It is a different story to microsoft as it is not worth that much to worry about, the defult being NTFS (New Technology File System) developt by Microsoft.

Due to the fact that Linux is built on the platform of open source and different opinions, it is not limited like NTFS and therefore new Linux users should have an understanding of what file system is and how it affects the machine. There are several different attributes which are necessary in defining file systems, these include their max file size, max partition size, whether they journal or not.

3.1 Brief Description of what journaling is

It is file system that keeps track of changes not yet committed to the file system main part by recording the intentions of such changes in data structure known as **journal** which is usually a circular log. In the event of a system crash or power failure, such file systems can be brought back online more quickly with a lower likelihood of becoming corrupted. One can say journaling file system is more reliable when it comes to data storage. However it does not prevent data corruption. The positive thing that it does is to prevent data inconsistency. If a power failure happens while you are saving a file, the save will not complete and you end up with corrupted data and an inconsistent file system. Instead of actually writing directly to the part of the disk where the file is stored, a journaling file system first writes it to another part of the hard drive and notes the necessary changes to a log, then in the background it goes through each entry to the journal and begins to complete the task, and when the task is complete, it checks it off on the list. Thus the file system is always in a consistent state (the file got saved, the journal reports it as not completely saved, or the journal is inconsistent (but can be rebuilt from the file system)). Some journaling file systems can prevent corruption as well by writing data twice.

3.2 Table of file systems

Below is a very brief comparison of the most common file systems in use with the Linux world.

File System	Max File Size	Max Partition Size	Journaling	Notes
Fat16	2 GiB	2 GiB	No	Legacy
Fat32	4 GiB	8 TiB	No	Legacy
NTFS	2 TiB	256 TiB	Yes	(For Windows Compatibility) NTFS-3g is installed by default in Ubuntu, allowing Read/Write support
ext2	2 TiB	32 TiB	No	Legacy
ext3	2 TiB	32 TiB	Yes	Standard linux filesystem for many years. Best choice for super-standard installation.
ext4	16 TiB	1 EiB	Yes	Modern iteration of ext3. Best choice for new installations where super-standard isn't necessary.
reiserFS	8 TiB	16 TiB	Yes	No longer well-maintained.
JFS	4PiB	32PiB	Yes (metadata)	Created by IBM - Not well maintained.
XFS	8 EiB	8 EiB	Yes (metadata)	Created by SGI. Best choice for a mix of stability and advanced journaling.

3.3 Editing Files

Those used to a Windows file system (NTFS, FAT) know that it isn't normally possible to change files while they are open. This restriction does not exist in a Unix file system. This is because in Unix file systems, files are indexed by a number, called the inode, and each inode has several attributes associated with it, like permissions, name, etc. When you delete a file, what really happens is the inode is unlinked from the filename, but if some other program is using the file, it still has a link open to the OS, and will continue to be updated. A file is not really deleted until all links have been removed (even then, the data is still on the disk, but not indexed in anyway and thus very hard to recover). All of this means that you can delete executing programs while they're running without crashing and move files before they're finished downloading without corruption.

3.4 Fragmentation

Another common Windows practice that is not needed in Unix is defragmenting the hard drive. When NTFS and FAT write files to the hard drive, they don't always keep pieces (known as blocks) of files together. Therefore, to maintain the performance of the computer, the hard drive needs to be "defragged" every once in a while. This is unnecessary on Unix File systems due to the way it was designed. When ext3 was developed, it was coded so that it would keep blocks of files together or at least near each other.

No true defragmenting tools exist for the ext3 file system, but tools for defragmenting will be included with the ext4 file system.

3.5 File system Structure

In Linux, everything is configured as a file. This includes not only text files, images and compiled programs (also referred to as executables), but also directories, partitions and hardware device drivers.

Each file system (used in the first sense) contains a control block, which holds information about that file system. The other blocks in the file system are inodes, which contain information about individual files, and data blocks, which contain the information stored in the individual files. There is a substantial difference between the way the user sees the Linux file system (first sense) and the way the kernel (the core of a Linux system) actually stores the files. To the user, the file system appears as a hierarchical arrangement of directories that contain files and other directories (i.e., subdirectories). Directories and files are identified by their names. This hierarchy starts from a single directory called root, which is represented by a "/" (forward slash). (The meaning of root and "/" are often confusing to new users of Linux. This because each has two distinct usages. The other meaning of root is a user who has administrative privileges on the computer, in contrast to ordinary users, who have only limited privileges in order to protect system security. The other use of "/" is as a separator between directories or between a directory and a file, similar to the backward slash used in MS-DOS.)

The File system Hierarchy Standard (FHS) defines the main directories and their contents in Linux and other Unix-like operating systems. All files and directories appear under the root directory, even if they are stored on different physical devices (e.g., on different disks or on different computers). A few of the directories defined by the FHS are /bin (command binaries for all users), /boot (boot loader files such as the kernel), /home (users home directories), /mnt (for mounting a CDROM or floppy disk), /root (home directory for the root user), /sbin (executables used only by the root user) and /usr (where most application programs get installed).

To the Linux kernel, however, the file system is flat. That is, it does not (1) have a hierarchical structure, (2) differentiate between directories, files or programs or (3) identify files by names. Instead, the kernel uses inodes to represent each file.

An inode is actually an entry in a list of inodes referred to as the inode list. Each inode contains information about a file including (1) its inode number (a unique identification number), (2) the owner and group associated with the file, (3) the file type (for example, whether it is a regular file or a directory), (4) the file's permission list, (5) the file creation, access and modification

times, (6) the size of the file and (7) the disk address (i.e., the location on the disk where the file is physically stored).

The inode numbers for the contents of a directory can be seen by using the -i option with the familiar ls (i.e., list) command in a terminal window:

Is -i

The df command is used to show information about each of the file systems which are currently mounted on (i.e., connected to) a system, including their allocated maximum size, the amount of disk space they are using, the percentage of their disk space they are using and where they are mounted (i.e., the mountpoint). (Here file systems is used as a variant of the first meaning, referring to the parts of the entire hierarchy of directories.)

df can be used by itself, but it is often more convenient to add the -m option to show sizes in megabytes rather than in the default kilobytes:

df -m

A column showing the type of each of these file systems can be added to the file system table produced by the above command by using the --print-type option, i.e.: df -m --print-type

This command generates a column labeled Type. For a Ubuntu Linux installation on a home computer most of the entries in this column will probably be ext3 and/or ext2.

4 Installation

Installing Linux is quite easy and straight forward. since it is an open source, as a very first step one will need to download his or her choice of Linux ISO file. The ISO file is available on the webpage of each linxu distribution. after downloading, one needs to burn the ISO file, Then boot from the disc and follow the self explanatory steps to install the linux. Perhaps the only trickiest part is confirguring the PC to boot from the CD or USB and that can be set by making BIOS changes.

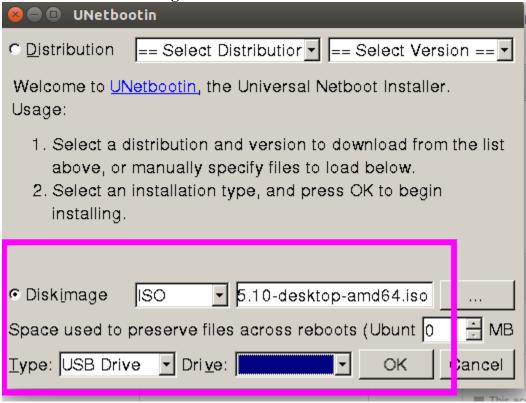
4.1 Ubuntu Installation

Download Ubuntu:

One first need to download a Ubuntu .ISO CD image file. It is important that you download the **Desktop** version. If you download the **Server** version it will not install any graphical desktop and you will have to add that manually

Check if Your Computer will Boot from USB

Make BIOS Changes


Try Ubuntu Before you Install It:

If you want to try Ubuntu before installing that you can run it from the USB drive using UnetBootin (Which we use in the next section to create the bootable USB). Also the Ubuntu installation screens will give you that option too.

Create Bootable USB:

Download and install UNetbootin and use that to create a bootable USB. This will create a bootable partition on the disk and copy Ubuntu there. Trying to make a bootable USB drive by yourself is otherwise complicated

Create Bootable USB diagram

Install Ubuntu

Create a username, password, and computer name. You will login with this user id after the installation is complete.

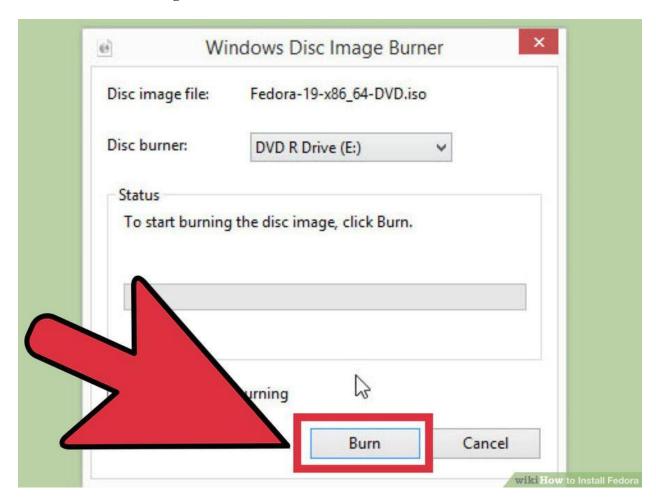
4.1.1 System minimum requirements

700 MHz processor (about Intel Celeron or better)

512 MiB RAM (system memory)

5 GB of hard-drive space (or USB stick, memory card or external drive but see LiveCD for an alternative approach)

VGA capable of 1024x768 screen resolution

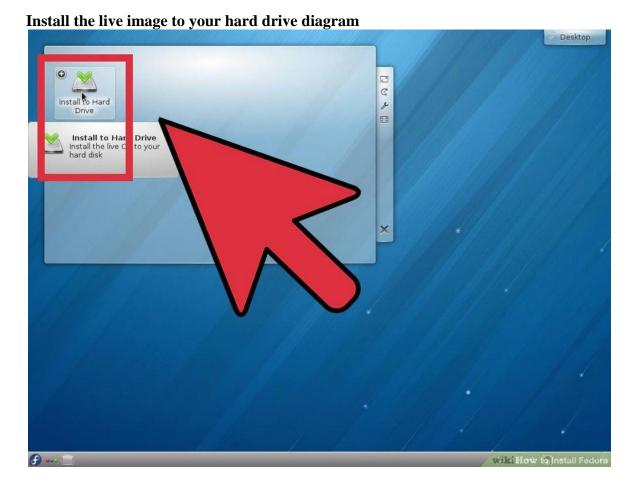

Either a CD/DVD drive or a USB port for the installer media

Internet access is helpful

4.2 Fedora Installation

Download the live image from the https://getfedora.org/. If you are KDE fan:

Fedora Installation diagram



Burn the .iso image onto the USB or CD/DVD Make the BIOS Settings:

If you are using a live USB, you might need to go into your BIOS and change the boot priority in order to boot from your USB. You can access your computer's BIOS by pressing 'F2' or 'Delete' on most computers when the computer is booting up. If you are using a CD or DVD, ignore this step as generally CDs are first in boot priority.

Be sure to select "Live Drive" when the option screen first appears. If you select to install it, it can potentially delete everything from your system.

Explore the system. The most notable thing about you should toy with is the window manager which allows you to see pretty cool effects. You should also explore around the applications already installed in the OS and see what else is available with their package manager.

Click on next when the installer starts and then select your keyboard layout Click on next each time with desired option up until the end

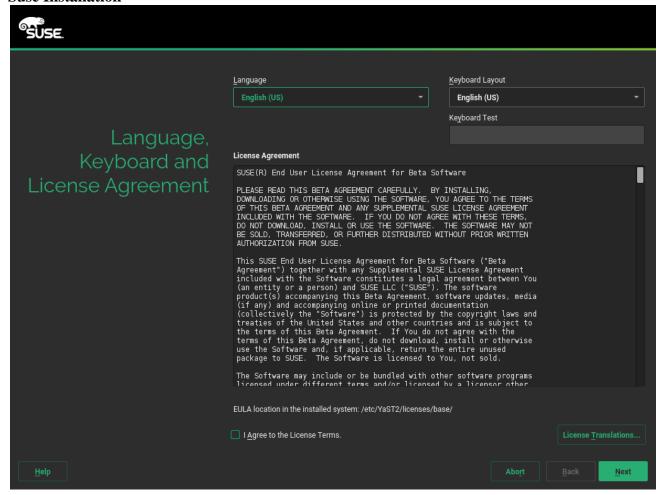
4.2.1 System minimum requirements

6GB plus the required disk space recommended by the guest operating system per guest. For most operating systems more than 6GB of disk space is recommended.

One processor core or hyper-thread for each virtualized CPU and one for the hypervisor.

2GB of RAM plus additional RAM for virtualized guests.

4.3 Suse Installation


Insert the SUSE Linux Enterprise Desktop DVD into the drive, then reboot the computer to start the installation program. On machines with a traditional BIOS you will see the graphical boot screen shown below. On machines equipped with UEFI, a slightly different boot screen is used.

Select Installation on the boot screen, then press Enter. This boots the system and loads the SUSE Linux Enterprise Desktop installer.

The Language and Keyboard Layout are initialized with the language settings you have chosen on the boot screen.

Read the License Agreement. It is presented in the language you have chosen on the boot screen. License Translations are available. You need to accept the agreement by checking I Agree to the License Terms to install SUSE Linux Enterprise Desktop. Proceed with Next.

Suse Installation

Click on next each time with desired option up until the end to complete the installation

4.3.1 System Minimum Requirements

- a) any AMD64/Intel* EM64T processor (32-bit processors are not supported)
- b) 512 MB physical RAM (1 GB or more recommended)
- c) 3.5 GB available disk space (more recommended)
- d) 800 x 600 display resolution (1024 x 768 or higher recommended)

4.4 Debian Installation

First go to Debian download page. This page will allow the user to select from the installation CD or DVD.

The DVD tends to contain a Live version of Debian as well as the necessary installation utility. Be sure to pick the proper architecture for the PC on which Debian will be installed!.

Use **dd** command to copy the newly download ISO to a USB stick or use burning software to burn the ISO to a CD/DVD (software such as **K3B** or **Nero** can accomplish this task). The easiest method however is the Linux **dd** utility and a USB stick. The command syntax is very simply but take extra caution to make sure that the proper arguments are provided. To accomplish this, change directory to the Downloads folder.

```
hrturner@LM17 ~/Downloads $ ls -l deb*
-rw-r--r- 1 hrturner hrturner 675282944 Apr 15 14:18 debian-7.8.0-amd64-CD-1.iso
-rw-r--r- 1 hrturner hrturner 646971392 Apr 22 10:57 debian-jessie http://www.stecmint.com
```

Download Debian 8 Jessie

Then plug in a USB drive that doesn't contain any important data. This process is destructive! All data on the USB drive will be removed. Determine the hardware name for the newly inserted USB drive using **lsblk** command.

```
hrturner@LM17 ~/Downloads $ lsblk
      MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
        8:0
             0 465.8G 0 disk
              0
-sda1
        8:1
                   33G 0 part /
              0
                    1K 0 part
              8 185.7G
                        0 part
               0 231.9G
                        0 part /home
               0 15.2G
                        0 part [SWAP]
        8:16
                       0 disk
                        @ part /media/hrturner/Corsai
        8:32
                  7.4G 0 disk
               1 7.46 0 part /media/hrturner/Debian 7.8.0 amd64 http://www.tecmint.com
        8:33
```

Check USB Device Name

In this example, <code>/dev/sdc</code> will be used to create the bootable Debian installation media. Now it is time to build the **dd** command to copy the ISO to the USB drive (You can't simply copy the ISO file to the USB drive, it will not boot)!.

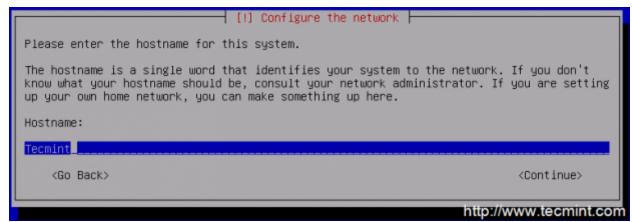
```
hrturner@LM17 ~/Downloads $ sudo dd if=debian-jessie-DI-rc3-amd64-CD http://www.technint.com
```


Create Bootable USB Using dd Command

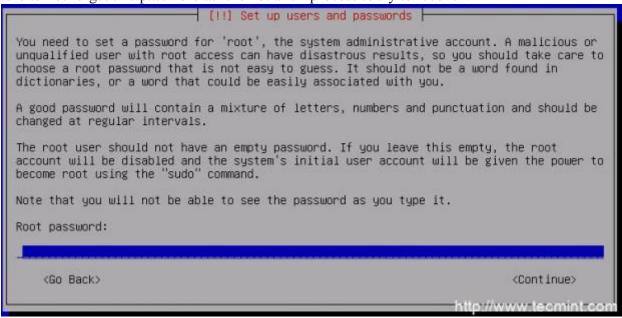
dd command will not provide any feedback that anything is happening. If the USB drive has an **LED** indicator, look at the light and see if the light is flashing. **dd** will finish and return the user to the command prompt after it completes.

Be sure to safely **eject/remove** the drive from the machine. Linux has a tendency to cache data and write it later! Now that the flash drive is ready, it is time to put the USB drive into the computer and boot to the Debian installer.

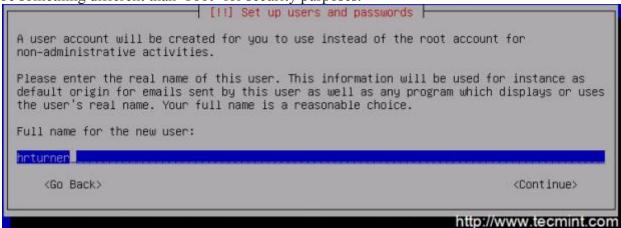
The installer will boot to a **Debian** splash screen that provides several options for advanced installation options.


Debian Installer diagram

Debian 8 Boot Menu

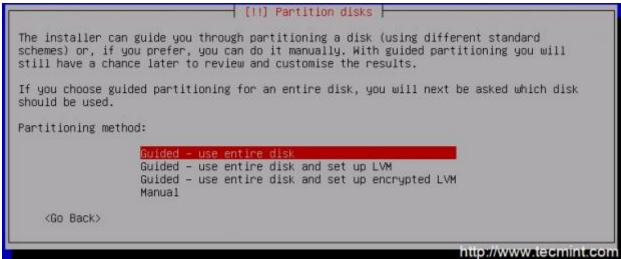

Use the keyboard to select the boot option desired; For now the **Graphical Install** will be used since most users are comfortable with a mouse.

This will boot Debian into the installer. The first few options will require the user to select the **keyboard** and **localization** to use. The next step is to set your computer's **hostname** and allow the installer to setup a **network connection** for access to the software repositories.


Set Hostname for Debian 8 Jessie

After hostname configuration, the system will ask the user to create a '**root**' user password. Be sure to not forget this password as it is not a fun process to try to recover!

Create and Set root User Password


After the root user configuration, a normal non-root user will need to be configured. This should be something different than '**root**' for security purposes.

Create Non Root User

After the **root** and **non-root** users are setup, the installer will attempt to download some packages from the repositories and as such, a network connection is very helpful (however, it isn't necessary and the installer will install the base system regardless).

Now the installer will prompt the user to set up the **partition scheme** to be used on this system. For most normal installations, the "**Guided** – **Use entire disk**" option will suffice but do realize that this will overwrite all data on the disk!.

Select Guided Disk Partitioning

The next page will ask the user to confirm the partition changes, write the changes to the disk, and begin the installation process of the base files of Debian.

4.4.1 System Minimum requirements

Minimum RAM: 256MB. Recommended RAM: 512MB. Hard Drive space: 10 GB.

Minimum 1GHz Pentium processor.

5 Application fields of Linux distributions

In this section we will be looking at the application areas of Linux. The honest truth is that Linux is so useful more than one can ever imagine. Majority of the smart phones that we are using nowadays do run Linux, the games console and many more technologies are running Linux. In fact one can say Linux is everywhere, the servers, desktops, notebooks, mobile phones, mobile internet devices and many more. That is why Microsoft sees Linux as a bigger threat than apple.

5.1 Servers

Linux has bullied the server market. We all know that apache is a powerful web server. Sendmail, Qmail and others are all powerful e-mail servers built to run on Linux. Anti-spam server software ie SpamAssassin was originally built for Linux and then later to Windows. The list is endless and the reason is that Linux offers what most servers wants which is **stability**, **reliability and a high uptime.** Server security is another reason why many companies prefer to run Linux.

Look at what system is running Google, the world most biggest search engine. The answer is Linux. The reason is simple, Linux is designed to handle enormous amount of load.

Zope - a web application server written primarily in Python which features a transactional object database that can store not only content and custom data, but also dynamic HTML templates, scripts, a search engine, and relational database connections and code. Zope also features a strong through-the-web development model, high security and the availability of numerous plugin components

samba - a file and printer server for networks containing Microsoft Windows clients. Because it runs on reliable Unix-like operating systems, there are fewer problems and a low cost of maintenance. Samba also provides superior performance under heavy loads, outperforming Windows 2000 Server by a factor of two to one on identical hardware, according to third-party benchmarks

MySQL - the most popular open source relational database management system (RDBMS). Users include Cisco, Google, Lufthansa, NASA, Sabre Holdings, University of California at Berkeley (UCB), UPS and Yahoo.

PostgreSQL- claimed to be the world's most advanced relational database management system. Begun in 1986 at the University of California at Berkeley.

Oracle Database- runs best on oracle Linux. Oracle Database on Oracle Linux helps customers lower IT costs while delivering high quality of service. With Oracle Database 12c and Oracle Linux, customers benefit from the joint development and testing done by Oracle to deliver the best features, stability and performance to enable the next generation of cloud computing.

SAP ASE (Adaptive Server Enterprise) – originally known as Sybase SQL Server, and also commonly known as Sybase DB or ASE, is a relational model database server product for businesses developed by Sybase Corporation which became part of SAP AG. ASE is predominantly used on the Linux platform, but is also available for Microsoft Windows

5.2 Scientific Desktops

With regards to scientific software, Linux has up thier game recently with application like:

GNU octave - Free software, runs on GNU/Linux, macOS, BSD. Powerful mathematics-oriented syntax with built-in plotting and visualization tools. Drop-in compatible with many Matlab scripts.

Weka- is a collection of machine learning algorithms for solving real-world data mining problems. It is written in Java and runs also on Linux. The algorithms can either be applied directly to a dataset or called from your own Java code. It features

- data mining
- preprocessing
- classification
- regression
- clustering
- association rules
- attribute selection
- experiments
- workflow
- visualization

SQL Ledger - an advanced, highly customizable double entry accounting system that is suitable for a wide variety of manufacturing and other businesses

Gnumeric - a high quality and easily customizable spreadsheet program developed as part of the GNOME desktop environment as a drop-in replacement for proprietary spreadsheets, rather than a clone of existing applications. Gnumeric can import Excel, 1-2-3, Applix, Sylk, XBase Quattro Pro, Dif, Plan Perfect and Oleo files.

rCalc - a scientific calculator for the GNOME desktop environment which aims to occupy the middle ground between simple *point-and-click* calculators and full-featured mathematics packages.

5.3 Graphical desktops

Xfig - an interactive drawing tool that can create objects such as circles, boxes, lines, spline curves and text as well as import images in formats such as GIF, JPEG and EPSF. Multiple ways are available to select attributes such as colors and line styles.

xpad - a sticky note application written using GTK+ 2.0 that strives to be simple, fault-tolerant, and customizable. xpad consists of independent pad windows; each is basically a text box in which notes can be written.

Xpdf - a viewer for PDF (portable document format) files. The Xpdf project also includes a PDF text extractor, PDF-to-PostScript converter and various other utilities. Xpdf is designed to be small and efficient, and it can use Type 1, TrueType or standard X fonts

GNU Emacs - an extensible, customizable and self-documenting editor which uses an interpreter for Emacs Lisp, a dialect of the Lisp programming language. Features include content-sensitive major modes for a wide variety of file types, complete online documentation and support for many natural languages and their scripts.

GQview - an image viewer that features single-click file viewing, external editor support, thumbnail previews, and zooming. Some image management features are also included

Open Office - a full-fledged suite of office applications comparable to and compatible with Microsoft Office. Contains word processing, spreadsheet, presentation, equation editing and drawing programs. Among the many features of the word processing program is the ability to convert documents directly into PDF format.

<u>Konqueror</u> - a combined web browser, file manager and universal viewer that is included as part of the KDE desktop.

gedit - a lightweight text editor for the GNOME desktop. It supports most standard editing features and has a powerful plug-in system for adding even more, including a spelling checker, date and time insertion, word counting, documents or <u>files</u> comparison, output insertion from <u>shell commands</u> and *tags* insertion for common markup languages (such as HTML and Latex). gedit's counterpart for the KDE desktop is kedit, which is included in the Linux distributions that contain KDE.

5.4 Mobile Phones

Just like in Servers, android is bullying the smart phone market at the present moment. You talk of Samsung, Lenovo, Sony, Huawei and many more and they are running android. Fact is android uses Linux kernel under the hood. Because Linux is an open source meaning it can be used and modified according to ones needs, android developers has taken advantage of that and

has modified the Linux kernel to fit their needs. Linux has given android developers a pre-built already maintained operating system kernel to start with so that they do not have to start from the scratch by building their own kernel.

5.5 Mobile Internet Devices

Another area Linux has conquered are the mobile internet devices in which Intel sees a lot of prospects for the future. They actually run Ubuntu. So one can just install the program from Ubuntu repository and customize according to ones needs instead of getting Mobile Internet Device on which you can only use what you are given.

6 Conclussion

This thesis has been aimed to talk about the important aspects of Linux distribution and putting more emphasis on the application fields of Linux. Due to multitudes number of Linux distribution out there, the thesis focused more closely on only four Linux distribution namely Ubuntu, Fedora, Suse and Debian.

Much part of the thesis catered for both newly Linux users and advanced Linux users therefore even things which might have been too simple for other users were discussed on this thesis just to touch both worlds of these two people (newly and advanced Linux users). Therefore as part of this thesis, we discussed installation processes for the four mostly used Linux distribution and the minimum system requirements prior to installation which in my own opinion is the most import aspect with regards to installation. The first thing that one has to know before putting hands on is to know that Linux is an open source and know how easy it is to install and run hence that is why I decided to cover that in this thesis.

Different aspect of Desktop environment were also discussed with emphasis placed on two mostly used namely GNOME and KDE. However it was made crystal clear in this thesis that other desktop environments exists such as Unity, MATE, Xfce and many more and one can chose which one to use depending on ones personal choice. The two were compared together with their installation processes. The important aspect of flexibility of Linux to have the two installed at the same time on one machine and each time choosing the one to use when login it was covered in this thesis as well.

Initiative in this thesis was made to explicitly mention or state the file system in Linux, that is how different it is compared to normally known file systems in windows. As a results things like journaling were discussed, also things like files editing, fragmentation and Linux file system structure were touched in this thesis just to give or open the mind of new Linux users that it is different to windows.

Finally application fields of Linux distribution was discussed. Emphasis was put on Servers like **Database servers** mainly Postgress, Oracle, Adaptive Server Enterprise, MySql that they are supported in Linux and not only that but runs best in Linux. Webservers such Apache and Zope we discussed and their greate importance were highlighted.

Multitudes of scientific software that are supported in Linux such as Weka,rCalc,Octave,SQL Ledger were touched to highlight the importance that Linux has brought in our lives where technology has significantly improved our lives. We now live in the world of Smart Phones and Linux has had a big influence in the evolution of smart phones, thanx to Android which uses modified Linux Kernel under its hood. Mobile phones nowadays are not just for sms'ing and calling. There are multitudes of applications that comes with smart phones. We can now chat with friends and families all around the world. No need to queue on long lines the whole day in the banks to pay our bills as we can now do that on our smart phones. The list is endless of what the evolution of smart phones has brought thanx to Android.

7 References

Ubuntu installation: https://help.ubuntu.com/community/Installation/SystemRequirements

Debian installation: https://www.debian.org/

Fedora Installation: http://www.tecmint.com/fedora-21-workstation-installation/

 $Suse\ installation:\ \underline{https://www.suse.com/documentation/sled-}$

12/singlehtml/book_quickstarts/book_quickstarts.html

Moshe Bar: Linux File System, Brandon A. Nordin, 2001

Brown Chris: SUSE Linux, O'Reilly Media, 2006

Witten Ian H: Data Mining, Elsevier, San Francisco, 2005