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Abstract
This thesis addresses the integration of neural networks into network flow monitoring,
particularly focusing on the ipfixprobe — an open-source network flow exporter developed
by CESNET. The objective is to explore the potential of neural networks for classifying and
extracting representations from network flows. The challenges of deploying such solutions in
large-scale production environments are considered, with a specific emphasis on enhancing
efficiency and effectiveness in dynamic technological landscapes.

Abstrakt
Tato diplomová práce se zabývá integrací neuronových sítí do monitorování toků v síti, ze-
jména se zaměřením na ipfixprobe — open-source exportér IP toků sítí vyvinutý společností
CESNET. Cílem je zkoumat potenciál neuronových sítí pro klasifikaci a extrakci reprezen-
tací ze síťových toků. Jsou zde zvažovány výzvy spojené s nasazením takových řešení ve
velkém měřítku v produkčních prostředích, s konkrétním důrazem na zlepšení efektivity a
účinnosti v dynamickém technologickém prostředí.
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Rozšířený abstrakt
V neustále se vyvíjejícím prostředí moderních technologií je pro úspěch podniků a or-
ganizací nejdůležitější efektivita a odolnost síťových infrastruktur. S rozšiřováním připo-
jených zařízení a systémů je udržování optimálního zabezpečení a výkonu sítě stále složitější.
Tradiční přístupy k analýze sítí, které se soustředí především na detekci anomálií a analýzu
komunikace, se mění v sofistikované disciplíny, které mají zásadní význam pro integritu a
funkčnost systému.

Tato práce se zabývá integrací neuronových sítí do monitorování síťových toků, se zvlášt-
ním zaměřením na ipfixprobe, open-source exportér síťových toků vyvinutý sdružením CES-
NET. Hlavním cílem je prozkoumat potenciál neuronových sítí při analýze síťových toků a
řešit výzvy spojené s nasazením takových řešení ve velkých sítích.

Úvodní část uvádí do kontextu význam síťové infrastruktury v dnešním digitálním
ekosystému a zdůrazňuje rostoucí složitost udržování bezpečnosti a výkonnosti při rozšiřu-
jící se konektivitě. Zdůrazňuje nutnost využití technik strojového učení pro efektivní mon-
itorování sítě, zejména ve scénářích šifrované komunikace, kde tradiční metody selhávají.
Dále se snaží přiblížit teoretické znalosti nutné k vývoji pluginu a aplikaci strojového učení.

Práce vytváří most mezi modelem neuronové sítě a flow eportérem ipfixprobe od sdružení
CESNET. Ipfixprobe podporuje architekturu zásuvných modulů, a proto se práce zaměřuje
na vytvoření takového modulu a jeho intergaci. Plugin musí být napsán v C++, ale pro
vývojáře a uživatele ipfixprobe je pohodlnější používat řešení PyTorch pro neuronové sítě,
který je ale v základu dělaný pro práci v jazyce python. Aby se developeři nemuseli učit
jak psát neuronové sítě a jiné metodiky strojového učení v C++ a mohli použít podobné
postupy jako při práci v pythonu, využívá TorchScript a C++ frontend API pro komunikaci
mezi modelem a zásuvným modulem. Tato architektura umožňuje zaměňovat modely neu-
ronové sítě bez nutnosti úprav nebo opětovné kompilace aplikace ipfixprobe.

Následující kapitoly poskytují komplexní zkoumání monitorování síťových toků a ob-
jasňují základní koncepty a metodiky nezbytné pro praktickou analýzu sítí. Navrhovaná
architektura integruje neuronové sítě do systému ipfixprobe a nabízí vhled do procesu vývoje
a technických složitostí. Kapitola o implementaci popisuje kroky provedené při realizaci zá-
suvného modulu, od importu knihoven až po analýzu výkonnostních metrik. Dále analyzuje
funkčnost a rychlost učení a rychlost inference v použití zásuvného modulu s modelem neu-
ronové sítě. Na závěr jsou popsané dosažené výsledky, nedostatky a možnosti budoucího
rozžíšení.
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Chapter 1

Introduction

In the current dynamic world of modern technology, where digital connectivity can decide
a business’s success or failure, the resistance and efficiency of network infrastructure are
essential. With the increasing number of devices and their connections to the internet and
other systems, the complexity of maintaining optimal network security and performance
is increasing. Traditionally, network analysis is based on anomaly detection and commu-
nication analysis, once a simple task of catching undesired communication in the form of
attacks or the overall system health evolves into a new and complex discipline crucial for
the preservation and smooth running of the system.

The majority of network traffic works on top of TCP and UDP transport protocols.
Communication from one device to another can be categorized into individual IP flows 2.3,
which are then browsed to find anomalies. Usually, we want to protect our data and
the data we send. Therefore, the usage of encrypted communication has become common
practice. However, this brings new challenges to network monitoring as we cannot ascertain
the specific content of the transmitted data. We can only orient ourselves in such situations
by examining headers, sizes, or packet arrival times.

Moreover, here comes the question of leveraging machine learning techniques for effective
network monitoring. Could we utilize machine learning to help discern patterns, detect
anomalies, and ensure the security and performance of encrypted network communication?

The main objective of this thesis is to explore the possibilities of neural networks for the
classification or feature extraction of network flows. The main advantage is the possibility of
using more information inside a packet, although this brings overhead to network monitoring
tooling. Other challenges include determining how the network should be trained, what data
it should contain, or how extensive the neural network itself should be.

Furthermore, the main problem is if it is possible to integrate it into existing systems and
how. This thesis delves into dynamic network monitoring, exploring traditional approaches,
and tries to use artificial intelligence (AI) to simplify these tasks.

Some papers have researched and demonstrated the usefulness of neural networks over
packets [14, 24]. However, they are still being prepared to be used in a production environ-
ment, as the tooling must be deployed on fast and extensive networks. This work focuses on
the exporter of ipfixprobe, an open-source exporter of network flows deployed over networks
in CESNET. It is architectured for pluggability, meaning we can use already implemented
plugins or create and deploy new ones with different functionalities [4].

The following chapters comprehensively explore network flow monitoring, delving into
fundamental concepts and methodologies essential for practical network analysis. The initial
section provides a basic description of network flow monitoring, elucidating key components
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such as packet capture, IP flow, and IPFIX (IP Flow Information Export). The discourse
extends to the intricacies of flow exporters, unraveling architecture with a specific focus on
the ipfixprobe developed by CESNET. Next, the focus turns towards incorporating neural
networks, providing readers with a profound introduction to these formidable computational
models and their indelible impact on network monitoring. The proposed architecture is de-
scribed in the chapter proposal, which describes integrating neural networks into ipfixprobe
and weaving together insights from the preceding discussions. The implementation chapter
describes what had to be done to achieve the final plugin, from importing libraries to the
ipfixprobe building process to describing the main methods. The basic functionality and
performance were analyzed in the evaluation chapter, figuring out the current problems and
limits of the newly developed plugin. Finally, the conclusion chapter summarizes the work
done and some ideas for future improvements.
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Chapter 2

Network Flow Monitoring

Network monitoring can be divided into two categories: active and passive. The passive
approach only observes the traffic without modifying it; the active approach, on the other
hand, manipulates the packets on the link [29].

Packet capture is one of the passive approach options, which generally provides the most
insight. However, this method may be challenging to implement in extensive high-speed
networks, as it creates significant overhead and requires special hardware and infrastruc-
ture [27].

Much more suited for high-speed networks is another passive approach called flow ex-
port. This method aggregates packets into flows further described below 2.3 and stores
them for later analysis. As a lot less data is stored and analyzed, it is more suitable for use
in data centers like networks [27].

This chapter will primarily discuss the passive approaches, mainly IP Flow 2.3.

2.1 Packet Capture
Packet capture serves three different purposes without a specific hierarchy:

1. It provides an interactive approach to network monitoring.

2. It functions as a file containing the route of packets.

3. It involves the active capturing of packets from the network.

Captured data can be saved to a file or read directly in real-time using a network traffic
analyzer such as Wireshark or others [29].

The captured network traffic serves as a basis for comprehensive network monitoring.
It can be saved to a file for later analysis, either as a temporary file during the monitoring
process or explicitly for future use. The captured data remains true to the original traffic,
and the packet capture process can be both manual and automatic. Capturing network
traffic can be achieved through two primary methods: in-line mode and mirroring mode,
both essential for effective network monitoring [29].

2.1.1 Mirroring Mode

Mirroring mode involves packet forwarding devices mirroring packets from one or more
ports to another port where a capture device is connected. Also known as port mirroring,
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port monitoring, or Switched Port Analyzer (SPAN) session. This method requires a con-
figuration change in the forwarding device but does not incur additional costs in the form of
hardware or software. However, mirroring may introduce delays or mess with the content
of packets. It is crucial to select a mirror port with sufficient bandwidth, ideally twice that
of the monitored port, for full-duplex captures [9].

2.1.2 In-Line Mode

In the in-line mode, the capture device is directly linked to the monitored connection
between two hosts. This involves additional hardware, such as bridging hosts or network
test access points (taps), designed to duplicate all passing traffic without introducing delays
or altering data [9].

Network taps employ passive splitting for networks, ensuring continuous traffic flow
even if the tap experiences issues. After installation, capture devices can be connected or
disconnected without affecting the monitored link [9].

2.2 Deep Packet Inspection
Deep Packet Inspection (DPI), also known as complete packet inspection or Information
extraction (IX), is a method for filtering computer network traffic packet by packet. It
examines the header and packet payload as it traverses an inspection point within the
network. This examination aims to identify protocol non-compliance, viruses, spam, intru-
sions, or specific criteria, determining whether the packet should be allowed to pass through
or be redirected to a different destination. Contrary to a common misconception, DPI does
not solely focus on payload parts but extends to various fundamental functions, including
recognition and action based on the recognition results. Recognition involves identifying
hidden packet characteristics, such as application protocols, viruses, worms, or specific for-
mat data. At the same time, actions are triggered based on the recognition results, ranging
from logging for network analysis to rigorous discarding in security applications [31].

The applications of DPI are diverse and complex, making classification challenging due
to the combination of recognition methods and actions across various levels. Some typi-
cal DPI applications include network visibility, user profiling, network security, copyright
policing, censorship, or content regulation. These applications rely on recognizing and iden-
tifying characteristics such as protocols, applications, URLs, text strings, particular format
data, viruses, malware, and cyber-intrusions [31].

Network security is a critical DPI application, initially developed for intrusion detection,
addressing threats from external attackers and internal insiders. DPI-equipped network
operators can detect known malware. DPI for network security combines early intrusion
detection systems (IDS) with later intrusion prevention systems (IPS) to detect and prevent
potential threats. Additionally, DPI plays a crucial role in data loss prevention (DLP),
aiming to prevent sensitive data from leaving the intranet [31].

2.3 IP Flow
IP flow refers to a set of IP packets observed passing through a network during a specific
time interval. It is a fundamental concept in networking and plays a crucial role in various
network management and security applications [9].
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All packets belonging to a particular flow share common properties known as flow keys,
which include source and destination IP addresses, source and destination port numbers,
IP protocol, and possibly other relevant attributes. Most commonly, the flow is described
as a 5-way tuple of values in IP header [27]:

(𝑖𝑝_𝑠𝑟𝑐, 𝑖𝑝_𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡_𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡_𝑑𝑠𝑡, 𝑝𝑟𝑜𝑡𝑜) (2.1)

It is essential to clarify that TCP connection does not equal IP flow, as flow exists when
TCP protocol is not used. Any traffic sent between the source address and port to the
destination port and address is IP flow. Also, it has no size restrictions, so even if only a
single packet is sent over this combination, it is considered flow [27].

Flow observation does not store payloads in its entirety, so the amount of data for
analysis is significantly reduced, which is why it is faster than other approaches on the
same hardware. It is also less inclined to influence of private (encrypted) traffic because
usually the payload is what is encrypted [29].

2.4 Architecture
The architecture of IPFIX can be seen in the Figure 2.1. It encompasses metering processes
(MPs), exporting processes (EPs), and collecting processes (CPs), enabling the generation,
export, and reception of flows, respectively. In large multilayer deployments, interme-
diate processes (ImPs) were introduced to modify flows for aggregation, correlation, or
anonymization [30].

IP flow accounting consists of two main processes: flow exporting and flow collection,
performed by the flow exporter and collector.

Flow Exporter
Flow Collector

Storage

Monitoring

Analysis

Metering

Packet Capture Timestamping Sampling
Filtering Updating

Figure 2.1: Flow monitoring architecture [27].
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2.4.1 Flow Exporter

A flow exporter, commonly known as an observation point, is responsible for generating
flow records from observed network traffic. The flow exporter extracts packet headers
from each packet passing through the monitored interface, marking each header with a
timestamp indicating when it was captured. These headers undergo further processing,
including sampling or filtering, before being updated in a flow cache. A flow entry in the
cache is created or updated for each incoming packet, and when a flow record expires, it
is sent to the flow collector. Different criteria, such as idle time, active timeout, or the
detection of specific flags in a TCP flow, determine when a flow is considered expired [27].

2.4.2 Flow Collector

The counterpart to flow export is flow collection, which involves retrieving flow records
generated by flow exporters and storing them in a format suitable for subsequent analysis.
A dedicated component known as the flow collector is responsible for this task. The flow
collector collects and organizes flow records, providing an extensive view of network usage.
It ensures that the valuable insights obtained from flow-based analysis are effectively utilized
for various purposes, such as performance monitoring, anomaly detection, or intrusion
prevention [9, 27].

2.5 IPFIX Protocol
In 1996, flow export technology called NetFlow was patented by CISCO, initially invented
for flow switching. The first publicly available version was NetFlow v5 in 2002, which was
later replaced with NetFlow v9. It incorporated adaptable data formats using templates
and introduced support for IPv6, Virtual Local Area Networks (VLANs), and Multiprotocol
Label Switching (MPLS), among various other features. The versatility introduced by
NetFlow v9 has paved the way for recent advancements, allowing for greater flexibility in
flow definitions and representation, and later became the basis for the IPFIX protocol [9].

The IP Flow Information eXport (IPFIX) protocol stands as a pivotal development in
network management, addressing the growing need for detailed network flow data. Emerg-
ing over the past decade, IPFIX represents a standardized approach to exporting flow
information from devices like routers and dedicated probes. The protocol was conceived to
offer a finer-grained perspective on network traffic compared to conventional methods, such
as Simple Network Management Protocol (SNMP) queries, allowing for scalability in large
networks [30].

The protocol relies on a message format comprising data framing, encoding, and an
information model. Key to its flexibility is the use of templates, which describe the format
of data records. IPFIX supports the use of reduced-length encoding for efficient export of
network flow data. In IPFIX, the flow keys can be flexibly defined, not only as a 5-way
tuple but even all common properties from the whole packets in the flow [6, 30].

2.6 Extending IP Flows
IPFIX protocol, as well as NetFlow v9 and others, supports template set architecture, which
enables extending the information inside of flow records. However, extending IP flows is
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not unified; each protocol and flow exporter may extend them differently. Properties of the
IPFIX information model are described in RFC 5102 [5].

The task of the template set is to describe the structure of data records. The data
records’ values are transmitted separately to avoid unnecessary and repeated transmission
of this description. Template sets are typically transmitted only at certain time intervals,
thus significantly reducing the size of the transmitted data. Template sets have their ID set
to the value 2. Their body contains a sequence of template records defining the structure
of records in data sets. A template record consists of a header containing the template
ID and the number of data fields in the template, followed by the definitions of individual
fields. The field definition contains only a numerical identifier (Information Element ID)
and its length. The meaning of the field is determined by its ID, which refers to the table
of elements of the information model [25].

The body of the data set is a sequence of data records whose structure is specified by
a template with the same ID as the ID of this set. Data records now consist only of the
values of the fields themselves, the meaning of which is determined by the field definition
in the corresponding template [25].
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Chapter 3

CESNET ipfixprobe

Ipfixprobe is a flow exporter 2.4.1 created and maintained by CESNET. It is an open-
source tool written in C++, which offers the functionality of creating bidirectional flows
from incoming packets in real-time or from captured traffic. This functionality can be
extended by activating plugins or implementing new ones [4, 11].

Ipfixprobe software is not dependent on an operation system or hardware platform,
which makes it possible to use different environments, e.g., integration into active network
elements or annotating data on a workstation. Statistics can be created offline based on
earlier captured traffic in the pcap file, or it can process the traffic on the input network
interface in real time [11].

The exporter configuration is provided through the command line, as the program has no
user interface. One part of the configuration happens in compilation (the possibility to add
chosen plugins), and the other in executing the exporter with specific parameters. These
parameters ensure the activation of plugins and handing over of the necessary values [4, 11].

./ipfixprobe -i ’raw;ifc=eth0’ -o ’text’

Listing 3.1: Capturing traffic from interface ’eth0’ using raw sockets and printing resulting
flows to console [4].

3.1 Architecture
The architecture of ipfixprobe developed by CESNET 3.1 is designed to efficiently capture
and analyze IP flow data for network monitoring and analysis purposes [11].

After receiving the packet from the pcap file or input interface, the key flow elements
are extracted, and the packet is saved into the flow cache. Record of type bitflow is either
created if it is the first packet of the flow or updated. The routines of activated process
plugins are called to aggregate and extract properties of followed IP flows. The routines
differ for the update or creation of the flow. A particular service routine is called for each
plugin at the time of record export. Finally, the output plugin, connecting to the collector,
sends the exported flows through the output interface [11].
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Figure 3.1: Simplified function diagram of ipfixprobe [4].

3.2 Plugins
Plugins affect incoming traffic (input plugins), e.g., pcap files or sockets of OS, data pro-
cessing (processing plugins), and the final export of the processed data (output plugins).
Common plugins provide parsers and aggregators of application protocols like DNS, HTTP,
SIP, NTP, and SMTP. Also, there is a possibility to create a new plugin; for easier access
to this functionality is provided a script, create_plugin.sh, which creates source and header
files with the standard structure used throughout already implemented plugins [11, 26].

Plugins can be divided into three categories [4, 26]:

• input plugins facilitate the provision of input data in the appropriate format to
processing plugins.

• processing plugins handle tasks such as protocol recognition and statistics collec-
tion.

• output plugins are responsible for exporting the processed data, or flows, for sub-
sequent processing
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This thesis focuses mainly on processing plugins, encompassing several phases:

• Metadata initialization

• Metadata enriching

• Flow export

The metadata initialization involves allocating memory for the plugin and flows’ essen-
tial metadata, followed by its initialization. Metadata enrichment unfolds in two stages:
pre-update and post-update. The pre-update stage is activated upon receiving a new
packet that has not yet undergone processing by the internal ipfixprobe flow metadata
enricher—conversely, the post-update stage triggers once the internal flow metadata has
been enriched. The last stage is flow export, where the results from the flow processing are
aggregated and exported. The sequence in which plugins are processed is dictated by their
order in the initialization phase [4, 26].
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Chapter 4

Neural Networks

In an era dominated by interconnected systems and digital communication, the significance
of robust network security measures cannot be overstated. As organizations strive to safe-
guard their digital assets and sensitive information, monitoring IP flows has emerged as
a crucial aspect of network security. Traditional methods have proven effective to a cer-
tain extent, yet the evolving landscape of cyber threats demands innovative and adaptive
solutions [9, 24].

This chapter delves into the realm of neural networks 4.1, a powerful paradigm in
machine learning, and explores their application in IP flow monitoring.

A1

A2

A3

A4

A5

X1

X2

X3

X4

f(X) Y

Input Layer Hidden Layer Output Layer

Figure 4.1: FFNN with single hidden layer [10].
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4.1 Introduction to Neural Networks
To comprehend the role of neural networks in monitoring IP flows, it is imperative first to
grasp the fundamental principles underlying these artificial intelligence systems.

This section provides a concise overview of neural networks, their structure, and the
mechanisms through which they learn from data. Key concepts such as neurons and activa-
tion functions will be clarified, setting the stage for a deeper exploration of their application
in the context of network security.

4.1.1 Basic Terms

Neural networks, the backbone of modern artificial intelligence, are intricate systems de-
signed to mimic the complex information processing of the human brain. To effectively
navigate the world of neural networks, it is essential to familiarize oneself with a set of
fundamental terms and concepts that form the building blocks of the field.

Neuron

Neurons, in the field of deep learning, serve as essential computational units within artificial
neural networks. They draw inspiration from biological neurons; these units are arranged
into layers, constructing intricate networks capable of solving and mastering patterns [3].

Layer

Layers are fundamental building blocks within neural networks. Feed-forward neural net-
works are structured hierarchically, each layer serving a specific purpose. It can be catego-
rized into three types: input, hidden, and output [10].

The input layer receives raw data, which is then processed and transformed through
one or more hidden layers. Each hidden layer extracts and learns features from the input
data, contributing to the network’s ability to discern patterns. The final layer, known as
the output layer, produces the network’s predictions or classifications [10].

Feed-Forward Neural Network

Feed-Forward Neural Network (FFNN) embody a fundamental architecture. These net-
works, comprising layers of interconnected nodes, facilitate unidirectional information flow
from the input layer, traversing hidden layers, to the output layer. The sequential pro-
gression of information within FFNNs makes them particularly adept at tasks like pattern
recognition and classification [3].

Optimizer

Optimizers play a crucial role in training deep learning models by minimizing the error
or loss function. In deep neural networks, the optimization process involves adjusting the
weights and biases of the NN to enhance its performance. Various optimization algorithms,
such as stochastic gradient descent (SGD) and Adam, differ in their approaches to updat-
ing parameters, aiming to converge towards the optimal configuration. The choice of an
optimizer can significantly impact the convergence speed and final performance of a deep
learning model [3].
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Weights

Weights are critical parameters in neural network architecture. They determine the impact
of each feature on the prediction outcome. A positive weight implies that increasing the
feature’s value will increase the prediction, while a negative weight suggests the opposite
effect. These weights are adjusted during training to minimize the difference between the
predicted output and the target. The magnitude of the weight indicates the strength of
its influence on the prediction, with larger magnitudes corresponding to more significant
effects. If a feature’s weight is zero, it does not impact the prediction [3].

Bias

Biases are crucial components working in conjunction with weights to influence the output
of each node. Unlike weights, biases are independent of input and serve to shift the overall
activation of a neuron. In training, biases are adjusted alongside weights to minimize the
overall error [3].

Gradient

Gradients represent the partial derivatives of the error function concerning the model pa-
rameters, such as weights and biases. The gradient provides crucial information about the
direction and rate at which the error function changes concerning parameter adjustments.
In the training phase, optimization algorithms utilize gradients to update the model’s pa-
rameters [10].

𝑅(𝑋𝑚) =
𝜕𝑅(𝑋)

𝜕𝑋
(4.1)

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a standard optimization algorithm in deep learning.
It is a variant of the traditional gradient descent that processes and updates parameters
based on a randomly selected subset or individual data point from the training set rather
than the entire dataset. This randomness introduces a noise level and offers computational
efficiency, making it particularly well-suited for large datasets [3].

Adam

Adam is a frequently employed optimization algorithm in deep learning. It merges ideas
from momentum and RMSprop optimization. Adam adjusts learning rates for individual
parameters by computing both the gradients’ mean (first-order moment) and uncentered
variance (second-order moment). These moments are then used to update the parameters,
providing advantages such as faster convergence and robustness to noisy gradients [3].

Minibatch

Rather than updating model weights based on the entire training dataset or individual
data points, a small subset or minibatch of input data is used each time a gradient step is
computed (each iteration). This approach offers computational efficiency, as it harnesses
parallel processing and proves especially advantageous when dealing with large datasets [10].
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Training

The training process refers to iteratively adjusting model parameters, such as weights and
biases, to minimize the difference between predicted and actual outputs. This optimization
is typically achieved by using a labeled dataset and a chosen loss function that quantifies the
model’s performance. The training phase involves forward and backward passes through
the network, where input data is fed forward to produce predictions, and then gradients
are computed backward to update the model parameters [3].

Inference

Inference involves utilizing a trained model to make predictions or classifications on new,
unseen data. Once the model has undergone training, it becomes ready for deployment in
practical scenarios. During inference, input data is fed into the trained model, and predic-
tions are generated based on the learned parameters. The effectiveness and accuracy of the
inference process are of the highest importance for the model’s practical applicability [3].

Normalization

Data normalization is a preprocessing step in training neural networks. Normalization can
be applied to the input features or the activations at different network layers. It involves
scaling and centering the input data so that it has a mean of zero and a standard deviation
of one. Normalization helps improve the convergence of gradient-based optimization algo-
rithms and ensures that the features are on a similar scale, preventing some features from
dominating others during training [7].

4.2 Classification and Embedding
Neural networks are vital in deep learning and can be used for prediction, classification,
natural language processing, or image and speech recognition. This thesis mainly focuses
on classification and feature extraction.

4.2.1 Training

Training routines are vital when creating a neural network because they are the primary
mechanism through which these powerful models acquire the knowledge and skills needed
to perform valuable tasks in diverse domains. During training, NN is given a large amount
of training data, and it iteratively changes its parameters like weights and bias [3].

Mathematically, if the inputs are denoted as 𝑥 = [𝑥1, 𝑥2, ...𝑥𝑛] and the weights as
𝑤 = [𝑤1, 𝑤2, ...𝑤𝑛] then the weighted sum (logit) of inputs can be expressed as 4.2.

𝑧 =

𝑛∑︁
𝑖=0

(𝑤𝑖 · 𝑥𝑖) (4.2)

This weighted sum is then passed through an activation function f, which introduces
non-linearity into the model and produces the output 𝑦 = 𝑓(𝑧). The output can then be
transmitted to other neurons in the network [3].

However, the weights are assigned using the initializing method, which will most likely
differ from the weights we aim for. Training aims to adjust the weights and other parameters
as optimally as possible, which tries to minimize errors made in learning examples. It
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typically uses the loss function to compare the error function of current data and new
example [3].

4.2.2 Loss Function

The loss function is a feature that measures the disparity between predicted and actual
values. Acting as the optimization criterion during training, it directs the model toward
parameter adjustments to minimize the error. The choice of a suitable loss function is
critical, affecting the effectiveness of the network in learning and generalizing from the
data [10].

4.3 Classification
Classification refers to assigning predefined labels or categories to input data based on the
patterns and features learned by a model during training. It is a fundamental application
with the goal of mapping input instances to discrete classes. The output layer of NN often
employs activation functions like softmax to generate probability distributions over classes.
This task’s most commonly used loss function is cross entropy [10].

4.4 Extraction of Representations
Representation extraction transforms raw input data into a more suitable format for the
learning algorithms to understand and process effectively. The goal is to capture the un-
derlying structure and patterns present in the data to facilitate learning and generalization
to new, unseen data [7, 13].

In deep learning, extracting representations has become more automated and hierarchi-
cal. Deep learning algorithms learn to extract increasingly abstract data representations
through multiple layers of non-linear transformations. These hierarchical representations
capture complex patterns in the data, making them suitable for tasks such as classification,
prediction, and data analysis [13].

4.4.1 Supervised Learning

Supervised learning is a type of machine learning where algorithms are trained on a dataset
containing both input features and corresponding output labels or targets. In this paradigm,
the algorithm learns to map input data to the correct output based on the provided exam-
ples [7].

The term ”supervised“ reflects the idea that the algorithm’s learning process is guided
by a teacher or instructor, represented by the labeled data. Unlike unsupervised learning,
where the algorithm must derive patterns and structures from unlabeled data alone, super-
vised learning algorithms benefit from having this labeled guidance to learn the underlying
relationships between the input features and the output labels [7].

4.4.2 Self-Supervised Learning

Unlike traditional supervised learning, which relies on labeled data for training, Self-
supervised learning (SSL) thrives on utilizing vast amounts of unlabeled data. At its core,
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SSL defines a unique approach where models are trained to generate descriptive and intel-
ligible representations through pretext tasks based on unlabeled inputs [1].

Contrastive Loss and Contrastive Learning

Contrastive learning is a machine learning paradigm that leverages contrastive loss as a
fundamental learning objective. The primary goal of contrastive learning is to train a
model to differentiate between similar and dissimilar instances in the input data space [1].

Contrastive loss is applied to train a neural network to predict whether or not two inputs
are from the same class. This is achieved by making the embeddings of similar inputs close
to each other in the feature space while embeddings of dissimilar inputs are pushed further
apart. Since the data used for training is without labels, positive pairs are formed by
creating variants of a single input using known semantic preserving transformations. These
positive pairs are contrasted with negative examples to reinforce the learning objective [1].

The margin parameter (often denoted as ’m’) plays a crucial role in contrastive loss,
imposing a constraint that the distance between examples from different classes should be
larger than the margin ’m.’ This ensures a clear distinction between positive and negative
pairs. The Triplet loss, another related concept, shares a similar spirit but is composed
of triplets—consisting of a query, a positive example, and a negative example. One of the
most used methods is SimCLR [1].

4.5 Collaborative Learning
The Google AI research team introduced collaborative learning (CL) in 2016. It facilitates
training a unified machine learning model by multiple parties, each leveraging their local
data samples without the need for data exchange. Unlike Distributed Learning (DL),
where a single joint model is trained across multiple devices without privacy concerns, CL
prioritizes data privacy by keeping local datasets confidential. This approach allows for
enhancing a global model managed by a centralized entity, utilizing insights collected from
diverse datasets without compromising individual data privacy [8].

In practice, collaborative learning operates within a framework where multiple comput-
ing parties contribute their local datasets and models to refine a global model orchestrated
by a centralized entity. Each computing party retains control over its local dataset, typi-
cally tailored to its specific environment (e.g., IoT device data or network traffic). Through
collaborative efforts, CL aims to iteratively improve participating parties’ global and local
models, thus advancing machine learning capabilities while safeguarding data privacy in an
increasingly interconnected world [8].
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Chapter 5

Proposal

This thesis concentrates on using ipfixprobe made by CESNET, which is deployed and, as
such, testable on fast networks of CESNET with multiple 100Gbit/s peering and transit
links. Because of the architecture of this flow exporter, it is possible to easily extend the
functionality by creating a new plugin [2].

Overall, the concept, shown in Figure 5.1, aims to use PyTorch libraries and APIs to
implement neural networks in ipfixprobe. The probe is implemented in C++. However,
users are most accustomed to Python. This language and its related libraries are also
considered for its popularity in machine learning and neural networks research, and the
scientific group in CESNET is most comfortable working with it. On account of this, the
concept aims to connect Python neural network models with routines written in C++.

Considering these requirements, this thesis aims to create a plugin that enables machine
learning in ipfixprobe using PyTorch-like technologies. It would utilize PyTorch C++
frontend API and let users define a model in Python. It would also use another PyTorch
API — TorchScript — to export and load the model into it. The user would define a model
in Python, through a parameter, let the plugin know the location of the defined model, and
the probe will start in inference 5.2 or training 5.3 mode.

5.1 PyTorch Model
PyTorch is a popular open-source machine learning library used primarily for developing
deep learning models. It offers a flexible and dynamic approach to building neural networks,
making it particularly favored by researchers and practitioners [23].

This proposal aims to create a model in PyTorch and use it inside the C++ plugin of
ipfixprobe using TorchScript and C++ frontend API.

5.1.1 Functionality

PyTorch provides many functionalities for creating neural network models and multiple
APIs for integrating these models into different languages like Java or C++ [23].

Tensor Operations

At the core of PyTorch lies its tensor computation library, similar to NumPy but bol-
stered with GPU acceleration capabilities. Tensors, multidimensional arrays, serve as the
foundational data structures for constructing neural networks. PyTorch tensors are highly
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Figure 5.1: Proposed architecture.

21



efficient and can be easily manipulated through different functions for various mathematical
operations [23].

Autograd

Autograd is a reverse automatic differentiation engine, a defining feature of PyTorch, that
meticulously records a computational graph as operations are executed. This mechanism
enables the smooth computation of gradients, which is crucial for training neural networks
via backpropagation. PyTorch autonomously derives gradients with input variables by dy-
namically tracking operations on tensors, thereby facilitating the optimization process [23].

Internally, autograd represents this graph as a network of function objects akin to expres-
sions, each capturing a specific operation. During the forward pass, as computations unfold,
autograd concurrently constructs this graph while performing requested operations [23].

Torch.nn Module

Building neural network architecture is provided by torch.nn class. It contains multiple
base building blocks like linear, recurrent, or normalization layers through subclassing
nn.Module, users can define custom layers, models, and operations. This encapsulation
organizes model parameters and facilitates forward propagation and parameter optimiza-
tion [23].

Forward Propagation

The process of propagating input data through the neural network to yield predictions
is realized through PyTorch’s forward method. During this phase, input tensors traverse
the network’s layers, culminating in the computation of intermediate outputs. PyTorch’s
dynamic nature allows for seamless adaptation of network architectures to diverse input
data [23].

Backward Propagation

PyTorch integrates backpropagation through its Autograd engine. Upon invocation of the
backward method, gradients of the loss function concerning model parameters are computed
recursively. Leveraging the chain rule, PyTorch efficiently updates model parameters, op-
timizing the network’s performance [23].

Optimization Algorithms

PyTorch offers multiple optimization algorithms via the torch.optim class. From classic
techniques like Stochastic Gradient Descent (SGD) to state-of-the-art methods like Adam
and RMSprop, users can select and customize optimization strategies tailored to their
specific applications. These algorithms iteratively refine model parameters to minimize the
loss function [23].

5.1.2 Proof of Concept

Even though the approach is very similar to starting with neural networks in PyTorch, a
combination of different APIs and languages is challenging. The routine for training must
be split into two parts, one in the ipfixprobe implementation and one in the model itself,
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which requires the definition of special functions in the model. Extra functions, except for
forward(), must have implemented decorator @torch.jit.export so the TorchScript knows
that they will be called from outside.

The model needs to have defined two methods, forward() and training_step(). These
methods are used the same way as in classic PyTorch implementation of neural networks.
An example of the PyTorch model can be seen below 5.1.

Both are defined in Python but are called through API from C++ source code. The For-
ward() method is responsible for defining the forward pass of the neural network. Method
training_step() calculates loss over the current batch of incoming data. The loss is then
backpropagated inside the C++ codebase using the backward() method during the train-
ing loop, which updates the neural network’s parameters (weights and biases) based on the
computed loss and optimizer used.

1 import torch
2 class Model(torch.nn.Module):
3 def __init__(self):
4 super(Model, self).__init__()
5 self.linear = torch.nn.Linear(30, 1)
6
7 def forward(self, x):
8 return self.linear(x)
9

10 @torch.jit.export
11 def training_step(self, batch) -> torch.Tensor:
12 # Forward pass
13 output = self.forward(batch)
14
15 # Custom training step logic
16 targ = torch.mean(batch, dim=-1, keepdim=True)
17 loss = torch.nn.functional.mse_loss(output, targ)
18
19 return loss
20
21 model = Model()
22 # Export the model to TorchScript
23 scripted_model = torch.jit.script(model)
24 scripted_model.save("scripted_model.pth")

Listing 5.1: Example of PyTorch model serialization.

5.1.3 Model Export

The model is defined in Python and can use third-party libraries like PyTorch. To export
the model, the user must install Python with PyTorch extensions, compile it, and execute
it. Afterward, it can be exported into a new representation loadable into C++ code,
TorchScript, and serialized in non-human readable form into a file using methods like a
torch.jit.script(module) and torch.jit.save(script_module, FILEPATH.pt) [22].
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Most commonly, the model does not need to be exported in its entirety, but its param-
eters, like weights of defined layers and bias, are not. This is in PyTorch achieved through
state_dict, which represents the current state of the model [28].

Unfortunately, C++ frontend API does not have this export functionality, and as such,
it will have to be implemented in a different way as multiple issues are raised [15, 17, 18, 19].
However, based on the PyTorch forums, there is a workaround to save parameters as tensor
and export it in the same way as model, torch::save() [16].

TorchScript

TorchScript is a tool to create serializable and optimizable models defined in PyTorch. This
makes it possible to load the model into a process without any Python dependency. As
the use of Python programs in a production environment might be disadvantageous and
slow, this is a way to provide a less performance-burdensome solution with the advantage
of PyTorch familiar processes and tooling [22].

5.1.4 Model Import

The PyTorch model is imported into the C++ frontend API by loading the serialized model
from TorchScript. The model imported this way contains default parameters, which is fine
for the first training of the model. However, if users want to achieve collaborative train-
ing 4.5 or want to continue training on the already trained model, the state of the previous
model (state_dict) must also be imported. To enable this functionality, the parameters are
to be exported into the file as tensor and imported in the same manner as the model [16, 22].

5.1.5 Pros & Cons

Using TorchScript to load PyTorch models into a C++ frontend comes with several ad-
vantages and drawbacks. On the positive side, one of the major pros is its ease of use.
TorchScript simplifies the process of integrating PyTorch models into C++ applications,
making it accessible even for developers who may not be experts in both environments.

Additionally, the considerable community support behind Torch and its extensive doc-
umentation further contribute to the module’s appeal. Leveraging a large community can
be advantageous, as it means a wealth of resources, including tutorials, forums, and pre-
existing solutions, making troubleshooting and development more straightforward.

Another advantage is the module’s adaptability, as it is not constrained to a single
model. This flexibility allows for easy substitution of models without significant code
changes, enhancing the module’s versatility and scalability.

However, there are some drawbacks to consider. One notable con is the overhead as-
sociated with creating a model using TorchScript. The process involves defining special
functions and multiple steps, including creating the PyTorch model and exporting it to
TorchScript. This additional complexity may increase the chances of errors during the
model integration process.

Furthermore, there is a trade-off in terms of visibility into the model. While the module
allows for seamless integration, the abstraction introduced by TorchScript may result in
reduced transparency into the model’s inner workings.
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5.2 Model Deployment and Inference
Ipfixprobe is written in C++, and as such, the model cannot be written in PyTorch and must
be loaded into it in different ways. Earlier, we discussed the deserialization of the model
into TorchScript; now, it can be loaded using a similar function, torch.jit.load(FILEPATH).

The model shall be loaded when initializing the plugin so that the ipfixprobe works
with the same model for the whole run. The data gained through capturing the traffic are
sanitized in methods post_create() and post_update(), so the model is not working with
IP addresses, for example. When the flow ends, pre_export() is called, in which the bytes
gained are converted into tensors, and method forward(), defined in the PyTorch model, is
called for inference. The result of this operation is again turned into a tensor. Afterward,
the chosen data based on the record template are exported.

5.3 Training Alternatives
There exist several possibilities for how to train the model. The considered ones will be
explained below, along with their pros and cons. The final proposed method is training the
model inside ipfixprobe 5.3.4 as it looks most versatile and usable.

5.3.1 Trained Model

The easiest method would be to have an already trained model, which would then be used
only for inference of incoming traffic. However, this raises the question of what data the
model should be trained on. It is best to train the model on expected traffic on the network.

5.3.2 Training outside of ipfixprobe

This is a scenario where the model still needs to be trained. The model is loaded and
inference mode is started on incoming data, but it also dumps incoming traffic to different
locations where a new iteration of the current model is created and trained on this data.
After a certain amount of data is dumped or time, the model is reloaded with the newly
trained, which dumps the data, too, and the loop starts again 5.2. After a certain threshold
(or never), the model would be reloaded for the last time, and it would operate only in
inference mode.

This solution would require a lot of space to store incoming traffic. The model would
have to implement new functions like GetNewBatch(), which would acquire the data from
storage. Also, each reload of the model could cause some downtime and would undoubtedly
be demanding performance-wise.

5.3.3 Training inside ipfixprobe

This approach lets the traffic be inference and the neural network be trained in real-time
without extra storage for capturing the traffic. At the start, the inference mode of the
plugin would be disabled, and the NN would be only iteratively trained based on incoming
data. After X iterations, the inference mode would start, but NN could still keep training
and updating without any further disadvantages in performance.

There would be no need for extra storage; the NN could start fresh without any prior
training and would train depending on the exact traffic it is used on.
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Figure 5.2: Scenario with dumping data to train in PyTorch.

5.3.4 Training and Inference in Separate Runs of Ipfixprobe

The approach chosen in this thesis is a combination of the possibilities above. The data on
which the model is trained are provided by the ipfixprobe. There is no labeling of the data.
The model is trained using self-supervised learning. However, this can be easily changed
inside training_step() in the PyTorch model. In the first run of the ipfixprobe, the option
for training is used with the chosen batch size, epoch size, number of epochs, and learning
rate. After the plugin reaches the limit of the epochs, the model parameters are exported
similarly to state_dict of PyTorch, and the plugin ceases its work.

In the next run of the ipfixprobe plugin, the options for inference, location of model, and
parameters are set. First, the model is loaded with parameters based on the option, and
the train() method is omitted. After receiving enough flows and packets, the inference is
run using the forward() method of the model and the output is printed on standard output.

In this approach, the plugin must be run twice. However, it brings the possibility to
train the model multiple times, even on different devices 4.5. It does not have any additional
performance bumps and can be utilized in a much simpler manner.
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Chapter 6

Implementation

The main goal of this thesis is to create a functional proof-of-concept, letting users define
neural network models in Python and loading it into the C++ plugin of ipfixprobe. As
mentioned before, ipfixprobe is written in C++, which introduces better performance and
platform independence at the cost of new challenges when implementing PyTorch-like rou-
tines. It is programmed using standard gnu++11. As such, the first thing to do was to add
libraries supporting PyTorch-related work, like libtorch, libtorch_cpu, libc10, and tomlc99.
These libraries required the standard to be updated to gnu++17.

6.1 Environment Preparation
As mentioned before, ipfixprobe is written in C++ and, as such, must be compiled into
some executable binary with all of the needed dependencies. This can be achieved by
downloading the repository and following these commands:

cd ipfixprobe
autoreconf -i
./configure
make
sudo make install

After installation is completed, it is possible to use ipfixprobe with the chosen plugins.

6.1.1 Libraries

To be able to use the C++ frontend API of PyTorch in ipfixprobe, its libraries are required
to be added into the ipfixprobe. The official API distribution offers the libraries in the
format of .so for different purposes, like CPU or GPU usage. This example utilizes only
CPU-based operations [21].

Unfortunately, as ipfixprobe runs on the C++ standard C++11, it needed to be updated
because of these libraries to C++14 or newer [20]. As such, updating the ipfixprobe building
process was required.

Building Process

Ipfixprobe uses Autoconf and Automake to manage the building process. They are inte-
gral components of the Autotools suite, designed to streamline the configuration and build
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process of software projects, particularly those adhering to GNU standards. Automake
facilitates the automatic generation of Makefile.ins from Makefile.am files, simplifying the
management of Makefiles by defining variables and occasionally rules. These generated
Makefile.ins files adhere to the intricate GNU Makefile standards, alleviating the mainte-
nance burden from individual GNU maintainers and shifting it to Automake maintainers.
Each directory typically contains one Makefile.am file, processed by Automake to produce
a Makefile.in [12].

While Automake imposes certain constraints on projects, such as requiring Autoconf,
it ensures compliance with GNU standards without necessitating Perl for build processes.
Autoconf, another component of Autotools, works with Automake to automate the con-
figuration process. It generates configuration scripts based on configure.ac files, which are
typically included alongside Makefile.in and Makefile.am files in software packages [12].

The standard was updated to gnu++17, and libraries were added like this:

1 AC_ARG_WITH([libtorch],
2 AS_HELP_STRING([--with-libtorch],
3 [Path to LibTorch installation directory]))
4 if test "x$with_libtorch" != "xno"; then
5 AC_MSG_CHECKING([for LibTorch])
6 if test -f "$with_libtorch/lib/libtorch.so"; then
7 AC_MSG_RESULT([yes])
8
9 CPPFLAGS="$CPPFLAGS -I $with_libtorch/include

10 -I $with_libtorch/include/torch/csrc/api/include
11 -I thirdparty -I thirdparty/tomlc99 -D_GLIBCXX_USE_CXX11_ABI=0 "
12
13 LIBS="$LIBS -Wl,-rpath, $with_libtorch/lib
14 -Wl,--no-as-needed, "$with_libtorch/lib/libtorch_cpu.so"
15 -Wl,--no-as-needed, "$with_libtorch/lib/libtorch.so"
16 -Wl,--as-needed $with_libtorch/lib/libc10.so"
17 else
18 AC_MSG_ERROR([LibTorch not found in the specified directory])
19 fi
20 else
21 AC_MSG_ERROR([LibTorch is required.
22 Use --with-libtorch option to specify its location.])
23 fi

Listing 6.1: Add torch libraries to build.

6.2 Neural Network Plugin
To enable the use of Python-like routines in ipfixprobe, it was necessary to divide the work
into two codebases: create a plugin inside ipfixprobe and define a PyTorch model inside
a Python file. This enables users to work with familiar PyTorch tooling and use it inside
the C++ code of ipfixprobe. This also aims to let users change only PyTorch models
for different tasks without the need to update the code of the plugin or even compile the
ipfixprobe again.
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6.2.1 Python Model

For easier use by ipfixprobe users, the neural network model is written in Python using
PyTorch for its neural network operations and TorchScript for the model export. The
model used for the final experiments looks like this:

The model looks very similar to standard models created with PyTorch. Although there
are some differences shown by commented code, The initialization of the model defines a
single layer of the neural network of size: 𝑝𝑎𝑐𝑘𝑒𝑡𝑠_𝑐𝑜𝑢𝑛𝑡×𝑐𝑜𝑛𝑡𝑒𝑛𝑡_𝑠𝑖𝑧𝑒. This layer is then
used inside the forward() method.

The model defines a method called training_step(self, batch), which simulates an it-
eration of standard training in PyTorch. It is necessary as this method is called in the
training loop inside of the newly created plugin. This method returns calculated loss based
on the incoming batch using mean squared error in comparison with output from the torch
function for calculating the mean.

Finally, the model is exported using TorchScript API torch.jit.script(MODEL) and
save(PATH) methods into the serialized format and ready to be loaded into ipfixprobe.

6.2.2 Ipfixprobe Plugin

Neural plugin represents the C++ part of the codebase. The main features are loading the
model, creating a bridge between the PyTorch model and ipfixprobe, and processing data.

It contains fields defining how long the training should be, with what learning rate, how
many flows create a batch, how many packets from the flow, or how much of the payload
the model should process. Methods used for the work with model are 6.1:
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Figure 6.1: Class diagram of Neural plugin.

Options

The option parser is defined in the header file of the neural plugin and offers multiple
options for customizing the plugin.

List of options:

• i - Switch for inference/training.

• m - File path to the scripted neural network model.
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• s - File path to state_dict.

• c - Continue training with selected state_dict enabling the collaborative training 4.5.

• d - Dumps tensors of flow into multiple TorchScript files named based on the epoch.

• lr - Overwrite of default learning rate.

Initialization of the Model

In the initialization phase, the default values for the number of epochs, size of the epoch,
learning rate, number of flows per batch, number of packets per flow, and size of packet
taken into account are set, and the array for containing flow records is created. Afterward,
options with which the plugin was started are parsed and applied, changing the plugin’s
behavior. Then, the PyTorch model is loaded through torch::load(), and if the ’s’ option
was specified, the models’ parameters are set based on the state_dict. If the state_dict
option is not specified and the model is used for training, the state_dict is saved into the
default location.

In the next step, the optimizer is initialized; in the example, it is Stochastic Gradient
Descent, and the model parameters and learning rate are pushed to it.

State_dict

Methods like MODEL.save_state_dict() from PyTorch are not implemented in C++ fron-
tend API; as such, it was necessary to create something similar. The newly implemented
method respects the naming conventions of PyTorch so that users do not have to think
about the functionality of the method.

The new method save_state_dict() takes the named parameters of the model, turns
the value tensors into a single std::vector of tensors, and saves it into a single file specified
by the ’s’ option using the torch::save() method. The contradictions to this method are
load_state_dict() and set_state_dict_parameters().

Load_state_dict() loads the TorchScript file in the same manner as when loading the
model, using the torch::load() method, and returns the loaded parameters as std::vector of
tensors. This vector is then taken by set_state_dict_parameters(), which iterates through
the named parameters of the model and sets their value to the values inside the vector.

This should simulate missing methods from PyTorch API MODEL.state_dict() and
MODEL.load_state_dict() in C++ frontend API. There is one drawback: the parameters
must be in the same order (layers of the neural model) when set as when they were exported,
which is not a problem when the same model is used. However, if some extension of this
plugin would be implemented in the future, it is essential to consider this.

Packet Processing

When a new packet arrives, ipfixprobe decides if it is part of the already seen flow or
if it starts a new one. If it starts a new flow, the post_create() method is called, which
creates a new NeuralRecord for holding information about this flow. If the flow had already
been seen, method post_update() is called, which gets the already created NeuralRecord.
Afterward, update_record() is invoked.

The update_record() method is the primary function for handling the packets of flows.
Initially, it checks if it should skip this packet based on the number of packets already
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contained inside NeuralRecord and the number of packets per flow allowed or if the training
phase has already ended. Then, the packet’s payload is trimmed to the value defined in the
initialization phase by CONTENT_SIZE, meaning the maximum size of a single packet.
The packet is added to the array of packets of the current flow. For copying the data of
the packet and not updating the packet itself, the method std::copy() is used.

Communication with Neural Model

All the communication between the neural plugin and neural network model happens inside
the method pre_export(), which is invoked on the current flow when it ends. If the model
is already trained and another flow ends, nothing happens, and this traffic is skipped.
Otherwise, the size of the flow array is checked to see if the batch is ready to be sent.

If the plugin is in inference mode, the method nn_inference() is called. It takes the
current flow, creates a tensor from its NeuralRecord, and pushes it into the neural model
through the method forward(), which returns the estimated value from the model.

In the training mode, the training loop starts, counting batches in the epochs and
iteratively increasing epochs until the limit for training is hit. In the training loop, it calls
method nn_training(). It creates the whole flow array as a batch and creates a tensor with
normalized data from it in dimensions of batch size, number of packets, and size of the
payload. Each byte is normalized by dividing it by its maximal possible value (255).

Then, the gradients are reset to none, and the tensor is pushed into the neural net-
work model, which returns the calculated loss. This loss is then backpropagated, and the
optimizer makes a step, ending the training loop’s single iteration.

6.3 Workflow
Ipfixprobe receives numerous incoming packets, collecting them into flows. The plugin takes
30 packets per flow or less if the flow ends earlier. From each packet, 100 bytes are saved
into an array. These bytes are then normalized for easier processing by NN. Each byte is
divided by a maximum value of byte, 255. After having 30 normalized packets per flow
with a total of 16 flows (batch size), they are pushed into the training routine or inference
of the earlier defined neural model. This scenario is shown in the Figure 6.2.

In the training routine, the loss is calculated based on the chosen algorithm; for proof-
of-concept, the mean squared error (mse_loss) defined in PyTorch is used. After all of
the training epochs are over, the models’ parameters are saved as the state_dict into the
TorchScript file.

In inference, the data vectors are sent into the forward() method, which calculates the
output based on the neural network specifications. Afterward, the data incoming from the
neural network are processed and exported using the export() method of the ipfixprobe
plugin.
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Figure 6.2: Simplified workflow of neural plugin.
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6.4 Execution of the Plugin
The neural plugin extends Ipfixprobe, and as such, the plugin 6.2.2 is started by specifying
specific options when starting ipfixprobe. In plugins, the (-p) option specifies the neural
plugin as a string consisting of its name and options, each separated by a semicolon. The
order of the options does not matter.

ipfixprobe -i "pcap;file=PCAP"
-p "neural;m=scripted_model.pth;s=state_dict_values.pt;c;

lr=0.1;d=FOLDER"
-o "unirec;i=f:$out.trap;p=(neural)"

Listing 6.2: Starting neural plugin.

In the example above, the neural plugin is executed with model scripted_model.pth,
state_dict file state_dict_values.pt, with the option to continue learning based on the
loaded state_dict, the learning rate of 0.1, and the path to the folder for dumping tensors
of the network traffic. For more options, please refer to the optionssection 6.2.2.
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Chapter 7

Evaluation

In this chapter, the performance and effectiveness of the developed plugin, which utilizes
the C++ frontend API of PyTorch and the PyTorch neural model scripted into TorchScript
for ipfixprobe, are evaluated. Various datasets and performance metrics are used to assess
its functionality, training process, and inference speed.

In the first section, what is being evaluated, the testing data used, and the baseline
for testing are precisely established. Subsequently, the focus shifts to the training routine,
particularly its loss convergence and the duration required to execute a single training
routine. Following this, the processing time of the plugin is compared across different
numbers of parameters. Finally, the performance difference between the neural plugin and
the pstats plugin is assessed using a statistical approach.

7.1 Functionality Measurement
To evaluate the functionality of the newly created plugin, vital performance metrics were
employed to assess its efficacy in handling network traffic analysis tasks. Primarily, em-
phasis was placed on measuring the processed flows per second, providing a quantitative
measure of the plugin’s efficiency in real-time data processing. Additionally, the loss in-
curred during the training phase of the neural network model was monitored. Lower loss
values are indicative of better convergence and learning from the provided data, showcasing
the plugin’s effectiveness in capturing underlying patterns within the network traffic.

When conducting our experiments, an artificial task was adopted as the focal point
of investigation. By selecting an artificial task, a controlled environment was created to
facilitate a detailed analysis of specific aspects. This approach allowed the nuances of
various techniques, architectures, and methodologies to be meticulously studied without
the confounding factors present in real-world datasets.

It is noteworthy that while our experiments primarily focused on an artificial task, the
architecture and design of the neural model within the plugin enable seamless interchange-
ability with various learning algorithms and neural models, broadening its utility beyond
our specific investigation.

7.1.1 Datasets

For the basic functionality of connecting the PyTorch model with the ipfixprobe plugin, I
chose firstly to use random tensors and calculate the mean. Afterward, the performance
tests were performed on a 580 MB pcap file of network traffic from the CESNET network.
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Random Tensor

The random data are used only to test the convergence of neural networks. The tensor
is created inside the ipfixprobe neural plugin with the exact dimensions that the tensor of
actual network traffic would have. The random tensor was created via the torch::rand()
method, which creates a tensor with values between 0 and 1 in normal distribution [23].

Network Traffic

The pcap file from network traffic should simulate real-world network data and be used for
both tests, loss convergence, performance tests, and comparison against the pstats plugin
of ipfixprobe. It contained 11 620 flows with 1 067 579 packets, a total of 561 874 569 bytes.

7.1.2 Baseline

The evaluation considered primarily small neural network models, due to the capacity
limitations of the ipfixprobe. To establish a baseline for performance evaluation, the plugin
was tested using the random tensor dataset with fixed dimensions (64x30x100). All the
tests performed in training mode used a learning rate of 0.01. The training was conducted
on 5 epochs of size 1024 flows, each flow consisting of 30 packets. The considered payload
size of packets was changed throughout different tests to ascertain the plugin’s ability to
handle different tensor sizes.

The chosen neural model consists of a single linear layer, meaning only a single operation
(matrix multiplication) is performed. As the payload of the incoming packets increases, the
size of the linear layer and the size of the neural model are affected by increasing the number
of model parameters.

7.1.3 Training Measurements

The loss convergence during training is shown in Figure 7.1, depicting the loss value per
batch. In a single training run, the loss decreases to about 3.62𝐸 − 06 with random values
and to 2.81𝐸 − 06 with the network traffic by the last batch.
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Figure 7.1: Calculated loss throughout a single run of training.

The training over network data took about 22.466 seconds, resulting in processing
227.899 flows (3.6 batches) per second. In reality, only 153 600 (5x1024x30) out of 1 067 579
packets (14.3876940%) were processed during training as the training ended in the fifth
epoch, and all other flows were skipped. The training took about 3.687 seconds with ran-
dom tensors, meaning 21.69 batches were processed per second. The comparison can be
seen below 7.2.

Figure 7.2: Processing time of batches in a single run of training.
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The big difference in the time it took to train is most likely caused by a method for
processing the packets called create_tensor_based_on_flow_array(), which takes incoming
packets and pushes them into flow records.

7.1.4 Inference Measurements

In the first experiment to measure inference of neural plugin, tests were parameterized with
the same baseline 7.1.2 random tensors against pcap with network traffic. In Figure 7.3 is
shown the performance problem as in 7.2 with method create_tensor_based_on_flow_array().
This overhead is even more visible as the neural model does not receive data in batches,
but each flow is sent as a separate tensor.

Figure 7.3: Comparison in inference on 30x100 tensors.
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Next experiment consisted of increasing size of the inputs from 30 to 7500 and mea-
suring how long it takes to process them. In Figure 7.4 is depicted processing time in the
create_tensor_based_on_flow_array(), from 1.116 seconds for 30 bytes to 59.283 second
for 7500 bytes.

Figure 7.4: Processing time of neural plugin based on size of input tensors.

The following experiments preserved the baseline 7.1.2, but the payload size is changing.
This causes the model’s parameters to change throughout the experiments to show how the
model’s size affects the performance. The model uses a single linear layer, and its size in the
experiments is based only on the number of packets and the number of bytes considered.

The charts below 7.5 show how the processing time of flows in inference grows as the
number of model parameters increases from 30 to 7500 parameters.
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Figure 7.5: Processing time of flows in inference dependent on the number of parameters.

7.1.5 Comparison to pstats

The pstats plugin of ipfixprobe is designed to provide comprehensive statistical analysis of
network traffic flows. It collects data from network packet headers and generates flow-level
statistics [4].

The pstats plugin takes up to 30 packets and analyses their headers. For comparison,
the plugin was executed with options shown below on the same dataset as baseline 7.1.2.
The processing times of multiple runs were used to calculate the mean, which was then
used as single pstats processing time, as it should be constant, equal to 3.227 seconds.

./ipfixprobe -i "pcap;file=PCAP" -p "pstats"
-o "unirec;i=f:$out.trap;p=(pstats)"

Listing 7.1: Example of executing pstats plugin fo ipfixprobe.
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The chart below depicts the comparison of the pstats and the neural plugin. At low
number of parameters, the processing time is very similar to pstats. In an experiment where
the neural model had 30 parameters, the times were almost identical; with 7500 parameters,
the time increased by 53% to 4.892 seconds.

Figure 7.6: Processing time of neural plugin vs pstats based on a number of parameters.

7.2 Evaluation Results
In conclusion, the evaluation of the plugin demonstrated its effectiveness in handling both
synthetic and real-world datasets. The training of the neural model was successful, the loss
was converging, and even though only a single training routine was observed, the training
can be enhanced by using the ’c’ option of the neural plugin 6.2.2 to continue training with
already trained parameters.

The inference also worked; however, the performance loss for preprocessing actual net-
work traffic could be improved. Although we found a weak spot in data preprocessing,
the proof-of-concept handles communication with neural model with only slight decrease of
performance.
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Chapter 8

Conclusion

This thesis focused on developing a new plugin into ipfixprobe created by CESNET. The
plugin implements a wrapper around a neural model defined in PyTorch and the C++
codebase of ipfixprobe.

The proposed ipfixprobe plugin is implemented using different APIs provided by Py-
Torch and integrated into the C++ code of ipfixprobe. This enables monitoring flow-based
network traffic using neural networks and, as such, detects complex patterns and anomalies
in network traffic, providing a more intelligent and adaptive approach to network security.

The proof-of-concept utilizes an artificial task during training, requiring no additional
external training data prior to deployment. However, this is solely dependent on the current
routine defined in the PyTorch model, which can be easily replaced with different routines.
It is possible to use previously trained state_dict (even from different devices if the model
was the same) and achieve continuous or collaborative training 4.5.

At this phase, the plugin considers the first 30 incoming packets with 100 bytes from
each packet per flow and uses 64 flows per batch. The training runs for 5 epochs of 1024
flows. This should provide enough data for training and comparison of results with different
imported models.

The plugin was tested on randomly generated data as well as a network traffic dataset.
In the evaluation, the training and inference processes are observed. In the training evalu-
ation, the chapter focused mostly on the loss convergence and the model’s ability to learn
from the data. In inference, the focus switched to the analysis of the time the plugin and
neural model need to process the traffic. In inference, the proof-of-concept suffered in per-
formance because of the method used for packet processing. The processing time increased
significantly by increasing the amount of the data to be stored and preprocessed by the
plugin. This does not make the plugin unusable, but improvement shall be considered in
future development.

Depending on further research and community interest, future development may focus
on performance improvements, interchanging neural model capabilities, and easing the de-
mand for users of this plugin. It was considered to add options to define epochs, batches,
optimizers, and other parameters inside the PyTorch model and retrieve them as attributes
of the model on the side of the plugin. Relieving the users from operating inside the C++
codebase and focusing only on improving the imported PyTorch model. The architecture
of the plugin enables switching neural models and, as such, provides opportunities to test
different models on the actual network traffic from single or multiple devices.
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