Neuritida optiku jako první příznak roztroušené sklerózy mozkomíšní

Bakalářská práce

VYPRACOVALA: Mgr. Markéta Havrdová
Obor 5345 OPTOMETRIE
Studijní rok 2013/2014

VEDOUCÍ BAKALÁŘSKÉ PRÁCE: RNDr. František Pluháček, Ph.D.

KONZULTANT: MUDr. Jan Havrda
Čestné prohlášení

Prohlašuji, že jsem bakalářskou prací vypracovala samostatně pod vedením RNDr. Františka Pluháčka, Ph.D. za použití literatury uvedené v závěru práce.

V Olomouci, dne 2. 5. 2014
Poděkování

Chtěla bych poděkovat svému školiteli RNDr. Františku Pluháčkovi, Ph.D. za odborné konzultace a MUDr. Janu Havrdovi z Litomyšlské nemocnice za ucelení práce podle poznatků z oftalmologické praxe.
1 Úvod

Práce pojednává o retrobulbární neuritidě vzniklé v souvislosti s roztroušenou sklerózou mozkomišní (RSMMS), což je demyelinizační autoimunitní zánětlivé onemocnění bílé hmoty CNS (centrální nervové soustavy - mozku a míchy). Symptomatologie roztroušené sklerózy je různorodá, v závislosti na lokalizaci ložiska zánětu v rámci CNS. Pokud je demyelinizací postižen zrakový nerv, dochází k náhlému zhoršení zrakové ostrosti různé intenzity, které představuje v 15 – 20 % [1] první příznak onemocnění RSMMS.

Mezi méně časté lokalizace postižení, které se mohou projevit očními potížemi, patří oblast jader okohybných nervů, která způsobuje poruchy hybnosti očního bulbu a diplopii, či léze v oblasti supranukleárních struktur CNS působujících pohledové obrny či poruchy charakteru internukleární oftalmoplegie. Postižení těchto struktur ložisky zánětu s příslušnými projevy bude v práci rovněž okrajově zmíněno.

Cílem této práce, provedené ve formě rešerše, je seznámit optometristy s roztroušenou sklerózou především jako příčinou retrobulbární neuritidy, jejímž hlavními příznaky jsou mj. náhlé zhoršení zrakové ostrosti a bolestivost za okem při jeho pohybu. Vodítkem ke správné diagnóze by měl být zejména rozpor mezi mnohdy těžkou poruchou zraku a chudým objektivním očním nálezem, kdy na očním pozadí chybí patologické změny. To je s oblibou parafrázováno tak, že nic nevidí vyšetřující ani pacient, avšak při pečlivém vyšetření si lze obvykle všimnout patologické zornicové reakce na postižené straně. Včasné rozpoznání příznaků spolu s dobře odebranou anamnézou a následné odeslání pacienta k očnímu lékaři může včas odhalit závažné systémové onemocnění.

V první části rešerše je obecně nastíněna problematika roztroušené sklerózy mozkomišní (etologie, patofyzioologie, epidemiologie a symptomatologie) a uvedena souvislost mezi zánětem zrakového nervu a roztroušenou sklerózou. Následně práce popisuje anatomii, fyziologii a patologii zrakového nervu, zrakové a pupilomotorické dráhy a okohybné poruchy v souvislosti s RSMMS. Největší část rešerše je pak věnována samotné retrobulbární neuritidě: klinickým projevům, vhodným zobrazovacím a laboratorním metodám diagnostiky, diferenciální diagnostice, léčbě a prognóze onemocnění. Diagnostika, která prokazuje neuritidu optiku ve spojitosti s roztroušenou
sklerózou, je rozepsána podrobněji, aby akutní ztráta vizu nemohla být mylně přiřazena k jinému onemocnění.

Správná diagnostická rozvaha přispívá k časnému záchytu onemocnění roztroušenou sklerózou, což je nezbytné pro snížení trvalých následků. Optimální nastavení dlouhodobé léčby zabraňuje progresi zánětu a oddaluje invaliditu pacienta.
2 Roztroušená skleróza mozkomíšní

2.1 Etiologie a patofyziologie

Příčina vzniku onemocnění není doposud zcela spolehlivě objasněna, ale v současnosti je RS považována za chronickou zánětlivou imunitní poruchu, která je zprostředkována poruchou buněčné imunity, přičemž rozvoj onemocnění je ovlivňován jak faktory genetickými, tak faktory zevního prostředí [2].

2.2 Epidemiologie

Sclerosis multiplex cerebrosinalis (roztroušená skleróza mozkomíšní, RSMM) je v našem geografickém pásmu relativně často se vyskytující onemocnění, které se řadí do skupiny demyelinizačních chorob. Onemocnění postihuje hlavě indoevropskou populaci nejčastěji mezi 20. až 40. rokem věku. Směrem od rovníku výskyt onemocnění stoupá (prevalence, tj. počet nemocných na 100 000 obyvatel, je 100 až 130), ženy jsou postiženy dvakrát častěji. Genetické vlivy se nepochybně uplatňují při rozdílném výskytu choroby u Indoevropanů a Asiatů., Afroameričané trpí RSMM méně než bílá populace USA, ale geneticky stejně vybavení Afričané chorobu téměř neznají. Byly popsány židovské rodiny s opakovaným výskytem RSMM, kde po přestěhování do Izraele se onemocnění projevilo jen u části potomků narozených v USA. U větších dětí se choroba rozvinula s několikaletou latencí i v novém prostředí, u malých dětí onemocnění nikdy nevzniklo. Mezi další vlivy způsobující růst prevalence choroby se řadí kouření, změna hygienických návyků, změny ve způsobu zpracování masa apod. V Evropě je výrazně vyšší výskyt onemocnění ve Skandinávii než ve středomoří, což se vysvětluje menším množstvím slunečního záření a nedostatkem vitaminu D. Jako u řady dalších chorob je předpokládán vliv infekce, která odstartuje onemocnění nabídkou určitých antigenních struktur blízkých myelinu. V České republice je výskyt onemocnění na horní hranici udávané prevalence a incidence (počet nově diagnostikovaných případů na celkový počet obyvatel regionu za rok) také stoupá výrazněji u žen. Není ovšem jasné, zda nehraje roli vyšší záchyt a lepší informovanost veřejnosti [2, 3].

2.3 Průběh onemocnění

RSMM je chronické onemocnění typicky probíhající v atakách a remisích. Akutní atač je definována jako vznik nových nebo zhoršení stávajících neurologických příznaků během 24 hodin a není spojeno s akutním horečnatým onemocněním. Progresí je označován stav, kdy zhoršení neurologického nálezu trvá 3 – 6 měsíců [3]. Při atace se rozvíjí fokální (ložisková) nebo multifokální neurologická dysfunkce, po určité době se stav opět upraví a dochází k remisi. Po prvotní atace může dojít i ke kompletní úpravě a remisi na několik let. Přibližně u 25 % nemocných dochází v dalším průběhu k relapsu a další atace v průběhu prvního roku, u 50 % v průběhu 3 let. Atace onemocnění mohou někdy předcházet exogenní faktory (virová infekce, přílišná fyzická
Pokud pacient prodělal pouze první ataku, jedná se o klinicky izolovaný syndrom (clinically isolated syndrom, CIS), při objevení se druhé ataky již o relaps-remitentní (RR) formu RSMM, která je nejčastějším typem průběhu onemocnění (80 % pacientů). Jak již bylo výše zmíněno, akutní ataky jsou následovány obdobím remise, které je individuálně dlouhé a ve kterém se neurologický nález vrací alespoň zpočátku prakticky do normy. V tomto období, i přes relativní klinickou stabilizaci, pokračuje subklinický zánětlivý proces v CNS, který vede k destrukci nervovětích, což lze pozorovat na MRI. Četnost atak přibývá a symptomatika je intenzivnější, remise neúplné a zůstává rezidualní nález. Dochází k progresi a narůstání neurologické symptomatiky a funkčního deficitu. V dalším průběhu jsou ataky již méně časté, onemocnění přechází do formy sekundárně progredientní, později chronicko-progredientní a postupně dochází k invalidizaci až imobilizaci postiženého. Vzácnější je naštěstí primárně progredientní forma, která nemá ani začátek ataky a od jejího vzniku symptomatika postupně progreduje [2]. Postihuje asi 10 % pacientů [3].

Jako krajní varianta existuje forma maligní, kdy je v průběhu několika let nemocný upoután na lůžko a může dojít i k úmrtí [2].

2.4 Klinické projevy

Klinická symptomatologie je různorodá, charakterizovaná přítomností centrálních příznaků v závislosti na lokalizaci ložiska. Pokud je postižen optický nerv, jedná se o optickou neuritidu, charakterizovanou poruchou vízu. Postižení určitých oblastí míchy či mozku může vést k poruchám čítí (sensitivním projevům), jakými jsou parestezie (pocit mravenčení) či dysestezie (neadekvátní vnímání podnětu, např. dotyku jako pálení) horních, event. dolních končetin, vestibulární syndrom, charakterizovaný závratěmi, nystagm, diplopii či internukleární oftalmoplegií. Mohou se objevit spastické motorické projevy (hyperreflexie se spastickými pyramidovými jevy) či mozečkové poruchy (lehká či těžká ataxie, poruchy rovnováhy, intenční třes). Dále se mohou objet poruchy sfinkterů (zejména močení nebo impotence). Přes možné psychické projevy, kterými jsou změny afektivity – deprese či euporie, bývá intelekt neporušen. Častým nespecifickým příznakem bývá únava [2].
2.5 Diagnostika

Diagnosticky je nejdůležitější klinický průběh a obraz. Pro jistou diagnózu jsou vyžadovány alespoň dvě ataky a průkaz dvou různě lokalizovaných ložisek na magnetické rezonanci. Ta prokazuje vícečetné demeylinizační plaky, diseminovaná ložiska v bílé hmotě mozku, zejména periventríkulárně. Dalším vyšetřením bývá rozbor mozkomíšního moku, který často vykazuje pleocytózu (zvýšení celulárních elementů), zvýšení bílkovin, zvýšení gamaglobulinů, zvláště třídy IgG (při elektroforéze likvoru průkaz tzv. oligoklonálních proužků). Uvedená vyšetření jsou podrobněji popsány v kapitole 4 Neuritida optiku, viz podkapitola 4.4 Klinické vyšetření a 4.5 Pomocné vyšetření [2].

2.6 Asociace mezi retrobulbární neuritidou a roztroušenou sklerózou

Retrobulbární neuritida patří mezi hlavní klinické příznaky roztroušené sklerózy, ale ne všichni pacienti ji mají. Procentuální zastoupení výskytu retrobulbární neuritidy u postižených pacientů roztroušenou sklerózou je uváděno v následujícím přehledu [1].

- Retrobulbární neuritida se vyskytuje až u 50 % pacientů s již diagnostikovanou roztroušenou sklerózou [1].
- Riziko rozvinutí roztroušené sklerózy po atace retrobulbární neuritidy je asi u 38 % pacientů během deseti let [1].
- Pacienti s první atakou RN, kteří mají na MRI pozitivní léze, ale nemají klinické známky RSMM, mají 56% riziko rozvinutí během deseti let, ti u kterých nejsou pozitivní léze na MRI je riziko rozvinutí RSMM 22% [1].
- I přes nález retrobulbární neuritidy (rozpoznán magnetickou rezonanci) se klinické příznaky roztroušené sklerózy neprojeví během deseti let ve 44 % případech [1].
3 Zraková a pupilomotorická dráha a její patologie se zřetelem k projevům optické neuritidy při RSMM

Jak již bylo uvedeno, jedním z příznaků RSMM může být neuritida optiku. V úvodu kapitoly je zmíněna související anatomie zrakového nervu včetně popisu fyziologického průběhu zrakové a pupilomotorické dráhy, následně pak jsou představeny patologie vzniklé při optické neuritidě a okohybné poruchy vzniklé v souvislosti s RSMM.

3.1 Zrakový nerv

Optický nerv (nervus opticus, optikus, n. II, obr. 1) je traktem bílé mozkové hmoty s 1,2 milionu nervových vláken, z nich je 80 % senzorických a 20 % pupilomotorických. Zrakový nerv začíná na lamina cribiformis sclerae lehce nazálně vzhůru od zadního pólu oka. Celý optikus měří kolem 50 mm, z toho intraokulární část sotva 1 mm, orbitální úsek 25 – 30 mm, kanalikulární 6 – 10 mm a nejvariabilnější intrakraniální úsek 4 – 17 mm. Kromě intrabulbární části optiku, která je nemyelinizována, jsou vlákna optiku obalena oligodendroglií (myelin CNS). Orbitální část optiku je opatřena vazivovými pochvami, které jsou pokračováním mozkových plen a kolem optiku vytvářejí intervaginální prostor subdurální a subarachnoideální, ten představuje komunikaci s nitrolebním prostorem subarachnoideálním. Asi 10 – 20 mm za bulbem do nervu vstupují centrální retinální cévy, a. oftalmica navíc s plexem sympatických vláken inervujících m. dilatator pupillae a m. ciliaris. V kanalikulárním úseku je nerv fixován ke skeletu. V intrakraniální části je nerv již bez pochev a vazivových sept, oba nervy se stýkají v chiazmatu, kde se vlákna obou nervů částečně kříží. Vlákna vedoucí signál z vnitřních polavin sítnice (tedy zevních polovin zorného pole) se kříží, vlákna vedoucí signál ze zevních polovin sítnice (vnitřních polovin zorného pole) se nekříží [4, 5].
3.2 Zraková dráha

Zraková dráha (obr. 2) transmitující signál ze sítnice do vyšších center mozku je čtyřneuronová, pokud jsou fotoreceptory počítány za první neurony zrakové dráhy. Fotoreceptory se dělí do dvou základních typů, z nichž oba mají ještě subtypy v závislosti na okrsku sítnice, v němž se vyskytují. Obecně lze říci, že tyčinky, jichž je na sítnici asi 120 milionů, zajišťují skotopické vidění (tj. černobílé vidění za snížených světelných podmínek) a vyskytují se v nevyšší hustotě v periferii sítnice. Jejich četnost směrem k makule klesá, zatímco hustota čípek, zajišťujících fotopické vidění (tj. vidění za dobrých světelných podmínek s nejvyšší ostrostí), jichž je na sítnici celkem asi 6 milionů, směrem k makule stoupá. Maximum čípek se nachází ve foveole, nejcentrálnější oblasti sítnice zajišťující nejostřejší vidění, kde již tyčinky zcela chybí. Zde je i zcela jiná architektonika vrstev sítnice, neboť vrstvy nad fotoreceptory jsou posunuty do stran tak, aby byl vstupující signál co nejméně narušován. To determinuje charakteristický vzhled jamky. Tato oblast je ze stejných důvodů avaskulární [4, 7, 8].
3.2.1 Zpracování světelného signálu a jeho vedení

Vstupující světelný podnět je fotoreceptory „zakódován“ do elektrického signálu, jež je odeslán dále na druhý neuron zrakové dráhy, jímž je bipolární buňka a třetí neuron, jímž je gangliová buňka. Signál je ale složitě upravován sítí dalších neuronů sítince. Axony gangliových buněk po výstupu z očního bulbu skrze lamina cribrosa dostávají myelinové pochvy a tvoří zrakový nerv krytý mozkovými obaly. Vlákna se kříží s vlákny druhosstranného optiku po výstupu z canalis opticus v chiasma opticum, dále jsou označována jako optický trakt, stále ale jde o axony gangliových buněk. K interpolaci na čtvrtý neuron pak dochází ve struktuře thalamu označované jako corpus geniculatum laterale (CGL). Ještě předtím se ovšem část vláken, označovaná jako radix optica mesencephali, odklání a vstupuje do oblasti area praetectalis. Jedná se o vlákna, jež jsou součástí pupilomotorického reflexního oblouku. Další vlákna, jež se oddělují před vstupem do corpus geniculatum laterale tvoří radix medialis, jenž vstupuje do brachium colliculi superioris a jeho některá vlákna končí v colliculus superior tecti. Tato propojení umožňují reagovat na zaznamenaný podnět v periferii současným reflexním otočením hlavy. Obdobné propojení existuje i u sluchové dráhy. Radix lateralis, čili majoritní část vláken, vstupuje do CGL. Odtud pokračuje zraková dráha jako tractus geniculocorticalis do primární zrakové korové oblasti (Brodmanově area 17) okcipitálního (týlního) laloku, jejíž neurony tvoří korový obraz, některá vlákna končí v area 18 a 19. Výsledný zrakový vjem se pak tvoří v sekundární zrakové korové oblasti v součinnosti s dalšími vyššími korovými centry [4, 5, 7].
3.3 Dráha pupilárního reflexu

Aferentní složka dráhy pupilárního reflexu (obr. 3) byla již výše popsána. V pretektální oblasti středního mozku (area praetectalis mesencephali), kde se nachází pretektální jádra (nuclei praetectales), dochází k interpolaci signálu z neuronů gangliových buněk. Existují rovněž četné internukleární spoje s druhohrannými jádry, což zajišťuje výbavnost okulomotorického reflexu oboustranně. Pupilární reflex je zajišťován prostřednictvím dvou dráh, a to dráhou pro miosu (zúžení zornice) a pro mydriázu (dilataci zornice). Dráha pro miosu je zprostředkována spoji pretektálních jader s parasympatickými jádry nucleus Edinger-Westphal, odkud je signál veden prostřednictvím III. hlavového nervu (n. oculomotorius) přes ganlion ciliare, kde dochází k interpolaci na postgangliová vlákna, ke svěrači zornice (m.spincter pupillae). Dráha pro mydriázu je zprostředkována spoji pretektálních jader s jádry retikulární formace mesencephala, odkud je signál dále veden retikulospinálními drahami do postranních rohů míšního segmentu (C8), kde je sympatické ciliospinální.
Budgeovo centrum, a po interpolaci cestou krčního sympatiku podél tepen spolu s větvemi arteria ophthalmica k dilatátoru zornice (m.dilatator pupillae) [4, 5, 7].

Obr. 3: Dráha pupilárního reflexu

3.4 Postižení zrakové dráhy a pupilomotoriky ve vztahu k optické neuritidě

Symptomatologie RSMM, jak bylo uvedeno výše, je různorodá v závislosti na lokalizaci demyeilinizační plaky v CNS. Při postižení retrobulbárního úseku zrakového nervu demylinizační plakou (viz obr. 4) dochází k typickým symptomům, jimiž jsou pokles zrakové ostrosti, kontrastní citlivosti a narušení pupilárního reflexu. Vždy je postižena pouze aferentní složka dráhy pupilárního reflexu, neboť eferentní složka je zajištěna cestou n. III a krčním sympatikem. Dochází tedy k výskytu tzv. relativního aferentního pupilárního defektu (RAPD, též Marcus Gunn), který se vyšetřuje swinging flashing testem (viz obr. 5). Pacient je vyšetřován v temné místnosti a při pohledu do dálky je střídavě svíceno do jednoho a do druhého oka po dobu asi 3 vteřin. Přesun na druhé oko by měl být co nejrychlejší. Aferentní pupilární defekt je zřejmý při pohybu světelného zdroje od normálního oka k postiženému oku částečným
rozšířením zornice, jelikož pupila na postižené straně reaguje na světlo dilatací. Tuto abnormalitu je nutno odlišovat od tzv. hippu, což jsou normální krátkodobé oscilace velikosti pupily, ke kterým někdy dochází při reakci na světlo. Léze chiazmatu a optického traktu mohou být spojeny s druhostranným aferentním pupilárním defektem, který je v praxi velmi obtížně vyšetřitelný [1, 9, 10, 11]

Obr. 4: MRI zobrazení plaky v retrobulbárním úseku zrakového nervu (šipka vlevo) a v čelním laloku (šipka vpravo)
3.5 Porucha okulomotoriky při RSMM

Poruchy okohybného aparátu jsou u RSMM téměř stejně časté jako poruchy zraku. Oba druhy očních příznaků se ale jen zřídka kombinují, většinou se vyskytují na sobě nezávisle, samostatně, a v různých fázích vývoje základního onemocnění. Příčinou poruch oční hybnosti jsou demyelinizační léze mozkového kmene s klinickými projevy obrny okohybných nervů, supranukleární pohledové obrny, event. nystagmu. Jde vesměs o příznaky sice diagnosticky významné, ale jen o některých vzácnějších obrazech lze říci, že jsou pro RS typické [5].
3.5.1 Periferní okohybné poruchy

Z periferních okohybných poruch bývá nejčastější paréza n.VI, vzácnější je zpravidla inkompletní léze n.III, výjimečná pak paréza n.IV. Charakteristickým znakem těchto poruch, které vznikají na podkladě RSMNM, je na rozdíl od jiné příčiny, jejich přechavost a proměnlivost. Horizontální či vertikální diplopie často mizí dříve, než pacienta přinutí dojít k vyšetření. Další okohybné poruchy, nystagmus a pohledové obrny provázejí spíše pokročilá stadia plně rozvinuté neurologické symptomatologie a klinický obraz už většinou jen dokreslí [5].

3.5.2 Supranukleární pohledové obrny

Supranukleární inervace zajišťuje sdružený (konjugovaný), pohyb bulbů pro sledování obrazu. Je tvořena korovými a podkorovými strukturami, které umožňují horizontální, vertikální a vergenční pohyby očí [5, 8]. V mozkovém kmeni jsou přítomna jádra okohybných nervů a dráhy, které je spojují jak mezi sebou, tak s jinými strukturami CNS [8]. Jednou z těchto důležitých drah je fasciculus longitudinalis medialis, který mj. navzájem propojuje podkorové centrum horizontálního pohledu s jádry okohybných nervů [5]. Podkorovými centry pro horizontální oční pohyby jsou jednak specifický úsek retikulární formace mozkového kmene (paramediální pontiní retikulární formace) a jednak abdukční jádro (n.VI). Toto jádro ovládá zevislý přímý sval na stejně straně a zároveň dává signál k jádru n.III na druhé straně, resp. k druhostrannému vnitřnímu přímému svalu. Toto souhru je zajištěn konjugovaný horizontální pohled [8].

K parézi laterálního pohledu dojde při postižení abdukčního jádra. Vedle stejnostranné poruchy horizontálního pohledu zevně (abdukci) je postižena hybnost druhého oka směrem dovnitř (addukce) a to právě kvůli spojům obou stran FLM. Nemocný se tedy nemůže podívat zevně ve směru postižení [8].

Internukleární oftalmoplegie vzniká v důsledku postižení FLM. Dochází tedy k přerušení signálu z abdukčního jádra směrem k druhostrannému vnitřnímu přímému svalu zajišťujícímu addukci. To se projeví neúplnou addukcí oka na postižené straně (viz obr. 6 C), což nemocný vnímá jako zamlžené či dvojité vidění, které mizí po zakrytí jednoho oka. Při konvergenci očí se ale postižení neprojeví, protože signály
k tomuto pohybu jsou vedeny jinými drahami, viz obr. 6 D. Zajímavý klinický obraz pak představuje kombinace horizontální pohledové obrny a internukleární oftalmoplegie, tzv. syndrom „jedna a půl“. Ten je způsoben jednostrannou a stejnostrannou lézi jak jádra abducentu, tak FLM ve Varolově mostě. Z horizontálního pohledu je tedy zachována pouze abdukce na oku protilehlém lézi [5, 8, 9].

Pro RSMM je typická oboustranná internukleární oftalmoplegie, kdy při pohledu do stran chybí addukce, která je ale při pohledu do blízka zachována, a syndrom „jedna a půl“. Obě poruchy vzniklé v důsledku RSMM rychle vznikají a postupně se pomalu upravují [5].

Obr. 6: Internukleární oftalmoplegie; levostranné postižení FLM
(upraveno podle: http://newrology.blog.hu/2010/10/04/3_szemmozgato_rendszer)
4 Retrobulbární neuritida

4.1 Etiologie, patofyziologie

Retrobulbární neuritida je zánětlivé postižení zrakového nervu v jeho průběhu v očnici za očním bulbem. Nejčastější příčinou zánětu zrakového nervu v této oblasti je přítomnost plaky RSMM spadající do skupiny demylinizačních chorob. Demyelinizace je patologický proces postihující myelinovaná vlákna nervu, během kterého dochází k poškození myeliny. Ten je fagocytován mikrogliemi a makrofágy a do poškozených míst je astrocyty ukládána fibrozní tkáň (plak). Demyelinizaci je poškozeno nervové vedení v bílé hmotě mozku, mozkovém kmeni a míše. Periferní nervy nejsou postiženy [1, 8].

4.2 Epidemiologie

Onemocnění se vyskytuje u lidí ve věku 20 – 50 let. Vrchol výskytu RS je kolem 30 let a s převahou u žen (v poměru asi 2 – 3:1) [1, 6]. Úzký vztah opticke neuritidy k roztroušené skleróze mozkomišní je dokumentován faktem, že u pacientů po atace ON se u 35 – 75 % z nich vyvine RSMM v závislosti na době sledování. Z toho vyplývá, že se menší část neuritid vyskytuje jako samostatné onemocnění omezené pouze na zrakové projevy [1].

4.3 Klinické příznaky

papila zrakového nervu na rozdíl od papilitidy normálního vzhledu (obr. 7 a 8) [1, 3-5]. Proto se základní projevy optické neuritidy parafrázuji, že „Jékař nic nevidí a pacient také nic nevidí“. U části pacientů může být patrné vyblednouti temporální části papily zrakového nervu nebo již přítomnost atrofie terče zrakového nervu. Tyto známky nesouvisí s aktuálními obtížemi nemocného, ale bývají výsledkem předchozích zánětlivých příhod ve zrakovém nervu vedoucích k redukci nervových vláken. Bledší nebo atrofická papila je často překvapivým nálezem i u pacienta s první atakou optické neuritidy. Velmi pravděpodobně to svědčí o subklinické lézi nervových vláken zrakového nervu provázející v minulosti. Známky papilitidy byly pozorovány v menším procentu případů (asi 20 %). Na fundu je patrný edém papily s hyperémií, často s hemoragiemi a vatovitými ložisky (intraokulární neuritida). Porucha vízu bývá zpravidla těžká [8].

Oční potíže mohou být doprovázeny i mimooční projevy RSMMM. Nejdůležitější další příznaky, které může vyšetřující zachytit, jsou nystagmus, internukleární oftalmoplegie, paréza n.III a VI, vzácněji postižení n.VII a n.V. Z dalších projevů je třeba anamnesticky zjišťovat poruchy cítivosti (stěhovavé brnění na končetinách, „přeleželá“ ruka či noha, centrální poruchy hybnosti (mají sklon ke spasticitě). Je třeba se seztat na sfinkterové obtíže (udržení moči, stolice), únavu, deprese a kognitivní (poznávací) poruchy [3].

4.4 Klinické vyšetření

Vzhledem k majoritní příčině optické neuritidy, jíž je RSMM, musíme na tuto entitu vždy myslet a pacienta je nutné patrně podrobně vyšetřit. Ve vzácnějších případech je optická neuritida nebo neuropatie součástí nebo komplikací dalších onemocnění [8].

Správné určení diagnózy se opírá o vyhodnocení všech dostupných anamnestických informací, klinických i pomocných vyšetření. Nezbytná je interdisciplinární spolupráce [3]. Vyšetření pacienta s podezřením na retrobulbární neuritidu je třeba zahájit pečlivou anamnésou s cílenými dotazy na charakter obtíži, délku trvání a rychlost s jakou se potíže objevily, předchozí interkurentní onemocnění, alergickou eventuálně pozitivní rodnou anamnésu, možný zdroj infekce (kliště). Dále je třeba provést vyšetření naturnální a nejlépe korigované zrakové ostrosti do dálky, blízka, která bývá v různé míře alterována. Vyšetření barvocitu obvykle vykazuje poruchu hlavně pro červenou a zelenou barvu, kontrastní citlivost bývá i při normálním
vizu podle optotypů snížena. Nezbytnou součástí diagnostiky je oboustranné perimetrické vyšetření (nelze-li perimetr provést pro těžký pokles vizu, tak provedeme alespoň konfrontační vyšetření), kde bývá typickým nálezem centrální skotom do 30 stupňů. Výpady však mohou být i nepravidelné, vícečetné, různé velikosti, tvaru a umístění. Fokální defekty jsou často doprovázeny generalizovaným poklesem citlivosti. Samozřejmostí je vyšetření předního segmentu oka na štěrbinové lampě se zaměřením na zornicové reakce, kde je třeba pátrat po poruše charakteru relativního aferentního defektu a vyšetření očního pozadí v arteficiální mydriáze, kde je třeba vyloučit známky papilitidy (obr. 8), přítomnost vaskulitických změn a Ruckerových proužků [1, 8, 10, 12, 13].

Obr. 7: Fyziologický vzhled papily zrakového nervu při retrobulbární neuritidě
(převzato z: http://avtt-it.com/pages.php?page_id=89)
4.5 Pomocná vyšetření

Základní oftalmologická vyšetření je nutno rozšířit o laboratorní a pomocná zobrazovací vyšetření. Jedná se o vyšetření zrakových evokovaných potenciálů (VEP), pro potvrzení či vyloučení souvislosti s RSMM. Dále provádí odběr a analýza mozkomišního moku a magnetická rezonance.

Vyšetření zrakových evokovaných potenciálů dokumentuje eventuální postižení zrakového nervu. Evokované potenciály jsou změny elektrické aktivity mozku či jiných částí nervové soustavy po působení zevního podnětu. Slouží ke zhodnocení funkčního stavu příslušného nervového dráhy. Aplikovány jsou zrakové stimuly charakteru záblesků, strukturovaných podnětů (černobílá šachovnice se změnami barev políček ve stejné frekvenci), či pohybových podnětů. Vyšetření obvykle probíhá tak, že pacient má elektrody přiložené na oblasti okcipitální krajiny hlavy a postupně každým okem zvlášť (při zakrytém druhém oku) sleduje obrazovku se stimuly (obr. 9). Tato opakovaná zraková stimulace vede k provokovaným odpovědím, jejichž zprůměrněním vznikne evokovaný potenciál. Výsledná křivka má trifázický tvar, hodnocena je převážně vlna P100 (obr. 10, křivka OD). Provokované odpovědi u pacientů s optickou neuritidou nastávají oproti zdravým jedincům s latencí (prodloužení vlny P100), což je způsobeno pomalejším vedením demyelinizovanými vlákny. Snížená amplituda potenciálu signalizuje axonální lézi (viz křivka OS, obr. 10) [1, 6, 8, 10, 12].
Obr. 9: Vyšetření zrakových evokovaných potenciálů
(převzato z: http://tidsskriftet.no/article/3011088/en_GB)

Obr. 10: Vizuální evokované potenciály – fyziologická křivka na pravém oku (OD) a patologická křivka na levém (OS)

K potvrzení či vyloučení retrobulbární neuritidy jako manifestací RSMM se dále provádí odběr vzorku mozkomišního moku (viz obr. 11) ze zobrazovacích vyšetření pak NMRI mozku, orbit, krční, event. i hrudní páteře (pátrá se po přítomnosti plak v bílé hmotě sledovaných struktur) [3, 8].
Mozkomíšní mok se vyšetřuje na vyloučení infekce (borrelie, chlamydie) a již cytologické vyšetření může naznačit diagnózu (pro RSMM je typická oligocytóza s přítomností aktivovaných lymfocytů či plazmocytů, často ale i zvýšený počet mononukleárních buněk). Izoelektrickou fokusací se zjišťuje tvorba oligoklonálních protilátek v moku proti nálezu v séru. Výskyt těchto protilátek v alkalické části spektra je pro diagnózu RSMM vysoce suspektní, ale počet pásů (oligoclonal bands, OCB), jejichž přítomnost svědčí pro produkcí IgG v CNS, nemusí korelovat s aktivitou základního onemocnění [3, 8, 10].

Naproti tomu vyšetření vstupní MR má vysokou prediktivní hodnotu pro další průběh choroby. Ložiska hyperintenzní v T vážených obrazech nebo FLAIR modu, která jsou periventrikulárně kolmo na osu komor (viz šipka na obr. 12), jsou typickým nálezem. Další častou lokalizací je infratentoriální bílá hmota, krční a hrudní mícha. Vedle prokázaných lézi v bílé hmotě byl prokázán již v časných fázích nemoci i celkový úbytek mozkové hmoty, který z dlouhodobého hlediska koreluje s vývojem nemoci lépe než objem hyperintenzních ložisek [3, 10].
S nástupem MR význam VEP poklesl. Svou hodnotu si ale zachovávají, pokud je na MR zjištěno málo ložisek zánětu, nebo pokud MR abnormality mají malou specificitu (např. u starších osob s rizikovými faktory pro mikrovaskulární ischemické změny nebo u jedinců s abnormálními nálezy na MR, které nejsou specifické pro RSMM). Další přínos VEP spočívá v objektivním průkazu další léze (optikopatie), pokud jedinou klinickou manifestací je jakékoliv jiné postižení než afekce zrakové dráhy [8].

4.6 Prognóza

Přibližně u 75 % pacientů se zraková ostrost zlepší na 6/9 nebo lepší, u 85 % pacientů na 6/12 nebo lepší, přestože pokles zrakové ostrosti v průběhu ataky byl velmi výrazný. Avšak navzdory zlepšení zrakové ostrosti zůstávají další parametry zrakové funkce abnormální (barevné vidění, kontrastní citlivost a vnímání za sníženého osvětlení). Může přetrvat mírný RAPD a následovat i atrofie optiku. Asi u 10 % pacientů přechází neuritida optiku do chronické formy, která je charakterizována pomalou nebo postupnou ztrátou zraku, bez period zlepšení [1, 3, 8].
4.7 Terapie

Pokud je vizus během prvního týdne ataky horší než 6/12, měla by léčba urychlit rekonvalescenci zraku během 2 – 3 týdnů. Podávají se vysoké dávky methylprednisolonu intravenózně (i.v.) nebo perorálně (p.o.) (3-5g) následované pozvolným snižováním p.o. Prednisonu (není-li pacient na dlouhodobé imunomodulační léčbě). Nutná je rovněž prevence nežádoucích vedlejších účinků terapie kortikosteroidy.

Chronická léčba by měla vést ke snížení počtu atak a k zabránění progrese nemoci. Pro CIS (klinicky izolovaný syndrom) a RR (relabs – remitující formu) RSMM jsou v současnosti jako léky první volby užívány interferon beta (IFNB – komerční preparáty Avonex, Betaferon, Extavia a Rebif) a glatiramer acetát (Copaxone), které si pacienti aplikují sami podkožně nebo perorálně (p.o. (3-5g) následované pozvolným snižováním p.o. Prednisonu (není-li pacient na dlouhodobé imunomodulační léčbě). Nutná je rovněž prevence nežádoucích vedlejších účinků terapie kortikosteroidy.

V případě selhání terapie preparáty první volby je dnes pro eskalaci léčby nejvíce využíván natalizumab (Tysabri), což je monoklonální protilátkou pro alfa 4 integrinu na povrchu lymfocytů, bránící jejich pohyb přes cévní stěnu a vstupu do CNS. U Natalizumabu byla v kontrolovaných studiích prokázána vysoká efektivita (snížení relapsů o 68 % proti placebu v průběhu 2 let). Bohužel neočekávaný výskyt závažné virové infekce u několika pacientů léčených natalizumabem zatím limituje širší použití tohoto preparátu.

Léčem třetí volby jsou různě kombinované cytostatické režimy. Nejčastěji užívanými orálními preparáty jsou azathioprin, methotrexát, mykofenolát mofetil, cyklosporin A, cyklofosfamid či mitoxantron.

U sekundárně progresivní (SP) a primárně progresivní (PP) formy RSMM neexistuje efektivní terapie a doporučovaných léčebných schémat je celá řada. Postupuje se přesně individuálně, a pokud je efektivita vybraného postupu nulová, léčba se přerušuje. Při maligním průběhu choroby s rychlou progresí je zkoušena vysoce dávkovaná imunoablace s podporou hematopoetických kmenových buněk.

Léčba pacientů s RSMM musí být vždy komplexní. Snahou je udržet pacienty co nejdéle v normálním pracovním režimu. K symptomatické terapii patří léčba spasticity, sfinkterových obtíží, depresí, třesu, bolesti, parestezií, únavy i kognitivního defektu.
Pacienti musí být upozorněni i na režimová opatření, jako je vyvarování se infekcím (prevence a event. včasná léčba). Gravidita by měla být plánována a musí ji předcházet vysazení některých léků. Nezbytnou součástí je pravidelná rehabilitace.

Léčba nemusí mít vliv na výslednou zrakovou ostrost a u většiny pacientů dojde k obnově zrakových funkcí i bez nutnosti terapie [3, 8, 10].

4.8 Diferenciálně diagnostická rozvaha

Při klasickém obrazu onemocnění nebývá s diagnózou retrobulbární neuritidy větší problém. Problémy mohou vznikat v souvislosti se špatným zhodnocením anamnestických údajů o neurologických obtížích či klinického nálezu. V diferenciální diagnóze je třeba myslet na nádory, výhřezy plotének, cévní anomálie, genetická a metabolická onemocnění. Obraz RSMM mohou imitovat i jiné autoimunitní choroby (vaskulitidy) a infekce (borrelióza, vírové infekce).

Pokud dojde ke ztrátě zraku akutně během dne, lze diagnózu neuritidy optiku vyloučit, ale jestliže pacient ráno po probuzení zjistí pokles vízu a není jasně, jak dlouho porucha trvá, pak je třeba vyloučit jiné příčiny: okluze arteriální i venózní, krvácení v průběhu zrakové dráhy, vertebrozazilární insufficence, všechny příčiny amaurosis fugax, myopatie při endokrinní orbitopatii aj. Při patologickém nálezu na terči zrakového nervu je třeba vyloučit infekční a parainfekční neuritidu, Leberovu hereditární atrofii optiku (akutní fázi), meningeomy a gliomy optiku. Široká je diferenciální diagnostika poruch hybnosti oka. Všechny výše uvedené a některé další diagnózy se mohou vyskytnout, lze se s nimi ale setkat méně často, než s falešně pozitivními, kdy je jako neuritida optiku určena porucha jiná. Jde zejména o refrakční vady a poruchy jednoduchého binokulárního vidění. Zde je třeba pečlivé vyšetření a odběr anamnézy. Pacienti přiznávají závislost na zrakové námaze, udávané obtíže kolisají v průběhu dne – večer jsou nejhorší, ráno a přes víkend menší, trvají řadu týdnů a postupně se zhoršují. Často s takovými obtížemi přicházejí pacienti na hranici presbyopického věku. Poměrně častý je údaj o současném zhoršení jiných neurologických obtíží. Oční potíže lze vysvětlit celkovým oslabením organismu při paralelně probíhající atace základního onemocnění. Lze se setkat s údajem o přechodném zhoršení vízu v souvislosti fyzickým výkonem či stresem, přehřátím organismu v horké lázní či při vaření, který odezní po normalizaci tělesné teploty. Jedná se o tzv. Uhthofův fenomén, který je známkou nedokonalé remyelinizace axonů proběhlém zánětu v minulosti. Z hlediska diferenciální diagnostiky je nejobtížnější
vyloučení funkční ztráty zraku. „Dobře poučení“ pacienti líčí své obtíže velmi sugestivně, mají poruchu centrálního vizu, na perimetr je vždy pozitivní nález (i když koncentrické výpady budi pochybnosti), ale tomu zpravidla neodpovídá reakce zornice. Obstízná je i diagnostika neuritidy optiku u pacientů po opakovaných atakách s nevratnými poruchami vizu, nálezy v zorném poli, atrofii papil a trvalým RAPD. Lze se setkat s disimulací (zpochybňováním závažnosti potíží) i agravací (zveličování potíží), někdy tyto stavy závisí na momentální psychické kondici nemocného. V těchto situacích neexistuje žádné vyšetření, které by suverénně rozhodlo o případné aktivitě choroby. Lze doporučit individuální přístup s opakováním všech vyšetření s odstupem několika týdnů, s pozitivní motivací a s perimetrickým vyšetřením provedeným vždy s časovým odstupem od příchodu pacienta a až po jeho zklidnění. [3].

Diferenciálně diagnostický přehled

<table>
<thead>
<tr>
<th>Asociace s demyelinizačními chorobami</th>
<th>Asociace s infekčními chorobami</th>
</tr>
</thead>
<tbody>
<tr>
<td>neznámá příčina</td>
<td>vírové</td>
</tr>
<tr>
<td>RSMM</td>
<td>bakteriální</td>
</tr>
<tr>
<td>Devicova optikomyelitida</td>
<td>mykotické</td>
</tr>
<tr>
<td>akutní diseminovaná encephalomyelitida</td>
<td>parazitární</td>
</tr>
<tr>
<td></td>
<td>syfilis</td>
</tr>
<tr>
<td></td>
<td>aspergilóza</td>
</tr>
<tr>
<td></td>
<td>borrelióza</td>
</tr>
<tr>
<td></td>
<td>kandidóza</td>
</tr>
<tr>
<td></td>
<td>TBC</td>
</tr>
<tr>
<td>EBV (Ebstein-Baarové virus)</td>
<td>mykoplazmóza</td>
</tr>
<tr>
<td>CMV (cytomegalovirus)</td>
<td>meningitidy</td>
</tr>
<tr>
<td>hepatitisy</td>
<td></td>
</tr>
<tr>
<td>spalničky</td>
<td></td>
</tr>
<tr>
<td>neštovice</td>
<td></td>
</tr>
<tr>
<td>zarděnky</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1: Přehled příčin neuritidy optiku [8]

<table>
<thead>
<tr>
<th>Autoimunitní příčiny</th>
<th>Postvakcinační příčiny</th>
<th>Přestup infekce z okolních tkání</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLE (systémový lupus erytematosus)</td>
<td>spalničky</td>
<td>záněty očnice</td>
</tr>
<tr>
<td>vaskulitidy</td>
<td>zarděnky</td>
<td>meningitida</td>
</tr>
<tr>
<td>sarkoidóza</td>
<td>neštovice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chřipka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tetanus</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Přehled příčin neuritidy optiku [8]

Další příčinou neuritidy optiku mohou být: Hereditární (Leberova) optická neruopatie, ischemická neruopatie optiku (arteritická či nearteritická forma), kompresivní léze, toxické či metabolické optikopatie, infiltrace tumory, paraneoplastické neruopatie, glaukom, kongenitální anomálie [8].
Pětadvaciletá pacientka se dostavila k vyšetření pro náhlé zhoršení zraku levého oka. Stěžovala si na zamlžení vidění a bolestivost za okem při jeho pohybu (zejměna při pohybu nahoru a dolů) a na bolestivost periodulární krajiny. Potíže se objevily přibližně pět dní před vyšetřením. Asi dva měsíce před vznikem očních potíží si pacientka všimla, že po únavě obtížněji vyslovuje, „plete se jí jazyk“. Brnění rukou či nohou či jiné obtíže neměla. Byla vyšetřena v oční ambulanci, kde byl na optotypu zjištěn pokles nejlépe korigované zrakové ostrosti u levého oka na 0,2, na pravém oku byl vživus normální 1.0. Dále byla zjištěna porucha barvocitu na pseudoisochromatických tabulkách a testem kontrastní citlivosti její porucha.

Na základě zmíněných vyšetření byla potvrzena diagnóza retrobulbární neuritidy jako primomanifestace RSMM. Byla zahájena terapie kortikosteroidy, která se podávala infúzně v celkové dávce 3g Methylprednisolonu (1g denně), následně byla podávána i perorální léčba Prednisonem v sestupných dávkách. Po týdenní léčbě se hodnota nejlépe korigované zrakové ostrosti zvýšila na 0,8 a pacientka byla propuštěna do ambulantní péče, avšak vjem mírného zamlžení stále přetrvalá. Vzhledem k potvrzené diagnoze RSMM byla pacientka odeslána do MS centra (specializované centrum pro léčbu roztroušené sklerózy), kde podstoupila terapii Copaxonem. V průběhu terapie došlo k úpravě nejlépe korigované zrakové ostrosti na 1,0 a při následném vyšetření na štěrbinové lampě byl relativní aferentní pupilární defekt jen lehce patrný. Na kontrolním perimetru se nevyskytoval žádný skotom, zůstala jen mírně
5 Závěr

V této rešerši byla popsána problematika závažného systémového onemocnění – roztroušené sklerózy mozkomíšní (RSMM), která může být odhalena i optometristou. První část práce vysvětlila vznik a projevy onemocnění a asociaci RS s neuritidou optiku. Názorné interpretaci patologie vzniklé při neuritidě optiku, předcházela kapitola zaměřená na anatomii a fyziologii optického nervu, zrakové dráhy a pupilomotorického reflexu. Velký důraz byl kladen na diagnostiku neuritidy optiku, kde bylo zahrnuto vyšetření barvocitu a kontrastní citlivosti, očního pozadí, obostranné vyšetření perimetrem a vyšetření předního segmentu na štěrbinové lampě se zaměřením na zornicové reakce. Tato základní oftalmologická vyšetření byla v další kapitole rozšířena o laboratorní a pomocná zobrazovací vyšetření, která by měla potvrdit nebo vyloučit souvislost s RSMM. Mezi tato vyšetření bylo zahrnuto vyšetření zrakových evokovaných potenciálů (VEP), magnetická rezonance a analýza mozkomíšního moku. Následně byla popsána léčba a terapie. Pro názornou demonstraci průběhu onemocnění byla do rešerše zahrnuta i kazuistika, ve které byla představena pacientka s typickým průběhem retrobulbární neuritidy při RSMM.

Odhalení příznaků zánětu zrakového nervu, které mohou být prvním projevem roztroušené sklerózy, umožňuje včasné zahájení léčby a snížení rizika trvalých následků.
Seznam použité literatury

KNIHY:

ČLÁNKY