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ABSTRAKT
V této práci popisujeme algoritmy, které umí vypočítat trasy pro elektické vozidla. Tyto
trasy mohou být vypočítány v závislosti na jednoduchých metrikách, jako jsou například
vzdálenost a doba dojezdu, nebo v závislosti na pokročilejší metrice, jako je například en-
ergeticky optimální metrika. Tato metrika je parametrizovatelná konstrukcí elektrického
vozidla. Dále popisujeme nový algoritmus, který vypočítá energeticky optimální trasy,
které jsou více přijatelné pro řidiče, protože zároveň zohledňují metriku času při výpočtu
trasy.

KLÍČOVÁ SLOVA
Plánování optimální trasy, Elektrická vozidla, Plánování trasy s vícero omezeními,
Plánování optimální trasy s vícero omezeními, Optimální trasa, SYTADIN, Open Street
Map, Shuttle Radar Topography Mission, Android.

ABSTRACT
In this work we present algorithms that are capable of calculating paths to destination for
electric vehicles. These paths can be based on the simple metrics such as the distance,
time or the paths can be based on more advanced metric such as the minimum energy
demanding metric. This metric is parameterizable by the physical construction of the
electrical vehicle. We also propose a new algorithm that computes energy optimal paths
that are more acceptable by the driver, because it also takes into consideration the time
metric while computing the path.

KEYWORDS
Optimal Route Planning, Electric Vehicles, Multiconstrained path, Multiconstrained op-
timal path, Shortest path, SYTADIN, Open Steet Map, Shuttle Radar Topography Mis-
sion, Android.
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INTRODUCTION

The task of this work is to design and test algorithms capable of calculating a route

to destination for electric vehicles. The routing algorithm is an algorithm that

finds a route between two nodes in the routing map. Well know and widely used

algorithm used for this type of task is the Dijkstra’s algorithm [1] and its variation

A* algorithm [2]. These algorithms are preferred because of their lower computation

complexity compared to other algorithms, which most of are actually unsuitable for

routing in large graphs such as the road network. The road network, represented

by graph, consists of millions of nodes and edges and we have to compute the path

in acceptable time for the driver. From early research on such algorithms, we may

assume, that any modern GPS navigation uses some kind of modification of the

Dijkstra’s algorithm.

To use the Dijkstra’s algorithm we must be able to compare edges based on the

required metric. This common metrics can be the shortest, the fastest path and in

our case the lowest energy demanding path. Apparently, we can see, that we need

some evaluation function which can compare paths and can clearly decide which of

those paths is the optimal one. For the distance and time the computation of such

function is clear, but for the energy we must have some more advanced model, which

takes in consideration the physical parameters of the vehicle.

In the first part, this work describes how to model the electric vehicle and create a

suitable formula for calculating energy cost so we can apply the Dijkstra’s algorithm

and some of its modifications to our problem.

In the second part, we propose a new algorithm that is able to find an energy

optimal path, which is more likely acceptable by the driver. The need of such

algorithm was discovered during the development of the energy metric, because we

consider the energy optimal path as simply unacceptable for the driver, as it always

prefers the slowest possible path.

In the third part, we briefly describe what data sources we use to create the

routing graph and implement the prototype navigation. In the last part, tests show

and confirm some of the characteristics that we assumed during the development of

the prototype application.
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1 ENERGY MODELING

To use the Dijkstra’s algorithm we must be able to compare edges based on the

energy demand needed to traverse the edge. In the following sections we create

a mathematical model that will lead to obtaining an energy cost function. The

modeling is described in several steps, where we define intermediary energy models,

but only the last one is used in the implementation.

1.1 Bicycle model

In the first time the discussion of vehicle fundamentals will be restricted to one-

dimensional movement (bicycle model). The movement behaviour of a vehicle along

its moving direction is completely determined by all the forces acting on it in this

direction. This basic model in its description is from [5].

According to the Newton’s second law, vehicle acceleration can be written as

dV

dt
=

∑

Ft −
∑

Fr

δM
(1.1)

where V is the speed of the vehicle,
∑

Ft is the total traction effort of the vehicle,
∑

Fr is the total resistance, M is the total mass of the vehicle, and δM is the mass

factor that equivalently converts the rotational inertias of rotating components into

translational mass.

θ

O

Fw

Trf

Trr

Ftr

Ftf
Mgcosθ

Mgsinθ

Mg
V Fr

Fig. 1.1: Schematic representation of the forces acting on a vehicle [3]

As shown in figure 1.1, the total resistance is composed mainly of rolling resis-

tance Fr (which combines the torques Trf and Trr), wind resistance Fw, and climbing

resistance Fc (the term Mg sin θ). In the opposite direction acts total traction effort

Ft which is composed of the front and rear tires efforts Ftf and Ftr generated by the
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prime movers and minus all friction losses. By developing the equation above, we

obtain the dynamic equation in the form:

M
dV

dt
= Ft − (Fr + Fw + Fc) (1.2)

Using the dynamic equation, we can express the maximal traction effort for

both front and rear wheels. Then we can also examine the tire-ground adhesion

which is connected with the maximal traction effort. The detailed description of the

characteristics summarized in this chapter is presented in [4].

1.2 Longitudinal model

The vehicular model of longitudinal dynamics is constructed based on the theory of

vehicle multi-body dynamics as seen before.

1.2.1 Wind resistance

The wind resistance is caused generally by two facts: the viscous friction of the

surrounding air on the vehicle surface and the losses by the pressure difference

between the front and the rear of the vehicle, generated by a separation of the air

flow.

The resistance expression can be usually simplified by considering a vehicle as

a prismatic body with a frontal area Af . The pressure difference force can by

multiplied by an aerodynamic drag coefficient Cd also known as Reynold’s coefficient

(estimated by simulation or experiment in wind tunnel) so the wind resistance can

be written as

Fw(v) =
ρ

2
AfCdv2 (1.3)

where v is the vehicle speed and ρ is the density of the ambient air.

1.2.2 Tire rolling resistance

The tire rolling resistance can be expressed as

Fr(θ) = Mgµr cos θ, v > 0 (1.4)

where M is the vehicle mass, g the acceleration due to gravity, term cos θ is road

slope influence and µr is the rolling friction coefficient.

The rolling friction coefficient depends on many variables. Especially vehicle

speed v, tire pressure p, and road surface conditions.

12



1.2.3 Climbing resistance

The climbing resistance is conservative force induced by gravity and considerably

influences the vehicle behaviour.

Fc(θ) = Mg sin θ (1.5)

1.2.4 Acceleration resistance

The acceleration resistance due to the inertia of the vehicle and of all rotating parts

inside the vehicle causes frictious (d’Alembert) forces. The rotating parts are here

represented by

Fa(v̇) = M(1 + δeqm)
dv

dt
(1.6)

where δeqm is the vehicle equivalent moment inertia representing the rotating

parts such as wheels and powertrain inertia.

According to an analysis of the summation of performing forces acting on the

vehicle body in the longitudinal direction, the power balance for the controlled

vehicle is governed by:

PD (t) = fPD
(v, v̇, M, θ) = (Fw + Fr + Fc + Fa) v

= ρ
2AfCdv3 + Mg (µr cos θ + sin θ) v + M (1 + δeqm) v̇v

(1.7)

1.2.5 Position-based power calculation

As an important parameter in equation (1.7), the road grade may change frequently

according to the actual road environment, especially in the mountain terrain, and

has become a major impact on the energy consumption. In general, the proper

measurement to record the road grade by GPS and 3D-map is dependent on position

rather than time. Therefore, the time-based equation (1.7) is not suitable for the

purpose of control algorithm design, and a power calculation depending on position

is preferable. Using the transformation

v =
ds

dt
(1.8)

dv

ds
=

dt

ds

dv

dt
=

1
v

dv

dt
, v 6= 0 (1.9)
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equation (1.7) can be transferred into a position-based form

PD (s) = ρ

2
AfCdv3 + Mg (µr cos θ + sin θ) v

+ M (1 + δeqm) v2 dv
ds

.
(1.10)

The prototype vehicle to carry out the simulations is the DaimlerChrysler car

[3]. The numerical values of the vehicle parameters used in further tests are listed

in table 1.1.

Parameter Value

M total mass 2095 kg
Cd Reynolds coefficient 0.32 kg/m3

Af windward area 2.31 m2

µr rolling resistance coefficient 8.80 · 10−3

ρ air density 1.25 kg/m3

δeqm equivalent moment inertia 0.195 kg·m2

Tab. 1.1: Numerical values of the vehicle parameters [3]

1.3 Energy cost function model

Before continuing developing the model, we have to realize that the routing algo-

rithm computes with only estimated and limited information. We do not know the

speed profile along the road and the the exact road slope. This means that we con-

sider that the velocity and the road slope is constant on each road segment. Taking

into account these assumptions, we may following from the equation (1.10) give the

energy needed to move the vehicle from the beginning to the end of the road segment

(vi, vi+1) as:

ED(i) =
ρ

2
AfCdv2

i li + Mgµrli cos θi + Mgli sin θi (1.11)

where the newly introduced li is the length of the road segment.

In the equation (1.11) the only term which may have negative value is the third

one which corresponds to potential energy. If its absolute value is also superior to

the sum of the two other terms, then the edge energy cost is negative. Lest us

note by ER the energy corresponding to wind and rolling resistance and by EP the

potential energy. We can define them as:

14



ED(i) = ER(i) + EP (i) (1.12)

ER(i) =
ρ

2
AfCdv2

i li + Mgµrli cos θi (1.13)

EP (i) = Mgli sin θi (1.14)

Finally, the optimization criterion for the energy optimal route, which the algo-

rithm is minimizing, may be given by the following expression:

J(P j) =
i=N
∑

i=0

ER(i) + EP (i) (1.15)

where P j = (vj
0, vj

1, vj
2, . . . , vj

N) is the jth possible path.

1.3.1 Positive cost function transformation

We have defined the energy cost function (1.12) and deduced that under certain

scenarios the resulting sum may be negative. This poses a significant complication

because the Dijkstra’s algorithm and its modifications can only work with non-

negative edge costs. Therefore, we have to transform this cost to obtain only positive

values.

The two components of (1.12) are rolling resistance energy ER and the potential

energy EP . We are certain that the rolling resistance energy is always positive and

that this energy is irreversibly lost. On the other hand, the potential energy is

recoverable when the vehicle is descending. In the case of a perfect recuperation

of the potential energy we could completely ignore this component in the equation,

because if we take two different paths of different elevation profile, but between

the same origin and destination, then the difference of the potential energy will be

always the same for both of these paths.

In the case of imperfect recuperation, we only recuperate a fraction of the poten-

tial energy during the downhill movement. We introduce this recuperation efficiency

with a coefficient α. In literature [7, 8, 9] we may find that in general cases a pre-

processing with the Johnson’s algorithm [6] is used to obtain a potential function,

which solves the negative cost function, but there is also thoroughly deduced that

the potential energy is already such one potential function. Therefore, using the

transformation described in [7, 8, 9], we obtain a new energy cost function

Em
D (i) =







ER(i) + (α− 1) · EP (i) if EP (i) ≤ 0

ER(i) if EP (i) > 0
(1.16)
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where α is the downhill energy recuperation coefficient (0 < α < 1). The trans-

formed function is always positive and can be used with the Dijkstra’s algorithm

in this form. This transformation introduces a penalization of the descending road

segments in a way that when the vehicle moves downhill EP ≤ 0 we know that

a fraction α − 1 of the potential energy is always lost, because even if the vehicle

moves later upwards, to the same elevation, it can only recuperate α of the potential

energy.

1.3.2 State of charge

Additionally, we also want to consider the state of the energy source of the vehicle.

This source may be a battery or super-capacitor. We consider the state of charge in

simple and intuitive way such that if the remaining energy is not sufficient to move

the vehicle to the next vertex of the road segment its cost is set to infinity.

The ideas used in this implementation are from [8] and it is actually a further

transformation of the energy cost function. Firstly, we define the state of charge

function as

C(ri) =















0 if i = 0

∆i if i > 0, ∆i ≤ Cinit

∞ if i > 0, ∆i > Cinit

(1.17)

where the ri = (v0, v1, v2, . . . , vi−1) is a sequence of nodes taken to the current node

vi, Cinit is the initial state of charge at the origin and ∆i is the difference to the

state of charge after we move to the current node and is defined as

∆i+1 = C(ri) + Em
D (i + 1). (1.18)

The C is a function that tell us the state of charge base on what nodes we have

taken to the current node. The value is actually the free capacity and not the amount

of stored energy and it is lowering with recuperation and rising with using energy.

We can see that there are three cases, the fist one means that in the beginning the

we have zero free capacity, the energy source is fully charged, the second case is that

we have enough of energy to move to the next node and the third last case is that

we do not have enough energy and so the returned value is infinity.

As we said before we need to modify the energy cost function, this is introduced

by another additive component. We denote this component as ÊD and it is defined

as

ÊD(i) =







0 if ∆i ≤ Cinit

∞ if ∆i > Cinit

(1.19)
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where we can see that there are two cases. In the first one zero is returned when

the energy needed to reach the next node is less than the initial state of charge. In

the second one infinity is returned because we have depleted the stored energy.

We follow with insertion of this additive component into the equation (1.12) as

ED(i) = ER(i) + EP (i) + ÊD(i). (1.20)

Furthermore, we apply the transformation to the positive edges as demonstrated

in (1.16) and finally obtain the function as

Em
D (i) =







ER(i) + (α− 1) · EP (i) + ÊD(i) if EP (i) ≤ 0

ER(i) + ÊD(i) if EP (i) > 0
(1.21)

The effect of this modification is that if the energy needed to reach to a current

node is grater than the initial state of charge plus the recuperated energy along the

way, then we do not consider this path feasible.

1.3.3 Battery maximum capacity

In the previous section we described how penalize the insufficient energy to move

forward. Here we slightly modify the definition of the given function in such way

that the mode also penalize overcharging of the battery. What it means is, that if the

energy storage is full, either because of initial full charge or excessive recuperation,

and we are moving downhill, then we are not able to recuperate anymore thus the

potential energy is lost.

The modification to the previous functions is following

C(ri) =



























Cmax − Cinit if i = 0

0 if i > 0, ∆i < 0

∆i if i > 0, 0 ≤ ∆i ≤ Cmax

∞ if i > 0, ∆i > Cmax

(1.22)

where the Cmax is the maxim capacity of the energy storage. The first term sets the

free capacity to the difference of the initial capacity and maximum capacity. In the

former definition the initial capacity was the same as the maximum capacity, here we

can define different values. The second term handles the situation when the energy

source is fully charged and so there is zero free capacity left. The overcharging
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penalty is finally introduced in

ÊD(i) =















−∆i if ∆i < 0

0 if 0 < ∆i ≤ Cmax

∞ if ∆i > Cmax

(1.23)

where the first term is added and it means that if we are trying to recuperate and the

free capacity is smaller than we return amount of energy that could not be stored.

The effect of this modification is that if a downhill segment potential energy can

not be recuperated because of lack of additional capacity, then the cost of the energy

function is increased with the value of this lost energy.
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2 ALGORITHM FOR FINDING AN ENERGY

OPTIMAL PATH SUBJECT TO A TIME CON-

STRAINT

2.1 Multiconstrained path (MCP) problem

A path P in G is a sequence of nodes 〈v1, . . . , vk〉 with (vi, vi+1) ∈ E for all i =

1, . . . , k − 1. For 1 ≤ i ≤ j ≤ k the subpath of P between vi abd vj is denoted by

Pvi→vj
= 〈vi, . . . , vj〉.

The cost function can be extended to this path as the accumulated sum of all

edge costs, see Figure 2.1:

c(P ) =
k−1
∑

i=1

c(vi, vi+1) (2.1)

v1
v2

v3 v4

P

3 4 2

Fig. 2.1: A path P = 〈v1, v2, v3, v4〉. The numbers on the edges denote the edge
cost, so c(P ) = 9

In order to be consistent with the definitions used in the literature and to help

the reader to easily understand the notations used here, we redefine in the following

the edge (u, v) energy cost function ce (2.2) and introduce the related edge time cost

function ct (2.3).

ce(u, v) =







ER(u, v) + (α− 1) · EP (u, v) + ÊD(u, v) if EP (u, v) ≤ 0

ER(u, v) + ÊD(u, v) if EP (u, v) > 0
(2.2)

ct(u, v) = l(u, v)/v(u, v) (2.3)

Definition [10]: Consider a graph G = (V, E). Each edge (u, v) ∈ E is specified

by a link weight vector with m additive edge weights wi(u, v) ≥ 0 for all 1 ≤ i ≤ m.

Given m constraints Li, where 1 ≤ i ≤ m, the problem is to find a path P from a
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source node s to a destination node t such that

wi(P ) =
∑

(u,v)∈P

wi(u, v) ≤ Li (2.4)

for all 1 ≤ i ≤ m.

A path that satisfies all m constraints is referred to as a feasible path. There may

be many different paths in the graph G = (V, E) that satisfy the constraints. Any

of these paths is a solution to the MCP problem. However, it might be desirable to

retrieve the path with smallest cost c(P ) from the set of feasible paths. The problem

that additionally optimizes some cost function c(P ) is called the multiconstrained

optimal path problem and is formally defined as follows.

2.1.1 Multiconstrained optimal path (MCOP) problem

Definition [10]: Consider a graph G = (V, E). Each edge (u, v) ∈ E is specified by

a link weight vector with m additive edge weights wi(u, v) ≥ 0 for all 1 ≤ i ≤ m.

Given m constraints Li, where 1 ≤ i ≤ m, the problem is to find a path P from a

source node s to a destination node t satisfying (2.4) and, in addition, minimizing

cost function such that c(P ) is less than or equal to the cost of any other (s, t) path

in the graph. In other words, c(P ) ≤ c(P j) for all paths P j between s and t.

2.1.2 K-shortest path problem

A related problem is the k-shortest path problem, where the goal is to find just

not the cheapest path, but find k cheapest paths in the graph. A solution to this

problem is a set of (s, t) paths, that can be arranged like P1, P2, . . . , PK with costs

c(P1) ≤ c (P2) ≤ . . . ≤ c(PK) so that all other paths than P1, P2, . . . , PK have a

greater or equal costs compared to c(PK).

2.1.3 Concordance of the definitions

To apply the former definitions to our problem we give the following explanation.

In our case each edge (u, v) ∈ E is characterized by two weight functions that assign

positive weights, which are the energy cost function ce(u, v) (2.2) and the time cost

function ct(u, v) (2.3). The energy and time can be seen as the constrained resources

according to the MCOP definition. However, the energy cost function has already

the constrain logic included, because we track the free capacity of the energy source

and if it reaches the empty state the energy cost is set to infinity (1.23), thus this

path is effectively pruned. Therefore, we do not have to consider the energy cost in

the same sense as it is defined by the MCOP definition. Consequently, we are left
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with only the time constraint and as a result we can deduce for the MCOP definition

the following:

c(u, v) = ce(u, v)

w(u, v) = ct(u, v) (2.5)

L = β · ct (P sp
s→t)

Where c(u, v) is the function whom cost is to be minimized, w1(u, v) is the

additive constraining weight. The ct (P sp
s→t) is the shortest path length for the time

cost function, it can be equally understood as the shortest possible time a driver

can get from s to t, it is also called time lower bound. This maximum time limit

is denoted as L and it is also called time upper bound or time constraint. The β

is a parameter which allow us to obtain L by multiplying it with the time lower

bound. Simply said the β tell us how much more time the driver is willing to spend

relatively to the time optimal path.

The values of β ∈ (1,∞) define the objective of the routing problem. If the value

of β = 1 we have a time optimal routing problem. On the other hand, if β = ∞

we have an energy optimal routing problem. A condition that β ≥ 1 has to be met,

otherwise we would be querying for a path that is faster than the fastest possible

path.

2.2 Solutions

2.2.1 Generate and test

Since the shortest path problem (SP) is easy, it might be a good idea to use it in a

strategy to solve the MCOP. A straightforward way to do this is to solve a SP instead

of a MCOP, then check if the solution violates some of the resource constraints. If

it does not, then the optimal solution to the MCOP is found. If some constraint is

violated the second shortest path is produced and so on.

The k-shortest path problem is used for this scheme in practice, due to efficiency.

Produce the k shortest paths and then pick the shortest of these that does not violate

the constraints. The main key point of this approach is related to the choice of the

size of k in order to guarantee a feasible solution. In the worst case all paths has

to be enumerated, since the most expensive might be the only feasible path. If the

constraints are not that limiting in the sense that not many paths are illegal, this

might be a good solution technique.
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2.2.2 Dynamic programming

Dynamic programming is a method for solving complex problems by breaking them

down into simpler subproblems. Every sub-problem is solved in order to get a

solution to the entire problem. In the case of a shortest path problem the dynamic

programming approach is to use the fact that an optimal (s, t) path is built up from

optimal sub-paths. If a path including node v is used, then the path from s to v is

optimal. If you have the optimal path from s to all nodes that are neighbors to the

source node, then it is easy to compute the shortest path.

Dijkstra’s algorithm uses this, like all shortest path algorithms. Compute the

shortest path to all nodes one edge away from the source, save the distance from

the source, then continue with the nodes two edges away from the source, using

information from the step before, save the distance from the source and from which

previous node the shortest path originated.

The scheme described above works fine for shortest path but for the MCOP there

is a problem. In the SP it is easy to decide if one path is better than another, if it

is cheaper, is better. For the MCOP problem a cheap path that consumes a lot of

resources early will probably be worthless in a later step since it will become illegal,

but a seemingly expensive path in an early stage might prove to be optimal. Because

of this more than one path has to be stored. The question is then how many of the

paths should be saved at each node. For the SP all paths but the optimal one can be

disregarded at each node, this is impossible for the MCOP. The paths that become

infeasible along the way can of course be disregarded, but not counting these there

are still a large number of candidate paths.

2.3 Proposed solution

We propose a new algorithm that finds a path whose energy cost is optimal and also

the time cost is at most β times the cost of the time optimal path. The algorithm

is based on a combination of ideas that have been used and proved in [10], [11] and

[8]. The core algorithm is based on the SAMCRA [10] and A*Prune [11] algorithms,

which are a modification of Dijkstra’s algorithm that finds k shortest paths, where

not only the optimal path but also many candidate paths are tentatively stored.

Additionally, we combine the A* search speedup technique for which we calculate

the lower bounds with a classic Dijkstra’s algorithm going backward. During the

relaxation step we employ pruning techniques called path dominance and look-ahead,

both effectively reduce the number of paths that would otherwise needed to be

explored. These techniques are explained in the following sections. Moreover, we

also use the modified energy cost function mentioned earlier because we are still
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required to have a non-negative edge costs. The resulting algorithm with these

concepts is executed in the following sequence of steps:

I. Time lower bounds computation

To speedup the algorithm we employ the look-ahead technique, which can be de-

scribed as following. We are searching forward in the graph from origin s and we

have arrived at node v. We know that we have already traveled 10 minutes from s

to v and we also know that we may spend 15 minutes at maximum. This tells us

that we have five minutes left to spend to reach the destination t. The fastest way to

decide if we can or cannot reach the destination in this time is to actually know the

shortest possible time from the actual node v to destination t. This shortest possible

time is called as a lower bound. For example, if the lower bound is two minutes

then we are able to reach the destination from this node in 12 minutes or longer,

thus we can continue to search from this node. However, if the lower bound would

be for example seven minutes, then we are certain we cannot reach the destination

within the 15 minutes. Consequently, we may disregard the path we took to reach

this node v as it is unfeasible, this is also called as prunning.

In this example the 15 minutes is the constraint L defined in (2.5). The 10

minutes path we call as a tail path, the two or seven minutes path are called head

path and the joint of them is called projected path.

Hence, to be able to use this technique, we are precomputing these head paths

for a subset of nodes from the graph in this first step.

II. Energy heuristic computation

Another, well known, speedup technique reducing the search space is the A* algo-

rithm. It is a modification of the Dijkstra’s algorithm where instead of using only

tail path cost to determine the priority in the queue we use the whole projected

path. To know the projected path we also need to know the estimate of energy to

reach the destination. This estimate is given by a heuristic function, which must

be a so called admissible heuristic. That is, it must not overestimate the projected

path cost. Usually a function based on a straight-line to the goal is used, since that

is physically the smallest possible distance between any two nodes. However, this

heuristic is usually weak and does not limit the search space much, thus we use a

Dijkstra distance as the heuristic function which provides stronger estimates.

III. Forward constrained search

This is the main part of the algorithm. We use the precomputed information from

the two former steps, which are indispensable to effective pruning. The search is
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terminated once the path is found or there is no more possible paths to explore.

2.3.1 Time lower bounds computation for the look-ahead

concept

tt

ct (P sp
s→t)ct (P sp
s→t)

ss

←−w←−w

Fig. 2.2: Example search space of the computation when the shortest path is found
and this search is stopped. Nodes within the hatched area have the head path
computed in the←−w set. The dashed line marks the area of nodes that can be reached
within the constraint L. The search space is not displayed as a disc, because the
axes of this figure are in units of distance whereas the search space is in time, so
this case can be seen as that the fastest route is achieved by driving a motorway
around the city.

The look-ahead concept can be viewed as an additional mechanism to reduce

the search space of possible paths. The idea, is to limit the set of possible paths

by using information of the remaining subpath towards the destination. The look-

ahead concept proposes to compute the shortest path tree rooted at the destination

to each node in the graph. The basic importance of look-ahead is to provide each

node with an exact, lower bound cost.

Considering this description of the look-ahead concept from [10], we have to

realize that we cannot precompute the lower bound for all nodes in the graph because

simply the graph is too large and it would mean that we have to compute Dijkstra

distance for the whole graph. Such precomputation would take more time that the

main part of the algorithm.

To overcome this problem we have, firstly, used a stopping condition in the

Dijkstra’s algorithm which ensured that we do the computation only for those nodes

that are reachable within the given time constraint. We start from the destination
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node t towards the origin s, when the origin is settled we store the calculated cost,

which in this case represents the minimum time that is needed to travel from s to

t, or in other words, it is the cost ct (P sp
s→t) for the shortest path of the time cost

function ct. However, at this moment we do not stop the search as we normally

would, but we keep the computation running until the summed cost ct (Pv→t) for

some node v ∈ V is greater than β · ct (P sp
s→t) or there are no other unsettled nodes.

When the search stops we have a lower bound set that contain an estimated minimal

time needed to reach a destination from that node. We denote this set as ←−w (v),

which contains the distance for every node v that meets the condition (2.6).

ct (Pv→t) ≤ β · ct (P sp
s→t) (2.6)

The idea behind this is that we will compute the distance only for those nodes

that can eventually be part of the solution. In addition, we are certain that if

a node is not included in this set then we cannot reach it within the given time

constraint. Nevertheless, this still meant that with increasing β the search space

was also becoming larger and eventually useless for large β (e.g. ≥ 2).

tt

bb
aa

ss

(a) Backward search starts
from destination node t

ss t

aa
bb

(b) The search area grows
as a disc around the desti-
nation node

ss t

a
bb

(c) Once the origin node s

is settled the search stops

Fig. 2.3: Schematic representation of backwards dijkstra search space growth

Realizing that we are computing lower bound, for which we may choose a value

that is less than or equal to the exact distance from t, we can avoid all of this

overhead. The following explanation is illustrated by Figure 2.3. The backward

search starts from the destination node t and grows towards the origin node s. Any

node directly on the circle has the same Dijkstra distance, time in this case, to

the destination node. Once the origin node is settled we stop the search and we

know what is the shortest distance between origin s and destination t. There are

also marked nodes a and b. We can see that the node a is within the search space

(disc) whereas the node b is not. This means that node a has also been settled
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and we know the shortest distance, the lower bounds, between this node and the

destination t. Apparently, the distance is not know for the node b, yet we are sure

that the distance is greater than the one between s and t. This is noted by (2.7).

c(Pa→t) < c(Ps→t) < c(Pb→t) (2.7)

In conclusion, we may use the distance between the s and t as the lower bound

for the node b, because we are certain that we do not overestimate the distance.

Consequently, we use the distance c(Ps→t) for all the nodes that are not within the

search space as their lower bound.

2.3.2 The backward Dijkstra’s algorithm

We use a priority queue Q that is initialized with the destination node t. Each node

u has associated a tentative distance h(u) from t, which is the only component that

decides the priority within the queue. The algorithm works in the same fashion as

the classic Dijkstra’s algorithm, but the predecessor list is not stored, because we

are only interested in obtaining the distances from all vertices v ∈ V that have cost

c(Pv→t) ≤ c(Ps→t) to destination t. This procedure is given in Algorithm 1.
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Algorithm 1 Backward Heuristic exploration by Dijkstra’s algorithm

Input: Directed weighted graph G = (V, E), source vertex s, destination vertex
t, cost function c

Output: Lower bounds set h representing estimated accumulated cost to des-
tination t from all vertices v ∈ V that have cost c(Pv→t) ≤ c(Ps→t)

1: procedure Dijkstra(G, s, t, c)
2: h(t)← 0;
3: Q← {t};
4: while Q 6= ∅ do
5: u← choose the node with minimal h(u) from Q;
6: Q← Q \ u;
7: if u = s then
8: return h;
9: end if

10: for all ingoing edges (v, u) of node u do
11: h′ ← h(u) + c(v, u);
12: if v 6∈ Q then
13: h(v)← h′;
14: Q← Q ∪ v;
15: else if h(v) > h′ then
16: h(v)← h′;
17: end if
18: end for
19: end while
20: end procedure

2.3.3 Energy heuristic computation

Since we are using the Dijkstra’s distances as the heuristic, we can use identical

computation as the one used for the time lower bounds in the previous section. We

are using the same procedure given in Algorithm 1. The difference is, that instead

of the time cost function ct, we are using the energy cost function ce. Although, we

cannot use the energy cost function as it is defined in (2.2), because this search goes

backward from the destination t and we do not know what state of charge of the

energy source will be at the destination. We only know what is the state of charge

at the origin node and we will know (estimate) the state of charge only after the

energy optimal path is found.

Therefore, we need to remove the dependence on the state of charge. We know

that the state of charge is used to penalize the states of overcharging or empty

battery. Additionally, we know that this two extreme states can only increase the

cost, so if we decide to ignore these two extreme states and the possible increase of
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ce (P sp

s→t)ce (P sp
s→t)

←−
h
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Fig. 2.4: Example search space of the computation when the shortest path is found
and this search is stopped. Nodes within the hatched area have their head path’s
cost computed in the

←−
h set. We can see that the search space and the optimal path

is different from the time search (see Fig. 2.2). This can be explained by the fact
that the energy function prefers slower and more direct (shorter) paths.

cost. Moreover, we can prove that we may afford this modification by realizing that

to have an admissible heuristic, we must not overestimate the projected path cost.

Our modification is in concordance with this definition.

2.3.4 Forward constrained search

The third step of the algorithm is the forward search where the actual path is found.

On Figure 2.5 we can see how the resulting path might look like regarding the

precomputation steps. The search space is hatched in green and we can notice that

it never crosses the red dashed line, which represents the time constraint boundary

that was settled by the time lower bounds precomutation step. We can claim that if

any node located outside of this boundary can not be part of the feasible solution,

because it would break the time constraint, and so if any path attempts to expand

over this boundary it is pruned. In reality the pruning happens even in larger

distance from this border due to the look-ahead concept. The algorithm is given in

Algorithm 3.

Using the terminologies described in the previous sections, the algorithm can

be described by words as: starting from the path Ps→s, potentially, all the paths

Ps→v where v ∈ V can be reached. However, with a proper pruning against the
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Fig. 2.5: Forward constrained search space

given constraint L, only the admissible paths remain as candidate paths for further

expanding. We call a path admissible if sum of time, or other resource, spent on

the tail path −→w (Ps→v) and the estimated cost of the head path ←−w (v) is lower than

the constrain, this is expressed by (2.3.5). Furthermore, the candidate paths are

ordered properly such that the path with lowest projected cost
−→
h (Ps→v) +

←−
h (v) is

selected and expanded first, then we can terminate our expansion procedure once

we have found the constrained shortest path or there are no candidate paths left.

−→w (Ps→v) +←−w (v) < L (2.8)

2.3.5 Components of the projected cost of the look-ahead

technique

Further explanation of the look-ahead technique and of the used notation can be seen

on Figure 2.6. We can see a red disc grown from the destination node t. It represents

the search space for the time lower bounds precomputation, as explained previously

in the description of the algorithm’s first step. The green disc grows from the origin

node s, but in reality during the forward search the search space is not disc, but

some uncertain region protruding to the destination. The algorithm state, as shown

on the Figure 2.6, is at the step of deciding if a path Ps→v is considered admissible.

If the condition given by equation is true then the path Ps→v will be added to the

priority queue, otherwise it will be pruned and forgotten. Simple example is: we
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have reached an intermediate node v in 10 minutes and the fastest path from here

to destination takes at least 5 minutes; however, our limit, the constraint, is 12

minutes; consequently, so we can clearly see that there is no need to expand this

path, as it will never lead to feasible path.

The look-ahead, or lower bound, is denoted as ←−w (v). We can simply write

just ←−w (v) instead of ←−w (Pv→t) because there is always only one shortest path from

intermediate node v to t. On the other hand, there can be many expanded paths,

tail paths, from s to v. The time spent on the tail path to this intermediate node v

is denoted as −→w (Ps→v).

In the Algorithm 3 we can see that the constrain L is substituted as L = β ·

ct (P sp
s→t) = β · ←−w (s). This is based on (2.5) and on the fact the we also know that

←−w (s) is the fastest path cost from s to t.

On Figure 2.6 there is also displayed an alternative node b, which is outside of

the look-ahead search space, the red disc. Therefore, the exact distance to the target
←−w (b) is not known, but as explained earlier, we can use for evaluation of the node

b the shorted distance to the origin ←−w (s) as the estimated distance.

t

v

s

←−w (v)−→w (Ps→v)

←−w (s)
b−→w (Ps→b)

Fig. 2.6: Components of the projected cost of the look-ahead technique

2.3.6 Components of the projected cost of the A* heuristic

On Figure 2.7 we can see how the projected path cost for the energy is calculated. It

is identical to the look-ahead technique, but this time the projected cost
−→
h (Ps→v)+

←−
h (v) is used to ordered the candidate paths. This in the sense of the A* algorithm,

where the
←−
h (v) is used as the heuristic function. In the case of the look-ahead

technique, the goal was to prune the unfeasible paths as soon as possible. Although,

the A* heuristic does not speedup the search by pruning any paths, but it speeds it

up by better, more informed ordering of the candidate paths in the priority queue.
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On Figure 2.7 there is also displayed an alternative node b, which is outside of

the precomputed search space, the red disc. Therefore, the exact distance to the

target
←−
h (b) is not known, so for evaluation of the node b we use the shorted distance

to the origin
←−
h (s) as the estimated distance.

t

v

s

←−
h (v)

−→
h (Ps→v)

←−
h (s)

b−→
h (Ps→b)

Fig. 2.7: Components of the projected cost of the A* heuristic

2.3.7 Path dominance

Another speedup technique is called path dominance. To explain this technique we

describe an example scenario. We have reached some intermediate node v by path

PA. The time we have used is 15 minutes. Without this approach, the path would

be normally added to the priority queue for further expansion. However, if there is

some another path PB, which also leads to the node v and has been found earlier,

has used only 12 minutes and the same amount of energy as path PA, then we do

not need to store the path PA, because we already know that it will lead to same

or worse quality paths as the PB. By quality of path we understand the amount of

used resources needed to follow this path. Such path is called dominated path and

it is prunned. The test of path dominance is given by Algorithm 2.

31



Algorithm 2 Path dominance test

Input: Directed weighted graph G = (V, E), set −→w representing time spent
on path P from source vertex s to intermediate vertex v, set of non-dominated
paths S

Output: Returns 1 if the path P ∗

s→v cannot be a subpath of a shortest path,
otherwise 0

1: procedure IsDominated(S, ~h, ~w, P ∗

s→v)
2: for all paths P i

s→v from set S do

3: if
−→
h (P i

s→v) ≤
−→
h (P ∗

s→v) and −→w (P i
s→v) ≤ −→w (P ∗

s→v) then
4: return 1;
5: end if
6: end for
7: S ← S ∪ P ∗

s→v;
8: return 0;
9: end procedure

2.3.8 Simple path search only

We can further limit the search space by considering only the simple paths. A simple

path is such path that does not contain one node twice or in other words, the path

does not return to the node that it is already going through. This is accomplished

without any further effort because the path dominance test will always prune all

paths that return to the same nodes. Simply said, if we go from first node to second

and then back, the time and energy used to return from the second will always

increase the resources used to reach the first node.
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Algorithm 3 Energy optimal path search with time constraint

Input: Directed weighted graph G = (V, E), source vertex s, destination vertex
t, constraint multiplier β, time cost function ct, energy cost function ce

Output: A shortest path between s to t obeying the time cost constraint

1: procedure FindPath(G, s, t, β, ct, ce)
2:

←−w ← Dijkstra(G, s, t, ct); noting that ←−w (a) =←−w (Pa→t)

3:
←−
h ← Dijkstra(G, s, t, ce); noting that

←−
h (a) =

←−
h (Pa→t)

4:
−→w (Ps→s)← 0;

5:
−→
h (Ps→s)← 0;

6: S ← ∅;
7: Q← {Ps→s};
8: while Q 6= ∅ do

9: Ps→u ← choose the path with minimal
−→
h (Ps→u) +

←−
h (u) from Q;

10: Q← Q \ Ps→u;
11: if u = t then
12: return Ps→u;
13: end if
14: for all outgoing edges (u, v) of node u do
15: if v 6∈ ←−w then
16:

←−w (v)←←−w (s);
17: end if
18: if −→w (Ps→u) + ct(u, v) +←−w (v) > β · ←−w (s) then
19: continue; prune this path as it is not feasible
20: end if
21: Ps→v ← extend Ps→u with edge (u, v);
22:

−→w (Ps→v)← −→w (Ps→u) + ct(u, v)

23:
−→
h (Ps→v)←

−→
h (Ps→u) + ce(u, v);

24: if IsDominated(S, ~h, ~w, Ps→v) then
25: continue; prune this path as it is dominated
26: end if
27: Path Ps→v is considered feasible so it is added to the queue.

28: if v 6∈
←−
h then

29:
←−
h (v)←

←−
h (s);

30: end if
31: Q← Q ∪ Ps→v;
32: end for
33: end while
34: end procedure
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3 IMPLEMENTATION

In this section we describe the data-sources that were used the implementation of the

prototype application. The application is written in Java programming language and

runs on Android operating system. All the development and testing was conducted

on the Samsung Galaxy Tab tablet.

3.1 Sytadin

Sytadin is an on-line traffic information system for Ile-de-France. It is possible to

have access to real-time traffic information in form of XML feed at the address http:

//www.sytadin.fr/diffusion. The information is updated every two minutes.

3.1.1 Distributed Information

Sytadin provides different files to describe the traffic information:

• Traffic net geometry files – these files are in MapInfo format [13] and describe

the geometry of the traffic net. It is particularly the geographical information

about net points, arcs, axes, segments and poles. This information is static

and does not change.

• Dynamic traffic information – information about speed and traffic states, traf-

fic tendencies, incidents and dysfunctions. This information is updated every

few minutes. The files are in XML format with XML Schema XSD file avail-

able.

• Route information – route mark-ups and closings. Updated once per day. The

file is in XML format with XSD Schema file available.

In listing 3.1 is the example of the dynamic traffic information XML file. It gives

the information about two arcs which are specified by their IDs. In the ArcDy-

namique tags are the tags describing the actual arc: EtatTrafic (the state of traffic

flow - fluid, jammed, unknown), TPBride (estimated travel time), TPReference (ref-

erence travel time), EcartTypeTPReference (standard deviation of the travel time),

VitesseInstantanneeBridee (estimated actual speed), NiveauService (service state)

and IndiceConfiance (confidence index).

Listing 3.1: Example of Sytadin’s dynamic traffic information file with two arcs.

1 <DonneesDynamiquesArcs VersionConfiguration="14"

2 DateDiffusion="2012−12−02T16:48:49">

3 <ArcDynamique ID_ARC="13010493">

4 <EtatTrafic>Fluide</EtatTrafic>
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5 <TPBride>−1</TPBride>

6 <TPReference>59</TPReference>

7 <EcartTypeTPReference>0.00</EcartTypeTPReference>

8 <VitesseInstantanneeBridee>60</VitesseInstantanneeBridee>

9 <NiveauService>1.00</NiveauService>

10 <IndiceConfiance>1.00</IndiceConfiance>

11 </ArcDynamique>

12 <ArcDynamique ID_ARC="13009571">

13 <EtatTrafic>Fluide</EtatTrafic>

14 <TPBride>−1</TPBride>

15 <TPReference>52</TPReference>

16 <EcartTypeTPReference>0.00</EcartTypeTPReference>

17 <VitesseInstantanneeBridee>0</VitesseInstantanneeBridee>

18 <NiveauService>1.00</NiveauService>

19 <IndiceConfiance>0.00</IndiceConfiance>

20 </ArcDynamique>

21 </DonneesDynamiquesArcs>

3.1.2 Traffic Net Geometry Coordinates Transformation and

Export

As already mentioned, the traffic net geometry files are in MapInfo format. It

is possible to visualize (see Figure 3.1) these files for example with free program

ShapeView [14].

Fig. 3.1: Visualization of the Sytadin’s traffic net geometry of Paris using ShapeView
program and a zoom-in of connected arcs

Sytadin does not provide geographical data in World Geodetic System (WSG84)

used by GPS but in Lambert Conformal Conic projection. Therefore, it is neces-

sary to transform these coordinates. For that purpose, a simple custom MIF2Geo

application (shown in Figure 3.2) is used, which reads the MapInfo file, transforms

the coordinates from Lambert projection to WSG84 and saves the data in CSV file

for further processing.
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Fig. 3.2: MIF2Geo application user interface

The CSV file is a text file containing lines of values separated by commas and

therefore creating columns. In the first line is a text description of each column.

The columns are the following: id (Sytadin’s ID of the current arc), XMin (minimal

longitude of the rectangle enveloping the current arc in decimal degrees), XMax

(maximal longitude of the rectangle), YMin (minimal latitude of the rectangle),

YMax (maximal latitude of the rectangle), OriginType (flag describing the start

of the arc - see below), alfaRads (the angle between a rectangle’s down-side and

the diagonal in radians) and RefSpeed (reference arc’s speed in km/h). A graphic

explanation of these parameters is in Figure 3.3.

Fig. 3.3: An arc (solid line) with enveloping rectangle (dashed line) and its param-
eters

In some cases, there is only one arc defining the geographical position of two

roads. More precisely, it concerns mainly the roads with two directions without some

kind of boundary in the middle. Therefore, there are two arcs with different IDs and

different traffic information in the database, but they have the same geographical

coordinates so it is necessary to know also the origin point of the road to determine

the traffic direction. This information is needed during the fusion of Sytadin’s traffic

information and OSM map data. In the arcs’ MapInfo file (.mid file) there is a field
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with origin point ID. Then, we have to find this point in another MapInfo file with

points (the next file input in MIF2Geo application) and get it’s coordinates. Once

having the origin point’s position, we can bind it with arc’s enveloping rectangle

coordinates and find, in which corner of the rectangle is the origin. Then, there are

four possibilities shown in Figure 3.4.

Additionally, the angle of the diagonal is calculated to speed up and help some

other calculations. The reference speed is one of the MapInfo fields and is also

exported to use it afterwards in routing database.

Fig. 3.4: Different types of starting points of an arc and their respecting flags used
in CSV file

3.2 Open Street Map Export

Open Street Map propose the geographical data in OSM XML file format. The main

advantages are mostly human readable and clear structure, machine independence

and good compression ratio. However, the files can be huge and parsing may take

a long time. The OSM XML file is composed of data primitives describing the

map. These can be nodes (a single geospatial point using a latitude and longitude),

ways (an ordered list of 2 to 2000 nodes, ways can be used to represent linear

features (vectors) or polygons) relations (used to model logical and usually local or

geographic relationships between objects) or tags (two free format textual fields, a

"key" and a "value", describing map features like max speed or road type). Complete

description of the XML file format is available in the wiki documentation [15]. In

order to maximize the performance on Android devices, it is necessary to think

about the data format for routing, because the full map in native XML format is

inefficient and too bulky. For example the file for Ile-de-France has approximately

2.7 GB. Therefore, only necessary information for routing is exported.

The map export can be divided into three main steps: preparing the geographical

for the routing database, preparing the traffic net geometry information and finally

exporting the map to the routing database. This process is displayed by flowchart

in Figure 3.5.
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Fig. 3.5: Flowchart of tasks during the export of maps

3.2.1 Preparing the geographical data

Firstly, it is necessary to download the map data. There are more possibilities.

Either you can download the data of the whole planet but this is not recommended,

because the file Planet.osm in the XML format has over 250 GB in uncompressed

variant, 16 GB compressed. Then, there is a possibility to export data directly

from the web based map on the www.openstreetmap.org web page by selecting a

region on the map. However, this method is useful only for small areas and testing

purposes because the server can export only a limited number of nodes. The best

way seems to be to download already prepared maps of continents, countries or

regions. Good source of this map is for example on the CloudMade project web site

dowloads.cloudmade.com. Actually, we have traffic information only for the area

of Paris and suburbs so only the map for Ile-de-France is used.

The main tool for processing and converting OSM files is Osmosis tool. Down-
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load links and full documentation can be found at wiki.openstreetmap.org/wiki/

Osmosis. We use this tool to filter the map in such way that only the relevant infor-

mation for routing remains. By relevant are considered all roads that are accessible

by a motor vehicle. A useful link about how the construct the filter command can

be found at "tags for routing": wiki.openstreetmap.org/wiki/OSM_tags_for_

routing. Osmosis command that is used is in Listing 3.2.

Listing 3.2: Filter tags and keep only those desired for routing

1 osmosis.bat −−read−pbf file="s2−ile−de−france.pbf"

2 −−way−key−value keyValueList = "highway.residential, highway.unclassified,

highway.motorway, highway.motorway_link, highway.trunk, highway.trunk_link,

highway.primary, highway.primary_link, highway.secondary, highway.

secondary_link, highway.tertiary, highway.tertiary_link, junction.roundabout,

highway.mini_roundabout"

3 −−tf reject−ways access=private

4 −−tf reject−relations

5 −−used−node

6 −−write−pbf file="s3−ile−de−france.pbf"

3.2.2 Preparing the traffic net geometry information

This part consists in downloading the MapInfo files from Sytadin’s server and in con-

verting it into WSG84 standard coordinates. This is done by application MIF2Geo

as mentioned before. The application generates a CSV file which is going to be used

during the creation of the routing database.

3.2.3 Routing database export

The export of the routing database consists in more tasks. These are:

• more filtering of unnecessary elements,

• removing intermediate nodes,

• recalculating distances between intersection nodes,

• importing CSV traffic geometry file into a database for fast search,

• associating traffic information with intersection nodes,

• export to SQLite database (map.db).

In Figure 3.6, you can see the full path of a short driving cycle from node A to

node B. The orange dots represent intersection nodes. These nodes are necessary for

routing to calculate the shortest path (the path with the minimal cost corresponding

to a given criteria). There are also blue dots which represent intermediate nodes,
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which are not necessary for routing, because there is no crossing or turn. However,

they are necessary to know the exact shape of the road.

Fig. 3.6: Full path with intersection (orange) and intermediate nodes (blue)

In Figure 3.6 is the same path as in Figure 3.7, but without the intermediate

nodes. In the map file there is a huge number of intermediate nodes which are not

necessary for routing and therefore increase highly the computational time of the

shortest path. This is the reason the intermediate points have to be removed from

the routing database. More precisely, they are not removed but marked so they are

not considered during the routing. If we compare the two images we can see that

the number of nodes decreased from 18 to 5. However, it is important to mention

that the distances between two intersection nodes are not necessarily the same if

the road is curved. For this reason, we must recalculate the distances between the

nodes for the reduced map. The intermediate nodes are used to reconstruct the

exact shape of the path which we need for graphic visualization and for sampling

altitudes for the power profile calculation.

Fig. 3.7: Reduced path with only intersection nodes needed for routing

After exporting the intersection routing nodes, we need to associate them with

their respective traffic information IDs. The idea is that we try to overlap the
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routing map and the Sytadin’s traffic net geometry as shown in Figure 3.8. For

now, we have exported the Sytadin’s arcs in the CSV file which contains its IDs, the

enveloping rectangle, the angle of the diagonal and the reference speed of each arc.

Searching in a text file is very time consuming. For that reason, the data is inserted

into a database which supports so-called R-trees. These trees are optimized for

space indexing and for geo-location applications. One very good open-source object

oriented database for Java is Perst [18].

Fig. 3.8: Routing database and Sytadin’s geometry fusion illustration

After importing the Sytadin’s arcs into Perst database, we can find a record

quickly. To associate a node with its Sytadin’s ID, we have to find the appropriate

arc in the database. We know the geo-coordinates of the node and can use it to

search in the database. The result is a list of all rectangles, that envelope the node.

In most cases, we will find only one arc that corresponds to the node. However in

some cases, more enveloping rectangles can be overlapped. In Figure 3.9 we can see

two arcs found for one node (because the enveloping rectangles are overlapped). In

that case, it is necessary to evaluate the distances between the node and the actual

arc. In Figure 3.10 is shown the distance between a node and an arc. Because the arc

is the rectangle’s diagonal, we can calculate the distances of each arc and compare

them. This way we can decide that the node in Figure 3.9 should be associated with

the arc BC and not the arc AB.

The geo-positions of Sytadin’s arcs are not strictly the same as positions of the

OSM ways. It can be caused simply by the fact, that the real road is very large

and the Sytadin’s arcs copy the left border of the road, however, OSM way copy

the right border. This can create a significant error and we are not sure to find the

appropriate arc of the given node. This is why we do not search an exact point

in the database but we search the point with some tolerance. It means that we

do not search an exact point but a rectangle that overlaps the enveloping rectangle

of the arc. In Figure 3.11 you can see an example why it is necessary to search

with some tolerance. For now we have used the tolerance of 105deg of latitude and

longitude (The exact distance is different for latitude and longitude and depends on

the position on the globe. It is usually a few meters).
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Fig. 3.9: Overlapped enveloping rectangles of two arcs while searching for the node’s
arc

Fig. 3.10: Distance d between a node and an arc

One arc can be associated with two IDs to inform about the traffic state in both

directions. While searching in the database, we will find two records with the same

distance error between the node and the arc. Than we must decide which ID we

will attribute to the node. Because the nodes are grouped in ways we can get the

next node of the way and determine the direction of this road or lane.

3.3 Shuttle Radar Topography Mission Elevations

To add the third dimension to the OSM exported map, we used the data provided by

the NASA Shuttle Radar Topographic entitled Topography Mission (SRTM). This

mission was launched in February 2000 and the objective was to obtain RADAR

data of most of the Earth’s land surface to produce high resolution topographic

maps.

Approximately 80 percent of the land surface was acquired. The data has been

released at two horizontal resolutions: 3 arc-seconds (90 m) globally and 1 arc-

second (30m) for the United States. Therefore, for Île-de-France’s region, we can

assume that information is furnished with 3 arcs-seconds or 90m. The initial version

of the data was released globally in one degree tiles. These data were not processed

to eliminate data voids and there were errors with flat water surfaces and coastlines.
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Fig. 3.11: Searching for overlapping rectangles within a tolerance

Programs such as SRTMFill by 3DNature [17] can fill data voids in SRTM height

files.

3.3.1 HGT File Encoding

Data are in a height format file that uses a file extension ".HGT" and are compressed

using ZIP format. The file name is based on the coordinates of the lower left corner of

the tile. For example, tile N51E000.hgt.zip would cover an area including Greenwich,

England at 51:29 north and 0:00 east. This is referred to as the HGT file format in

the processing section below.

The DEM is provided as 16-bit signed integer data in a simple binary raster.

There are no header or trailer bytes embedded in the file. The data are stored in

row major order (all the data for row 1, followed by all the data for row 2, etc.).

All elevations are in meters referenced to the WGS84/EGM96 geoid as documented

at http://www.NGA.mil/GandG/wgsegm/. Byte order is ”big-endian” standard with

the most significant byte first and because of they are signed integers elevations can

range from -32767 to 32767 meters, covering the range of elevation that can be found

on the Earth.

These data also contain occasional voids from a number of causes such as shad-

owing, phase unwrapping anomalies, or other radar-specific causes. Voids are flagged

with the value -32768.

3.3.2 Obtaining and preparing the data

To ensure that all the elevations cover the whole Île-de-France’s region, we need

to have information approximately for the area between the latitude 48° North

and 50° North, and longitude 1° East and 4° East. For this purpose, necessary .hgt

files were downloaded [16]: N48E001.hgt, N48E002.hgt, N48E003.hgt, N49E001.hgt,

N49E002.hgt and N49E003.hgt.

As stated above, the SRTM data has data voids, or missing data, at various

locations within the tiles. It is recommended to process these data to fill in the

gaps. SRTMFill was used to interpolate values to produce a "complete" dataset.
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This program works as interpolation routine and is most effective when the gaps

are small and advise is given to take care when the data voids exceed 50 cells in

diameter. Each of the files is processed individually. Once all hgt files were filled,

we combine all those 6 files together into one. To do the combination, we need to

be careful about the indexing of the extracted file hgt file. As we know, SRTM data

are sampled at three arc-seconds and contain 1201 rows and 1201 columns. The

rows at the north and south edges as well as the columns at the east and west edges

of each cell overlap and are identical to the edge rows and columns in the adjacent

cell. The final extracted hgt file has maximum indexes [2400,3600].
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4 TESTS

In the following sections we will give a demonstrative test of the implemented algo-

rithms described in the previous chapters. These test show some of the observation

that we came across while developing the final algorithm.

4.1 Search space of the basic algorithms

The first test is to demonstrate the search space of the basic routing algorithms.

The android application was modified for this test in such way, that the algorithm

is marking the scanned edges directly on the displayed map. This allows us visually

confirm how much of the map has the algorithm to visit before it finds the solution.

The basic rule is that, the smaller the search space is the faster the query is. The

following tests are conducted with shortest distance criteria, thus we obtain typical

disc shaped search spaces.

4.1.1 Dijkstra’s algorithm

Classic Dijkstra algorithm searches in circular fashion. We can see its typical search

space on Figure 4.1. It starts to grow a disc from the origin A towards the destination

B. Once it meets the node B, the algorithm stops. On this figure we cannot see the

full extent, because the picture would be too large.

Fig. 4.1: Schematic representation of the search space of the Dijkstra’s algorithm
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4.1.2 A* algorithm

A* algorithm that is modification of the Dijkstra’s in such way that a heuristic

function is introduced. This heuristic guides the algorithm towards the destination

node so the search extent is reduced and so is the routing time. We can see on

Figure 4.2 that the search space is greatly reduced compared to the plain Dijkstra’s

algorithm shown on Figure 4.1. This works very well, because we can simply use the

air line distance to the destination as the admissible heuristic function. If we would

have searched for the fastest path and used equivalently simple heuristic function

then the reduction would not be so significant.

Fig. 4.2: Schematic representation of the search space of the A* algorithm

4.1.3 Bidirectional Dijkstra’s algorithm

Bidirectional Dijkstra algorithm is such modification that uses two concurrently

running classic Dijkstra’s searches in opposite directions. When these two meet

at the same node, the search is stopped. The optimal stopping condition is more

complicated and so our solution can in some specific situations give a suboptimal

result. We can see this search space in Figure 4.3. The two searches create two

disks that grow from the origin and destination. The forward search is marked with

blue color and the backward with violet color. Additionally, what we should notice

is that all the shown paths on Figures 4.1, 4.2 and 4.3 are the same path, which is

correct.
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Fig. 4.3: Schematic representation of the search space of the bidirectional algorithm

4.2 Three metrics

In this test we try to find paths between two points for thee different metrics. We

can see the resulting paths on Figure 4.4, the shortest path is marked with red color,

the fastest path is marked with blue color and the energy optimal route is marked

by green color. The origin point corresponds to the red tag and the destination

point corresponds to the violet one. The coefficient of energy recuperation α used

was 0.85.

We can clearly see that the fastest path goes around the center taking the mo-

torway and that the shortest path goes as directly as possible. From this test and

many other, we have deduced that the energy optimal path is usually rather direct,

nearly as the shortest path, and at the same time it takes the slowest road segments

as possible. If we examine the energy cost function given in the energy modeling

section, we can confirm that this behavior is correct, because the energy cost is

increasing with greater speed and distance. In table 4.2 we can see the roughly

estimated numerical values for these paths.

Metric Color Path length Duration Arriving state of charge

Shortest Red 13.8 km 21 min 94.9 %
Fastest Blue 16.6 km 15 min 92.2 %
Energy optimal Green 14.3 km 23 min 95.4 %

Tab. 4.1: Numerical values for the three metrics test
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Fig. 4.4: Paths found for the three different metrics

4.3 The dependence of elevation profile on recu-

peration efficiency

In this test we calculate several routes with different values of parameter α. As

explained earlier, this parameter defines the recuperation efficiency of the vehicle.

The natural assumption is, that with the lowering α the algorithm will prefer paths

with lower elevation oscillations and to find such paths it will sacrifice the length.

Therefore, it will find longer paths with smaller elevation gain. This elevation gain

is a metric that we calculate so we are able to compare paths based on the elevation

oscillations. The higher is the gain the higher are the oscillations. The resulting

paths the are displayed in Figure 4.5 and the elevation profiles of these paths are

displayed in Figure 4.6. Numerical values are given in Table 4.2. Comparing the

numerical values, we can see that they confirm our assumption. We can also see

that the black path is identical to the blue one, this is cause by the limited variety

of possible paths.

4.4 Routes for different values of parameter β

In Figure 4.7 we can see four calculated paths for different values of parameter β.

The route characteristics in term of length, duration and the state of charge at the

destination point are given in table 4.3. For this test the α = 0.8 for all paths. The
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Fig. 4.5: Found paths for different recuperation efficiencies

α Color Path length Duration Arriving state of charge

1.0 Black 20.8 km 52 min 93.8 %
0.9 Blue 20.8 km 52 min 93.5 %
0.6 Green 21.7 km 60 min 92.8 %
0.3 Magenta 22.5 km 46min 91.9 %
0.1 Cyan 22.8 km 41 min 91.3 %

Tab. 4.2: The dependence of elevation profile on recuperation efficiency

β parameter is set different for each of those paths, so we can observe the influence

it has on the resulting path. For β = 1 the problem is the same as we would look for

the fastest path, because it is the only that can meet the constraint. On the other

hand, if β =∞ then the path is the energy optimal path regardless the constraint.

Three other paths with the time constraint increased by 10%, 15% and 30% are

given. We can observe that with increasing β the duration of the path and the

arriving state of charge increases. That is, the more time we give the algorithm to

spend on the path the slower path he can choose and this is in concordance to what

we have proved in the previous sections, that the energy metric prefers the slower

paths.

β Color Path length Duration Arriving state of charge

1.00 Red 22.2 km 18 min 88.7 %
1.10 Green 20.1 km 19 min 91.1 %
1.15 Cyan 20.2 km 20 min 91.4 %
1.30 Magenta 16.3 km 23 min 93.2 %
∞ Blue 15.0 km 27 min 94.9 %

Tab. 4.3: Route parameters for different values of parameter β
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Fig. 4.7: Found paths for different values of parameter β
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5 CONCLUSION

In this work we have presented algorithms that are capable of calculating paths for

electric vehicles. These algorithm were successfully implemented on the Android

tablet device using the Java programming language. Those algorithms are mainly

based on the well known Dijkstra’s algorithm and its modifications such as the A*

and Bidirectional version.

In the first part, this work gives a model of the electric vehicle and a formula

for calculating energy cost that is required to traverse a road segment. The process

of obtaining this formula is given in several steps, so the reader can understand

how its final form was deduced. In this section, we also show that the ability of

recuperation of energy may give the edge weight a negative value. This poses a

difficulty for the Dijkstra’s algorithm, because this algorithm is broken when used

with negative values. Therefore, we describe a solution to compensate this problem.

We also describe how to introduce a limitation on the amount of battery the vehicle

can use and also we show ho the state of overcharging is penalized.

In the second part, we proposed a new algorithm that is able to compute a

path based on multiple metrics. We have developed this algorithm after the test

showed us that the energy metric prefers the slowest paths possible. Therefore,

this algorithm enables us calculates an energy optimal path, which is acceptable

by the driver. This is accomplished by computing the path by combining the time

metric and energy metric. This part we consider as the most valuable, because it

combines many concepts of algorithms used in another problematics and by good

understanding of them we were able to create this new algorithm.

This algorithm is parameterizable by the driver in such way, that an additional

information is given to the algorithm. This information is how much time the driver

is willing to sacrifice to obtain less energy demanding path. This parameter is

denoted as β and its values β ∈ (1,∞) actually define the objective of the routing

problem. If the value of β = 1 we have a time optimal routing problem, because the

driver in this case in not willing to travel longer time than the fastest path would

take. On the other hand, if β = ∞ we have an energy optimal routing problem,

because the driver is not concerned about the time at all. A condition that β ≥ 1

has to be met, otherwise we would be querying for a path that is faster than the

fastest possible path. This algorithm provides an exact solution, but the base of the

algorithm works in exponential time. With additional techniques, that are described

in this section, it is made to work in sub-exponential time.

This algorithm can be further generalized that it considers several metrics at

once. For example, you might want to know the fastest route for visiting your friend

but you only want routes where you do not need to refuel your car, or you may want
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to know the fastest route subject to the condition that the road toll does not exceed

a certain limit.

In the third part, we briefly describe how we pre-process the OSM map and its

fusion with the SYTADIN’s speed information and how we obtain the elevation data

from the SRTM data-source. In the last part, we present several tests that demon-

strate dependencies of the found paths on the algorithm parameters. The prototype

application is fully functional and can demonstrate the described algorithms.
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LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

M Total mass [m]

Cd Reynolds coefficient [kg/m3]

Af Windward area [m2]

µr Rolling resistance coefficient [-]

ρ Air density [kg/m3]

δeqm Equivalent moment inertia [kg·m2]

MCP Multiconstrained path

MCOP Multiconstrained optimal path

SP Shortest path

Pu→v A path from vertex u to vertex v

P sp
u→v The shortest path from vertex u to vertex v

c (P sp
u→v) Cost of the shortest path from vertex u to vertex v

SAMCRA Self-adaptive multiple constraints routing algorithm

ct Time cost function

ce Energy cost function

s, t Source vertex, Destination vertex

α Recuperation efficiency

β Upper bounds constraint multiplier

L Upper bounds, constraint (energy, time or other)

Q Priority queue

SYTADIN Synoptique du Trafic de l’Île de France

OSM Open Street Map

SRTM Shuttle Radar Topography Mission
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LIST OF APPENDICES

Appendix 1 — CD

Appendix 2 — Photography of the development Samsung Galaxy Tab

APPENDICES

Appendix 1

A CD is placed into the pocked that is inserted onto the inside of the rear cover.

It includes the electronic version of this work and the source code of the android

application.

Appendix 2
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