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ABSTRAKT 
V této práci popisujeme algoritmy, které umí vypočítat trasy pro elektické vozidla. Tyto 
trasy mohou být vypočítány v závislosti na jednoduchých metrikách, jako jsou napríklad 
vzdálenost a doba dojezdu, nebo v závislosti na pokročilejší metrice, jako je napríklad en
ergeticky optimálni metrika. Tato metrika je parametrizovatelná konstrukcí elektrického 
vozidla. Dále popisujeme nový algoritmus, který vypočítá energeticky optimální trasy, 
které jsou více přijatelné pro řidiče, protože zároveň zohledňují metriku času při výpočtu 
trasy. 

KLÍČOVÁ SLOVA 
Plánování optimální trasy, Elektrická vozidla, Plánování trasy s vícero omezeními, 
Plánování optimální trasy s vícero omezeními, Optimální trasa, SYTADIN, Open Street 
Map, Shuttle Radar Topography Mission, Android. 

ABSTRACT 
In this work we present algorithms that are capable of calculating paths to destination for 
electric vehicles. These paths can be based on the simple metrics such as the distance, 
time or the paths can be based on more advanced metric such as the minimum energy 
demanding metric. This metric is parameterizable by the physical construction of the 
electrical vehicle. We also propose a new algorithm that computes energy optimal paths 
that are more acceptable by the driver, because it also takes into consideration the time 
metric while computing the path. 

KEYWORDS 
Optimal Route Planning, Electric Vehicles, Multiconstrained path, Multiconstrained op
timal path, Shortest path, SYTADIN, Open Steet Map, Shuttle Radar Topography Mis
sion, Android. 
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INTRODUCTION 
The task of this work is to design and test algorithms capable of calculating a route 
to destination for electric vehicles. The routing algorithm is an algorithm that 
finds a route between two nodes in the routing map. Well know and widely used 
algorithm used for this type of task is the Dijkstra's algorithm [1] and its variation 
A * algorithm [2]. These algorithms are preferred because of their lower computation 
complexity compared to other algorithms, which most of are actually unsuitable for 
routing in large graphs such as the road network. The road network, represented 
by graph, consists of millions of nodes and edges and we have to compute the path 
in acceptable time for the driver. From early research on such algorithms, we may 
assume, that any modern GPS navigation uses some kind of modification of the 
Dijkstra's algorithm. 

To use the Dijkstra's algorithm we must be able to compare edges based on the 
required metric. This common metrics can be the shortest, the fastest path and in 
our case the lowest energy demanding path. Apparently, we can see, that we need 
some evaluation function which can compare paths and can clearly decide which of 
those paths is the optimal one. For the distance and time the computation of such 
function is clear, but for the energy we must have some more advanced model, which 
takes in consideration the physical parameters of the vehicle. 

In the first part, this work describes how to model the electric vehicle and create a 
suitable formula for calculating energy cost so we can apply the Dijkstra's algorithm 
and some of its modifications to our problem. 

In the second part, we propose a new algorithm that is able to find an energy 
optimal path, which is more likely acceptable by the driver. The need of such 
algorithm was discovered during the development of the energy metric, because we 
consider the energy optimal path as simply unacceptable for the driver, as it always 
prefers the slowest possible path. 

In the third part, we briefly describe what data sources we use to create the 
routing graph and implement the prototype navigation. In the last part, tests show 
and confirm some of the characteristics that we assumed during the development of 
the prototype application. 
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1 E N E R G Y MODELING 
To use the Dijkstra's algorithm we must be able to compare edges based on the 
energy demand needed to traverse the edge. In the following sections we create 
a mathematical model that will lead to obtaining an energy cost function. The 
modeling is described in several steps, where we define intermediary energy models, 
but only the last one is used in the implementation. 

1.1 Bicycle model 

In the first time the discussion of vehicle fundamentals will be restricted to one-
dimensional movement (bicycle model). The movement behaviour of a vehicle along 
its moving direction is completely determined by all the forces acting on it in this 
direction. This basic model in its description is from [5]. 

According to the Newton's second law, vehicle acceleration can be written as 

where V is the speed of the vehicle, J2 Ft is the total traction effort of the vehicle, 
J2 Fr is the total resistance, M is the total mass of the vehicle, and SM is the mass 
factor that equivalently converts the rotational inertias of rotating components into 
translational mass. 

Fig. 1.1: Schematic representation of the forces acting on a vehicle [3] 

As shown in figure 1.1, the total resistance is composed mainly of rolling resis
tance Fr (which combines the torques Trf and Trr), wind resistance Fw, and climbing 
resistance Fc (the term Mg sin 9). In the opposite direction acts total traction effort 
Ft which is composed of the front and rear tires efforts Ftf and Ftr generated by the 

dV = HFt-TFr 

dt 5M 
(1.1) 

11 



prime movers and minus all friction losses. By developing the equation above, we 
obtain the dynamic equation in the form: 

M^ = Ft-(Fr + Fw + Fc) (1.2) 

Using the dynamic equation, we can express the maximal traction effort for 
both front and rear wheels. Then we can also examine the tire-ground adhesion 
which is connected with the maximal traction effort. The detailed description of the 
characteristics summarized in this chapter is presented in [4]. 

1.2 Longitudinal model 

The vehicular model of longitudinal dynamics is constructed based on the theory of 
vehicle multi-body dynamics as seen before. 

1.2.1 W i n d resistance 

The wind resistance is caused generally by two facts: the viscous friction of the 
surrounding air on the vehicle surface and the losses by the pressure difference 
between the front and the rear of the vehicle, generated by a separation of the air 
flow. 

The resistance expression can be usually simplified by considering a vehicle as 
a prismatic body with a frontal area Af. The pressure difference force can by 
multiplied by an aerodynamic drag coefficient Cd also known as Reynold's coefficient 
(estimated by simulation or experiment in wind tunnel) so the wind resistance can 
be written as 

Fw{v) = P-AsCdv2 (1.3) 

where v is the vehicle speed and p is the density of the ambient air. 

1.2.2 Tire rolling resistance 

The tire rolling resistance can be expressed as 

F r(0) = Mgprcos6, v>0 (1.4) 

where M is the vehicle mass, g the acceleration due to gravity, term cos 9 is road 
slope influence and \xr is the rolling friction coefficient. 

The rolling friction coefficient depends on many variables. Especially vehicle 
speed v, tire pressure p, and road surface conditions. 
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1.2.3 Climbing resistance 

The climbing resistance is conservative force induced by gravity and considerably 
influences the vehicle behaviour. 

Fc{6) = Mg sinO (1.5) 

1.2.4 Acceleration resistance 

The acceleration resistance due to the inertia of the vehicle and of all rotating parts 
inside the vehicle causes frictious (d'Alembert) forces. The rotating parts are here 
represented by 

dv 
Fa(v)=M(l + 5eqm) — (1.6) 

where Seqm is the vehicle equivalent moment inertia representing the rotating 
parts such as wheels and powertrain inertia. 

According to an analysis of the summation of performing forces acting on the 
vehicle body in the longitudinal direction, the power balance for the controlled 
vehicle is governed by: 

PD(t) =fpD(v,v,M,6) = (Fw + Fr + Fc + Fa)v 
= §AfCdv3 + Mg (fir cos 9 + sin 9) v + M (1 + Seqm) vv 

1.2.5 Position-based power calculation 

As an important parameter in equation (1.7), the road grade may change frequently 
according to the actual road environment, especially in the mountain terrain, and 
has become a major impact on the energy consumption. In general, the proper 
measurement to record the road grade by GPS and 3D-map is dependent on position 
rather than time. Therefore, the time-based equation (1.7) is not suitable for the 
purpose of control algorithm design, and a power calculation depending on position 
is preferable. Using the transformation 

dv dt dv 1 dv _̂  q 
ds ds dt v dV 
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equation (1.7) can be transferred into a position-based form 

PD(s) = %AfCdv3 + Mg(nr cosB + smB) v 
+ M(l + 5eqm)v2fs. 

The prototype vehicle to carry out the simulations is the Daimler Chrysler car 
[3]. The numerical values of the vehicle parameters used in further tests are listed 
in table 1.1. 

Parameter Value 

M total mass 2095 kg 
cA Reynolds coefficient 0.32 kg /m 3 

2.31 m 2 windward area 
0.32 kg /m 3 

2.31 m 2 

rolling resistance coefficient 8.80 • 10" 3 

P air density 1.25 kg /m 3 

^eqm equivalent moment inertia 0.195 kg-m2 

Tab. 1.1: Numerical values of the vehicle parameters [3] 

1.3 Energy cost function model 
Before continuing developing the model, we have to realize that the routing algo
rithm computes with only estimated and limited information. We do not know the 
speed profile along the road and the the exact road slope. This means that we con
sider that the velocity and the road slope is constant on each road segment. Taking 
into account these assumptions, we may following from the equation (1.10) give the 
energy needed to move the vehicle from the beginning to the end of the road segment 
(vi,vi+1) as: 

ED(i) = P-AfCdv% + MgfirliCOsOi + MgUamOi (1.11) 

where the newly introduced U is the length of the road segment. 
In the equation (1.11) the only term which may have negative value is the third 

one which corresponds to potential energy. If its absolute value is also superior to 
the sum of the two other terms, then the edge energy cost is negative. Lest us 
note by Ep the energy corresponding to wind and rolling resistance and by Ep the 
potential energy. We can define them as: 

14 



ED(i) = ER(i) + EP(i) 

ER{i) = 2AfCdVili + Mgfirli cos $i 

EP(i) = MgksmOi 

(1.12) 

(1.13) 

(1.14) 

Finally, the optimization criterion for the energy optimal route, which the algo
rithm is minimizing, may be given by the following expression: 

i=N 

where PJ = (VQ, V{, V°2, ..., v°N) is the jth possible path. 

1.3.1 Positive cost function transformation 

We have defined the energy cost function (1.12) and deduced that under certain 
scenarios the resulting sum may be negative. This poses a significant complication 
because the Dijkstra's algorithm and its modifications can only work with non-
negative edge costs. Therefore, we have to transform this cost to obtain only positive 
values. 

The two components of (1.12) are rolling resistance energy ER and the potential 
energy Ep. We are certain that the rolling resistance energy is always positive and 
that this energy is irreversibly lost. On the other hand, the potential energy is 
recoverable when the vehicle is descending. In the case of a perfect recuperation 
of the potential energy we could completely ignore this component in the equation, 
because if we take two different paths of different elevation profile, but between 
the same origin and destination, then the difference of the potential energy will be 
always the same for both of these paths. 

In the case of imperfect recuperation, we only recuperate a fraction of the poten
tial energy during the downhill movement. We introduce this recuperation efficiency 
with a coefficient a. In literature [7, 8, 9] we may find that in general cases a pre
processing with the Johnson's algorithm [6] is used to obtain a potential function, 
which solves the negative cost function, but there is also thoroughly deduced that 
the potential energy is already such one potential function. Therefore, using the 
transformation described in [7, 8, 9], we obtain a new energy cost function 

i=0 
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where a is the downhill energy recuperation coefficient (0 < a < 1). The trans
formed function is always positive and can be used with the Dijkstra's algorithm 
in this form. This transformation introduces a penalization of the descending road 
segments in a way that when the vehicle moves downhill Ep < 0 we know that 
a fraction a — 1 of the potential energy is always lost, because even if the vehicle 
moves later upwards, to the same elevation, it can only recuperate a of the potential 
energy. 

1.3.2 State of charge 

Additionally, we also want to consider the state of the energy source of the vehicle. 
This source may be a battery or super-capacitor. We consider the state of charge in 
simple and intuitive way such that if the remaining energy is not sufficient to move 
the vehicle to the next vertex of the road segment its cost is set to infinity. 

The ideas used in this implementation are from [8] and it is actually a further 
transformation of the energy cost function. Firstly, we define the state of charge 
function as 

C{rt 

0 if i = 0 
A* if i > 0, A* < Cinit (1.17) 
oo if i > 0, A* > dnu 

where the = (v0, vi, v2, • • •, f j- i) is a sequence of nodes taken to the current node 
Vi, Cinit is the initial state of charge at the origin and A* is the difference to the 
state of charge after we move to the current node and is defined as 

C{n) + ES{i + í). (1.18) 

The C is a function that tell us the state of charge base on what nodes we have 
taken to the current node. The value is actually the free capacity and not the amount 
of stored energy and it is lowering with recuperation and rising with using energy. 
We can see that there are three cases, the fist one means that in the beginning the 
we have zero free capacity, the energy source is fully charged, the second case is that 
we have enough of energy to move to the next node and the third last case is that 
we do not have enough energy and so the returned value is infinity. 

As we said before we need to modify the energy cost function, this is introduced 
by another additive component. We denote this component as ÉD and it is defined 
as 

,. . i 0 if A* < Cinit -
ED^I) = { T (1.19) 

OO if A* > Cinit 
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where we can see that there are two cases. In the first one zero is returned when 
the energy needed to reach the next node is less than the initial state of charge. In 
the second one infinity is returned because we have depleted the stored energy. 

We follow with insertion of this additive component into the equation (1.12) as 

ED{i) = ER{i) + EP{i) + ED(i). (1.20) 

Furthermore, we apply the transformation to the positive edges as demonstrated 
in (1.16) and finally obtain the function as 

ETC) = \ E R { i ) + ( a " 1 } ' E p { l ) + E r > { i ) l f E p { l ) ~ ° (1 21) 
D { i > { ER(i) + ED(i) HEP(t)>0 1 ' j 

The effect of this modification is that if the energy needed to reach to a current 
node is grater than the initial state of charge plus the recuperated energy along the 
way, then we do not consider this path feasible. 

1.3.3 Battery maximum capacity 

In the previous section we described how penalize the insufficient energy to move 
forward. Here we slightly modify the definition of the given function in such way 
that the mode also penalize overcharging of the battery. What it means is, that if the 
energy storage is full, either because of initial full charge or excessive recuperation, 
and we are moving downhill, then we are not able to recuperate anymore thus the 
potential energy is lost. 

The modification to the previous functions is following 

C{rt 

Cmax Cinit if % 0 
0 if i > 0, A* < 0 
A* if % > 0, 0 < A* < Cmax 

oo if i > 0, A* > Cmax 

[1.22) 

where the Cmax is the maxim capacity of the energy storage. The first term sets the 
free capacity to the difference of the initial capacity and maximum capacity. In the 
former definition the initial capacity was the same as the maximum capacity, here we 
can define different values. The second term handles the situation when the energy 
source is fully charged and so there is zero free capacity left. The overcharging 
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penalty is finally introduced in 

- A ' if A* < 0 
0 if 0 < A* < a max (1.23) 

where the first term is added and it means that if we are trying to recuperate and the 
free capacity is smaller than we return amount of energy that could not be stored. 

The effect of this modification is that if a downhill segment potential energy can 
not be recuperated because of lack of additional capacity, then the cost of the energy 
function is increased with the value of this lost energy. 
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2 A L G O R I T H M FOR FINDING A N E N E R G Y 
OPTIMAL PATH SUBJECT TO A TIME CON
STRAINT 

2.1 Multiconstrained path (MCP) problem 

A path P in G is a sequence of nodes (vi,..., Vk) with (vi,Vi+i) G E for all i = 
1,..., k — 1. For 1 < z < j < k the subpath of P between abd Vj is denoted by 

The cost function can be extended to this path as the accumulated sum of all 
edge costs, see Figure 2.1: 

k—1 
c(P) = S>te ,Ui+i ) (2.1) 

i=i 

Fig. 2.1: A path P = (vi,v2,v3,Vi). The numbers on the edges denote the edge 
cost, so c(P) = 9 

In order to be consistent with the definitions used in the literature and to help 
the reader to easily understand the notations used here, we redefine in the following 
the edge (u,v) energy cost function c e (2.2) and introduce the related edge time cost 
function ct (2.3). 

ER(u, v) + (a-l)- EP(u, v) + ED(u, v) if EP(u, v) < 0 
ER(u,v) + ED(u,v) HEP(u,v) > 0 

(2.2) 

ct(u, v) = l(u, v)/v(u, v) (2.3) 

Definition [10]: Consider a graph G = (V,E). Each edge (u,v) G E is specified 
by a link weight vector with m additive edge weights Wi(u,v) > 0 for all 1 < i < m. 
Given m constraints Lj , where 1 < % < m, the problem is to find a path P from a 
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source node s to a destination node t such that 

Wi(P)= J2 Wi(u,v)<Li (2.4) 
( i i , o ) e P 

for all 1 < % < m. 
A path that satisfies all m constraints is referred to as a feasible path. There may 

be many different paths in the graph G = (V, E) that satisfy the constraints. Any 
of these paths is a solution to the M C P problem. However, it might be desirable to 
retrieve the path with smallest cost c(P) from the set of feasible paths. The problem 
that additionally optimizes some cost function c(P) is called the multiconstrained 
optimal path problem and is formally defined as follows. 

2.1.1 Multiconstrained optimal path ( M C O P ) problem 

Definition [10]: Consider a graph G = (V,E). Each edge (u,v) G E is specified by 
a link weight vector with m additive edge weights Wi(u,v) > 0 for all 1 < i < m. 
Given m constraints Lj , where 1 < % < m, the problem is to find a path P from a 
source node s to a destination node t satisfying (2.4) and, in addition, minimizing 
cost function such that c(P) is less than or equal to the cost of any other (s, t) path 
in the graph. In other words, c(P) < c(P J ) for all paths P J between s and t. 

2.1.2 if-shortest path problem 

A related problem is the k-shortest path problem, where the goal is to find just 
not the cheapest path, but find k cheapest paths in the graph. A solution to this 
problem is a set of (s, t) paths, that can be arranged like Pi, P2,..., PR with costs 
c(Pi) < c{P2) < . . . < C(PK) so that all other paths than Pi,P2, • • • ,PR have a 
greater or equal costs compared to C(PK)-

2.1.3 Concordance of the definitions 

To apply the former definitions to our problem we give the following explanation. 
In our case each edge (u, v) G E is characterized by two weight functions that assign 
positive weights, which are the energy cost function ce(u,v) (2.2) and the time cost 
function Ct(u, v) (2.3). The energy and time can be seen as the constrained resources 
according to the M C O P definition. However, the energy cost function has already 
the constrain logic included, because we track the free capacity of the energy source 
and if it reaches the empty state the energy cost is set to infinity (1.23), thus this 
path is effectively pruned. Therefore, we do not have to consider the energy cost in 
the same sense as it is defined by the M C O P definition. Consequently, we are left 
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with only the time constraint and as a result we can deduce for the M C O P definition 
the following: 

Where c(u,v) is the function whom cost is to be minimized, w\(u,v) is the 
additive constraining weight. The ct (P^t) is the shortest path length for the time 
cost function, it can be equally understood as the shortest possible time a driver 
can get from s to t, it is also called time lower bound. This maximum time limit 
is denoted as L and it is also called time upper bound or time constraint. The j3 
is a parameter which allow us to obtain L by multiplying it with the time lower 
bound. Simply said the (3 tell us how much more time the driver is willing to spend 
relatively to the time optimal path. 

The values of (3 G (1, oo) define the objective of the routing problem. If the value 
of — 1 we have a time optimal routing problem. On the other hand, if — oo 
we have an energy optimal routing problem. A condition that (3 > 1 has to be met, 
otherwise we would be querying for a path that is faster than the fastest possible 
path. 

2.2 Solutions 

2.2.1 Generate and test 

Since the shortest path problem (SP) is easy, it might be a good idea to use it in a 
strategy to solve the M C O P . A straightforward way to do this is to solve a SP instead 
of a M C O P , then check if the solution violates some of the resource constraints. If 
it does not, then the optimal solution to the M C O P is found. If some constraint is 
violated the second shortest path is produced and so on. 

The /c-shortest path problem is used for this scheme in practice, due to efficiency 
Produce the k shortest paths and then pick the shortest of these that does not violate 
the constraints. The main key point of this approach is related to the choice of the 
size of k in order to guarantee a feasible solution. In the worst case all paths has 
to be enumerated, since the most expensive might be the only feasible path. If the 
constraints are not that limiting in the sense that not many paths are illegal, this 
might be a good solution technique. 

c(u, v) 

w(u, v) 

ce(u,v) 

ct(u,v) 

P • ct (PZt) 

(2.5) 

L 
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2.2.2 Dynamic programming 

Dynamic programming is a method for solving complex problems by breaking them 
down into simpler subproblems. Every sub-problem is solved in order to get a 
solution to the entire problem. In the case of a shortest path problem the dynamic 
programming approach is to use the fact that an optimal (s, t) path is built up from 
optimal sub-paths. If a path including node v is used, then the path from s to v is 
optimal. If you have the optimal path from s to all nodes that are neighbors to the 
source node, then it is easy to compute the shortest path. 

Dijkstra's algorithm uses this, like all shortest path algorithms. Compute the 
shortest path to all nodes one edge away from the source, save the distance from 
the source, then continue with the nodes two edges away from the source, using 
information from the step before, save the distance from the source and from which 
previous node the shortest path originated. 

The scheme described above works fine for shortest path but for the M C O P there 
is a problem. In the SP it is easy to decide if one path is better than another, if it 
is cheaper, is better. For the M C O P problem a cheap path that consumes a lot of 
resources early will probably be worthless in a later step since it will become illegal, 
but a seemingly expensive path in an early stage might prove to be optimal. Because 
of this more than one path has to be stored. The question is then how many of the 
paths should be saved at each node. For the SP all paths but the optimal one can be 
disregarded at each node, this is impossible for the M C O P . The paths that become 
infeasible along the way can of course be disregarded, but not counting these there 
are still a large number of candidate paths. 

2.3 Proposed solution 

We propose a new algorithm that finds a path whose energy cost is optimal and also 
the time cost is at most (3 times the cost of the time optimal path. The algorithm 
is based on a combination of ideas that have been used and proved in [10], [11] and 
[8]. The core algorithm is based on the SAMCRA [10] and A*Prune [11] algorithms, 
which are a modification of Dijkstra's algorithm that finds k shortest paths, where 
not only the optimal path but also many candidate paths are tentatively stored. 
Additionally, we combine the A* search speedup technique for which we calculate 
the lower bounds with a classic Dijkstra's algorithm going backward. During the 
relaxation step we employ pruning techniques called path dominance and look-ahead, 
both effectively reduce the number of paths that would otherwise needed to be 
explored. These techniques are explained in the following sections. Moreover, we 
also use the modified energy cost function mentioned earlier because we are still 
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required to have a non-negative edge costs. The resulting algorithm with these 
concepts is executed in the following sequence of steps: 

I. Time lower bounds computation 

To speedup the algorithm we employ the look-ahead technique, which can be de
scribed as following. We are searching forward in the graph from origin s and we 
have arrived at node v. We know that we have already traveled 10 minutes from s 
to v and we also know that we may spend 15 minutes at maximum. This tells us 
that we have five minutes left to spend to reach the destination t. The fastest way to 
decide if we can or cannot reach the destination in this time is to actually know the 
shortest possible time from the actual node v to destination t. This shortest possible 
time is called as a lower bound. For example, if the lower bound is two minutes 
then we are able to reach the destination from this node in 12 minutes or longer, 
thus we can continue to search from this node. However, if the lower bound would 
be for example seven minutes, then we are certain we cannot reach the destination 
within the 15 minutes. Consequently, we may disregard the path we took to reach 
this node v as it is unfeasible, this is also called as prunning. 

In this example the 15 minutes is the constraint L defined in (2.5). The 10 
minutes path we call as a tail path, the two or seven minutes path are called head 
path and the joint of them is called projected path. 

Hence, to be able to use this technique, we are precomputing these head paths 
for a subset of nodes from the graph in this first step. 

II. Energy heuristic computation 

Another, well known, speedup technique reducing the search space is the A * algo
rithm. It is a modification of the Dijkstra's algorithm where instead of using only 
tail path cost to determine the priority in the queue we use the whole projected 
path. To know the projected path we also need to know the estimate of energy to 
reach the destination. This estimate is given by a heuristic function, which must 
be a so called admissible heuristic. That is, it must not overestimate the projected 
path cost. Usually a function based on a straight-line to the goal is used, since that 
is physically the smallest possible distance between any two nodes. However, this 
heuristic is usually weak and does not limit the search space much, thus we use a 
Dijkstra distance as the heuristic function which provides stronger estimates. 

III. Forward constrained search 

This is the main part of the algorithm. We use the precomputed information from 
the two former steps, which are indispensable to effective pruning. The search is 
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terminated once the path is found or there is no more possible paths to explore. 

2.3.1 Time lower bounds computation for the look-ahead 
concept 

Fig. 2.2: Example search space of the computation when the shortest path is found 
and this search is stopped. Nodes within the hatched area have the head path 
computed in the tv set. The dashed line marks the area of nodes that can be reached 
within the constraint L. The search space is not displayed as a disc, because the 
axes of this figure are in units of distance whereas the search space is in time, so 
this case can be seen as that the fastest route is achieved by driving a motorway 
around the city. 

The look-ahead concept can be viewed as an additional mechanism to reduce 
the search space of possible paths. The idea, is to limit the set of possible paths 
by using information of the remaining subpath towards the destination. The look-
ahead concept proposes to compute the shortest path tree rooted at the destination 
to each node in the graph. The basic importance of look-ahead is to provide each 
node with an exact, lower bound cost. 

Considering this description of the look-ahead concept from [10], we have to 
realize that we cannot precompute the lower bound for all nodes in the graph because 
simply the graph is too large and it would mean that we have to compute Dijkstra 
distance for the whole graph. Such precomputation would take more time that the 
main part of the algorithm. 

To overcome this problem we have, firstly, used a stopping condition in the 
Dijkstra's algorithm which ensured that we do the computation only for those nodes 
that are reachable within the given time constraint. We start from the destination 
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node t towards the origin s, when the origin is settled we store the calculated cost, 
which in this case represents the minimum time that is needed to travel from s to 
t, or in other words, it is the cost ct (P^t) f ° r the shortest path of the time cost 
function q. However, at this moment we do not stop the search as we normally 
would, but we keep the computation running until the summed cost ct (Pv-n) f ° r 

some node v G V is greater than j3 • ct (P^t) or there are no other unsettled nodes. 
When the search stops we have a lower bound set that contain an estimated minimal 
time needed to reach a destination from that node. We denote this set as tu (v), 
which contains the distance for every node v that meets the condition (2.6). 

ct (P w - t ) <fi-ct (Ps%t) (2.6) 

The idea behind this is that we will compute the distance only for those nodes 
that can eventually be part of the solution. In addition, we are certain that if 
a node is not included in this set then we cannot reach it within the given time 
constraint. Nevertheless, this still meant that with increasing (3 the search space 
was also becoming larger and eventually useless for large j3 (e.g. > 2). 

(a) Backward search starts (b) The search area grows (c) Once the origin node s 
from destination node t as a disc around the desti- is settled the search stops 

nation node 

Fig. 2.3: Schematic representation of backwards dijkstra search space growth 

Realizing that we are computing lower bound, for which we may choose a value 
that is less than or equal to the exact distance from t, we can avoid all of this 
overhead. The following explanation is illustrated by Figure 2.3. The backward 
search starts from the destination node t and grows towards the origin node s. Any 
node directly on the circle has the same Dijkstra distance, time in this case, to 
the destination node. Once the origin node is settled we stop the search and we 
know what is the shortest distance between origin s and destination t. There are 
also marked nodes a and b. We can see that the node a is within the search space 
(disc) whereas the node b is not. This means that node a has also been settled 
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and we know the shortest distance, the lower bounds, between this node and the 
destination t. Apparently, the distance is not know for the node b, yet we are sure 
that the distance is greater than the one between s and t. This is noted by (2.7). 

In conclusion, we may use the distance between the s and t as the lower bound 
for the node b, because we are certain that we do not overestimate the distance. 
Consequently, we use the distance c(Ps^t) for all the nodes that are not within the 
search space as their lower bound. 

2.3.2 The backward Dijkstra's algorithm 

We use a priority queue Q that is initialized with the destination node t. Each node 
u has associated a tentative distance h(u) from t, which is the only component that 
decides the priority within the queue. The algorithm works in the same fashion as 
the classic Dijkstra's algorithm, but the predecessor list is not stored, because we 
are only interested in obtaining the distances from all vertices v & V that have cost 
c(Pv->t) < c(Ps->t) to destination t. This procedure is given in Algorithm 1. 

(2.7) 
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Algorithm 1 Backward Heuristic exploration by Dijkstra's algorithm 

Input: Directed weighted graph G 
t, cost function c 

(V, E), source vertex s, destination vertex 

Output: Lower bounds set h representing estimated accumulated cost to des
tination t from all vertices v G V that have cost c(Pv^t) < c(Ps^.t) 

procedure D I J K S T R A ( G , S, t, c) 
hit) <- 0; 
Q <r- {*}; 
while Q ^ 0 do 

u <— choose the node with minimal h(u) from Q; 
Q ^Q\u; 
if u — s then 

return ti, 
end if 
for all ingoing edges (v, u) of node u do 

h' <— h{u) + c(v,u); 
if v £ Q then 

h(v) <- ti; 
Q^QUv; 

else if h(v) > h! then 
| h(v) <- ti; 

end if 
end for 

end while 
end procedure 

2.3.3 Energy heuristic computation 

Since we are using the Dijkstra's distances as the heuristic, we can use identical 
computation as the one used for the time lower bounds in the previous section. We 
are using the same procedure given in Algorithm 1. The difference is, that instead 
of the time cost function ct, we are using the energy cost function ce. Although, we 
cannot use the energy cost function as it is defined in (2.2), because this search goes 
backward from the destination t and we do not know what state of charge of the 
energy source will be at the destination. We only know what is the state of charge 
at the origin node and we will know (estimate) the state of charge only after the 
energy optimal path is found. 

Therefore, we need to remove the dependence on the state of charge. We know 
that the state of charge is used to penalize the states of overcharging or empty 
battery. Additionally, we know that this two extreme states can only increase the 
cost, so if we decide to ignore these two extreme states and the possible increase of 
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Fig. 2.4: Example search space of the computation when the shortest path is found 
and this search is stopped. Nodes within the hatched area have their head path's 
cost computed in the h set. We can see that the search space and the optimal path 
is different from the time search (see Fig. 2.2). This can be explained by the fact 
that the energy function prefers slower and more direct (shorter) paths. 

cost. Moreover, we can prove that we may afford this modification by realizing that 
to have an admissible heuristic, we must not overestimate the projected path cost. 
Our modification is in concordance with this definition. 

2.3.4 Forward constrained search 

The third step of the algorithm is the forward search where the actual path is found. 
On Figure 2.5 we can see how the resulting path might look like regarding the 
precomputation steps. The search space is hatched in green and we can notice that 
it never crosses the red dashed line, which represents the time constraint boundary 
that was settled by the time lower bounds precomutation step. We can claim that if 
any node located outside of this boundary can not be part of the feasible solution, 
because it would break the time constraint, and so if any path attempts to expand 
over this boundary it is pruned. In reality the pruning happens even in larger 
distance from this border due to the look-ahead concept. The algorithm is given in 
Algorithm 3. 

Using the terminologies described in the previous sections, the algorithm can 
be described by words as: starting from the path Ps^s, potentially, all the paths 
Ps^v where v G V can be reached. However, with a proper pruning against the 

28 



Fig. 2.5: Forward constrained search space 

given constraint L , only the admissible paths remain as candidate paths for further 
expanding. We call a path admissible if sum of time, or other resource, spent on 
the tail path T$(PS^V) and the estimated cost of the head path tu(v) is lower than 
the constrain, this is expressed by (2.3.5). Furthermore, the candidate paths are 
ordered properly such that the path with lowest projected cost h (Ps^v) + h (v) is 
selected and expanded first, then we can terminate our expansion procedure once 
we have found the constrained shortest path or there are no candidate paths left. 

Tt(Ps^v) + tU(v) < L (2.8) 

2.3.5 Components of the projected cost of the look-ahead 
technique 

Further explanation of the look-ahead technique and of the used notation can be seen 
on Figure 2.6. We can see a red disc grown from the destination node t. It represents 
the search space for the time lower bounds precomputation, as explained previously 
in the description of the algorithm's first step. The green disc grows from the origin 
node s, but in reality during the forward search the search space is not disc, but 
some uncertain region protruding to the destination. The algorithm state, as shown 
on the Figure 2.6, is at the step of deciding if a path Ps^v is considered admissible. 
If the condition given by equation is true then the path Ps^v will be added to the 
priority queue, otherwise it will be pruned and forgotten. Simple example is: we 

29 



have reached an intermediate node v in 10 minutes and the fastest path from here 
to destination takes at least 5 minutes; however, our limit, the constraint, is 12 
minutes; consequently, so we can clearly see that there is no need to expand this 
path, as it will never lead to feasible path. 

The look-ahead, or lower bound, is denoted as tv(v). We can simply write 
just tu(v) instead of tu(Pv^.t) because there is always only one shortest path from 
intermediate node v to t. On the other hand, there can be many expanded paths, 
tail paths, from s to v. The time spent on the tail path to this intermediate node v 
is denoted as v$(Ps->.v). 

In the Algorithm 3 we can see that the constrain L is substituted as L = (3 • 
ct (Pg^t) — & ' tu(s). This is based on (2.5) and on the fact the we also know that 
ti7(s) is the fastest path cost from s to t. 

On Figure 2.6 there is also displayed an alternative node b, which is outside of 
the look-ahead search space, the red disc. Therefore, the exact distance to the target 
tv(b) is not known, but as explained earlier, we can use for evaluation of the node 
b the shorted distance to the origin tu(s) as the estimated distance. 

Fig. 2.6: Components of the projected cost of the look-ahead technique 

2.3.6 Components of the projected cost of the A * heuristic 

On Figure 2.7 we can see how the projected path cost for the energy is calculated. It 
is identical to the look-ahead technique, but this time the projected cost h (Ps->v) + 

h (v) is used to ordered the candidate paths. This in the sense of the A * algorithm, 
where the h (v) is used as the heuristic function. In the case of the look-ahead 
technique, the goal was to prune the unfeasible paths as soon as possible. Although, 
the A * heuristic does not speedup the search by pruning any paths, but it speeds it 
up by better, more informed ordering of the candidate paths in the priority queue. 
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On Figure 2.7 there is also displayed an alternative node b, which is outside of 
the precomputed search space, the red disc. Therefore, the exact distance to the 
target h (6) is not known, so for evaluation of the node b we use the shorted distance 
to the origin h (s) as the estimated distance. 

Fig. 2.7: Components of the projected cost of the A * heuristic 

2.3.7 Path dominance 

Another speedup technique is called path dominance. To explain this technique we 
describe an example scenario. We have reached some intermediate node v by path 
PA- The time we have used is 15 minutes. Without this approach, the path would 
be normally added to the priority queue for further expansion. However, if there is 
some another path PB, which also leads to the node v and has been found earlier, 
has used only 12 minutes and the same amount of energy as path PA, then we do 
not need to store the path PA, because we already know that it will lead to same 
or worse quality paths as the PB- By quality of path we understand the amount of 
used resources needed to follow this path. Such path is called dominated path and 
it is prunned. The test of path dominance is given by Algorithm 2. 
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Algorithm 2 Path dominance test 

Input: Directed weighted graph G = (V,E), set u$ representing time spent 
on path P from source vertex s to intermediate vertex v, set of non-dominated 
paths S 

Output: Returns 1 if the path P*^v cannot be a subpath of a shortest path, 
otherwise 0 

1: procedure I S D O M I N A T E D ( 5 , h, w, P*^v 

2 

3: 
4: 
5: 
6: 
7: 

for all paths P^v from set S do 
if 7?(i*_J < t(P^v) and ^ ( i *_J < ̂ ( i ? _ J then 

return 1; 
end if 

end for 
S^SUP^V; 
return 0; 

end procedure 

2.3.8 Simple path search only 

We can further limit the search space by considering only the simple paths. A simple 
path is such path that does not contain one node twice or in other words, the path 
does not return to the node that it is already going through. This is accomplished 
without any further effort because the path dominance test will always prune all 
paths that return to the same nodes. Simply said, if we go from first node to second 
and then back, the time and energy used to return from the second will always 
increase the resources used to reach the first node. 
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Algorithm 3 Energy optimal path search with time constraint 

Input: Directed weighted graph G = (V, E), source vertex s, destination vertex 
t, constraint multiplier j3, time cost function ct, energy cost function c e 

Output: A shortest path between s to t obeying the time cost constraint 

procedure F I N D P A T H ( G , S, t, (3, ct, ce) 
tv D I J K S T R A ( G , S, t, ct); noting that tu(a) = tv(Pa_>t) 
h «— D I J K S T R A ( G , S, t, ce); noting that h(a) — h {Pa^t) 
^(Ps^s) <r- 0; 

~t(Ps^s) <- 0; 
S ^ 0 ; 
Q <- {Ps^s}; 
while Q ^ 0 do 

Ps->u <— choose the path with minimal h (Ps^u) + h (u) from Q; 
Q 4 Q \ Ps^tu'i 
if u — t then 

return Ps^u; 
end if 
for all outgoing edges (u, v) of node u do 

if v £ t<7 then 
tv(v) <— tv(s); 

end if 
if ut(Ps^.u) + Ct(u,v) + tv(v) > (3 • tv(s) then 

continue; prune this path as it is not feasible 
end if 
Ps->v <— extend Ps->u with edge (u,v); 
u^(Ps^v) <r- u^(Ps^u) + ct(u,v) 
h (Ps^v) <- h (Ps^u) + ce(u, v); 
if I S D O M I N A T E D ( 5 , h, w, Ps^v) then 

continue; prune this path as it is dominated 
end if 
Path Ps^v is considered feasible so it is added to the queue. 
if v h then 

h(v) <- h (s); 
end if 
Q <- Q U Ps^v; 

end for 
end while 

end procedure 
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3 IMPLEMENTATION 
In this section we describe the data-sources that were used the implementation of the 
prototype application. The application is written in Java programming language and 
runs on Android operating system. A l l the development and testing was conducted 
on the Samsung Galaxy Tab tablet. 

3.1 Sytadin 

Sytadin is an on-line traffic information system for Ile-de-France. It is possible to 
have access to real-time traffic information in form of X M L feed at the address ht tp: 
/ /www.sytadin . f r /d i f fus ion . The information is updated every two minutes. 

3.1.1 Distributed Information 

Sytadin provides different files to describe the traffic information: 

• Traffic net geometry files - these files are in Maplnfo format [13] and describe 
the geometry of the traffic net. It is particularly the geographical information 
about net points, gments and poles. This information is static 
and does not change. 

• Dynamic traffic information - information about speed and traffic states, traf
fic tendencies, incidents and dysfunctions. This information is updated every 
few minutes. The files are in X M L format with X M L Schema X S D file avail
able. 

• Route information - route mark-ups and closings. Updated once per day. The 
file is in X M L format with X S D Schema file available. 

In listing 3.1 is the example of the dynamic traffic information X M L file. It gives 
the information about two arcs which are specified by their IDs. In the ArcDy-
namique tags are the tags describing the actual arc: EtatTrafic (the state of traffic 
flow - fluid, jammed, unknown), TPBride (estimated travel time), TPReference (ref
erence travel time), EcartTypeTPReference (standard deviation of the travel time), 
VitesselnstantanneeBridee (estimated actual speed), NiveauService (service state) 
and IndiceConfiance (confidence index). 

Listing 3.1: Example of Sytadin's dynamic traffic information file with two arcs. 
1 <DonneesDynamiquesArcs VersionConfiguration="14" 
2 DateDirTusion="2012-12-02T16:48:49"> 
3 <ArcDynamique ID_ARC=" 13010493" > 
4 <EtatTrafic>Fluide</EtatTrafic> 
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5 <TPBride>-l</TPBride> 
e <TPReference>59</TPReference> 
7 <EcartTypeTPReference>0.00</EcartTypeTPReference> 
8 <VitesseInstantanneeBridee>60</VitesseInstantanneeBridee> 
9 <NiveauService> 1.00</NiveauService> 

10 <IndiceConfiance> 1.00</IndiceConfiance> 
n </ArcDynamique> 
12 <ArcDynamique ID_ARC=" 13009571" > 
13 <EtatTrafic>Fluide</EtatTrafic> 
14 <TPBride>-l</TPBride> 
15 <TPReference>52</TPReference> 
16 <EcartTypeTPReference>0.00</EcartTypeTPReference> 
17 < VitesseInstantanneeBridee>0< / VitesseInstantanneeBridee> 
is <NiveauService> 1.00</NiveauService> 
19 <IndiceConfiance>0.00</IndiceConfiance> 
2 0 < / ArcDynamique> 
21 </DonneesDynamiquesArcs> 

3.1.2 Traffic Net Geometry Coordinates Transformation and 
Export 

As already mentioned, the traffic net geometry files are in Maplnfo format. It 
is possible to visualize (see Figure 3.1) these files for example with free program 
ShapeView [14]. 

Fig. 3.1: Visualization of the Sytadin's traffic net geometry of Paris using ShapeView 
program and a zoom-in of connected arcs 

Sytadin does not provide geographical data in World Geodetic System (WSG84) 
used by GPS but in Lambert Conformal Conic projection. Therefore, it is neces
sary to transform these coordinates. For that purpose, a simple custom MIF2Geo 
application (shown in Figure 3.2) is used, which reads the Maplnfo file, transforms 
the coordinates from Lambert projection to WSG84 and saves the data in CSV file 
for further processing. 
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B£ MIF2Geo i =D|(E) 

Choose MIF Arcs file to convert: 

| Browse 

Choose MIF Points file: 
Convert! 

| | Browse 

Fig. 3.2: MIF2Geo application user interface 

The CSV file is a text file containing lines of values separated by commas and 
therefore creating columns. In the first line is a text description of each column. 
The columns are the following: id (Sytadin's ID of the current arc), X M i n (minimal 
longitude of the rectangle enveloping the current arc in decimal degrees), XMax 
(maximal longitude of the rectangle), Y M i n (minimal latitude of the rectangle), 
Y M a x (maximal latitude of the rectangle), OriginType (flag describing the start 
of the arc - see below), alfaRads (the angle between a rectangle's down-side and 
the diagonal in radians) and RefSpeed (reference arc's speed in km/h). A graphic 
explanation of these parameters is in Figure 3.3. 

Y (latitude) 
[dec deg] 

YMax 

YMin 

XMin XMax 
X (longitude) 
[dec deg] 

Fig. 3.3: A n arc (solid line) with enveloping rectangle (dashed line) and its param
eters 

In some cases, there is only one arc defining the geographical position of two 
roads. More precisely, it concerns mainly the roads with two directions without some 
kind of boundary in the middle. Therefore, there are two arcs with different IDs and 
different traffic information in the database, but they have the same geographical 
coordinates so it is necessary to know also the origin point of the road to determine 
the traffic direction. This information is needed during the fusion of Sytadin's traffic 
information and OSM map data. In the arcs' Maplnfo file (.mid file) there is a field 
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with origin point ID. Then, we have to find this point in another Map Info file with 
points (the next file input in MIF2Geo application) and get it's coordinates. Once 
having the origin point's position, we can bind it with arc's enveloping rectangle 
coordinates and find, in which corner of the rectangle is the origin. Then, there are 
four possibilities shown in Figure 3.4. 

Additionally, the angle of the diagonal is calculated to speed up and help some 
other calculations. The reference speed is one of the Maplnfo fields and is also 
exported to use it afterwards in routing database. 

TOP LEPT=0 TOP RIGHT=1 BOTTOM RIGHT=2 BOTTOM LEPT=3 

Fig. 3.4: Different types of starting points of an arc and their respecting flags used 
in CSV file 

3.2 Open Street Map Export 
Open Street Map propose the geographical data in OSM X M L file format. The main 
advantages are mostly human readable and clear structure, machine independence 
and good compression ratio. However, the files can be huge and parsing may take 
a long time. The OSM X M L file is composed of data primitives describing the 
map. These can be nodes (a single geospatial point using a latitude and longitude), 
ways (an ordered list of 2 to 2000 nodes, ways can be used to represent linear 
features (vectors) or polygons) relations (used to model logical and usually local or 
geographic relationships between objects) or tags (two free format textual fields, a 
"key" and a "value", describing map features like max speed or road type). Complete 
description of the X M L file format is available in the wiki documentation [15]. In 
order to maximize the performance on Android devices, it is necessary to think 
about the data format for routing, because the full map in native X M L format is 
inefficient and too bulky. For example the file for Ile-de-France has approximately 
2.7 GB. Therefore, only necessary information for routing is exported. 

The map export can be divided into three main steps: preparing the geographical 
for the routing database, preparing the traffic net geometry information and finally 
exporting the map to the routing database. This process is displayed by flowchart 
in Figure 3.5. 
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Download OSM X M L 
map from internet 

* 

Select a bounding box 

+ 
Filter unwanted tags 

and elements 
* 

Drop broken 
references 

* 
Keep elements 

necessary for routing 
only 

* 
Remove intermediate 

nodes and update 
intersection nodes' 

distances 
* 

Find respective 
Sytadm's IDs of nodes 

* 
Create SQLite routing 

database 

Download Sytadm's 
Maplnfo net geometry 

file from internet 

* 
Convert the 

coordinates into 
WSGS4 standard and 

export to CSV file 

Import the CSV file 
into Perst database 

Upload full map and 
routing database on 
the device memory 

Fig. 3.5: Flowchart of tasks during the export of maps 

3.2.1 Preparing the geographical data 

Firstly, it is necessary to download the map data. There are more possibilities. 
Either you can download the data of the whole planet but this is not recommended, 
because the file Planet.osm in the X M L format has over 250 G B in uncompressed 
variant, 16 GB compressed. Then, there is a possibility to export data directly 
from the web based map on the www.openstreetmap.org web page by selecting a 
region on the map. However, this method is useful only for small areas and testing 
purposes because the server can export only a limited number of nodes. The best 
way seems to be to download already prepared maps of continents, countries or 
regions. Good source of this map is for example on the CloudMade project web site 
dowloads. cloudmade. com. Actually, we have traffic information only for the area 
of Paris and suburbs so only the map for Ile-de-France is used. 

The main tool for processing and converting OSM files is Osmosis tool. Down-
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load links and full documentation can be found at w i k i . openstreetmap.org/wiki/ 
Osmosis. We use this tool to filter the map in such way that only the relevant infor
mation for routing remains. By relevant are considered all roads that are accessible 
by a motor vehicle. A useful link about how the construct the filter command can 
be found at "tags for routing": wiki.openstreetmap.org/wiki/OSM_tags_for_ 

routing. Osmosis command that is used is in Listing 3.2. 

Listing 3.2: Filter tags and keep only those desired for routing 
1 osmosis.bat read—pbf file="s2—ile—de—france.pbf" 
2 way—key—value keyValueList = "highway.residential, highway.unclassified, 

highway.motorway, highway.motorway link, highway.trunk, highway.trunk link, 
highway.primary, highway.primary link, highway.secondary, highway. 

secondary link, highway.tertiary, highway.tertiary link, junction.roundabout, 
highway .mini roundabout" 

3 tf reject—ways access=private 
4 tf reject—relations 
5 used—node 
6 write—pbf file="s3—ile—de—france.pbf" 

3.2.2 Preparing the traffic net geometry information 

This part consists in downloading the Maplnfo files from Sytadin's server and in con
verting it into WSG84 standard coordinates. This is done by application MIF2Geo 
as mentioned before. The application generates a CSV file which is going to be used 
during the creation of the routing database. 

3.2.3 Routing database export 

The export of the routing database consists in more tasks. These are: 

• more filtering of unnecessary elements, 

• removing intermediate nodes, 
• recalculating distances between intersection nodes, 
• importing CSV traffic geometry file into a database for fast search, 
• associating traffic information with intersection nodes, 
• export to SQLite database (map.db). 

In Figure 3.6, you can see the full path of a short driving cycle from node A to 
node B. The orange dots represent intersection nodes. These nodes are necessary for 
routing to calculate the shortest path (the path with the minimal cost corresponding 
to a given criteria). There are also blue dots which represent intermediate nodes, 
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which are not necessary for routing, because there is no crossing or turn. However, 
they are necessary to know the exact shape of the road-

Fig. 3.6: Full path with intersection (orange) and intermediate nodes (blue) 

In Figure 3.6 is the same path as in Figure 3.7, but without the intermediate 
nodes. In the map file there is a huge number of intermediate nodes which are not 
necessary for routing and therefore increase highly the computational time of the 
shortest path. This is the reason the intermediate points have to be removed from 
the routing database. More precisely, they are not removed but marked so they are 
not considered during the routing. If we compare the two images we can see that 
the number of nodes decreased from 18 to 5. However, it is important to mention 
that the distances between two intersection nodes are not necessarily the same if 
the road is curved. For this reason, we must recalculate the distances between the 
nodes for the reduced map. The intermediate nodes are used to reconstruct the 
exact shape of the path which we need for graphic visualization and for sampling 
altitudes for the power profile calculation. 

Fig. 3.7: Reduced path with only intersection nodes needed for routing 

After exporting the intersection routing nodes, we need to associate them with 
their respective traffic information IDs. The idea is that we try to overlap the 
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routing map and the Sytadin's traffic net geometry as shown in Figure 3.8. For 
now, we have exported the Sytadin's arcs in the CSV file which contains its IDs, the 
enveloping rectangle, the angle of the diagonal and the reference speed of each arc. 
Searching in a text file is very time consuming. For that reason, the data is inserted 
into a database which supports so-called R-trees. These trees are optimized for 
space indexing and for geo-location applications. One very good open-source object 
oriented database for Java is Perst [18]. 

Fig. 3.8: Routing database and Sytadin's geometry fusion illustration 

After importing the Sytadin's arcs into Perst database, we can find a record 
quickly. To associate a node with its Sytadin's ID, we have to find the appropriate 
arc in the database. We know the geo-coordinates of the node and can use it to 
search in the database. The result is a list of all rectangles, that envelope the node. 
In most cases, we will find only one arc that corresponds to the node. However in 
some cases, more enveloping rectangles can be overlapped. In Figure 3.9 we can see 
two arcs found for one node (because the enveloping rectangles are overlapped). In 
that case, it is necessary to evaluate the distances between the node and the actual 
arc. In Figure 3.10 is shown the distance between a node and an arc. Because the arc 
is the rectangle's diagonal, we can calculate the distances of each arc and compare 
them. This way we can decide that the node in Figure 3.9 should be associated with 
the arc B C and not the arc A B . 

The geo-positions of Sytadin's arcs are not strictly the same as positions of the 
OSM ways. It can be caused simply by the fact, that the real road is very large 
and the Sytadin's arcs copy the left border of the road, however, OSM way copy 
the right border. This can create a significant error and we are not sure to find the 
appropriate arc of the given node. This is why we do not search an exact point 
in the database but we search the point with some tolerance. It means that we 
do not search an exact point but a rectangle that overlaps the enveloping rectangle 
of the arc. In Figure 3.11 you can see an example why it is necessary to search 
with some tolerance. For now we have used the tolerance of 105deg of latitude and 
longitude (The exact distance is different for latitude and longitude and depends on 
the position on the globe. It is usually a few meters). 
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B 

A 

C 

Fig. 3.9: Overlapped enveloping rectangles of two arcs while searching for the node's 
arc 

Fig. 3.10: Distance d between a node and an arc 

One arc can be associated with two IDs to inform about the traffic state in both 
directions. While searching in the database, we will find two records with the same 
distance error between the node and the arc. Than we must decide which ID we 
will attribute to the node. Because the nodes are grouped in ways we can get the 
next node of the way and determine the direction of this road or lane. 

3.3 Shuttle Radar Topography Mission Elevations 

To add the third dimension to the OSM exported map, we used the data provided by 
the N A S A Shuttle Radar Topographic entitled Topography Mission (SRTM). This 
mission was launched in February 2000 and the objective was to obtain R A D A R 
data of most of the Earth's land surface to produce high resolution topographic 
maps. 

Approximately 80 percent of the land surface was acquired. The data has been 
released at two horizontal resolutions: 3 arc-seconds (90 m) globally and 1 arc-
second (30m) for the United States. Therefore, for Ile-de-France's region, we can 
assume that information is furnished with 3 arcs-seconds or 90m. The initial version 
of the data was released globally in one degree tiles. These data were not processed 
to eliminate data voids and there were errors with flat water surfaces and coastlines. 
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Fig. 3.11: Searching for overlapping rectangles within a tolerance 

Programs such as SRTMFi l l by 3DNature [17] can fill data voids in SRTM height 
files. 

3.3.1 H G T File Encoding 

Data are in a height format file that uses a file extension ".HGT" and are compressed 
using ZIP format. The file name is based on the coordinates of the lower left corner of 
the tile. For example, tile N51E000.hgt.zip would cover an area including Greenwich, 
England at 51:29 north and 0:00 east. This is referred to as the H G T file format in 
the processing section below. 

The D E M is provided as 16-bit signed integer data in a simple binary raster. 
There are no header or trailer bytes embedded in the file. The data are stored in 
row major order (all the data for row 1, followed by all the data for row 2, etc.). 
A l l elevations are in meters referenced to the WGS84/EGM96 geoid as documented 
at http://www.NGA.mil/GandG/wgsegm/. Byte order is "big-endian" standard with 
the most significant byte first and because of they are signed integers elevations can 
range from -32767 to 32767 meters, covering the range of elevation that can be found 
on the Earth. 

These data also contain occasional voids from a number of causes such as shad
owing, phase unwrapping anomalies, or other radar-specific causes. Voids are flagged 
with the value -32768. 

3.3.2 Obtaining and preparing the data 

To ensure that all the elevations cover the whole Ile-de-France's region, we need 
to have information approximately for the area between the latitude 48° North 
and 50° North, and longitude 1° East and 4° East. For this purpose, necessary .hgt 
files were downloaded [16]: N48E001.hgt, N48E002.hgt, N48E003.hgt, N49E001.hgt, 
N49E002.hgt and N49E003.hgt. 

As stated above, the SRTM data has data voids, or missing data, at various 
locations within the tiles. It is recommended to process these data to fill in the 
gaps. SRTMFi l l was used to interpolate values to produce a "complete" dataset. 
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This program works as interpolation routine and is most effective when the gaps 
are small and advise is given to take care when the data voids exceed 50 cells in 
diameter. Each of the files is processed individually. Once all hgt files were filled, 
we combine all those 6 files together into one. To do the combination, we need to 
be careful about the indexing of the extracted file hgt file. As we know, SRTM data 
are sampled at three arc-seconds and contain 1201 rows and 1201 columns. The 
rows at the north and south edges as well as the columns at the east and west edges 
of each cell overlap and are identical to the edge rows and columns in the adjacent 
cell. The final extracted hgt file has maximum indexes [2400,3600]. 
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4 TESTS 
In the following sections we will give a demonstrative test of the implemented algo
rithms described in the previous chapters. These test show some of the observation 
that we came across while developing the final algorithm. 

4.1 Search space of the basic algorithms 

The first test is to demonstrate the search space of the basic routing algorithms. 
The android application was modified for this test in such way, that the algorithm 
is marking the scanned edges directly on the displayed map. This allows us visually 
confirm how much of the map has the algorithm to visit before it finds the solution. 
The basic rule is that, the smaller the search space is the faster the query is. The 
following tests are conducted with shortest distance criteria, thus we obtain typical 
disc shaped search spaces. 

4.1.1 Dijkstra's algorithm 

Classic Dijkstra algorithm searches in circular fashion. We can see its typical search 
space on Figure 4.1. It starts to grow a disc from the origin A towards the destination 
B. Once it meets the node B, the algorithm stops. On this figure we cannot see the 
full extent, because the picture would be too large. 

Fig. 4.1: Schematic representation of the search space of the Dijkstra's algorithm 

45 



4.1.2 A * algorithm 

A * algorithm that is modification of the Dijkstra's in such way that a heuristic 
function is introduced. This heuristic guides the algorithm towards the destination 
node so the search extent is reduced and so is the routing time. We can see on 
Figure 4.2 that the search space is greatly reduced compared to the plain Dijkstra's 
algorithm shown on Figure 4.1. This works very well, because we can simply use the 
air line distance to the destination as the admissible heuristic function. If we would 
have searched for the fastest path and used equivalently simple heuristic function 
then the reduction would not be so significant. 

Fig. 4.2: Schematic representation of the search space of the A * algorithm 

4.1.3 Bidirectional Dijkstra's algorithm 

Bidirectional Dijkstra algorithm is such modification that uses two concurrently 
running classic Dijkstra's searches in opposite directions. When these two meet 
at the same node, the search is stopped. The optimal stopping condition is more 
complicated and so our solution can in some specific situations give a suboptimal 
result. We can see this search space in Figure 4.3. The two searches create two 
disks that grow from the origin and destination. The forward search is marked with 
blue color and the backward with violet color. Additionally, what we should notice 
is that all the shown paths on Figures 4.1, 4.2 and 4.3 are the same path, which is 
correct. 
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Fig. 4.3: Schematic representation of the search space of the bidirectional algorithm 

4.2 Three metrics 

In this test we try to find paths between two points for thee different metrics. We 
can see the resulting paths on Figure 4.4, the shortest path is marked with red color, 
the fastest path is marked with blue color and the energy optimal route is marked 
by green color. The origin point corresponds to the red tag and the destination 
point corresponds to the violet one. The coefficient of energy recuperation a used 
was 0.85. 

We can clearly see that the fastest path goes around the center taking the mo
torway and that the shortest path goes as directly as possible. From this test and 
many other, we have deduced that the energy optimal path is usually rather direct, 
nearly as the shortest path, and at the same time it takes the slowest road segments 
as possible. If we examine the energy cost function given in the energy modeling 
section, we can confirm that this behavior is correct, because the energy cost is 
increasing with greater speed and distance. In table 4.2 we can see the roughly 
estimated numerical values for these paths. 

Metric Color Path length Duration Arriving state of charge 

Shortest Red 13.8 km 21 min 94.9 % 
Fastest Blue 16.6 km 15 min 92.2 % 
Energy optimal Green 14.3 km 23 min 95.4 % 

Tab. 4.1: Numerical values for the three metrics test 
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Fig. 4.4: Paths found for the three different metrics 

4.3 The dependence of elevation profile on recu
peration efficiency 

In this test we calculate several routes with different values of parameter a. As 
explained earlier, this parameter defines the recuperation efficiency of the vehicle. 
The natural assumption is, that with the lowering a the algorithm will prefer paths 
with lower elevation oscillations and to find such paths it will sacrifice the length. 
Therefore, it will find longer paths with smaller elevation gain. This elevation gain 
is a metric that we calculate so we are able to compare paths based on the elevation 
oscillations. The higher is the gain the higher are the oscillations. The resulting 
paths the are displayed in Figure 4.5 and the elevation profiles of these paths are 
displayed in Figure 4.6. Numerical values are given in Table 4.2. Comparing the 
numerical values, we can see that they confirm our assumption. We can also see 
that the black path is identical to the blue one, this is cause by the limited variety 
of possible paths. 

4.4 Routes for different values of parameter (3 

In Figure 4.7 we can see four calculated paths for different values of parameter j3. 
The route characteristics in term of length, duration and the state of charge at the 
destination point are given in table 4.3. For this test the a = 0.8 for all paths. The 
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Fig. 4.5: Found paths for different recuperation efficiencies 

a Color Path length Duration Arriving state of charge 

1.0 Black 20.8 km 52 min 93.8 % 
0.9 Blue 20.8 km 52 min 93.5 % 
0.6 Green 21.7 km 60 min 92.8 % 
0.3 Magenta 22.5 km 46min 91.9 % 
0.1 Cyan 22.8 km 41 min 91.3 % 

Tab. 4.2: The dependence of elevation profile on recuperation efficiency 

f3 parameter is set different for each of those paths, so we can observe the influence 
it has on the resulting path. For (3 = 1 the problem is the same as we would look for 
the fastest path, because it is the only that can meet the constraint. On the other 
hand, if /3 — oo then the path is the energy optimal path regardless the constraint. 
Three other paths with the time constraint increased by 10%, 15% and 30% are 
given. We can observe that with increasing (3 the duration of the path and the 
arriving state of charge increases. That is, the more time we give the algorithm to 
spend on the path the slower path he can choose and this is in concordance to what 
we have proved in the previous sections, that the energy metric prefers the slower 
paths. 

ß Color Path length Duration Arriving state of charge 

1.00 Red 22.2 km 18 min 88.7 % 
1.10 Green 20.1 km 19 min 91.1 % 
1.15 Cyan 20.2 km 20 min 91.4 % 
1.30 Magenta 16.3 km 23 min 93.2 % 
oo Blue 15.0 km 27 min 94.9 % 

Tab. 4.3: Route parameters for different values of parameter (3 
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The dependence of elevation profile on recuperation efficiency 

Distance [km] 
= 1.00, cumulative elevation gain = 255 m, energy demand = 1.271 kWh 100 %, length = 20.82 km 
= 0.90, cumulative elevation gain = 255 m, energy demand = 1.427 kWh 112 %, length = 20.82 km 
= 0.60, cumulative elevation gain = 232 m, energy demand = 1.876 kWh 148 %, length = 21.72 km 
= 0.30, cumulative elevation gain = 216 m, energy demand = 2.295 kWh 181 %, length = 22.52 km 
= 0.10, cumulative elevation gain = 202 m, energy demand = 2.553 kWh 201 %, length = 22.84 km 

Fig. 4.6: The dependence of elevation profile on recuperation efficiency 

Fig. 4.7: Found paths for different values of parameter (3 
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5 CONCLUSION 
In this work we have presented algorithms that are capable of calculating paths for 
electric vehicles. These algorithm were successfully implemented on the Android 
tablet device using the Java programming language. Those algorithms are mainly 
based on the well known Dijkstra's algorithm and its modifications such as the A * 
and Bidirectional version. 

In the first part, this work gives a model of the electric vehicle and a formula 
for calculating energy cost that is required to traverse a road segment. The process 
of obtaining this formula is given in several steps, so the reader can understand 
how its final form was deduced. In this section, we also show that the ability of 
recuperation of energy may give the edge weight a negative value. This poses a 
difficulty for the Dijkstra's algorithm, because this algorithm is broken when used 
with negative values. Therefore, we describe a solution to compensate this problem. 
We also describe how to introduce a limitation on the amount of battery the vehicle 
can use and also we show ho the state of overcharging is penalized. 

In the second part, we proposed a new algorithm that is able to compute a 
path based on multiple metrics. We have developed this algorithm after the test 
showed us that the energy metric prefers the slowest paths possible. Therefore, 
this algorithm enables us calculates an energy optimal path, which is acceptable 
by the driver. This is accomplished by computing the path by combining the time 
metric and energy metric. This part we consider as the most valuable, because it 
combines many concepts of algorithms used in another problematics and by good 
understanding of them we were able to create this new algorithm. 

This algorithm is parameterizable by the driver in such way, that an additional 
information is given to the algorithm. This information is how much time the driver 
is willing to sacrifice to obtain less energy demanding path. This parameter is 
denoted as j3 and its values j3 G (1, oo) actually define the objective of the routing 
problem. If the value of /3 — 1 we have a time optimal routing problem, because the 
driver in this case in not willing to travel longer time than the fastest path would 
take. On the other hand, if (3 = oo we have an energy optimal routing problem, 
because the driver is not concerned about the time at all. A condition that (3 > 1 
has to be met, otherwise we would be querying for a path that is faster than the 
fastest possible path. This algorithm provides an exact solution, but the base of the 
algorithm works in exponential time. With additional techniques, that are described 
in this section, it is made to work in sub-exponential time. 

This algorithm can be further generalized that it considers several metrics at 
once. For example, you might want to know the fastest route for visiting your friend 
but you only want routes where you do not need to refuel your car, or you may want 
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to know the fastest route subject to the condition that the road toll does not exceed 
a certain limit. 

In the third part, we briefly describe how we pre-process the OSM map and its 
fusion with the SYTADIN's speed information and how we obtain the elevation data 
from the SRTM data-source. In the last part, we present several tests that demon
strate dependencies of the found paths on the algorithm parameters. The prototype 
application is fully functional and can demonstrate the described algorithms. 
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LIST OF SYMBOLS, PHYSICAL CONSTANTS 
AND ABBREVIATIONS 
M Total mass [m] 

Cd Reynolds coefficient [kg/m3] 

Af Windward area [m2] 

\ir Rolling resistance coefficient [-] 

p Air density [kg/m3] 

5eqm Equivalent moment inertia [kg-m2] 

M C P Multiconstrained path 

M C O P Multiconstrained optimal path 

SP Shortest path 

Pu-w A path from vertex u to vertex v 

Pu^-v The shortest path from vertex u to vertex v 

c [P^v) Cost of the shortest path from vertex u to vertex v 

S A M C R A Self-adaptive multiple constraints routing algorithm 

ct Time cost function 

c e Energy cost function 

s, t Source vertex, Destination vertex 

a Recuperation efficiency 

(3 Upper bounds constraint multiplier 

L Upper bounds, constraint (energy, time or other) 

Q Priority queue 

S Y T A D I N Synoptique du Trafic de l'lle de France 

OSM Open Street Map 

SRTM Shuttle Radar Topography Mission 
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LIST OF APPENDICES 
Appendix 1 — CD 
Appendix 2 — Photography of the development Samsung Galaxy Tab 

APPENDICES 

Appendix 1 

A CD is placed into the pocked that is inserted onto the inside of the rear cover. 
It includes the electronic version of this work and the source code of the android 
application. 

Appendix 2 
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