VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF BIOMEDICAL ENGINEERING

SOFTWAROVÝ BALÍK PRO FREKVENČNÍ METODY DETEKCE QRS KOMPLEXU

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE

Bc. ROMAN HRÁČEK

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF BIOMEDICAL ENGINEERING

SOFTWAROVÝ BALÍK PRO FREKVENČNÍ METODY DETEKCE QRS KOMPLEXU

SOFTWARE PACKAGE FOR FREQUENCY DETECTION METHODS REFERRING TO QRS COMPLEX

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE

Bc. ROMAN HRÁČEK

VEDOUCÍ PRÁCE SUPERVISOR prof. EWARYST TKACZ, Ph.D.,D.Sc.

BRNO 2015

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav biomedicínského inženýrství

Diplomová práce

magisterský navazující studijní obor Biomedicínské a ekologické inženýrství

Student:	Bc. Roman Hráček	ID:	133992
Ročník:	2	Akademický rok:	2014/2015

NÁZEV TÉMATU:

Softwarový balík pro frekvenční metody detekce QRS komplexu

POKYNY PRO VYPRACOVÁNÍ:

1) Vypracujte literární rešerši existujících metod detekce QRS komplexu EKG signálu. 2) Prostudujte frekvenční metody zpracování číslicových signálů použitelných pro detekci QRS komplexu. 3) Navrhněte metody detekce QRS komplexu vhodné pro realizaci. 4) V libovolném programovém prostředí vybrané metody detekce QRS komplexu realizujte. 5) Ověřte funkci detektorů na reálných signálech a proveďte jejich srovnaní. 6) Výsledky diskutujte.

DOPORUČENÁ LITERATURA:

 THAKOR, N. V., WEBSTER, J. G., TOMPKINS, W.J. Estimation of QRS Complex Power Spectra for Design of a QRS Filter, Biomedical Engineering, vol. BME-31 No. 11, 1984.
 PAN, J., TOMPKINS W. J. A real time QRS Detection Algorithm, IEEE TBME, vol. BME-32, No. 3, March 1985.

Termín zadání: 9.2.2015

Termín odevzdání: 22.5.2015

Vedoucí práce: prof. Ewaryst Tkacz, Ph.D.,D.Sc. Konzultanti diplomové práce:

prof. Ing. Ivo Provazník, Ph.D.

Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstrakt

Práce je zaměřena na studii detekce QRS komplexu v časové a frekvenční oblasti. Cílem práce je realizace vybraných metod a jejich vzájemné porovnání k posouzení efektivnosti detekce QRS komplexu.

Klíčová slova

Detekce QRS komplexu, první a druhá derivace, klouzavý průměr, vlnková transformace, Hilbertova transformace, obálka analytického filtru, přizpůsobená filtrace.

Abstract

The thesis is focused on the study of detection of QRS complex in time and frequency domain. The aim is to implement selected methods and their comparison to assess the effectiveness of detection of QRS complex.

Keywords

Detection of QRS complex, first and second derivative, moving average, wavelet transform, Hilbert transform, envelope analysis filter, adapted filtration.

Bibliografická citace:

HRÁČEK, R. *Softwarový balík pro frekvenční metody detekce QRS komplexu*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2015. 87 s. Vedoucí diplomové práce prof. Ewaryst Tkacz, Ph.D.,D.Sc..

Prohlášení

Prohlašuji, že svoji diplomovou práci na téma *Softwarový balík pro frekvenční metody detekce QRS komplexu* jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením tohoto projektu jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009Sb.

V Brně dne 15. května 2015

podpis autora

Poděkování

Chtěl bych poděkovat vedoucímu mé diplomové práce prof. Ewarystovi Tkaczovi, Ph.D.,D.SC za poskytnutí odborných rad, za čas strávený konzultacemi a také za pomoc a ochotu při vypracovávání práce.

Obsah

1.	Úvo	d	10
2.	Srdo	e	11
	2.1	Převodní systém srdce	11
	2.2	Dipólová teorie srdce	12
	2.3	Měření EKG	13
	2.4	Rozměření EKG křivky	17
3.	Det	ekce QRS komplexu v časové a frekvenční oblasti	19
	3.1	Rušení	19
	3.1.	1 Kolísání izoelektrické linie	20
	3.1.	2 Síťové rušení	20
	3.1.	3 Myopotenciály a pohybové artefakty	21
	3.1.	4 Rychlé skokové změny izoelektrické linie	21
	3.1.	5 Impulsní rušení	22
	3.2	Shluková analýza	22
	3.3	Detektor QRS komplexu založený na první a druhé derivaci	23
	3.4	Detektor QRS komplexu založený na filtraci klouzavým průměrem	25
	3.5	Detektor QRS komplexu založený na vlnkové transformaci	26
	3.6	Detektor QRS založený na výpočtu obálky analytického signálu v časové oblasti	29
	3.7	Detektor QRS založený na výpočtu obálky analytického signálu ve frekvenční oblasti	31
	3.8	Detektor QRS komplexu založený na přizpůsobené filtraci	32
	3.9	Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovy transformace a vlnkové transformace	33
4.	Por	ovnání efektivnosti detekce QRS komplexů pomocí jednotlivých metod	35
	4.1	Detektor QRS komplexu podle algoritmu R. A. Baldy	36
	4.2	Detektor QRS komplexu podle algoritmu M. L. Ahlstroma a W. J. Tompkinse	39
	4.3	Detektor QRS komplexu založený na filtraci klouzavým průměrem	40
	4.4	Detektor QRS komplexu založený na vlnkové transformaci	41
	4.5	Detektor QRS založený na výpočtu obálky analytického signálu v časové oblasti	42
	4.6	Detektor QRS založený na výpočtu obálky analytického signálu ve frekvenční oblasti	43
	4.7	Detektor QRS komplexu založený na přizpůsobené filtraci	44
	4.8	Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace	45
	4.9	Číselné a slovní vyjádření efektivnosti detekce QRS komplexu pomocí jednotlivých meto	od 46

5.	Závěr	.51
6.	Použitá literatura	.52
Sezn	am použitých zkratek a symbolů	.55
Sezn	am obrázků	.57
Sezn	am tabulek	.59
Sezn	am příloh	.60

1. Úvod

Srdce zastupuje v lidském těle nepostradatelný orgán, který slouží k čerpání a rozvodu krve po celém těle. Činnost srdce je řízena elektrickými impulzy, které můžeme pomocí EKG přístrojů snímat a následně vyhodnocovat.

V práci je stručně pojednáno o srdci, převodním systému srdečním, který je zodpovědný za výsledný tvar EKG křivky a o metodě měření EKG pomocí dvanáctisvodového systému. Hlavní část práce je věnována problematice detekce QRS komplexu v časové a frekvenční oblasti. Ve stručnosti jsou uvedeny nejvýznamnější druhy rušení a možnosti jejich filtrace. Největší pozornost je ovšem věnována jednotlivým metodám detekce konkrétně Detektoru QRS komplexu založeném na první a druhé derivaci podle algoritmu R. A. Baldy a algoritmu M. L. Ahlstroma a W. J. Tompkinse, dále Detektoru QRS komplexu založeném na filtraci klouzavým průměrem, Detektoru QRS komplexu založeném na výpočtu obálky analytického signálu v časové a frekvenční oblasti, Detektoru QRS komplexu založeném na výpočtu obálky analytického signálu v časové a frekvenční oblasti, Detektoru QRS komplexu založeném na výpočtu obálky analytického signálu v časové a frekvenční oblasti, Detektoru QRS komplexu založeném na výpočtu obálky analytického signálu v časové a frekvenční oblasti, Detektoru QRS komplexu založeném na výpočtu obálky analytického signálu v časové a frekvenční oblasti, Detektoru QRS komplexu založeném na výpočtu obálky analytického signálu v časové a jiejich detekční účinnost je následně srovnána a diskutována.

2. Srdce

Srdce představuje v lidském těle mechanickou pumpu, složenou ze dvou samostatných jednotek – pravé a levé, které pumpuje krev do krevních oběhů a rozvádí ji po celém těle. Srdce se nachází v hrudi mezi plícemi za hrudní kostí a jeho střed se nachází asi 1,5 centimetru směrem nalevo od střední roviny. Jeho velikost je přibližně velikosti lidské pěsti a jeho hmotnost je asi 250 – 300 gramů.

Srdce je tvořeno příčně pruhovaným svalstvem. Svalovina je složena ze čtyř vrstev, kdy uvnitř srdce se nachází endokard, samotná svalovina se nazývá myokard, povrch srdce tvoří epikard a celé srdce je uzavřeno v obalu, který nazýváme perikard. Srdce se skládá z komor a síní, které se dále rozdělují na pravou a levou. Srdce je řízeno řadou kontrolních a regulačních systémů, zajišťujících jak vzájemnou synchronizaci pravé a levé části, tak přizpůsobení srdce měnícím se požadavkům organismu. Řízení jeho aktivity a tím také frekvence srdce na požadavky organismu je zprostředkováno vzájemným působením sympatiku (excitační vliv na srdce) a parasympatiku (inhibiční vliv na srdce) autonomního nervového systému. [1] [2]

2.1 Převodní systém srdce

Srdce je tvořeno dvěma základními typy buněk. 1) pracovní buňky zajišťující kontrakci srdce, 2) buňky, jež mají schopnost vytvářet a rychle rozvádět nervové vzruchy celým svalem srdce – tvořící převodní systém srdce (obr. 2.1).

Činnost srdce je řízena elektrickými impulsy (akčními potenciály) tak, aby srdeční systola a diastola mohla plnit srdeční dutiny a následně tak bylo dosaženo potřebného krevního výdeje. Impuls vzniká v pacemakerových buňkách sinoatriálního uzlu (SA), který se nachází v pravé síni při horní duté žíle. SA uzel je u člověka ve tvaru půlměsíce délky okolo 15 milimetrů, šířky 5 milimetrů generující elektrické impulsy o frekvenci 70 tepů za minutu. Z SA uzlu se impuls šíří svalovinou síní všemi směry, především ale preferenčními síňovými dráhami (Thorelův, Wenckebachův, Jamesův a Bachmanův svazek) k atrioventrikulárnímu uzlu (AV). [3] AV uzel se nachází na hranici pravé síně a pravé komory. Zde dochází ke zpomalení impulsu, čímž se dosáhne požadovaného odstupu mezi stahem síní a komor. AV uzel také generuje elektrické impulsy, ale oproti SA uzlu s nižší frekvencí (40 – 60 tepů za minutu) a normálně jsou tedy překryty frekvencí SA uzlu. Z AV uzlu se impuls dále šíří přes Hissův svazek na Tawarova raménka, kdy levá komora obsahuje dvě a pravá jedno raménko.

Levé Tawarovo raménko se rozděluje na zadní fascikulus (svazek nervových vláken) a přední fascikulus. Koncová vlákna, na která přichází impuls z Tawarových ramének, se nazývají Purkyňova vlákna. Tyto vlákna přenášejí impulzy na myokard komor. Purkyňova vlákna generují elektrické impulsy s frekvencí 20 – 40 tepů za minutu. V případě poruchy SA uzlu dokáže AV uzel (sekundární centrum) a Purkyňova vlákna (terciální centrum) převzít úlohu tvorby vzruchů – gradient srdeční automacie. [2] [5]

Obr. 2.1 Převodní systém srdce. 1-Thorelův svazek; 2-Weckebachův svazek; 3-Jamesův svazek; 4-Mahaimova vlákna; SA-sinoatriální uzel; AV-atrioventrikulární uzel; HS-Hissův svazek; PR-pravé Tawarovo raménko, PL-levé Tawarovo raménko; PF-přední fascikulus levého Tawarova raménka, PRI-zadní fascikulus levého Tawarova raménka [3]

2.2 Dipólová teorie srdce

Každá buňka srdce se chová jako dipól, což je vektor, který je pro zjednodušení umístěn do středu srdce a pro nějž platí rovnice

$$\Phi = \frac{m * \cos\alpha}{4 * \pi * \varepsilon_0 * \varepsilon_r * r^2},\tag{2.1}$$

kde: ϕ – velikost potenciálu, který vytvoří dipól

m – moment dipólu

 α – úhel, který svírá vektor elektrického dipólu se třemi rovinami lidského těla (sagitální, frontální transverzální)

 $\epsilon_0,\,\epsilon_r$ – permitivita vakua, relativní permitivita prostředí

r – vzdálenost vektoru od měřeného místa

Při měření se využívá zjednodušení, kdy podélná vodivost kostí je mnohonásobně větší než vodivost příčná – ϕ rukou (zápěstí) je stejný jako ϕ ramene a ϕ nohy je stejný jako ϕ bránice – tělo nahrazujeme rovnostranným trojúhelníkem (obr. 2.2). [4]

Obr. 2.2 Rovnostranný trojúhelník sloužící k odvození napětí v jednotlivých svodech

2.3 Měření EKG

Dvanácti svodový systém je klinicky nejvíce využívaný systém. Je složen z kombinací následujících svodů:

Bipolární Einthovenovy svody I, II, III

Unipolární Goldbergerovy svody aVR, aVL, aVF

Unipolární hrudní svody V1 – V6

Augustus Désiré Waller měřil v roce 1887 elektrokardiogram (EKG) člověka s použitím Lippmannova kapilárního elektrometru. Čtyři elektrody umístil na končetiny a jednu na ústa. Tímto způsobem bylo možné dosáhnout nízké kontaktní impedance a tím získat EKG signál. Navíc umístění elektrod je nezaměnitelně definováno a jejich připevnění je usnadněno umístěním na končetiny. Pět měřících bodů vytváří deset různých svodů, dva z nich jsou totožné s Einthovenovy svody.

Willem Einthoven také využíval k měření EKG Lippmannův kapilární elektrometr. Jeho zásadní přínos pro technologii záznamu EKG byl vývoj a aplikace strunového galvanometru. Citlivost strunového galvanometru výrazně přesáhla citlivost dříve používaného kapilárního elektrometru. V roce 1908 Willem Einthoven publikoval první spis o klinickém významu měření EKG. Jednotlivé elektrody jsou umístěny na pravém (R) a levém (L) zápěstí, na levém (F) a pravém kotníku. Elektroda na pravém kotníku je zemnící a slouží k potlačení šumů a artefaktů vznikajících v průběhu měření. Zbylé tři elektrody tvoří rovnostranný trojúhelník se třemi bipolárními svody (I, II, III) jak ukazuje Obr. 2.3. Roku 1924 obdržel Willem Einthoven Nobelovu cenu za lékařství.

Obr. 2.3 Einthovenův trojúhelník [2]

Napětí v jednotlivých svodech jsou odvozeny jako

$$U_I = \phi_L - \phi_R, \tag{2.2}$$

$$U_{II} = \phi_F - \phi_R, \tag{2.3}$$

$$U_{III} = \phi_F - \phi_L. \tag{2.4}$$

Roku 1934 přidává Wilson unipolární končetinové svody. Jeho snahou bylo vytvořit měření rozdílu potenciálů mezi diferentní (měřící) a indiferentní elektrodou, kdy diferentní elektroda je umístěna na povrch těla (R, L, F) a na indiferentní elektrodě je nulový potenciál. Nulový potenciál však na povrchu těla neexistuje a tak by indiferentní elektroda musela teoreticky ležet v nekonečné vzdálenosti od těla. Tři končetinové svody ovšem tvoří uzavřený okruh a dle I. Kyrchhoffova zákona je součet všech proudů, které protékají okruhem roven nule. Wilson tedy spojil tyto tři končetinové svody přes odpor 5 k Ω do společného bodu – Wilsonovi svorky (Obr. 2.4). Napětí v jednotlivých hrudních svodech je rovno velikosti potenciálu ϕ , tedy UV₁ = ϕ_1 a podobně.

Obr. 2.4 Unipolární hrudní svody s Wilsonovou svorkou [2]

Emanuel Goldberg roku 1942 zjistil, že snímané signály mohou být zvýrazněny vynecháním jednoho odporu. Cílem bylo měření rozdílu potenciálu mezi diferentní elektrodou umístěnou na povrchu těla (R, L, F) a indiferentní elektrodou, kterou tvoří spojení dvou protilehlých elektrod, opět přes odpor 5 k Ω , do společného bodu (Obr. 2.5). Touto modifikací již indiferentní elektroda nemá nulový potenciál, ale je dosaženo vyššího napěťového zisku ve snímaných signálech. [2] [3] [6]

Obr. 2.5 Unipolární Goldbergerovy svody [2]

Napětí v jednotlivých svodech jsou odvozeny jako

$$U_a V R = \phi_R - \frac{\phi_L + \phi_F}{2},\tag{2.5}$$

$$U_a VL = \phi_L - \frac{\phi_R + \phi_F}{2}, \qquad (2.6)$$

$$U_a VF = \Phi_F - \frac{\Phi_R + \Phi_L}{2}.$$
(2.7)

2.4 Rozměření EKG křivky

EKG je záznam elektrického potenciálu generovaným elektrickou činností srdce v čase (obr. 2.2). Má typizovaný průběh a každá odchylka od něj je cennou diagnostickou veličinou.

Na křivce rozlišujeme:

1) vlny:

P – depolarizace síní, doba trvání do 100 ms, spektrální složky do 10 – 15 Hz, velikost do 0,3 mV

T – repolarizace komor, doba trvání do 200 ms, velikost 1/5 až 1/3 kmitu R

U – neznámá příčina, v běžném EKG záznamu se s ní neuvažuje

2) kmity:

Q, R, S – depolarizace komor, tvoří QRS komplex v době trvání do 110 ms, spektrální složky v intervalu 10 - 50 Hz, velikost 2 - 3 mV

3) interval:

P-Q – doba od začátku vlny P po začátek kmitu Q

Q-T – časový úsek mezi začátkem a koncem komorové depolarizace - elektrická systola

4) segment:

S-T – komory jsou depolarizovány [2] [6] [7]

Obr 2.6 Normální EKG křivka [8]

3. Detekce QRS komplexu v časové a frekvenční oblasti

3.1 Rušení

Měřený EKG signál může být poškozen mnoha druhy rušení zapříčiněnými jak fyzikálními, tak biologickými jevy (Obr. 3.1). Ke korektnímu hodnocení EKG křivky je proto nezbytné jednotlivé druhy rušení co možná nejvíce potlačit.

Mezi nejvýznamnější druhy rušení patří:

- 1) Úzkopásmové rušení
 - a) Kolísání (drift) izoelektrické linie
 - b) Síťové rušení (brum)
- 2) Širokopásmové rušení
 - a) Myopotenciály a pohybové artefakty
 - b) Rychlé skokové změny izoelektrické linie
 - c) Impulsní rušení [9]

Obr 3.1 Druhy rušení EKG signálu [9]

3.1.1 Kolísání izoelektrické linie

Kolísání izoelektrické linie (Obr. 3.2) vzniká v důsledku elektrochemických dějů na rozhraní elektroda – kůže (do 0,8 Hz), dále dýcháním (do 0,5 Hz) popřípadě pomalými pohyby pacienta (do 1,5 Hz). Pro potlačení kolísání se využívá filtr typu horní propust s nastavenou mezní frekvencí 0,67 Hz, která odpovídá minimální srdeční frekvenci. [10]

Obr 3.2 Kolísání izoelektrické linie [10]

3.1.2 Síťové rušení

K síťovému rušení, značeném v obrázku 3.1 jako brum, dochází v důsledku dvou mechanismů: kapacitní a induktivní vazby. Kapacitní vazba je způsobena existencí parazitních kapacit mezi jednotlivými vodiči nebo obvody zařízení. Induktivní vazba vzniká tak, že obvod nebo vodič, kterým prochází elektrický proud, vytváří magnetické pole, které může indukovat proud v okolních obvodech nebo vodičích.

Pro kapacitní vazbu je typické její vysokofrekvenční rušení, zatímco u induktivní vazby rušení nízkofrekvenční. Z tohoto důvodu má induktivní vazba dominantní vliv rušení v měřeném EKG signálu. Síťové rušení lze definovat jako

$$n(t) = A * \sin(2\pi * f + \Omega), \qquad (3.1)$$

kde A značí amplitudu síťového rušení, f frekvenci (50 Hz) a Ω fázový posun.

Amplituda rušení závisí na množství propojení mezi EKG přístrojem a elektrickým vedením a bude se lišit mezi jednotlivými měřeními. Během měření je tedy pravděpodobné,

že rušení bude kolísat v důsledku měnících se podmínek prostředí, které ovlivňují výši induktivní nebo kapacitní vazby elektrického vedení na EKG přístroj. Fáze sinusoidy v (3.1) je náhodná proměnná s rovnoměrným rozložením v rozsahu (- π , π). Tento zjednodušený model předpokládá, že k rušení dochází pouze při 50 Hz, ale ve skutečnosti bude mít rušení omezenou šířku pásma kolem své jmenovité střední frekvenci, což naznačuje, že celkové rušení je složeno z mnoha sinusoid podobné frekvence.

Pro potlačení síťového rušení se využívá pásmové zádrže se střední frekvencí 50 Hz a zadržovaným pásmem ± 3Hz. [10] [11]

3.1.3 Myopotenciály a pohybové artefakty

Rušení myopotenciály je způsobeno kontrakcemi svalů v okolí snímacích elektrod, které vytvářejí depolarizační a repolarizační vlny a jsou tedy zaznamenány v signálu EKG. Frekvenční pásmo rušení myopotenciálů je závislé na množství a velikosti kontrakce svalů a na kvalitě snímacích elektrod a pohybuje se v rozsahu 20 Hz a výše. Je prokázáno, že amplituda elektromyografického signálu (EMG) má stochastický (náhodný) charakter a může být přibližně definována pomocí funkce Gaussova rozdělení. Průměrná hodnota rušení je teda rovna nule. Nicméně rozptyl je závislý na mnoha faktorech, jako je například fyzická kondice jedince. Některé studie ukázaly, že rozptyl šumu je typicky 10% z EKG amplitudy "špička-špička". Je třeba poznamenat, že elektrická aktivita svalů vytvořená během kontrakce může být srovnatelná s kontrakcí srdce a může tedy EKG signál zcela překrýt a tím výrazně zhoršit detekci vlny P a T.

Potlačení myopotenciálů v měřeném signálu je velice obtížná věc. V současnosti se k filtraci rušení využívají kumulační metody a rozklad signálu pomocí vlnkové transformace.

Pohybové artefakty jsou přechodné změny izoelektrické linie způsobené pohybem elektrod. Obvyklé příčiny pohybových artefaktů jsou vibrace, pohyb a dýchání pacienta. K potlačení pohybových artefaktů je žádoucí zajistit pacientovi během snímání psychickou a tepelnou pohodu prostředí. [10] [11]

3.1.4 Rychlé skokové změny izoelektrické linie

Rychlé skokové změny elektrické izolinie mají svůj původ v prudkých pohybech. Vyskytují se především při vyšetření malých dětí. [10]

3.1.5 Impulsní rušení

Impulsní rušení (Obr. 3.3) je charakteristické náhodnými skokovými výchylkami v kladných i záporných hodnotách a je při snímání EKG signálu přítomno při některých specifických podmínkách. [10]

Obr 3.3 Impulsní rušení [10]

3.2 Shluková analýza

Shluková analýza má v diplomové práci nezanedbatelnou úlohu vedoucí ke zvýšení pravděpodobnosti úspěšné detekce QRS komplexů v realizovaných detektorech a je tedy vhodné věnovat ji stručnou kapitolu.

Pojem shluková analýza, jež byl poprvé použit Robertem Tryonem roku 1939, ve skutečnosti zahrnuje několik různých klasifikačních algoritmů. Zásadní otázkou mnoha vědeckých pracovníků je organizace zkoumaných dat do smysluplných struktur, tedy k taxonomii. K tomuto účelu slouží shluková analýza, která vlastně představuje schopnost vyhledávat skupiny, které jsou si svými vlastnostmi blízké v množství zkoumaných dat.

Vlastní algoritmus shlukové analýzy užitý v realizovaných detektorech QRS komplexů spočívá ve vypočtení vektoru Euklidovských vzdáleností mezi jednotlivými polohami QRS komplexů. Rovnice pro výpočet Euklidovských vzdáleností je definována jako

$$D(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2}.$$
 (3.2)

Dalším krokem je vytvoření hierarchického stromu z vektoru Euklidovských vzdáleností, kdy porovnáváním s prahovou hodnotou, která vyjadřuje maximální vzdálenost mezi polohami, dochází k vytváření jednotlivých shluků.

Konečným krokem algoritmu může být nastavení minimálního počtu hodnot obsažených v jednotlivých shlucích, čímž lze eliminovat náhodné detekce QRS komplexů. [12]

3.3 Detektor QRS komplexu založený na první a druhé derivaci

V této kapitole je pojednáno o detekci QRS komplexu založeném na první a druhé derivaci podle algoritmů:

1) R. A. Balda

- 2) M. L. Ahlstrom a W. J. Tompkins. [13]
- 1) Absolutní hodnoty první a druhé derivace jsou vypočteny ze signálu EKG jako

$$Y0(n) = ABS[X(n + 1) - X(n - 1)]$$

$$2 < n < délka signálu$$

$$Y1(n) = ABS[X(n + 2) - 2X(n) + X(n - 2)]$$

$$2 < n < délka signálu.$$

$$(3.3)$$

Tyto dvě hodnoty jsou zvětšeny a následně sečteny

$$Y2(n) = 1,3 * Y0(n) + 1,1 * Y1(n)$$

$$2 < n < délka signálu.$$
(3.4)

Signál je skenován, dokud není překročen práh nebo není splněna podmínka

$$Y2(n) \ge 1. \tag{3.5}$$

Jakmile dojde ke splnění podmínky (3.5), je následujících osm bodů porovnáváno s prahovou hodnotou. Pokud je šest a více těchto bodů rovno nebo větší prahové hodnotě, dojde k zaznamenání QRS komplexu.

2) První derivace je ze signálu EKG jako

$$Y0(n) = ABS[X(n+1) - X(n-1)]$$

$$3 < n < délka signálu.$$
(3.6)

První derivace je následně vyhlazena

$$Y1(n) = [Y0(n-1) + 2 * Y0(n) + Y0(n+1)]/4$$

$$(3.7)$$

$$3 < n < délka signálu.$$

Druhá derivace je následně vypočtena

$$Y2(n) = ABS[X(n+2) - 2 * X(n) + X(n-2)]$$
(3.8)
 $3 < n < délka signálu.$

Vyhlazená první derivace je přičtena k druhé derivaci

$$Y3(n) = Y1(n) + Y2(n)$$

$$3 < n < délka signálu.$$
(3.9)

Poté je určena maximální hodnota této matice, která je následně upravena na primární a sekundární prahy

$$Primární práh = 0,8 * \max[Y3(n)]$$

$$3 < n < délka signálu$$

$$(3.10)$$

$$Sekundární práh = 0,1 * \max[Y3(n)]$$

$$3 < n < délka signálu.$$

Hodnoty (3.9) jsou skenovány do překročení primárního prahu. Pro uznání QRS komplexu musí dalších šest bodů hodnoty stejné nebo vyšší než sekundární práh:

$$Y3(n) \ge primární práh$$

$$Y3(n+1), Y3(n+2), ... Y3(n+6) \ge sekundární práh$$
(3.11)

V původní verzi algoritmu byla druhá derivace také vyhlazena, pravděpodobně stejným způsobem jako derivace první. Úspěšnost detekce původního algoritmu byla při zašuměném signálu výrazně nižší s algoritmem uvedeným v této kapitole. [13]

3.4 Detektor QRS komplexu založený na filtraci klouzavým průměrem

Metoda filtrace klouzavým průměrem je velice oblíbená pro svoji jednoduchost. Principem metody je výpočet průměru vzorků obsažených v okně velikosti k. Rovnice klouzavého průměru se udává jako

$$\bar{x}_p[n] = \frac{1}{k} \sum_{i=n-k}^{n-1} x_i, \qquad (3.12)$$

kde hodnota *n* vyjadřuje aktuální pozici počítaného prvku, *k* vyjadřuje velikost okna a *x_i* uvádí *i*- tou pozici prvku v průměrujícím okně.

Rovnici (3.12) přepíšeme do rekurzivního tvaru

$$\bar{x}_{p+1}[n] = \bar{x}_p + \frac{x[n] - x[n-k]}{k},$$
(3.13)

čímž dosáhneme snížení výpočetní náročnosti. Hodnota \bar{x}_{p+1} udává aktuální hodnotu průměru posunutou o n+1, \bar{x}_p představuje předešlou hodnotu průměru, x[n] vyjadřuje aktuální hodnotu a hodnota x[n - k] udává hodnotu posunutou o *k* vzorků směrem doleva. [14]

Hodnoty (3.13) jsou následně skenovány. Pro uznání QRS komplexu musí dojít k překročení prahu, který může být uživatelem nastaven na pevnou hodnotu nebo lépe je upravován adaptivním prahováním v průběhu skenování.

3.5 Detektor QRS komplexu založený na vlnkové transformaci

Z historického hlediska lze vlnkovou transformaci považovat za novou metodu, která se rozvinula teprve v 80. letech 20. století, ačkoli její matematické základy se opírají o práci Josepha Fouriera v 19. století. Ve své práci Fourier vypracoval koncept frekvenční nebo spektrální analýzy, na které je zpracování signálu založené.

Počátkem 80. let 20. století se pozornost vědců zaměřila ze zpracování signálu na základě frekvenční analýzy na analýzu signálu na základě jeho měřítka. Vlnková transformace je založená na souboru analyzujících vlnek, jež jsou matematické funkce, které analyzují měřený signál ve zvolené časové a frekvenční oblasti pomocí banky pásmových propustí. V podstatě je vlnková transformace založená na technice oken s proměnnou velikostí, kdy s rozšiřující se vlnkou v časové oblasti dochází k zúžení oblasti frekvenční.

Alfred Haar byl prvním matematikem, který použil to, co dnes nazýváme vlnkou. V roce 1909 Haar poprvé využil vlnky k časově-frekvenční analýze oscilační funkce. Přestože byly tyto techniky zpracování signálu známé teprve v roce 1984 Jean Morlet a Alex Grossmann navrhli koncept vlnky známý v dnešní podobě. Vlnková transformace je v současné době pravděpodobně nejslibnější technikou v oblasti výzkumu a zpracování signálů. [16] Vlnkové transformace se dělí na mnoho kategorií. V této práci se zaměříme na dvě rozdílné kategorie:

- a) Spojitá vlnková transformace (CWT, z angl. continuous wavelet transform)
- b) Diskrétní vlnková transformace (DWT, z angl. discrete wavelet transform)
- a) CWT je definována jako skalární součin původního signálu a souboru dilatovaných mateřských vlnek:

$$CWTx(b,a) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} x(t)\psi\left(\frac{t-b}{a}\right) dt,$$
(3.14)

kde $\psi(t)$ je mateřská vlnka, hodnota *a* respektive *b* vyjadřuje dilataci respektive translaci vlnky. *x(t)* představuje měřený signál v čase t.

Proto CWT měří, jak se měřený signál x(t) podobá (z hlediska času a frekvence) mateřské vlnce. CWT provádí vícenásobnou analýzu, kdy můžeme vidět měřený signál x(t) v různých časových měřítkách beze ztráty vývoje v čase, protože skalární součin se provádí ve všech měřených místech – je kontinuální.

CWT analyzuje měřený signál x(t) ze všech možných měřítek prostřednictvím dilatace (a) a translace (b). V praxi je využití limitováno konečným počtem diskrétních hodnot (N) a velikostí časové osy. [7] [15] [16]

b) DWT je složena z kolekce koeficientů

$$d_x(j,k) = \langle X, \psi_{j,k} \rangle, \qquad j = 1 \dots J, \qquad k \in \mathbb{Z}, \tag{3.15}$$

které jsou získány porovnáním signálu x(t) se sadou analyzujících funkcí.

$$\psi_{j,k}(t) = 2^{-\frac{j}{2}} \psi_0 (2^{-j}t - k), \qquad j = 1 \dots J, \qquad k \in \mathbb{Z}.$$
 (3.16)

Stejně jako u CWT je vlnka tvořena z referenční funkce $\psi_0(t)$, nazývané mateřská vlnka, která je přizpůsobována změnou měřítkového operátoru pomocí měřítkového indexu j

$$\psi_{j,0}(t) = 2^{-\frac{j}{2}} \psi_0(2^{-j}t), \qquad j = 1 \dots J,$$
(3.17)

a pomocí časového operátoru závislým na časovém indexu k

$$\psi_{0,k}(t) = \psi_0(t-k), \qquad k \in \mathbb{Z}.$$
 (3.18)

Změnou dilatace či translace se definuje časový rozsah, po který je měřený signál pozorován, zatímco časový operátor umožňuje výběr časového okamžiku, kolem kterého chceme provádět analýzu. V případě diskrétních signálů může být DWT použita pouze na signály, jejichž délka (L) je druhou mocninou. Tato skutečnost je v důsledku nastavení dilatačního faktoru na hodnotu 2 definovaném v rovnici 3.17. Existují metody sloužící k prodloužení délky na 2ⁿ pomocí odsazení či kruhových posunů. Další omezení platí pro analýzu J, která musí ověřit L \geq 2^J vzorků. V praxi je ovšem obvyklá situace L=2^J označovaná jako "plná DWT". To znamená, že analýza se provádí na největší úrovni signálu, jehož délka (L) je druhou mocninou.

DWT je tedy vlastně diskretizací CWT, ve které jsou analyzovány pouze určité hodnoty dilatace (a) a translace (b): a = 2^{j} , b = $k2^{j}$, j \in N, k \in Z. [16]

V práci je detekce QRS komplexů pro CWT realizována jako:

Měřený signál je pomocí vlnkové transformace transformován do jednotlivých stupňů, kdy počet stupňů závisí na vzorkovací frekvenci (fvz).

Dalším krokem je samotná detekce QRS komplexu, kdy algoritmus skenuje transformované signály a hledá extrémy, jež překročily detekční práh, který může být uživatelem nastaven na pevnou hodnotu nebo lépe je upravován adaptivním prahováním v průběhu skenování.

Takto se získají pravděpodobné polohy QRS komplexů v jednotlivých pásmech. K detekci QRS komplexu jsou pásma seřazena od nejvyššího pásma po nejnižší a jsou porovnávány detekce QRS komplexů v jednotlivých pásmech. Výsledné polohy QRS komplexů lze získat aplikací shlukové analýzy uvedené v kapitole 3.2. [7] [17]

3.6 Detektor QRS založený na výpočtu obálky analytického signálu v časové oblasti

Detekce QRS komplexů je zde realizována ve dvou krocích.

První krok zahrnuje předběžné zpracování dat pomocí vhodného filtru, který slouží k odstranění nežádoucího rušení a ke zvýraznění QRS komplexu. Ke zvýraznění QRS komplexu musíme vytvořit filtr typu pásmová propust s vhodnou přenosovou funkcí, dle [18] je vhodný Butterworthův filtr druhého řádu s přenosovou funkcí

$$H = \frac{[S/(2\pi f_c)]/Q}{[S/(2\pi f_c)]^2 + [S/(2\pi f_c)]/Q + 1'}$$
(3.19)

kde *S* představuje rozložení nulových bodů a pólů v rovině Z, f_c centrální frekvenci a *Q* faktor kvality, tedy šířku přenášeného pásma. Jako optimální se uvažuje nastavení centrální frekvence f_c na 17 Hz a faktoru kvality Q na 5. [18]

Druhým krokem je aplikace Hilbertovy transformace na filtrovaný signál.

Z historického hlediska lze k Hilbertově transformaci říci následující.

V roce 1893 fyzik Arthur E. Kennelly (1861-1939) a vědec Charles P. Steinmetz (1865-1923) poprvé použili Eulerův vzorec

$$e^{jz} = \cos(z) + j\sin(z), \qquad (3.20)$$

který byl odvozen slavným švýcarským matematikem Leonardem Eulerem (1707-1783), zavedl komplexní formu harmonických průběhů v elektrotechnickém inženýrství jako:

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t), \qquad (3.21)$$

kde *j* představuje imaginární jednotku. Začátkem 20. století německý vědec David Hilbert (1862-1943) dokázal, že Hilbertova transformace $\cos(\omega t)$ je $\sin(\omega t)$. Základní vlastností Hilbertovi transformace je tedy $\pi/2$ fázový posun.

Matematicky je Hilbertova transformace X(t) reálné časové funkce x(t) definována jako:

$$X(t) = H[x(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t - \tau} d\tau,$$
 (3.22)

jestliže integrál existuje. X(t) je časově závislá funkce. Normálně není možné vypočítat Hilbertovu transformaci jako obyčejný neurčitý integrál vzhledem k možné singularitě $\tau = t$. Integrál má být považován za Cauchyho hlavní hodnotu, která v matematice definována jako:

$$\lim_{z \to 0^+} \left[\int_a^{b-\tau} x(t) dt + \int_{b+\tau}^c x(t) dt \right],$$
 (3.23)

kde b je bod, ve kterém je chování funkce x(t) takové, že

$$\int_{a}^{b} x(t)dt = \pm \infty \text{ pro všechna } a < b$$

$$\int_{b}^{c} x(t)dt = \pm \infty \text{ pro všechna } c > b.$$
(3.24)

Jiná vyjádření přenosové funkce H((x(t)) mohou být získána změnou proměnné:

$$H[x(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(t-\tau)}{\tau} d\tau,$$

$$H[x(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(t+\tau)}{\tau} d\tau.$$
(3.25)

X(t) a x(t) jsou k sobě vázány vztahem, jež vytváří analytický signál. Analytický signál může být vyjádřen amplitudou a fází, kde derivace fáze určuje okamžitou frekvenci. Fourierovou transformací analytického signálu získáme spektrum signálu. Účelem Hilbertovi transformace je získání analytického signálu, který lze tedy vyjádřit jako:

$$y(t) = x(t) + jX(t).$$
 (3.26)

Dalším krokem algoritmu detekce QRS komplexu je získání obálky analytického signálu:

$$B(t) = \sqrt{X(t)^2 + x(t)^2}.$$
(3.27)

Získanou obálku následně umocníme a aplikujeme rozhodovací pravidlo pro detekci QRS komplexu popsané v kapitole 4.1. [19] [20] [27]

3.7 Detektor QRS založený na výpočtu obálky analytického signálu ve frekvenční oblasti

Prvním krokem této metody je převést analyzovaný signál EKG f(nT) pomocí diskrétní Fourierovy transformace (DFT) do frekvenční oblasti.

DFT rozkládá signál na harmonické komponenty o frekvencích k Ω , dle rovnice:

$$F(k\Omega) = \sum_{n=0}^{N-1} f(nT)e^{-jk\Omega nT},$$
(3.28)

"kde T je vzorkovací perioda, n a k celočíselné indexy, N počet prvků transformované posloupnosti, F jsou komplexní spektrální koeficienty a Ω je N-tina vzorkovacího kmitočtu". [21]

Po převedení signálu do frekvenční oblasti dochází k nulování poloviny spektra, konkrétně fvz/2 až fvz, kde fvz je vzorkovací frekvence.

Zpětnou Fourierovou transformací (DFT¹) získáme opět časovou posloupnost vzorků signálu f(nT):

$$f(nT) = \frac{1}{N} \sum_{n=0}^{N-1} F(k\Omega) e^{-jk\Omega nT}.$$
 (3.29)

Dalším krokem algoritmu detekce QRS komplexu je získání obálky analytického signálu dle rovnice (3.27). Získanou obálku následně umocníme a aplikujeme rozhodovací pravidlo pro detekci QRS komplexu popsané v kapitole 4.1. [21] [28]

3.8 Detektor QRS komplexu založený na přizpůsobené filtraci

Přizpůsobené filtry se využívají pro svoji schopnost detekce známého úseku či tvaru signálu v přijímaném zašuměném signálu. Dochází tedy ke stanovení času a intenzity výskytu známého úseku či tvaru signálu k maximalizaci poměru signál šum. Přijímaný signál lze popsat rovnicí:

$$y(n) = Ax(n - \tau_0) + v(n),$$
 (3.30)

kde y(n) je přijímaný signál, x(n) známý úsek či tvar signálu, v(n) bílý šum, A a τ_0 jsou neznámé konstanty. Pro spektrum bílého šumu má přizpůsobený filtr impulsní charakteristiku:

$$h(n) = x(-n).$$
 (3.31)

Principem detekce QRS komplexů je konvoluce zašuměného signálu y(n) s impulsní charakteristikou přizpůsobeného filtru h(n), tedy:

$$y(n) * x(-n) = [x(n) + v(n)] * x(-n) =$$

= $x(n) * x(-n) + v(n) * (x - n) =$
= $r_{xx}(n) + r_{vx}(n),$ (3.32)

kdy vzájemnou korelací dochází ke zvýraznění hledaného úseku či tvaru $r_{xx}(n)$ a k potlačení šumu $r_{vx}(n)$, který je na hledaném úseku či tvaru signálu nezávislý. Na filtrovaný signál opět aplikujeme rozhodovací pravidlo pro detekci QRS komplexu popsané v kapitole 4.1. [21] [22] [28]

3.9 Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovy transformace a vlnkové transformace

Jednotlivé metody použité v následujícím detektoru QRS komplexu již byly popsány a to konkrétně první a druhá derivace v kapitole 3.3, Hilbertova transformace v kapitole 3.6 a vlnková transformace v kapitole 3.5.

Cílem metody je vhodnou kombinací těchto metod snížit citlivost detekce QRS komplexu na šum a jednotlivé druhy rušení uvedené v kapitole 3.1.

Algoritmus je následující:

1) Použití diferenciálního operátoru

QRS komplex je určen pomocí první a druhé derivace:

$$Y_0(n) = [x(n) - x(n-2)]$$

$$Y_1(n) = [x(n) - 2x(n-2) + x(n-4)]$$
(3.33)

První derivace je přičtena k druhé derivaci:

$$Y_2(n) = 1,3Y_0(n) + 1,1Y_1(n)$$
(3.34)

K vyhlazení signálu je použita technika okna:

$$Y_3(n) = \frac{1}{8} \sum_{k=0}^{7} Y_2(n-k)$$
(3.35)

- 2) Aplikace Hilbertovy transformace
- 3) Získání umocněné obálky analytického signálu
- 4) Aplikace vlnkové transformace
- 5) Výběr druhého rozkladového stupně signálu (vysokofrekvenční složky signálu)
- 6) Detekce QRS komplexů detektorem s adaptivním prahováním
- 7) Převedení detekovaných pozic z vlnkové do signálové domény [23]

4. Porovnání efektivnosti detekce QRS komplexů pomocí jednotlivých metod

Cílem této kapitoly je popis realizovaných algoritmů v programovém prostředí Matlab a interpretace dosažených výsledků spolehlivosti detektorů vzhledem k jejich senzitivitě a specificitě. Vzhledem k vysokému počtu detekovaných signálů a jejich délce odpovídající zhruba jedné minutě záznamu EKG je pro názorné grafické zobrazení použito pouze prvních patnáct sekund signálu 6, svodu I, uvedeném v příloze B.

Obr. 4.1 Vstupní signál EKG (modrá křivka) a následné odstranění kolísání izoelektrické linie a brumu (červená křivka)

4.1 Detektor QRS komplexu podle algoritmu R. A. Baldy

Detektor QRS komplexu podle algoritmu R. A. Baldy je realizován v programu Matlab a v příloze je uložen pod názvem *první_druha_derivace_RAB*.

Realizovaný detektor lze rozdělit do dvou částí.

V první části je načten měřený signál, kdy uživatel musí do proměnné *fvz* zadat vzorkovací frekvenci signálu podle přílohy A. Následně v programu dochází k potlačení kolísání elektrické izolinie filtrem typu horní propust, jež je v Matlabu realizován funkcí *fir1*, a k potlačení síťového rušení filtrem typu pásmová zádrž realizovaném v Matlabu využitím funkce *iirnotch*. Další filtrace probíhá využitím funkce *wden*, která slouží k potlačení rušení v signálu pomocí vlnky. Jako mateřská vlnka je použita vlnka Daubechies 3 (Obr. 4.2), která je svým tvarem podobná QRS komplexu. Dále bylo zvoleno tvrdé prahování, jehož nevýhodou je sice možnost výskytu vysokých artefaktů v detekovaném signálu, ale oproti měkkému prahování nedochází ke snižování hodnot extrémů, tedy QRS komplexů. [24] Vlnkový rozklad je nastaven na první stupeň, kdy dochází k nejvyšší detekční účinnosti.

Obr. 4.2 Mateřská vlnka Daubechies 3 [25]
Ve druhé části probíhá výpočet rovnic dle (3.3), které jsou následně použity k výpočtu rovnice (3.4). Z vypočteného vektoru $y_2(n)$ dle rovnice (3.5) je nastavena počáteční hodnota prahu pro detekci QRS komplexu jako 60% maximální hodnoty z prvních dvou sekund tohoto vektoru [28]. Dále je nastavena délka okna, která představuje refrakterní dobu srdce, tedy dobu během které po detekci QRS komplexu nemůže dojít k výskytu nového QRS komplexu. Běžně se doba trvání refrakterní fáze uvádí okolo 120 ms. [7] V detektoru je ovšem délka okna zdvojnásobena z důvodu vyšší prediktivity. Samotná detekce probíhá skenováním vektoru $y_2(n)$, kdy po překročení prahu je nadprahová hodnota a následujících sedm hodnot sečteno a pokud je šest a více hodnot rovno nebo větší prahové hodnotě dochází k detekci QRS komplexu. Po detekci QRS komplexu je velikost prahu upravena na 60% hodnoty velikosti poslední detekce a dojde k posuvu po vektoru y2(n) o velikost okna. U takto získaných poloh QRS komplexů jsou následně vypočteny vzájemné vzdálenosti mezi sousedními QRS komplexy a pokud jsou od sebe vzdáleny více, nežli 1,6 násobek průměrné vzdálenosti, dochází ke zpětné detekci [28]. Nastavení nového prahu je realizováno jako 40% průměrné velikosti dvou sousedních QRS komplexů [28]. Zpětná detekce probíhá v prostoru mezi dvěma sousedními QRS komplexy zkráceném o velikost okna z důvodu zamezení opětovné detekce těchto QRS komplexů. Výsledné pozice QRS komplexů se získají aplikací shlukové analýzy, kdy získané detekce QRS komplexů pro filtrovaný signál a zpětnou detekci jsou uloženy do buňkového pole, které je následně převedeno na vzestupně (funkce sort) seřazený vektor (funkce cell2mat) poloh QRS komplexů. Dalším krokem je vypočtení Euklidovské vzdálenosti mezi jednotlivými detekcemi pomocí funkce pdist, vytvoření hierarchického stromu z vektoru Euklidovských vzdáleností (funkce linkage) a vytvoření jednotlivých shluků z hierarchického stromu funkcí cluster. Funkcí unique zjistíme množství shluků, kdy do vektoru S2 jsou ukládány pozice jednotlivých shluků, které opět pomocí funkce sort vzestupně seřadíme. Jednotlivé seřazené shluky jsou vkládány do vytvořeného buňkového pole Shluky. Závěrečným krokem je procházení jednotlivých shluků, a pokud shluk obsahuje jednu a více hodnot je vypočten medián, funkcí round je zaokrouhlen a výsledná pozice je uložena do vektoru QRS. Aplikací shlukové analýzy dochází ke zvýšení prediktivity (Obr. 4.3). Posledním krokem je vypočtení fixní velikosti QRS komplexu jako poloviny maximální výchylky filtrovaného signálu y11(n) a vykreslení získaných poloh s vypočtenou velikostí QRS komplexů ve vektoru y11(n) v závislosti na čase.

Obr. 4.3 Porovnání detekcí QRS komplexů signálu 26 pro detektor založený na filtraci klouzavým průměrem bez použití shlukové analýzy (horní polovina obrázku) a s použitím shlukové analýzy (dolní polovina obrázku)

Obr. 4.4 Detekce QRS komplexu podle algoritmu R. A. Baldy. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.2 Detektor QRS komplexu podle algoritmu M. L. Ahlstroma a W. J. Tompkinse

Detektor QRS komplexu podle algoritmu M. L. Ahlstroma a W. J. Tompkinse je realizován v programu Matlab a v příloze je uložen pod názvem *první_druha_derivace_MLA*.

Realizovaný detektor lze opět rozdělit do dvou částí, kdy první část detektoru je identická s první částí detektoru uvedenou v kapitole 4.1.

Ve druhé částí detektoru probíhá výpočet rovnic dle (3.6), (3.7) a (3.8), které jsou následně použity k výpočtu rovnice (3.9). Z vypočteného vektoru y3(n) dle rovnice (3.9) je dle rovnic (3.10) vypočtena hodnota primárního a sekundárního prahu. Délka okna je nastavena identicky jako v kapitole 4.1. Samotná detekce probíhá skenováním vektoru y3(n), kdy po překročení primárního prahu je následujících šest hodnot sečteno a pokud jsou rovny nebo větší hodnotě sekundárního prahu dochází k detekci QRS komplexu. Po detekci QRS komplexu dojde k posuvu po vektoru y3(n) o velikost okna. Posledním krokem je vykreslení získaných poloh a velikostí QRS komplexů ve vektoru y3(n) v závislosti na čase.

Obr. 4.5 Detekce QRS komplexu podle algoritmu M. L. Ahlstroma a W. J. Tompkinse. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.3 Detektor QRS komplexu založený na filtraci klouzavým průměrem

Detektor QRS komplexu založený na filtraci klouzavým průměrem je realizován v programu Matlab a v příloze je uložen pod názvem *klouzavy_prumer*.

Realizovaný detektor lze jako v předchozích metodách také rozdělit do dvou částí, kdy první část detektoru je identická s první částí detektoru uvedenou v kapitole 4.1.

Ve druhé částí detektoru probíhá výpočet dle rovnice (3.12). Následný postup detekce QRS komplexů je identický s postupem popsaným v kapitole 4.1.

Obr. 4.6 Detekce QRS komplexu založená na filtraci klouzavým průměrem. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.4 Detektor QRS komplexu založený na vlnkové transformaci

Detektor QRS komplexu založený na vlnkové transformaci je realizován v programu Matlab a v příloze je uložen pod názvem *vlnkova_transformace*.

Realizovaný detektor můžeme jako v předchozích metodách také rozdělit do dvou částí, kdy první část detektoru je identická s první částí detektoru uvedenou v kapitole 4.1.

Ve druhé částí detektoru je pomocí funkce *appcoef* filtrovaný signál rozložen na tři stupně za použití vlnky Daubechies 3. Následný postup detekce QRS komplexů pro filtrovaný signál a jednotlivé stupně rozkladu filtrovaného signálu je identický s postupem popsaným v kapitole 4.1 s tím rozdílem, že zde musíme počítat se zkrácením signálu o polovinu délky s každým následujícím stupněm rozkladu. Výsledné pozice QRS komplexů se získají obdobně jako v kapitole 4.1, tedy aplikací shlukové analýzy. Ovšem v tomto detektoru je shluková analýza aplikována nejprve na filtrovaný signál a rozkladové stupně jednotlivě. Teprve na takto získané detekce QRS komplexů je znovu aplikována shluková analýza k určení konečné pozice QRS komplexů v detekovaném signálu.

Obr. 4.7 Detekce QRS komplexu založená na vlnkové transformaci. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.5 Detektor QRS založený na výpočtu obálky analytického signálu v časové oblasti

Detektor QRS komplexu založený na výpočtu obálky analytického signálu je realizován v programu Matlab a v příloze je uložen pod názvem *obalka_cas*.

Realizovaný detektor můžeme jako v předchozích metodách také rozdělit do dvou částí, kdy první část detektoru je identická s první částí detektoru uvedenou v kapitole 4.1.

Ve druhé části detektoru filtrujeme signál Butterworthovým filtrem typu pásmová propust pomocí funkce *butter* s nastaveným propustným pásmem na 14,5 Hz – 19,5 Hz. Na filtrovaný signál je pomocí funkce *hilbert* aplikována Hilbertova transformace, čímž získáme analytický signál. Funkcí *abs* získáme obálku analytického signálu (obr. 4.7), kterou následně umocníme. Následný postup detekce QRS komplexů je identický s postupem popsaným v kapitole 4.1 s tím rozdílem, že adaptivní práh je nastaven 40% velikosti předchozího QRS komplexu a práh pro zpětné prohledávání pokud jsou od sebe QRS komplexy vzdáleny více, nežli 1,6 násobek průměrné vzdálenosti na 20% průměrné velikosti dvou sousedních QRS komplexů. Metoda významně zvýrazňuje QRS komplexy a lze tedy snížit velikost adaptivního prahu.

Obr. 4.8 Vyobrazení vstupního signálu EKG (černá křivka), filtrovaného signálu EKG pásmovou propustí (modrá křivka) a obálky analytického signálu (červená křivka)

Obr. 4.9 Detekce QRS komplexu založená na výpočtu obálky analytického signálu v časové oblasti. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.6 Detektor QRS založený na výpočtu obálky analytického signálu ve frekvenční oblasti

Detektor QRS komplexu založený na výpočtu obálky analytického signálu ve frekvenční oblasti je realizován v programu Matlab a v příloze je uložen pod názvem *obalka_frek*.

Realizovaný detektor můžeme jako v předchozích metodách také rozdělit do dvou částí, kdy první část detektoru je identická s první částí detektoru uvedenou v kapitole 4.1.

Úkolem druhé části detektoru je převedení signálu z časové oblasti do oblasti frekvenční pomocí Fourierovy transformace realizovanou funkcí *fft*. Dochází k nulování poloviny spektra (fvz/2 až fvz) a následnému převedení signálu z frekvenční oblasti do oblasti časové pomocí zpětné Fourierovy transformace realizovanou funkcí *ifft*. Funkcí *abs* získáme obálku analytického signálu, kterou následně umocníme a aplikujeme rozhodovací pravidlo pro detekci QRS komplexu popsané v kapitole 4.1. Adaptivní práh je v této metodě snížen stejně, jako je popsáno v kapitole 4.5

Obr. 4.10 Detekce QRS komplexu založená na výpočtu obálky analytického signálu ve frekvenční oblasti. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.7 Detektor QRS komplexu založený na přizpůsobené filtraci

Detektor QRS komplexu založený na přizpůsobené filtraci je realizován v programu Matlab a v příloze je uložen pod názvem *prizpusobena_filtrace*.

Realizovaný detektor lze rozdělit do dvou částí.

V první části je načten signál. Hlavní výhodou této metody je schopnost detekce QRS komplexů v zašuměném signálu. Signál lze pomocí funkce *wgn* zašumět bílým šumem s Gaussovským rozložením, kdy si uživatel může zvolit výkon šumu. Dalším krokem je filtrace signálu filtrem typu pásmová propust pomocí funkce *butter* s nastaveným propustným pásmem na 15 Hz – 40 Hz [28]. Nyní je zapotřebí získat známý úsek signálu, tedy QRS komplexu. Dle doporučení [26] je pro získání vzoru QRS komplexu zapotřebí autokorelace filtrovaného signálu pomocí funkce *xcorr*. Takto získaný vzor QRS komplexu je následně korelován s filtrovaným signálem.

Ve druhé části detektoru probíhá detekce QRS komplexů, jejíž postup je identický s postupem popsaným v kapitole 4.1. Adaptivní práh je v této metodě snížen stejně, jako je popsáno v kapitole 4.5

Obr. 4.11 Detekce QRS komplexu založená na přizpůsobené filtraci. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.8 Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace

Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovy transformace a vlnkové transformace je realizován v programu Matlab a v příloze je uložen pod názvem *kombinace_hilb_vln_adapt*.

Realizovaný detektor lze opět rozdělit do dvou částí, kdy první část detektoru je identická s první částí detektoru uvedenou v kapitole 4.1.

Ve druhé části probíhá výpočet rovnic dle (3.33), které jsou následně použity k výpočtu rovnice (3.34). Vypočtený vektor y2(n) je dle rovnice (3.35) vyhlazen technikou okna, čímž získáme vektor y3(n). Na vektor y3(n) je pomocí funkce *hilbert* aplikována Hilbertova transformace, čímž získáme analytický signál. Funkcí *abs* získáme obálku analytického signálu, kterou následně umocníme. Umocněnou obálku rozložíme vlnkovou transformací na čtyři stupně pomocí funkce *appcoef* za použití vlnky Daubechies 3.

Následný postup algoritmu je rozdílný oproti algoritmu popsaném v kapitole 3.9, kdy místo aplikace rozhodovacího pravidla pouze na druhý rozkladový stupeň je rozhodovací pravidlo aplikováno na všechny čtyři rozkladové stupně. Postup detekce v jednotlivých rozkladových stupních je identický s postupem popsaným v kapitole 4.1. Opět se nesmí

zapomenout, že zde musíme počítat se zkrácením signálu o polovinu délky s každým následujícím stupněm rozkladu. Výsledné pozice QRS komplexů se získají obdobně jako v kapitole 4.1, tedy aplikací shlukové analýzy. Na takto získané polohy QRS komplexů je opět aplikována shluková analýza k určení konečné pozice QRS komplexů v detekovaném signálu.

Obr. 4.12 Detekce QRS komplexu založená na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

4.9 Číselné a slovní vyjádření efektivnosti detekce QRS komplexu pomocí jednotlivých metod

Účinnost jednotlivých detektorů byla testována na signálech z databáze PhysioNet [27], které jsou uvedeny v příloze A. Délka signálů byla zvolena na jednu minutu z důvodu vysoké výpočetní náročnosti pro signály delšího trvání.

K číselnému vyjádření efektivnosti detekce QRS komplexu bylo použito několik rovnic podle [28] a to rovnice senzitivity

$$Se = \frac{TP}{TP + FN} * 100 \tag{4.1}$$

a prediktivity

$$P^{+} = \frac{TP}{TP + FP} * 100 , \qquad (4.2)$$

kde *TP* (true positive) představuje počet správně pozitivních detekcí, *FN* (false negative) počet falešně negativních a *FP* (false positive) počet falešně pozitivních detekcí.

Senzitivita udává pravděpodobnost pozitivní detekce za přítomnosti komplexu QRS. Prediktivita udává pravděpodobnost přítomnosti komplexu QRS při pozitivní detekci. [28]

Metoda	Se	P⁺
[-]	[%]	[%]
Detektor QRS komplexu podle algoritmu R. A. Baldy	97,29	98,03
Detektor QRS komplexu podle algoritmu M. L. Ahlstroma a W. J. Tompkinse	74,79	100
Detektor QRS komplexu založený na filtraci klouzavým průměrem	98,89	97,72
Detektor QRS komplexu založený na vlnkové transformaci	98,51	99 <i>,</i> 17
Detektor QRS komplexu založený na výpočtu obálky analytického signálu v časové oblasti	99,41	99,75
Detektor QRS komplexu založený na výpočtu obálky analytického signálu ve frekvenční oblasti	99,34	99,46
Detektor QRS komplexu založený na přizpůsobené filtraci	99,62	99,74
Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace	98,28	99,52

Tab. 1 Srovnání efektivnosti detekce QRS komplexu mezi jednotlivými metodami

Z vypočtených hodnot senzitivity a prediktivity se jako nejúčinnější jeví detektor QRS komplexu založený na přizpůsobené filtraci následovaný detektory založenými na výpočtu obálky analytického signálu v časové a frekvenční oblasti. Účinnost těchto metod je dána jejich úpravou frekvenčního spektra signálu filtrem typu pásmová propust, kdy dochází k vysokému zvýraznění QRS komplexů. Na druhou stranu ale v některých případech dochází ke zvýraznění nejen QRS komplexu, ale také ke zvýraznění vlny P a tedy ke snížení prediktivity.

Nejméně účinným je detektor založený na první a druhé derivaci podle algoritmu M. L. Ahlstroma a W. J. Tompkinse. Detektor vykazuje poměrně dobrou detekční účinnost pouze v případě, že snímaný signál obsahuje EKG křivky s velice podobnou velikostí QRS komplexů. Pomocí rovnice (3.9) dochází k vysokému zvýraznění QRS komplexů ve snímaném signálu. Hlavní nedostatečností této metody je skutečnost, že metoda pracuje s pevně nastavenými prahy, které jsou vypočteny pomocí rovnice (3.10). Podmínkou detekce je po překročení primárního prahu porovnání následujících šesti hodnot, a pokud jsou rovny nebo větší hodnotě sekundárního prahu dochází k detekci QRS komplexu. Důsledkem této detekční podmínky a pevnými detekčními prahy dochází především k výraznému zhoršení senzitivity detektoru. Pokud je tedy ve snímaném signálu dojít k detekci žádného QRS komplexu. Detektor ovšem jako jediný z realizovaných detektorů vykazuje 100% prediktivitu, ale vzhledem k velice nízké senzitivitě není k použití v praxi příliš vhodný.

Detektor založený na první a druhé derivaci podle algoritmu R. A. Baldy vykazuje poměrně dobrou detekční účinnost, kdy pomocí rovnice (3.4) dochází k vysokému zvýraznění QRS komplexů. Menší slabostí tohoto detektoru je skutečnost, že podmínka detekce QRS komplexu vyžaduje po překročení prahu porovnání nadprahové hodnoty a následujících sedmi hodnot a pokud je šest a více hodnot rovno nebo větší prahové hodnotě, dochází k detekci QRS komplexu. Tuto detekční podmínku nelze dodržet v případě úzkých QRS komplexů a dochází ke snížení senzitivity detektoru.

Detektor založený na filtraci klouzavým průměrem snímaný signál pouze vyhlazuje, čímž dochází k detekcím jak QRS komplexů, tak vln T a tedy ke snížení prediktivity.

U detektoru založeným na vlnkové transformaci by se mělo jednotlivými rozkladovými stupni dosáhnout zvýraznění QRS komplexu, jehož spektrální složky se nacházejí v intervalu 10 – 50 Hz (kapitola 2.4). Zaznamenané polohy QRS komplexů v jednotlivých rozkladových stupních jsou pomocí shlukové analýzy porovnávány a dochází k uznávání výsledných poloh QRS komplexů. Navržený detektor vykazuje poměrně dobré hodnoty senzitivity a prediktivity, ovšem u některých signálů musí uživatel sám v algoritmu změnit hodnotu velikosti shluku, která uzná shluk za QRS komplex.

Poslední metodou je detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace. Cílem této metody je vhodná kombinace výše uvedených metod a vytvoření detektoru se zvýšenou hodnotou senzitivity a prediktivity jak u normálních, tak i u šumem postižených signálů. Detektor vykazuje poměrně dobré hodnoty senzitivity a prediktivity, ovšem hodnoty měly být dle očekávání vyšší.

Jednotlivé výše uvedené metody slouží ke zvýraznění QRS komplexů, dále je tedy nutné mít kvalitní adaptivní detektor, jehož předpoklady jsou rozepsány v kapitole 4.1. Signál EKG ovšem nelze jednoznačně specifikovat, tedy že každý signál je originální a uživatel tedy musí místy upravovat nastavení detektoru, jak je uvedeno v příloze B. Z výsledků senzitivity a prediktivity, uvedené v (Tab. 1), lze vyvodit, že čistě časové metody, mezi které patří metoda první a druhé derivaci podle algoritmu R. A. Baldy, první a druhé derivaci podle algoritmu M. L. Ahlstroma a W. J. Tompkinse a metoda filtrace klouzavým průměrem, mají nižší úspěšnost detekce nežli metody frekvenční. Konkrétně to lze vidět na (Obr. 4.13), který znázorňuje detekci pomocí metody filtrace klouzavým průměrem. Naproti tomu (Obr. 4.14) znázorňuje metodu založenou na přizpůsobené filtraci, kde již dochází ke korektní detekci QRS komplexů.

Obr. 4.13 Detekce QRS komplexu signálu 53, svodu V1 metodou filtrace klouzavým průměrem. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

Obr. 4.14 Detekce QRS komplexu signálu 53, svodu V1 metodou přizpůsobené filtrace. Jednotlivé detekce, označené červenou hvězdičkou, neodpovídají svojí hodnotou hodnotě extrémů z důvodu individuálního nastavení velikosti extrémů

5. Závěr

Cílem diplomové práce bylo vypracovat literární rešerši o vybraných metodách detekce QRS komplexu signálu EKG v časové a frekvenční oblasti, realizace těchto metod a jejich vzájemného porovnání efektivnosti detekce QRS komplexů.

Rešerše je v úvodu zaměřena na popis srdce, převodní systém srdeční a dipólovou teorii srdce. Další částí je popis měření EKG signálu pomocí dvanácti svodového systému a následné rozměření EKG křivky.

Následující část práce se již zaměřuje na detekci QRS komplexu v časové a frekvenční oblasti. V této kapitole je stručně pojednáno o nejvýznamnějších druzích rušení, jejich filtraci a o samotných detekčních metodách, které byly realizovány.

Poslední kapitolou je porovnání efektivnosti detekce QRS komplexu pomocí jednotlivých metod ve které jsou ve stručnosti popsány realizace těchto metod v programovém prostředí Matlab. V další části kapitoly je detekční účinnost jednotlivých metod číselně vyjádřena (Tab. 1) pomocí rovnic senzitivity a prediktivity a následně diskutována.

Z naměřených hodnot senzitivity a prediktivity se jako nejpřesnější jeví detektor QRS komplexu založený na přizpůsobené filtraci. Celkově se u frekvenčních metod detekce QRS komplexu dosahuje vyšších hodnot senzitivity a prediktivity nežli u metod časových a jejich využití k detekci je tedy vhodnější.

6. Použitá literatura

- [1] WILHELM, Zdeněk. Stručný přehled fyziologie člověka pro bakalářské studijní programy. 4. vyd. Brno: Masarykova univerzita, Lékařská fakulta, 2010. 117 s.
 ISBN: 978-80-210-5283-3
- [2] MALMIVUO, Jaakko, PLONSEY, Robert. Bioelectromagnetism. New York: Oxford University Press, 1995. 482 p. ISBN: 0-19-505823-2
- [3] HAMAN, Petr. Základy EKG [online]. URL: < http://ekg.kvalitne.cz/>, [cit. 2014-10-8]
- [4] BIČIŠTĚ, Jan. *Biofyzika*. Brno: Střední průmyslová škola elektrotechnická, 1996. 100s.
- [5] KAŇKOVÁ, Kateřina. Patologická fyziologie pro bakalářské studijní programy. 2. vyd.
 Brno: Masarykova univerzita, Lékařská fakulta, 2009. 165 s. ISBN 978-80-210-4923-9
- [6] OSMANČÍK, Pavel. EKG UČEBNICE [online]. Univerzita Karlova v Praze, 3. lékařská fakulta, III. interní-kardiologická klinika 3. LF UK a FNKV, 2011. ISBN: 978-80-1763-9 URL: http://www.ekg-ucebnice.cz/index.php.
- [7] VÍTEK, Martin. Automatické rozměření signálů EKG: dizertační práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2010.
 129 s. Vedoucí dizertační práce doc. Ing. Jiří Kozumplík, CSc.
- [8] JONG, J.S.S.G., POSTEMA, P.G., KREUGER, R. ECGpedia [online]. URL: http://en.ecgpedia.org/wiki/Main_Page, [cit. 2014-10-9]
- [9] SLEZÁK, Roman. Filtrace signálů EKG: diplomová práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2008. 60 s. Vedoucí diplomové práce doc. Ing. Jiří Kozumplík, CSc.
- [10] ROZMAN, Jiří, KOLEKTIV. *Elektronické přístroje v lékařství*. 1. vyd. Praha: Academia, 2006. 408 s. ISBN 80-200-1308-3
- [11] MUJAGIC, Muris. Characterization of ECG Noise Sources. 2005.

- [12] HILL, Thomas, LEWICKI, Paul. Statistics: Methods and Applications. vol. 1. StatSoft, Inc., 2005. 800p. ISBN-13: 978-1884233593
- [13] FRIESEN, G. M., JANNETT, T. C., JADALLAH, M. A., YATES, S. L., QUINT, S. R., NAGLE,
 H. T. *A comparison of the noise sensitivity of nine QRS detection algorithms.* IEEE
 Transactions on Biomedical Engineering, 1990, vol. 1, pp. 85–98.
- [14] CHMELAŘ, Pavel. Stabilizace polohy létajícího objektu pomocí inerciálních senzorů: diplomová práce. Univerzita Pardubice, Fakulta elektrotechniky a informatiky, 2011.
 79 s. Vedoucí diplomové práce Ing. Pavel Rozsíval.
- [15] GAUTAM, Apoorv, KAUR, Maninder. ECG Analysis using Continuous Wavelet Transform (CWT). IOSR Journal of Engineering. 2012, vol. 2(4), pp. 632-635. ISSN: 2250-3021
- [16] RIVERA, R. R. Contributions to the Wavelet based Characterization of Network Traffic. Barcelona: Universitat Politècnica de Catalunya, 2007. 315 p.
- [17] KOZUMPLÍK, Jiří, HUMHAL, Marek. *QRS detektor založený na vlnkové transformaci*. Elektrorevue [online]. 2005. ISSN 1213-1539. URL: <u>www.elektrorevue.cz</u>.
- [18] THAKOR, N. V., WEBSTER, J. G., TOMPKINS, W. J.. *Estimation of QRS Complex Power Spectra for Design of a QRS Filter*, Biomedical Engineering, vol. BME-31 No. 11, 1984.
- [19] KOHLI, Simranjit, Singh, MAKWANA, Nikunj, MISHRA, Nishant, SAGAR, Balwalli. Hilbert transform based adaptive ECG R-peak detection technique. International Journal of Electrical and Computer Engineering. 2012, vol. 2, no. 5, pp. 639-643. ISSN: 2088-8708
- [20] WANG, Xianling. *Numerical implementation of the Hilbert transform.* University of Saskatchewan, Department of Eletrical Engineering, 2006.
- [21] JAN, Jiří. Číslicové zpracování a analýza signálů stručné skriptum. 1. vyd. Brno:
 Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií,
 2010. 138 s. ISBN: 978-80-214-4018-0

- [22] ASTONE, P., BUTTIGLIONE, C., FRASCA, S., PALLOTTINO, G. V., PIZZELLA, G. The fast matched filter for gravitational wave data analysis: Characteristics and applications. Nuovo Cim, 1997. 85 p.
- [23] RABBANI, Hossein, MAHJOOB, M. P., FARAHADABI, E., FARAHADABI, A. R Peak Detection on Electrocardiogram Signal Based on an Optimal Combination of Wavelet transform, Hilbert Transform, and Adaptive Thresholding. Journal of Medical Signals & Sensors [online]. 2011, vol. 1, no. 2. URL: www.jmss.mui.ac.ir
- [24] KOZUMPLÍK, Jiří. Vlnkové transformace a jejich využití pro filtraci signálů EKG. Habilitační práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav biomedicínského inženýrství, 2005. ISSN 1213-418X
- [25] WASILEWSKI, Filip. Wavelet browser [online]. URL: <http://wavelets.pybytes.com/>, [cit. 2014-12-1]
- [26] CHAN, Matthias. Filtering and Signal Averaging Algorithms for Raw ECG Signals.Washington university in Saint Louis, 2010.
- [27] *PhysioNet* [online]. URL: <www.physionet.org>, [cit. 2014-12-2]
- [28] KOZUMPLÍK, Jiří. Analýza a interpretace biologických dat (MABD). (přednáška). Detektory komplexů QRS. Elektronická přednáška Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií. URL: <u>https://www.vutbr.cz/elearning/</u>

Seznam použitých zkratek a symbolů

		۱.
- 1	L	L
		٦

AV – Atrioventrikulární uzel
c
CWT – Spojitá vlnková transformace (z angl. continuous wavelet transform)
D
DFT – Diskrétní Fourierova transformace
DWT – Diskrétní vlnková transformace (z angl. discrete wavelet transform)
E
EKG – Elektrokardiogram
EMG – Elektromyogram
F
FN – Falešně negativní (z angl. false negative)
FP – Falešně pozitivní (z angl. false positive)
н
HS – Hissův svazek
Ρ
P – Vlna P EKG signálu
P ⁺ – Prediktivita
PF – Přední fascikulus levého Tawarova raménka
PL – Levé Tawarovo raménko
P-Q – Interval EKG signálu
PR – Pravé Tawarovo raménko
PRI – Zadní fascikulus levého Tawarova raménka

Q

Q – Kmit Q EKG signálu

QT – Interval EKG signálu

QRS – QRS komplex EKG signálu

R

R – Kmit R EKG signálu

S

S – Kmit S EKG signálu

SA – Sinoatriální uzel

Т

T – Vlna T EKG signálu

TP – Pravdivě pozitivní (z angl. true positive)

U

U – Vlna U EKG signálu

Seznam obrázků

Obr. 2.1	Převodní systém srdce	12
Obr. 2.2	Rovnostranný trojúhelník sloužící k odvození napětí v	
	jednotlivých svodech	13
Obr. 2.3	Einthovenův trojúhelník	14
Obr. 2.4	Unipolární hrudní svody s Wilsonovou svorkou	15
Obr. 2.5	Unipolární Goldbergerovy svody	16
Obr. 2.5	Normální EKG křivka	18
Obr. 3.1	Druhy rušení EKG signálu	19
Obr. 3.2	Kolísání izoelektrické linie	. 20
Obr. 3.3	Impulsní rušení	22
Obr. 4.1	Vstupní signál EKG a následné odstranění kolísání	
	izoelektrické linie a brumu	35
Obr. 4.2	Mateřská vlnka Daubechies 3	36
Obr. 4.3	Porovnání detekcí QRS komplexů pro detektor založený na filtraci	
	klouzavým průměrem bez použití a s použitím shlukové analýzy	38
Obr. 4.4	Detekce QRS komplexu podle algoritmu R. A. Baldy	38
Obr. 4.5	Detekce QRS komplexu podle algoritmu M. L. Ahlstroma a	
	W. J. Tompkinse	39
Obr. 4.6	Detekce QRS komplexu založená na filtraci klouzavým průměrem	. 40
Obr. 4.7	Detekce QRS komplexu založená na vlnkové transformaci	. 41
Obr. 4.8	Vyobrazení vstupního signálu EKG, filtrovaného signálu EKG	
	pásmovou propustí a obálky analytického signálu	. 42

Obr. 4.9	Detekce QRS komplexu založená na výpočtu obálky analytického	
	signálu v časové oblasti	43
Obr. 4.10	Detekce QRS komplexu založená na výpočtu obálky analytického	
	signálu ve frekvenční oblasti	44
Obr. 4.11	Detekce QRS komplexu založená na přizpůsobené filtraci	45
Obr. 4.12	Detekce QRS komplexu založená na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace	46
Obr. 4.13	Detekce QRS komplexu metodou filtrace klouzavým průměrem	49
Obr. 4.14	Detekce QRS komplexu metodou přizpůsobené filtrace	. 50

Seznam tabulek

 Tab. 1
 Srovnání efektivnosti detekce QRS komplexu mezi jednotlivými metodami....... 47

Seznam příloh

Příloha A	Signály použité k testování detekční účinnosti jednotlivých	
	detektorů QRS komplexů	61
Příloha B	Číselné vyjádření hodnot senzitivity a prediktivity pro jednotlivé	
	signály zkoušených v jednotlivých detektorech QRS komplexů	62

Příloha A:

Signály použité k testování detekční účinnosti jednotlivých detektorů QRS komplexů. Signály byly pořízeny z databáze PhysioNet [27].

Číslo signálu	Vzorkovací frekvence	Databáze
[-]	[Hz]	[-]
1 - 10	500	T-Wave Alternans Challenge
11 - 20	257	St Petersburg INCART 12- lead Arrhythmia
21 - 26	250	QT
27 - 30	1000	PTB Diagnostic ECG
31 - 32	200	Post-Ictal Heart Rate Oscillations in Partial Epilepsy
33 - 38	128	PAF Prediction Challenge
39 - 40	128	MIT-BIH Supraventricular Arrhythmia
41	360	MIT-BIH Supraventricular Arrhythmia
42 - 44	250	MIT-BIH Atrial Fibrillation
45 - 46	360	MIT-BIH Arrhythmia
47 - 48	250	Long Term ST
49	128	Long Term AF
50	500	Abdominal and Direct Fetal ECG
51 - 55	360	MIT-BIH Noise Stress Test

Příloha B:

Číselné vyjádření hodnot senzitivity a prediktivity pro jednotlivé signály zkoušených v jednotlivých detektorech QRS komplexů.

Detektor QRS komplexu podle algoritmu R. A. Baldy					Detektor QRS komplexu podle algoritmu M. L. Ahlstroma a W. J. Tompkinse				
Číslo signálu	Svod	Se	P⁺	Poznámka	Číslo signálu	Svod	Se	P⁺	Poznámka
1		100	97,14		1		35,29	100	
2	I	100	100		2	I	100	100	
	II	95,73	100			II	57,89	100	
		100	100			III	100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	98,95	100			V3	49,47	100	
	V4	66,32	100			V4	57 <i>,</i> 89	100	
	V5	35,79	100			V5	85,26	100	
	V6	74,74	100			V6	84,21	100	
3	<u> </u>	100	100		3	1	100	100	
	<u> </u>	100	100				100	100	
	- 111	100	100			- 111	100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	86,96	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
4		100	96,15		4		37,84	100	
5		100	100		5		95,24	100	
6		100	99,1		6		45,05	100	
		100	100				12,63	100	
		100	100				19,82	100	
	AVR	100	98,21			AVR	18,92	100	
	AVL	97,27	100			AVL	14,41	100	
	AVF	100	100			AVF	16,22	100	
	V1	90,91	100			V1	36,94	100	
	V2	100	100			V2	59,46	100	
	V3	100	100			V3	52,25	100	
	V4	100	100			V4	40,54	100	

	V5	100	100		V5	36,04	100	
	V6	100	96,49		V6	19,82	100	
7	I	100	100	7	I	100	100	
	11	100	100		11	100	100	
		100	100			96,46	100	
	AVR	100	100		AVR	100	100	
	AVL	100	100		AVL	100	100	
	AVE	100	100		AVE	98.23	100	
	V1	98.23	100		V1	100	100	
	V2	100	100		V2	92.04	100	-
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
8	1	100	100	8	1	100	100	
0		100	100	0	<u> </u>	100	100	
		100	100			100	100	
		100	100			100	100	
		100	100			100	100	
		100	100			100	100	
		100	100			100	100	
		100	100			100	100	
	VZ	100	100		VZ	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100	-	V6	100	100	
9		100	100	9	<u> </u>	100	100	
		100	100		- 11	89,66	100	
		98,85	100			14,94	100	
	AVR	100	100		AVR	100	100	
	AVL	100	100		AVL	56,32	100	
	AVF	100	98,86		AVF	67,82	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	66,67	100	
	V5	100	100		V5	97,7	100	
	V6	100	100		V6	100	100	
10	I	100	100	 10	<u> </u>	94,52	100	
		100	100		II	98,63	100	
		100	100		- 111	63,01	100	
	AVR	100	100		AVR	100	100	
	AVL	100	69,52		AVL	67,12	100	
	AVF	100	100		AVF	75,34	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	86,3	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	95,89	100	
	V6	100	100		V6	100	100	

11	1	97,33	100		11	I	56	100	
		98,67	100			II	96	100	
	- 111	96	100				49,33	100	
	AVR	100	100			AVR	100	100	
	AVL	100	97,4			AVL	37,33	100	
	AVF	98,67	100			AVF	77,33	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	98.67	100	
	V4	100	100			V4	65.33	100	
	V5	90.67	100			V5	60	100	
	V6	98.67	100			V6	64	100	
12		100	100		12	1	87.27	100	
		100	100			1	94.54	100	
		100	100				70.91	100	
	AVR	100	100			AVR	96.36	100	
	AVL	94.55	100			AVL	16.36	100	
	AVE	100	100			AVE	90.9	100	
	V1	100	100			V1	87.27	100	
	V2	100	100			V2	47.27	100	
	V3	83.64	100			V3	83.64	100	
	V4	96.36	100			V4	92.73	100	
	V5	100	100			V5	96.36	100	
	V6	100	100			V6	96.36	100	
13		100	100		13	1	100	100	
		100	100			1	100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	39,62	100	
	V4	98.11	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
14	1	100	93.1		14		18.52	100	
	1	100	97.59			II	87.65	100	
	III	100	100			111	39,51	100	
	AVR	100	94,19			AVR	88,89	100	
				Adaptivní					
	AVL	100	63,78	práh snížit		AVL	12,35	100	
				na 0,4					
	AVF	100	100			AVF	66,67	100	
	V1	100	100			V1	90,12	100	
	V2	100	100			V2	95,06	100	
	V3	100	100			V3	74,07	100	
	V4	100	100			V4	91,36	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	91,36	100	
-	-					-			

15	I	98,18	100		15	1	100	100	
		100	100				100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	85,45	100			V3	41,82	100	
	V4	98,18	100			V4	100	100	
	V5	74,55	100			V5	100	100	
	V6	100	100			V6	100	100	
16	I	94,03	100		16	I	61,19	100	
		100	100				97,02	100	
	- 111	100	100				89,55	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	79,1	100	
	AVF	100	100			AVF	94,03	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	25,37	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	98,51	100	
	V6	100	100			V6	100	100	
17				Zašuměný	17				Zašuměný
1/	1	-	-	signál	17		-	-	signál
		100	100			II	100	100	
		100 100	100 100				100 100	100 100	
	II III AVR	100 100 97,62	100 100 94,25			II III AVR	100 100 58,14	100 100 100	
	II III AVR AVL	100 100 97,62 100	100 100 94,25 100			II III AVR AVL	100 100 58,14 41,67	100 100 100 100	
	II III AVR AVL AVF	100 100 97,62 100 100	100 100 94,25 100 100			II III AVR AVL AVF	100 100 58,14 41,67 100	100 100 100 100 100	
	II III AVR AVL AVF V1	100 100 97,62 100 100 100	100 100 94,25 100 100 100			II III AVR AVL AVF V1	100 100 58,14 41,67 100 100	100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2	100 100 97,62 100 100 100 100	100 100 94,25 100 100 100			II III AVR AVL AVF V1 V2	100 100 58,14 41,67 100 100 82,12	100 100 100 100 100 100 100 100 100	
	II AVR AVL AVF V1 V2 V3	100 100 97,62 100 100 100 100 100	100 100 94,25 100 100 100 100 100			II III AVR AVL AVF V1 V2 V3	100 100 58,14 41,67 100 100 82,12 72,62	100 100 100 100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4	100 100 97,62 100 100 100 100 100 100	100 100 94,25 100 100 100 100 100 100			II AVR AVL AVF V1 V2 V3 V4	100 100 58,14 41,67 100 82,12 72,62 95,24	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5	100 100 97,62 100 100 100 100 100 100	100 100 94,25 100 100 100 100 100 100			II III AVR AVL V1 V2 V3 V4	100 100 58,14 41,67 100 100 82,12 72,62 95,24 100	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5 V6	100 100 97,62 100 100 100 100 100 100 100	100 100 94,25 100 100 100 100 100 100 100			II III AVR AVL AVF V1 V2 V3 V4 V5 V6	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I	100 100 97,62 100 100 100 100 100 100 100 100 100	100 100 94,25 100 100 100 100 100 100 100 84,29		18	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 II	100 100 97,62 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 94,25 100 100 100 100 100 100 100 84,29 100		18	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 II	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100	100 100	
18	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 II III	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 100 84,29 100 100		18	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I III	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I II III AVR	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 84,29 100 100 100		18	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I II III AVR	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I III AVR AVL	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 84,29 100 100 100 100 100		18	II III AVR AVF V1 V2 V3 V4 V5 V6 I II III AVR AVL	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVR AVR	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 84,29 100 100 100 100 100 100		18	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I III AVR AVR AVR	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100 100	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 I III AVR AVR AVL	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 100 100 100 10		18	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVR AVL	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100 100 89,83	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVL AVL AVF V1	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 84,29 100 100 100 100 100 100 100 100		18	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVL AVL AVL AVF V1	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100 100 89,83 100	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVR V1 V2 V3 V4 V5 V6 I U1 AVR AVF V1 V2 V3	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 100 100 100 10		18	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVR VV1 V2 V3 V4 V5 V6 I U1 V2 V3 V1 V2 V3	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100 96,61 100 89,83 100 3,39	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVR AVR V1 V2 V3 V4 V5 V6 I U1 V2 V3 V1 V2 V3 V4	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 100 100 100 10		18	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVR AVL AVF V1 V2 V3 V4 V5 V6 I U1 V1 V2 V3 V4	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 96,61 100 89,83 100 3,39 96,61	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVF V1 V2 V3 V4 V5 V6 I III AVR AVR VV1 V2 V3 V4 V5 V6 I U1 V2 V3 V1 V2 V3 V4 V5	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 100 100 100 10		18	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 I III AVR AVL AVL V1 V2 V3 V4 V5 V6 I U1 V2 V3 V1 V2 V3 V4 V5 V3 V4 V5	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100 89,83 100 3,39 96,61	100 100 100 100 100 100 100 100 100 100	
	II III AVR AVI AVF V1 V2 V3 V4 V5 V6 II III AVR AVR V2 V3 V4 V5 V6 I V1 V2 V3 V4 V5 V6 V4 V5 V6	100 100 97,62 100 100 100 100 100 100 100 100 100 10	100 100 94,25 100 100 100 100 100 100 100 100 100 10		18	II III AVR AVL AVF V1 V2 V3 V4 V5 V6 II III AVR AVR V2 V3 V4 V5 V6 I V1 V2 V3 V4 V5 V6 V4 V5 V6	100 100 58,14 41,67 100 82,12 72,62 95,24 100 100 52,54 100 100 96,61 100 89,83 100 3,39 96,61 96,61 96,61	100 100 100 100 100 100 100 100 100 100	

1	1				1				1
		100	100			II	100	100	
	III	100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
20	1	86,76	100		20		80,88	100	
	1	100	100			11	97.06	100	
	111	100	100				41.18	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	1.47	100	
	AVE	100	100			AVE	80.88	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	64.71	100	
	V4	100	100			V4	94.12	100	
	V5	100	100			V5	69.12	100	
	V6	100	100			V6	100	100	
21	MIII	94.44	100		21	MIII	5.56	100	
	V5	88.89	100			V5	5 56	100	
22	MIII	100	100		22	MIII	62.82	100	
	V1	90.74	100			V1	4 63	100	
23	• • •	41 98	100		23	• •	20.99	100	
24		100	100		23		9.52	100	
25		30.43	100		25		4 35	100	
25		100	100		25		40	100	
20	1	98.08	72.86		20	1	19.23	100	
		90.38	12,00		27		28.85	100	
		90,38	79.66				63.46	100	
		86 54	83 33				26.92	100	
		88.46	79 31				19.23	100	
		92.3	82 76				65 38	100	
	V1	92,3	82,76			V1	100	100	
	V <u>1</u> V2	100	74 29			V2	100	100	
	V2 V3	100	100			V2 V3	96.15	100	
		100	100				90,15	100	
	V	100	100			V-7 V5	90.38	100	
	VG	96.15	100			VG	57.69	100	
28	1	98 15	96.36		28	1	25 58	100	
20		94 11	100		20		5 81	100	
		97,74	100				1 16	100	
		9/ 1/	100				1,10	100	
		07 77	100				12 70	100	
		21,22	100				1 1 1 2	100	
		07,02	100				T,TO	100	
	I VI	01,48	100			Ι VΙ	55,49	100	

	V2	100	84,31			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	84,88	100	
	V5	100	100			V5	62,79	100	
	V6	100	86,87			V6	25,58	100	
29	I	100	100		29	I	98,88	100	
		95,56	100				83,15	100	
		100	96,77				92,14	100	
	AVR	91,11	96,47			AVR	60,67	100	
	AVL	100	92,78			AVL	100	100	
	AVF	100	84,11			AVF	86,52	100	
	V1	100	100			V1	96,63	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	92.78			V4	88.76	100	
	V5	100	100			 V5	56.18	100	
	V6	100	100			V6	40.45	100	
30	1	100	100		30	1	81 33	100	
		100	100				84	100	
		100	100				26.67	100	
		100	100			Δ\/R	100	100	
		86 66	100				18.67	100	
		100	88.24				45 33	100	
		100	100					100	
		100	71 / 2				267	100	
	1/2	100	07 50			1/2	2,07	100	
	V5 \//	100	100			V5 \//	2,07	100	
		100	100				2,07	100	
		100	100				2,07	100	
21	00	100	100		21	0	100	100	
21		05,09	100		<u>5⊥</u>		45,83	100	
32		95,83	100		32		52,78	100	
35		/	100		33			100	
34		81,63	100		34		57,14	100	
35		93,67	100		35		96,2	100	
36		96,15	100		36		96,15	100	
3/		29,41	100		3/		25,49	100	
38		100	100		38		67,95	100	
39		100	98,77		39		88,75	100	
40		97,26	100		40		87,67	100	
41		98,59	100		41		69,01	100	
42		98,04	100		42		48,04	100	
43		91,14	72		43		69,62	100	
44		98,72	80,21		44		1,28	100	
45	MLII	100	100		45	MLII	65,52	100	
	V5	100	89,39			V5	51,72	100	
46	MLII	100	100		46	MLII	52,05	100	
	V1	95,95	100			V1	28,77	100	
47		95,71	100		47		30	100	
48	V4	100	100		48	V4	45,92	100	
	MLIII	100	100			MLIII	53,06	100	

49		98,33	100	49		66,67	100	
50		100	100	50		91,53	100	
51	MLII	100	95 <i>,</i> 4	51	MLII	51,81	100	
	V1	100	83		V1	49,4	100	
52	MLII	100	100	52	MLII	35,29	100	
	V1	100	91,4		V1	2,35	100	
53	MLII	100	100	53	MLII	55,88	100	
	V1	100	100		V1	36,76	100	
54	MLII	100	98,67	54	MLII	34,29	100	
	V1	100	83,15		V1	50	100	
55	MLII	100	87,1	55	MLII	43,21	100	
	V1	100	73,64		V1	37,04	100	

Detekto	ý na filtraci	Detektor QRS komplexu založený na vlnkové transformaci							
Číslo signálu	Svod	Se	P⁺	Poznámka	Číslo signálu	Svod	Se	P⁺	Poznámka
1		100	100		1		100	100	
2	I	100	100		2	I	100	100	
	II	97,89	100			II	98,95	100	
		96,84	100				98,95	100	
	AVR	97,89	100			AVR	97,89	100	
	AVL	100	100			AVL	100	100	
	AVF	94,74	100			AVF	96,84	100	
	V1	100	100			V1	100	100	
	V2	100	97,94			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
3	I	99,13	100		3		99,13	100	
	П	99,13	100			II	99,13	100	
	III	99,13	100				99,13	100	
	AVR	99,13	100			AVR	99,13	100	
	AVL	99,13	100			AVL	99,13	100	
	AVF	99,13	100			AVF	99,13	100	
	V1	99,13	100			V1	99,13	100	
	V2	99,13	100			V2	99,13	100	
	V3	99,13	100			V3	99,13	100	
	V4	99,13	100			V4	99,13	100	
	V5	99,13	100			V5	99,13	100	
	V6	99,13	100			V6	99,13	100	
4		98,65	100		4		100	100	
5		100	98,41		5		98,41	100	
6	I	91,89	100		6	I	87,27	100	
	II	99,1	84,48			II	78,18	100	

III 97,3 76,1 III 69,09 100 AVR 99,1 100 AVR 99,09 100 AVI 95,45 99,1 AVI 44,55 100 AVF 96,4 75,4 AVF 69,09 100 V1 100 73,03 V1 73,64 100 V2 100 100 V2 99,09 100 V3 99,12 100 V4 99,09 100 V5 100 98,2 V5 89,09 100 V5 100 98,2 V5 88,18 100 V4 99,09 100 III 100 100 IIII 100 100 IIII 100 100 IIII 100 100 AVR 100 100 AVR 100 100 IIII 100 AVI 100 100 AVI 100 100 IIII 100			1		1					
AVR 99,1 100 AVR 99,1 AVR 99,15 100 AVL 95,45 99,1 AVL 94,55 100 AVI 100 75,4 AVF 66,09 100 V1 100 73,03 V1 73,64 100 V2 100 V3 99,09 100 V3 99,09 100 V3 99,09 100 V3 99,09 100 V3 99,09 100 V5 100 98,2 V5 89,09 100 V1 100 100 V6 97 97,98 V6 88,18 100 100 III 100 100 III 100 100 100 AVR 100 100 AVR 100 100 100 AVR 100 100 AVF 100 100 100 V1 100 100 V3 100 100		III	97,3	76,1				69,09	100	
AVL 95,45 99,1 AVF 64,09 100 AVF 96,4 75,4 AVF 66,09 100 V1 100 73,03 V1 73,64 100 V2 100 100 V2 99,09 100 V3 99,12 100 V3 99,09 100 V4 99,09 100 V4 99,09 100 V5 100 88,2 V5 99,09 100 V6 97 97,98 V6 88,18 100 7 1 100 100 III 100 100 4VR 100 100 AVR 100 100 IO AVR 100 100 AVR 100 100 IO 4VI 100 100 IO AVR 100 100 V1 100 100 V1 100 100 IO V1 100 <th></th> <th>AVR</th> <th>99,1</th> <th>100</th> <th></th> <th></th> <th>AVR</th> <th>99,09</th> <th>100</th> <th></th>		AVR	99,1	100			AVR	99,09	100	
AVF 96,4 75,4 AVF 69,09 100 V1 100 73,03 V1 73,64 100 V3 99,12 100 V2 99,09 100 V3 99,12 100 V3 99,09 100 V4 99,09 100 V4 99,09 100 V5 100 98,2 V5 99,09 100 V6 97 97,98 V6 88,18 100 I 100 100 7 I 100 100 III 100 100 AVR 100 100 AVF AVR 100 100 AVF 100 100 I00 V1 100 100 V1 100 100 I00 V2 99,12 100 V4 100 100 I00 V1 100 100 V4 100 100 I00 V4		AVL	95,45	99,1			AVL	94,55	100	
V1 100 73.03 V1 73.64 100 V2 100 100 V2 99.09 100 V3 99.12 100 V3 99.09 100 V4 99.09 100 V4 99.09 100 V5 100 98.2 V5 99.09 100 V6 97 97.98 V6 88.18 100 I 100 100 I 100 100 II 100 100 AVR 100 100 AVR 100 100 AVR 100 100 AVL 100 100 AVR 100 100 V1 100 100 V1 100 100 V1 100 100 V2 99.12 100 V3 100 100 V4 100 100 V4 100 100 V4 100 100		AVF	96,4	75,4			AVF	69,09	100	
V2 100 100 V2 99,09 100 V3 99,12 100 V3 99,09 100 V4 99,09 100 V4 99,09 100 V5 100 98,2 V5 99,09 100 V6 97 97,98 V6 88,18 100 7 I 100 100 III 100 100 III 100 100 IIII 100 100 AVR 100 100 AVR 100 100 AVI 100 100 AVR 100 100 V1 100 100 V1 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V4 100 100 V4 100 100 V4 100 100 V5 100 100 V6 100 100 <		V1	100	73,03			V1	73,64	100	
V3 99,12 100 V3 99,09 100 V4 99,09 100 V4 99,09 100 V5 100 88,2 V5 99,09 100 V6 97 97,98 V6 88,18 100 I 100 100 7 I 100 100 III 100 100 III 100 100 AVR 100 100 AVR 100 100 AVR 100 100 AVR 100 100 AVL 100 100 AVR 100 100 V1 100 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V4 100 100 V4 100 100 V4 100 100 V4 100 100 V4 100 100		V2	100	100			V2	99,09	100	
V4 99,09 100 V4 99,09 100 V5 100 98,2 V5 99,09 100 V6 97 97,98 V6 88,18 100 7 1 100 100 7 1 100 100 III 100 100 III 100 100 100 AVR 100 100 AVR 100 100 100 AVR 100 100 AVR 100 100 100 V1 100 100 V1 100 100 100 V2 99,12 100 V2 99,12 100 100 V4 100 100 V4 100 100 100 100 V4 100 100 V5 100 100 100 100 V4 100 100 V4 100 100 100 100 V5 <td< th=""><th></th><th>V3</th><th>99,12</th><th>100</th><th></th><th></th><th>V3</th><th>99,09</th><th>100</th><th></th></td<>		V3	99,12	100			V3	99,09	100	
V5 100 98,2 V5 99,09 100 V6 97 97,98 V6 88,18 100 7 I 100 100 7 I 100 100 III 100 100 III 100 100 100 AVR 100 100 AVR 100 100 AVR 100 100 AVR 100 100 AVR 100 100 AVR 100 100 V1 100 100 V1 100 100 V2 99,12 100 V2 99,12 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V5 100 100 V6 100 100 V5 100 100 V6 100 100 V5 100 100 V6 100 <th></th> <th>V4</th> <th>99,09</th> <th>100</th> <th></th> <th></th> <th>V4</th> <th>99,09</th> <th>100</th> <th></th>		V4	99,09	100			V4	99,09	100	
V6 97 97,98 V6 88,18 100 7 I 100 100 7 I 100 100 III 100 100 III 100 100 100 IIII 100 100 IIII 100 100 100 AVR 100 100 AVR 100 100 100 AVF 100 100 AVF 100 100 100 V1 100 100 V1 100 100 100 V2 99,12 100 V3 100 100 100 V4 100 100 V5 100 100 100 V4 100 100 V5 100 100 100 V5 100 100 8 1 99,12 100 100 V4 99,12 100 III 98,25 100 100 V1		V5	100	98,2			V5	99,09	100	
7 1 100 100 7 1 100 100 III 100 100 III 100 100 III 100 100 III 100 100 AVR 100 100 AVR 100 100 AVI 100 100 AVR 100 100 VI 100 100 AVF 100 100 V1 100 100 V1 100 100 V2 99,12 100 V2 99,12 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 III 98,25 100 III 99,12 100 III 98,25 100 III 99,12 100 AVR 99,12 100 V1 99,12 100 V1 99,12		V6	97	97,98			V6	88,18	100	
II 100 100 II 100 100 III 100 100 III 100 100 AVR 100 100 AVR 100 100 AVI 100 100 AVR 100 100 AVI 100 100 AVI 100 100 V1 100 100 VI 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V4 100 100 V6 100 100 V4 100 100 III 99,12 100 III 98,25 100 AVR 90,12 100 AVR 99,12 100 AVF 99,12 100 V1 99,12 100	7		100	100		7	I	100	100	
III 100 100 III 100 100 AVR 100 100 AVR 100 100 AVL 100 100 AVR 100 100 AVL 100 100 AVL 100 100 AVF 100 100 AVL 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 8 I 99,12 100 III 99,12 100 III 98,25 100 aa.0, AVR 100 99,13 AVR 99,12 100 AVR V1 99,12 100 AVF 98,25 100 V3 99,12 100 V1 <th></th> <th>11</th> <th>100</th> <th>100</th> <th></th> <th></th> <th> </th> <th>100</th> <th>100</th> <th></th>		11	100	100				100	100	
AVR 100 100 AVR 100 100 AVL 100 100 AVL 100 100 AVF 100 100 AVF 100 100 V1 100 100 V1 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 8 1 99,12 100 III 99,12 100 III 98,25 100 Adapti MVR 100 99,13 AVR 99,12 100 AVR AVR 100 99,12 100 AVI 98,25 100 AVF 99,12 100 AVI 98,25 100 0 V1 99,12			100	100			111	100	100	
AVL 100 100 AVF 100 100 AVF 100 100 AVF 100 100 V1 100 100 V1 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V3 100 100 V5 100 100 V4 100 100 V6 100 100 V5 100 100 V6 100 100 8 1 99,12 100 III 99,12 100 III 98,25 100 III 99,12 100 AVR 99,12 100 AVF AVR 100 99,13 AVR 99,12 100 AVF AVL 99,12 100 AVF 98,25 100 IO V1 99,12 100 <th></th> <th>AVR</th> <th>100</th> <th>100</th> <th></th> <th></th> <th>AVR</th> <th>100</th> <th>100</th> <th></th>		AVR	100	100			AVR	100	100	
AVF 100 100 AVF 100 100 V1 100 100 V1 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 V5 100 100 8 1 99,12 100 8 1 99,12 100 III 99,12 100 III 98,25 100 4dapti AVR 100 99,13 AVR 99,12 100 AVI AVL 99,12 100 AVI 98,25 100 a0 V1 99,12 100 AVI 98,25 100 a0 V2 99,12 100 V1 99,12 100 a0 <tr< th=""><th></th><th>AVL</th><th>100</th><th>100</th><th></th><th></th><th>AVL</th><th>100</th><th>100</th><th></th></tr<>		AVL	100	100			AVL	100	100	
VI 100 100 VI 100 100 V2 99,12 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 V6 100 100 8 1 99,12 100 8 1 99,12 100 III 99,12 100 III 98,25 100 100 AVR 100 99,13 AVR 99,12 100 AVI AVF 99,12 100 AVI 98,25 100 100 V1 99,12 100 V1 99,12 100 100 V2 99,12 100 V2 99,12 100 100		AVF	100	100			AVF	100	100	
V2 99,12 100 V2 99,12 100 V3 100 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 V5 100 100 8 1 99,12 100 8 1 99,12 100 11 99,12 100 8 1 99,12 100 Adapti 111 99,12 100 111 98,25 100 Adapti 111 99,12 100 AVR 99,12 100 Adapti 100 99,13 AVR 99,12 100 AVI 98,25 100 101 99,12 100 AVI 98,25 100 AVI 99,12 100 102 99,12 100 V1 99,12 100 V1 99,12 100 <th></th> <th>V1</th> <th>100</th> <th>100</th> <th></th> <th></th> <th>V1</th> <th>100</th> <th>100</th> <th></th>		V1	100	100			V1	100	100	
V3 100 100 V3 100 100 V4 100 100 V4 100 100 V5 100 100 V5 100 100 V5 100 100 V5 100 100 V6 100 100 V5 100 100 8 1 99,12 100 8 1 99,12 100 III 99,12 100 III 98,25 100 Adapti AVR 100 99,13 AVR 99,12 100 Adapti AVR 99,12 100 AVI 98,25 100 Adapti Y1 99,12 100 AVI 98,25 100 Y1 99,12 100 V1 99,12 100 V1 99,12 100 Y2 99,12 100 V2 99,12 100 V3 99,12 100 Y4 99,12 100		V2	99.12	100			V2	99.12	100	
V4 100 100 V4 100 100 V5 100 100 V5 100 100 V6 100 100 V5 100 100 8 I 99,12 100 8 I 99,12 100 II 99,12 100 II 98,25 100 Adapti MII 99,12 100 III 98,25 100 Adapti AVR 100 99,13 AVR 99,12 100 AVI 98,25 100 AVF 99,12 100 AVF 98,25 100 AVF 99,12 100 V1 99,12 100 V2 99,12 100 V2 99,12 100 V2 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V4 99,12 100 V6 99,12 100 IV1 <		V3	100	100			V3	100	100	
V5 100 100 V5 100 100 V6 100 100 V6 100 100 8 1 99,12 100 8 1 99,12 100 11 99,12 100 8 1 99,12 100 111 99,12 100 111 98,25 100 111 99,12 100 111 98,25 100 AVR 100 99,13 AVR 99,12 100 AVR AVF 99,12 100 AVF 98,25 100 100 V1 99,12 100 AVF 98,25 100 100 V2 99,12 100 V1 99,12 100 100 100 V3 99,12 100 V2 99,12 100 100 100 V3 99,12 100 V4 99,12 100 100 100 V4		V4	100	100			V4	100	100	
V6 100 100 V6 100 100 8 I 99,12 100 8 I 99,12 100 III 99,12 100 III 98,25 100 III III 99,12 100 III 98,25 100 Adaptiv AVR 100 99,13 AVR 99,12 100 AVR 99,12 100 AVL 99,12 100 AVF 98,25 100 na 0, AVF 99,12 100 AVF 98,25 100 na 0, V1 99,12 100 V1 99,12 100 na 0, V2 99,12 100 V1 99,12 100 N3 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100		V5	100	100			V5	100	100	
8 1 99,12 100 8 1 99,12 100 III 99,12 100 III 98,25 100 Adapting III 99,12 100 III 98,25 100 Adapting AVR 100 99,13 AVR 99,12 100 Adapting AVF 99,12 100 AVF 98,25 100 Adapting AVF 99,12 100 AVF 98,25 100 Adapting V1 99,12 100 AVF 98,25 100 Incol V2 99,12 100 V1 99,12 100 Incol Incol Incol V3 99,12 100 V2 99,12 100 Incol		V6	100	100			V6	100	100	
II 99,12 100 II 98,25 100 III 99,12 100 III 98,25 100 AVR 100 99,13 AVR 99,12 100 Adaptiv AVR 99,12 100 AVR 99,12 100 Adaptiv AVF 99,12 100 AVF 98,25 100 Adaptiv V1 99,12 100 AVF 98,25 100 III 99,12 100 III 98,25 100 III 191,12 100 III 191,12 100 III 100 IIII 100 IIII 100<	8	1	99.12	100		8		99.12	100	
III 99,12 100 III 98,25 100 AVR 100 99,13 AVR 98,25 100 Adaptiv AVR 99,12 100 AVR 99,12 100 Adaptiv AVL 99,12 100 AVL 98,25 100 Adaptiv AVF 99,12 100 AVF 98,25 100 AVF V1 99,12 100 AVF 98,25 100 AVF V2 99,12 100 V1 99,12 100 V2 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V4 99,12 100 V6 99,12 100 V5 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 V6 99,12 100 III 98,85 <			99.12	100				98.25	100	
AVR 100 99,13 AVR 99,12 100 Adaptin práh sn na 0, AVL 99,12 100 AVL 98,25 100 AVF 99,12 100 AVF 98,25 100 V1 99,12 100 V1 99,12 100 V2 99,12 100 V1 99,12 100 V3 99,12 100 V2 99,12 100 V4 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100 V4 99,12 100 V6 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 J 98,96 100 II 98,85 100 III 98,95 100 III 98,85 100 AVR 100 94,56 A			99.12	100				98.25	100	
Image Image Image Image Image Image AVL 99,12 100 AVL 98,25 100 AVF AVF 99,12 100 AVF 98,25 100 Image V1 99,12 100 V1 99,12 100 Image Image V2 99,12 100 V2 99,12 100 Image Image Image V3 99,12 100 V3 99,12 100 Image Image Image V4 99,12 100 V4 99,12 100 Image		AVR	100	99,13			AVR	99,12	100	Adaptivní práh snížit
AVL 99,12 100 AVL 98,25 100 AVF 99,12 100 AVF 98,25 100 V1 99,12 100 V1 99,12 100 V2 99,12 100 V2 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100 V4 99,12 100 V5 99,12 100 V5 99,12 100 V6 99,12 100 V5 99,12 100 V6 99,12 100 V5 99,12 100 J1 98,96 100 9 1 98,85 100 J1 98,96 100 9 1 98,85 100 AVR 100 94,56 AVR 100 97,75 AVR 98,85 98,85 100										na 0,4
AVF 99,12 100 AVF 98,25 100 V1 99,12 100 V1 99,12 100 V2 99,12 100 V2 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100 V4 99,12 100 V5 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 V6 9 I 98,96 100 V6 99,12 100 9 I 98,96 100 9 I 98,85 100 9 I 98,96 100 AVR 100 97,75 100 101 90,81 78,22 III 98,85 100 III 98,85 100 AVR 100 94,56 AVR		AVL	99,12	100			AVL	98,25	100	
V1 99,12 100 V1 99,12 100 V2 99,12 100 V2 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100 V4 99,12 100 V6 99,12 100 V5 99,12 100 9 1 98,96 100 9 1 98,85 100 9 1 98,96 100 9 1 98,85 100 9 1 98,96 100 11 98,85 100 100 9 1 98,85 100 11 98,85 100 100 111 90,81 78,22 100 XVR 100 97,75 AVR 100 94,56 100 XVR 100 81,31 111 98,85 98,85		AVF	99,12	100			AVF	98,25	100	
V2 99,12 100 V2 99,12 100 V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 9 I 98,96 100 9 1 98,85 100 111 90,81 78,22 III 98,85 100 III 98,85 100 AVR 100 94,56 III 98,85 100 III 98,85 100 V1 98,85 98,85 100 V1 100 <t< th=""><th></th><th>V1</th><th>99,12</th><th>100</th><th></th><th></th><th>V1</th><th>99,12</th><th>100</th><th></th></t<>		V1	99,12	100			V1	99,12	100	
V3 99,12 100 V3 99,12 100 V4 99,12 100 V4 99,12 100 V5 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 9 I 98,96 100 9 I 98,85 100 9 I 98,96 100 9 I 98,85 100 11 98,96 100 9 I 98,85 100 111 90,81 78,22 III 98,85 100 AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 AVL 98,85 100 V1 98,85 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 100 V3 98,85 100 V3 98,85 100 V4		V2	99,12	100			V2	99,12	100	
V4 99,12 100 V4 99,12 100 V5 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 9 I 98,96 100 9 I 98,85 100 9 I 98,96 100 9 I 98,85 100 III 98,96 100 9 I 98,85 100 MI 98,96 100 III 98,85 100 100 AVR 100 94,56 AVR 100 97,75 AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 AVL 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 100 V3 98,85 100 V3 98,85 100		V3	99,12	100			V3	99,12	100	
V5 99,12 100 V5 99,12 100 V6 99,12 100 V6 99,12 100 9 I 98,96 100 9 I 98,85 100 II 98,96 100 9 I 98,85 100 III 98,96 100 III 98,85 100 III 90,81 78,22 III 98,85 100 AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 98,85 100 V1 100 81,31 V1 98,85 98,85 100 V1 100 81,31 V2 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 100 V3 98,85 100 V3 98,85 100 V4 98,85 100 V5 98,85 100		V4	99,12	100			V4	99,12	100	
V6 99,12 100 V6 99,12 100 9 I 98,96 100 9 I 98,85 100 II 98,96 100 II 98,85 100 III 98,85 100 III 90,81 78,22 III 98,85 100 III 98,85 100 AVR 100 94,56 AVR 100 97,75 III 98,85 100 AVR 100 94,56 AVR 100 97,75 III 98,85 100 III 98,85 100 AVF 98,85 98,85 98,85 IOO V1 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 100 V3 98,85 100 V3 98,85 100 V4 98,85 100 V5 98,85 100		V5	99,12	100			V5	99,12	100	
9 I 98,96 100 9 I 98,85 100 II 98,96 100 II 98,85 100 III 90,81 78,22 III 98,85 100 AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 AVL 98,85 100 AVF 98,85 98,85 AVL 98,85 100 AVF 98,85 98,85 AVF 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 100 V3 98,85 100 V2 98,85 100 V4 98,85 100 V3 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 <td< th=""><th></th><th>V6</th><th>99,12</th><th>100</th><th></th><th></th><th>V6</th><th>99,12</th><th>100</th><th></th></td<>		V6	99,12	100			V6	99,12	100	
II 98,96 100 II 98,85 100 III 90,81 78,22 III 98,85 100 AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 98,85 AVL 98,85 100 AVF 98,85 98,85 AVF 98,85 100 100 AVF 98,85 98,85 100 V1 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 100 V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 100	9	I	98,96	100		9	Ι	98,85	100	
III 90,81 78,22 III 98,85 100 AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 98,85 AVL 98,85 100 AVF 98,85 98,85 98,85 AVF 98,85 100 AVF 98,85 98,85 100 V1 100 81,31 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 97,73 V3 98,85 100 V2 98,85 100 V4 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 1 100 100 10 100 10 100		П	98,96	100			П	98,85	100	
AVR 100 94,56 AVR 100 97,75 AVL 98,85 98,85 98,85 AVL 98,85 100 AVF 98,85 98,85 98,85 AVF 98,85 100 AVF 98,85 98,85 100 V1 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 97,73 V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 1 100 100 10 10 100 10 1 100 100 10 10 100		III	90,81	78,22			Ш	98,85	100	
AVL 98,85 98,85 AVL 98,85 100 AVF 98,85 98,85 98,85 AVF 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 97,73 V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 1 100 100 10 10 100 11 100 100 10 10 100 100		AVR	100	94,56			AVR	100	97,75	
AVF 98,85 98,85 AVF 98,85 100 V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 97,73 V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 1 100 100 10 100 100 10 1 100 100 10 10 100		AVL	98,85	98,85			AVL	98,85	100	
V1 98,85 100 V1 100 81,31 V2 98,85 100 V2 98,85 97,73 V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 I 100 100 10 10 100 11 100 100 10 II 100 100		AVF	98,85	98,85			AVF	98,85	100	
V2 98,85 100 V2 98,85 97,73 V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 I 100 100 10 100 100 11 100 100 10 II 100 100		V1	98,85	100			V1	100	81,31	
V3 98,85 100 V3 98,85 100 V4 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 I 100 100 10 100 100 II 100 100 III 100 100		V2	98,85	100			V2	98,85	97,73	
V4 98,85 100 V4 98,85 100 V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 I 100 100 10 100 100 11 100 100 II 100 100 100		V3	98,85	100			V3	98,85	100	
V5 98,85 100 V5 98,85 100 V6 98,85 100 V6 98,85 100 10 I 100 100 10 I 100 100 II 100 100 II 100 100 100		V4	98,85	100			V4	98,85	100	
V6 98,85 100 V6 98,85 100 10 I 100 100 10 I 100 100 II 100 100 II 100 100 I00		V5	98,85	100			V5	98,85	100	
10 I 100 100 10 I 100 100 II 100 100 II 100 100 III 100 100		V6	98,85	100			V6	98,85	100	
II 100 100 II 100 II 100 100	10	Ι	100	100		10	Ι	100	100	
		II	100	100			II	100	100	

		100	97,33			100	100	
	AVR	100	100		AVR	100	100	
	AVL	100	94,81		AVL	100	100	
	AVF	100	98,65		AVF	100	98,65	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	98,65		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
11	I	98,67	100	11	I	100	100	
	П	100	100			100	100	
		90,67	85			100	90,36	
	AVR	100	79,79		AVR	100	89,29	
	AVL	/	/		AVL	100	94,94	
	AVF	96	97,3		AVF	100	100	
	V1	94,47	95,95		V1	100	100	
	V2	93,33	100		V2	100	96,15	
	V3	98,67	100		V3	100	97,4	
	V4	97,33	90,12		V4	100	88,24	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
12	I	100	100	12	l	100	100	
	11	100	100			100	100	
	- 111	100	100			100	100	
	AVR	100	87,3		AVR	100	94,83	
	AVL	/	1		AVL	78,18	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	83,33	
	V2	100	100		V2	100	88,71	
	V3	100	72,37		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
13	I	100	100	13	Ι	100	100	
	П	100	100		II	100	100	
		100	100		Ш	100	100	
	AVR	100	100		AVR	100	100	
	AVL	100	94,64		AVL	100	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	92,98	
	V3	100	98,15		V3	100	80,3	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
14	I	100	100	 14	Ι	100	100	
	II	100	100		II	100	100	
		98,77	100		III	98,77	100	
	AVR	91,36	81,32		AVR	100	96,3	

1	1	1				1		1	
	AVL	97,53	100			AVL	97,56	100	
	AVF	100	100			AVF	100	100	
	V1	100	98,77			V1	96,25	100	
	V2	100	98,78			V2	100	98,8	
	V3	100	92,1			V3	100	97,6	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
15	1	100	100		15	I	100	100	
	II	100	100				100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	96,36	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
16		100	100		16	I	100	100	
		100	100			11	100	100	
		100	100			- 111	100	100	
	AVR	100	79,76			AVR	100	88,16	
	AVL	91,05	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	97,1			V1	98,48	100	
	V2	100	100			V2	100	100	
	V3	100	89,33			V3	98,48	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
17	I	-	-	Zašuměný signál	17	I	100	100	
		100	100			11	100	100	
		100	100			111	100	100	
	AVR	100	94,38			AVR	96,43	100	
	AVL	98,91	97,65			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	96,55			V1	98,81	100	
	V2	96,43	100			V2	100	97,67	
	V3	100	75			V3	100	97,67	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
18	I	100	86,76		18	I	98,31	100	
		100	100				100	100	
		100	100				100	100	
	AVR	91,53	90			AVR	98,31	96,66	
	AVL	100	64,84			AVL	100	96,72	

00T	ST'96	SΛ		SS'⊅6	00T	SΛ		
00T	00T	74		00T	00T	74		
00T	00T	٤Λ		00T	00T	٤Λ		
00T	00T	Z٨		00T	00T	Z٨		
00T	00T	T٨		00T	100	T٨		
٤'96	00T	ΑVF		80'86	80'86	AVF		
TT'86	00T	٦٨∀		TT'86	00T	٦٨A		
00T	00T	ЯΛА		00T	00T	ЯΛА		
00T	00T			00T	700	III		
TT'86	00T	II		88,14	00T	II		
00T	00T	I	ZZ	00T	J00	Ι	ΖΖ	
00T	00T		97	00T	00T		97	
00T	00T		52	00T	700		52	
00T	S'S6		54	00T	Z9'L6		54	
00T	00T		53	00T	00T		53	
00T	85,41	τΛ		00T	00T	T٨		
00T	L0'66	שרוו	72	00T	00T	MLII	72	
00T	T9'86	SΛ		00T	00T	SΛ		
00T	00T	שרוו	77	00T	00T	MLII	77	
00T	00T	9Λ		00T	00T	9۸		
 00T	00T	SΛ		00T	00T	SΛ		
 00T	00T	74		00T	00T	74		
 00T	£S'86	٤Λ		25'56	00T	٤Λ		
00T	00T	Z٨		8L'S6	00T	ΖΛ		
68'T6	00T	T٨		00T	00T	T٨		
00T	00T	ΑVF		00T	00T	ΑVF		
00T	£S'86	٦٨∀		LT'LL	00T	٦٨¥		
00T	00T	ЯΛΑ		74'44	£S'86	ЯΛА		
00T	00T			00T	00T			
00T	00T			00T	00T	II		
 00T	00T	I	50	00T	00T	I	50	
00T	96'26	9٨		00T	96'26	9٨		
00T	96'26	SΛ		00T	96'26	SΛ		
00T	96'26	74		00T	96'26	74		
00T	96'26	٤Λ		00T	96'26	٤Λ		
00T	96'26	7٨		00T	96'26	7٨		
00T	96'26	T٨		00T	96'26	T٨		
00T	96'26	ΑVF		00T	96'26	AVF		
00T	96'26	٦ΛΑ		00T	96'26	٦٨∀		
00T	96'26	ЯΛА		00T	96'26	ЯΛА		
00T	96'26			00T	96'८6	III		
100	96'26	II		100	96'∠6	II		
00T	96'∠6	I	6T	00T	96'26		6T	
00T	00T	9Λ		00T	00T	9Λ		
00T	00T	SΛ		100	00T	SΛ		
00T	00T	٨٩		00T	00T	٨٩		
79'SZ	00T	٤Λ		9T'S6	00T	٤Λ		
00T	00T	Z٨		£'96	88'J4	Z٨		
00T	64,92	T٨		7 <i>L</i> '96	00T	T٨		
100	00T	ΑVF		00T	00T	ΑVF		
	V6	100	68,42		V6	100	100	
----	------------	-------	--------------	----	----------	-------	-------	--
28	I	100	100	28	I	100	100	
	П	95,35	95,35		Ш	94,19	96,43	
		100	95,56		Ш	100	94,51	
	AVR	100	100		AVR	100	100	
	AVL	100	100		AVL	100	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	97,73		V5	100	100	
	V6	100	97,73		V6	100	92,47	
29	I	100	100	29		98,89	100	
	11	100	100			100	100	
	III	95.51	78.7		Ш	93.33	100	
	AVR	98.88	98.88		AVR	100	98.9	
	AVL	100	100		AVL	98.89	100	
	AVF	100	100		AVF	100	100	
	V1	100	94.68		V1	100	95.75	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	98.89	100		V5	98.89	100	
	V6	98.89	100		V6	98.89	100	
30	1	98.67	100	30		98.67	100	
		98.67	100	30		98.67	100	
	 	98.67	100			98.67	100	
		98.67	100			98.67	100	
		98.67	100			98.67	100	
		98.67	100			98.67	100	
	V1	98.67	98.67		V1	97 33	100	
	V2	98.67	98.67		V2	98.67	94 87	
	V2 V3	98.67	100		V2 V3	98.67	100	
	V3 V4	98.67	100		V4	98.67	100	
	V-7 V-5	98.67	100		V4 V5	98.67	100	
	V6	98.67	100		V6	98.67	100	
31	•0	93.06	100	31	VO	98 61	100	
32		100	100	32		100	100	
32		97	100	32		97	100	
3/		97	97	3/		97 98	100	
25		100	100	25		100	100	
35		09.72	100	35		09 72	100	
27		100	100	27		100	00 Q2	
20		100	100	20		100	100	
20		100	00.01	20		100	100	
39		100	30,91	39		100	100	
40		100	09,02 100	40		100	100	
41		100	100	41		100	100	
42		98,04	97,09	42		88,24	100	
43		98,73	100	43		98,73	100	

44 98,72 100 44 98,72 1 45 MLII 100 84,06 45 MLII 100 1 45 V5 100 100 V5 100 1 46 MLII 98,63 100 46 MLII 98,65 1 47 97,14 100 47 98,53 98 <t< th=""><th>100</th></t<>	100
45 MLII 100 84,06 45 MLII 100 1 V5 100 100 V5 100 1 46 MLII 98,63 100 46 MLII 98,65 1 V1 98,63 100 46 MLII 98,65 1 47 97,14 100 47 98,53 98 48 V4 100 100 47 98,53 98 48 V4 100 100 48 V4 100 1 49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1	
V5 100 100 V5 100 1 46 MLII 98,63 100 46 MLII 98,65 1 V1 98,63 100 V1 98,65 1 47 97,14 100 47 98,53 98 48 V4 100 100 48 V4 100 1 MLIII 100 100 48 V4 100 1 MLIII 100 100 48 V4 100 1 50 100 100 49 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1	100
46 MLII 98,63 100 46 MLII 98,65 1 V1 98,63 100 V1 100 1 47 97,14 100 47 98,53 98 48 V4 100 100 47 98,53 98 48 V4 100 100 48 V4 100 1 MLIII 100 100 48 V4 100 1 49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1	100
V1 98,63 100 V1 100 1 47 97,14 100 47 98,53 98 48 V4 100 100 48 V4 100 1 MLIII 100 100 48 V4 100 1 49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98,8 100 V1 100 1 1 1	100
47 97,14 100 47 98,53 98 48 V4 100 100 48 V4 100 1 MLIII 100 100 48 V4 100 1 49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98,8 100 V1 100 1 1 1 1	100
48 V4 100 100 48 V4 100 1 MLIII 100 100 MLIII 97,98 1 49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98,8 100 V1 100 1	8,53
MLIII 100 100 MLIII 97,98 1 49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98,8 100 V1 100 1	100
49 100 100 49 100 1 50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98.8 100 V1 100 1	100
50 100 100 50 100 1 51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98.8 100 V1 100 1	100
51 MLII 96,39 91,95 51 MLII 95,18 1 V1 98.8 100 V1 100 1	100
V1 98.8 100 V1 100 1	100
	100
52 MLII 96,47 97,62 52 MLII 100 1	100
V1 100 100 V1 98,82 1	100
53 MLII 100 100 53 MLII 100 1	100
V1 32,35 100 V1 32,35 1	100
54 MLII 97,14 85,37 54 MLII 97,33 97	7,33
V1 97,14 88,31 V1 100 1	100
55 MLII 97,53 83,16 55 MLII 95,06 92	1,67
V1 97,53 91,86 V1 96,3 93	13,98

Dete výpo	ektor QR očtu obá	S kompl Iky analy	exu zalo ytického	žený na signálu	Detektor QRS komplexu založený na výpočtu obálky analytického signálu					
	<u>v</u>	časové o	blasti	-	ve frekvenční oblastí					
Číslo signálu	Svod	Se	P⁺	Poznámka	Číslo signálu	Svod	Se	P⁺	Poznámka	
1		100	100		1		100	100		
2	I	100	100		2	I	100	100		
	II	100	100				98,95	100		
	III	100	100			III	100	100		
	AVR	100	100			AVR	100	100		
	AVL	100	100			AVL	100	100		
	AVF	100	100			AVF	100	100		
	V1	100	100			V1	100	100		
	V2	100	100			V2	100	100		
	V3	100	100			V3	100	100		
	V4	100	100			V4	100	100		
	V5	100	100			V5	100	100		
	V6	100	100			V6	100	100		
3	I	99,13	100		3	I	99,13	100		
	II	99,13	100			П	99,13	100		
	- 111	99,13	100				99,13	100		
	AVR	99,13	100			AVR	99,13	100		
	AVL	99,13	100			AVL	99,13	100		
	AVF	99,13	100			AVF	99,13	100		
	V1	98,26	100			V1	98,26	100		

							1		
	V2	99,13	100			V2	99,13	100	
	V3	93,91	100			V3	93,91	100	
	V4	99,13	100			V4	99,13	100	
	V5	99,13	100			V5	99,13	100	
	V6	99,13	100			V6	99,13	100	
4		100	100		4		100	100	
5		98,41	100		5		98,41	98,41	
6	I	100	100		6	I	98,18	97,3	
	II	99,09	100			II	99,09	100	
		99,09	100				99,09	100	
	AVR	99,09	100			AVR	99,09	100	
	AVL	96,36	99,07			AVL	99,09	98,18	
	AVF	99,09	100			AVF	99,09	100	
	V1	96,36	100			V1	98,18	100	
	V2	99,09	100			V2	99,09	100	
	V3	99,09	100			V3	99,09	100	
	V4	99,09	100			V4	99,09	100	
	V5	99,09	100			V5	99,09	100	
	V6	99,09	100			V6	98,18	97,3	
7	I	100	100		7	I	100	100	
	П	100	100			П	100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	99,12	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
8	I	100	100		8	I	99,12	100	
	П	99,12	100			П	99,12	100	
	Ш	100	100	Adaptivní práh snížit na 0,2		111	99,12	100	
	AVR	100	100			AVR	99,12	100	
	AVL	100	100	Adaptivní práh snížit na 0,2		AVL	99,12	100	
	AVF	100	100			AVF	98,25	100	
	V1	100	100			V1	99,12	100	
	V2	100	100	Adaptivní práh snížit na 0,2		V2	99,12	100	
	V3	100	100			V3	99,12	100	
	V4	100	100			V4	99,12	100	
	V5	100	100			V5	99,12	100	
	V6	100	100			V6	99,12	100	
9		100	100		9	I	98,85	100	

		1				1			
		100	100			II	98,85	100	
	III	100	100			III	97,7	100	
	AVR	100	100			AVR	98 <i>,</i> 85	100	
	AVL	100	100			AVL	98 <i>,</i> 85	100	
	AVF	100	100			AVF	98,85	100	
	V1	100	100			V1	98,85	100	
	V2	100	100			V2	95,4	100	
	V3	100	100			V3	98,85	100	
	V4	100	100			V4	98,85	100	
	V5	100	100			V5	98,85	100	
	V6	100	100			V6	98,85	100	
10	1	100	100		10		100	100	
	11	100	100			11	100	100	
	111	100	100			- 111	98,63	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	97,33	
	AVF	100	100			AVF	100	100	Adaptivní
	V1	100	100			V1	100	100	práh zvýšit
	V2	100	100			V2	100	98.65	na 0,6
	V3	100	100			V3	100	100	
		100	100				100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
11	1	100	100		11	1	100	100	
	- ·	100	100				100	100	
	111	100	100	Adaptivní práh snížit na 0,3			98,67	100	
	AVR	89,33	98,53			AVR	86,67	94,2	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
12	1	100	100		12	1	100	100	
	11	100	100			11	100	100	
	111	100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	94,55	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	96,36	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	1								-
	V6	100	100			V6	100	100	
13	V6 I	100 100	100 100		13	V6 I	100 100	100 100	

	II	100	100				100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	84.91	100	
	V4	100	100			V4	100	100	
	 	100	100			V5	100	100	
	V6	100	100			V6	100	100	
14	1	98.77	100		14	1	100	100	
	· ·	100	100				100	100	
	 	100	100			 	100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100	Adaptivní práh snížit na 0,3		AVL	97,53	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
15	1	100	100		15	1	100	100	
	П	100	100			II	100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	Adaptivní práh zvýšit na 0,6
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
16	I	100	100		16	I	100	100	
	П	100	100			П	100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	

	V6	100	100			V6	100	100	
17	I	-	-	Zašuměný signál	17	I	-	-	Zašuměný signál
	II	100	100			П	100	100	
	- 111	100	100			- 111	100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V3	100	100			V3	100	95,45	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
18	I	96,61	100		18	I	100	96,72	Adaptivní práh zvýšit na 0,6
	П	98,31	100			П	100	100	
		100	100				100	100	
	AVR	98,31	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
	AVF	100	100			AVF	100	100	
	V1	100	100			V1	98,31	100	
	V2	100	100			V2	96,61	100	
	V3	100	100			V3	96,61	96,61	Adaptivní práh snížit na 0,2
	V4	96,61	100			V4	100	100	
	V5	96,61	100			V5	100	100	
	V6	98,31	100			V6	100	100	
19		97,96	100		19		97,96	100	
		97,96	100				97,96	100	
		97,96	100				97,96	100	
	AVR	97,96	100			AVR	97,96	100	
	AVL	97,96	100			AVL	97,96	100	
	AVF	97,96	100			AVF	97,96	100	
	V1	97,96	100			V1	97,96	100	
	V2	97,96	100			V2	97,96	100	
	V3	97,96	100			V3	97,96	100	
	V4	97,96	100			V4	97,96	100	
	V5	97,96	100			V5	97,96	100	
	V6	97,96	100			V6	97,96	100	
20		100	100		20		100	100	
		100	100				100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVL	100	100			AVL	100	100	
		100	100				100	100	
		100	100				100	100	
	V2	100	100			V2	100	100	

	-						1		
	V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
21	MLII	100	100	Adaptivní práh snížit na 0,1	21	MLII	100	100	
	V5	100	100	,		V5	100	100	
22	MLII	100	100	Adaptivní práh snížit na 0,1	22	MLII	99,07	100	
	V1	100	100			V1	97,22	100	
23		100	100		23		98,77	58,39	
24		96,67	100		24		97,67	100	
25		92,75	100		25		100	100	
26		100	100		26		100	98,77	
27	I	100	100		27		100	100	
	1	100	100			1	100	100	
		100	100				100	100	
	AVR	100	100			AVR	100	100	
	AVI	100	100			AVI	100	100	
	AVE	100	100			AVE	100	100	
	V1	100	100			V1	100	100	
	V2	100	100			V2	100	100	
	V2 V3	100	100			V3	100	100	
	V4	100	100			V4	100	100	
	V5	100	100			V5	100	100	
	V6	100	100			V6	100	100	
28	1	100	100		28		100	100	
		100	100		20		100	100	
		100	100				100	100	
		100	100				100	100	
		100	100				100	100	
		98.84	100				100	100	
		100	100				100	100	
		100	100				100	100	
	V2 V3	100	100			V2 V3	100	100	
		100	100				100	100	
	V4 V5	100	100			V4 V5	100	100	
		100	100				100	100	
20	V0	100	100		20	V0	100	100	
29		90,09	100		29		90,09	100	
		90,09	100				90,09	100	
		30,03	100				30,03	100	
		20,09	100				20,09	100	
		20,02	100				00 00	100	
		73,33	100				70,09	100	
		98,89	100				98,89	100	
	V2	98,89	100				98,89	100	
	V3	98,89	100			V3	98,89	100	
	∣ V4	98,89	100			V4	98,89	100	

	V5	98,89	100			V5	98,89	100	
	V6	98,89	100			V6	98,89	100	
30	1	98,67	100		30	1	98,67	100	
	11	98,67	100			11	98,67	100	
	111	98,67	100				98,67	100	
	AVR	98.67	100			AVR	98.67	100	
	AVL	98.67	100			AVL	98.67	100	
	AVF	98,67	100			AVF	98,67	100	
	V1	98.67	100			V1	98.67	100	
	V2	98.67	100			V2	98.67	98.67	
	V3	98.67	100			V3	97.33	100	
	V4	98,67	100			V4	98,67	100	
	V5	98,67	100			V5	98,67	100	
	V6	98,67	100			V6	98,67	100	
31		98,61	100		31		98,61	100	
32		100	100		32		100	100	
33		98	100		33		97	100	
34		100	100		34		98,98	100	
35		98,73	100		35		100	100	
36		100	100		36		98,72	100	
37		98,04	100		37		100	100	
38		100	98,73		38		100	100	
39		100	100		39		100	86,96	
40		100	100		40		100	100	
41		100	100		41		100	100	
42		96,08	98,99		42		96,08	98,99	
43		100	100		43		98,73	100	
44		98,72	96,25		44		100	100	
45	MLII	100	100		45	MLII	100	98,31	
	V5	100	100			V5	100	100	
46	MLII	98,65	100		46	MLII	98,65	100	
	V1	94,6	100			V1	100	97,37	
47		100	100		47		100	95,89	
48	V4	98,99	100		48	V4	98,99	100	
	MLIII	98,99	100			MLIII	98,99	100	
49		100	46,15		49		100	96,77	Adaptivní práh zvýšit na 0,6
50		100	100		50		100	100	
51	MLII	98,8	100		51	MLII	98,8	100	
	V1	98,8	100			V1	98,8	100	
52	MLII	98,82	95,46	Adaptivní práh snížit na 0,3	52	MLII	100	98,84	
	V1	100	100			V1	100	97,7	Adaptivní práh snížit na 0,2
53	MLII	92,65	100		53	MLII	98,53	100	
	V1	97,06	100			V1	94,12	80	
54	MLII	100	97,37		54	MLII	100	80	Adaptivní

								práh snížit
								na 0,2
	V1	100	100		V1	100	100	
55	MLII	97,59	95,29	55	MLII	98,8	83,67	Adaptivní práh snížit
								na 0,2
	V1	98,8	100		V1	98,8	98,8	

Dete	ktor QR přizp	S kompl působeno	exu zalo é filtraci	žený na	Detektor QRS komplexu založený na kombinaci první a druhé derivace, Hilbertovi transformace a vlnkové transformace					
Číslo signálu	Svod	Se	P⁺	Poznámka	Číslo signálu	Poznámka				
1		100	95,77		1		100	100		
2	I	98,95	100		2		100	100		
	II	98,95	100			II	100	100		
		100	100				100	100		
	AVR	100	100			AVR	100	100		
	AVL	98,95	100			AVL	100	100		
	AVF	100	100			AVF	100	100		
	V1	100	100			V1	100	100		
	V2	98,95	100			V2	100	100		
	V3	100	100			V3	100	100		
	V4	98,95	100			V4	100	100		
	V5	98,95	100			V5	100	100		
	V6	98,95	100			V6	100	100		
3	I	98,26	100		3		99,13	100		
	II	98,26	100			II	99,13	100		
		99,13	100				99,13	100		
	AVR	99,13	100			AVR	99,13	100		
	AVL	98,26	100			AVL	99,13	100		
	AVF	98,26	100			AVF	99,13	100		
	V1	100	100			V1	98,26	100		
	V2	100	100			V2	99,13	100		
	V3	99,13	100			V3	93,91	100		
	V4	98,26	100			V4	99,13	100		
	V5	98,26	100			V5	99,13	100		
	V6	98,26	100			V6	99,13	100		
4		100	100		4		100	100		
5		98,41	100		5		98,41	100		
6	Ι	100	99,1		6	I	97,27	100		
	II	100	100			11	98,18	100		
		100	100				96,36	100		
	AVR	100	100			AVR	98,18	100		
	AVL	100	100			AVL	96,36	100		
	AVF	100	100			AVF	97,27	100		

00T	00T	Z٨		00T	00T	T٨	
00T	00T	τΛ		00T	00T	τΛ	
00T	00T	ΑVF		00T	00T	ΑVF	
00T	00T	٦٨A		00T	00T	JVA	
00T	00T	ЯΛА		00T	00T	ЯVА	
00T	00T			00T	00T		
00T	00T	П		00T	00T	Ш	
00T	00T	I	OT	00T	00T	I	ΟT
00T	S8'86	9٨		00T	00T	9٨	
00T	S8'86	SΛ		00T	00T	SΛ	
00T	S8'86	74		00T	00T	74	
00T	S8'86	٤Λ		00T	00T	٤Λ	
00T	S8'86	Z٨		00T	00T	Z٨	
00T	S8'86	τΛ		00T	00T	τΛ	
00T	S8'86	ΑVF		00T	00T	ΑVF	
00T	S8'86	٦٨¥		00T	00T	٦٨¥	
00T	S8'86	ЯΛА		00T	00T	ЯVΑ	
00T	S8'86			00T	00T		
00T	S8'86	II		00T	00T	II	
00T	00T	I	6	00T	00T	I	6
00T	71'66	9٨		00T	21'66	9٨	
00T	71'66	SΛ		00T	21'66	SΛ	
00T	71 ⁶⁶	74		00T	7T'66	74	
00T	71'66	٤Λ		00T	71'66	٤Λ	
00T	71'66	7٨		100	71'66	7٨	
00T	71 ⁶⁶	T٨		00T	7T,66	T٨	
00T	57 ' 86	AVF		00T	7T'66	ΑVF	
00T	71'66	٦٨¥		00T	21'66	٦٨¥	
00T	71'66	ЯVА		00T	21'66	ЯΛА	
00T	ZI,66	111		00T	21'66		
00T	ZI,66	II		00T	21'66	II	
00T	71 ⁶⁶	I	8	00T	21'66	I	8
00T	00T	9٨		00T	00T	9٨	
00T	00T	SΛ		00T	00T	SΛ	
00T	00T	74		00T	00T	74	
00T	00T	٤Λ		00T	J00	٤Λ	
00T	00T	Z٨		00T	00T	Z٨	
00T	00T	τΛ		00T	00T	τΛ	
00T	00T	AVF		00T	00T	AVF	
00T	00T	٦VA		00T	00T	٦VA	
00T	00T	ЯΛА		00T	00T	ЯVА	
00T	00T	Ш		00T	00T	III	
00T	00T	II		00T	00T	П	
00T	00T		L	00T	00T	I	L
00T	60'66	9۸		100	00T	9٨	
100	60'66	SΛ		00T	100	SΛ	
00T	60'66	74		00T	00T	74	
00T	60'66	٤Λ		00T	00T	٤Λ	
00T	81'86	۲۸		00T	00T	۲۸	
 100	£Z'Z6	T٨		100	τ'66	T٨	

		1						
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
11	I	100	100	11	I	100	100	
	II	100	100		II	100	100	
		100	100			100	100	
	AVR	100	100		AVR	100	100	
	AVL	100	85,23		AVL	98,67	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
12	1	100	100	12		100	100	
		100	100			100	100	
		100	100			100	100	
	AVR	100	100		AVR	100	100	
	AVL	100	100		AVL	100	100	
	AVE	100	100		AVE	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	98.18	100		V3	96.36	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
13		98.11	100	13		100	100	
	II	98.11	100		II	100	100	
		98.11	100			100	100	
	AVR	98.11	100		AVR	100	100	
	AVL	98.11	100		AVL	100	100	
	AVF	98.11	100		AVF	100	100	
	V1	98.11	100		V1	100	100	
	V2	98.11	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	98.11	100		V4	100	100	
	V5	98.11	100		V5	100	100	
	V6	98.11	100		V6	100	100	
14	1	100	97.59	14	1	92.59	100	
	II	100	100			100	100	
	111	100	100			100	100	
	AVR	100	100		AVR	98.77	100	
	AVL	98.76	97.56		AVL	97.53	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
L		1						

	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
15		100	100	15		100	100	
		100	100			100	100	
		100	100			100	100	
	AVR	100	100		AVR	100	100	
	AVL	100	100		AVL	100	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
16	1	100	100	16		100	100	
		100	100			100	100	
		100	100			100	100	
	AVR	100	100		AVR	100	100	
		100	100			100	100	
		100	100			100	100	
	 	100	100		 	100	100	
	V1 V2	100	100		V1 V2	100	100	
	V2 V3	100	100		V2 V3	100	100	
	V3 V/4	100	100		V3 V/	100	100	
	V4 V5	100	100		V4 V5	100	100	
	VG	100	100		VG	100	100	
	VO	100	100		V0	100	100	 Ζοζυμοδργί
17	I	100	75,68	17	I	-	-	signál
	11	100	100		11	100	100	Signal
		100	100			100	100	
		100	100			100	100	
		100	100			100	100	
		100	1 100			1 1 1 1 1 1		
		100	100			100	100	
		100	100		AVE AVF	100	100	
	V1 V2	100 100	100 100		AVE AVF V1 V2	100 100 100	100 100 100	
	V1 V2 V3	100 100 100	100 100 100		AVE AVF V1 V2 V3	100 100 100 100	100 100 100 100	
	V1 V2 V3	100 100 100 100	100 100 100 100		AVE AVF V1 V2 V3 V4	100 100 100 100 100	100 100 100 100 100	
	AVF V1 V2 V3 V4 V5	100 100 100 100 100	100 100 100 100 100		AVE AVF V1 V2 V3 V4 V5	100 100 100 100 100 100	100 100 100 100 100 100	
	AVF V1 V2 V3 V4 V5	100 100 100 100 100 100	100 100 100 100 100 100		AVE AVF V1 V2 V3 V4 V5 V6	100 100 100 100 100 100 100	100 100 100 100 100 100 100	
18	AVF V1 V2 V3 V4 V5 V6	100 100 100 100 100 100 100	100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6	100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100	
18	AVF V1 V2 V3 V4 V5 V6 I	100 100 100 100 100 100 100 96,61	100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I	100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100	
18	AVF V1 V2 V3 V4 V5 V6 I II	100 100 100 100 100 100 96,61 100	100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	
18	AVF V1 V2 V3 V4 V5 V6 I II III	100 100 100 100 100 100 96,61 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	
18	AVF V1 V2 V3 V4 V5 V6 I II III AVR	100 100 100 100 100 100 96,61 100 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AV/I	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100	
18	AVF V1 V2 V3 V4 V5 V6 I III III AVR AVR	100 100 100 100 100 100 96,61 100 100 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AVL	100 100	100 100	
18	AVF V1 V2 V3 V4 V5 V6 I II III AVR AVL	100 100 100 100 100 100 96,61 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AVE AVF	100 100	100 100	
18	AVF V1 V2 V3 V4 V5 V6 I III III AVF AVL AVF V1	100 100 100 100 100 100 96,61 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AVL AVF V1	100 100	100 100	
	AVF V1 V2 V3 V4 V5 V6 I III III AVF AVF V1 V2	100 100 100 100 100 100 96,61 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AVR AVL AVF V1 V2 V2	100 100	100 100	
	AVF V1 V2 V3 V4 V5 V6 I II III AVR AVR AVR V1 V2 V3	100 100 100 100 100 96,61 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AVR AVL AVF V1 V2 V3	100 100	100 100	
	AVF V1 V2 V3 V4 V5 V6 I II III AVF V2 V3 V4	100 100 100 100 100 100 96,61 100 100 100 100 100 100 100 100 98,31	100 100 100 100 100 100 100 100 100 100	18	AVE AVF V1 V2 V3 V4 V5 V6 I II III AVR AVR AVF V1 V2 V3 V4	100 100	100 100	

	V6	100	100		V6	100	100	
19	I	100	100	19	1	97,96	100	
	II	100	100			97,96	100	
		100	100			97,96	100	
	AVR	100	100		AVR	97,96	100	
	AVL	100	100		AVL	97,96	100	
	AVF	100	100		AVF	97,96	100	
	V1	100	100		V1	97,96	100	
	V2	100	100		V2	97,96	100	
	V3	100	100		V3	97,96	100	
	V4	100	100		V4	97,96	100	
	V5	100	100		V5	97,96	100	
	V6	100	100		V6	97,96	100	
20	I	100	100	20	1	100	100	
		100	100		11	100	100	
	111	100	100			100	100	
	AVR	100	100		AVR	100	100	
	AVL	100	100		AVL	100	100	
	AVF	100	100		AVF	100	100	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	
	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
21	MLII	100	100	21	MLII	100	100	
	V5	100	100		V5	100	100	
22	MLII	99,07	100	22	MLII	89,96	100	
	V1	100	99,08		V1	71,3	100	
23		100	100	23		46,91	100	Problém nastavení optimálního prahu - vysoké hodnoty QRS komplexů
24		97,67	100	24		97,67	100	
25		92,75	100	25		100	100	
26		100	100	26		100	100	
27	I	100	100	27	1	100	88,14	Adaptivní práh zvýšit na 0,6
		100	100		П	94,24	92,45	
	III	100	100		III	100	85,25	
	AVR	100	100		AVR	78,85	93,18	
	AVL	100	100		AVL	100	86,67	
	AVF	100	100		AVF	100	86,67	
	V1	100	100		V1	100	100	
	V2	100	100		V2	100	100	

	V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	94.55	
28	1	100	100	28	1	79.07	100	
	1	100	100		—	91.86	90.81	
		100	100			81.4	94.59	
	AVR	100	100		AVR	77.77	90	
	AVI	100	100		AVI	86.42	94.59	
	AVE	100	100		AVE	93.02	100	
	V1	100	100		V1	100	97.73	
	V2	100	100		V2	100	100	
	V2 V3	100	100		V3	100	100	
	V4	100	100		V4	100	100	
	V5	100	100		V5	100	100	
	V6	100	100		V6	100	100	
29	1	100	100	29	1	98.89	100	
25		100	100	25		98.89	100	
		100	100			98.89	100	
		100	100		Δ\/R	98.89	100	
		100	100			98.89	100	
		100	100			98.89	100	
	V1	100	100		 	98.89	100	
	V1 V2	100	100		V1 V2	98.89	100	
	V2 V3	100	100		V2 V3	98.89	100	
		100	100		VJ VA	98.89	100	
	V4 \/5	100	100		V4 \/5	08.83	100	
	VG	100	100		VG	90,09	100	
20	1	08.67	100	20	1	08.65	100	
50		100	100	50		90,07	100	
		08.67	100			98,07	100	
		90,07	100			97,55	100	
		90,07	100			90,07	100	
		100	100			98,07	100	
		100	100			90,07	100	
		90,07	100			90,07	100	
		90,07	100			90,07	100	
	V5 V4	98,07	100		V5	98,07	100	
	V4 VE	98,67	100		V4 VE	98,07	100	
		96,67	100		V5 VC	98,07	100	
21	VO	100	100	21	V0	98,67	100	
31		98,61	100	31		100	100	
32		100	100	32		100	100	
33		99	100	33		97	100	
34		100	100	34 25		98,98	100	
35		100	100	35			100	
30		100	100	36		98,72	100	
3/		100	100	3/		100	96,23	
38		100	98,73	38		100	100	
39		100	100	39		98,75	100	
40		100	100	40		100	100	

41		100	100	 41		100	100	
42		100	100	42		76,47	100	
43		100	100	43		16,46	100	
44		98,72	90,59	44		82,05	100	
45	MLII	100	100	45	MLII	100	96,67	
	V5	100	100		V5	100	96,67	
46	MLII	100	100	46	MLII	97,3	100	
	V1	98,65	100		V1	97,3	100	
47		100	100	47		97,06	100	
48	V4	98,99	100	48	V4	98,99	100	
	MLIII	98,99	100		MLIII	98,99	100	
49		100	81,08	49		100	75	
50		100	100	50		98,31	100	
51	MLII	98,8	100	51	MLII	98,8	100	
	V1	100	100		V1	97,59	100	
52	MLII	100	100	52	MLII	100	100	
	V1	97,65	100		V1	97,62	100	
53	MLII	92,65	100	53	MLII	98,53	100	
	V1	94,12	100		V1	100	100	
54	MLII	100	100	54	MLII	98,65	100	
	V1	100	100		V1	100	98,67	
55	MLII	98,8	100	55	MLII	98,78	100	
	V1	100	100		V1	98,78	100	