
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

l/O SUBSYSTÉM OPTIMALIZATION USING SSD
OPTIMALIZACE V Ý K O N U D I S K O V É H O SUBSYSTÉMU PŘI P O U Ž I T Í SSD DISKŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
V E D O U C Í PRÁCE

PETR BĚLOUSOV

TOMÁŠ KAŠPÁREK, Ing.

BRNO 2017

Zadaní bakalářské práce/18264/2016/xbelou03

Vysoké učení technické v Brně - Fakulta informačních technologií

Centrum výpočetní techniky Akademický rok 2016/2017

Zadání bakalářské práce
Řešitel: Bělousov Petr
Obor: Informační technologie
Téma: Opt imal izace výkonu diskového subsys tému při použití SSD disků

I /O Subsystem Opt imal izat ion Using SSD
Kategorie: Operační systémy

Pokyny:
1. Nastudujte dostupné možnosti akcelerace diskových polí pomocí SSD disků.
2. Navrhněte uživatelské scénáře, kde diskové pole tvoří úzké hrdlo ve výkonu a k nim pak

výkonnostní testy pro změření tohoto úzkého hrdla.
3. Navrhněte možnosti využití SSD disků pro optimalizaci dříve uvedených scénářů a

zopakujte výkonnostní testy. Uvažujte mimo jiné systémy bcache a LVM cache.
4. Diskutujte získané výsledky a zlepšení za použití SSD disků a zobecněte získané závěry.

Literatura:
• mkfs.xfs, https://linux.die.net/man/87mkfs.xfs, 2016-11-07
• BCache and/vs. LVM cache, http://blog-vpodzime.rhcloud.com/?p=45, 2016-11-07
• BCache, kernel documentation, https://www.kernel.org/doc/Documentation/bcache.txt,

2016-11-07
• DM-cache, kernel documentation, https://www.kernel.org/doc/Documentation/device-

mapper/cache.txt, 2016-11-07
Pro udělení zápočtu za první semestr je požadováno:

• Body 1 a 2.

Podrobné závazné pokyny pro vypracování bakalářské práce naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technická zpráva bakalářské práce musí obsahovat formulaci cíle, charakteristiku současného stavu, teoretická a
odborná východiska řešených problémů a specifikaci etap (20 až 3 0 % celkového rozsahu technické zp rávy) .

Student odevzdá v jednom výt isku technickou zprávu a v elektronické podobě zdro jový text technické zprávy ,
úplnou programovou dokumentaci a zdro jové texty programů. Informace v elektronické podobě budou uloženy na
standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.) , které bude vloženo do písemné zprávy tak,
aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Kašpárek Tomáš , Ing . , CVT FIT VUT
Datum zadání: 1. listopadu 2016
Datum odevzdání: 17. května 2017

VYSOKÉ UČENÍ TECHNICKÉ V BRNÉ
Fakulta Informačních technologií

Ústav Informačních systémů
£12-g6-£«l0, Božetó0ava-2-

doc. Dr. Ing. Dušan Kolář
vedoucí ústavu

https://linux.die.net/man/87mkfs.xfs
http://blog-vpodzime.rhcloud.com/?p=45
https://www.kernel.org/doc/Documentation/bcache.txt
https://www.kernel.org/doc/Documentation/device-
http://www.fit.vutbr.cz/info/szz/

Abstract
The bachelor thesis examines 10 subsystem optimization using SSD cache to speed up
HDDs. I examined possible server loads and identified those that are suitable for caching.
In the first part I introduce 2 caching solutions, L V M cache and B-cache with their man­
agement capabilities and 2 filesystems Ext4 and X F S . In the second part 10 performance
of L V M cache and B-cache with Ext4 and X F S filesystem is benchmarked and compared
to an uncached H D D array.

Abstrakt
Bakalářská práce zkoumá optimalizace výkonu diskového subsystému za využití SSD disků.
Prozkoumal jsem možné serverové zátěže a vybral z nich podmnožinu vhodnou k urychlení
pomocí cache. V první části představuji 2 kešovací systémy, L V M cache a B-cache, spolu s
možnostmi jejich správy a 2 souborové systémy Ext4 a X F S . V praktické části je naměřen
výkon souborového subsystému za využití L V M cache a B-cache spolu se souborovými
systémy Ext4 a X F S a jejich výkon porovnán vůči poli rotačních disků.

Keywords
B-cache, L V M cache, Logical Volume Management, caching, R A I D , SSD, tiered storage,
benchmarking, Linux

Klíčová slova
B-cache, L V M cache, Řízení logických disků, kešování, R A I D , SSD, tieringové úložiště,
výkonnostní testy, Linux

Reference
B E L O U S O V , Petr. I/O Subsystem Optimalization Using SSD. Brno, 2017. Bachelor's
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Kašpárek Tomáš.

I/O Subsystem Optimal izat ion Using SSD

Declaration
I declare that I have created this thesis myself under the supervision of Ing. Tomáš
Kašpárek. I have cited all the bibliographic sources and publications used for the creation
of this thesis.

Petr Bělousov
May 17, 2017

Acknowledgements
I would like to thank Ing. Tomáš Kašpárek for his leadership and insightful comments. I
would also like to thank Mr . Martin Zídek from Master Internet for the testing hardware.

Contents

1 Introduction 3
1.1 Motivation 3

2 Server configuration models 4
2.1 Individual configurations 4
2.2 Summary 5

3 Server load models 6
3.1 Very small files 6
3.2 Small files 7
3.3 Mixed sized files hot storage 7
3.4 Large files 8
3.5 Very large datasets (10s-100s of PB) 8
3.6 Summary °

4 H D D and SSD differences 9
4.1 Performance span 9
4.2 Other metrics 12

5 Available caching technologies 14
5.1 L V M cache 14
5.2 B-cache 16
5.3 Filesystems 19
5.4 Tiered storage 21

6 Testing 22
6.1 Testing environment 22
6.2 Testing methodology 23

7 Results 25
7.1 Test results 25

7.2 Performance across server loads 35

8 Conclusion 38

Bibliography 39

A Contents of the memory media 41

1

Iozone test results

Chapter 1

Introduction

1.1 Motivat ion
Drive technologies are always advancing. Despite that it is necessary to keep even older
technologies in mind, especially due to cost/power ratio. In this regard, redundant drive
arrays composed of large, but slower hard-drives are ideal for SSD acceleration. High
throughput, fast access times and lowering costs per gigabyte are making SSDs ideal to
accelerate or replace slower H D D storage.

In this paper I shall first identify typical scenarios that could benefit from SSD acceler­
ating cache. Typical scenarios will then be reduced to a few potentially testable.

I will introduce the differences between H D D and SSD technology in various metrics
and explain the benefits of both technologies.

Next I will examine the two selected caching solutions available on Linux and compare
them. Other available technologies will be briefly mentioned. In the same chapter I will
also discuss briefly chosen filesystems and their advantages.

In chapter 6 I will introduce the testing system and the testing methodology as well as
which quantities will be observed.

In chapter Results I will be comparing the tested configurations according to their
effectiveness in loads introduced in chapter 3.

Finally I will summarise the results and provide a recommendation based on the results.

3

Chapter 2

Server configuration models

In this chapter I will attempt to find as many potential scenarios of server usage as possible.
Each scenario should represent a typical and reproducible server load.

2.1 Individual configurations

• Video surveillance in tunnels in Brno
160 cameras, storage, ad-hoc indexed frames searching, sequential writing, low through­
put, high throughput random reading while searching

• Wikipedia
Text storage, popular pages in high demand, high random read, high reliability and
availability, small dataset size.

• Modern audio-video Wikipedia
High sequential throughput per request, but due to high amount of requests turned
mostly random, both read and write but mostly read, seeking through key-frames
random reading.

• Booking server
High availability, reliability, relatively small database, high throughput, random ac­
cess

• Storage server (Google drive, OneDrive)
High reliability, large capacity, mixed access, sequential and random, read and write.

• Discussion forum
Rich text format, embedded video, pictures, popular posts in high demand, random
access, older posts lower demand, can be on slower storage. Fast random read speeds
while searching.

• News site
Text, pictures, video, latest news in high demand, slower storage for older.

• Windows update server
Long term storage for older updates, high demand during rollout

4

• Development test server
High speed mixed load, both read and write, random and sequential. Contents backed
up to a different server and loaded up when needed. High sequential read during
backup and write during load.

• Banking system
Reliability outweighs everything else, unacceptable data loss, security, encryption

Scenario
Table 2.1: Scenario comparison

Random read Random write Sequential read
Video surveillance

Wikipedia
Booking
Storage
Forum

News site
Windows update

Test
Banking

| Rai
high search

high
high

medium
high search/popular

high search
high on rollou

medium
medium

Sequential write

medium
medium

high on rollout
high on backup

medium

ug

low
high updating
high on push
high on load

medium

2.2 Summary

In configurations mentioned above you can potentially find one applicable to your personal
needs and follow its aggregation through the paper. It can serve as a guide on how you can
optimize your server configuration. Please note that there are more criteria to be aware of.
Those can include

• used server hardware

• used SSD (longevity, performance, size, cost)

• which random or sequential data is requested (from random parts of the disc or still
the same block/super block)

• upgradeability

Also worth mentioning is that the size of dataset you are in charge of matters, opti­
mizations in this paper focus on the use-case where it's impractical or impossible to use
SSD-only array. That means that workloads in this paper focus on datasets in the single
to double digits TB of data. Smaller datasets are better handled in a different way, such as
pure SSD array. If you already have some server hardware with mechanical discs, consider
if the SSD usage in this paper is relevant to your needs. The costs of upgrading to an
SSD-only array are quite high (older motherboards/CPUs do not support many NVME
SSDs). You can also transition mechanical array to a hybrid array and later to purely SSD
one as an alternative.

What has to be mentioned as well, SSD caching outlined in this paper is a solution to a
general purpose server, where workload is either unknown, changing or for whatever reason
(time, compatibility, knowledge) impossible to optimize on application level. Application
based optimizations are always more cost effective and bring better results.

5

Chapter 3

Server load models

Because working with 10 different scenarios would be difficult, I have aggregated them into
4 model scenarios that should cover different server loads. These summarised scenarios will
serve as the basis for building tests.

I will demonstrate the aggregation process in table 3.1. Information about the scenarios
can be found in chapter 2.1.

3.1 Very small files

(Session handler)
Very small data, individual files smaller than or the same as the size of SSD sector(4kB).

High volume of both writing and reading requests, mostly random.
Aggregates Booking server and Forum from scenarios, as well as session handler in a

web server. This kind of model is usually better handled through purely SSD based storage
arrays. It is however quite common to see a combination of several use case scenarios in a
single server (typically L A M P) with basic configuration.

Unoptimized session handling writes create hundreds of thousands to millions of files
in a single directory. Directory access and read/write operations in such a directory are
slowed down significantly, server administrator can usually find out that it is happening by
service quality disruption only.

Testing In this scenario I will simulate high writes and rewrites of high volume of small
files in a single directory. I will simulate this workload with Filebench. From the R E A D M E
of Filebench: [21]

Filebench is a file system and storage benchmark that can generate a large va­
riety of workloads. Unlike typical benchmarks it is extremely flexible and allows
to specify application's I /O behavior using its extensive Workload Model Lan­
guage (W M L) . Users can either describe desired workloads from scratch or use

Very small files
Small files
Big files
Mixed files and reliability

Booking, Forum
News site, Wikipedia
Storage, Surveillance, Windows update
Test server, Banking

Table 3.1: Aggregation of the scenarios

(i

(with or without modifications) workload personalities shipped with Filebench
(e.g., mail-, web-, file-, and database-server workloads). Filebench is equally
good for micro- and macro-benchmarking, quick to setup, and relatively easy
to use.

Using Filebench language I created a workflow consisting of creating 500000 small 4kB files,
writing into those files and closing them, all in single directory.

3.2 Small files

(Database)
News site, Wikipedia and general database are represented by this model. File sizes

are still small, but the volume of them, combined with non-textual kinds of media (video,
pictures, audio), the overall data size exceeds reasonable SSD capacities. Currently, these
setups generally use some form of MySQL database with external storage, usually a R A I D
6, 60, 10 array with hardware redundancy (not only in the array, but whole redundant
servers). Snapshots are used for quick recovery.

Testing M y S Q L 5.7 wil l be combined with Sysbench benchmark suite to represent this
scenario. Sysbench is a modular cross-platform multi-threaded benchmark tool designed
to test system performance of database hardware without the need for complex database
setup. I am using a testing database of 100GB divided into 128 files generated by Sysbench.
A n IO intensive workload is set for 5 minutes repeated 2 times in order to allow for the
caches to warm up.

3.3 M i x e d sized files hot storage

(Rapid development in Microsoft Azure)
This model aggregates Testing and Banking. Man-hours of developers are expensive,

therefore it is crucial for them to be able to test their work quickly. Raw performance is
needed, even if it comes at a higher cost. Reliable operation is crucial as well. Currently
these development environments are usually done in a large NSF R A I D array segmented
to individual users.

Testing This model will be represented by an IO heavy workload, simulated with the
help of Fio benchmark. From the R E A D M E of Fio:[2]

Fio spawns a number of threads or processes doing a particular type of I /O
action as specified by the user, fio takes a number of global parameters, each
inherited by the thread unless otherwise parameters given to them overriding
that setting is given. The typical use of fio is to write a job file matching the
I/O load one wants to simulate.

The job file will reflect the desired read/write ratio as well as various file sizes. The
reliability portion of this scenario will examine how each setup handles unavailable caching
drive.

7

3.4 Large files

(Storage Google Drive, OneDrive)
Even when the speed isn't the highest priority it's always desirable. This model rep­

resents scenarios Storage, Video surveillance and Windows update. Large data files with
either small metadata (video surveillance key frames) or relatively small highly active data
(windows update, new version rollout).

3.5 Very large datasets (lOs-lOOs of P B)

(YouTube)
The cost of SSDs needed to contain all this data would be astronomical, therefore reliable

high capacity HDDs are used. Programming specific use of cache, C D N (content delivery
network) and content-based storage tiering necessary. SSD caching described in this paper
isn't effective enough for this scenario, therefore it will not be tested.

3.6 Summary

Out of the potential models I have selected 3 with the most potential for SSD caching which
should cover relevant use cases. These include Very small files (Session handler), Small files
(Database) and Mixed sized files hot storage (Rapid development in Microsoft Azure). The
testing will include a generic 10 speed benchmark using IOzone which will be included in
the Appendix to provide a more in depth look at the speed differences in various 10 sizes
for interested parties.

8

Chapter 4

H D D and SSD differences

4.1 Performance span

The difference between even the fastest hard-drive and SSD is tremendous. The difference
in speeds of hard-drives is mostly due to different rotational speeds (15k drive outperforms
a 7.2k drive) and the drive cache size. Delay between finding the data and returning it is
dependent on the controller speed, arm movement to the right track and rotational delay.

In solid-state drives the approach is different. Wi th no moving parts the delay is mostly
limited by the drive controller and the actual N A N D package itself. Greater speeds can
be achieved with parallelism, having the controller accessing multiple flash packages at
the same time. The size of the operations as well as the number of requests can have a
significant impact on drive speed. High speed SSDs can be bottlenecked by the connection
to the computer, as explored deeper in section 4.2.

To show the difference with actual numbers, please refer to table 4.1.

9

Intel P3500 1 Intel S35002 Seagate
ST900MP0006 3

Seagate ES.3' 1

Type N V M E SSD SATA SSD 15000 R P M H D D 7200 R P M H D D
Interface P C I express SATA SATA SATA
Capacity 800GB 900GB 4000GB
Transfer speed 2200MB 500MB 300MB 175MB
Average latency 0.020 ms 0.057 ms 2 ms 4.16 ms
Idle power 4W 0.9W 5.7W
Load power 12W 5W 7.6W 11.27W
Cost$/GB
(as of 9.2.2017)

0.90 0.85 0.61 0.05

Table 4.1: N V M E SSD, SATA SSD, 15k H D D and 7.2K H D D comparison (worst value red,
best green)

Dirty storage performance

Neither SSDs nor HDDs operate at the exactly same level of performance regardless of
remaining capacity. SSDs with no available empty cells slow down their write speeds con­
siderably, because they must erase the contents of the cells before writing to them. In the
same way, HDDs have different write speeds on the inner part of the cylinder and outer
part. The difference is due to the same rotation speed, while having longer tracks. That is
the reason why smaller 2.5„ platters are used in high speed (10k and 15k R P M) HDDs.

SSD technologies

Currently, SSDs are composed of a controller, R A M buffer and the actual flash cells in
several packages. Each of these can have a significant impact on the drives performance.
However, as controllers and buffers are exclusive to each manufacturer, I will only examine
the differences between current flash cells technologies and their impact on drive perfor­
mance as well as some upcoming technologies that might be relevant in the future.

S L C

In SLC (single-level cell) each cell in the flash package contains a single bit of data. SLC
has the highest write speed, lower power consumption and higher endurance than M L C
and T L C . However to store the same amount of data manufacturer must make a lot more
SLC cells than M L C and T L C , making SLC based SSDs more expensive. SLC used to
be found in enterprise-grade and longevity focused drives, but manufacturers have since
focused more on incorporating only a small SLC cache to speed up multi-bit cell flash.

1

http://ark. intel.com/products/82846/Intel-SSD-DC-P3500-Series-400GB-12-Height-PCIe-3_0-

20nm-MLC
2

http://ark. intel.com/products/75685/Intel-SSD-DC-S3500-Series-800GB-2_5in-SATA-6Gbs-

20nm-MLC
3

http://www. Seagate, com/www-content/datasheets/pdfs/enterprise-performance-15k-hddDS1897-

l-1608GB--en_GB.pdf
4

http://www. seagate.com/www-content/product-content/constellation-fam/constellation-es/

constellation-es-3/en-us/docs/constellation-es-3-data-sheet-dsl769-l-1210us.pdf

10

http://ark
http://intel.com/products/82846/Intel-SSD-DC-P3500-Series-400GB-12-Height-PCIe-3_0-
http://ark
http://intel.com/products/75685/Intel-SSD-DC-S3500-Series-800GB-2_5in-SATA-6Gbs-
http://www
http://www
http://seagate.com/www-content/product-content/constellation-fam/

M L C

M L C (multi-level cell) allows more than one bit to be stored in a single cell. T L C can
be in certain situations considered as a subtype of M L C , when mentioning M L C , I will
be using the two-bit per cell definition. It stands in the middle between SLC and T L C
both performance- and cost-wise. M L C is slowly in decline, while cheaper than SLC, M L C
doesn't offer enough storage density to be enticing to most manufacturers.

T L C and further

T L C (triple-level cell) are the most cost-effective type of flash cells today. They enable
the storage of 3 bits into a single cell through the use of 8 different voltage states. Some
manufacturers refer to T L C as 3-bit M L C . The primary benefit of T L C is its lower cost
per G B due to higher data density. The controller must be able to deal with the inevitable
errors, whose occurrence is higher due to more voltage levels and lower difference between
each level.

Demand for higher storage density led some manufacturers to invest into Q L C (quadruple-
level cell) technology which offers 33% increase in storage size per package, but requires
advanced error correction, controllers and firmware to account for lower difference between
each cell state.

Modern SSD configuration

To lower the manufacturing cost and maximize performance per G B of storage, many manu­
facturers combine the advantages of T L C cells and SLC cells. By utilizing a small SLC cache
as well as large amount of T L C packages sustained high load goes through the SLC cache,
minimizing performance drop-off. Other notable technique of maximizing the price/per­
formance ratio is 3D-NAND[](by Intel and Micron), or V - N A N D [](by Samsung). Both
technologies stack multiple layers of flash cells vertically, connecting the layers. This ap­
proach allows for higher cell density than regular planar cells, higher endurance, lower
interference and lower price per G B cost.

3D Xpoint

On 19. March 2017 Intel unveiled its D C P4800X Series SSD with certain advancements
from N A N D technology. It is based on Intel 3D XPoint™(pronounced cross point), com­
bining memory and storage into a single high bandwidth storage unit. It utilizes 4 lane
PCIe 3.0 connection with N V M e interface and features lower latency than N A N D flash,
high sustained random IOPS(500 000) and much higher endurance(12.3 P B W compared
to N A N D based D C P3500 with 1.095 PBW).[10]

Unfortunately, Optane drives are at the moment going to be available only in small
375GB size for the data center market and 16-32GB for consumers for a higher price per
gigabyte than competing N V M E SSDs. Unlike N A N D it doesn't have to erase existing
data before writing new data boosting both endurance and performance. The storage is
also bit addressable eliminating the need for block/page with wasted space and making
wear-leveling and garbage collection easier. More information about the D C P4800X drive
as well as benchmark results can be found in the review by Paul Alcorn.

5

http: //www. tomshardware.com/reviews/int el-optane-3d-xpoint-p4800x, 5030.html

11

http://tomshardware.com/reviews/

Future

Future storage technologies that are currently in development, but may be relevant in the
future fall under the N V M (non-volatile memory). These include P R A M , n v S R A M , R R A M ,
M R A M and others. When considering one of these consider also compatibility (if there is
any) both in hardware (connectors, motherboard) and software(communication protocol,
BIOS, applications etc.) with existing or new hardware. New technologies tend to be more
expensive.

Out of all these I will highlight the M R A M based Everspin nvNITRO.

Everspin nvNITRO On 8. March 2017 Everspin Technologies, Inc. announced M R A M
based storage accelerator nvNITRO. [6] MRAM(Magnetoresistive random-access memory)
allows for very high IOPS (1.5 million) and unlike N A N D based storage M R A M doesn't
suffer from cell degradation eliminating the need for wear leveling as well as read/write
speed degradation. It should theoretically offer unlimited number of writes. The biggest
disadvantage of M R A M is low storage density, due to which nvNITRO will be available in
the 512MB to 16GB sizes.

4.2 Other metrics

Power consumption

Often neglected metric of a drive is its power consumption in idle and under load. SSDs
have lower power demands and using them could potentially mean a lower power bill . Please
note that high speed PCIe SSDs have much higher power consumption than SATA SSDs.
To get a rough idea of the difference, please refer to the table 4.1.

Another point worth considering is spinup surge power requirement, the amount of
power needed when mechanical drives are starting up and the associated delayed spinup at
startup in larger arrays, where HDDs are started in waves to avoid overloading the power
delivery system.

SSDs don't have any mechanical parts to spinup at start therefore do not posses the
same challenges. SATA based SSDs have lower power requirements than high performance
PCIe based storage. It is also possible to utilize different power states to lower load power
requirements of SSDs. You can find more information about the difference in power con­
sumption on Intel SSDs in this article. 6

Incorporating power consumption measurements unfortunately reaches beyond the scope
of this paper.

Reliability

Reliability of HDDs and SSDs varies, but both should perform well while covered by war­
ranty. Most enterprise-level discs should come with a 5-year or longer warranty. SSDs have
a limited number of erase cycles on each cell storing the data and includes over-provisioning
in case of cell failure.

The D W P D (drive writes per day) metric is often used as an endurance metric of SSDs.
It represents the amount of data that can be written to the drive every day until the life
expectancy of the cells is depleted. For example Intel S3500 has an endurance rating of

6

https: //itpeernetwork.intel.com/managing-power-consumption-of-intel-data-center-ssds/

12

http://intel.com/managing-power-consumption-of-intel-data-center-ssds/

450 T B W which amounts to about 0.3 D W P D . Intel SSDs specifically include a "fail safe,,
that renders the SSD unusable once its erase cycles have been depleted and the drive could
become unstable. This metric can be monitored in S M A R T .

HDDs on the other hand don't have a similar indicator and the end of H D D reliability
has to be observed through relocated sector count, uncorrectable errors and other criteria
such as temperature and noise.

Expected lifespan

Both HDDs and SSDs have only limited lifespan. Even though manufacturers try to make
drives last as long as possible, mechanical and electrical limitations of hardware makes
drives fail. You can find the expected percentage of healthy HDDs after four years in use in
an article here7. Most common reasons of failure include bearing and motor failure, head
crash, circuit failure, sector magnetisation failure and miscellaneous mechanical failures.

SSDs don't suffer from mechanical failures (due to the fact that there are no moving parts
at all), they are however susceptible to electrical failure, N A N D wear-out, bad soldering,
bad sectors, controller failure, firmware update error.[5] You can get a better idea on the
expected lifetime of HDDs at Backblaze[3], where they announce the reliability statistics of
HDDs from their own servers. SSD endurance is different, but you can learn more about it
in an endurance test here [8].

Connections

Both H D D and SSDs must be connected to a system using an industry standard connector.
Modern drives use one of serial connections available, such as SATA (Serial ATA) or SAS
(Serial Attached SCSI) connectors. In their 3rd revision these allow maximal speeds of 6 and
12 Gb/s respectively, which is far more than most HDDs can deliver. However, for modern
SSDs these connectors can create a bottleneck, so faster SSDs use P C I - E connection in the
form of either typical PCI -E 16x/4x slot (server oriented SSDs) or an M.2 slot (consumer
oriented SSDs). Some SSDs have a U.2 connector, more suitable for 2.5" form factor which
combines SAS and PCIe technologies into a new connector. These faster SSDs can achieve
potential speeds of up to 40 Gb/s through 4 lanes of P C I - E 3.0.

7

https: //www.backblaze.com/how-long-do-disk-drives-last.html

13

http://www.backblaze.com/how-long-do-disk-drives-last.html

Chapter 5

Available caching technologies

5.1 L V M cache
L V M cache is an extension of the highly popular Linux L V M {Logical Volume Manager)
built on the dm-cache kernel component. Where traditional L V M offers better hard-disc
partition management by grouping several physical drives into a single addressable logical
drive, L V M cache adds the advantages of mixing different drive technologies.

Figure 5.1: L V M cache diagram

Filesystem(EXT4, XFS) Page cache

Logical vo l ume

Vo l ume group

/

It has been integrated into the Linux kernel since version 3.9. Full support out of the
box requires OS creator support as well. For Centos/RHEL version 7.1 and later and 6.7
and later are required. The basic principle of operation consists of combining a small and
fast cache logical volume to improve the performance of a large and slow origin logical
volume. Cache is further split into two parts, cache data L V and cache metadata L V which
can be stored on either the same or two different drives. However, caching drive(s) as well
as origin drive(s) need to be in the same volume group.

L V M cache offers 3 caching policies, mq, smq and cleaner.[] Since version 2.02.128 the
mq (multiqueue) policy is being deprecated, making the smq (stochastic multiqueue) the
default used policy. M q offered tunable parameters to finetune cache behavior, specifically

14

sequential threshold, random threshold, read, write and discard promote adjustment. Since
version 2.02.128 these tunables are accepted, but have no effect because mq has been turned
to an alias for smq.

Smq requires less memory, features better level balancing by switching the least recently
used entry from the higher level. This stochastic behaviour allows for better detection of
hotspots and quicker cache promotion when 10 patterns change.

The last cleaner policy can be used to flush all dirty blocks from cache to origin device.

Conversion To enable L V M cache the origin L V must be in the same V G as the caching
drive. L V M cache contains all the necessary utilities for proper management. These include
Ivcreate, Ivs, pvs, Ivconvert, Ivremove, Ivdisplay, Ivrename.

There are 2 major versions of L V M , the original L V M 1 introduced in kernel 2.4 and the
newer L V M 2 that has been in kernel since version 2.6 but provides backwards patches for
2.4 as well. For L V M cache we need L V M 2 with its userspace tools with at least version
2.01.15.

Monitoring and configuration L V M cache supports basic monitoring capabilities through
Ivs -o command with appropriate options. Available since version 2.0.2 these are not men­
tioned in official man page, but include the options explained in table 5.1.

Alternatively, Ivdisplay -m has been updated in version 2.0.2.169 to display these infor­
mation as well. A sample output of Ivdisplay -m:

Logical volume
LV Path /dev/vg/lvol0
LV Name lvolO
VG Name vg
LV UUID Y4uWuN-TBGk-duer-aPWl-yBWn-iFFR-RUlggl
LV Write Access read/write
LV Creation host, time linux, 2017-03-01 20:52:39 +0100
LV Cache pool name lvol2
LV Cache origin name lvol0_corig
LV Status available
open 0
LV Size 12,00 MiB
Cache used blocks 10,42%
Cache metadata blocks 0,49%
Cache dirty blocks 0,00%
Cache read hits/misses 112 / 34
Cache wrt hits/misses 133 / 0
Cache demotions 0
Cache promotions 20
Current LE 3
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:0

15

Option
Table 5.1: lvs -o options related to cache management

Meaning
cache_
cache_
cache_
cache_
cache_
cache_
cache_
segtype

write_misses

total_blocks
used_blocks
dirty_blocks
read_hits
read_misses
write_hits

the total number of blocks of cache device
the number of blocks of cache device used for caching
the total number of dirty blocks
the number of times data has been successfully read from cache
the number of times data hasn't been read from cache
the number of times data has been written to cache
the number of times data hasn't been written to cache
display the L V segment type(for cached L V cache or cache-pool)

L V M supports both writethrough caching as well as writeback caching. Writethrough is
selected by default due to higher security. Writeback caching may result in data loss if the
caching device is lost. Caching mode can be changed when creating the cache L V or later
with Ivconvert -cachemode option.

Removal It is possible to remove the caching device without disrupting the origin volume.
This is done with either Ivremove <volume group/name of caching LV pool> or the safer
Ivconvert -uncache <volume group/name of caching LV>. Both these commands flush any
remaining dirty data to the origin LVs before removing the cache.

You can also remove both the caching and origin drive at the same time with Ivremove
<volume group/name of cache LV>. Please note that the drive must be unmounted for
this operation.

Error handling L V M cache set to writethrough caching has no trouble when caching
device is unavailable, cache is simply not utilized and the performance drops to H D D
performance level. Unavailable cache in writeback mode with dirty blocks may result in
errors or corruption.

More information about L V M cache can be found in the L V M cache manual page [13].

5.2 B-cache

B-cache (block cache) is a kernel block level cache. It also allows the use of a fast SSD-
based storage as a cache for one or more slower hard disk drives. B-cache is also filesystem
agnostic.

B-cache is available in some distributions out of the box, such as Ubuntu 14.10 or newer
or Fedora 20 or newer. Centos and R H E L as well as other distributions that include the
3.10 or 3.11 Linux kernel have support for B-cache, but don't include it natively. In these
systems it is necessary to compile either the B-cache module and insert it or the whole
kernel with B-cache enabled.

B-cache terminology is slightly different from L V M cache, origin device is called backing
device in B-cache.

Conversion B-cache requires specific superblock on the backing device in order to mon­
itor and manage the devices correctly. It is possible to convert L V M logical volumes, raw
devices, partitions with some free space or shrinkable filesystem. The conversion can be

16

done with the help of blocks , a block device conversion tool. This can be done inplace,
although a backup before attempting to convert is advisable. Where direct conversion to
B-cache is not available, it is possible to convert to L V M first and then convert from L V M
to B-cache.

Monitoring and configuration B-cache monitoring is less user friendly than L V M
cache, though it provides basic userspace tools for monitoring, most configuration is done
through direct file manipulation. You can find both configuration and information files in
the /sys/block/bcache<n>/bcache(wh.eie n is the number of currently attached B-cache)
folder and subfolders. The management capabilities that can be found in those folders are
outlined in the table 5.2. Table 5.3 aggregates configurable parameters available in B-cache.

Table 5.2: B-cache management tools, folder names are relative to /sys/block/b-
cache<n>/bcache

make-bcache Command to format the block device for use with b-cache.
bcache-super-show Command that prints information about caching or backing device.
/stats_total/ B-cache statistics folder, contains total statistics.
bypassed Statistic for all 10 that bypassed the cache.
cache_hits Number of cache hits per 10.
cache_misses Number of cache misses per 10.
cache_hit_ratio Hit/miss ratio in percentage values(O-lOO).
cache_bypass_hits Number of hits per 10 that is supposed to bypass cache.
cache_bypass_misses Number of misses per 10 that is supposed to bypass cache.
cache_readaheads Number of times cache readahead occurred.
/cache/cacheO/ Symbolic link, cache options
dirty_data Amount of dirty data in the cache.
trigger_gc Writing to this file force runs the garbage collection on cache device.
block_size Block size of the cache device.
priority_stats Data access statistics. Determine working set size.
written Total data written to the cache.

Another disadvantage of B-cache is that newly created B-cache volumes are assigned
in /dev/ folder with the name bcache<n> where n is an increasing whole number. This
series of numbers is not reset until server restart, making scripting automation rather
difficult. Each B-cache device also has a unique UUID and you can also find the related
configuration and information files in /sys/fs/bcache/<cache set UUID> for the caching
device and /sys/fs/bcache/<cache set UUID>/bdev<n> for the backing device.

Removal It is possible to remove caching device while mounted, B-cache automatically
switches to passthrough mode when caching device is unavailable. Device can be detached
by writing 1 to /sys/block/<dev path of the caching device>/bcache/detach and unregister-
ing it by writing 1 to /sys/fs/bcache/<cache set UUID>/stop.

If the cache is missing during startup, backing device isn't started up. Startup without
the cache can be forced by writing 1 into the running file of the backing device.

x

https: //github.com/g2p/blocks

17

cache__mode

readahead

sequential_cutoff

writeback_delay

writeback_percent

flash_vol_create

io_error_halflife

io_error_limit

journal_delay_ms

cache_replacement_

Table 5.3: B-cache configurable parameters
Cache mode, possible values writethrough, writeback,
writearound, none
Default value 0, if a cache miss occurs B-cache rounds up
read up to this value
Threshold of sequential 10 that once passed will bypass the cache
Number of seconds B-cache waits before writing back new dirty data
in cache
B-cache tries to keep this percentage of cache dirty by throttling
writeback to backing device
Echoing a size to this file (in human readable units, k / M / G) creates
a thinly provisioned volume backed by the cache set
Error decay in number of IOs
Number of errors accepted before disabling the cache. If the decaying
error count reaches this limit dirty data is written out
and cache is disabled
Number of milliseconds that journal writes are delayed, default 100
Change cache replacement algorithm, possible values lru
(least recently used, default), fifo(nrst in first out) and random policy

Error handling B-cache provides configurable cache error handling. By default, there
are several error handling scenarios:

• Reading from the cache in any mode and an error occurs, the read is repeated from
the backing device.

• Caching mode is set to writethrough and a write to the cache errors out the data in
cache is invalidated and the cache is bypassed.

• Caching mode is set to writeback and an error occurs then the error is passed on to
the filesystem.

A l l write errors above the configurable threshold (default 0) result in the caching mode
being set to passthrough and cache device shutdown.

B-cache and ZFS Although B-cache is filesystem agnostic, there has been a bug 2

making ZFS on top of B-cache unreliable.
More information about B-cache can be found in the B-cache user manual [1].

Other notable caching solutions

The selected caching solutions that I am using for testing are reliable, tested many times
before with proper kernel support as well. Some other solutions which are currently under
development might be more relevant for you in the future.

Bcachefs 3 is a next generation copy on write filesystem developed by the team working
on B-cache, focusing on reliability, tiering/caching, compression and other features. It

2

https: //bugzilla.kernel.org/show_bug.cgi?id=71441
3

https: //bcache.evilpiepirate.org/Bcachefs/

18

http://evilpiepirate.org/Bcachefs/

implements some B-cache caching capabilities into it's own filesystem. Unfortunately It's
not yet upstream, so a kernel has to be built to enable it.

EnhancelO 4 is based on older no longer mantained Flashcache developed by Facebook.
EnhancelO has an advantage that unlike B-cache it doesn't require file system conver­
sion. Unfortunately, the official EnhancelO appears to be broken on newer kernels with no
development, although there are some promising forks such as .

For Windows based solution 6 Primocache might be worth considering as well, Storage
Space Tieringf] in Windows Server is the built-in option, however the best is probably
Sandisk DAS cache. [8] It is multiplatform, supporting both Windows Server as well as
various Linux distributions (from Red Hat, SUSE and VMware). Pricing is available upon
request. To learn more about tiered storage refer to the section 5.4.

5.3 Filesystems

To store any data at all it is necessary to format the volume with a proper filesystem. A
filesystem provides a control mechanism in how and where a file is located in the storage
medium. It takes its naming scheme from paper-based storage and organisation. Each
group of relevant data is called a file. The structure and rules to organise and manage these
files is the filesystem itself.

Linux is able to utilize different filesystems very well mostly due to kernel-level storage
abstraction. The so-called V F S (Virtual Filesystem Switch) provides a unified model that
can represent any particular filesystem operations easily.

Each filesystem was designed with different requirements and limitations. Some are
used on special types of media (eg. optical discs), some are universal. Some filesystems
provide a solution for locally attached storage while others are geared towards network or
virtually attached storage.

E X T 4

E X T 4 (fourth extended filesystem) was developed as a continuation of the E X T 3 filesystem
with expanded support for large filesystems, scalable beyond today's requirements. Built
from the ground up with nanosecond timestamps, preallocation as well as fast extent sup­
port. Extents allow for metadata overhead reduction, compressing many block pointers of
a large file into an extent, enabling faster access and lower overhead. Another useful feature
is the fast fsck enabling the fsck to skip checking unused inodes. More information can be
found here [7].

E X T 4 is forward conversion compatible with E X T 3 filesystem (allows for easy migration
from E X T 3 to EXT4) without the need of reformatting. For information about the limits
of E X T 4 please refer to the table 5.4. Available in Linux kernel version 2.6.28 and later.

Resizing tools allow for growing while mounted, shrinking requires the file system to be
unmounted first. E X T 4 is the default filesystem for Ubuntu, mostly due to its stability and
acceptable sustained performance.

4

https: //wiki.archlinux.org/index.php/EnhancelO
5

https: //github.com/lanconnected/EnhancelO
6

https: //www.romexsof tware.com/en-us/primo-cache/

19

http://archlinux.org/
http://www.romexsof

backup and restoration Backup of the E X T 4 partition using dump tool should be done
on an unmounted partition as backing up mounted filesystem can have an unpredictable
result. Restoration of the data can be done with restore tool.

X F S

High performance 64-bit journaling filesystem created by Silicon Graphics, Inc in 1993
[19] Originally created for the IRIX operating system and it was the first filesystem that
implemented delayed allocation. It was merged into the mainline Linux kernel in version
2.6 Included tools allow for online resizing to grow inplace but doesn't allow shrinking. X F S
is the default filesystem for CentOS and many distributions ship with X F S included such
as:

• Mandrake Linux 8.1 and newer

• SuSE Linux 8.0 and newer

• Gentoo Linux 1.0 and newer

• Slackware Linux]8.1 and newer

• Knoppix 3.1 and newer

• Turbolinux 7.0 and newer

• JB Linux 2.0 and newer

• Debian 3.1(„Sarge") and newer

• The Fedora Project Fedora Core 2 (default filesystem since Fedora 22) and newer

backup and restoration X F S provides native backup and restoration utilities xfsdump
and xfsrestore respectively. Xfsdump also allows consistent online backup without the need
for unmouting the filesystem.

Filesystem limitation comparison

Table 5.4: Ext 4 and X F S limitations
Ext 4 X F S

Max volume size(recommended) 1 EiB(16TiB) 8EiB
Max filesize 16TiB 8EiB

Max subdirectories
64000

(flag dir nlink for unlimited)
unlimited

Max number of files 4* 109(approx. 2 2 2)

Supported OS
Linux, FreeBSD,

Mac OS X , Windows
Linux, FreeBSD, IRIX

20

Other file systems

From other file systems that were considered I would like to point out Btrfs which requires
proper setup and mounting and for some people 7 doesn't ahve the performance expected
without additional tweaking.8 According to the mailing list of B T R F S it is not entirely
stable with L V M cache which is why it has not been included in the testing [12].

ZFS is not supported in mainline kernel and due to its increased complexity as well as
not enough information on reliability and recovery in the event of failure on Centos/RHEL
it is not recommended at the moment.

5.4 Tiered storage

Tiered storage is a more general term than SSD caching. It utilizes several different storage
media with different speed in a hierarchical topology with faster storage on a higher level
than slower storage. A typical tiered storage would contain R A M , small fast N V M E SSD(s),
larger SATA SSD(s), slower mechanical HDD(s) and final archival type of storage such as
tapes. Although harder to deploy with high initial costs, a well implemented tiered stor­
age can outperform cached arrays significantly due to application and/or platform specific
optimizations.

You can learn more about tiered storagef J] in the sources [16] [14].

7

https: //blog.pgaddi ct. com/post s/f riends-dont-let-f riends-use-btrf s-f or-oltp
8

https://www.reddit.com/r/linux/comments/2uz8ez/rlinux_tell_me_your_btrfs_nightmares_success/

21

https://www.reddit.com/r/linux/comments/2uz8ez/rlinux_tell_me_your_btrfs_nightmares_success/

Chapter 6

Testing

From the available caching technologies and filesystems the chosen technologies are com­
bined with the scenarios outlined in section 3. In table 6.1 you can see the tested combina­
tions with their respective labelling used in the graphs below.

Table 6.1: Tested combinations
H W Uncached H D D raid L V M cache B-cache

Filesystem
Ext4

X F S

Test scenarios

Very small files Filebench (graph label 500k)

Test scenarios
Secure MySQL database sysbench (graph label sync database)

Test scenarios Regular database Fio (graph label database read/write) Test scenarios
Mixed sized files Fio (graph label read/write)

Test scenarios

Mixed sequential Fio (graph label sequential read/write)

Test scenarios

General performance IOzone (see Appendix B)

6.1 Testing environment
A l l tests were conducted on a D E L L PowerEdge R730xd with 2 Intel Xeon®E5-2620 v3
6 core 12 thread processors at 2.4 GHz, 8 modules of 16GB DDR4 memory running at
1866MHz for a total of 128 G B of R A M . 8 rotational HDDs 4TB Seagate ES.3 SATA
6Gb/s 7200 R P M were configured in R A I D 10 for a total of 14902 G B of primary storage.
Caching SSD partition was created from 2 Intel D C 3500 800 G B SATA 6Gb/s SSDs in
R A I D 1. A l l drives were connected to the system through the integrated P E R C H730 Mini
R A I D controller with battery backup and 1GB DDR3 onboard cache.

Unfortunately no N V M e SSD was available at the time of testing.
CentOS Linux release 7.3.1611 (Core) with kernel version 3.10.0-514.10.2.el7.x86_64 re­

compiled with B-cache support was used as the testing operating system. Utilized software:

• sysbench version 0.4.12 1

• fio version 2.17 2

x

https: //github.com/akopytov/sysbench
2

https: //github.com/axboe/fio

22

• Filebench version 1.5-alphal 3

SATA based drives were selected due to excellent backward compatibility, while PCIe con­
nected SSDs have a much higher throughput, older servers will not have enough PCIe con­
nections to utilize the speed or even to connect the SSDs to the system at all. SSDs with
SATA interface also have the lowest cost and represent the lowest improvements compared
to faster PCIe SSDs.

Measured quantity

Measurements are divided into several categories. Random read, random write, sequential
read, sequential write and file creation. The cache is only successfully utilized to speed up
access when the data that is accessed has been accessed before. Different cache modes also
differ wildly. Writethrough caching doesn't offer speed enhancement while writing, because
the write isn't confirmed to the OS until the operation is safely done on the underlying
H D D , making the writing 10 bound by the speed of H D D . Writeback caching should allow
for higher writing performance for the sake of lower data safety. L V M cache and B-cache
report the write complete to the OS immediately after writing data to the cache, flushing
the data to H D D when possible/effective. If the cache is disconnected (due to power outage
or anything else except safe removal) before completely writing dirty data back the data is
lost.

6.2 Testing methodology

Tests were done as follows. Baseline configuration without any caching technology consisted
of formatting the array using mkfs tool variants mkfs.ext4 and mkfs.xfs. I have prepared a
bash script to automate test run.

L V M cache L V M cache preparation procedure was to create volume group test-data with
the SSD mirror located at /dev/sdc and H D D array at /dev/sdb.

vgcreate test-data /dev/sdb /dev/sdc

Next I created origin logical volume orig-data spanning the entire physical volume /dev/sdb.

Ivcreate -n orig-data -I 100%PVS test-data /dev/sdb

To create cache pool I used a one-step method that automatically creates both cache data
LV as well as cache metadata LV.

Ivcreate -type cache-pool -I 100%PVS -n cache_pool test-data /dev/sdc

Alternatively, this step can be reproduced with these 3 commands:

Ivcreate -n cache_pool -I 99%PVS test-data /dev/sdc

Ivcreate -n cache-metadata -I 1%PVS test-data /dev/sdc

Ivconvert -type cache-pool -poolmetadata test-data/cache-metadata test-data/cache_pool

Finally, origin L V and cache pool L V are combined into cache LV.
3

https: //github.com/f ilebench/f ilebench

23

Ivconvert -type cache -cachepool test-data/cache_pool test-data/orig-data

L V M cache volume defaults to writethrough caching mode, for writeback I detached the
cache and reattached in writeback mode, ensuring that the cache has been flushed.

Ivconvert -type cache -cachepool test-data/cache_pool -cachemode writeback
test-data/ orig-data

It is possible to change the caching mode without detaching and reattaching the cache by
using the following command:

Ivconvert -type cache -cachemode writeback test-data/orig-data

I chose not to utilize this to ensure a clean testing environment.

B-cache B-cache preparation procedure consisted of writing the B-cache cache super block
on caching device using make-bcache

make-bcache -C /dev/sdc

and writing the backing superblock on the backing device.

make-bcache -B /dev/sdb

Caching device must then be attached to the appropriate backing device by echoing its
UUID.

echo 2d2b7129-lab0-4994-bfb6-33e54d518c96 > /sys/block/bcacheO/bcache/'attach

It is also possible to format the devices and attach them at the same time.

make-bcache -B /dev/sdb -C /dev/sdc

Finally we can verify the configuration by running bcache-super-show /dev/sdb command
to obtain the following output.

sb.magic
sb.first_sector
sb.csum
sb.version

dev.label
dev.uuid
dev.sectors_per_block
dev.sectors_per_bucket
dev.data.first_sector
dev.data.cache_mode
dev.data.cache_state

cset.uuid

24

ok
8 [match]
E8439B5FE3C78ED2 [match]
1 [backing device]

(empty)
538801c7-le98-464b-b2eb-e719eb7ac0f7
1
1024
16
0 [writethrough]
1 [clean]

086edafe-55bc-4e5c-864b-56f375393c51

Chapter 7

Results

7.1 Test results

Please note that certain graphs utilize a logarithmic scale in order to account for large differ­
ences between individual result values. For comparison sake please refer to the summarizing
graph 7.17 on page 36.

File creation

Figure 7.1: File creation speed comparison
OFi les/s 1 0 0 0 0 Files/s 2 0 0 0 0 Files/s 3 0 0 0 0 Files/s 4 0 0 0 0 Files/s 5 0 0 0 0 Files/s 6 0 0 0 0 Files/s 7 0 0 0 0 Files/s

B-cache

L V M cache

6 2 4 9 5

• Ext4 B X F S

The very small files (Session handler) model server load.
In this part of testing it is possible to see that the limitations imposed on file creation

in large volume of files in a single directory is heavily filesystem dependent. Wi th half a
million files created the file creation speed in Ext4 filesystem decreases (cache management
slows down the operations) (see figure 7.1). Journaling writes of the Ext4 filesystem slow
down the performance of the whole filesystem. For Ext4 the only viable caching method is
L V M cache in writeback mode, offering 67% increase in files created per second.

X F S offers a similar trend, writethrough cache management slows down most of the
operations by 36-60% compared to uncached array. X F S favours B-cache writeback, with
performance increase over uncached array of 13%.

25

Compared together, switching the filesystem from Ext4 to X F S allows for 4-7x increase
in performance regardless of other criteria, for the best possible performance choose B-cache
in writeback mode formatted with X F S .

Database performance

Figure 7.2: Database scenario performance
1000000 IOPS

Ext4 no cache XFS no cache Ext4 LVM XFS LVM cache Ext4 LVM XFS LVM cache Ext4 B-cache XFS B-cache Ext4 B-cache XFS B-cache
cache cache writeback writeback writeback

writeback

• Database read • Database write

The small files (MySQL database) model server load.
The test representing the small files model server load with the help of a simulated

database. I ran two different tests, in fio and sysbench. Fio gives me more granular control
and allows for easy warmup of the caches, while sysbench shows a more secure MySQL
database performance.

First let's look at Fio results. I measured the read and write performance of random IO
of simulated database. In order to properly utilize cache I first ran a warming up test that
isn't included. Pre-warmup performance was within the margin of error from uncached
array.

Graph 7.2 shows that all caching technologies and filesystem combinations tested per­
formed better than baseline Ext4 uncached array. B-cache, especially in the writeback
setting with X F S performed the best, with 44x the baseline performance in read and al­
most 21x in write. Ext4 with B-cache writeback also performed admirably, increasing the
array performance 55x in read and 29x in write. On the other end of spectrum L V M cache
in writethrough mode in combination with X F S added enough complexity to the setup to
performer worse than the X F S uncached array by 1.79%, a trait that repeated with B-cache
writethrough X F S setup as well, although only by 0.21%.

The second database testing was more secure. The test utilized a database stored in 128
files each 800 Mb. Periodic fsync() every 100 requests ensures flushing of the changes to the
drives. This setting drastically decreased the performance of nearly all caching solutions
except for B-cache in the writeback mode as can be seen in figure 7.3.

26

Figure 7.3: Secure database performance

• Requests IOPS

• Throughtput Mb/s

Ext4 no
cache

XFS no
cache

Ext4 LVM
cache

XFS LVM
cache

Ext4 LVM
cache

writeback

XFS LVM
cache

writeback

Ext4 B-
cache

XFS B-
cache

Ext4 B-
cache

writeback

XFS B-
cache

writeback

3245 3137 901 919 2224 2618 3117 1666 11586 9736

50,7 49,0 14,0 14,3 34,7 40,9 48,7 26,0 181,0 152,1

Mixed access

Figure 7.4: Mixed sequential and random files of various sizes
0 M B / s 50 M B / s 100 M B / s 150 M B / s 2 0 0 M B / s 2 5 0 M B / s 300 M B / s 3 5 0 M B / s 400 M B / s 4 5 0 M B / s 5 0 0 M B / s

Ext4 no cache

XFS no cache

Ext4 L V M cache

XFS L V M cache

Ext4 L V M cache wr i teback

XFS L V M cache wr i teback

Ext4 B-cache

XFS B-cache

Ext4 B -cache wr i teback

XFS B-cache wr i teback

415

2 2 2

• 3 2 7

317

• 3 2 4

I Sequent ia l read • Sequent ia l wr i te

Mixed sized files hot storage(Rapid development in Microsoft Azure)
The only test involving sequential access. Spinning H D D arrays are better suited for

large sequential file access than small SSDs.
This test nicely demonstrates one of the main differences between B-cache and L V M

cache. While L V M cache with X F S manages to increase especially write speed significantly,
by 28% and 32% in writethrough and writeback mode respectively, B-cache hovers only
between 0-5% above uncached array. This is expected, because B-cache is configured to
let sequential IO bypass its cache entirely. This enables B-cache to hold more randomly
accessed data where the speed difference between the array and cache speed is much higher
than with sequential data.

27

File systems
Ext4 performance comparison across caching solutions In graph 7.5 you can see
the performance summary across utilized caching solutions as well as average percentage
increase of performance relative to baseline uncached R A I D array. Ext4 benefits greatly
from caching. Except for the file creation 500k test, B-cache in the writeback mode offers
the highest average speed increase of almost 1600%. Writethrough B-cache offers even
higher database read performance, but overall it performs equally (mixed read and write)
or worse than writeback.

L V M cache on the other hand performed significantly worse than B-cache, offering only
a modest 26% in writethrough and 23% increase in writeback over baseline.

X F S performance comparison across caching solutions

X F S offers a more balanced performance compared to Ext4. As you can see in graph 7.6, for
raw speed B-cache writeback mode wins every test with a comfortable 13x average increase
over the baseline. Writethrough caching mode of B-cache is also quite effective, depend­
ing on the desired load. Synchronous secure database as well as write intensive database
is not viable for writethrough B-cache. Overall, writethrough B-cache offers comparable
performance in both Ext4 as well as X F S .

L V M cache utilizes X F S more effectively than Ext4 across all tests. Writethrough
mode offers 47% and writeback mode 22% average increase over baseline. X F S is much
more effective than Ext4 in rapid file creation. B-cache writethrough mode dominates this
category as well.

Cache statistics

In graph 7.7 you can compare the effectiveness of cache promotion algorithms of L V M cache
and B-cache. L V M cache writeback mode has much worse hit ratio than any other caching
method in the tests. B-cache has very balanced hit ratio, all configurations scored close to
55%. Please note that this includes cache warming as well as the fact that certain tests do
not utilize cache very much.

28

29

Another difference between B-cache and L V M cache is how much of the available cache
does it actually need. B-cache required 4% of the available 650GB SSD, while L V M cache
occupied much larger 13.8%. From these figures I extrapolated the following graph 7.8. It
shows the relation between the SSD space occupied by B-cache and L V M cache respectively
and the size of hot data that the cache is able to effectively cache. It also shows that B-cache
is more conservative in the SSD utilization, minimizing writes to the SSD better than L V M
cache.

Figure 7.8: Hot storage size and cache size requirements
2100 GB

2000 GB

1900 GB

1800 GB

1700 GB

1600 GB

1500 GB

1400 GB

"g 1300 GB

'= 1200 GB

£ 1100 GB

f j 1000 GB

™ 900 GB
Q

$ 800 GB

700 GB

600 GB

500 GB

400 GB

300 GB

200 GB

100 GB

0 G B
186 372 558 744 930 1 1 1 6 1 3 0 2 1 4 8 8 1 6 7 4 1 8 6 0 2046 223224182604 2 7 9 0 2 9 7 6 3 1 6 2 3 3 4 8 3 5 3 4 3 7 2 0 3 9 0 6 4 0 9 2

Hot data size GB

Recommended SSD drive size B-cache LVM cache

Based on the relation between cache size requirements and the available SSD disk size
variants I formed a graph 7.9 showing the SSD drive size ranging from 32 to 2000GB and
the ideal size of H D D storage this SSD would most effectively cache. The graph shows
that really small SSDs are only viable for consumer space. That also explains why the first
publicly available SSDs of the Intel 3D Xpoint (as introduced higher on page 11 in future
technologies) are 16 and 32 G B in size. For larger arrays based on the storage requirements
I would recommend SSDs in the 480-600 G B range due to higher performance, higher
endurance and lower price/gigabyte. For higher capacity I would recommend skipping
drives over 600 G B in size due to very high acquisition costs for now. SSD storage costs
are constantly lowering.

C P U and drive utilization

In figure 7.10 we can observe the impact of caching on drive utilization and C P U usage
reported by Fio in the database load. While L V M utilizes less than 20% SSD bandwidth in

30

Figure 7.9: SSD cache storage size to total H D D space optimal for caching
7 0 T B 6 6

6 0 TB

0)

32 G B 6 4 G B 1 2 8 G B 2 0 0 G B 2 5 6 G B 4 0 0 G B 4 8 0 G B 5 1 2 G B 6 0 0 G B 8 0 0 G B 1 0 2 4 G B 1 2 0 0 G B 2 0 0 0 G B

R e c o m m e n d e d SSD cache drive size

writethrough mode and less than 40% in writeback mode, B-cache Utilizes SSD bandwidth
from 84 up to 95% while lowering H D D utilization by 2% in writethrough mode and 33%
and 98% in writeback mode. This clearly demonstrates why B-cache writeback mode is so
much more effective in this load. While L V M doesn't confirm successful write until the data
is on the H D D even in writeback mode (which leads to a high H D D utilization) B-cache
reports writes immediately after writing into cache, making H D D writes delayed and H D D
utilization lower.

In the C P U utilization part it might look like B-cache is a huge C P U hog, according to
the source [1] Centos/RHEL 7.X the C P U load reported by the OS is unrealistically high in
some cases. I also observed C P U load through the i D R A C (integrated Dell Remote Access
Controller) of the server and during testing it never went above 10% even with B-cache.
On a system with newer version of B-cache this should be patched.

Figure 7.10: C P U and drive utilization comparison, database load

Ext4 no cache XFS no cache Ext4 LVM XFS LVM cache Ext4 LVM XFS LVM cache Ext4 B-cache XFS B-cache Ext4 B-cache XFS B-cache
cache cache writeback writeback writeback

writeback

CPU user CPU system HDD util ization SSD utilization

31

In another test (mixed access, results can be seen in graph 7.4) the drive utilization of
X F S L V M cache and X F S L V M cache writeback mode coincide perfectly with the results
of the tested scenario. In this test the reported C P U load of B-cache is correct and slightly
(approx. 10-20%) lower than with the uncached array.

Figure 7.11: C P U and drive utilization comparison, mixed access
100 %

9 0 %

8 0 %

7 0 %

6 0 %

Ext4 no cache XFS no cache Ext4 LVM XFS LVM cache Ext4 LVM XFS L V M cache Ext4 B-cache XFS B-cache Ext4 B-cache XFS B-cache

cache cache writeback writeback writeback
writeback

^ ™ CPU user CPU system HDD util ization SSD utilization

External journal

Moving the journal of a file system to a different (preferably faster) device is in theory an
easy upgrade to performance.

Ext4 external journal

In order to mitigate filesystem performance penalty of Ext4 journal I conducted a test of
Ext4 performance with journal located externally on a small SSD partition. As can be seen
in the graph 7.12 Ext4 benefits from externally located journal especially in the rapid file
creation scenario (labeled 500k in the graph) and periodically synchronised database. For
an average increase of only 7% over internal journal the added configuration and higher
possibility of failure is this setup therefore not recommended over higher introduced caching
solutions.

X F S external log

Graph 7.13 shows the improvements of putting X F S log on an external SSD device. While
performance did increase by 13% in the file creation scenario, external log offered worse
performance than internal in read and write and minimal improvements otherwise. A n
average increase of 1% makes X F S external log not recommendable.

Price / performance

I took the price of the HDDs and SSDs from current listing and compared the price and
performance of an uncached R A I D 10 of 2x4 4TB HDDs and the same array with a single
800GB SSD to represent possible writethrough configuration, 2 800GB SSDs in R A I D 1 for

32

33

writeback and additional security and 2 cheaper, 480GB SSDs in R A I D 1. If the SSD is in
the same performance level (SATA with AHCI) the performance should be comparable. I
chose more expensive datacenter focused drives due to their higher endurance and sustained
performance. Commercial SSDs cost less but are only advisable for writethrough caching.

As can be seen in figure 7.14 B-cache writethrough mode offers over lOx the performance
for 53% more cost than uncached array. Writeback B-cache mode offers even more, over
14x the performance, but for higher costs as well. For 107% more acquisition costs approx­
imately 2.3TB worth of hot storage can be effectively sped up. If lower capacity drives are
utilized than for 39% more costs than baseline only about 1.4TB of cache managed hot
storage will be sped up, with performance close to that of the more expensive larger SSDs.

L V M cache on the other hand offers for the same price increase only modest performance
gains. Overall performance gains are lower than the increase in price. However, for specific
situations such as mixed sequential and random demonstrated in graph 7.4 or file
creation speed in Ext4 (see graph 7.1) the 41% and 67% increase in performance may be
justifiable.

Figure 7.14: Price and performance comparison
1576,00%

16TB RAID 10 16TB RAID 10 + 1 SSD 16TB RAID 10 + 2 SSD RAID 16TB RAID 10 + 2 small SSD
Writethrough 1 RAID 1

1700,00%

1500,00%

1300,00%

1100,00%

900,00%

700,00%

500,00%

300,00%

100,00%

I price • performance B-cache • performance LVM cache

The results without R A I D controller cache

A l l the above graphs and results were obtained with the 1GB DDR3 cache on the P E R C
H730 mini R A I D controller turned on. I switched the R A I D controller cache setting to
writethrough which should be equivalent to absent cache.

Disabling the controller cache resulted in an average 11% decrease in IOPS in Ext4
compared to enabled cache. Surprisingly, disabling the controller cache actually increased
the performance of B-cache in writeback mode in Read, Write and Database read. In file
creation test it decreased compared to enabled controller cache, but managed to be faster
than the uncached array, unlike in the previous testing. The Sync database, safe database
with periodic syncQ calls suffered the most from disabled controller cache.

As can be seen in graph 7.15, overall, the caching solutions formatted with Ext4 with
controller cache disabled compared to the uncached array performed similarly to the setup
with controller cache enabled. B-cache with writeback caching still dominates both the

34

overall and most individual tests, with B-cache writethrough mode in the second place and
L V M cache behind.

Figure 7.15: Ext4 caches performance with controller cache disabled
1000000IOPS 2000%

100000IOPS

10000IOPS

1000IOPS

100 IOPS

Ext4 no cache Ext4 B-cache Ext4 B-cache writeback Ext4 LVM cache Ext4 LVM cache writeback

Read Write Database Read Database Write ^ M S O O K Sync database % difference to baseline

In X F S disabling the controller cache has a surprisingly high impact on the performance
of B-cache writeback mode. As the graph 7.16 shows, X F S without controller cache is
much more beneficial for writethrough modes of both B-cache and L V M cache. As far as
L V M cache is concerned, it scored significantly better than with controller cache. While
writethrough mode is ahead L V M cache writeback mode in average score, writeback offers
much more consistent IOPS as well as higher write speeds.

Disabling the controller cache has the same impact on X F S performance as on Ext4 (as
shown in figure 7.15). In X F S L V M cache and especially the writeback mode is affected the
least.

Summary of results

The summarising graph of all the results with linear scale can be found in graph 7.17. You
can see the spikes in performance that B-cache is able to provide in certain scenarios as
well as general comparison of all test results.

7.2 Performance across server loads

Summarising across the different model server loads as introduced in chapter 3, we can
observe the following.

Very small files

In the Very small files model server load we can observe 2 trends. Better filesystem sup­
port for fast allocation as well as better journal write performance of the X F S filesystem
triumphs. In Ext4 the added complexity of most caching solutions can actually hurt per­
formance significantly. In this scenario the best performing cache is the L V M cache in
writeback mode, offering a respectable 67% increase in throughput.

35

Figure 7.16: X F S caches performance with controller cache disabled

Figure 7.17: Summary graph of all test results
120000

•

. . . . 1 1. .. 11. i i i i . i i . > ! i i. i . i . i •_• 1 • i • - !
Ext4 no cache Ext4 B-cache Ext4 B-cache Ext4 LVM cache Ext4 L V M cache XFS no cache XFS B-cache XFS B-cache XFS LVM cache XFS LVM cache

writeback writeback writeback wri teback

• Read • Wri te • Database Read Database Wri te • Synchronised database • Sequential Read • Sequential Wr i te • 500K

36

http://iiii.ii

Small files

The small files scenario split into 2 different versions. The relatively low risk, high per­
formance one (News sites, wikipedias, discussion forums etc. henceforth called general
database) and the high availability, high risk safe databases (Booking sites, banking, oper­
ation critical database, will be referred to as secure database).

In the general database scenario B-cache in all its variations (Ext4 and X F S in writeback
and writethrough modes) performed significantly better than L V M cache in read operations.
The B-cache in writeback mode with Ext4 and X F S excelled in both read and write opera­
tions with 55x and 43x increase over the baseline in read and 28x and 20x increase in write
operations over the baseline respectively.

The secure database is less effective, especially due to the fact that it forces the caches
to be flushed regularly. The only cache that resulted in a performance increase was B-cache
in writeback mode. It was better than uncached Ext4 array by 257% and by 210% better
than X F S variant.

Mixed sized files hot storage

For this server load the mix of different files as well as random and sequential access was
examined. The paragraph 7.1 with the graph 7.4 shows that this server load is best suited for
X F S with L V M cache in both writethrough and writeback mode with slight 4.7% advantage
in read and 3.6% advantage in write in favour of writeback.

Large files

Although not part of the tested scenarios the Mixed sized files tests also revealed information
relevant to this potential load and the difference between B-cache and L V M cache.

B-cache features a sequential bypass mechanism that on one hand does not cache (and
subsequently speed up the access to) the sequentially accessed data, but on the other hand
protects the caching drive from rewriting large areas that can maintain the previously
cached data.

Very large datasets

As stated in chapter 3 this type of load is not financially advisable for caching. In the
event that money is not an obstacle consider either some sort of tiering as introduced in
section 5.4 or identify the type of files stored and scale up the setup used in this paper
considerably. (B-cache and L V M cache utilizing raid 0 of 2 or more drives may potentially
yield even better results than in my testing.)

37

Chapter 8

Conclusion

The goal of this bachelor thesis was to examine the available H D D array acceleration with
SSD drives. During the benchmarking I observed great differences between the tested
caching solutions.

L V M cache is the more user friendly, offering easy management and integration into
existing L V M managed environment. Ideal for servers that are already configured with
L V M and want an extra bit more performance. Depending on the workload L V M can still
provide about 23% average increase over uncached array making it an easy and affordable
inplace upgrade.

By pure numbers B-cache triumphs over L V M cache by a large margin. B-cache is able
to serialize random writes (especially in the writeback mode) and achieve performance an
order higher than both uncached and L V M cached array. B-cache doesn't perform the best
with Ext4 filesystem, in some cases (such as creation of a large amount of small files) falling
below the speed of uncached array. X F S and writeback mode of B-cache dominate the tests.
B-cache offers 7-13x the performance of uncached drive, provided that the hot storage size
is small enough.

Writeback cache mode offers significantly better write speeds, at the cost of data security.
A n additional drive in a mirror configuration is recommended in order to prevent data loss.
Writethrough is the more secure of the two caching modes and offers slightly lower, but
still significant improvements.

Further work on SSD caching could investigate caching at filesystem level (ZFS L 2 A R C
or bcachefs) and analyse N V M e SSD performance with caching solutions.

38

Bibliography

[1] Solid state drive caching to speed up your spinning drives. [Online; visited 25.04.2017].
Retrieved from: https: //www.3pillarglobal.com/insights/solid-state-drive-
caching- to-speed-up-your-spinning-drives

[2] Axboe, J.: Fio Readme. [Online; visited 20.02.2017].
Retrieved from: https://github.com/axboe/fio

[3] How long do drives last. [Online; visited 25.01.2017].
Retrieved from:
https: //www.backblaze.com/how-long-do-disk-drives-last .html

[4] Bcache user documentation. [Online; visited 7.02.2017].
Retrieved from: https: //www.kernel.org/doc/Documentation/bcache.txt

[5] eProvided: SSD drive failure - What causes Solid State Drives to stop working and
fail? [Online; visited 6.02.2017].
Retrieved from: http: //www.eprovided.com/data-recovery-blog/ssd-drive-
failure-causes-solid-state-drive-stop-working-failures/

[6] Everspin Announces nvNITRO™ NVMe Storage Accelerator Family. [Online; visited
25.04.2017].
Retrieved from: https: //www.ever spin.com/news/ever spin-announces-nvnitro0/,
E20/o840/oA2-nvme-storage-accelerator-family

[7] Ext4 Howto. [Online; visited 14.03.2017].
Retrieved from: https: //ext4.wiki.kernel.org/index.php/Ext4_Howto

[8] Gasior, G.: The SSD endurance experiment. [Online; visited 28.01.2017].
Retrieved from: http: //techreport.com/review/27909/the-ssd-endurance-
experiment-theyre-all-dead

[9] 3D NAND Technology animation. [Online; visited 12.03.2017].
Retrieved from: http: //www.intel.com/content/www/us/en/solid-state-drives/
3d-nand-technology-animation.html

[10] Intel Optane SSD DC P4800X Product brief. [Online; visited 25.04.2017].
Retrieved from: http: //www.intel.com/content/www/us/en/solid-state-drives/
optane-ssd-dc-p4800x-brief.html

[11] Device mapper cache policies. [Online; visited 21.04.2017].
Retrieved from: https:
/ / www.kernel.org/doc/Documentation/device-mapper/cache-policies.txt

39

http://www.3pillarglobal.com/insights/solid-state-drive-
https://github.com/axboe/fio
http://www.backblaze.com/how-long-do-disk-drives-last
http://www.kernel.org/doc/Documentation/bcache.txt
http://www.eprovided.com/
http://www.ever
http://ext4.wiki.kernel.org/
http://www.intel.com/content/www/us/en/solid-state-drives/
http://www.intel.com/content/www/us/en/solid-state-drives/
http://www.kernel.org/

[12] Re: btrfs und Ivm-cache? [Online; visited 27.04.2017].
Retrieved from: https: //www.spinics.net/lists/linux-btrfs/msg50427.html

[13] LVM cache man page. [Online; visited 7.02.2017].
Retrieved from: http: //man7.org/linux/man-pages/man7/lvmcache.7.html

[14] Azure Blob Storage: Hot and cool storage tiers. [Online; visited 25.01.2017].
Retrieved from: https:
/ / docs.microsoft.com/en-us/azure/storage/storage-blob-storage-tiers

[15] Storage Space Tiering. [Online; visited 15.03.2017].
Retrieved from: https: //blogs.technet.microsoft.com/larryexchange/2015/12/
02/understand-storage-space-tiering-in-windows-server-2012-r2/

[16] Data classification: Key to a successful Tiered Storage Strategy. [Online; visited
25.01.2017].
Retrieved from: http://www.mosaictec.com/pdf-docs/whitepapers/
DataClassification-TieredStorage.pdf

[17] V-NAND Technology. [Online; visited 12.03.2017].
Retrieved from:
http: //www. Samsung.com/semiconduct or/product s/f lash-storage/v-nand/

[18] SanDisk DAS Cache. [Online; visited 22.03.2017].
Retrieved from: https: //www.dell.com/en-us/work/learn/server-technology-
component s-sandisk-das-cache

[19] A brief history of XFS. [Online; visited 20.02.2017].
Retrieved from: http: / /xf s.org/docs/xf sdocs-xml-dev/XFS_User_Guide/tmp/
en-US/html/ch01s02.html

[20] Staimer, M.: Tiered data backup storage strategies. [Online; visited 25.01.2017].
Retrieved from: http: //searchdatabackup.techtarget.com/tip/Tiered-data-
backup-storage-strategies

[21] Tarasov, V.: Filebench Readme. [Online; visited 13.03.2017].
Retrieved from: https://github.com/filebench/filebench

40

http://www.spinics.net/lists/linux-btrfs/msg50427.html
http://docs.microsoft.com/
http://technet.microsoft.com/larryexchange/2015/
http://www.mosaictec.com/pdf-docs/whitepapers/
http://www.dell.com/en-us/work/learn/server-technology-
http://searchdatabackup.techtarget.com/tip/Tiered-data-
https://github.com/filebench/filebench

Appendix A

Contents of the memory media

/data/ Excel and txt outputs of tests, each combination of filesystem and caching solution
in a subfolder
/documentation/ Latex source version of this bachelor thesis
/tests/ Test input files
xbelou03-IO_Subsystem.pdf pdf version of this bachelor thesis

41

Appendix B

Iozone test results

In the following graph you can see the IOzone results of caching solutions. To allow for
better visibility and easier comparison I scaled all graphs containing read results from 0 to
25 million and all graphs containing write results from 0 to 8 million. As you can see on
an example figure B . l , all graphs are color coded to show the different value ranges and
contain an unmeasured subset. Please note that IOzone test did not include pre-warming
of the caches, therefore represents a cold access.

Figure B . l : Example annotated graph

42

Figure B.2: Ext4 random read no cache

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

Figure B.3: Ext4 random read L V M cache

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

43

Figure B.4: Ext4 random read L V M cache writeback

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

Figure B.5: Ext4 random read B-cache

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

11

Figure B.6: Ext4 random read B-cache writeback

File size KB

• 0-5000000 «5000000-10000000 «10000000-15000000

15000000-20000000 • 20000000-25000000

Figure B .7: X F S random read no cache

File size KB

• 0-5000000 «5000000-10000000 «10000000-15000000

15000000-20000000 • 20000000-25000000

15

Figure B.8: X F S random read L V M cache

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

Figure B.9: X F S random read L V M cache writeback

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

46

Figure B.10: X F S random read B-cache

25000000
20000000

< 15000000
§ 10000000

5000000
0 A *

ri N in

File size KB

r N

CO
0 0

16384
1024

64

OJ
N

'l/>

•D

O
u

<u

I 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

Figure B . l l : X F S random read B-cache writeback

File size KB

• 0-5000000 • 5000000-10000000 • 10000000-15000000

15000000-20000000 • 20000000-25000000

47

Figure B.12: Ext4 random write no cache

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 «6000000-8000000

Figure B.13: Ext4 random write L V M cache

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 «6000000-8000000

18

Figure B.14: Ext4 random write L V M cache writeback

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

Figure B.15: Ext4 random write B-cache

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

49

Figure B.16: Ext4 random write B-cache writeback

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

Figure B.17: X F S random write no cache

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

50

Figure B.18: X F S random write L V M cache

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

Figure B.19: X F S random write L V M cache writeback

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 «6000000-8000000

51

Figure B.20: X F S random write B-cache

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

Figure B.21: X F S random write B-cache writeback

File size KB

• 0-2000000 «2000000-4000000 «4000000-6000000 6000000-8000000

52

