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Abstract 
The bachelor thesis examines 10 subsystem optimization using SSD cache to speed up 
HDDs. I examined possible server loads and identified those that are suitable for caching. 
In the first part I introduce 2 caching solutions, L V M cache and B-cache with their man­
agement capabilities and 2 filesystems Ext4 and X F S . In the second part 10 performance 
of L V M cache and B-cache with Ext4 and X F S filesystem is benchmarked and compared 
to an uncached H D D array. 

Abstrakt 
Bakalářská práce zkoumá optimalizace výkonu diskového subsystému za využití SSD disků. 
Prozkoumal jsem možné serverové zátěže a vybral z nich podmnožinu vhodnou k urychlení 
pomocí cache. V první části představuji 2 kešovací systémy, L V M cache a B-cache, spolu s 
možnostmi jejich správy a 2 souborové systémy Ext4 a X F S . V praktické části je naměřen 
výkon souborového subsystému za využití L V M cache a B-cache spolu se souborovými 
systémy Ext4 a X F S a jejich výkon porovnán vůči poli rotačních disků. 
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Chapter 1 

Introduction 

1.1 Motivat ion 
Drive technologies are always advancing. Despite that it is necessary to keep even older 
technologies in mind, especially due to cost/power ratio. In this regard, redundant drive 
arrays composed of large, but slower hard-drives are ideal for SSD acceleration. High 
throughput, fast access times and lowering costs per gigabyte are making SSDs ideal to 
accelerate or replace slower H D D storage. 

In this paper I shall first identify typical scenarios that could benefit from SSD acceler­
ating cache. Typical scenarios will then be reduced to a few potentially testable. 

I will introduce the differences between H D D and SSD technology in various metrics 
and explain the benefits of both technologies. 

Next I will examine the two selected caching solutions available on Linux and compare 
them. Other available technologies will be briefly mentioned. In the same chapter I will 
also discuss briefly chosen filesystems and their advantages. 

In chapter 6 I will introduce the testing system and the testing methodology as well as 
which quantities will be observed. 

In chapter Results I will be comparing the tested configurations according to their 
effectiveness in loads introduced in chapter 3. 

Finally I will summarise the results and provide a recommendation based on the results. 
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Chapter 2 

Server configuration models 

In this chapter I will attempt to find as many potential scenarios of server usage as possible. 
Each scenario should represent a typical and reproducible server load. 

2.1 Individual configurations 

• Video surveillance in tunnels in Brno 
160 cameras, storage, ad-hoc indexed frames searching, sequential writing, low through­
put, high throughput random reading while searching 

• Wikipedia 
Text storage, popular pages in high demand, high random read, high reliability and 
availability, small dataset size. 

• Modern audio-video Wikipedia 
High sequential throughput per request, but due to high amount of requests turned 
mostly random, both read and write but mostly read, seeking through key-frames 
random reading. 

• Booking server 
High availability, reliability, relatively small database, high throughput, random ac­
cess 

• Storage server (Google drive, OneDrive) 
High reliability, large capacity, mixed access, sequential and random, read and write. 

• Discussion forum 
Rich text format, embedded video, pictures, popular posts in high demand, random 
access, older posts lower demand, can be on slower storage. Fast random read speeds 
while searching. 

• News site 
Text, pictures, video, latest news in high demand, slower storage for older. 

• Windows update server 
Long term storage for older updates, high demand during rollout 
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• Development test server 
High speed mixed load, both read and write, random and sequential. Contents backed 
up to a different server and loaded up when needed. High sequential read during 
backup and write during load. 

• Banking system 
Reliability outweighs everything else, unacceptable data loss, security, encryption 

Scenario 
Table 2.1: Scenario comparison 

Random read Random write Sequential read 
Video surveillance 

Wikipedia 
Booking 
Storage 
Forum 

News site 
Windows update 

Test 
Banking 

| Rai 
high search 

high 
high 

medium 
high search/popular 

high search 
high on rollou 

medium 
medium 

Sequential write 

medium 
medium 

high on rollout 
high on backup 

medium 

ug 

low 
high updating 
high on push 
high on load 

medium 

2.2 Summary 

In configurations mentioned above you can potentially find one applicable to your personal 
needs and follow its aggregation through the paper. It can serve as a guide on how you can 
optimize your server configuration. Please note that there are more criteria to be aware of. 
Those can include 

• used server hardware 

• used SSD (longevity, performance, size, cost) 

• which random or sequential data is requested (from random parts of the disc or still 
the same block/super block) 

• upgradeability 

Also worth mentioning is that the size of dataset you are in charge of matters, opti­
mizations in this paper focus on the use-case where it's impractical or impossible to use 
SSD-only array. That means that workloads in this paper focus on datasets in the single 
to double digits TB of data. Smaller datasets are better handled in a different way, such as 
pure SSD array. If you already have some server hardware with mechanical discs, consider 
if the SSD usage in this paper is relevant to your needs. The costs of upgrading to an 
SSD-only array are quite high (older motherboards/CPUs do not support many NVME 
SSDs). You can also transition mechanical array to a hybrid array and later to purely SSD 
one as an alternative. 

What has to be mentioned as well, SSD caching outlined in this paper is a solution to a 
general purpose server, where workload is either unknown, changing or for whatever reason 
(time, compatibility, knowledge) impossible to optimize on application level. Application 
based optimizations are always more cost effective and bring better results. 
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Chapter 3 

Server load models 

Because working with 10 different scenarios would be difficult, I have aggregated them into 
4 model scenarios that should cover different server loads. These summarised scenarios will 
serve as the basis for building tests. 

I will demonstrate the aggregation process in table 3.1. Information about the scenarios 
can be found in chapter 2.1. 

3.1 Very small files 

(Session handler) 
Very small data, individual files smaller than or the same as the size of SSD sector(4kB). 

High volume of both writing and reading requests, mostly random. 
Aggregates Booking server and Forum from scenarios, as well as session handler in a 

web server. This kind of model is usually better handled through purely SSD based storage 
arrays. It is however quite common to see a combination of several use case scenarios in a 
single server (typically L A M P ) with basic configuration. 

Unoptimized session handling writes create hundreds of thousands to millions of files 
in a single directory. Directory access and read/write operations in such a directory are 
slowed down significantly, server administrator can usually find out that it is happening by 
service quality disruption only. 

Testing In this scenario I will simulate high writes and rewrites of high volume of small 
files in a single directory. I will simulate this workload with Filebench. From the R E A D M E 
of Filebench: [21] 

Filebench is a file system and storage benchmark that can generate a large va­
riety of workloads. Unlike typical benchmarks it is extremely flexible and allows 
to specify application's I /O behavior using its extensive Workload Model Lan­
guage ( W M L ) . Users can either describe desired workloads from scratch or use 

Very small files 
Small files 
Big files 
Mixed files and reliability 

Booking, Forum 
News site, Wikipedia 
Storage, Surveillance, Windows update 
Test server, Banking 

Table 3.1: Aggregation of the scenarios 

(i 



(with or without modifications) workload personalities shipped with Filebench 
(e.g., mail-, web-, file-, and database-server workloads). Filebench is equally 
good for micro- and macro-benchmarking, quick to setup, and relatively easy 
to use. 

Using Filebench language I created a workflow consisting of creating 500000 small 4kB files, 
writing into those files and closing them, all in single directory. 

3.2 Small files 

(Database) 
News site, Wikipedia and general database are represented by this model. File sizes 

are still small, but the volume of them, combined with non-textual kinds of media (video, 
pictures, audio), the overall data size exceeds reasonable SSD capacities. Currently, these 
setups generally use some form of MySQL database with external storage, usually a R A I D 
6, 60, 10 array with hardware redundancy (not only in the array, but whole redundant 
servers ). Snapshots are used for quick recovery. 

Testing M y S Q L 5.7 wil l be combined with Sysbench benchmark suite to represent this 
scenario. Sysbench is a modular cross-platform multi-threaded benchmark tool designed 
to test system performance of database hardware without the need for complex database 
setup. I am using a testing database of 100GB divided into 128 files generated by Sysbench. 
A n IO intensive workload is set for 5 minutes repeated 2 times in order to allow for the 
caches to warm up. 

3.3 M i x e d sized files hot storage 

(Rapid development in Microsoft Azure) 
This model aggregates Testing and Banking. Man-hours of developers are expensive, 

therefore it is crucial for them to be able to test their work quickly. Raw performance is 
needed, even if it comes at a higher cost. Reliable operation is crucial as well. Currently 
these development environments are usually done in a large NSF R A I D array segmented 
to individual users. 

Testing This model will be represented by an IO heavy workload, simulated with the 
help of Fio benchmark. From the R E A D M E of Fio:[2] 

Fio spawns a number of threads or processes doing a particular type of I /O 
action as specified by the user, fio takes a number of global parameters, each 
inherited by the thread unless otherwise parameters given to them overriding 
that setting is given. The typical use of fio is to write a job file matching the 
I/O load one wants to simulate. 

The job file will reflect the desired read/write ratio as well as various file sizes. The 
reliability portion of this scenario will examine how each setup handles unavailable caching 
drive. 
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3.4 Large files 

(Storage Google Drive, OneDrive) 
Even when the speed isn't the highest priority it's always desirable. This model rep­

resents scenarios Storage, Video surveillance and Windows update. Large data files with 
either small metadata (video surveillance key frames) or relatively small highly active data 
(windows update, new version rollout). 

3.5 Very large datasets (lOs-lOOs of P B ) 

(YouTube) 
The cost of SSDs needed to contain all this data would be astronomical, therefore reliable 

high capacity HDDs are used. Programming specific use of cache, C D N (content delivery 
network) and content-based storage tiering necessary. SSD caching described in this paper 
isn't effective enough for this scenario, therefore it will not be tested. 

3.6 Summary 

Out of the potential models I have selected 3 with the most potential for SSD caching which 
should cover relevant use cases. These include Very small files (Session handler), Small files 
(Database) and Mixed sized files hot storage (Rapid development in Microsoft Azure). The 
testing will include a generic 10 speed benchmark using IOzone which will be included in 
the Appendix to provide a more in depth look at the speed differences in various 10 sizes 
for interested parties. 
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Chapter 4 

H D D and SSD differences 

4.1 Performance span 

The difference between even the fastest hard-drive and SSD is tremendous. The difference 
in speeds of hard-drives is mostly due to different rotational speeds (15k drive outperforms 
a 7.2k drive) and the drive cache size. Delay between finding the data and returning it is 
dependent on the controller speed, arm movement to the right track and rotational delay. 

In solid-state drives the approach is different. Wi th no moving parts the delay is mostly 
limited by the drive controller and the actual N A N D package itself. Greater speeds can 
be achieved with parallelism, having the controller accessing multiple flash packages at 
the same time. The size of the operations as well as the number of requests can have a 
significant impact on drive speed. High speed SSDs can be bottlenecked by the connection 
to the computer, as explored deeper in section 4.2. 

To show the difference with actual numbers, please refer to table 4.1. 
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Intel P3500 1 Intel S35002 Seagate 
ST900MP0006 3 

Seagate ES.3' 1 

Type N V M E SSD SATA SSD 15000 R P M H D D 7200 R P M H D D 
Interface P C I express SATA SATA SATA 
Capacity 800GB 900GB 4000GB 
Transfer speed 2200MB 500MB 300MB 175MB 
Average latency 0.020 ms 0.057 ms 2 ms 4.16 ms 
Idle power 4W 0.9W 5.7W 
Load power 12W 5W 7.6W 11.27W 
Cost$/GB 
(as of 9.2.2017) 

0.90 0.85 0.61 0.05 

Table 4.1: N V M E SSD, SATA SSD, 15k H D D and 7.2K H D D comparison (worst value red, 
best green) 

Dirty storage performance 

Neither SSDs nor HDDs operate at the exactly same level of performance regardless of 
remaining capacity. SSDs with no available empty cells slow down their write speeds con­
siderably, because they must erase the contents of the cells before writing to them. In the 
same way, HDDs have different write speeds on the inner part of the cylinder and outer 
part. The difference is due to the same rotation speed, while having longer tracks. That is 
the reason why smaller 2.5„ platters are used in high speed (10k and 15k R P M ) HDDs. 

SSD technologies 

Currently, SSDs are composed of a controller, R A M buffer and the actual flash cells in 
several packages. Each of these can have a significant impact on the drives performance. 
However, as controllers and buffers are exclusive to each manufacturer, I will only examine 
the differences between current flash cells technologies and their impact on drive perfor­
mance as well as some upcoming technologies that might be relevant in the future. 

S L C 

In SLC (single-level cell) each cell in the flash package contains a single bit of data. SLC 
has the highest write speed, lower power consumption and higher endurance than M L C 
and T L C . However to store the same amount of data manufacturer must make a lot more 
SLC cells than M L C and T L C , making SLC based SSDs more expensive. SLC used to 
be found in enterprise-grade and longevity focused drives, but manufacturers have since 
focused more on incorporating only a small SLC cache to speed up multi-bit cell flash. 

1

http://ark. intel.com/products/82846/Intel-SSD-DC-P3500-Series-400GB-12-Height-PCIe-3_0-

20nm-MLC 
2

http://ark. intel.com/products/75685/Intel-SSD-DC-S3500-Series-800GB-2_5in-SATA-6Gbs-

20nm-MLC 
3

http://www. Seagate, com/www-content/datasheets/pdfs/enterprise-performance-15k-hddDS1897-

l-1608GB--en_GB.pdf 
4

http://www. seagate.com/www-content/product-content/constellation-fam/constellation-es/ 

constellation-es-3/en-us/docs/constellation-es-3-data-sheet-dsl769-l-1210us.pdf 
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M L C 

M L C (multi-level cell) allows more than one bit to be stored in a single cell. T L C can 
be in certain situations considered as a subtype of M L C , when mentioning M L C , I will 
be using the two-bit per cell definition. It stands in the middle between SLC and T L C 
both performance- and cost-wise. M L C is slowly in decline, while cheaper than SLC, M L C 
doesn't offer enough storage density to be enticing to most manufacturers. 

T L C and further 

T L C (triple-level cell) are the most cost-effective type of flash cells today. They enable 
the storage of 3 bits into a single cell through the use of 8 different voltage states. Some 
manufacturers refer to T L C as 3-bit M L C . The primary benefit of T L C is its lower cost 
per G B due to higher data density. The controller must be able to deal with the inevitable 
errors, whose occurrence is higher due to more voltage levels and lower difference between 
each level. 

Demand for higher storage density led some manufacturers to invest into Q L C (quadruple-
level cell) technology which offers 33% increase in storage size per package, but requires 
advanced error correction, controllers and firmware to account for lower difference between 
each cell state. 

Modern SSD configuration 

To lower the manufacturing cost and maximize performance per G B of storage, many manu­
facturers combine the advantages of T L C cells and SLC cells. By utilizing a small SLC cache 
as well as large amount of T L C packages sustained high load goes through the SLC cache, 
minimizing performance drop-off. Other notable technique of maximizing the price/per­
formance ratio is 3D-NAND[ ](by Intel and Micron), or V - N A N D [ ](by Samsung). Both 
technologies stack multiple layers of flash cells vertically, connecting the layers. This ap­
proach allows for higher cell density than regular planar cells, higher endurance, lower 
interference and lower price per G B cost. 

3D Xpoint 

On 19. March 2017 Intel unveiled its D C P4800X Series SSD with certain advancements 
from N A N D technology. It is based on Intel 3D XPoint™(pronounced cross point), com­
bining memory and storage into a single high bandwidth storage unit. It utilizes 4 lane 
PCIe 3.0 connection with N V M e interface and features lower latency than N A N D flash, 
high sustained random IOPS( 500 000) and much higher endurance(12.3 P B W compared 
to N A N D based D C P3500 with 1.095 PBW).[10] 

Unfortunately, Optane drives are at the moment going to be available only in small 
375GB size for the data center market and 16-32GB for consumers for a higher price per 
gigabyte than competing N V M E SSDs. Unlike N A N D it doesn't have to erase existing 
data before writing new data boosting both endurance and performance. The storage is 
also bit addressable eliminating the need for block/page with wasted space and making 
wear-leveling and garbage collection easier. More information about the D C P4800X drive 
as well as benchmark results can be found in the review by Paul Alcorn. 

5

http: //www. tomshardware.com/reviews/int el-optane-3d-xpoint-p4800x, 5030.html 
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Future 

Future storage technologies that are currently in development, but may be relevant in the 
future fall under the N V M (non-volatile memory). These include P R A M , n v S R A M , R R A M , 
M R A M and others. When considering one of these consider also compatibility (if there is 
any) both in hardware (connectors, motherboard) and software(communication protocol, 
BIOS, applications etc.) with existing or new hardware. New technologies tend to be more 
expensive. 

Out of all these I will highlight the M R A M based Everspin nvNITRO. 

Everspin nvNITRO On 8. March 2017 Everspin Technologies, Inc. announced M R A M 
based storage accelerator nvNITRO. [6] MRAM(Magnetoresistive random-access memory) 
allows for very high IOPS (1.5 million) and unlike N A N D based storage M R A M doesn't 
suffer from cell degradation eliminating the need for wear leveling as well as read/write 
speed degradation. It should theoretically offer unlimited number of writes. The biggest 
disadvantage of M R A M is low storage density, due to which nvNITRO will be available in 
the 512MB to 16GB sizes. 

4.2 Other metrics 

Power consumption 

Often neglected metric of a drive is its power consumption in idle and under load. SSDs 
have lower power demands and using them could potentially mean a lower power bill . Please 
note that high speed PCIe SSDs have much higher power consumption than SATA SSDs. 
To get a rough idea of the difference, please refer to the table 4.1. 

Another point worth considering is spinup surge power requirement, the amount of 
power needed when mechanical drives are starting up and the associated delayed spinup at 
startup in larger arrays, where HDDs are started in waves to avoid overloading the power 
delivery system. 

SSDs don't have any mechanical parts to spinup at start therefore do not posses the 
same challenges. SATA based SSDs have lower power requirements than high performance 
PCIe based storage. It is also possible to utilize different power states to lower load power 
requirements of SSDs. You can find more information about the difference in power con­
sumption on Intel SSDs in this article. 6 

Incorporating power consumption measurements unfortunately reaches beyond the scope 
of this paper. 

Reliability 

Reliability of HDDs and SSDs varies, but both should perform well while covered by war­
ranty. Most enterprise-level discs should come with a 5-year or longer warranty. SSDs have 
a limited number of erase cycles on each cell storing the data and includes over-provisioning 
in case of cell failure. 

The D W P D (drive writes per day) metric is often used as an endurance metric of SSDs. 
It represents the amount of data that can be written to the drive every day until the life 
expectancy of the cells is depleted. For example Intel S3500 has an endurance rating of 

6

https: //itpeernetwork.intel.com/managing-power-consumption-of-intel-data-center-ssds/ 

12 

http://intel.com/managing-power-consumption-of-intel-data-center-ssds/


450 T B W which amounts to about 0.3 D W P D . Intel SSDs specifically include a "fail safe,, 
that renders the SSD unusable once its erase cycles have been depleted and the drive could 
become unstable. This metric can be monitored in S M A R T . 

HDDs on the other hand don't have a similar indicator and the end of H D D reliability 
has to be observed through relocated sector count, uncorrectable errors and other criteria 
such as temperature and noise. 

Expected lifespan 

Both HDDs and SSDs have only limited lifespan. Even though manufacturers try to make 
drives last as long as possible, mechanical and electrical limitations of hardware makes 
drives fail. You can find the expected percentage of healthy HDDs after four years in use in 
an article here7. Most common reasons of failure include bearing and motor failure, head 
crash, circuit failure, sector magnetisation failure and miscellaneous mechanical failures. 

SSDs don't suffer from mechanical failures (due to the fact that there are no moving parts 
at all), they are however susceptible to electrical failure, N A N D wear-out, bad soldering, 
bad sectors, controller failure, firmware update error.[5] You can get a better idea on the 
expected lifetime of HDDs at Backblaze[3], where they announce the reliability statistics of 
HDDs from their own servers. SSD endurance is different, but you can learn more about it 
in an endurance test here [8]. 

Connections 

Both H D D and SSDs must be connected to a system using an industry standard connector. 
Modern drives use one of serial connections available, such as SATA (Serial ATA) or SAS 
(Serial Attached SCSI) connectors. In their 3rd revision these allow maximal speeds of 6 and 
12 Gb/s respectively, which is far more than most HDDs can deliver. However, for modern 
SSDs these connectors can create a bottleneck, so faster SSDs use P C I - E connection in the 
form of either typical PCI -E 16x/4x slot (server oriented SSDs) or an M.2 slot (consumer 
oriented SSDs). Some SSDs have a U.2 connector, more suitable for 2.5" form factor which 
combines SAS and PCIe technologies into a new connector. These faster SSDs can achieve 
potential speeds of up to 40 Gb/s through 4 lanes of P C I - E 3.0. 

7

https: //www.backblaze.com/how-long-do-disk-drives-last.html 
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Chapter 5 

Available caching technologies 

5.1 L V M cache 
L V M cache is an extension of the highly popular Linux L V M {Logical Volume Manager) 
built on the dm-cache kernel component. Where traditional L V M offers better hard-disc 
partition management by grouping several physical drives into a single addressable logical 
drive, L V M cache adds the advantages of mixing different drive technologies. 

Figure 5.1: L V M cache diagram 

Filesystem(EXT4, XFS) Page cache 

Logical vo l ume 

Vo l ume group 

/ 

It has been integrated into the Linux kernel since version 3.9. Full support out of the 
box requires OS creator support as well. For Centos/RHEL version 7.1 and later and 6.7 
and later are required. The basic principle of operation consists of combining a small and 
fast cache logical volume to improve the performance of a large and slow origin logical 
volume. Cache is further split into two parts, cache data L V and cache metadata L V which 
can be stored on either the same or two different drives. However, caching drive(s) as well 
as origin drive(s) need to be in the same volume group. 

L V M cache offers 3 caching policies, mq, smq and cleaner.[ ] Since version 2.02.128 the 
mq (multiqueue) policy is being deprecated, making the smq (stochastic multiqueue) the 
default used policy. M q offered tunable parameters to finetune cache behavior, specifically 
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sequential threshold, random threshold, read, write and discard promote adjustment. Since 
version 2.02.128 these tunables are accepted, but have no effect because mq has been turned 
to an alias for smq. 

Smq requires less memory, features better level balancing by switching the least recently 
used entry from the higher level. This stochastic behaviour allows for better detection of 
hotspots and quicker cache promotion when 10 patterns change. 

The last cleaner policy can be used to flush all dirty blocks from cache to origin device. 

Conversion To enable L V M cache the origin L V must be in the same V G as the caching 
drive. L V M cache contains all the necessary utilities for proper management. These include 
Ivcreate, Ivs, pvs, Ivconvert, Ivremove, Ivdisplay, Ivrename. 

There are 2 major versions of L V M , the original L V M 1 introduced in kernel 2.4 and the 
newer L V M 2 that has been in kernel since version 2.6 but provides backwards patches for 
2.4 as well. For L V M cache we need L V M 2 with its userspace tools with at least version 
2.01.15. 

Monitoring and configuration L V M cache supports basic monitoring capabilities through 
Ivs -o command with appropriate options. Available since version 2.0.2 these are not men­
tioned in official man page, but include the options explained in table 5.1. 

Alternatively, Ivdisplay -m has been updated in version 2.0.2.169 to display these infor­
mation as well. A sample output of Ivdisplay -m: 

Logical volume 
LV Path /dev/vg/lvol0 
LV Name lvolO 
VG Name vg 
LV UUID Y4uWuN-TBGk-duer-aPWl-yBWn-iFFR-RUlggl 
LV Write Access read/write 
LV Creation host, time linux, 2017-03-01 20:52:39 +0100 
LV Cache pool name lvol2 
LV Cache origin name lvol0_corig 
LV Status available 
# open 0 
LV Size 12,00 MiB 
Cache used blocks 10,42% 
Cache metadata blocks 0,49% 
Cache dirty blocks 0,00% 
Cache read hits/misses 112 / 34 
Cache wrt hits/misses 133 / 0 
Cache demotions 0 
Cache promotions 20 
Current LE 3 
Segments 1 
Allocation inherit 
Read ahead sectors auto 
- currently set to 256 
Block device 253:0 
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Option 
Table 5.1: lvs -o options related to cache management 

Meaning 
cache_ 
cache_ 
cache_ 
cache_ 
cache_ 
cache_ 
cache_ 
segtype 

write_misses 

total_blocks 
used_blocks 
dirty_blocks 
read_hits 
read_misses 
write_hits 

the total number of blocks of cache device 
the number of blocks of cache device used for caching 
the total number of dirty blocks 
the number of times data has been successfully read from cache 
the number of times data hasn't been read from cache 
the number of times data has been written to cache 
the number of times data hasn't been written to cache 
display the L V segment type(for cached L V cache or cache-pool) 

L V M supports both writethrough caching as well as writeback caching. Writethrough is 
selected by default due to higher security. Writeback caching may result in data loss if the 
caching device is lost. Caching mode can be changed when creating the cache L V or later 
with Ivconvert -cachemode option. 

Removal It is possible to remove the caching device without disrupting the origin volume. 
This is done with either Ivremove <volume group/name of caching LV pool> or the safer 
Ivconvert -uncache <volume group/name of caching LV>. Both these commands flush any 
remaining dirty data to the origin LVs before removing the cache. 

You can also remove both the caching and origin drive at the same time with Ivremove 
<volume group/name of cache LV>. Please note that the drive must be unmounted for 
this operation. 

Error handling L V M cache set to writethrough caching has no trouble when caching 
device is unavailable, cache is simply not utilized and the performance drops to H D D 
performance level. Unavailable cache in writeback mode with dirty blocks may result in 
errors or corruption. 

More information about L V M cache can be found in the L V M cache manual page [13]. 

5.2 B-cache 

B-cache (block cache) is a kernel block level cache. It also allows the use of a fast SSD-
based storage as a cache for one or more slower hard disk drives. B-cache is also filesystem 
agnostic. 

B-cache is available in some distributions out of the box, such as Ubuntu 14.10 or newer 
or Fedora 20 or newer. Centos and R H E L as well as other distributions that include the 
3.10 or 3.11 Linux kernel have support for B-cache, but don't include it natively. In these 
systems it is necessary to compile either the B-cache module and insert it or the whole 
kernel with B-cache enabled. 

B-cache terminology is slightly different from L V M cache, origin device is called backing 
device in B-cache. 

Conversion B-cache requires specific superblock on the backing device in order to mon­
itor and manage the devices correctly. It is possible to convert L V M logical volumes, raw 
devices, partitions with some free space or shrinkable filesystem. The conversion can be 
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done with the help of blocks , a block device conversion tool. This can be done inplace, 
although a backup before attempting to convert is advisable. Where direct conversion to 
B-cache is not available, it is possible to convert to L V M first and then convert from L V M 
to B-cache. 

Monitoring and configuration B-cache monitoring is less user friendly than L V M 
cache, though it provides basic userspace tools for monitoring, most configuration is done 
through direct file manipulation. You can find both configuration and information files in 
the /sys/block/bcache<n>/bcache(wh.eie n is the number of currently attached B-cache) 
folder and subfolders. The management capabilities that can be found in those folders are 
outlined in the table 5.2. Table 5.3 aggregates configurable parameters available in B-cache. 

Table 5.2: B-cache management tools, folder names are relative to /sys/block/b-
cache<n>/bcache 

make-bcache Command to format the block device for use with b-cache. 
bcache-super-show Command that prints information about caching or backing device. 
/stats_total/ B-cache statistics folder, contains total statistics. 
bypassed Statistic for all 10 that bypassed the cache. 
cache_hits Number of cache hits per 10. 
cache_misses Number of cache misses per 10. 
cache_hit_ratio Hit/miss ratio in percentage values(O-lOO). 
cache_bypass_hits Number of hits per 10 that is supposed to bypass cache. 
cache_bypass_misses Number of misses per 10 that is supposed to bypass cache. 
cache_readaheads Number of times cache readahead occurred. 
/cache/cacheO/ Symbolic link, cache options 
dirty_data Amount of dirty data in the cache. 
trigger_gc Writing to this file force runs the garbage collection on cache device. 
block_size Block size of the cache device. 
priority_stats Data access statistics. Determine working set size. 
written Total data written to the cache. 

Another disadvantage of B-cache is that newly created B-cache volumes are assigned 
in /dev/ folder with the name bcache<n> where n is an increasing whole number. This 
series of numbers is not reset until server restart, making scripting automation rather 
difficult. Each B-cache device also has a unique UUID and you can also find the related 
configuration and information files in /sys/fs/bcache/<cache set UUID> for the caching 
device and /sys/fs/bcache/<cache set UUID>/bdev<n> for the backing device. 

Removal It is possible to remove caching device while mounted, B-cache automatically 
switches to passthrough mode when caching device is unavailable. Device can be detached 
by writing 1 to /sys/block/<dev path of the caching device>/bcache/detach and unregister-
ing it by writing 1 to /sys/fs/bcache/<cache set UUID>/stop. 

If the cache is missing during startup, backing device isn't started up. Startup without 
the cache can be forced by writing 1 into the running file of the backing device. 

x

https: //github.com/g2p/blocks 
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cache__mode 

readahead 

sequential_cutoff 

writeback_delay 

writeback_percent 

flash_vol_create 

io_error_halflife 

io_error_limit 

journal_delay_ms 

cache_replacement_ 

Table 5.3: B-cache configurable parameters 
Cache mode, possible values writethrough, writeback, 
writearound, none 
Default value 0, if a cache miss occurs B-cache rounds up 
read up to this value 
Threshold of sequential 10 that once passed will bypass the cache 
Number of seconds B-cache waits before writing back new dirty data 
in cache 
B-cache tries to keep this percentage of cache dirty by throttling 
writeback to backing device 
Echoing a size to this file (in human readable units, k / M / G ) creates 
a thinly provisioned volume backed by the cache set 
Error decay in number of IOs 
Number of errors accepted before disabling the cache. If the decaying 
error count reaches this limit dirty data is written out 
and cache is disabled 
Number of milliseconds that journal writes are delayed, default 100 
Change cache replacement algorithm, possible values lru 
(least recently used, default), fifo(nrst in first out) and random policy 

Error handling B-cache provides configurable cache error handling. By default, there 
are several error handling scenarios: 

• Reading from the cache in any mode and an error occurs, the read is repeated from 
the backing device. 

• Caching mode is set to writethrough and a write to the cache errors out the data in 
cache is invalidated and the cache is bypassed. 

• Caching mode is set to writeback and an error occurs then the error is passed on to 
the filesystem. 

A l l write errors above the configurable threshold (default 0) result in the caching mode 
being set to passthrough and cache device shutdown. 

B-cache and ZFS Although B-cache is filesystem agnostic, there has been a bug 2 

making ZFS on top of B-cache unreliable. 
More information about B-cache can be found in the B-cache user manual [1]. 

Other notable caching solutions 

The selected caching solutions that I am using for testing are reliable, tested many times 
before with proper kernel support as well. Some other solutions which are currently under 
development might be more relevant for you in the future. 

Bcachefs 3 is a next generation copy on write filesystem developed by the team working 
on B-cache, focusing on reliability, tiering/caching, compression and other features. It 

2

https: //bugzilla.kernel.org/show_bug.cgi?id=71441 
3

https: //bcache.evilpiepirate.org/Bcachefs/ 
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implements some B-cache caching capabilities into it's own filesystem. Unfortunately It's 
not yet upstream, so a kernel has to be built to enable it. 

EnhancelO 4 is based on older no longer mantained Flashcache developed by Facebook. 
EnhancelO has an advantage that unlike B-cache it doesn't require file system conver­
sion. Unfortunately, the official EnhancelO appears to be broken on newer kernels with no 
development, although there are some promising forks such as . 

For Windows based solution 6 Primocache might be worth considering as well, Storage 
Space Tieringf ] in Windows Server is the built-in option, however the best is probably 
Sandisk DAS cache. [ 8] It is multiplatform, supporting both Windows Server as well as 
various Linux distributions (from Red Hat, SUSE and VMware). Pricing is available upon 
request. To learn more about tiered storage refer to the section 5.4. 

5.3 Filesystems 

To store any data at all it is necessary to format the volume with a proper filesystem. A 
filesystem provides a control mechanism in how and where a file is located in the storage 
medium. It takes its naming scheme from paper-based storage and organisation. Each 
group of relevant data is called a file. The structure and rules to organise and manage these 
files is the filesystem itself. 

Linux is able to utilize different filesystems very well mostly due to kernel-level storage 
abstraction. The so-called V F S (Virtual Filesystem Switch) provides a unified model that 
can represent any particular filesystem operations easily. 

Each filesystem was designed with different requirements and limitations. Some are 
used on special types of media (eg. optical discs), some are universal. Some filesystems 
provide a solution for locally attached storage while others are geared towards network or 
virtually attached storage. 

E X T 4 

E X T 4 (fourth extended filesystem) was developed as a continuation of the E X T 3 filesystem 
with expanded support for large filesystems, scalable beyond today's requirements. Built 
from the ground up with nanosecond timestamps, preallocation as well as fast extent sup­
port. Extents allow for metadata overhead reduction, compressing many block pointers of 
a large file into an extent, enabling faster access and lower overhead. Another useful feature 
is the fast fsck enabling the fsck to skip checking unused inodes. More information can be 
found here [7]. 

E X T 4 is forward conversion compatible with E X T 3 filesystem (allows for easy migration 
from E X T 3 to EXT4) without the need of reformatting. For information about the limits 
of E X T 4 please refer to the table 5.4. Available in Linux kernel version 2.6.28 and later. 

Resizing tools allow for growing while mounted, shrinking requires the file system to be 
unmounted first. E X T 4 is the default filesystem for Ubuntu, mostly due to its stability and 
acceptable sustained performance. 

4

https: //wiki.archlinux.org/index.php/EnhancelO 
5

https: //github.com/lanconnected/EnhancelO 
6

https: //www.romexsof tware.com/en-us/primo-cache/ 
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backup and restoration Backup of the E X T 4 partition using dump tool should be done 
on an unmounted partition as backing up mounted filesystem can have an unpredictable 
result. Restoration of the data can be done with restore tool. 

X F S 

High performance 64-bit journaling filesystem created by Silicon Graphics, Inc in 1993 
[19] Originally created for the IRIX operating system and it was the first filesystem that 
implemented delayed allocation. It was merged into the mainline Linux kernel in version 
2.6 Included tools allow for online resizing to grow inplace but doesn't allow shrinking. X F S 
is the default filesystem for CentOS and many distributions ship with X F S included such 
as: 

• Mandrake Linux 8.1 and newer 

• SuSE Linux 8.0 and newer 

• Gentoo Linux 1.0 and newer 

• Slackware Linux]8.1 and newer 

• Knoppix 3.1 and newer 

• Turbolinux 7.0 and newer 

• JB Linux 2.0 and newer 

• Debian 3.1(„Sarge") and newer 

• The Fedora Project Fedora Core 2 (default filesystem since Fedora 22) and newer 

backup and restoration X F S provides native backup and restoration utilities xfsdump 
and xfsrestore respectively. Xfsdump also allows consistent online backup without the need 
for unmouting the filesystem. 

Filesystem limitation comparison 

Table 5.4: Ext 4 and X F S limitations 
Ext 4 X F S 

Max volume size(recommended) 1 EiB(16TiB) 8EiB 
Max filesize 16TiB 8EiB 

Max subdirectories 
64000 

(flag dir nlink for unlimited) 
unlimited 

Max number of files 4* 109(approx. 2 2 2 ) 

Supported OS 
Linux, FreeBSD, 

Mac OS X , Windows 
Linux, FreeBSD, IRIX 
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Other file systems 

From other file systems that were considered I would like to point out Btrfs which requires 
proper setup and mounting and for some people 7 doesn't ahve the performance expected 
without additional tweaking.8 According to the mailing list of B T R F S it is not entirely 
stable with L V M cache which is why it has not been included in the testing [12]. 

ZFS is not supported in mainline kernel and due to its increased complexity as well as 
not enough information on reliability and recovery in the event of failure on Centos/RHEL 
it is not recommended at the moment. 

5.4 Tiered storage 

Tiered storage is a more general term than SSD caching. It utilizes several different storage 
media with different speed in a hierarchical topology with faster storage on a higher level 
than slower storage. A typical tiered storage would contain R A M , small fast N V M E SSD(s), 
larger SATA SSD(s), slower mechanical HDD(s) and final archival type of storage such as 
tapes. Although harder to deploy with high initial costs, a well implemented tiered stor­
age can outperform cached arrays significantly due to application and/or platform specific 
optimizations. 

You can learn more about tiered storagef J] in the sources [16] [14]. 

7

https: //blog.pgaddi ct. com/post s/f riends-dont-let-f riends-use-btrf s-f or-oltp 
8

https://www.reddit.com/r/linux/comments/2uz8ez/rlinux_tell_me_your_btrfs_nightmares_success/ 
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Chapter 6 

Testing 

From the available caching technologies and filesystems the chosen technologies are com­
bined with the scenarios outlined in section 3. In table 6.1 you can see the tested combina­
tions with their respective labelling used in the graphs below. 

Table 6.1: Tested combinations 
H W Uncached H D D raid L V M cache B-cache 

Filesystem 
Ext4 

X F S 

Test scenarios 

Very small files Filebench (graph label 500k) 

Test scenarios 
Secure MySQL database sysbench (graph label sync database) 

Test scenarios Regular database Fio (graph label database read/write) Test scenarios 
Mixed sized files Fio (graph label read/write) 

Test scenarios 

Mixed sequential Fio (graph label sequential read/write) 

Test scenarios 

General performance IOzone (see Appendix B) 

6.1 Testing environment 
A l l tests were conducted on a D E L L PowerEdge R730xd with 2 Intel Xeon®E5-2620 v3 
6 core 12 thread processors at 2.4 GHz, 8 modules of 16GB DDR4 memory running at 
1866MHz for a total of 128 G B of R A M . 8 rotational HDDs 4TB Seagate ES.3 SATA 
6Gb/s 7200 R P M were configured in R A I D 10 for a total of 14902 G B of primary storage. 
Caching SSD partition was created from 2 Intel D C 3500 800 G B SATA 6Gb/s SSDs in 
R A I D 1. A l l drives were connected to the system through the integrated P E R C H730 Mini 
R A I D controller with battery backup and 1GB DDR3 onboard cache. 

Unfortunately no N V M e SSD was available at the time of testing. 
CentOS Linux release 7.3.1611 (Core) with kernel version 3.10.0-514.10.2.el7.x86_64 re­

compiled with B-cache support was used as the testing operating system. Utilized software: 

• sysbench version 0.4.12 1 

• fio version 2.17 2 

x

https: //github.com/akopytov/sysbench 
2

https: //github.com/axboe/fio 

22 



• Filebench version 1.5-alphal 3 

SATA based drives were selected due to excellent backward compatibility, while PCIe con­
nected SSDs have a much higher throughput, older servers will not have enough PCIe con­
nections to utilize the speed or even to connect the SSDs to the system at all. SSDs with 
SATA interface also have the lowest cost and represent the lowest improvements compared 
to faster PCIe SSDs. 

Measured quantity 

Measurements are divided into several categories. Random read, random write, sequential 
read, sequential write and file creation. The cache is only successfully utilized to speed up 
access when the data that is accessed has been accessed before. Different cache modes also 
differ wildly. Writethrough caching doesn't offer speed enhancement while writing, because 
the write isn't confirmed to the OS until the operation is safely done on the underlying 
H D D , making the writing 10 bound by the speed of H D D . Writeback caching should allow 
for higher writing performance for the sake of lower data safety. L V M cache and B-cache 
report the write complete to the OS immediately after writing data to the cache, flushing 
the data to H D D when possible/effective. If the cache is disconnected (due to power outage 
or anything else except safe removal) before completely writing dirty data back the data is 
lost. 

6.2 Testing methodology 

Tests were done as follows. Baseline configuration without any caching technology consisted 
of formatting the array using mkfs tool variants mkfs.ext4 and mkfs.xfs. I have prepared a 
bash script to automate test run. 

L V M cache L V M cache preparation procedure was to create volume group test-data with 
the SSD mirror located at /dev/sdc and H D D array at /dev/sdb. 

vgcreate test-data /dev/sdb /dev/sdc 

Next I created origin logical volume orig-data spanning the entire physical volume /dev/sdb. 

Ivcreate -n orig-data -I 100%PVS test-data /dev/sdb 

To create cache pool I used a one-step method that automatically creates both cache data 
LV as well as cache metadata LV. 

Ivcreate -type cache-pool -I 100%PVS -n cache_pool test-data /dev/sdc 

Alternatively, this step can be reproduced with these 3 commands: 

Ivcreate -n cache_pool -I 99%PVS test-data /dev/sdc 

Ivcreate -n cache-metadata -I 1%PVS test-data /dev/sdc 

Ivconvert -type cache-pool -poolmetadata test-data/cache-metadata test-data/cache_pool 

Finally, origin L V and cache pool L V are combined into cache LV. 
3

https: //github.com/f ilebench/f ilebench 
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Ivconvert -type cache -cachepool test-data/cache_pool test-data/orig-data 

L V M cache volume defaults to writethrough caching mode, for writeback I detached the 
cache and reattached in writeback mode, ensuring that the cache has been flushed. 

Ivconvert -type cache -cachepool test-data/cache_pool -cachemode writeback 
test-data/ orig-data 

It is possible to change the caching mode without detaching and reattaching the cache by 
using the following command: 

Ivconvert -type cache -cachemode writeback test-data/orig-data 

I chose not to utilize this to ensure a clean testing environment. 

B-cache B-cache preparation procedure consisted of writing the B-cache cache super block 
on caching device using make-bcache 

make-bcache -C /dev/sdc 

and writing the backing superblock on the backing device. 

make-bcache -B /dev/sdb 

Caching device must then be attached to the appropriate backing device by echoing its 
UUID. 

echo 2d2b7129-lab0-4994-bfb6-33e54d518c96 > /sys/block/bcacheO/bcache/'attach 

It is also possible to format the devices and attach them at the same time. 

make-bcache -B /dev/sdb -C /dev/sdc 

Finally we can verify the configuration by running bcache-super-show /dev/sdb command 
to obtain the following output. 

sb.magic 
sb.first_sector 
sb.csum 
sb.version 

dev.label 
dev.uuid 
dev.sectors_per_block 
dev.sectors_per_bucket 
dev.data.first_sector 
dev.data.cache_mode 
dev.data.cache_state 

cset.uuid 
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8 [match] 
E8439B5FE3C78ED2 [match] 
1 [backing device] 

(empty) 
538801c7-le98-464b-b2eb-e719eb7ac0f7 
1 
1024 
16 
0 [writethrough] 
1 [clean] 

086edafe-55bc-4e5c-864b-56f375393c51 



Chapter 7 

Results 

7.1 Test results 

Please note that certain graphs utilize a logarithmic scale in order to account for large differ­
ences between individual result values. For comparison sake please refer to the summarizing 
graph 7.17 on page 36. 

File creation 

Figure 7.1: File creation speed comparison 
OFi les/s 1 0 0 0 0 Files/s 2 0 0 0 0 Files/s 3 0 0 0 0 Files/s 4 0 0 0 0 Files/s 5 0 0 0 0 Files/s 6 0 0 0 0 Files/s 7 0 0 0 0 Files/s 

B-cache 

L V M cache 

6 2 4 9 5 

• Ext4 B X F S 

The very small files (Session handler) model server load. 
In this part of testing it is possible to see that the limitations imposed on file creation 

in large volume of files in a single directory is heavily filesystem dependent. Wi th half a 
million files created the file creation speed in Ext4 filesystem decreases (cache management 
slows down the operations) (see figure 7.1). Journaling writes of the Ext4 filesystem slow 
down the performance of the whole filesystem. For Ext4 the only viable caching method is 
L V M cache in writeback mode, offering 67% increase in files created per second. 

X F S offers a similar trend, writethrough cache management slows down most of the 
operations by 36-60% compared to uncached array. X F S favours B-cache writeback, with 
performance increase over uncached array of 13%. 
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Compared together, switching the filesystem from Ext4 to X F S allows for 4-7x increase 
in performance regardless of other criteria, for the best possible performance choose B-cache 
in writeback mode formatted with X F S . 

Database performance 

Figure 7.2: Database scenario performance 
1000000 IOPS 

Ext4 no cache XFS no cache Ext4 LVM XFS LVM cache Ext4 LVM XFS LVM cache Ext4 B-cache XFS B-cache Ext4 B-cache XFS B-cache 
cache cache writeback writeback writeback 

writeback 

• Database read • Database write 

The small files (MySQL database) model server load. 
The test representing the small files model server load with the help of a simulated 

database. I ran two different tests, in fio and sysbench. Fio gives me more granular control 
and allows for easy warmup of the caches, while sysbench shows a more secure MySQL 
database performance. 

First let's look at Fio results. I measured the read and write performance of random IO 
of simulated database. In order to properly utilize cache I first ran a warming up test that 
isn't included. Pre-warmup performance was within the margin of error from uncached 
array. 

Graph 7.2 shows that all caching technologies and filesystem combinations tested per­
formed better than baseline Ext4 uncached array. B-cache, especially in the writeback 
setting with X F S performed the best, with 44x the baseline performance in read and al­
most 21x in write. Ext4 with B-cache writeback also performed admirably, increasing the 
array performance 55x in read and 29x in write. On the other end of spectrum L V M cache 
in writethrough mode in combination with X F S added enough complexity to the setup to 
performer worse than the X F S uncached array by 1.79%, a trait that repeated with B-cache 
writethrough X F S setup as well, although only by 0.21%. 

The second database testing was more secure. The test utilized a database stored in 128 
files each 800 Mb. Periodic fsync() every 100 requests ensures flushing of the changes to the 
drives. This setting drastically decreased the performance of nearly all caching solutions 
except for B-cache in the writeback mode as can be seen in figure 7.3. 
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Figure 7.3: Secure database performance 
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Mixed access 

Figure 7.4: Mixed sequential and random files of various sizes 
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Mixed sized files hot storage(Rapid development in Microsoft Azure) 
The only test involving sequential access. Spinning H D D arrays are better suited for 

large sequential file access than small SSDs. 
This test nicely demonstrates one of the main differences between B-cache and L V M 

cache. While L V M cache with X F S manages to increase especially write speed significantly, 
by 28% and 32% in writethrough and writeback mode respectively, B-cache hovers only 
between 0-5% above uncached array. This is expected, because B-cache is configured to 
let sequential IO bypass its cache entirely. This enables B-cache to hold more randomly 
accessed data where the speed difference between the array and cache speed is much higher 
than with sequential data. 
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File systems 
Ext4 performance comparison across caching solutions In graph 7.5 you can see 
the performance summary across utilized caching solutions as well as average percentage 
increase of performance relative to baseline uncached R A I D array. Ext4 benefits greatly 
from caching. Except for the file creation 500k test, B-cache in the writeback mode offers 
the highest average speed increase of almost 1600%. Writethrough B-cache offers even 
higher database read performance, but overall it performs equally (mixed read and write) 
or worse than writeback. 

L V M cache on the other hand performed significantly worse than B-cache, offering only 
a modest 26% in writethrough and 23% increase in writeback over baseline. 

X F S performance comparison across caching solutions 

X F S offers a more balanced performance compared to Ext4. As you can see in graph 7.6, for 
raw speed B-cache writeback mode wins every test with a comfortable 13x average increase 
over the baseline. Writethrough caching mode of B-cache is also quite effective, depend­
ing on the desired load. Synchronous secure database as well as write intensive database 
is not viable for writethrough B-cache. Overall, writethrough B-cache offers comparable 
performance in both Ext4 as well as X F S . 

L V M cache utilizes X F S more effectively than Ext4 across all tests. Writethrough 
mode offers 47% and writeback mode 22% average increase over baseline. X F S is much 
more effective than Ext4 in rapid file creation. B-cache writethrough mode dominates this 
category as well. 

Cache statistics 

In graph 7.7 you can compare the effectiveness of cache promotion algorithms of L V M cache 
and B-cache. L V M cache writeback mode has much worse hit ratio than any other caching 
method in the tests. B-cache has very balanced hit ratio, all configurations scored close to 
55%. Please note that this includes cache warming as well as the fact that certain tests do 
not utilize cache very much. 
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Another difference between B-cache and L V M cache is how much of the available cache 
does it actually need. B-cache required 4% of the available 650GB SSD, while L V M cache 
occupied much larger 13.8%. From these figures I extrapolated the following graph 7.8. It 
shows the relation between the SSD space occupied by B-cache and L V M cache respectively 
and the size of hot data that the cache is able to effectively cache. It also shows that B-cache 
is more conservative in the SSD utilization, minimizing writes to the SSD better than L V M 
cache. 

Figure 7.8: Hot storage size and cache size requirements 
2100 GB 

2000 GB 

1900 GB 

1800 GB 

1700 GB 

1600 GB 

1500 GB 

1400 GB 

"g 1300 GB 

'= 1200 GB 

£ 1100 GB 

f j 1000 GB 

™ 900 GB 
Q 

$ 800 GB 

700 GB 

600 GB 

500 GB 

400 GB 

300 GB 

200 GB 

100 GB 

0 G B 
186 372 558 744 930 1 1 1 6 1 3 0 2 1 4 8 8 1 6 7 4 1 8 6 0 2046 223224182604 2 7 9 0 2 9 7 6 3 1 6 2 3 3 4 8 3 5 3 4 3 7 2 0 3 9 0 6 4 0 9 2 

Hot data size GB 

Recommended SSD drive size B-cache LVM cache 

Based on the relation between cache size requirements and the available SSD disk size 
variants I formed a graph 7.9 showing the SSD drive size ranging from 32 to 2000GB and 
the ideal size of H D D storage this SSD would most effectively cache. The graph shows 
that really small SSDs are only viable for consumer space. That also explains why the first 
publicly available SSDs of the Intel 3D Xpoint (as introduced higher on page 11 in future 
technologies) are 16 and 32 G B in size. For larger arrays based on the storage requirements 
I would recommend SSDs in the 480-600 G B range due to higher performance, higher 
endurance and lower price/gigabyte. For higher capacity I would recommend skipping 
drives over 600 G B in size due to very high acquisition costs for now. SSD storage costs 
are constantly lowering. 

C P U and drive utilization 

In figure 7.10 we can observe the impact of caching on drive utilization and C P U usage 
reported by Fio in the database load. While L V M utilizes less than 20% SSD bandwidth in 
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Figure 7.9: SSD cache storage size to total H D D space optimal for caching 
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writethrough mode and less than 40% in writeback mode, B-cache Utilizes SSD bandwidth 
from 84 up to 95% while lowering H D D utilization by 2% in writethrough mode and 33% 
and 98% in writeback mode. This clearly demonstrates why B-cache writeback mode is so 
much more effective in this load. While L V M doesn't confirm successful write until the data 
is on the H D D even in writeback mode (which leads to a high H D D utilization) B-cache 
reports writes immediately after writing into cache, making H D D writes delayed and H D D 
utilization lower. 

In the C P U utilization part it might look like B-cache is a huge C P U hog, according to 
the source [1] Centos/RHEL 7.X the C P U load reported by the OS is unrealistically high in 
some cases. I also observed C P U load through the i D R A C (integrated Dell Remote Access 
Controller) of the server and during testing it never went above 10% even with B-cache. 
On a system with newer version of B-cache this should be patched. 

Figure 7.10: C P U and drive utilization comparison, database load 
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In another test (mixed access, results can be seen in graph 7.4) the drive utilization of 
X F S L V M cache and X F S L V M cache writeback mode coincide perfectly with the results 
of the tested scenario. In this test the reported C P U load of B-cache is correct and slightly 
(approx. 10-20%) lower than with the uncached array. 

Figure 7.11: C P U and drive utilization comparison, mixed access 
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External journal 

Moving the journal of a file system to a different (preferably faster) device is in theory an 
easy upgrade to performance. 

Ext4 external journal 

In order to mitigate filesystem performance penalty of Ext4 journal I conducted a test of 
Ext4 performance with journal located externally on a small SSD partition. As can be seen 
in the graph 7.12 Ext4 benefits from externally located journal especially in the rapid file 
creation scenario (labeled 500k in the graph) and periodically synchronised database. For 
an average increase of only 7% over internal journal the added configuration and higher 
possibility of failure is this setup therefore not recommended over higher introduced caching 
solutions. 

X F S external log 

Graph 7.13 shows the improvements of putting X F S log on an external SSD device. While 
performance did increase by 13% in the file creation scenario, external log offered worse 
performance than internal in read and write and minimal improvements otherwise. A n 
average increase of 1% makes X F S external log not recommendable. 

Price / performance 

I took the price of the HDDs and SSDs from current listing and compared the price and 
performance of an uncached R A I D 10 of 2x4 4TB HDDs and the same array with a single 
800GB SSD to represent possible writethrough configuration, 2 800GB SSDs in R A I D 1 for 
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writeback and additional security and 2 cheaper, 480GB SSDs in R A I D 1. If the SSD is in 
the same performance level (SATA with AHCI) the performance should be comparable. I 
chose more expensive datacenter focused drives due to their higher endurance and sustained 
performance. Commercial SSDs cost less but are only advisable for writethrough caching. 

As can be seen in figure 7.14 B-cache writethrough mode offers over lOx the performance 
for 53% more cost than uncached array. Writeback B-cache mode offers even more, over 
14x the performance, but for higher costs as well. For 107% more acquisition costs approx­
imately 2.3TB worth of hot storage can be effectively sped up. If lower capacity drives are 
utilized than for 39% more costs than baseline only about 1.4TB of cache managed hot 
storage will be sped up, with performance close to that of the more expensive larger SSDs. 

L V M cache on the other hand offers for the same price increase only modest performance 
gains. Overall performance gains are lower than the increase in price. However, for specific 
situations such as mixed sequential and random demonstrated in graph 7.4 or file 
creation speed in Ext4 (see graph 7.1) the 41% and 67% increase in performance may be 
justifiable. 

Figure 7.14: Price and performance comparison 
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The results without R A I D controller cache 

A l l the above graphs and results were obtained with the 1GB DDR3 cache on the P E R C 
H730 mini R A I D controller turned on. I switched the R A I D controller cache setting to 
writethrough which should be equivalent to absent cache. 

Disabling the controller cache resulted in an average 11% decrease in IOPS in Ext4 
compared to enabled cache. Surprisingly, disabling the controller cache actually increased 
the performance of B-cache in writeback mode in Read, Write and Database read. In file 
creation test it decreased compared to enabled controller cache, but managed to be faster 
than the uncached array, unlike in the previous testing. The Sync database, safe database 
with periodic syncQ calls suffered the most from disabled controller cache. 

As can be seen in graph 7.15, overall, the caching solutions formatted with Ext4 with 
controller cache disabled compared to the uncached array performed similarly to the setup 
with controller cache enabled. B-cache with writeback caching still dominates both the 
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overall and most individual tests, with B-cache writethrough mode in the second place and 
L V M cache behind. 

Figure 7.15: Ext4 caches performance with controller cache disabled 
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In X F S disabling the controller cache has a surprisingly high impact on the performance 
of B-cache writeback mode. As the graph 7.16 shows, X F S without controller cache is 
much more beneficial for writethrough modes of both B-cache and L V M cache. As far as 
L V M cache is concerned, it scored significantly better than with controller cache. While 
writethrough mode is ahead L V M cache writeback mode in average score, writeback offers 
much more consistent IOPS as well as higher write speeds. 

Disabling the controller cache has the same impact on X F S performance as on Ext4 (as 
shown in figure 7.15). In X F S L V M cache and especially the writeback mode is affected the 
least. 

Summary of results 

The summarising graph of all the results with linear scale can be found in graph 7.17. You 
can see the spikes in performance that B-cache is able to provide in certain scenarios as 
well as general comparison of all test results. 

7.2 Performance across server loads 

Summarising across the different model server loads as introduced in chapter 3, we can 
observe the following. 

Very small files 

In the Very small files model server load we can observe 2 trends. Better filesystem sup­
port for fast allocation as well as better journal write performance of the X F S filesystem 
triumphs. In Ext4 the added complexity of most caching solutions can actually hurt per­
formance significantly. In this scenario the best performing cache is the L V M cache in 
writeback mode, offering a respectable 67% increase in throughput. 
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Figure 7.16: X F S caches performance with controller cache disabled 

Figure 7.17: Summary graph of all test results 
120000 

• 

. . . . 1 1. .. 11. i i i i . i i . > ! i i. i . i . i •_• 1 • i • - ! 
Ext4 no cache Ext4 B-cache Ext4 B-cache Ext4 LVM cache Ext4 L V M cache XFS no cache XFS B-cache XFS B-cache XFS LVM cache XFS LVM cache 

writeback writeback writeback wri teback 

• Read • Wri te • Database Read Database Wri te • Synchronised database • Sequential Read • Sequential Wr i te • 500K 

36 

http://iiii.ii


Small files 

The small files scenario split into 2 different versions. The relatively low risk, high per­
formance one (News sites, wikipedias, discussion forums etc. henceforth called general 
database) and the high availability, high risk safe databases (Booking sites, banking, oper­
ation critical database, will be referred to as secure database). 

In the general database scenario B-cache in all its variations (Ext4 and X F S in writeback 
and writethrough modes) performed significantly better than L V M cache in read operations. 
The B-cache in writeback mode with Ext4 and X F S excelled in both read and write opera­
tions with 55x and 43x increase over the baseline in read and 28x and 20x increase in write 
operations over the baseline respectively. 

The secure database is less effective, especially due to the fact that it forces the caches 
to be flushed regularly. The only cache that resulted in a performance increase was B-cache 
in writeback mode. It was better than uncached Ext4 array by 257% and by 210% better 
than X F S variant. 

Mixed sized files hot storage 

For this server load the mix of different files as well as random and sequential access was 
examined. The paragraph 7.1 with the graph 7.4 shows that this server load is best suited for 
X F S with L V M cache in both writethrough and writeback mode with slight 4.7% advantage 
in read and 3.6% advantage in write in favour of writeback. 

Large files 

Although not part of the tested scenarios the Mixed sized files tests also revealed information 
relevant to this potential load and the difference between B-cache and L V M cache. 

B-cache features a sequential bypass mechanism that on one hand does not cache (and 
subsequently speed up the access to) the sequentially accessed data, but on the other hand 
protects the caching drive from rewriting large areas that can maintain the previously 
cached data. 

Very large datasets 

As stated in chapter 3 this type of load is not financially advisable for caching. In the 
event that money is not an obstacle consider either some sort of tiering as introduced in 
section 5.4 or identify the type of files stored and scale up the setup used in this paper 
considerably. (B-cache and L V M cache utilizing raid 0 of 2 or more drives may potentially 
yield even better results than in my testing.) 
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Chapter 8 

Conclusion 

The goal of this bachelor thesis was to examine the available H D D array acceleration with 
SSD drives. During the benchmarking I observed great differences between the tested 
caching solutions. 

L V M cache is the more user friendly, offering easy management and integration into 
existing L V M managed environment. Ideal for servers that are already configured with 
L V M and want an extra bit more performance. Depending on the workload L V M can still 
provide about 23% average increase over uncached array making it an easy and affordable 
inplace upgrade. 

By pure numbers B-cache triumphs over L V M cache by a large margin. B-cache is able 
to serialize random writes (especially in the writeback mode) and achieve performance an 
order higher than both uncached and L V M cached array. B-cache doesn't perform the best 
with Ext4 filesystem, in some cases (such as creation of a large amount of small files) falling 
below the speed of uncached array. X F S and writeback mode of B-cache dominate the tests. 
B-cache offers 7-13x the performance of uncached drive, provided that the hot storage size 
is small enough. 

Writeback cache mode offers significantly better write speeds, at the cost of data security. 
A n additional drive in a mirror configuration is recommended in order to prevent data loss. 
Writethrough is the more secure of the two caching modes and offers slightly lower, but 
still significant improvements. 

Further work on SSD caching could investigate caching at filesystem level (ZFS L 2 A R C 
or bcachefs) and analyse N V M e SSD performance with caching solutions. 
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Appendix A 

Contents of the memory media 

/data/ Excel and txt outputs of tests, each combination of filesystem and caching solution 
in a subfolder 
/documentation/ Latex source version of this bachelor thesis 
/tests/ Test input files 
xbelou03-IO_Subsystem.pdf pdf version of this bachelor thesis 
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Appendix B 

Iozone test results 

In the following graph you can see the IOzone results of caching solutions. To allow for 
better visibility and easier comparison I scaled all graphs containing read results from 0 to 
25 million and all graphs containing write results from 0 to 8 million. As you can see on 
an example figure B . l , all graphs are color coded to show the different value ranges and 
contain an unmeasured subset. Please note that IOzone test did not include pre-warming 
of the caches, therefore represents a cold access. 

Figure B . l : Example annotated graph 
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Figure B.2: Ext4 random read no cache 
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Figure B.3: Ext4 random read L V M cache 
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Figure B.4: Ext4 random read L V M cache writeback 
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Figure B.5: Ext4 random read B-cache 
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Figure B.6: Ext4 random read B-cache writeback 
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Figure B .7: X F S random read no cache 

File size KB 

• 0-5000000 «5000000-10000000 «10000000-15000000 

15000000-20000000 • 20000000-25000000 

15 



Figure B.8: X F S random read L V M cache 
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Figure B.9: X F S random read L V M cache writeback 
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Figure B.10: X F S random read B-cache 
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Figure B . l l : X F S random read B-cache writeback 
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Figure B.12: Ext4 random write no cache 
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Figure B.13: Ext4 random write L V M cache 
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Figure B.14: Ext4 random write L V M cache writeback 
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Figure B.15: Ext4 random write B-cache 
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Figure B.16: Ext4 random write B-cache writeback 
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Figure B.17: X F S random write no cache 
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Figure B.18: X F S random write L V M cache 
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Figure B.19: X F S random write L V M cache writeback 
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Figure B.20: X F S random write B-cache 
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Figure B.21: X F S random write B-cache writeback 
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