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Introduction

In many practical situations, the object of statistical analysis is a table repre-
senting distribution of a variable of interest, according to two (row and column)
factors. If relative contributions of cells on the overall distribution are of pri-
mary interest rather than concrete absolute values which they convey, it is re-
ferred to compositional tables |7, 8]. From this perspective, compositional tables
form a generalization of vector compositional data, where only ratios between
parts contain all relevant information |2, 24|. Compositional tables can be thus
considered as a complex structure of compositional data, whose specific nature
is captured by the Aitchison geometry with the structure of finite-dimensional
Euclidean vector space. Contrary to contingency tables, representing result of
a multinomial sampling with cell probabilities p;; > 0, ", >~ ;pij =1, a composi-
tional table itself represents one observation of distribution-valued variables with
some continuous multivariate distribution (e.g. relative structure of population
according to social and economic status). On the other hand, compositional and
contingency tables are closely linked, since the probability table with entries p;;,
corresponding to given contingency table, forms just a proportional representa-
tion (and thus one particular case) of compositional table, see [8] for details.
Statistical analysis of contingency tables is characterized by using Pearson x?
statistic or log-linear models for independence testing. As these methods strongly
rely on the assumption of Euclidean geometry [8] (similarly as most of standard
statistical methods [3]), they are not suitable for compositional tables that are
driven by the Aitchison geometry. Moreover, similarly as for compositional data,
it is also natural to consider a sample of compositional tables with a possibility
of their processing using popular multivariate statistical methods (like principal
component analysis, clustering, classification, etc.). This is a particular difference
to the case of contingency tables, where such issues are usually not of primary
interest. Although one possible approach to treat a sample of contingency tables
statistically is to consider three-way contingency tables [1], where the third factor
would be used to construct the sample of tables, this approach does not inherently
contain the case of tables with continuous origin of entries as well as a possibility
of a random sample of tables. Another approach to analysis of contingency tables
is represented by correspondence analysis, see, e.g. [19], for details. But again
this method is not primarily designed for a sample of tables.

Taking into account the relative character and the specific geometry of com-
positional tables (together with replacing the arithmetic marginals by the geo-
metric ones), the analysis of independence between factors can be performed ad-
vantageously through a decomposition of the original table into its independent
and interactive parts |7, 8|. In particular, the interaction table conveys the key
information for understanding the sources of association between both factors.
The key point in statistical analysis of compositional tables is then (as in the case



of vector compositional data) to express them in orthonormal coordinates with
respect to the Aitchison geometry, where rules of the standard Euclidean geom-
etry apply. As there is no standard canonical basis with respect to the Aitchison
geometry, the main aim of this thesis is to derive interpretable coordinate repre-
sentation for compositional tables. For the case of vector compositional data, it is
possible to construct coordinates in sense of balances between groups of composi-
tional parts [6]. Nevertheless, balances are not satisfactory from the perspective
of compositional tables as they do not follow two-factor nature of compositional
tables and their possible decomposition into independent and interactive parts.

The first part of the thesis introduces the concept of compositional data. Be-
sides the definition of D-part compositional data, this section summarizes the ba-
sic principles of their analysis, structure of the Aitchison geometry and, finally,
several coordinate systems, which allow to process them statistically in the real
space.

The main part of the thesis is formed by Section 2, dealing with the com-
positional tables. Here the new coordinate system is proposed, which completes
the balances between whole rows or columns with another group of coordinates,
closely connected to odds ratios between groups of parts. Firstly, a general system
of coordinates is provided, which allows to respect the nature of row and column
factors, then its special case is proposed, called pivot coordinates in the following,
whose construction is easier and, finally, coordinate representation of 2 x 2 tables
as popular special case follows. All proposed methods are accompanied by several
examples and illustrations, which allow their better understanding. The second
part of this section completes the theory with covariance structure of all proposed
coordinate systems, where the general features are more specified in the case of
pivot coordinates.

The final Section 3 discusses options of analysing relationship between fac-
tors from one or a sample of compositional tables. Also this section is accompa-
nied by examples.

The thesis summarizes results of the following papers (except the first one,
all of them were proposed during my Ph.D. studies):

a) Egozcue, J. J, Diaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2008). Com-
positional analysis of bivariate discrete probabilities. In Proceedings of
CODAWORKO0S, The 3rd Compositional Data Analysis Workshop. (eds.
Daunis-i-Estadella, J. and Martin-Fernandez.) University of Girona, Spain.

b) Facevicova, K., Hron, K., Todorov, V., Guo, D. and Templ, M. (2014) Lo-
gratio approach to statistical analysis of 2 x 2 compositional tables. Journal
of Applied Statistics, 41, 944-958.

c) Facevicova, K. and Hron, K. (2015) Covariance structure of compositional
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tables. Austrian Journal of Statistics, 44, 31-44.

d) Fagevicova, K., Hron, K., Todorov, V. and Templ, M. (2016) Compositional
tables analysis in coordinates. Scandinavian Journal of Statistics. DOI:
10:1111/sjos.12223.

e) Facevicova, K., Hron, K., Todorov, V. and Templ, M. (2016) General ap-
proach to coordinate representation of compositional tables. In progress.

The first manuscript establishes decomposition of a compositional table
onto its independent and interactive parts. This concept is used in b), d) and e)
for construction of 2 x 2, pivot and general coordinates. Covariance structure of
coordinates is discussed in paper c).



1 Compositional data

Since I x J compositional tables represent a direct generalisation of vector compo-
sitional data, the concepts of the logratio approach to compositional data analysis
can be easily adapted for compositional tables and used to derive the correspond-
ing specific issues. Accordingly the vector compositional data are introduced first.
This type of multivariate observations differs from the standard one by their rel-
ative nature, as ratios between parts are of the main interest rather than their
absolute values. Compositional data frequently occur e.g. in geochemistry and
the logratio methodology represents quite young and still growing statistical dis-
cipline (first analytical methods were proposed in [2]). The main principles of
(vector) compositional data analysis are summarized in the following two sections.

1.1 Basic principles of compositional data

A (random) D-part composition is defined as a row vector
x = (21,Z2,...,Zp) (1)

where all components (parts) describe quantitatively their relative contributions
to the whole [2, 24]. Thus absolute values of parts are not of the main interest,
since all the relevant information in the composition is contained in the ratios
between its parts. Consequently, the composition could be rescaled (closed) to
a prescribed constant sum representation £ > 0 (i.e. to 1 in case of proportions
and 100 for percentages) without any loss of information; formally, we refer to
a closure operation and denote

K- KR+ T2 KR-Tp
C(x) = , R ) 2
) (Zi’il L Zzgl L Zz’zl xl) )

This closed representation is useful, e.g., for a first brief comparison of two com-
positional vectors. The sample space of representations of D-part compositional
data with an arbitrary, but fixed & is a subset of R”, called D-part simplex,

D
SD:{X:(:BIMZE%""J;D”-Ti>0>i:1727"'7D;in:"{v} . (3)

The constant sum constraint reduces the dimension of S” to D — 1, i.e. one less
than actual number of parts of the composition.

The assumption that only ratios between components carry relevant infor-
mation about the composition leads to the following principles of compositional
data analysis [24]. The first of them is the scale invariance, which means that
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the results of the analysis should not depend on the particular sum x of composi-
tional parts. Thus application of closure operation C(x) should not alter results
of the analysis. Scale invariance is also related to the property of relative scale
of compositions, since ratios should express the differences between observations
rather than Euclidean distances based on absolute values of components. Next
principle is called subcompositional coherence. As in standard statistics the results
obtained from a composition with D parts should not be in contradiction with
results that are obtained from a subcomposition containing d parts, d < D and
subcompositions should behave like orthogonal projections in real space. For ex-
ample, the distance between two full compositions must be greater than or equal
to the distance between them when considering any subcomposition. Similarly, if
a noninformative part is removed, results should not change. The final basic prin-
ciple of compositional analysis is permutation invariance, output of the analysis
cannot depend on the order of parts in the composition.

Due to relative nature of compositional data and the above principles,
the standard Euclidean geometry should be replaced by the Aitchison geome-
try, endowed with the Euclidean vector space structure. Accordingly, operations
of perturbation and power transformation (powering) for D-part compositional
vectors x and y and a real constant « are defined as

x®y = (r1v1,...,2pyp) and a©x=(z7,...,29) (4)

respectively. Consequently, n = C(1,...,1) represents the neutral element in
the (D — 1)-dimensional vector space (S, ®,®). To complete the Euclidean
vector space structure, the Aitchison inner product of two compositional vectors
x and y is defined as

1 T, Y
A N N Ny 5
¥ha= g S 5)

i’j

and the Aitchison norm and distance as

%[y = Vvi{x,x)a and da(x,y) =[xOyl, (6)

respectively, where x 0y =x @ [(—1) O y].

1.2 Coordinate representation of compositional data

Due to specific nature of compositional data, represented by the above principles,
standard statistical methods are not suitable for their analysis. Instead of de-
veloping their counterparts within the Aitchison geometry, it seems much more
intuitive to express compositions isometrically in real coordinates with respect to
the Aitchison geometry and then proceed with usual statistical processing there



[24]. Apparently the simplest and easiest interpretable case of such coordinates is
represented by centred logratio (clr) coefficients, defined for D-part composition
x = (x1,...,xp) as

clr(x) = (hli In —2 ...,ln$—D> ) (7)

9x)" 9(x)’ 9(x)

where g(x) = {/ HiD:1 x; stands for geometric mean of parts. Even though clr co-

efficients preserve angles and distances, treat compositional parts symmetrically
and have quite intuitive interpretation, they lead to singular covariance matrix
(note that sum of clr coordinates is zero). Apart from purely geometrical disad-
vantages (like ambiguity of coordinate representation), this fact restricts seriously
usability of clr coefficients in many statistical methods. A way out is to apply
isometric logratio (ilr) coordinates [5, 6], i.e., coordinates with respect to an or-
thonormal basis on the simplex. According to basic algebraic-geometrical rules
and dimensionality of the Aitchison geometry, the real vector z € RP~! of ilr
coordinates is defined as

z = ilr(x) = ((x, e1>A , (x, e2>A (X, eD71>A) = (z1,22,...,2p-1) , (8)

where e’ = C (e}, ¢éb,...,e5),i = 1,2,...,D — 1 form an orthonormal basis on
the simplex. Due to isometric isomorphism of ilr coordinates it immediately
follows

ilr (a0 ©x) ® (BOYy)) = a-ilr(x)+4-ilr(y), (x,y)4 = (ilr(x),ilr(y)) , (9)

X[l = [{rG)| - and  da(x,y) = d(ile(x),ile(y)) . (10)

It could be also shown that different ilr coordinate systems are linked through an
orthogonal transformation [5].

Clearly, it is not possible to assign an orthonormal coordinate to each of
compositional parts simultaneously, like it was in the case of clr coefficients.
Therefore, interpretable orthonormal coordinates are of primary interest. Since
coordinates z correspond to a particular choice of basis vectors (compositions)
e',i = 1,...,D — 1, they can be chosen according to aim of the analysis and
possible a priori knowledge about compositional parts. One popular option for
construction of interpretable orthonormal coordinates is to apply sequential bi-
nary partition (SBP) procedure [6], based on stepwise division of parts into non-
overlapping groups. This method represents a crucial point for the next chapter
and is thus described in a detail in the following. Accordingly, in the first step of
SBP, the whole composition is divided into two subcompositions. For the next
step only one of subcompositions from the previous step is taken and further
divided into two groups. This process continues until all groups of parts consist



Table 1: Example of sequential binary partition for five-part compositional data.

1| X Ty T3 Ty X | U U 2
6 VT1T2
1M+ + - - =12 3 z 1n Vrsrizs
2/ +4 — 0 0 0|1 1 7 In é
2 T
3 0 + — — 1 2 31 ln \/%TS
410 o + —1]1 1 7 In i—;

of only one single component. The SBP is done in D — 1 steps; in each step one
basis vector e’ with parts

el = exp ( u(u”ﬂ)) for G =1y Jus
62 = eXp (_ U(uu+v)> kzkl?"'7kv7 (11)
e' = exp (0) otherwise

is obtained. Here u, v stand for numbers of parts contained in the first and second
group, respectively, {ji,...,J,} and {ki,...,k,} are their indices. These basis
vectors induce the final ilr coordinates

uv (le IjZ e xju)

%= i=1,...,D—-1 . (12)

utv (g Thy T, )Y
When parts assigned to the first group are marked by +, parts in the second
group by — and parts not included in any of both groups in the i-th step of
the partition by 0, SBP can be represented also graphically. Table 1 results from
one possible SBP for five-part compositional data.

Orthonormal coordinates resulting from SBP (12) can be interpreted in
terms of balances between groups of parts, represented by their respective ge-
ometrical means. Using a priori expert knowledge, SBP can be chosen with
the aim to capture the most relevant information contained in ratios between
compositional parts and their groups. For example, geochemical data are formed
by major and minor elements, further divided according to concrete composition
of the analyzed rock/soil. Because of this flexibility, balances form the most pop-
ular class of orthonormal coordinates that was recently successfully applied in
a number of real-world studies [23].

If there are no patterns determinating the SBP, balances can be constructed
as proposed in [17],

Z; = - In .
D—i+1 " (g xD)l/(D—z)

i=1,...,.D—1 . (13)



Here each step of SBP separates the i-th part of composition and coordinate z;
represents relative amount of the i-th part compared to rest of parts in the given
step of SBP. This coordinate system can be thus considered as a recommended
choice when no a priori information about grouping of compositional parts is
known. Moreover, all relative information about x; is contained in the first
coordinate z.

Inverse transformation

Since ilr coordinates z of compositional data result from a one-to-one map-
ping, it is also possible to transform them back to the D-part simplex using
basis vectors e',...,eP~! from (11). For this purpose, consider the (D — 1, D)
dimensional matrix ¥ with rows equal to clr(e’). Since e, i = 1,...,D — 1
form an orthonormal basis of SP, matrix ¥ satisfies W’ = I,_;. The inverse
transformation from the (D — 1)-dimensional real space to S” is given as

x =C (exp(z¥)) . (14)

Consequently, the back-transformed compositional vector can be represented with
an arbitrary sum of parts using the closure operation.
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2 Compositional tables

Even though the theory of compositional data analysis is already well developed,
it is primarily designed for vector compositional data, which carry information
about relative structure according to only one factor. In cases, when compo-
sitional data carry information about distribution according to two factors (e.g.
population structure according to age and BMI index), it seems to be appropriate
to work with two dimensional data, which besides the relative structure contain
inherently also information about relationships between these factors.

An I x J table

T L1y
x=| i - : (15)
rn Try
whose cells z;; > 0, fori=1,2,..., 1 and j = 1,2,... J convey relative contribu-

tions on a whole (probability, overall output, etc.) can be considered as a natural
extension of vector compositional data and is called compositional table. From
this point on, x will denote a I x J compositional table instead of compositional
vector, unless otherwise stated. As it was mentioned above, this type of observa-
tions basically conveys relative information on relationship between two factors
with I and J values, respectively. But also the other way around, by vectorization
of compositional tables vector compositional data would be obtained. Therefore,
any reasonable analysis of compositional tables should follow the same assump-
tions as analysis of compositional vectors, which were introduced in Section 1.1,
just with specific (two-factor) interpretation of their parts; here a subcomposition
of compositional table arises by omitting the whole row(s) and/or column(s) and
it is called subtable or partial table. Note here, that on the contrary to con-
tingency tables, containing n independent realisations of random variable from
multinomial distribution, a compositional table is considered to be one realisa-
tion from a multivariate continuous distribution. On the other hand, there is
quite close connection between both types of tables, since probability table, that
corresponds to the contingency table, can be considered as one particular repre-
sentation of compositional table. And finally, even the contingency table itself
can be considered as a compositional table, if the total number of counts is high
enough that its role as a source of uncertainty for estimation of the underlying
probabilities is negligible.

2.1 Basic definitions

Since compositional tables (15) represent a direct extension of vector composi-
tional data (1), all operations defined in Section 1.1 can be easily accommodated

12



for this case. Proportional representation of a compositional table can be reached
by application of closure operation with x = 1,

25 Tig 25 Tig
Cx) = P : (16)
245 Tij 25 Tij

and by varying x > 0, any other constant sum representation can be obtained.
The sample space of compositional tables is again (/.J — 1)-dimensional simplex

1J
SU:{x:(xl,mQ,...,xu)\xi>0,i:1,2,...,IJ; Zl’i:l'i} . (17)
i=1

since each I.J-part compositional vector can be re-ordered into the form of table
with I rows and J columns. On the other hand, note that the table form is
appropriate only for such data, which carry information about distribution of
some total with respect to two factors. Also basic operations of the Aitchison
geometry should be extended to the case of compositional tables. Perturbation
of two compositional tables x and y of the same dimension I x J results in a new
compositional table with entries

T11Y11r - TigYig
xpy=C : - : ; (18)
Tnymn - Trgyrg

similarly, by powering of compositional table x by a real constant « the following
table

o 07
T o Ty
a®Ox=C oo (19)
o «
Tre o Ay

is obtained. The Aitchison inner product modifies to

(e y)a = 2]Jzzln%1 i (20)

and the Aitchison norm and distance should be restated as follows,

SIENE () @)

and

1 vy )’
da(x,y) = Y Z Z (111 ]—> : (22)
Y

TriYij
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2.2 Decomposition of compositional tables

Since the analysis of compositional tables is based on projections of the table
onto subspaces with specific interpretation [7], such projections shall be intro-
duced before we proceed to main part of the thesis, construction of orthonormal
coordinates of compositional tables.

Various projections are used for different purposes in the case of composi-
tional tables. At first, projections of a compositional table x onto row subspaces
St (row;), for i = 1,...,I, each with dimension J — 1, are considered. In order
to construct these projections, an orthonormal basis in S” should be defined.
According to [7] this basis is formed by vectors e, = C(exp[&1, - .-, &i]), k =
1,...,J — 1, where &; = In(ex;/g(ex)),7 = 1,...,J. Note that the row in-
dex i is suppressed because this basis remains the same for all rows. Moreover,
this basis can be reached e.g. by SBP applied to levels of the column factor.
Consequently, the basis of subspace S!/(row;) is formed by tables

Eik:Cexp fm ka N k’Zl,...,J—l s (23)

where the only nonzero row is the i-th row. Finally, the projection of the com-
positional table x onto subspace S’ (row;), denoted by row;(x) is according to
[7] defined as

row;(x) = @(x, ExaOEy i=1,...,1 (24)
k=1
and equals
g(row;[x]) --- g(row;[x])
row;(x) =C Ti e Tig ) (25)
g(row;[x]) -+ g(row;[x])

where g(row;[x]) denotes the geometric mean of elements in the i-th row of x.
The projection onto the subspace, formed by the i-th row of the compositional
table x, row;[x] = C(zi1,...,2:y) € 87,i = 1,...,1, is thus still a I x J com-
positional table row;(x) whose entries consist of the i-th row itself and the rest
elements are equal to geometric mean of row;[x].

Analogously, also projections of the compositional table x onto its columns,
col;[x] = C(z1;,...,2p) € 8',j = 1,...,J, forming subspaces S'/(col;) with

14



dimension I — 1, can be constructed. Similarly, to the case of projections onto
rows, the resulting projected compositional tables col;(x) are given by the j-th
column of x and its geometric mean in the other parts of the table.

Orthogonality between row;(x) and row; (x), i # ¢, or between col;(x) and
coly/(x), j # j', can be proven directly using the Aitchison inner product (20) or
the isometric properties of the ilr coordinates [7].

Projection onto the subspace of the i-th row results in a compositional ta-
ble row;(x) that explains the relative information (ratios) exclusively for this
row. In order to complete the information about the original compositional table
X, it is necessary to introduce a projection that explains the remaining ratios
between parts in different rows [17|. In other words, a projection onto the sub-
space of dimension I — 1 that forms the orthogonal complement to row subspaces
St (row;), i = 1,...,I, needs to be constructed. This subspace will be denoted as
ST/ (row) and projection onto this subspace as row. For this purpose consider

a basis of S/ (row™) in form
Mig - Vg
Fr=Cexp| -+ o oo |, k=1,.... 11, (26)
Vi o Vig
where the vectors (v, ...,vg), for k =1,..., 1 — 1 form an orthonormal basis

in R’~1. The resulting projection according to |7, 8] is a compositional table

o g(row[x]) ... g(rowy[x])
=t g(row;[x]) ... g(row;[x])

formed by row geometric means of the original table. Similarly, projection of x
onto subspace orthogonal to column subspaces, S’/ (colL), of dimension J — 1
that carries information about ratios between different columns of the original
compositional table, results in

g(coli[x]) ... g(col;[x])
colL(x) _c g(coli[x]) ... g(col;[x]) ' (28)

—_—

g(coli[x]) ... g(cols[x])
From their construction, projections row"(x) and col*(x) are orthogonal to all

row or column projections, respectively, and even to each other (see [7| for proof).
This fact is crucial for compositional tables analysis as it will be shown later.

Orthogonality of all row/column subspaces allows to reconstruct the original
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compositional table x using decompositions

X = row™ (x) @ (@ rowi(x)) = col*(x) @ (@ col; (X)) . (29)

i=1 Jj=1

As mentioned above, projections row'(x) and col™(x) carry information
exclusively about ratios between parts of different rows and columns, respectively.
This information is sufficient for the reconstruction of the compositional table,
when row and column factors are independent (motivated by the probabilistic
sense of the formulation). This corresponds to the case when the original table
can be expressed as a product of row and column (geometric) marginals of x |7, §],
similarly as for contingency tables 1], where arithmetic marginals are considered
instead. The resulting I x .J compositional table X;,q = row"(x) @ col*(x),
obtained as a perturbation of these two projections, is called independence table

with entries )
I J 77
mﬁ?d = (H H mijil> , (30)
k=11=1
x;; denote parts of the original compositional table x. Since the dimensions of
subspaces S’/ (row') and S'7(col*) are I — 1 and .J — 1, respectively, dimension
of the subspace of independence tables 8! equals I + J — 2. The remaining
information about the original table, i.e. about the relations between row and
column factors, is contained in the interaction table x;,;, which is orthogonal to
X;nq and results from the decomposition

X = Xind D Xint - (31)

The interaction table can be obtained from (31) as X;,; = X © X;q. It also forms
an [ x J compositional table and its parts can be computed from the original
table x by

T 7
int _ iF A 2
- (T2 )
k=1 1=1
From Equation (31) and orthogonality between x;,4 and x;,,; it follows that the di-
mension of the subspace of interaction tables, SI7 equals [-J —1— (I +.J—2) =

int»

(I —1)(J —1). In the following section, interpretable orthonormal coordinates
for interaction tables will be of particular interest.

Decomposition of a 2 X 2 compositional table
_ [ Tun Ti2 (33)
To1 T22
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is discussed in detail in paper [11]. The projection onto S*(row,), is formed by
the orthonormal basis composition e = C exp \/L? —\/iﬁ) € 8? and the orthonor-

mal basis E; in S*(row;) defined by equation (23)

B
E, = Cexp( \65 6/5 ) . (34)

By considering (25) the resulting projection equals

rowl(x)=c<\/% \/:>:c< i 12 > . (35)

1 1 VT11T12  4/T11T12

The orthonormal basis vector

0 0
E; = Cexp ( 11 > (36)
V2 V2
is used to construct projection of x onto S*(rows,),

rows(x) = C ( VIt Tt ) ; (37)

x21 22

analogously, we obtain the remaining projections

T11 /T11%21 VT12T22  T12
1 =C 1 =C . 38
«© 1<X) ( T21 y/T11721 ) 0 Q(X) ( VT122L22  T22 ) ( )

The projection of x onto the complementary subspace S*(row=), orthogonal
to both S*(row;) and S*(rows), can be formed analogously. From the orthonor-
mal basis vector

1 1
F = Cexp vz Ve (39)
V2 W2

(orthogonal to E; and Ey) and (x,F)4 = \%ln% we immediately obtain

4/ 211212 4/211T12
rOWJ‘(X) —C \/96211‘22 \/50219022 e VZT1Ti2 /1112 (40)
</$21$22 </9E219322 \/17211122 \/$21I22 '
T11%12 T11%12

From (28), we can also obtain the projection onto the complementary sub-
space to column subspaces S*(col™)

col (x) = C ( Vinta /Tt ) (41)

VIT11%21  \/T12T22
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that carries information about relative information between columns.

Finally, the independence table corresponding to a 2 x 2 compositional table
is obtained as
Xpg = C ( T114/T12721  T124/L11T22 ) (42)
T214/T11T22 X224/ T12T21

and the interaction table results in

1 1

Xint = C \/@ \/5011179622 _C ( \/ZEH[L’QQ \/$12$21 ) (43)

mnmt — — )
Nan T VZ12%21  /T11%22

2.3 Coordinate representation of compositional tables

As explained in Section 1.2, standard analytical methods cannot be applied di-
rectly for vector compositional data, they need to be expressed first in orthonor-
mal coordinates (8). For this purpose sequential binary partition and the balance
coordinates (12) were introduced. Even though in the case of vector composi-
tional data balances have a simple interpretation in the sense of logratio between
two groups of parts represented by its geometric means, logratio interpretation
seems not to be appropriate for compositional tables with parts representing re-
lationship between two factors, because it does not respect the two dimensional
nature of the data. It this section, an alternative coordinate system will be in-
troduced. The main idea of this system is to complete balances between whole
rows or columns by those dealing with odds ratios between four groups of parts
[1], which represent a natural extension of balances for the case of compositional
tables. This has quite an intuitive motivation. Balances can be used to capture
(log-)ratios within row and column factors, respectively, while odds ratios natu-
rally link relative information between both factors. Accordingly, it is also useful
to have such coordinate system, which respects the possibility of decomposition
of a compositional table x as described in Section 2.2.

2.3.1 General coordinates

For construction of the general coordinates of I x J compositional table, con-
sider first SBP of the whole rows (columns) of compositional table x, denoted
in the following by SBPr (SBPc). This partition is constructed with respect to
nature of levels of row (column) factor and similarly as for the usual SBP, in each
of I —1 (J — 1) steps, levels with some common property are separated from
the others. Thus the first I + J — 2 coordinates z" and z¢ of I x J compositional
table x result in




Table 2: Example of sequential binary partition applied to whole rows (SBPr,
left table) and whole columns (SBPc, right table) of I x J compositional table x.

J| X1 L2 X3 Ty Ty | U UV
i‘xl, To. xg“st 11+ + - - =12 3
T+ - =12 2ol + — 0 0 0|1 1
mio + —|11 3/0 0 + — —|1 2
400 0 0 + —|11
and
Ji Y eealxg M
Z]c: uv In [.g(Xh) g(Xlu)] T for ]:1727,J_1 7 (45)
Ut v fg(xmy) - g(Xam, )]

where s,t (u,v) are numbers of rows (columns) separated in the i-th (j-th) step of
SBP, indices (1, ...,7s') and (ky+, ..., k) or (+ly,...,-l,) and (-mq,...,-m,) de-
note rows/columns involved in this step and ¢(.) stands for the geometric mean.
Steps of SBPr are denoted by Roman numerals, while those of SBPc are de-
noted by Arabic numerals. As an example consider a 3 x 5 compositional table.
The corresponding six coordinates could follow SBPs from Table 2, represented
also graphically in Figure 1,

RN <g<x2.g>(gx<;:>>”2 | 1o

R @
1/2

= e -

- iy ®

SRR <g($3§'j5)>1/2 | o0

- s o

The remaining coordinates should be orthogonal to these first I+ .J —2 ones
and for their construction some generalization of SBP needs to be introduced.
This generalization is based on separation of parts of the compositional table into
four groups (blocks) in a systematic manner and computation of coordinates in
form of logarithm of odds ratio between these four groups (marked as A (upper
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Figure 1: Graphical representation of sequential binary partitions SBPr and
SBPc, applied on 3 x 5 compositional table.

left block), B (upper right block), C (lower left block) and D (lower right block))
using following formula

OR __ a-d (xil "'zia)l/a ($l1 ”'xld)l/d
S Vi s L b e’ (52)
a ¢ (@jy - wy,) (g, - o)
where a, b, ¢, d are numbers of parts in each of groups A, B, C and D, respectively

and 7,7, k[ are possitions of these parts. In the following steps this separation
proceeds within smaller subtables according to row/column SBPs.

The separation into subgroups (A-D) and construction of the partial tables
should respect the row and column grouping defined in SBPr and SBPc. Thus
the first four groups are formed by steps I of SBPr and 1 of SBPc and deter-
mine the first coordinate. If the compositional table has more than four parts,
the partition should continue with the next step. Firstly, a proper subtable
should be identified, when the only possible partial tables are formed by pairs of
groups (A,B), (C,D), (A,C) and (B,D), which should be successively analysed.
If (A,B) has more than one row, the next coordinate is related to parts of this
subtable, where the four groups are again determined by steps of the SBPr and
SBPc of the lowest possible order. The next possible subtable is firstly searched
within the current partial table, but if this one is formed by only four parts (i.e.
the smallest meaningful table), it is necessary to go back an look for another
partial table in the bigger superior table from the previous step of the partition.
The subtables with only one row or column, or subtables, which were already
analysed in some of previous steps of partition, are skipped. The process contin-
ues, until all possible subtables formed by pairs of groups (A,B), (C,D), (A,C)
and (B,D) of each proper partial tables are analysed. It results in (I —1)(J — 1)
coordinates, each with interpretation in terms of log-odds ratios among groups of
entries within the respective partial table. Alternatively, each coordinate could
be also interpreted as a sum of log-odds ratios among four parts. There are
(g) (‘g) of them together in the whole table, each contained in one of these new
coordinates. In [1] it is stated that the whole information about relations in I x .J
(not necessarily compositional) table is contained in (I — 1)(J — 1) simple odds
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ratios of type

OR}].:M, i=1,....,]—1 and j=1,....J—1 , (53)
Li,j+1Li41,j
among neighbouring parts or of type
2 Lijxrg . -
OR;=———, i=1,...,/—1 and j=1,...,J-1 (54)

TijTrj

with a reference part z;; (both types of odds ratios are graphically illustrated
in Figure 2). These basic systems of odds ratios could not be used to construct
orthonormal coordinates with respect to the Aitchison geometry. In our case
they are replaced by the system of (I — 1)(J — 1) coordinates zO%, whose idea
of aggregating the information into odds ratio among four groups of parts (not
just four parts) seems to be similar to the concept of cumulative odds ratio as
proposed in [1], page 276.

] jH1 I J

i+l

Figure 2: Graphical representation of basic odds ratio systems proposed in [1].
System of type (53) left and system of type (54) right.

Construction of partial tables and coordinates can be also considered sim-
ply as a result of combination of row and column SBPs. Although the above
description shows how the coordinates are naturally derived, the output can be
summarized as follows. For the first step of SBPr to rows of the table, all J — 1
steps of SBPc to columns are performed and according to (52) the first J — 1
coordinates are obtained. The next J — 1 coordinates are obtained from appli-
cation of the second step of SBPr to rows and all steps of SBPc to columns, and
so on until I — 1 steps of SBPr are run out. All (I — 1)(J — 1) coordinates of
z9F thus result from successive application of all steps of SBPr combined with
repeated use of all steps of SBPc, or conversely.

For the sake of completeness, the basis vectors from (8) corresponding to
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proposed coordinates are

exp ( m> for rows J1yevvs s
e, with parts exp (_ m) ki, ... ke (55)
exp (0) otherwise |,
where (j1,...,7s) and (kq,..., k) are indices of rows included in the i-th step of

SBPr, fori=1,...,1 —1,

exp m> for columns [y, ...,1,,
e’ with parts 56
J P exp | — %) M, .oy My, (56)
exp (0) otherwise
where (ly,...,l,) and (mq,...,m,) are indices of columns included in the j-th

step of SBPc, for j =1,...,J — 1, and finally

el with parts ¢ exp (—

O QO T =
£
-

[ exp(0) otherwise

fork=1,...,(I —1)(J — 1), where A, B,C and D are groups of parts included
in the corresponding coordinate and a, b, ¢, d numbers of these parts, as was de-
scribed above.

Beside the advantageous interpretation, there is another useful feature of
this coordinate system. When the coordinate representation z" = (z7,...,2]_;),
z¢ = (2¢,...,25 ), 298 = (20F ... 728131)@]71)) is applied to the independence
table X;,q4, the only nonzero coordinates are z;,2§ for ¢ = 1,..., 1 — 1, j =
1,...,J — 1, and their values are the same as for the original table x. More-
over, the number of these nonzero coordinates equals to dimension of subspace
of independence tables (see e.g. [11] for details). Analogous feature holds also
for the interaction table and coordinates z°%. Accordingly, the vector of co-
ordinates (z",z° 0(;_1)(s—1)) of the independence table can be denoted as zj,q
and coordinates (0747 _»,z°%) of the interaction table as z;,;. Finally, the vec-

tor of coordinates of the original compositional table x can be written as z =
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Figure 3: Graphical representation of group separation in the 3 x 5 table (1).
Lower grey tables (2a-d) illustrate construction of possible subtables. New co-
ordinates could be computed only from tables (2b-d).

it (Xing) + it (Xint) = Zing + Zing = (27,2, 2°F). This feature will be utilized es-

pecially in the final Section 3 about analysis of relationship between two factors.

In the following a simple example for the case of 3 x 5 compositional table
is presented, which should illustrate the algorithm of construction of the partial
tables and the respective coordinates.

Example 1 (Coordinate representation of 3 x 5 compositional table) The first
step of coordinate representation is to define SBP of the whole rows and columns.
As an example, SBPs from Table 2 and Figure 1 and the respective coordinates
are used. The second step is to define the subtables and compute the remaining
eight coordinates according to formula (52). Firstly, the whole table is divided
into four groups, according to steps 1 and I from SBPc and SBPr. This divided
table, as well as all the following partial tables, is illustrated in Figure 3 (table
(1)). According to this separation, the first coordinate is computed as

zloR _ 2v/5 In (T11712)

5 (951315142515)1/3 ($21$22$31$32)1

1/2 (

1/6
$23$24$253733$U349535)
/4

(58)

Next partial tables are formed by parts from pairs of groups (A4, B;) (table
(2a)), (Cy, Dy) (table (2b)), (A1, Cy) (table (2c)) or (By, Dy) (table (2d)). Since
table (2a) is formed by an only single row, it cannot be further divided and thus
we skip it and start to analyse the next possible partial table (2b). This subtable
has already more than one row and column, thus it represents the first partial
table generating one of the coordinates. Column separation within this table still
constitutes the step 1 from SBPc. In SBPr, the second and the third row of
the compositional tables were separated by step II, thus the four groups in this
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Figure 4: Graphical representation of group separation in the subtable (2b).
Lower grey tables (3a-d) illustrate construction of possible subtables. New co-
ordinates could be computed only from tables (3c) and (3d).

partial table are separated by steps 1 and II and according to this separation,
the next coordinate could be computed in form

3 1/2 1/3
zgR:\/;ln (X91222) " (X332 3435) ‘ (59)

(1'239624%25)1/3 (517313732)1/2

This table could be further separated and the next two coordinates are
related to subtables (3c) (formed by groups Ay, and Cy,) and (3d) (groups By,
and Dsy,), since tables (3a) and (3b) are formed by an only single row, as is
evident from Figure 4. In table (3c) is partition of rows already set by step II
of SBPr, furthermore, columns are separated by step 2 of SBPc. Now, the next
coordinate

OR 1 L2132

5= In o (60)
could be computed. Since each group in this table is formed by only one single
part Ty, Too, r3; and xs3p, this table cannot be further partitioned and we can
focus on the partial table (3d). Also in this table is row separation determined
by step II of SBPr and the columns are here separated by step 3 of SBPc. After

assessment of the next coordinate

OR __ \/§ To3 (I34$35)1/2
2y = ? In —1/2 y (61)

(T24725) " w33
the subtable (3d) can be further divided. Figure 5 typifies all possible subtables.
Only subtable (4d) has more than one row and column and, consequently,
could be used for construction of the next coordinate. With respect to steps II
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Figure 5: Graphical representation of group separation in the subtable (3d).
Lower grey tables (4a-d) illustrate construction of possible subtables. New co-
ordinates could be computed only from table (4d).

and 4 of SBPr and SBPc this coordinate is

1
OR — Z1n

5
2 TosT3a4

L24X35

(62)

Hereby is finished the partition of subtable (2b) and we can return to partial
table (2c) (Figures 3 and 6). This table, separated by steps I and 2, determines

the next coordinate

3 1/2
ZGOR _ £ In T11 ($22$32)

3 T12 (9U213531)1/2

and the only regular partial table contained within it is (5b). But since this

table is identical with table (3c) and was already analyzed, we can immediately

skip to partial table (2d). This subtable is divided by steps I and 3 of SBPr and
SBPc, thus the next coordinate is

(63)

1/4
OR 2 T13 (LE24ZI,’25.§(734.1735)
27" =—-In

3 ($14$15)1/2 (€U239€33)1/2

(64)

The consequent possible partial tables are illustrated in Figure (7), which
clearly shows, that the only regular tables are (6b) and (6d). Since (6b) is
similar to (3b), the last coordinate is based on subtable (6d) and steps I and 4.

3 1/2
zgR _ \/—_ln T14 (I25CU35)

3 Z15 ($243534)1/2

(65)

For completeness, Figure (8) illustrates partition of this table, which leads
to partial table (7b), similar to (4d).
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Figure 6: Graphical representation of group separation in the subtable (2c).
Lower grey tables (5a-d) illustrate construction of possible subtables. The only
regular subtable is table (5b), which was already analyzed (table (3c)).

| Azc{ Bzd
|
C2d= Dzd
:
(2d)
ai 4!
: : : :As.:EBs:L
; ! : | L ;
I __F_———-I————— I |CE|:I|D6:I
| | 1 £ -
| |
(Ba) (6b) (6c) (ed)

Figure 7: Graphical representation of group separation in the subtable (2d).
Lower grey tables (6a-d) illustrate construction of possible subtables. The only
regular subtable is table (6b), which was already analyzed as table (3b) and
table (6d), which forms the last coordinate zJ%.
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Figure 8: Graphical representation of group separation in the subtable (6d).
Lower grey tables (7a-d) illustrate construction of possible subtables. The only
regular subtable is table (7b), which was already analyzed as table (4d).

Table 3: Houston criminal cases in January 2014, distributed according to type
of offense and locality.

‘ Ag. assault and rape Robbery Burglary Auto theft Theft
Centre 146 229 467 243 1380
Outskirts 425 610 1078 691 3001
Peripheral 193 183 399 251 2032

Example 2 (Houston criminality) For better understanding of the interpretation
of the proposed coordinates, consider Table 4. This 3 x 5 compositional table rep-
resents the distribution of all criminal cases (except murders) which happened in
Houston, Texas, in January 2014 structured according to the type of offense and
locality. The values of the type of offense are aggravated assault and rape, rob-
bery, burglary, auto theft and theft. The second factor is defined by the distance
from the city centre. The offenses which perpetrated in the inner part of the loop
formed by the road 610 (see Figure 9) are classified in the first category Centre.
The second category Outskirts contains offenses which happened between 610
and beltway 8 and the remaining cases are collected in the category Peripheral.
The original data are available in the database of Houston Government [20].

In this example only the relative structure of the criminality is of the in-
terest. Consequently, Table 4 can be treated as compositional table with pro-
portional representation and with respect to Figure 1 expressed in coordinates,
which values are collected in Table 5.

The first two values represent balances between rows of the table. The high
negative value of 2z means that there is much more criminality cases out of the city
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Figure 9: Road network in Houston.

centre. On the other hand, positive value of 2z} captures higher occurrence of
criminality in outskirts compared to peripheral. Coordinates z{ — z§ compare
different types of offenses. Coordinate z{ is balance between violent (aggravated
assault and rape, robbery) and other crimes (burglary, auto theft, theft), when,
according to its high negative value, non-violent crimes outbalance. Because of
the negative value of the next coordinate, we can also conclude that there is
slightly more robberies than aggravated assaults. Proportion of burglaries and
thefts compares coordinate z§, which is also negative and thus the amount of
thefts dominates the amount of burglaries. Finally, the coordinate 2§ captures
that there is more cases of thefts then auto thefts.

Table 4: Relative structure of Houston criminal cases in January 2014, distributed
according to type of offense and locality.

‘ Ag. assault and rape Robbery Burglary Auto theft

Theft

Centre
Outskirts
Peripheral

0
0
0

.0129 0.0202
.0375 0.0538
.0170 0.0162

0.0412
0.0952
0.0352

0.0215
0.0610
0.0222

0.1218
0.2649
0.1794
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Table 5: Coordinate representation of Table 4.

27 P P 25 25 25 2OF
—1253 139 -—-16.55 —-0.31 -—-10.04 —-2.16 —0.03
QR 29F 29R 29F 2OF ZFF  LOF
0.15 —0.21 0.17 0.31 —0.17 0.15 0.02

The interactions between location and type of offense are covered with co-
ordinates 2% — 2%, The most complex is the first coordinate, which is formed
by logarithm of odds ratio between violent and non-violent crimes in and out-
side the city centre. Because of its negative value, the ratio between violent
and non-violent crimes is slightly higher outside the city centre. On the other
hand, the simple odds ratio between these four groups is 0.97 and thus the dif-
ference between locations is really small. The second possible interpretation of
this coordinate is in sense of comparison of ratios between cases appearing in and
outside the city centre according to type of crime. Now the negative value means,
that the ratio between cases in and outside the city centre is higher in case of

non-violent crimes.

More detailed comparison offer the other odds ratio coordinates. The second
one again compares violent and non-violent crimes but only in outskirts and
peripheral area. This coordinate is positive and thus the ratio between violent
and non-violent crimes is slightly higher in outskirts. Aggravated assaults and
robberies in outskirts and peripheral area compares coordinate 2$¥, which is
again negative and thus the ratio between ag. assaults and robberies in outskirts
dominates the same in peripheral area. It could be easily calculated that the ratio
in peripheral area is about 1.5 times higher then in outskirts. Interpretation of
the remaining coordinates is similar. They are formed respectively by logarithms
of odds ratio between burglary and (auto and normal) thefts in outskirts and
peripheral area (%), auto and normal thefts in these two areas (29%), ag. assault
and robbery in and outside the city centre (z$), burglary and thefts in and
outside the city centre (22F) and, finally, auto and normal theft in and outside
the city centre (29%).

2.3.2 Pivot coordinates

In the case, when there are no clues, how to form groups within the row and col-
umn factor, a special case of the general coordinates can be considered, which was
introduced in [13]. This coordinate system can be applied to each compositional
table almost automatically in the situation, when interpretation of the coordi-
nates is not the main goal of the analysis (like outlier detection or classification
of observations). Due to this feature, it represents a two-factorial alternative to
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balances (13). On the other hand, such coordinates obviously still follow the de-
composition (31).

The main idea by construction of these coordinates is that in each partial
table the group D is formed by only single part (pivot), which is denoted as x,.; and
which gave the note to these coordinates. In order to construct such coordinates,
the basis vectors of coordinates z;,i=1,...,] — T and 2§, =1,...,J — 1 must
be defined as follows,

exp (1 / J(II zl—i—l ) for rows I—1+41,
ro 1 .
e, with parts exp ( TS ) ..., 1 —1, (66)
exp (0) otherwise
and
exp <, / JJ J]H)) for columns J —j +1,
¢ i 1 ;
e; with parts exp < CesT=NTine 31)) 1....J—7.
exp (0) otherwise
(67)
Consequently, the first I 4+ J — 2 coordinates are
I—14)J i
- (=0 9(X1it1) _for i=1,....0—1  (68)
I—it+1 [g(x0) - g(xp—) /0D
(for rows), and
I(J—j _j
oo I =0) 9(Xsjt1.) _for j=1,....,0—1 (69)

] J—j+1 " [g(x1)--g(x,-;)]/=D

(for columns), respectively. These orthonormal coordinates form again nonzero
coordinate representation for the independence table and their number reflects
the dimension of S/7. Because of mutual orthogonality of the subspaces corre-
sponding to tables row®(x), col*(x) and X;,;, and decomposition (31), the re-
maining (I — 1)(J — 1) coordinates of x;,4 are equal to zero. Conversely, co-
ordinate representation of the interaction table results in zero coordinates of
the corresponding independence table.

In contrast to the general method, it is easier to start construction of partial
tables from the smallest one in the upper left corner of the table x. Each conse-
quent table is then formed by the current one expanded by one row, or column.
The first two steps of this stepwise procedure are as follows. The method firstly
assigns a basis compositional vector to the table given only by parts x11, x19, x21
and x9. This basis element compares parts on the main diagonal x1;, x99 With
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parts on the minor diagonal x5, x9; of the 2 x 2 partial table and thus the first
basis composition has the form

1 1 11
2 L1 - =
e —exp(z, 2,0,..., 2,2,0,...> , (70)

where the upper index expresses the dimension of the current partial table as
well as position of the pivot part forming group D. This notation is thus used
in the following instead of eZ” taken for the general case. Obviously, an odds-
ratio interpretation of the resulting coordinate is again possible. In the next step
the third column is added to the previous partial table and the basis vector e?3
deals with the new partial table with » = 2 rows and s = 3 columns and parts
11, T12, T13, To1, Tog, Toz. Lhe corresponding basis element compares again parts
on the main diagonal of a virtual 2 x 2 table with parts on the minor diagonal,
when these diagonals are formed by geometric mean of z1; and 15 (that thus
merges information on the employed components together), and part x93, and by
geometric mean of x9; and xq9, and part x5, respectively. This results in

e® = exp (L L _L 0 _L _L i 0 ) (71)
2\/§’2\/§’ \/§7 PR 2\/5’ 2\/§7\/§7 PAR *

In general, the basis composition €™ compares parts on the main diagonal (formed
by geometric mean of all parts at rows of order smaller than r and column of order
smaller than s and by pivot part x,) and parts on the minor diagonal (formed
by geometric mean of the first s — 1 parts of the r-th row and by geometric mean
of the first r — 1 parts of the s-th column). This resulting basis vector is

( exp (,/Tsr e 1) for positions i=1,...,r —1,

r—1 s
exp ( vt 1)) 1=,
j=1,...,s—1,
e with parts exp ( \/ = ) i=1,....,r—1,
J=S5
exp (\/ ) 1=,
J=5s,
[ exp (0) otherwise
(72)
where the upper index represents the particular choice of » = 2,3,...,I and
s=2,3,...,J and the parts of € are arranged as follows,
e = (el ... e, e, ) . (73)
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This procedure continues until » = I and s = J, accordingly a system of (I —
1)(J — 1) basis vectors is obtained.

For example, the basis of 2 x 3 compositional tables contains compositions

e”? = exp(1/2,—-1/2,0,—-1/2,1/2,0) ,
e = exp (1/2V3,1/2V5,-1/V3,~1/2V3,~1/2V3,1/V3) |

(74)

( (75)

e = exp (~1/v6,~1/V6,~1/v6,1/V6,1/V6.1/v6) . (76)
p(- (77)

(— (78)

75

c
e] = exp

1/2V3,-1/2V3,1/V3,-1/2V3,-1/2V3,1/V3) , (77

e = exp(—1/2,1/2,0,—1/2,1/2,0) 78
Finally, the basis vectors €™ lead to nonzero coordinates of the interac-
tion table (out of IJ — 1) and thus to the remaining group of coordinates of

the compositional table x

1s—1

1 T 7 TS
Zps = 5 IHHH:E]:B (79)

\/T'S'(T'— S— lelwleTj

forr=2,3,...,] and s = 2,3,...,J. Although the above formula is advanta-
geous for interpretation purposes, in practice it is easier to compute coordinates of
the interaction table from the following modified formula with expanded products

(r—1)(s—1)
1 L1112 " X1,s—1 " Lp—-11" """ Tpr—-1,5—1Lrs

In

r—1 r—1 s—1 s—1
\/71 S T_l (S_1> L : mrs 1T1s xrfl,s

(80)

for r = 2,3,...,] and s = 2,3,...,J. Note that, even though z;;’s in both
formulas stand for parts of the original table x, the result would not change if
they are replaced by parts of the interaction table x;,;.

Another useful property of these coordinates is that they contain also the
nonzero coordinates of the interaction tables of all tables with sizes smaller than
the considered I x J table. For example, the set of four nonzero coordinates of
3 x 3 interaction table contains two nonzero coordinates of the 2 x 3 table as well
as of the 3 x 2 table and in turn both (as well as 3 x 3 table) contain the only
nonzero ilr coordinate of the 2 x 2 interaction table.

Moreover, the interpretability of these coordinates is still supported by their
relation to odds ratios of parts in the original table ([1|, p. 44). This fact is
obvious directly from the form of (79) since each coordinate is formed by the sum
of logarithms of odds ratios which compares cell of the original table in position
(r,s) with all cells that are north-west from the r-th row and s-th column - group
A (this feature will be thoroughly analyzed in the next example).
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Table 6: Structure of population in the Czech Republic in 2008 according to age
and BMI index (in proportions).

CZE ‘ under normal over  obesity
25 —44 1 0.0144 0.2196 0.1410 0.0554
45 —64 | 0.0022 0.1014 0.1792 0.0988
65— 84 | 0.0014 0.0473 0.0900 0.0493

Although the pivot coordinate system is proposed particularly for the cases,
when the interpretation of single coordinates is not the main goal of the analysis,
a new set of coordinates (with different interpretation) can be reached by permu-
tation of rows and/or columns in the original compositional table. Accordingly,
e.g., orthonormal coordinates that contain log odds ratio of a given 2 x 2 table
can be easily constructed. They also enable to extract the only coordinate with
log odds ratio interpretation that contains a given entry x,..

Example 3 (Relationship between age and BMI index - part 1) The pivot coor-
dinates and their interpretation are illustrated with an example analyzing the re-
lationship between age and BMI index in 18 European countries |9, 10|. For this
purpose a sample of 3 x 4 compositional tables was collected. Each of the tables
records the population structure of a country in 2008 according to age and BMI
index ((weight in kg)/(height in m)?). The two factors to be considered corre-
spond to the age classes 25 —44,45 — 64, 65— 84 and their BMI index in categories
underweight, normal, overweight and obesity respectively. Note that finer cate-
gories of age are available, but the chosen classes lead to better interpretability.
Table 6 shows an example of a compositional table from the sample from Czech
Republic.

Applying Equation (30), the values of the independence table are

0.0061 0.1716 0.2218 0.1090
Xina = | 0.0039 0.1090 0.1409 0.0692 . (81)
0.0020 0.0569 0.0736 0.0361

Using Equation (32) the interaction table can be obtained,

0.1813 0.0973 0.0483 0.0387
Xint = | 0.0444 0.0707 0.0967 0.1085 . (82)
0.0541 0.0632 0.0930 0.1037

Note that these tables follow the condition X;,q @ Xint = X.

In order to express the independence table in coordinates, two SBPs ac-
cording to Table 7 were introduced.

The steps of SBP1 result in the first two nonzero coordinates of the indepen-
dence table that contain relative information (ratios) between different rows of x.
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Table 7: Sequential binary partitions used for expression of independence tables

in coordinates

SBP1 | z11 12 %13 T To1 To2 Loz Toa Tz1 Tz Tz T3a | S|t
Stepl| - - - - - - - - 4+ 4+ 4+ + |[1]2
Step2| - - - - 4+ + + + 111
SBP2 | x11 @12 T3 T4 T Taa Taz Toa Ty T3z T3z Tag | U |V
Stepl| - - - 4+ - - - 4+ - - - 4+ |1]3
Step2 | — — + - - + - - + 112
Step3 | — + - 4+ - x 111

The next three coordinates result from SBP2 and separate columns of the original
compositional table. For example, the coordinates of the independence table in
case of the Czech Republic equal to

Zing = (—1.4315, —0.6415,0.8621, 2.7267,4.0947,0, 0,0, 0,0, 0) (83)

Note that, when both SBPs from Table 7 are applied to x;,, the resulting
coordinates are equal to zero, as well as coordinates of SBP1 and SBP2 ap-
plied to col™(x) and row(x), respectively. Thus, because of decomposition (31),
the same coordinates would be obtained if SBPs from Table 7 were applied di-
rectly to the independence table x;,4 from (30), or if SBP1 was applied to row=(x)
and SBP2 to colL(x), respectively. As a consequence of coordinate isomorphism
and (31), the coordinates of the independence table also form coordinates of
the original table x. The remaining coordinates of x equal to (I —1)(J —1) =6
nonzero coordinates of the interaction table, and can be expressed using formula
(79). In case of the Czech Republic, these coordinates are

Zin = (0,0,0,0,0,0.5439, 0.8988, 0.8428, 0.1354, 0.4648, 0.4441) (84)

where the first five zero coordinates refer to SBP1 and SBP2 applied to x;,;.
The relation of the coordinates of the interaction table to the partial tables and
odds ratios within them is illustrated in Figure 10. The basic descriptive statistics
of all coordinates for the given data set are summarized in Table 8.

The first coordinate z] compares age category 65 — 84 with the younger
categories. Relatively high negative value of the mean of this coordinate, com-
pared to its standard deviation, gives an evidence that the younger population
categories dominate in average here. Similar statement holds also for the next
coordinate zj, which compares categories 25 — 44 and 45 — 64, and thus it can be
concluded that the youngest generation (25 — 44 years) dominates.

Relation between the BMI index categories are described by coordinates
21, 25, z5. High values of the mean for the second and third coordinates, com-
pared to their standard deviations, indicate that there is a tendency to have
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Figure 10: Relation of coordinates of the interaction table to the partial tables
of x and odds ratios within them. In the first column the shades of grey denote
the parts of the compositional table x used for computation of each coordinate;
darker shade grades represent higher power of the corresponding parts in for-
mula (80). The right part of the figure represents the odds ratios contained in
each coordinate. This gives a visual interpretation of Equation (79) in case of
3x4 tables of age groups and BMI index in Example 3. Specifically, the sec-
ond coordinate z93 is computed only from parts 11, 12, £13, T21, Too, To3 and this
coordinate could be interpreted as 1/ 24/3 of logarithm of two multiplied odds

ratios, (1’11ZE23)/([E135E21) and (1'121’23)/(1‘131'22).

higher weight in our dataset (z§ compares overweight with underweight aggre-
gated with normal weight and z§ normal weight with underweight). Coordinate 2§
compares obesity with other weight categories. Even though its mean is positive,
the standard deviation is relatively high, thus any conclusion about tendency to
obesity compared to averaged other categories is not very relevant.

The first interaction coordinate zyy is computed for r = s = 2 for all 18
FEuropean countries. From Table 8 it could be seen that the sample mean equals to
0.3674, and the standard deviation is 0.1488. This coordinate could be interpreted
as a ratio of the chance that people with age between 25 and 44 years will be
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Table 8: Sample means and standard deviations (according to the analyzed 18
European countries) of coordinates.

Coordinate 2] 25 2f 25 25

Sample mean —1.2301 —0.4452 0.4604 2.4267 4.1192

Sample st. dev. | 0.3705  0.2413  0.4500 0.3477 0.3394
Coordinate 299 293 Zo4 239 233 234
Sample mean 0.3674  0.6096 0.6494 0.1057 0.3624 0.3783
Sample st. dev. | 0.1488  0.1357 0.1426 0.2412 0.2175 0.1945

underweight rather than normal weight and the same chance for people between
45 and 64. From (79) the mean odds ratio €*%3™ ~ 2 is obtained. Consequently,
the chance that younger people are underweight is about twice as high as for
people with age between 45 and 64.

The next coordinate 23 corresponds to a table for people aged between 25—
44 or 45 — 64 being under-, normal, or overweight, respectively. This coordinate
could be also interpreted as sum of logarithms of two odds ratios, divided by
21/3. The first odds ratio compares chances that people underweight against
overweight for age ranges 25 — 44 and 45 — 64 years, respectively. The second
odds ratio compares almost the same with the only difference of taking normal
weight instead of underweight. The sum of logarithms of these odds ratios is 2v/3-
0.6096 = 2.1117 > 0 on average. Consequently, at least one of the chances that
one is underweight against overweight, or the normal weight against overweight,
respectively, is higher for people between 25 and 44 years. Coordinate zo4, which
adds the column for obese people, has almost the same interpretation. The fourth
coordinate 235 corresponds to a partial table with three age ranges (25—44, 45—64
and 65 — 84) and two weight possibilities (underweight and normal weight) and
interpretation of this coordinate also analogous to the previous cases.

Since the remaining coordinates of the interaction table could be interpreted
analogously as in the previous cases, they are only described using Figure 10 and
Table 8. To sum it up, the first three nonzero coordinates of the interaction ta-
ble carry information about odds ratios, which compare chances of lower weight
ranges to a higher one for age group between 25 and 44 years and group between
45 and 64 years. The first coordinate compares underweight with normal weight.
In the next coordinate, these two groups are both compared with overweight.
Finally, the third coordinate compares groups with underweight, normal weight
and overweight with the group of obese people. The last three coordinates com-
pare the same chances, but now the first age group contains age ranges 25 — 44
and 45 — 64 together and the second group covers exclusively age range 65 — 84
years. Quite interesting is the absence of negative values in the sample means of
all coordinates, lower weight categories are thus typical for younger population.
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The relationship between age and BMI index will be further analysed in
Section 3.

2.3.3 Coordinate representation of 2 x 2 tables

Let us now consider 2 x 2 compositional table (33). Although it is possible to
apply general coordinate representation of compositional tables, they equal to

pivot coordinates in this particular case, and have form
1 T11T12 1. rnze 1o 1 T11T22

2" ==In , 2= =In , 298 =_In
2 XL21X22 2 X21X22 2 12221

(85)

According to [11] there is also other coordinate system appropriate for this ta-
ble that follows the decomposition X = X;,qg ® X;,s. Moreover, this system can
be reached by sequential binary partition presented in Table 9. This SBP was
constructed by separating the parts on a diagonal of x from the remaining two
parts in the first step, and dividing the remaining parts into separate groups in
the following two steps.

SBP 11 X1 X921 T2 | U |V
Stepl| + — — 4+ [2]2
Step 2 + = 111
Step 3 | + — |1]1

Table 9: Tabular representation of SBP for 2 x 2 compositional table.

This sequential binary partition also results in two (in general) nonzero
coordinates of the independence table and one coordinate of the interaction table,

; 1 T11T22 ; 1 Z12 ; 1 Z11
2" = —1In R - (86)
2 12221 2 Z21 2 X22

when all the remaining coordinates are always zero. And these three coordinates
together form coordinate representation of a 2 X 2 compositional table x. Besides
the description of relations within the table, which will be discussed in Section
3, this coordinate system can be used as a compositional alternative to standard
test of symmetry in contingency tables.

2.4 Covariance structure of coordinate representation
In the following covariance structure of the above mentioned coordinate represen-

tations will be expressed as linear combinations of variances of pairwise logratios.
For this purpose, I x J compositional table is transformed in the vector form

XveC:VeC(X) = (mllu"'7'r1J7$217"'7'rIJ) . (87)

37



Variances of pairwise logratios form the elemental information on variability in
compositional tables and are summarized in I.J x I.J variation matrix

var (InZ1) wvar(lnZt) ... var(lnZL
11 12 XrJj
var {In Z2)  var ( ln &2 <o« var(Iln %2
T — T11 T12 TrJj (88)
var (ln M) var <ln f”—") <.+ var (ln M)
11 12 TrJj

As it is usual within the logratio methodology all coordinates are logcontrasts,
i.e. they can be expressed in form

I J
z = Z Zaij Inz;; = a'lnX,e., where Z Zaij =0 (89)

i=1 j=1 i=1 j=1

and a is vector with elements a1, ..., a1, ao1,...,ar;. Also the covariance struc-
ture can be derived accordingly [2].

Proposition 2.1. Variances and covariances for logcontrasts a’ In X,.. and b’ In X,
of a IJ-part compositional table x are

1
var(a’' InX,e.) = —Ea’Ta , (90)

1
cov(a' In Xyee, b’ InXyee) = —§a'Tb . (91)

Due to the possible logcontrast representation of coordinates from Sections
2.3.1, 2.3.2 and 2.3.3, Equations (90) and (91) are crucial for derivation of their
covariance structure. At first, covariance structure of the general coordinates is
considered. Consequently, results are adapted for the case of pivot coordinates
together with a closer look at simplifications for interpretation of coordinates.
Finally, the simplest case of 2 x 2 compositional tables follows.

2.4.1 General coordinates

Consider first the general coordinate system of I x J compositional table, whose
construction was described in Section 2.3.1. If not otherwise stated, the following
theorems were proved by applying directly Proposition 2.1.

Theorem 2.2. Consider an arbitrary coordinate 2%

equation (52). Its variance is formed by three parts,

constructed with respect to

var(z9%) = A, — B, — C1. (92)
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The first part, increasing the variance, is

A = 1
! b(a+b+c+d 2. 2 Var(nx”)

Z] GIA (’L/ ]/)GIB

+(a+b+c+d Z Z vaur(hrlx”)ﬂL

(i,5)€la (V,5")€lc

T
In —
+b(a+b—|—c+d Z Z var(n%])%—

(1,9)€lp (¥',5)€lp

(a+b+c+d 2. 2 Var<lnxx:j> (93)

(i,5)€lc (¥',5")ElD

The variance of the coordinate is reduced by parts

1
B, = - 1
! 2 (a+b—|—c—|—d Z Z var(nx”)

(3,5)€Ia (V,j")ELA

1
d(a+b—|—c+d Z Z Var(lnw”>

J)e€lp (i',j)€lp

(a+b+c+d Z 2 Var<lnxw) (4

l])GIA (’L )GID

and

1
C, = 1
! 2b2(a+b+c+d 2 2 Var(nx”)

’])GIB (7’, eIB

1

202(a—|—b—|—c—|—d Z Z Var(lnx”)+

(i,9)€lc (7,5")€lc

b(a+b+c+d > 2 Var<1nx”) : (95)

(i,)elp (7,5)€lc

Here 14, I, I and Ip are sets of indices of parts from groups A, B, C and D as
defined in Sections 2.3.1 and a,b,c and d are numbers of parts in these groups.

From Equation (92) results that the variance of coordinate z0% is increased
by variances of logratios between parts from groups A and B, A and C, B and
D and C and D. On the other hand, the overall variance of the coordinate is
reduced by variances of logratios between parts from the same group or between
parts from groups A and D or B and C. Graphical representation of this feature
is provided by Figure 11.

The next theorem defines covariance between two odds ratio coordinates.
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BB

Figure 11: Graphical representation of variance of coordinate 2°f, which is in-
creased by variances of logratios between parts from blocks highlighted by (/)
and (\) - A; and reduced by variances of logratios, where both parts are from
blocks highlighted by (/) - By or by (\) - C}.

Theorem 2.3. Consider two coordinates 2%, 208, for k,l=1,...,(I —1)(J —
1),k # 1, constructed according to (52). Then for their covariance the following

holds,

where

Az

Bs

cov(zg ", 2P) = Ay + By — Co — Dy, (96)

1 dy, ad; Tij
— g E var | In — | +
2\/ak(ak+bk+ck+dk) \/blz(al-i-bl-‘rcl-i-dl) Tir g1

(i9)€la,, (i',5)El B,

1 dy, aydy Tij
+\/ 5 E E var | In
2\ ar(ag +bgp +cx +di) \ cflar + b+ +dy) (i )eta, (i".30e 10, Ty

1 ay aid; Zij
+— var | In +
2\/dk(ak+bk+ck+dk)\/b?(al+bl+cl+dl) Z , Z ( Ty g

(i,9)€lp,, (.5 )€lp,

1 ay aid; ( Tij
+7\/ \/ E E var | In
2V di(ak +bx + e +di) \ Flar+ by + e +dy) (i)eTp, (.3ele, Ty g0

(97)
;\/b% (ar + Z:Cfc;g + dg) \/al(al + bldfk o +dy) (id')gfsk (i’,g%ul var <ln ;i:/) +
+;\/bi(ak + Z:Cji“(:k +dg) V di(a; + blail— e +dp) (’VJ')XG;B,C (i’,]é]Dl var <ln 3;;;/) +
+;\/ci(ak + Z:L-i:ck +dy,) \/az (a1 + bldl+ c+dy) (i,j%% (i’u;u, var <ln ;’j ) +
+;\/Ci(ak + Z:(-ifck +dyg) \/dl(al + bla:- ¢ +dp) (ivj)gfck (%J%IDL var <ln ijj’) )

(98)
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1 dy, di Tij
C = = var | In —~ | +
: 2\/ak(ak+bk+ck+dk)\/al(al+bl+cl+dl) 2 2 < Tyt g

(.)€l A, (i/,5)ElA,

1 dy, a Tij
+=- E E var [ In
2\/ak(ak+bk+ck+dk)\/dl(al+bl+cl+dl) ( Ty g0

(i.9)€l4, (i',3")EID,

1 ay d; Tij
+= var [ In +
2\/dk(ak+bk+0k+dk)\/al(az+bl+q+dl) 2 2 ( Ty g0

(i.d)€lpy, (i€,

1 ag a; Tij
+7\/ \/ Y <1n
2V di(ag + by +cx +di) \ di(ag + by + ¢ +dyp) (i9)el b, (i,3)elp, Ty g1

(99)
P ;\/b%(‘“ﬂ + Z:C‘lfck + di) \/b?(az + Zz“-ilf o +dp) (i,j)ngk (i',]%IBL - (ln ::j’> i
+;\/bi(ak + Z:Tck +di) \ c(a + Zlﬂﬁ o +dy) (M;Bk (i'vﬂ%;fcl var (ln ;:j,) *
+;\/ci(ak + Z:C-chk +di) \/ b2 (ar + Zzljj ¢ +dp) <i7j)z€:[% (i/vJ%;IBl var <ln ;v:ijj/> +
+;\/ci(ak + Z:Cf% +dyg) \/cl2 (a; + Z;Cﬁ c +dp) (i,j)ze:lck (i’,]%éIc, var <ln aifj/ >
| | (100)

Here 14,,1p,,Ic, and Ip, /14, Ip,, Ic, and Ip, are sets of indices of parts from
groups Ay, B, Cx and Dy /Ay, B;,Cy and Dy and ay, by, cx and dy/a;, by, ¢; and d,
are numbers of parts in these groups.

Similarly as in the case of variance, the covariance between two odds ratio
coordinates is increased by variances of logratios between parts from groups Ag
and By, Ay and C}, Dy and B; and Dy, and C), and conversely (see (97) and (98)).
The covariance is reduced by variances of logratios between parts from blocks
(Ax, A1), (Bk, By), (Cy, C)) and (Dg, D;) or (Ag, Dy), (B, Cy), and conversely (see
(99) and (100)). These groups are displayed in Figure 12.

The second group of coordinates of a compositional table is formed by
balances between whole rows or columns, each represented by the respective
geometrical means. The following Theorems 2.4 and 2.5 are direct consequences
of results from paper [17]:

Theorem 2.4. Consider row balance z] foriv=1,...,1 —1 and column balance
2§ for j =1,...,J — 1, computed with respect to (44) and (45). Their variances

41



O

\\\\\\\ //////// /

Figure 12: Graphical representation of covariance between two odds ratio coor-
dinates 0% and 2P%, which is increased by variances of logratios between parts
from blocks (/) and (]) - A and variances of logratios between parts from (\)
and (—) - By. The covariance is reduced by variances of logratios between parts

from blocks (/) and (=) - Cy or (\) and (|) - D».

are

t i
var(z;) = 2J(i’+t) T Z var (ln x-/]-/>+
(irg - i'j

? Va( x”) : (101)
Iy

where I, I; are sets of indices of parts from the rows from the first and second
group of the i-th step of row SBP, respectively. And

var(zj) = m Z Z var (ln P )

(z el (i,7')EL,

+2 > Z Var(lnx”>

(4,9)€ly (¢.,3")ELy

— Z > Var(lnx”) : (102)

(z J)el, (i',5)€el,

here L., I,, are positions of parts from the columns from the first and second group
of the j-th step of column SBP.

According to this theorem the variance of row coordinates is increased by
variances of logratios between parts from different groups of rows, which were
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defined in the respective step of row SBP. On the other hand, the variance is
reduced by variances of logratios between parts of rows, which belong to the same
group. Analogous interpretation holds also for variance of the column coordinate
z§. Graphical representation of these features is provided by Figure 13.

Figure 13: Graphical representation of variance of row balance z! (left) and col-
umn balance 2§ (right). Variances of both coordinates are increased by variances
of logratios between a part from block highlighted by | and a part from block
—. Variances of logratios between parts which are both from the same block
decrease the resulting variance. Covariance between both balances is increased
by variances of logratios between a part of the left table highlighted by | and part
of the right table highlighted by —, or conversely. Variances of logratios between
parts from blocks with the same marking decrease the resultant covariance.

Theorem 2.5. Consider three row balances zy, , 2y, and zj, for ki, ko, k =1,... 1—
1, ki # ko and three column balances zf ,zj, and zf for li,ly,l = 1,...,J — 1,
Iy # 1y from (44) and (45), respectively. Their covariances can be expressed as

[ty
cov(zg,, z,) =K ey Z Z var <1n P )

7])6151 (’L,J,)EI

\/r DS V&I«(ln%)

,j EIsl i ] Elz

ﬁ > Z var(lnx”)

7.7 EItl (Z
?82 Z Z var (ln ) . (103)
1 2 (i,)E€Le, (i',5")E L, Litj!

with K = \/uz(sﬁt—m, where I, I, and I, I;, are sets of indices of parts
from the rows from the first and second group of the ki-th and ko-th step of row
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SBP, respectively. Covariance between column balances is obtained as

V1U2 Tii
cov(z,z,) =K ar (ln = )—i—

U1U €Tt
172 (z,] €Ly, (i ’,j/)el v

Uit Z Z var (ln - )

(4,9)€Luy (7,5

U1V2 Tij
var | In —
v1u 2 Ly g0

J)val 'J/)GI

itz var <ln iy ) ,  (104)

v Xt
! 2 7])61’01 /7]/)61 v

with K = \/412(u1+vll)(u2+v2), L, 1, and I,,,I,, are sets of indices of parts from

the columns from the first and second group of the ji-th and jo-th step of col-
umn SBP, respectively. Finally, covariance between row and column balances is
obtained as

cov(zy, 2;) =K \/ fv Z Z var (ln o~ )

(m VELs (,5') €l

JEZ§:W@%%

7])615

ﬁzzm@ﬂ

(i.9)€ly (i',5")Elu

\/@Z > Var<lnx”) : (105)

(4,9)€lt (¢,5")ELy

with K =, /m, I, I, and 1, I, are sets of indices of parts from the rows

and columns from the first and second group of the k-th step of row SBP and [-th
step of column SBP, respectively.

Covariance between different row /column balances is increased by variances
of logratios between a part from row/column, which was in the k;-th/l;-th step
of row/column SBP included in the first group and a part of row/column from
the second group, according to ko-th/l-th step of row/column SBP or conversely.
The covariance is reduced by variances of logratios between parts, which are
both from the first groups of the respective steps of row/column SBP, or both
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from the second groups. Also this interpretation can be supported graphically
(Figure 14, 15). Covariance between row and column balances can be interpreted
analogously with groups defined according to k-th step of row SBP and [-th step
of column SBP. Graphical representation is also provided by Figure 13.

Figure 14: Graphical representation of covariance between row balances 2, (left)
and z, (right), which is increased by variances of logratios between a part of
the left table highlighted by | and a part of the right table highlighted by —,
or conversely. Variances of logratios between parts from blocks with the same
marking reduce the resulting covariance.

Figure 15: Graphical representation of covariance between column balances 2},
(left) and 2f (right), which is increased by variances of logratios between a part
of the left table highlighted by | and a part of the right table highlighted by —,
or conversely. Variances of logratios between parts from blocks with the same
marking reduce the resulting covariance.

Finally, the last theorem of this section derives covariances between odds
ratio coordinates and row or column balances, respectively.

Theorem 2.6. Consider coordinates 297, 21 and ¢ fori=1,...,(I —1)(J —

1), k=1,....,.] —1andl = 1,...,J — 1, then for covariances between odds
ratio coordinate and row or column balance, respectively, the following holds. For
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the first case,

OR _r\ _ 1 ad
cov(zy ", 2p) = §\/a+b+c+d \/sJ(i—i—t) Z Z var (ln vy )+

(ZJ Vel (7,5")€ELS

+ Z Z Var(lnmzj

(7‘7‘7)613 (7‘ )

)
RS Var(mx”>
)

(7’7.7 €lc ( )EI

- Z Z var lnx”

( 7.] 6]D ( i/ ,)GI

1 ad S
T2\ arbrerd\/ ti(s+0) - Z Z var <1D o )—l—

( i,5)€la (V5" )EL

+5 Z Z var <lnx”

(i,5)elp (i3 €l

)+
+— >y Var(lnx”)
)

(U €lc (i,§)€lt

Z;
—= Z Z var <1nxlj

(w €lp (i',j))el

6)

where 14, I, Ic, [p are sets of indices of parts from groups A, B,C, D and I, I,
are sets of indices of parts from the first and second group from k-th step of
row SBP. Similarly, with I, I, defining sets of indices of parts from the first
and second group of column SBP, covariance between odds ratio coordinate and
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column balance is given as

ad
COV(Z \/ a+btct+d\/ ul u+v) Z Z var (ln Ty )

(4,5)€I4 (¢

—i—— Z Z var (lnx”

( 7])€IB ( GI

)+
+E > Y Var(lnx”)
)

(i,5)€lc (V,5")€lu

—— Z Z var lnx”

( i,5)€lp (i",5) €Ly

1 ad u
T2 \/ a+b+c+d vl (u+v) - Z Z var <ln o )+

(2 J)ELA (7,5

1
+E Z Z var <ln$”

(i,5)elp (i',5') €Ly

)
+% > Var(lnx”)
)

(i.g)ele (¥4l

_cll Z Z var (ln ;lj

(i.7)€lp (i',5")el

(107)

Also covariance between coordinate 22 and balance 2} or zf is increased by
variances of logratios between parts from the opposite side of fractions, defining
both respective coordinates. Concretely, between a part from group A or D and
a part from the second group of the respective step of row or column SBP, or
a part from area B or C and first group of the respective step of the SBPs.
The remaining variances reduce the resulting covariance. Figure 16 provides
graphical representation of this feature.

All the introduced theorems are more specified in the next section, concern-
ing the pivot coordinates.
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Figure 16: Graphical representation of covariance between coordinate z°2F (left)
and row balance zj (center) or column balance 2 (right). The covariance is
increased by variances of logratios between a part from block highlighted by /
and part of the middle or right table highlighted by —, or parts from areas \ and
|. Variances of logratios between parts from areas / and |, or \ and — reduce
the resulting covariance.

2.4.2 Pivot coordinates

Results from the previous section represent a direct generalization of those from
paper [12], which focuses on covariance structure of pivot coordinates of composi-
tional tables. The corresponding theorems together with a detailed interpretation
are provided in this section.

Theorem 2.7. Consider an arbitrary coordinate z,.s constructed with respect to
(79), forr=2,...,1 and s =2,...,J. Its variance is formed by three parts,

Var(zm) = Ag — Bg — Cg . (108)

The first part, increasing the variance, is

1 r—1 s—1 T
A3 = ——— var (ln Y ) +
rs(s—1) = Ty
1 r—1 s—1
+ var (ln ”) +
rs(r—1) P Tirs

r—1
s—1 Tis
1 . 109
+ - E_ Var(nxm> (109)
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The variance of the coordinate is reduced by parts

r—1 s—1
1 1 Tij
By = - var (ln Y ) +
2rs(r—1)(s —1) i,i’zzlj,j/zzl Ty jr

+— In ~ 11
2> () (10
=1 j=1
and
1 r—1 &4 Ty
Cy = ——— var [ In =% ) +
3 2rs(s—1) Z ( xrj/)
3.3'=1
r—1
1 s—1 Tis
+-—— var | In +
2rs(r—1) “,,ZI ( xixs)
1 r—1 s—1 T
+— In =2 . 111
TSZZVar(nxrj) (111)
i=1 j/=1
Proof: When parts of the compositional table x are rearranged in form of
composition Xyee = (T11,T12, .-, T1J,T21,--.,L11), coordinate z.s of the interac-
tion table can be expressed as z,., = &’ InX,.., where for elements of the coefficient
vector a = (a1, a12, ..., 017,021, .. .,ar;) the following relations hold,
aij = 1/\/rs(r —1)(s — 1) for i=1,...,r—1 j=1,...,s—1
aij = —(r—1)/\/rs(r —1)(s — 1) for i=r j=1...,s—1
aij = —(s—1)/\/rs(r = 1)(s — 1) for i=1,...,r=1 j=s
aij=(r—1)(s=1)/y/rs(r—1)(s—1) for i=r j=s
aj; =0 otherwise.

Equation (108) is then consequence of Proposition 2.1.

From Theorem 2.7 it is clear that variance of the coordinate z,, is formed
by nine groups of logratio variances. Four of them increase the overall variability
and the other five reduce it. The first four groups are represented by As, which is
formed by logratios of “inner” parts of the partial table or part x,,, with its last
row and column (i.e. r-th row and s-th column of the original table x) except of
the part x,, itself:

e variances of logratios between an inner part of the partial table and a part
from its last row (except of z,),
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e variances of logratios between an inner part of the partial table and a part
from its last column (except of x,),

e variances of logratios between a part from the last row (except of z,,) and
T, itself,

e variances of logratios between a part from the last column (except of z,)
and x4 itself.

The variance of z,, is reduced by Bz and C3, formed by variances of logratios
corresponding to remaining possible relations between parts of the above defined
groups (inner parts, last row/column without x4, part x,, itself). Concretely, B3
consists of

e variances of logratios between inner parts of the partial table,

e variances of logratios between an inner part and x,..
Similarly, C5 is formed by

e variances of logratios between parts from the last row (except of ),
e variances of logratios between parts from the last column (except of z,),

e variances of logratios between parts from the last row and the last column
(except of x,s).

The above relations can be expressed also graphically, as shown in Figure 17.

5

Figure 17: Variance of coordinate z,, is increased by variances of logratios between
a part from area highlighted by (/) and a part from the second area highlighted
by (\) — As. The variance of z, is reduced by variances of logratios between two
parts from area (/) — Bs or two parts from (\) — Cs.

Covariances between coordinates of the interaction table are derived in
the next theorem.
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Theorem 2.8. Consider two coordinates zy s,, Zrys,, for r1,79 = 2,...,1 and
S1,82 = 2,...,J, constructed according to (79). Then for their covariance the fol-
lowing holds,

COV(Zpys1s Zrysy) = K(Ag+ By — Cy — Dy) (112)

where

ri—1ro—1s1—1
Ay = (s2—1) ZZZV&I(IH “]1)

Xz
11=1 12=1 j1=1 1252

ri—1s1—1s2—1
7
+(ry — 1) E E E var(ln ”1)—1—
s
11=1 j1=1 jo=1 272

ro—1

-1 —1 —_ 1 Iy —rLst
+(r1 )(s1 ) (52 Zz:l var ( n %252)
so—1 r
+(r1 = 1)(ra = 1)(s1 — 1) Z var (ln 7"151) (113)
]2 1 xT2.72
ri—1ro—1s9—1
Bi= (a=D Y Y Y (m )
i1=1 ia=1 jo=1 Ligjo
ri—1
+(s1 = 1)(s52 = 1)(r2 — 1) VaI'(ln )
( 1 )< ’ )( ’ Z Trysy

i1=1

s1—1rg—1s9—1
+(ry — 1) ZZZV&I‘(IH r1y1)+

s
J1=1i2=1 ja=1 272

H(ry — 1) (ry — 1)(s3 — 1) Slz:_lvar (m ”’—J) : (114)

Jji=1 Trass

ri—1ro—1s1—1s9—1
C, = E E E E var (ln ml)
Ligj

i1=1 i9=1 j1=1 jo=1

ri—1s1—1
+(rg —1)(s9 — 1) ZZV&I( )—l—
Lrasg

11=171=1
ro—1s2—1

+(ry = 1)(sy — 1) ZZvar( Tlsl)—i—
P Liygo

(r1 — 1)(ra — 1)(s1 — 1)(s2 — Dvar (m L) , (115)

Lrosg
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ri—1re—1
Dy = (s1—1)(s2—1) Z Z var <ln h) +

i1=1 ip=1 Tizsz

ri—1s2—1
+(s1 —1)(ry — 1) Z Z var (ln “51) +

i1=1 jo=1 Traja

s1—1ro—1
+(r1 = 1)(sa — 1) Z Z var (ln ml) +

j1=1 ia=1 Tizsz

s1—1s9—1 o
+M—U%—UZ§JWOHWO (116)

j1=1 jo=1 Lroja

dK =1 L :
an 2 \/1"17“25132(rlfl)(rgfl)(slfl)(é;gfl)

Proof: The covariances are obtained using the general formula (91), where
the corresponding coefficient vectors a' and a? have elements

1//Tiesk(re — 1) (s, — 1) for i=1,...,me—1 j=1,....8,—1
—(re = 1)/ \/rsi(re — 1) (s, — 1) for i=ry j=1,...,8.—1
afi =< (s — 1)/ \/resk(rr — 1) (s, — 1) for i=1,...,rp—1 j=s
(Tk—1)(Sk—l)/\/’l“ksk(7“k—1)($k—1) for i=rg 7 =Sk
0 otherwise,
(117)
and k=1, 2.

Similarly as for the case of variances, there is a group of logratio variances
that increases the overall covariance between coordinates (A4 and By) and the re-
maining variances reduce it (Cy and Dy). Specifically, for construction of logratios
in Ay the following parts are employed,

e an inner part of the first partial table and a part from the last column of
the second partial table (except of s, ),

e an inner part of the first partial table and a part from the last row of
the second partial table (except of z,.,s, ),

e the part z,,5, and a part from the last column of the second partial table
(except of x,,s,),

e the part z,,,, and a part from the last row of the second partial table
(except of y,s,),
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where we always deal with two “virtual” tables corresponding to the coordinates
of interest. Similarly, B, is formed by variances of logratios of

e a part from the last column of the first partial table (except of z, ) and
an inner part of the second partial table,

e a part from the last column of the first partial table (except of z, ) and
the part z,,,,

e a part from the last row of the first partial table (except of z,s ) and
an inner part of the second partial table,

e a part from the last row of the first partial table (except of z,,) and
the part z,,s,.

On the other hand, the covariance is reduced by Cy involving logratios between

e an inner part of the first partial table and an inner part of the second partial
table,

e an inner part of the first table and the part part z,,s,,
e the part x,,,, and an inner part of the second partial table,

e parts z,,5, and T,,,
and by D, consisting of logratios formed by

e a part from the last column of the first partial table (except of z, ) and
a part from the last column of the second partial table (except of x, s, ),

e a part from the last column of the first partial table (except of z, ) and
a part from the last row of the second partial table (except of x,.,s,),

e a part from the last row of the first partial table (except of z,,, ) and a part
from the last column of the second partial table (except of x,,s, ),

e a part from the last row of the first partial table (except of z,,, ) and a part
from the last row of the second partial table (except of z;,s,).

Also covariance between two coordinates of the interaction table could sup-
ported by its graphical representation, see Figure 18.

Since coordinates of the independence table (68), (69) are balances obtained
from sequential binary partitions, dividing rows and columns of the original table,

respectively, their variances and covariances are obtained as direct consequence
of [17].
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Figure 18: Covariance between coordinates z,,5, and z,,s, is increased by vari-
ances of logratios between a part of the first partial table from area highlighted
by (/) and a part of the second partial table from area highlighted by (|) — A4.
The second group of variances increasing the covariance between coordinates are
connected to logratios between parts from (\) and (—) areas — By. The covariance
is reduced by variances of logratios between parts from (/) and (—) area — Cy or
two parts from (\) and (|) — Dy.

Theorem 2.9. Consider coordinates of the independence table zj, fork =1,...,1—
1 and zf forl=1,...,J — 1, then their variances are
I-k J - ' J
var(z) = KZ Z var <1n HCH]) ——{I —k) Z ar< - k+1’]> -
i'=1j,j'=1 T =1 TI-k+1,j'
-k J
K ( xij >
—_— Z var [ In —— |, (118)
2(‘[ - k) 7;,1;/:1 j,j/:1 ﬂfi/j/
where K = m, for balances between rows, and
I J-l K 1 i1
var(zj) = KZ Zvar<ln LI jH)—(J—l)Zvar(an)—
ii'=1 j=1 '] 2 iir=1 T T—j+1

K I J—1 oy
— In L 119
2(J 1) iiz’::l jjz/::1 b < ! L 5! >’ (119)

where K = for balances between columns.

1
I(J—1+1)’

The variances of these coordinates are increased by variances of logratios
between a part from the (I — k 4 1)-th row/(J — [ + 1)-th column and any part
from the previous rows/columns. On the other hand, the variances of zj, and 2}
are reduced by variances of logratios between parts from the same row/column.

According to relation (91) there are three main options how to get covariance
between coordinates of the independence table, depending on concrete balances of
interest. All these possible covariances are summarized in the following theorem.
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Theorem 2.10. Consider three row balances zj. , z, and zp, for ki ke k =
L,...,I —1, ky # kg, computed using expression (68), and three column balances
2, 25, and zf, for il 1l =1,...,J =1, Iy # ly, computed from (69). Then

2
I—ko J
r r o I—-k1+1,5
cov(zg,, 2p,) = = k:2 E E var (ln )

i'=1 j,5'=1

I—ky
] /ﬁ Z Z var (lnxl o ) —

i=1 j,5'=1

4.5'=1 L1- ka+1,5

I—ki I=ks J
TR I ) ZZZVar(lnx”) ., (120)

i=1 /=1 jj'=1

where K = \/(1 (ilfiggizzll), for row balances,

I J-b
c c i,J—l1+1
cov(z, z,) = E E var (ln >

—l
211’ 145'=1 ‘3’

I J-h

K
Z Z var (ln Ty 12+1) —

J—1)
1 i,i'=1 j=1

1
KY var (th) _

ii'=1 Tyt g lo+1

I Tl J-l
(J—ll T=10) ZZZVar(lnx”) . (121)

=1 j=1 j'=1

where K = \/(J (}]14538 ;211), for column balances, and

I J
K o
cov(zp,2f) = =0 E 5 E var (ln m) +




where K = %\/ 7 J(I(fgi)l(){;i)l e between row and column balances.

To complete the covariance structure of coordinates of the compositional
table x, covariances between coordinates of the interaction and independence
tables z,,, 2z, and zj, respectively, are necessary. They are provided in the last
theorem.

Theorem 2.11. Consider coordinate of the interaction table z.s, forr =2,...,1
and s = 2,...,J, and two coordinates of the independence table, zj, for k =
1,....,I1—=1, and 2}, forl =1,...,J—=1. Then for covariances between coordinates

of the interaction and independence tables the following hold,

cov(zrs, zp) = K - (As — Bs) (123)

where

r—1)(s—1 J Tps
—I—% ‘ Zvar (ln o .,) , (124)

+w ivar (m x—) , (125)

1 J(I—k)

1
fO’f’ K= 2 \/rs(r—l)(s—l) I-k+17

and

cov(zrs, z1) = K - (A6 — Bg) (126)
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where

+(T;&—S_1ijzlvar (ln x”) , (127)

+Wim (1n%x—> , (128)

! J=l+1

1 I(J=1)
fOTK 2\/rs(r 1)(s—1) J—l+1"

Proof: The assertion of the theorem is a direct consequence of Proposition

2.1 and Equations (68), (69) and (79).

Similarly as for the case of interaction table, also the above results can be
interpreted graphically. Because Theorems 2.9 and 2.10 represent a special case
of balances, that were in detail analyzed in [17], in Figure 19 we focus just on
covariances, resulting from Theorem 2.11.

Example 4 To illustrate the presented theoretical outputs, let us consider the sam-
ple of eighteen 2 x 3 compositional tables, each containing population structure in
a given European country according to age and BMI index ((weight in kg) /(height
in m)?), with values 25 — 44,45 — 64,65 — 84 and under- or normal weight and
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Figure 19: Covariance between a coordinate of the interaction table, z.s (left),
and coordinates of the independence table, 2}, (middle) or zf (right), is increased
by variances of logratios between parts from areas (/) and (—), or (\) and (|),
respectively, and reduced by variances of logratios between parts from areas (/)
and (]), or (\) and (—), respectively.

overweight or obesity, respectively. This data set is an aggregated version of
data from Example 3. Table 10 shows an example of compositional table from
the sample.

AUT 25 —44 45—-64 65— 84
under or normal | 0.249 0.144 0.074
over or obesity 0.171 0.221 0.140

Table 10: Structure of population in Austria in 2008 according to age and BMI
index (in proportions).

Firstly, each table from the sample has been expressed in pivot coordinates (79)
and, consequently, their descriptive statistics were calculated. Note that the sam-
ple mean is

7 = (0.409,0.294, —0.450, 0.578,0.637) | (129)

but for our purposes the covariance structure of the sample is of primary interest.
The variation matrix (88), as a source of elemental information in compositional
tables, equals

0 0.037 0.083 0.024 0.030 0.069
0.037 0 0.030 0.077 0.050 0.051
T 0.083 0.030 0  0.127 0.098 0.065 (130)
0.024 0.077 0.127 0  0.019 0.078 '
0.030 0.050 0.098 0.019 0  0.040

0.069 0.051 0.065 0.078 0.040 0
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For example, using this matrix and equation (108), variance of the first coordinate
of the interaction table, z99, can be obtained as

_ 1 T11 1 T11 1 21 1 T12
var(zpp) = gvar <ln le) + gvar (ln x12> + gvar (111 gm) + gvar (ln m)
—Lvar(In2w) — Lyar (In2e ) — Lyar (In22 ) — Lyar (1n 22
8 11 4 T22 8 T21 8 T12

—ivar In &2
x21

= letlél + Lllt12 + zllt45 + let25 - %tu - %tlg, — %t44 — %tgg — zllt24
= 0.0057
(131)

By comparing with the corresponding elements of the variation matrix
we can conclude that none of logratios contributes exceptionally (in the posi-
tive sense) to variability of the coordinate. In the negative sense, the logratio
In(underweight or normal weight in age 45-64/overweight or obesity in age 25-
44) shows a dominant effect. Similarly, also other variances and covariances can
be derived (and further analysed for structural patterns), resulting in a covariance
matrix

0.006 0.003  0.010 —0.007 —0.004
0.003 0.013  0.007 0.002  0.003

var(z) = | 0.010 0.007 0051 —0.021 —0.012 | . (132)
—0.007 0.002 —0.021  0.055  0.024
—0.004 0.003 —0.012  0.024  0.022

2.4.3 Coordinates of 2 x 2 tables

An interesting interpretation results from covariance structure of coordinates of
the smallest possible table with 2 rows and 2 columns. Also this case is discussed
in [12]. By applying the above theorems to coordinates

I, zpmwy 1. xpmwo

1 TL11T22
z'=—=In , 2°==In and 29%=_1In : (133)
T21T22 2 T12T22 2 T12221
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their covariance structure can be easily derived,

1
var(zo) = — |var In ) 4 var (In 22 ) 4 var (In 22
4 o1 T12 T22
L12 11
+var <ln —) — var <ln —) — var (ln —)1 , (134)
To9 T22 T21
1
var(z]) = - |var In ) 4 var (In 22 ) 4 var (In 22
4 To1 T2 21
+var <ln @) — var <ln @) — var (ln —)} , (135)
To9 T12 T22
1
var(z{) = - [var <ln —) + var <1n —) + var (ln —)
4 T12 L22 L12
+var <ln @) — var (ln E) — var (ln @)} , (136)
L22 L21 L22
var <ln @) - <ln @) : (137)
L T21 T12 /) |
var <ln @) - (m @) , (138)
L T12 Ta2 /) |
var <ln @) — <ln @) : (139)
L T22 Z21 ) |

Moreover, from the above covariance structure it is also interesting to see
that coordinates (133) are uncorrelated (or even independent under the assump-
tion of normality) if, and only if

T11 T12 T11 T21
var ( In— | = In— ), var{ln— | =var|ln—
T21 X22 T12 T22

and var (ln @) = var (ln @> : (140)
T22 L21

In other words, it means that zero covariances can be easily expressed in
terms of logratio variances. Consequently, the above relations could be used, e.g.,
by designing simulation settings for 2 x 2 compositional tables using elements of
the variation matrix as a source of elemental information in covariance structure
of compositional tables.

cov(zae, 21) =
cov(zag, 2{) =

cov(z],2]) =

I I R N I SN

Following [11], it is possible to assign also another system of orthonormal
coordinates to a 2 X 2 compositional table (see Section 2.3.3). Specifically, we get

ind __ 1 1 L12

1 T11 i 1 T11T22
a1 z n

ind __ 1 nt __ |
, =

—F=m-—-—, 2o = = )
V2 1o V2 X 2 xiTy

(141)
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for the interaction and independent tables, respectively, and the covariance struc-
ture changes as follows,

< 1
var(z™) = = |var(In T 4 var (In 22 ) 4 var (In 222
4 12 o1 22
+var (ln @> — var (ln @> — var (ln @)} ,(142)
T22 T22 T21
- 1
var(zi"d) = Zvar <1n @) , (143)

var(z")

. . 1
cov(z™, 2ty = {Var (ln @) + var (ln &) — var (ln @>
44/2 Z12 T21 22
cov(z™, 2y = —— |var | In T 4 var (In 22 ) — var (In 22
44/2 21 T22 Z12

cov(zimd zindy = _lvar ( In T 4 var (In 22 ) — var (1o 22
4 o1 T2 T12
—var (ln @>} . (147)
L22

Now, although coordinates of the independent table are formed just by
(scaled) logratios, the covariance structure becomes more complex than before.
For example, coordinates (141) are mutually uncorrelated (independent) if, and
only if

var (ln E) = var (ln @) = var (ln @) = var (ln @) . (148)
X192 T2 T22 T22

In other words, it means that var <ln %) and var (111 %) are influential just for

variances of coordinates 21", 2" > forming also natural constraints for their

possible values.
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3 Analysis of relationships between two factors

A natural aim of the analysis of compositional tables is to study relationships
between its row and column factors. In [7] it was proposed to measure distance
between the original compositional table x and its independent part x;,q using
squared distance

2 2 2 2
A(x) = |[xinella = [1xI[4 = [[Xinalla (149)
or relative squared distance
_ A(x)
[1x]1% 7
which suppresses the influence of dimensions of compositional table x on squared
distance. Values of relative squared distance, which are near to 1, are typical for
tables with strong interactions between factors. On the other hand, low values

give an evidence about independence between row and column factors. Moreover,
due to decomposition

X = Xjpg D (@ rowz-(xint)) = Xjna D (@ colj(xmt)> , (151)

i=1 Jj=1

RA (%) 0<RA<1 | (150)

the contribution of the i-th row to the squared norm is ||row; (X )| and similarly
contribution of the j-th column is ||col;(Xine)|[%-

Since orthonormal coordinates accounting for interactions between rows
and columns were not available in [7], these features were measured using cross-
contrasts and so called cell-interactions. The cross-contrast is defined as a simple
balance of the part of interaction table at position (i, j) against the other parts
in the same row or column,

o [Ty T2 ar
Loross(i,7) = Tr 1 In ( o mt) i (152)

Hr;éi rj s#£j Lis

The problem of these balances is that they are not orthogonal. On the other
hand, their sum is closely connected to the square norm of x;,,; through relation

S Uerni0) = it Dy - (159)

T+J-1)I+J-2)

The cell-interaction is defined as balance between part of interaction table at
position (7, j) and the rest of parts

. 1J—1 it
[cell(lvj) = IJ ln ]' . 1/([],1) 9 (154)
(Hw,l#(i,j) Thi )
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and is also connected to squared norm of the interaction table
1J
N 9
Zi:zj:(Icell(ZL])) - mHthHA . (155)

Furthermore, it can be shown, that in the case of 2 x2 table all the cell-interactions
are the same (up to its sign) and proportional to the interaction coordinate (52),

1 T11X
Teen(1,1) = Leen(2,2) = —Leen(1,2) = —Leen(2,1) = ﬁlﬂ xi;’vzj

(156)

However, coordinate system proposed in Section 2.3.1 or its special case
from Sections 2.3.2 and 2.3.3 enable a deeper insight into the source of interactions
between both factors, by considering interpretation of the odds ratio coordinates
of the interaction table. Particularly if row and column factors are independent
(x = Xjnq), the interaction table equals to a neutral element of perturbation, all
its parts are the same and the vector of odds ratio coordinates (52) z;,; equals
to a zero vector. On the other hand, high absolute values of this vector indicate
presence of interactions between factors. Consequently, in the situation when
a random sample of compositional tables is available, the analysis of indepen-
dence reduces to multivariate test on zero mean value of the vector of interaction
coordinates z;,;. The structural approach to the analysis of independence be-
tween factors is also supported by the interpretation of these coordinates. As it
was described in Section 2.3.1, coordinate z2F can be interpreted as logarithm of
odds ratio among groups of parts. Since in the independence case the odds ratio
equals one, zero values of coordinates give an evidence against the presence of
interactions between factors.

The information about relations within the table can be completed using
the remaining coordinates. Row and column balances z",z¢ focus exclusively
on relations between levels of row or column factor, respectively. The proposed
coordinate system thus forms also a compositional alternative to log-linear model
approach, since parameters of two-factor log-linear model with interactions can
be also interpreted in the sense of logarithm of ratio between different levels of
row or column factors, or logarithm of odds ratio. Specifically, in the case of
binary factors (2 x 2 contingency table) the respective log-linear model is

In Tij = 60 + ﬁlIQnd_row + B2I2nd_column + 53[2nd_row[2nd_columna Z?] = 17 2 )
(157)
where I5,q row and Iong cowmn are identifiers of the second row and column, re-
spectively. Parameter j3; indicates value of the logratio between parts z;; and
x21 and analogously parameter (3, describes the logratio between parts in the first
row (In i—g) Finally, the last parameter 3 defines log-odds ratio within this table
and this parameter vanishes when row and column factors are independent.
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As was already described in Section 2.3.3, coordinates of a 2 X 2 composi-
tional table have form

1 X11T12 1 T11%21 1 T11X22
Z'=—-In——, z°=—-In——, JOR — Z | 222
2 T21T22 2 T12T22 2 T12T21

(158)

Consequently, between parameters of the log-linear model and orthonormal co-
ordinates the following relations hold

53 c 63 OR _ @

Zr:_ﬁl_?7 21—2—3, z 9
In terms of log-linear models, zero value of parameter 53 means, that there are no

interactions between row and column factor, similarly as zero value of coordinate
OR
A

(159)

The applicability of the proposed coordinate representation of compositional
tables to analysis of relationship between factors is illustrated in the following
with two real-world examples.

Example 5 (Relationship between age and BMI index - part 2) Let’s continue
with the Example 3 from Section 2.3.2. Description of data as well as interpre-
tation of coordinates were already provided there. We focus now on relations
between age and BMI index. If the factors were independent, the interaction
table would equal to the neutral element on the simplex, i.e. all parts would
be approximately 1/(1J) = 1/12 = 0.0833. In case of the Czech Republic it is
easy to see that this condition does not hold as well as in the case of the other
countries. This feature is clearly visible also from the mean interaction table (in
sense of the Aitchison geometry)

.o 0.1483 0.0967 0.0589 0.0465
Kint = — O @) Ximep = [ 0.0554  0.0753  0.0917 0.1031 . (160)
[~ 0.0604 0.0682 0.0922 0.1035

Despite relatively high standard deviations of some coordinates with respect to
the corresponding means, the above findings lead to a preliminary conclusion
that age and BMI index are not independent.

In order to extend the univariate conclusions to a multivariate one, the co-
ordinates of the interaction table as well as of the original compositional table
and the independence table are also analyzed using the well-known biplot [18] of
the first two principal components of the corresponding coordinates. In Figure 20
biplots of the original, independence and interaction tables are collected. The bi-
plot of the original compositional table seems to be dominated by high variability
of the coordinates of the independence table, thus here mainly the data structure
(with Romania and Slovakia as outlying observations) can be observed. The other
two biplots provide further information on the relations leading to independence
and interaction between the age and BMI factors.
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Figure 20: Biplots of coordinates of original, independence, and interaction tables.

The biplot of the independence table shows that its first two nonzero coordi-
nates (that carry relative information on relations between the rows of the original
table, i.e. age ranges) are strongly positively correlated, and also negatively cor-
related with the remaining three nonzero coordinates (explaining the relations
between the columns representing BMI categories). From the directions of ar-
rows (loadings) we can observe that moving from the left to the right side of
the biplot, the values of the first two coordinates decrease and the next three
coordinates increase. Also the locations of countries resulting from the principal
component scores provide interesting information about the data structure, like
cluster of countries Belgium, Denmark and France with quite high values of co-
ordinates z{, z5 and z§. It means that these countries contribute substantially to
the independence between age and BMI index, in particular due to the high rela-
tive contributions of underweight people over all other age categories. Similarly,
we can observe Romania as an outlying observation with particular importance
of the positive ratio between overweight and obese people. Contrary, Poland
and Lithuania lay in the centre of the biplot. The centre represents an average
behaviour of both factors.

The interaction biplot shows some interesting features as well. In particular,
the first three nonzero coordinates are strongly correlated and the last three ones
as well, but no correlation between these two groups is visible. This means
that odds ratios with the third row of the interaction table (age range 65 — 84
years) yield results different from those within the younger categories. Also in
this biplot, Belgium, Denmark and France are placed quite near to each other
and these western European countries together with Switzerland and Austria
represent states with lower values of all coordinates, thus with rather smaller
BMI (weight) growth for increasing age. On the other hand, countries like Czech
Republic and Estonia with high values of coordinates 299, 293 and zy4 indicate
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a substantial weight growth from the younger to middle age generation, and thus
contribute substantially to interaction between the factors. An interesting outlier
is represented by Turkey with small values of coordinates 235, 233 and z34. This
testifies that the weight growth tends to be particularly small from 25 — 44 and
45— 64 to 65— 84 age group, just conversely to Slovakia. Nearest to the origin are
placed Poland and Lithuania again, i.e. these countries do not contribute neither
to interaction nor independence between the age and BMI factors.

Interestingly, small correlation between coordinates zss, 203, 294 and zss,
233, 234 remains unaltered when rows of the original compositional tables are
permuted, see Figure 21. This result indicates an independence behaviour of
single row factor values (age groups) with respect to BMI categories.
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Figure 21: Biplots of coordinates of the interaction table with rows in increasing
(25 — 44, 45 — 64 and 65 — 84), decreasing (65 — 84, 45 — 64 and 25 — 44) and
mixed (25 — 44, 65 — 84 and 45 — 64) order of age categories.

Example 6 (Distribution of manufacturing output) Also this application dis-
cusses the possibility of independence analysis between two factors using a sample
of compositional tables. For this purpose, the sample of 42 3 x 5 compositional
tables, each representing distribution of manufacturing output in a given coun-
try in years 2007-2009, is available. This example is taken from [14]. Tables
to be analyzed focus on food and beverages production only, distributed accord-
ing to manufacturing categories, which were obtained using the 3-digit level of
the International Standard Industrial Classification of All Economic Activities
ISIC (Revision 3) [25]. Values of this first factor are thus as follows (numbers
correspond to ISIC coding):

e 151 Processed meat, fish, fruit, vegetables, fats.

e 152 Dairy products.
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Table 11: Distribution of USA food and beverages production in 2008 according
to ISIC category and source of production (in %).

USA | 151 152 153 154 155
Labour | 278 0.80 0.55 2.90 0.84
Surplus | 837 2.88 4.19 10.94 5.24
Input | 25.32 9.65 7.62 12.05 5.87

e 153 Grain mill products, starches, animal feeds.
e 154 Other food products.

e 155 Beverages.

The second factor is formed by components of the output with categories Labour,
Surplus and Input. Since the interest is devoted to relative structure of the out-
put, the compositional approach is preferred. Percentage representation for one
table from the sample is provided in Table 11.

In order to express each table in coordinates, the SBPs of row and column
factors should be defined first. In the case of manufacturing categories, it seems
to be logical to separate the production of beverages from all food products in
the first step. The next steps could be based on separation of the category with
not well specified types of food products (154 Other food products) from the re-
maining three, followed by the separation of supplementary products (153 Grain
mill products, starches, animal feeds). Finally, the last step separates categories
151 (Processed meat, fish, fruit, vegetables, fats) and 152 (Dairy products). Simi-
larly, the components of production should be firstly divided onto Input and value
added (Labour and Surplus) components, which are further divided in the second
step. These two SBPs, visualized graphically in Table 12, determine uniquely co-
ordinate representation of the compositional tables in the sample. This means,
the whole set of coordinates z can be immediately computed for each table from
the sample. Since only one category was separated in each step of the SBPs,
the resulting set of coordinates corresponds to those proposed and extensively
described in Section 2.3.2 and [13]. Due to easy construction and interpretabil-
ity, this coordinate representation can be also considered as a basic option for
compositional tables. Accordingly, both Beverages and Input categories have an
exceptional position as there are coordinates that capture their relative contribu-
tions with respect to the other categories in rows (2]), columns (2¢) of the tables
and by considering interactions between both factors (29F). It is thus a natural
generalization of the approach to interpretable balances for compositional data
as introduced in [17] and recently employed in a range of applications [16, 22, 21|.

By following the presented methodology and proposed SBPs, each table
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Table 12: Sequential binary partition of manufacturing categories (left) and
sources of output (right).

SBPc | 151 152 153 154 155 |u w
1 | — — — — f]1 4
2 - - - + 0 |1 3
3 - - + 0 0 |1 2
4 -+ 0 0 0 [1 1
SBPr ‘ Labour Surplus Input ‘ s t
I — — + 1 2
11 — + 0 1 1
3 2] 1
1

i

i
— ____!._

i

1

Figure 22: Graphical representation of sequential binary partitions SBPr and
SBPc, defined on Table 12.

from the sample has been expressed in coordinates. For example, coordinate
representation of the model table, distribution of output in USA, results in

Zga = (2.52,2.39) (161)

z2ig4 = (—0.68,0.92,-0.89,-1.34) (162)

zggA = (—0.33,0.25,-0.09,0.49,0.09, —0.67, —0.09,0.11) , (163)
ZUSA = (Z;JSAa ZisAs ZggA) (164)

The positive values of zj,¢, indicate that Input dominates the value added
components and, further, Surplus dominates Labour across all (averaged) food
and beverage branches of the US economics. Production of beverages is slightly
dominated by average production of food components; this feature is captured by
the first coordinate of zf¢,, which equals —0.68. Relationships between produc-
tion sources and manufacturing categories are described by vector of coordinates
z9% . Because most of its values are not far from zero, it suggests near indepen-

dence between the factors.

These very preliminary observations for the case of USA are followed by
detailed inspection of the whole data structure. As a result of dimension reduc-
tion using principal component analysis, biplot of row and column balances and
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Table 13: List of coordinates in the second example together with their graphical

representations.
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Figure 23: Biplot of compositional tables in coordinates with countries divided
according to continent pertinence (Europe - purple, Africa - blue, America -
green, Asia - red).

odds ratio coordinates is displayed in Figure 23. All coordinates are just centred
prior to further processing as it is common so in compositional data analysis
[24]. While balances represent information within both factors, odds ratios cap-
ture relations between them. The preliminary expectations about independence
between factors were confirmed as odds-ratio variables play marginal role for
capturing multivariate variability. The concrete choice of SBP for columns of
compositional tables shows its relevance here, the coordinate z{ that separates
beverages from the other branches belongs to one of three main marker variables.
In the right upper corner of the biplot a compact cluster of European countries
is observed; they are predominantly characterized by low values of coordinate 27,
i.e., by dominance of Labour over Surplus across manufacturing categories. On
contrary, high values of this variable occur for developing Asian countries (Azer-
baijan, Indonesia, Sri Lanka). A certain level of grouping can be observed also for
African and American countries, while Asian continent shows a higher diversity.
Coordinates 2§ and z§ (the latter one being strongly correlated with 25) stand for
beverage and food production specifics of countries. Particularly, it is interesting
to see beverage dominance over aggregated food production across output sources
for Kuropean and African countries that might correspond to specifics of their
drinking culture. Note that, in contrast to analyzing standard multivariate (or
even compositional) data, variables with different interpretations are considered
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together - those in sense of row/column factors (balances) as well as odds ratios
that connect both of them. This is necessary to take into account, when any
conclusion from the biplot is derived.

c3

PC 2 (17.7 %)
PC 2 (24.9 %)

-1.0 -0.5 0.0 0.5 1.0 15 -4 -3 -2 -1 0 1 2 3

PC 1(27 %) PC 1(37.9%)

Figure 24: Biplots of odds ratio coordinates (left) and balances (right) with
countries divided according to continent pertinence (Europe - purple, Africa -
blue, America - green, Asia - red).

In order to see more detailed patterns, biplots were constructed also for
the above two main groups of variables that form the coordinate system of com-
positional tables, balances and odds ratios, separately, see Figure 3. While, as
expected, for balances the structure of loadings and scores remains almost un-
changed (Figure 24, right) comparing to Figure 23, biplot for odds ratio coordi-
nates (Figure 24, left) enables to reveal further interesting features about sources
of relations between both factors. Accordingly, grouping of American countries
abound the origin shows that relations between both factors are suppressed there.
While from Figure 24 (right) it is clear that Labour part of output sources dom-
inates Surplus over averaged manufacturing categories in European economics,
provided by zj, coordinate 29 indicates that this ratio is higher for category
152 than 151. Similarly, from 29 it is easy to see that dominance of beverages
over other food branches is higher for Input than for Labour & Surplus output
sources. Finally, coordinate 2¢% provides a more detailed insight than z¢% to
relation between value added sources: for countries like Ireland, Lithuania and
Poland dominance of Labour over Surplus is much stronger for beverage category
over the others. As both “marker variables” zj and z{ form source of interpre-
tation for Q% this might be also the main reason for border position of these
countries in Figure 23.

71



Conclusion

Compositional tables as observations carrying relative information about relation-
ships between two factors represent a direct generalization of vector compositional
data. Consequently, possibility of their appropriate orthonormal coordinate rep-
resentation forms an important step for coordinate representation of multifac-
torial compositional data. The thesis presents a general coordinate system for
compositional data, which respects their two-factorial character. The resulting
coordinates form a natural generalization of the concept of balances as intro-
duced in [6], that have already proven their practical usefulness in a wide range
of applications, and open a variety of perspectives for their further development.

Similarly as for vector compositional data, proper coordinate representa-
tion of compositional tables is necessary to enable statistical processing using
standard multivariate statistical tools. The proposed coordinate system (in both
general and pivot versions) contains both balances and coordinates with log odds
ratio interpretation and forms the main contribution of the thesis. These coor-
dinates respect the possibility of decomposition of a compositional table into its
independent and interactive parts. Consequently, it allows to study tables from
the decomposition also separately and analyze, e.g. possible interactions between
both factors only from the interactive part of coordinates. Accordingly, the gen-
eral orthonormal coordinate system respects the nature of row and column factors
and thus allows for their better interpretability. On the other hand, the pivot
coordinates as their special case seem to be easier to handle and provide an au-
tomated version of the coordinate representation. Construction of the coordinate
systems was described in a detail and endowed with examples and graphical illus-
trations for better understanding. The theoretical part of the thesis is completed
with the covariance structure of the proposed coordinates. Finally, the possibility
of structural analysis of relationships between factors was discussed in the last
section.

Beside the new coordinates a promising result comes from comparison of
coordinates of 2 x 2 compositional table with parameters of log-linear model,
since development of a compositional alternative to standard methods of analysis
of independence between two variables (factors) represents one possible direction
of our further research. The new coordinates thus seem to have great potential
for compositional data analysis itself (statistical analysis of compositional tables,
multifactorial compositional data), but open also its new challenging prospectives.
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1 Abstract

Compositional tables can be considered as a continuous counterpart to the well-
known contingency tables. Accordingly, their cells, containing in general positive
real numbers rather than just counts, carry relative information about relation-
ships between two factors. As a consequence, compositional tables can be con-
sidered as a generalization of (vector) compositional data. Due to relative char-
acter of these observations, compositions are popularly expressed in orthonormal
coordinates using sequential binary partition prior to further processing using
standard statistical tools. Even though the resulting coordinates (balances) are
well interpretable in sense of logratio between two groups of parts, they do not
respect the two-dimensional nature of compositional tables and the information
about relationship between factors is thus not well captured. The main aim of
the thesis is to present a general system of orthonormal coordinates with respect
to the Aitchison geometry of compositional data, which enables to analyze in-
teractions between factors in a compositional table. This is realized in sense of
logarithms of odds ratios, which are popular also in context of contingency tables.
Moreover, the pivot coordinate system is presented, which is useful particularly
in case, when no a priori knowledge about row and column factors is available.
For the sake of completeness, a part of thesis also concerns its covariance struc-
ture of the coordinates that enables to understand better their interpretation.
All proposed coordinate systems are illustrated by examples and graphical rep-
resentations.

Key words: analysis of independence, balances, compositional tables, orthonor-
mal coordinates



2 Abstrakt v ¢eském jazyce

Dizertacni prace je zaméfena na analyzu kompozi¢nich tabulek, které predstavuji
pfimé zobecnéni D—slozkovych (vektorovych) kompozi¢nich dat. Kompoziéni ta-
bulky mohou byt navic chapany jako spojita alternativa kontingenc¢nich tabulek,
také totiz zachycuji vztah mezi dvéma faktory, zaloZzeny na informaci o pomérech
mezi prvky tabulky. Kvili této relativni povaze se kompozi¢ni tabulky (ste-
jné jako kompoziéni data obecné) fidi tzv. Aitchisonovou geometrii. Aby bylo
mozné pouzit standardni analytické metody, je potieba tento typ dat prevést
prostiednictvim ortonormélnich souradnic do prostoru se standardni euklidov-
skou metrikou. Vyjadieni v ortonormélnich souradnicich je bézné providéno
prostfednictvim tzv. postupného binarniho déleni, takto ziskané souradnice (bi-
lance) v8ak nerespektuji dvojrozmérnou povahu dat obsaZenych v kompozi¢nich
tabulkach. Kvili zachovani informace o vztahu mezi faktory je proto v praci
navrzena metoda, ktera bilance dopliuje o soutadnice, jejichz interpretace je tizce
spjatd s poméry Sanci mezi skupinami prvki. Pravé konstrukei téchto sourad-
nic a jejich interpretaci je vénovana hlavni cast prace. Uveden je také specialni
ptipad téchto soutadnic (pivotové soufadnice), jehoZ pouziti je vhodné v situaci,
kdy nemame zadnou znalost o povaze fadkového a sloupcového faktoru. Pred-
staveni souradnic jako takovych je doplnéno o jejich varianc¢ni strukturu, kteréd
umozni lepsi pochopenti jejich interpretace. Teoretické aspekty problematiky jsou
demonstrované na nékolika prikladech a pomoci ilustraci.

Klicova slova: analyza nezavislosti, bilance, kompozi¢ni tabulky, ortonormélni
soufadnice



3 Introduction

In many practical situations, the object of statistical analysis is a table repre-
senting distribution of a variable of interest, according to two (row and column)
factors. If relative contributions of cells on the overall distribution are of primary
interest rather than concrete absolute values which they convey, it is referred
to compositional tables [16, 17]. From this perspective, compositional tables
form a generalization of vector compositional data, where only ratios between
parts contain all relevant information [12, 20|. Compositional tables can be thus
considered as a complex structure of compositional data, whose specific nature
is captured by the Aitchison geometry with the structure of finite-dimensional
Euclidean vector space. Contrary to contingency tables, representing result of
a multinomial sampling with cell probabilities p;; > 0,> . >~ ;bij =1, a composi-
tional table itself represents one observation of distribution-valued variables with
some continuous multivariate distribution (e.g. relative structure of population
according to social and economic status). On the other hand, compositional and
contingency tables are closely linked, since the probability table with entries p;;,
corresponding to given contingency table, forms just a proportional representa-
tion (and thus one particular case) of compositional table, see [17] for details.
Statistical analysis of contingency tables is characterized by using Pearson y?
statistic or log-linear models for independence testing. As these methods strongly
rely on the assumption of Euclidean geometry [17] (similarly as most of standard
statistical methods [13]), they are not suitable for compositional tables that are
driven by the Aitchison geometry. Moreover, similarly as for compositional data,
it is also natural to consider a sample of compositional tables with a possibility
of their processing using popular multivariate statistical methods (like principal
component analysis, clustering, classification, etc.). This is a particular difference
to the case of contingency tables, where such issues are usually not of primary
interest.

Taking into account the relative character and the specific geometry of com-
positional tables (together with replacing the arithmetic marginals by the geo-
metric ones), the analysis of independence between factors can be performed
advantageously through a decomposition of the original table into its indepen-
dent and interactive parts [16, 17]. In particular, the interaction table conveys
the key information for understanding the sources of association between both
factors. The key point in statistical analysis of compositional tables is then (as
in the case of vector compositional data) to express them in orthonormal co-
ordinates with respect to the Aitchison geometry, where rules of the standard
Euclidean geometry apply. As there is no standard canonical basis with respect
to the Aitchison geometry, the main aim of this thesis is to derive interpretable
coordinate representation for compositional tables.



4 Recent state summary

Since I x J compositional tables represent a direct generalisation of vector compo-
sitional data, the concepts of the logratio approach to compositional data analysis
can be easily adapted for compositional tables and used to derive the correspond-
ing specific issues.

4.1 Compositional data

The vector compositional data need to be introduced first. This type of multivari-
ate observations differs from the standard one by their relative nature, as ratios
between parts are of the main interest rather than their absolute values. Com-
positional data frequently occur e.g. in geochemistry and the logratio methodol-
ogy represents quite young and still growing statistical discipline (first analytical
methods were proposed in [12]). The main principles of (vector) compositional
data analysis are as follows.

Basic definitions

A (random) D-part composition is defined as a row vector

X:(Z'l,ZEQ,...,ZED) 5 (].)

where all components (parts) describe quantitatively their relative contributions
to the whole [12, 20]. Thus absolute values of parts are not of the main interest,
since all the relevant information in the composition is contained in the ratios
between its parts. Consequently, the composition could be rescaled (closed) to
a prescribed constant sum representation x > 0 (i.e. to 1 in case of proportions
and 100 for percentages) without any loss of information; formally, we refer to
a closure operation and denote

KT K- X2 K-Tp
C(x) = : e . 2
) (Zil Ly Zfil Ty Zfil x2> @

This closed representation is useful, e.g., for a first brief comparison of two com-
positional vectors. The sample space of representations of D-part compositional
data with an arbitrary, but fixed x is a subset of RP, called D-part simplex,

D
SD:{X:(xl,xg,...,xp)|xi>0,i:1,2,...,D;in:m} . (3)
=1

The constant sum constraint reduces the dimension of S” to D — 1, i.e., one less
than actual number of parts of the composition.
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The assumption that only ratios between components carry relevant infor-
mation about the composition leads to the following principles of compositional
data analysis [20]. The first of them is the scale invariance, which means that
the results of the analysis should not depend on the particular sum s of composi-
tional parts. Thus application of closure operation C(x) should not alter results
of the analysis. Scale invariance is also related to the property of relative scale
of compositions, since ratios should express the differences between observations
rather than Euclidean distances based on absolute values of components. Next
principle is called subcompositional coherence. As in standard statistics the re-
sults obtained from a composition with D parts should not be in contradiction
with results that are obtained from a subcomposition containing d parts, d < D
and subcompositions should behave like orthogonal projections in real space. For
example, the distance between two full compositions must be greater than, or
equal to, the distance between them when considering any subcomposition. Sim-
ilarly, if a noninformative part is removed, results should not change. The final
basic principle of compositional analysis is permutation invariance, output of
the analysis cannot depend on the order of parts in the composition.

Due to relative nature of compositional data and the above principles,
the standard Euclidean geometry should be replaced by the Aitchison geome-
try, endowed with the Euclidean vector space structure. Accordingly, operations
of perturbation and power transformation (powering) for D-part compositional
vectors x and y and a real constant « are defined as

x®y = (r1y1,...,2pyp) and a©x=(z7,...,29) (4)
respectively. Consequently, n = C(1,...,1) represents the neutral element in

the (D — 1)-dimensional vector space (S, &, ®). To complete the Euclidean
vector space structure, the Aitchison inner product of two compositional vectors
x and y is defined as

(x, :—Zln—ln (5)

and the Aitchison norm and distance as

XLy = Vx4 and da(xy) =[xOyl, (6)

respectively, where x 0y =x @ [(—1) O y].
Coordinate representation

Due to specific nature of compositional data, represented by the above prin-
ciples, standard statistical methods are not suitable for their analysis. Instead of
developing their counterparts within the Aitchison geometry, it seems much more
intuitive to express compositions isometrically in real coordinates with respect



to the Aitchison geometry and then proceed with the usual statistical processing
there [20]. The most popular coordinate system is represented by isometric lo-
gratio (ilr) coordinates [14, 15], i.e., coordinates with respect to an orthonormal
basis on the simplex. According to basic algebraic-geometrical rules and dimen-
sionality of the Aitchison geometry, the real vector z € RP~! of ilr coordinates
is defined as

2= ilr() = (@), (e oo (6P ) ) = (o zo) (7

where € = C (¢!, el,...,e5),i = 1,2,...,D — 1 form an orthonormal basis on
the simplex. Due to isometric isomorphism of ilr coordinates it immediately
follows

iIr((cox)® (F0y)) = ailr(x)+-ilr(y),  (x,¥), = (il(x),ilr(y)) , (8)
X[, = i) and  da(x,y) = d(ilr(x),ilr(y)) . (9)

It could be also shown that different ilr coordinate systems are linked through
an orthogonal transformation [14].

Clearly, it is not possible to assign an orthonormal coordinate to each of
compositional parts simultaneously. Therefore, interpretable orthonormal coor-
dinates are of primary interest. Since coordinates z correspond to a particular
choice of basis vectors (compositions) e',i = 1,..., D — 1, they can be chosen
according to aim of the analysis and possible a priori knowledge about composi-
tional parts. These coordinates are usually reached by sequential binary partition
(SBP) procedure [15], based on stepwise division of parts into non-overlapping
groups. Accordingly, in the first step of SBP, the whole composition is divided
into two subcompositions. For the next step only one of subcompositions from
the previous step is taken and further divided into two groups. This process con-
tinues until all groups of parts consist of only one single component. The SBP is
done in D — 1 steps; in each step one coordinate

1/u

w_ (zj, 75 - 15,)

i=1,...D—1 10
u-+v (xklxkz"'xkv)l/v t ( )

Zi =
is obtained. Here u, v stand for numbers of parts contained in the first and second
group, respectively, {j1,...,j.} and {kq,..., k,} are their indices.

When parts assigned to the first group are marked by 4+, parts in the second
group by — and parts not included in any of both groups in the i-th step of
the partition by 0, SBP can be represented also graphically. Table 1 results from
one possible SBP for five-part compositional data.

Orthonormal coordinates resulting from SBP (10) can be interpreted in
terms of balances between groups of parts, represented by their respective ge-
ometrical means. Using a priori expert knowledge, SBP can be chosen with



Table 1: Example of sequential binary partition for ﬁve—part compositional data.

1| X Ty T3 Ty Xz |U U

++———23[1 ;f;ii;

+ — 0 0 0 11n;;
2

0 + - - lnm

0 0 + - }mg;

T Y
—_ N

1
2
3
4

the aim to capture the most relevant information contained in ratios between
compositional parts and their groups. For example, geochemical data are formed
by major and minor elements, further divided according to concrete composition
of the analyzed rock/soil. Because of this flexibility, balances form the most
popular class of orthonormal coordinates that was recently successfully applied
in a number of real-world studies [19]. Unfortunately, balances do not respect
the two-dimensional nature of compositional tables and are not appropriate for
their analysis.

4.2 Compositional tables

Even though the theory of compositional data analysis is already well developed,
it is primarily designed for vector compositional data, which carry information
about relative structure according to only one factor. In cases, when compo-
sitional data carry information about distribution according to two factors (e.g.
population structure according to age and BMI index), it seems to be appropriate
to work with two dimensional data, which besides the relative structure contain
inherently also information about relationship between these factors.

An I x J table

T11 L1y
X = : , (11)
I Trj
whose cells z;; > 0, fori=1,2,..., I and j = 1,2,...J convey relative contribu-

tions on a whole (probability, overall output, etc.) can be considered as a natural
extension of vector compositional data and is called compositional table. From
this point on, x will denote a I x J compositional table instead of compositional
vector, unless otherwise stated. As it was mentioned above, this type of observa-
tions basically conveys relative information on relationship between two factors
with I and J values, respectively. But also the other way around, by vectorization
of compositional tables vector compositional data would be obtained. Therefore,
any reasonable analysis of compositional tables should follow the same assump-

10



tions as analysis of compositional vectors, which were introduced in Section 4.1,
just with specific (two-factor) interpretation of their parts; here a subcomposition
of compositional table arises by omitting the whole row(s) and/or column(s) and
it is called subtable or partial table. Note here, that on the contrary to con-
tingency tables, containing n independent realisations of random variable from
multinomial distribution, compositional table is considered to be one realisa-
tion from a multivariate continuous distribution. On the other hand, there is
quite close connection between both types of tables, since probability table, that
corresponds to the contingency table, can be considered as one particular repre-
sentation of compositional table. And finally, even the contingency table itself
can be considered as a compositional table, if the total number of counts is high
enough that its role as a source of uncertainty for estimation of the underlying
probabilities is negligible.

Basic definitions

Since compositional tables (11) represent a direct extension of vector com-
positional data (1), all operations defined in Section 4.1 can be easily accommo-
dated for this case. Proportional representation of a compositional table can be
reached by application of closure operation with xk =1,

Zi,j Tij Zi,j Tij
C(x) = o : (12)
20 Ti 20 Ti

and by varying x > 0, any other constant sum representation can be obtained.
The sample space of compositional tables is again (I.J — 1)-dimensional simplex

I
SU:{x:(xl,:z:g,...,xu)\xi>0,i:1,2,...,IJ;Z$i:/£} , (13)
i=1

since each I.J-part compositional vector can be re-ordered into the form of table
with I rows and J columns. On the other hand, note that the table form is
appropriate only for such data, which carry information about distribution of
some total with respect to two factors. Also basic operations of the Aitchison
geometry should be extended to the case of compositional tables. Perturbation
of two compositional tables x and y of the same dimension I x J results in a new
compositional table with entries

T11Y11 - TigYig
xPy=C S : ; (14)

rnyn - Trgyrg

similarly, by powering of compositional table x by a real constant a the following

11



table

aOx=C oo (15)

is obtained. The Aitchison inner product modifies to

B y)a QIJZZID 2y yw (16)

and the Aitchison norm and distance should be restated as follows,

el = |5 S (22 it

and

dalxy) = QUZZ( k)" (13)

TriYij

Decomposition of compositional tables

The construction of coordinates of compositional tables is based on projec-
tions of the table onto subspaces with specific interpretation [16].

At first, projections of a compositional table x onto row subspaces S/ (row;,),
for i = 1,...,I, each with dimension J — 1, are considered. According to [16],
this projection denoted by row;(x) equals

g(row;[x]) -+ g(row;[x])
row;(x) =C Ti1 o Tig ; (19)
g(row;[x]) -+ g(row;[x])

where g(row;[x]) denotes the geometric mean of elements in the i-th row of x.
The projection onto the subspace, formed by the ¢-th row of the compositional
table x, row;[x] = C(2i1,...,25y) € 8’,i = 1,...,1, is thus still a I x J com-
positional table row;(x) whose entries consist of the i-th row itself and the rest
elements are equal to geometric mean of row;[x].

Analogously, also projections of the compositional table x onto its columns,
col;[x] = C(z,...,21;) € S',j = 1,...,J, forming subspaces S'/(col;) with
dimension I — 1, can be constructed. Similarly to the case of projections onto
rows, the resulting projected compositional tables col;(x) are given by the j-th
column of x and its geometric mean in the other parts of the table.

12



Projection onto the subspace of the i-th row results in a compositional ta-
ble row;(x) that explains the relative information (ratios) exclusively for this
row. In order to complete the information about the original compositional table
X, it is necessary to introduce a projection that explains the remaining ratios
between parts in different rows [18]. In other words, a projection onto the sub-
space of dimension I — 1 that forms the orthogonal complement to row subspaces
S (row;), i = 1,...,I, needs to be constructed. This subspace will be denoted
as 817 (row!) and projection onto this subspace is a compositional table

g(rowy[x]) ... g(row;[x])
row(x) = C g(rows[x]) ... g(rows[x]) 7 (20)
g(row;[x]) ... g(row;[x])

formed by row geometric means of the original table. Similarly, projection of x
onto subspace orthogonal to column subspaces, S’/ (colL), of dimension J — 1
that carries information about ratios between different columns of the original
compositional table, results in

g(coli[x]) ... g(coly[x])
coll(x) _c g(coli[x]) ... g(coly[x]) ' (21)

g(coli[x]) ... g(cols[x])
From their construction, projections row'(x) and col*(x) are orthogonal to all
row or column projections, respectively, and even to each other (see [16] for

proof). This fact is crucial for compositional tables analysis as it will be shown
later.

As mentioned above, projections row ' (x) and col*(x) carry information ex-
clusively about ratios between parts from different rows and columns, respectively.
This information is sufficient for the reconstruction of the compositional table,
when row and column factors are independent (motivated by the probabilistic
sense of the formulation). This corresponds to the case when the original table can
be expressed as a product of row and column (geometric) marginals of x [16, 17],
similarly as for contingency tables [11]|, where arithmetic marginals are consid-
ered instead. The resulting I x J compositional table X;,q = row"(x) @ col™(x),
obtained as a perturbation of these two projections, is called independence table

with entries
I J 17
a = (H H xijil> : (22)

k=11=1
x;; denote parts of the original compositional table x. Since the dimensions of
subspaces S'/(row') and S'’(col*) are I — 1 and J — 1, respectively, dimension

13



of the subspace of independence tables S/, equals I + J — 2. The remaining
information about the original table, i.e. about the relations between row and
column factors, is contained in the wnteraction table X;,;, which is orthogonal to
X;nq and results from the decomposition

X = Xind D Xint - (23)

The interaction table can be obtained from (23) as X;,; = X © X;q. 1t also forms
an [ x J compositional table and its parts can be computed from the original
table x by

L

I J x IJ

int _ 7 24

(HHWJ )
k=11=1

From Equation (23) and orthogonality between x;,4 and X;,, it follows that the di-

mension of the subspace of interaction tables, SI equals I-J —1— ([ +J —2) =
(I-1)(J—-1).

5 Thesis objectives

The main aim of the thesis is to construct interpretable coordinates of composi-
tional tables, which will also respect their two-dimensional nature. Consequently,
such a coordinate system allows to describe relations within the table using stan-
dard statistical methods. Moreover, statistical processing of a sample of tables is
also possible. In its second part, the thesis also focuses on covariance structure
of proposed coordinates (not shown here), which supports their interpretability.

6 Theoretical framework

The principal aim of the thesis is to propose a new coordinate system for compo-
sitional tables, which respects the possibility of decomposition of a compositional
table x as described in Section 5. The main idea of this system is to complete
balances between whole rows or columns by those dealing with odds ratios be-
tween four groups of parts [11], which represent a natural extension of balances for
the case of compositional tables. This has quite an intuitive motivation. Balances
can be used to capture (log-)ratios within row and column factors, respectively,
while odds ratios naturally link relative information between both factors.

14



6.1 General coordinates

For construction of the general coordinates of I x J compositional table, con-
sider first SBP of the whole rows (columns) of compositional table x, denoted
in the following by SBPr (SBPc). This partition is constructed with respect to
nature of levels of row (column) factor and similarly as for the usual SBP, in each
of I —1 (J —1) steps, levels with some common property are separated from
the others. Thus the first I + J — 2 coordinates z" and z¢ of I x J compositional
table x result in

/ Y alxs ME
z: _ stJ In [g(le') Q(ng-)] T for i = 17 2’ . I —1 (25)
s+t [g(x,) - g(xk,)]

wl |- g(xa

Ut v [g(Xm,

- g(xa,)]

and
! o g(Xam, )]

for j=1,2,....,0—1 , (26)

)
) 1/v’
where s,t (u, v) are numbers of rows (columns) separated in the i-th (j-th) step of
SBP, indices (ji,...,Js') and (k- ..., k) or (+ly,...,-l,) and (*mq,...,m,) de-
note rows/columns involved in this step and ¢(.) stands for the geometric mean.
Steps of SBPr are denoted by Roman numerals, while those of SBPc are de-
noted by Arabic numerals. As an example consider a 3 x 5 compositional table.
The corresponding six coordinates could follow SBPs from Table 2, represented
also graphically in Figure 1,

SR e 2

R &
1/2

-y <g<5cg§g'1<f§g<?5>>”3 | 2

-

5= y3h <g<x.49><gx<i)5>>”2 | oy

- s o

The remaining coordinates should be orthogonal to these first I +.J —2 ones
and for their construction some generalization of SBP needs to be introduced.
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Table 2: Example of sequential binary partition applied to whole rows (SBPr,

left table) and whole columns (SBPc, right table) of I x J compositional table x.

J 1 T2 I3 T4 Ty | U U
i‘xL Lo xg,‘st 1/l+ + — - —12 3
I |+ - —11 2 2 + - 0 0 01 1
InIm|o + —-1]1 1 310 o + - =11 2
410 0 o + =111

2 A4

Figure 1: Graphical representation of sequential binary partitions SBPr and
SBPc, applied to 3 x 5 compositional table.

This generalization is based on separation of parts of the compositional table into
four groups (blocks) in a systematic manner and computation of coordinates in
form of logarithm of odds ratio between these four groups (marked as A (upper

left block), B (upper right block), C (lower left block) and D (lower right block))
using the following formula,

OR __ a-d (xi1 "'Iia)l/a (‘Th "'xld)l/d
o o +b+c+d In 1/b 1/¢’
a ¢ (@, - 25,)" (Thy - )
where a, b, ¢, d are numbers of parts in each of groups A, B, C and D, respectively

and 7,7, k., [ are possitions of these parts. In the following steps this separation
proceeds within smaller subtables according to row/column SBPs.

(33)

The separation into subgroups (A-D) and construction of the partial tables
should respect the row and column grouping defined in SBPr and SBPc. Thus
the first four groups are formed by steps I of SBPr and 1 of SBPc and deter-
mine the first coordinate. If the compositional table has more than four parts,
the partition should continues with the next step. Firstly, a proper subtable
should be identified, when the only possible partial tables are formed by pairs of
groups (A,B), (C,D), (A,C) and (B,D), which should be successively analysed.
If (A,B) has more than one row, the next coordinate is related to parts of this
subtable, where the four groups are again determined by steps of the SBPr and
SBPc of the lowest possible order. The next possible subtable is firstly searched
within the current partial table, but if this one is formed by only four parts (i.e.
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the smallest meaningful table), it is necessary to go back an look for another
partial table in the bigger superior table from the previous step of the partition.
The subtables with only one row or column, or subtables, which were already
analysed in some of previous steps of partition, are skipped. The process contin-
ues, until all possible subtables formed by pairs of groups (A,B), (C,D), (A,C)
and (B,D) of each proper partial tables are analysed. It results in (I —1)(J — 1)
coordinates, each with interpretation in terms of log-odds ratios among groups
of entries within the respective partial table. For the SBPs from Table 2 this
process results in eight new coordinates

OR 2v/5 | (%1%2)1/2 (962396241‘25$31~5$34$35)1/6 a4
($13$14$15) ($215B225U319€32)
OR __ 3 1 ($21$22)1/2 (96’335753417035)1/3 35
2= 5™ 1/3 2 (35)
(I23I24I25) ($311’32)
1. oz
OR 2132
= —lp—=—*:= 36
OR \/§ T23 ($34$35)1/2
2y = —1In s (37)
3 (33243325) T33
1. xox
OR 24235
z = —Iln—= 38
b 2 XosT34 (38)
OR __ \/§ T11 ($22$32)1/2
% = —-In /2 (39)
3 X12 ($21$31)
2. T3 (9024$25$34$35)1/4
2Df = 3 In 72 7 (40)
(56143315) (9523-7333)

T14 (5I3’25313'35)1/2

12

on _ V3

3 X15 ($24$34)

whose construction is described in detail in the thesis.

Alternatively, each coordinate could be also interpreted as a sum of log-
odds ratios among four parts. There are (;) (‘2]) of them together in the whole
table, each contained in one of these new coordinates. In [11] it is stated that
the whole information about relations in I x J (not necessarily compositional)

table is contained in (I — 1)(J — 1) simple odds ratios of type

OR}:M, i=1,...,]—1 and j=1,...,J—-1 |, (42)
DT T

among neighbouring parts or of type

ORL = S0 4 1-1 and j=1,....J-1 ,  (43)
Tigxrj
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with a reference part x;;. These basic systems of odds ratios could not be used
to construct orthonormal coordinates with respect to the Aitchison geometry. In
our case they are replaced by the system of (I —1)(J —1) coordinates z°F, whose
idea of aggregating the information into odds ratio among four groups of parts
(not just four parts) seems to be similar to the concept of cumulative odds ratio
as proposed in [11], page 276.

Beside the advantageous interpretation, there is another useful feature of
this coordinate system. When the coordinate representation z" = (z7,...,2}_;),
z¢ = (25,...,25 ), z9% = (9% .. z(ollfl)(kl)) is applied to the independence
table X;,q, the only nonzero coordinates are z;,2¢ for i = 1,...,1 — 1, j =
1,...,J — 1, and their values are the same as for the original table x. More-
over, the number of these nonzero coordinates equals to dimension of subspace
of independence tables (see e.g. [1] for details). Analogous feature holds also
for the interaction table and coordinates z°%. Accordingly, the vector of co-
ordinates (z",z° 0(;—1)(s—1)) of the independence table can be denoted as zj,q
and coordinates (0742, ZOR) of the interaction table as z;,;. Finally, the vec-
tor of coordinates of the original compositional table x can be written as z =
i1 (Xing) + il (Xing) = Zing + Zint = (2", 2¢, z°T). This feature is utilized especially
in case of analysis of relationships between two factors, which will be described
in Section 7.

6.2 Pivot coordinates

In the case, when there are no clues, how to form groups within the row and col-
umn factor, a special case of the general coordinates can be considered, which was
introduced in [4]. This coordinate system can be applied to each compositional
table almost automatically in the situation, when interpretation of the coordi-
nates is not the main goal of the analysis (like outlier detection or classification of
observations). On the other hand, such coordinates obviously still follow the de-
composition (23).

The main idea by construction of these coordinates is that in each partial
table the group D if formed by only single part (pivot), which is denoted as
and which gave the name to these coordinates. Consequently, the first I + J — 2
coordinates are

T (L —14)J 9(X1-i41.)

L= 1 , fi =1,...,1 -1 44

(for rows), and

2C — I(J — ) n 9(Xs—j+1.)
e B R Ve R e R

18



(for columns), respectively. These orthonormal coordinates form again nonzero
coordinate representation for the independence table and their number reflects
the dimension of S!. Because of mutual orthogonality of the subspaces corre-
sponding to tables row!(x), colt(x) and x;,;, and decomposition (23), the re-
maining (I — 1)(J — 1) coordinates of x;,q are equal to zero. Conversely, co-
ordinate representation of the interaction table results in zero coordinates of
the corresponding independence table.

In contrast to the general method, it is easier to start construction of partial
tables from the smallest one in the upper left corner of the table x. Each conse-
quent table is then formed by the current one expanded by one row, or column.
The first two steps of this stepwise procedure are as follows. The method firstly
assigns a basis compositional vector to the table given only by parts x11, 12, 21
and x99. The first coordinate than compares parts on the main diagonal with
those on the minor one. In the next step the third column is added to the pre-
vious partial table and the basis vector e** deals with the new partial table with
r = 2 rows and s = 3 columns and parts xq1, T12, 13, To1, Tog, To3. The corre-
sponding basis element compares again parts on the main diagonal of a virtual
2 x 2 table with parts on the minor diagonal, when these diagonals are formed by
geometric mean of x1; and x5 (that thus merges information on the employed
components together) and part x93, and by geometric mean of x5, and x99, and
part i3, respectively. In general, the coordinate z,; compares parts on the main
diagonal (formed by geometric mean of all parts at rows of order smaller than r
and column of order smaller than s and by pivot part z,) and parts on the minor
diagonal (formed by geometric mean of the first s — 1 parts of the r-th row and
by geometric mean of the first » — 1 parts of the s-th column). This procedure
continues until » = I and s = .J, accordingly a system of (I — 1)(.JJ — 1) nonzero
coordinates of the interaction table (out of I.J — 1) is obtained,

r—1s—1

1 T;iT
Zps = In == 46
Vres-(r=1)-(s—1) Ejl;[lxisxrj (46)
forr = 2,3,...,1 and s = 2,3,...,J. Note that, even though z;;’s in both
formulas stand for parts of the original table x, the result would not change if
they are replaced by parts of the interaction table x;,;.

Another useful property of these coordinates is that they contain also nonzero
coordinates of the interaction tables of all tables with sizes smaller than the con-
sidered I x J table. For example, the set of four nonzero coordinates of 3 x 3
interaction table contains two nonzero coordinates of the 2 x 3 table as well as of
the 3 x 2 table, and in turn both (as well as 3 x 3 table) contain the only nonzero
ilr coordinate of the 2 x 2 interaction table.

Moreover, the interpretability of these coordinates is still supported by their
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relation to odds ratios of parts in the original table ([11], p. 44). This fact is
obvious directly from the form of (46) since each coordinate is formed by the sum
of logarithms of odds ratios which compare cell of the original table in position
(r, s) with all cells that are north-west from the r-th row and s-th column - group

A.

Although, the pivot coordinate system is proposed particularly for the cases,
when the interpretation of single coordinates is not the main goal of the analysis,
a new set of coordinates (with different interpretation) can be reached by permu-
tation of rows and/or columns in the original compositional table. Accordingly,
e.g., orthonormal coordinates that contain log odds ratio of a given 2 x 2 table
can be easily constructed. They also enable to extract the only coordinate with
log odds ratio interpretation that contains a given entry x,..

7 Applied methods

A natural aim of the analysis of compositional tables is to study relationship
between its row and column factors. In [16] it was proposed to measure distance
between the original compositional table x and its independent part x;,; using
squared distance

A (x) = [[xinl 3 = 1x[1% = |ximal & (47)
or relative squared distance

A*(x)

I3

RA(x) = 0<RA<T (48)
which suppresses the influence of dimensions of compositional table x on squared
distance. Values of relative squared distance, which are near to 1, are typical for
tables with strong interactions between factors. On the other hand, low values
give an evidence about independence between row and column factors. Moreover,
due to decomposition

X = Xjnd D (@ rowi(xmt)> = Xjna D <@ col; (th)> , (49)

i=1 j=1

the contribution of the i-th row to the squared norm is ||row; (X;.¢)||% and similarly
contribution of the j-th column is ||col; (X )|[%-

Since orthonormal coordinates accounting for interactions between rows and
columns were not available in [16], these features were measured using cross-
contrasts and so called cell-interactions. The cross-contrast is defined as a simple
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balance of the part of interaction table at position (7, j) against the other parts
in the same row or column,

. [T+ T2 !
Lross(i,J) = Tr 1 In ( - mt) YA (50)

Hr;éi Lrj L ls2j Tis

The problem of these balances is that they are not orthogonal. On the other
hand, their sum is closely connected to the square norm of x;,; through relation

;;(Iﬂoss(i,j))Q = (I_'_J(_]l—’)_(j)j_ J— 2)sznt|’,24 . (51)

The cell-interaction is defined as balance between part of interaction table at
position (7, j) and the rest of parts,

. 1J—1 it
[cell@a]) = In : '
(H(kz,l);é(i,j) i

1J
and is also connected to squared norm of the interaction table

. IJ
ZZ (Leen(i, §))* = mHthHi : (53)
i

>1/(1J1) ’ (52)

Furthermore, it can be shown, that in the case of 2x2 table all the cell-interactions
are the same (up to its sign) and proportional to the interaction coordinate (33),

1 L11T22
Lon(1,1) = Loy(2.2) = —Loy(1,2) = —Loy(2,1) = ——1n . (54
u(1,1) 1u(2,2) u(1,2) u(2,1) N (54)

However, coordinate system proposed in Section 6.1 or its special case from
Section 6.2 enables a deeper insight into the source of interactions between both
factors, by considering interpretation of the odds ratio coordinates of the inter-
action table. Particularly if row and column factors are independent (x = X;pq),
the interaction table equals to a neutral element of perturbation, all its parts
are the same and the vector of odds ratio coordinates (33) z;,; equals to a zero
vector. On the other hand, high absolute values of this vector indicate presence
of interactions between factors. Consequently, in the situation, when a random
sample of compositional tables is available, the analysis of independence reduces
to multivariate test on zero mean value of the vector of interaction coordinates
Z;n- The structural approach to the analysis of independence between factors is
also supported by the interpretation of these coordinates. As it was described in
Section 6.1, coordinate zZ% can be interpreted as logarithm of odds ratio among
groups of parts. Since in the independence case the odds ratio equals one, zero
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values of coordinates give an evidence against the presence of interactions between
factors.

The thesis provides two real-world examples, where the logratio approach to
analysis of independence between factors is employed. The first example analyzes
relationship between age and BMI index and the second one studies distribution
of the manufacturing output.

8 Original results

Compositional tables as observations carrying relative information about relation-
ship between two factors represent a direct generalization of vector compositional
data. Consequently, possibility of their appropriate orthonormal coordinate rep-
resentation forms an important step for coordinate representation of multifac-
torial compositional data. The thesis presents a general coordinate system for
compositional tables, which respects their two-factorial character. The resulting
coordinates form a natural generalization of the concept of balances as intro-
duced in [15], that have already proven their practical usefulness in a wide range
of applications, and open a variety of perspectives for their further development.
Moreover, a special case of this system is provided (pivot coordinates), which
seems to be easier to handle. The interpretation of both coordinate system is in
the thesis supported by detailed inspection of their covariance structure. And,
finally, the logratio approach to analysis of independence between factors using
orthonormal coordinates is proposed.

9 Summary of results

Similarly as for vector compositional data, proper coordinate representation of
compositional tables is necessary to enable statistical processing using standard
multivariate statistical tools. The proposed coordinate system (in both general
and pivot versions) contains both balances and coordinates with log odds ratio
interpretation and forms the main contribution of the thesis. These coordinates
respect the possibility of decomposition of a compositional table into its indepen-
dent and interactive parts. Consequently, it allows to study tables from the de-
composition also separately and analyze, e.g., possible interactions between both
factors only from the interactive part of coordinates. Accordingly, the general
orthonormal coordinate system respects the nature of row and column factors
and thus allows for their better interpretability. On the other hand, the pivot
coordinates as their special case seem to be easier to handle and provide an au-
tomated version of the coordinate representation. Construction of the coordinate
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systems was described in a detail and endowed in the thesis with examples and
graphical illustrations for better understanding. The theoretical part of the thesis
is completed with the covariance structure of the proposed coordinates. Finally,
the possibility of structural analysis of relationship between factors is discussed
in its last section.

Beside the new coordinates, a promising result comes from comparison of
coordinates of 2 x 2 compositional table with parameters of log-linear model,
since development of a compositional alternative to standard methods of analysis
of independence between two variables (factors) represents one possible direction
of our further research. The new coordinates thus seem to have great potential
for compositional data analysis itself (statistical analysis of compositional tables,
multifactorial compositional data), but open also its new challenging prospectives.
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