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Abstract 

This master’s thesis explores the application of the Capital Asset Pricing Model 

(CAPM) to the cryptocurrency market. It investigates the feasibility of CAPM in this 

emerging market, focusing on constructing the efficient frontier, tangency portfolio, 

minimum variance portfolio, and beta coefficient testing. Utilising quantitative 

methods, the thesis evaluates the linearity of beta coefficients and the influence of non-

systematic risk on returns and assesses the validity of CAPM assumptions. The 

evidence is tested using a market portfolio and benchmark portfolio for the construction 

of the model and compare the findings. This empirical analysis contributes to 

understanding traditional financial models’ adaptability to digital asset markets. 

Keywords 

Bitcoin, cryptocurrency, modern portfolio theory, CAPM 

Abstrakt 

Tato diplomová práce zkoumá aplikaci Modelu ocenění kapitálových aktiv (CAPM) na 

trhu s kryptoměnami. Práce zkoumá proveditelnost CAPM na tomto nově vznikajícím 

trhu, s důrazem na konstrukci efektivní hranice, tangenciálního portfolio, portfolia s 

minimální variancí a testování beta koeficientů. Pomocí kvantitativních metod tato 

práce hodnotí lineárnost beta koeficientů a vliv nesystematického risku na návratnost a 

posuzuje platnost předpokladů CAPM. Aplikace modelu je testována na tržním 

portfoliu a srovnávacího portfolia a výsledky jsou porovnány. Tato empirická analýza 

přispívá k pochopení aplikace tradičních finančních modelů na trzích s digitálními 

aktivy. 

Klíčová slova 

Bitcoin, kryptoměny, moderní teorie portfolio, CAPM 

 

  



Rozšířený abstrakt 

Bitcoin se od svého uvedení na trh v roce 2009 stal předmětem zájmu mezi investory, 

akademiky a veřejností. Jedinečné vlastnosti jako decentralizace a známá budoucí 

inflace, způsobili masivní nárust na jeho ceně. Od uvedení v roce 2009 šla cena 

Bitcoinu z nuly na 73 000 USD v březnu 2024 a dosáhl nejvyšší tržní kapitalizace přes 

miliardu dolarů. Kolem Bitcoinu následně vznikl nový trh digitálních aktiv, kryptoměn. 

Nedávné schválení Bitcoinových spotových ETF nyní přitahuje nejen spekulanty, ale 

také profesionální investory, veřejnost a firmy, k investici do kryptoměn. Proto je třeba 

porozumět tomuto novému typu finančních aktiv a způsobům, jak začlenit kryptoměny 

do investičních portfolií. 

V teoretické části je nejdříve popsáno, proč investoři považují Bitcoin a kryptoměny za 

finanční aktiva. Navíc z teorie efektivních trhů navíc vyplývá, že v budoucnu budou 

investoři k těmto aktivům přistupovat více standartně a méně spekulovat na jejich 

cenně. Proto je třeba porozumět rizikům kryptoměn a způsobu, jak je zařadit do 

diverzifikovaných investičních portfolií. 

Diverzifikovaná portfolia kombinují aktiva, aby dosáhla nižšího rizika a vyššího 

očekávaného zisku. Taková portfolia vycházejí z moderní teorie portfolia a stěžejního 

modelu ocenění kapitálových aktiv (CAPM), a využívají konceptu beta koeficientu. 

Beta je míra, která vyjadřuje citlivost výnosu investice na změny výnosů na trhu jako 

celku. K výpočtu bety se běžně používá tržní portfolio. 

Tato práce tedy popisuje ekonometrickou a statistickou teorii, na které jsou tyto modely 

postaveny. Následně popisuje analytický způsob řešení těchto modelů, a to včetně 

efektivní hranice portfolia, přímku kapitálového trhu a dvou pro investory 

nejatraktivnějších portfolií: tangenciálního portfolia a portfolia s minimální variancí. 

Efektivní hranice portfolia představuje grafickou reprezentací všech možných portfolií, 

které lze vytvořit z daných aktiv, a označuje ty, které jsou "efektivní" nebo optimální. Z 

hlediska investora je cílem při vytváření portfolia dosáhnout bodu na efektivní hranici, 

který nejlépe odpovídá jeho preferencím v oblasti rizika a výnosu. Tím se optimalizuje 

návratnost portfolia a minimalizuje se riziko. 

Přímka kapitálového trhu představuje vztah mezi rizikem a očekávaným výnosem 

portfolia, která kombinují bezrizikové aktivum jako státní dluhopis. 



Tangenciální portfolio se nachází na tečně efektivní hranice portfolia a přímky 

kapitálového trhu. Toto poskytuje investorům optimální poměr mezi rizikem a výnosem 

a mělo by odpovídat tržnímu portfoliu, ve kterém jsou aktiva rozdělená na základě 

váženého průměru tržní kapitalizace. 

Portfolio s minimální variací minimalizuje riziko portfolia a je schopno pomocí správné 

kombinace aktiv dosáhnout nižší riziko než jakékoliv samotné aktivum. 

Na závěr teoretické části je popsán test předpokladů modelu ocenění kapitálových aktiv, 

pomocí kterého se otestují čtyři hlavní předpoklady: 

• Přesnost očekávané návratnosti na časové řadě 

• Přesnost očekávané návratnosti aktiv 

• Linearita beta koeficientů a očekávané návratnosti 

• Vliv nesystematického rizika na návratnost 

V praktické části jsem vybral pět kryptoměn na základě jejich tržní kapitalizace, doby 

na trhu, a zdali jsou určeny k investování. Jako tržní portfolio jsem vybral 

kryptoměnové tržní portfolio založené na váženém průměru tržní kapitalizace a indexu 

S&P 500 jako benchmarku. Díky tomu jsou modely otestovány i proti běžně 

uznávanému benchmarku a výsledky jsou mezi sebou porovnány. Testovací období je 

zvoleno po dobu pěti let od 31.12.2018 do 31.12.2023. 

Pomocí metodiky z teoretické části jsem vypočítal očekávaný výnos a beta koeficienty 

pro vybrané kryptoměny na základě obou vybraných tržních portfolií. Beta koeficienty 

byly testovány pomocí standardních statistických metod, F-testu variance a T-statistiky 

sklonu regresní přímky. Tyto testy potvrdily statistickou významnost všech beta 

koeficientů, což podporuje jejich použití pro odhad rizika aktiv. Efektivní hranice 

portfolia byla vytvořena, abych identifikoval možná portfolia s optimálním poměrem 

očekávaného výnosu a rizika. To zahrnovalo sestavení portfolia s minimální variancí a 

nalezení tangenciálního portfolia, které nabízí nejlepší poměr očekávaného výnosu k 

riziku. 

Testování předpokladů modelu ocenění kapitálových aktiv ukázalo, že kryptoměnové 

tržní portfolio poskytuje přesnější odhad očekávaných výnosů než S&P 500. Pro obě 

tržní portfolia testy také prokázali lineární vztah mezi beta koeficienty a očekávanými 

výnosy. A nakonec že riziko není významně ovlivněno nesystémovými faktory. 



Kryptoměnové tržní portfolio se shodovalo s tangenciální portfoliem, což odpovídá 

teorii a podporuje jeho použití jako optimálního portfolia.  

Na základě těchto zjištěních podporuji využitelnost modelu ocenění kapitálových aktiv 

na trhu s kryptoměnami, protože teorie je v souladu s empirickými daty. V případě 

zařazení kryptoměn do složeného portfolia z jiných typů aktiv je možné využít indexu 

S&P 500 pro výpočet beta koeficientů kryptoměn i přes menší přesnost očekávaných 

výnosů. Pro pasivní investory doporučuji tržní kryptoměnové portfolio jako optimální 

portfolio pro investování, výpočet beta koeficientů kryptoměn a jejich očekávaných 

výnosů. 
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INTRODUCTION 

Bitcoin has gained immense popularity and fascination among investors and academics 

since its launch in 2009. Its unique non-inflationary properties and decentralisation have 

sparked massive speculation on its price, resulting in the price going from virtually zero 

in 2008 to an all-time high price of over 73 000 US dollars in March 2024 and having 

an all-time high market capitalisation of over one trillion US dollars. This price action 

followed Bitcoin´s spot ETF approval in the US, attracting, for example, the biggest 

ETF issuer on the planet, BlackRock, to join the world of cryptocurrency. The three 

biggest Bitcoin ETFs have collectively attracted over 45 million US dollars in 

investments. This attracts not only speculators but also professional investors, the 

general public and companies, resulting in a growing need to understand this financial 

asset and how to incorporate cryptocurrencies into investment portfolios.  

Due to market restraints, modern portfolio theory tries to create the best investment 

portfolio using quantitative methods. This approach can help investors know how much 

risk they are exposed to, given their expected return. This thesis tries to conclude how to 

successfully use this theory in the cryptocurrency market. The critical model used is the 

Capital Asset Pricing Model. This model uses the concept of a market portfolio for its 

construction. To validate the findings, the thesis uses a cryptocurrency market portfolio 

and, as a benchmark portfolio, uses the index S&P 500. The findings of the 

cryptocurrency market portfolio and benchmark market portfolio are compared. 

The first part discusses theoretical points about money, assets, and cryptocurrencies. 

Modern portfolio theory and CAPM are discussed, and a detailed overview of methods 

is provided to calculate and test this model. 

The second part constructs and tests the model using Microsoft Excel software by 

deriving Excel functions from the theory described in the first part. 

In the third part, all the findings are discussed and evaluated. 

The last part is suggestions for improvement. 
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OBJECTIVES, METHODS AND PROCEDURES OF 

PROCESSING 

Objectives 

This thesis aims to empirically investigate the applicability of the Capital Asset Pricing 

Model (CAPM) in the cryptocurrency market and provide insights into the effectiveness 

of the CAPM in capturing systematic risk in this asset type. 

Solution methodology 

This thesis uses a deductive approach. Academic literature is used to research the theory 

behind the approaches used and formulate hypotheses. The hypothesis will be tested and 

analysed. The analysis will be based on statistics and econometrics methods. The 

primary literature used is focused on applying modern portfolio theory in the traditional 

financial market. This is done to ensure that the utilised approaches stem from original 

and validated sources due to the relative youth of the cryptocurrency market. 

The critical part is computing CAPM, efficient portfolio frontier and two key portfolios 

using Microsoft Excel. The CAPM model calculates all the model coefficients using the 

market portfolio concept. The model is constructed twice using the cryptocurrency 

market portfolio and benchmark portfolio to validate and compare the findings. The 

benchmark portfolio used is the S&P 500 index. 

Secondary data from the cryptocurrency market are used to construct the investment 

portfolios. Five cryptocurrencies were selected for the study based on three criteria: 

market capitalisation, having at least five years of market data, and not being 

stablecoins. The thesis will rely on quantitative methods to analyse historical price data 

of various cryptocurrencies, aiming to uncover patterns and relationships that inform 

portfolio construction strategies. 

By analysing historical market data and employing statistical techniques, the study aims 

to identify optimal portfolio compositions that maximise expected returns for a given 

level of risk. The quantitative approach will involve data analysis, statistical modelling, 

and hypothesis testing to assess the applicability of CAPM in the cryptocurrency market 
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context, providing valuable insights into portfolio management strategies in this 

emerging asset class. 

The key model used in this thesis is the Capital Asset Pricing Model developed by 

William Sharpe in the 1960s. This model operates under the assumption of market 

equilibrium, where markets are efficient, and the price reflects all the available 

information. CAPM allows for the analytical calculation of efficient frontier and two of 

the most exciting portfolios for investors: the minimum variance portfolio, which offers 

the lowest risk in a given asset class, and the tangency portfolio, which offers the best 

risk-to-reward ratio. 

To test the CAPM, the key literature used is “Testing the CAPM model: A study of the 

Chinese Stock Market.” (Yang, Xu, 2006), which offers a methodological solution to 

testing the CAPM assumptions. Based on the test proposed in this literature, I will 

conclude whether the CAPM applies to the cryptocurrency market. The test is done for 

both market portfolios. 
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1 THEORETICAL BACKGROUND 

1.1 Money 

Money serves as a universally accepted medium of exchange. It has three main roles: 

• Store of value 

• Unit of Accounting 

• Medium of exchange 

For money to meet this criterion, its value must be preserved over time. Money comes 

in public and private forms. Public money is primarily in the form of physical cash 

issued by central banks. Private money consists mostly of balances in commercial banks 

denominated in public money, such as US dollars. Most of the liabilities of banks and 

other institutions that are donated in public money and can be effectively used as 

transfers can be viewed as money. In today’s world, most money people interact with is 

private money. Private money can also be easily exchanged for public money (United 

States Department Of The Treasury, 2022). 

1.2 Real and financial assets 

Asset refers to the material wealth within an economy. We can distinguish between real 

and financial assets. Real assets are comprised of land, buildings, and machinery that 

directly contribute to producing goods and services, and financial assets, such as stocks 

and bonds, represent claims on real assets. While real assets generate income, financial 

assets facilitate the distribution of that income among investors. 

Financial assets include debt securities, equity securities and financial derivatives.  

Debt securities, also called fixed income or bonds, promise fixed or formula-based 

income streams. Equity securities offer ownership in firms, and while equity holders do 

not have fixed payments, they can receive dividends, a share of the company’s profit, 

using their real assets. Lastly, derivatives are securities whose value is derived from an 

underlying asset price the derivative was derived from, such as stock or bonds. 

Each type of financial asset serves distinct purposes in investment portfolios, ranging 

from providing stable income to offering the potential for capital appreciation or risk 

management (Bodie, Kane, Marcus, 2008). 
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1.2.1 Financial markets 

As described before, while real assets create wealth in the economy, financial assets 

allow us to use them to their fullest potential. By utilising investors in a capitalistic 

system, we can ensure the effective allocation of capital resources that would otherwise 

be impossible. 

Financial markets serve the purpose of capital allocation through financial assets. For 

example, when a company demonstrates the possibility for future profitability, its stock 

price rises, making it easier for the company to raise funds for expansion and 

innovation. On the other hand, if a company’s chances to be profitable are low, 

investors drive down its stock price, leading to fewer opportunities to raise new capital 

or even downsize. Despite occasional inefficiencies, such as short-time market trends, 

the stock market efficiently allocates capital to firms with perceived growth potential 

based on the collective judgment of analysts and investors. 

Risk allocation is the next fundamental aspect of financial markets, with various 

investment instruments created to hedge risk or change the risk profile. Real assets 

inherently involve uncertainty, and financial markets enable investors to select 

securities, enabling them to change the risk they are exposed to. For instance, investors 

seeking higher returns may choose stocks with greater business risk, while those 

preferring stability may prefer bonds that offer fixed payments. This risk allocation 

mechanism accommodates investors’ preferences and supports firms in raising capital 

for their investments, as securities can be priced optimally to attract investors with 

differing risk tolerances (Bodie, Kane, Marcus, 2008). 

1.2.2 Efficient market hypothesis 

The efficient market hypothesis (EMH) states that security prices rapidly reflect all 

available information, challenging the effectiveness of active investment strategies. It 

suggests that passive management, such as having diversified portfolios, may offer 

better returns without the costly security analysis. Thus, an investor can only obtain 

above-average market returns by investing in riskier assets. 

This form of EMH is called strong EMH, and there is not much empirical evidence to 

support its claims. On the other hand, weak EMH states that current asset prices reflect 

all historical information, and future prices will exhibit a random walk, meaning that 
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while the markets are not perfectly efficient, investors can get above-average market 

returns by pure chance. 

This is a controversial statement, and since the 1960s, when this hypothesis started to 

become popular in mainstream economics, there has been much empirical evidence 

confirming and rejecting this hypothesis (Titan, 2015). 

1.2.3 Adaptive Market Hypothesis 

The Adaptive Market Hypothesis (AMH) merges the principles of the Efficient Market 

Hypothesis (EMH) with insights from behavioural finance. The AMH proposed by 

Andrew Lo (2004) acknowledges market participants’ rationality while recognising that 

market efficiency can vary over time and across different market conditions. Unlike the 

EMH, which assumes market participants are fully rational and markets are always 

efficient, the AMH acknowledges that investors may behave irrationally at times, 

leading to market inefficiencies. 

The adaptive market hypothesis seeks to merge the principles of the efficient market 

hypothesis and behavioural finance. It argues that markets and people are 

predominantly rational, but there are periods when investors may overreact during 

increasing market volatility (Lo, 2004). Based on the adaptive market hypothesis, 

market efficiency will rise over time and with growing interest in Bitcoin, allowing 

standard financial theory to be applied to it. 

1.3 Cryptocurrency 

Cryptocurrency is a digital or virtual form of currency. It can be considered a private 

form of money in a private monetary system. However, it should not be confused with 

digital money in the form of bank deposits. Unlike conventional currencies, 

cryptocurrencies operate on decentralised networks based on blockchain technology, 

which securely records all transactions or individual account balances across a 

distributed ledger (Narayanan, Bonneau, Felten, Miller, Goldfeder, 2016). 
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Figure 1: Types of networks 

(Source: Nguyen, Upul, Tai-Won, Gyu Myoung, 2016) 

Bitcoin, introduced in 2009 by an unknown person or group using the pseudonym 

Satoshi Nakamoto, was the first cryptocurrency (Nakamoto, 2008). Since then, 

numerous other cryptocurrencies, often called altcoins, have emerged, each with unique 

features and purposes. 

The blockchain technology upon which the cryptocurrencies are made ensures 

transparency, security, and immutability of transactions by storing them in blocks linked 

together cryptographically. This eliminates the need for intermediaries such as banks or 

governments, allowing for peer-to-peer transactions across the globe without the need 

for traditional financial institutions. Moreover, cryptocurrencies offer anonymity and 

privacy, as transactions are settled using cryptographic keys, not personal information. 

However, because all transactions are transparent and visible on the blockchain, they 

can be traced to their origin. 

Cryptocurrencies serve various purposes beyond facilitating peer-to-peer transactions. 

Some altcoins focus on utility through decentralised applications or smart contracts, 

some focus on decentralized finance (DeFi) like supply chain management and digital 

identity verification, and there are many more classes of altcoins (Narayanan, Bonneau, 

Felten, Miller, Goldfeder, 2016). 
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Bitcoin is the first and biggest cryptocurrency, the trailblazer of this new technology. 

1.4 Bitcoin 

Bitcoin is a decentralised peer-to-peer payment network that uses blockchain 

technology to store transactions on a distributed, decentralised ledger. The token used to 

settle transactions on the Bitcoin network is also Bitcoin (Segendorf, 2014). 

The Bitcoin system utilises cryptographic proof to record transactions into the ledger, 

ensuring trust between network parties without needing third parties like traditional 

financial institutions.  

 

Figure 2: Bitcoin’s transaction process 

(Source: Nakamoto, 2008, p. 2) 

In this proposed system, each transaction is recorded as a chain of digital signatures, 

with each owner transferring the coin to the next by digitally signing the transaction 

details. To prevent double spending without relying on a central authority, transactions 

are publicly announced, encoded with timestamps, and participants collectively agree 

on the chronological order of transactions. This mechanism ensures that the majority of 

network nodes validate the transaction order. 

Participants earn Bitcoin tokens by validating transactions as a reward for their 

computational power and electricity costs, earning tokens to participants and 

distributing them organically into the system without any central authority. Moreover, 

participants pay transaction fees to the network distributed between validators. This 
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ensures that once the transaction rewards in newly issued Bitcoin tokens are not high 

enough, the fees will keep the incentive to participate as a validator. Once the 

predetermined number of tokens enter the system, the fees will be the only incentive, 

and the Bitcoin token will be completely inflation-free (Nakamoto, 2008). 

For the purpose of this thesis, I will be addressing the Bitcoin token as Bitcoin and will 

focus on analysing the price behaviour of this token in relation to real-world currencies 

such as the US dollar. 

1.4.1 The role of Bitcoin for investors 

Initially, Bitcoin was proposed as a digital currency used in a private monetary system. 

Digital currency should not be confused with electronic money. Electronic money is 

digitally stored, most often private money, which can be used as public money and 

freely exchanged for public money. As discussed above, there are three primary roles of 

money: 

• Store of value 

• Unit of Accounting 

• Medium of exchange 

Over time, Bitcoin has proven to be a great medium of exchange, offering low 

transaction fees and not being able to be blocked by a central authority. However, its 

high volatility makes it unpractical as a unit of accounting and store of value, suggesting 

that Bitcoin cannot be used as a form of money (Lengyel-Almos, Demmler, 2021). 

Moreover, data suggest that less than 50% of Bitcoins in circulation are used in 

transactions. Investors use the rest of the Bitcoins for diversification and hedging of 

other financial instruments. It has also been used for speculation; at times, the price 

action displays characteristics of a speculative asset bubble. This suggests that investors 

consider Bitcoin an asset (Kurihara, Fukushima, 2017). 

1.4.2 Bitcoin halving 

Halving is arguably the most important technical aspect of Bitcoin in terms of price 

prediction. Halving is an event where miners’ rewards are slashed in half – so the 

rewards of Bitcoins to participants in transaction validation decrease by 50%. This event 

occurs approximately every four years and signals a new Bitcoin market cycle. Because 
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the reward is smaller after halving, the return on investments for validators is smaller, 

but Bitcoin inflation is also more negligible. In the months following the halving, the 

price of Bitcoin surged dramatically (Meynkhard, 2019). 

 

Figure 3: Bitcoin price on a logarithmic scale and effects of halving event 

(Source: Hertig, @2024) 

Halving events are attractive to investors, not only because of short-term price increases 

and changes in supply but also because of known future inflation. There are going to 

always be only 21 million Bitcoins available for investors. And while some literature 

suggests that this price action has characteristics of an asset bubble, some empirical 

evidence suggests a correlation between miners’ rewards and the price of Bitcoin 

(Meynkhard, 2019). 
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Figure 4: The effect of halving on Bitcoin price, July 2011 – March 2015 

(Source: Meynkhard, 2019, p. 82) 

 

Figure 5: The effect of halving on Bitcoin price, April 2015 – November 2018 

(Source: Meynkhard, 2019, p. 82) 

The above pictures show price fluctuation after halving events. 

1.4.3 Efficiency of Bitcoin 

Several pieces of literature have tested the efficient market hypothesis (EMH) on 

Bitcoin. One qualitative analysis, Lengyel-Almos and Demmler (2021), looked at 25 

high-rated papers that tested EMH on Bitcoin markets using empirical data covering 

different periods and different models to test EMH. Twenty of these studies rejected 

EMH, while five accepted it. The five studies accepted weak or semi-strong hypotheses, 

suggesting that no exploitable opportunities in the Bitcoin market can lead to above-

market returns. 
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However, most of the twenty studies rejecting EMH also suggest that there are times of 

efficiency in the market and when the price exhibits signs of an asset price bubble, 

which rejects the rational behaviour of investors in efficient markets. For example, 

Kurihara and Fukushima, 2017, tested the period from 2010 to 2016 and found that for 

the whole tested period, the EMH was rejected. However, the market was efficient in 

the second part of the testing period. This means that the period after the halving event 

at the end of 2012 was efficient. They also suggest that the market might become more 

efficient in the future as it becomes more liquid. This claim is supported by a number of 

the twenty studies that initially rejected the EMH in their tested periods. 

It is worth noting that while some of the works used models such as GARCH to capture 

the changing periods of high and low volatility, none of them specifically accounted for 

the halving event and only talked about the price increase in these periods as an asset 

price bubble (Lengyel-Almos, Demmler, 2021). 

These findings support the adaptive market hypothesis, which combines EMH and 

behavioural finance. AMH could explain investors' overreaction to halving events and 

increasing volatility. Khuntia and Pattanayak (2018) tested AMH on the Bitcoin market, 

and their findings are consistent with EMH works. Thus, the hypothesis of Bitcoin 

having an adaptively efficient market was confirmed. There are periods of greater and 

lesser efficiency, but over time, Bitcoin volatility decreases while efficiency increases 

(Khuntia, Pattanayak, 2018). 

While investors may have above-market returns when speculation on Bitcoin's price is 

based on halving events, as the market's efficiency may increase over time, investors 

need to have a diversified portfolio of investments. 

1.5 Mathematical modelling, statistics and econometrics 

Mathematical modelling represents real-world phenomena through mathematical 

equations. It enables researchers to analyse, predict, and understand complex 

relationships. Mathematical models can help us make decisions when solving real-life 

problems using empirical data. 

Statistics is a science field built upon a probability theory. Using mathematical methods, 

statistics helps collect, analyse and interpret data. 
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Econometrics applies mathematical and statistical tools to economics. Economists or 

financial institutions use econometrics to simplify, understand and predict economic 

phenomena (Boyle, 2020). 

1.5.1 Expected value 

The expected value is the average outcome of a random variable, providing a way to 

quantify the long-term behaviour of random events. For random variable X the expected 

value is denoted E(X) (Skrondal, Everitt, 2010). 

1.5.2 Arithmetic mean 

The arithmetic mean is the average value of a sample of observations. For random 

variable X, the sample arithmetic mean is calculated as the sum of all values, 𝑥1, … , 𝑥𝑛, 

 divided by the count of the values. 

Equation 1: Arithmetic mean 

(Source: Skrondal, Everitt, 2010, p. 27) 

𝑥̅ =
1

𝑛
(∑ 𝑥𝑖

𝑛

𝑖=1

) 

The sample mean for X is denoted as 𝑥̅ while the population mean is denoted 𝜇𝑥 

(Skrondal, Everitt, 2010). 

1.5.3 Geometric mean return 

The geometric mean return measures the average return rate on investment over 

multiple periods, considering compounding effects (Bodie, Kane, Marcus, 2008). 

Equation 2: Geometric mean return 

(Source: Processed according to Skrondal, Everitt, 2010, p. 186) 

𝑅 = (∏(1 + 𝑅𝑖)

𝑛

𝑖=1

)

1
𝑛

 

Where n is the number of observations in the data set. 
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1.5.4 Conditional probability 

Conditional probability represents the likelihood of an event occurring, given that 

another event has already occurred. It is adjusting the odds based on new information. 

The conditional probability of event A happening given event B is expressed and 

calculated as: 

Equation 3: The conditional probability of A given B 

(Source: Boyle, 2020, p. 63) 

𝑃 = (𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 

However, not all events are conditional. If the probability of event A given B is the same 

as the probability of A, then the events are independent (Skrondal, Everitt, 2010). 

Equation 4: The conditional probability of A if A and B are independent 

(Source: Skrondal, Everitt, 2010, p. 98) 

𝑃 = (𝐴|𝐵) = (𝐴) 

1.5.5 Data distribution 

Data distribution is a pattern of the probability of each value in the data set. Sometimes 

referred to as probability distribution, it shows the probability density of observing 

values of a given variable. The most important aspect of the data distribution is its 

shape, which can vary depending on the nature of the data set used (Skrondal, Everitt, 

2010). 

1.5.6 Normal distribution 

Normal distribution, also known as the Gaussian distribution, is characterized by a 

symmetrical, bell-shaped curve. In a normal distribution, the majority of data values 

cluster around the mean, with fewer values occurring as one moves farther away from 

the mean in either direction. The curve is defined by two parameters: the mean (μ) and 

the standard deviation (σ). The standard deviation determines the spread or dispersion 

of the data points around the mean, with larger standard deviations indicating greater 

variability (Skrondall, Everitt, 2010). For random variable X which follows normal 

distribution, the distribution function is: 
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Equation 5: Normal distribution function 

(Source: Processed according to Skrondal, Everitt, 2010, p. 305) 

𝐹(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2

(𝑥 − 𝜇)2

𝜎2
] 

 

Figure 6: Normal distribution 

(Source: Skrondal, Everitt, 2010, p. 306) 

1.5.7 Students’s distribution 

This distribution has thicker tails than normal distribution and is used in testing 

conditional probability and hypothesis. The thicker tails allow for testing samples of 

smaller sizes or with unknown standard deviations. It is also characterised by the 

“degrees of freedom” (ν) parameter, which influences the distribution shape. With an 

increasing number of degrees of freedom, ν, approximating the standard normal 

distribution (Skrondall, Everitt, 2010). 

Equation 6: Student´s t-distribution 

(Source: Processed according to Skrondal, Everitt, 2010, p. 419) 

𝑡 =
𝑥̅ − 𝜇

𝑠

√𝑛
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Figure 7: Student’s t-distribution for various ν 

(Source: Skrondal, Everitt, 2010, p. 419) 

1.5.8 Variance 

Variance quantifies the difference of data points in a given set from their mean. 

Variance is calculated as the sum of differences from the mean squared. By squaring the 

differences, we ensure only positive values are used in the calculation, so the positive 

and negative variances from the mean do not cancel each other in the final number, 

showing us lower variance. On the other hand, squaring the variance returns our units of 

the calculation squared, making it challenging for interpretation. Variance is used for 

other calculations but usually not as a stand-alone statistic. 

Equation 7: Population variance for X 

(Source: Boyle, 2020, p. 117) 

𝜎𝑋
2 =

∑ (𝑥𝑡 − 𝜇𝑋)2𝑛
𝑖=1

𝑛
 

Equation 8: Sample variance for X 

(Source: Boyle, 2020, p. 118) 

𝑠𝑋
2 =

∑ (𝑥𝑡 − 𝑥̅)2𝑛
𝑖=1

𝑛 − 1
 

For sample variance calculation, Bessel’s correction is used in the denominator to 

correct population estimation bias (Boyle, 2020). 
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1.5.9 Standard deviation 

Standard deviation is the most often used tool for comparing deviations between more 

data sets. It is calculated as the square root of variance, and as stated before, variance 

squares not only deviation in the data set but also units, making it unsuitable for easy, 

intuitive comparisons. 

Equation 9: Population and sample standard deviation 

(Source: Processed according to Boyle, 2020, p. 119) 

𝜎𝑋 = √𝜎𝑋
2 

𝑠𝑋 = √𝑠𝑋
2 

If the data set follows a normal distribution, then the so-called empirical rule applies to 

standard deviation. The empirical rule states that within 1 standard deviation lies 68% 

of the data set; within 2 standard deviations, 95% of the data set; and within 3 standard 

deviations, 99,7% of the data set (Boyle, 2020). 

 

Figure 8: Empirical rule 

(Source: National Library of Medicine, @2024) 
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For sample standard deviation, a standard error quantifies the precision with which the 

sample standard deviation estimates the population standard deviation. A smaller 

standard error suggests that the sample standard deviation is a more reliable estimate of 

the population standard deviation (Skrondal, Everitt, 2010). 

Equation 10: Standard error 

(Source: Processed according to Skrondal, Everitt, 2010, p. 409) 

𝑆𝐸 =
𝜎

√𝑛
 

1.5.10 Covariance 

Covariance is a statistical measure that quantifies the degree to which two random 

variables change together. It measures the directional relationship between two 

variables, with positive covariance indicating an increasing linear relationship and a 

negative decreasing relationship. Covariance is sensitive to changes in scale, making it 

difficult to interpret and compare across different datasets, but it is a key part of many 

further calculations (Boyle, 2020). 

Equation 11: Population covariance as expected value 

(Source: Processed according to Skrondal, Everitt, 2010, p. 110) 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] 

Or: 

Equation 12: Population covariance 

(Source: Processed according to Boyle, 2020, p. 171) 

𝑐𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝜇𝑋)(𝑌𝑡 − 𝜇𝑌)𝑛

𝑖=1

𝑛
 

Equation 13: Sample covariance 

(Source: Processed according to Skrondal, Everitt, 2010, p. 110) 

𝑐𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

𝑛 − 1
 

1.5.11 Linear regression 

Linear regression is one of the most important mathematical models used in 

econometrics. It allows the relationship between the dependent variable Y and 

independent variable X to be found and quantified. We can estimate the average value 
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of Y as a conditional expectation E(Y|X), and the relationship may be linear or non-

linear. 

Equation 14: Simple linear regression 

(Source: Skrondal, Everitt, 2010, p. 253) 

 𝐸(𝑌|𝑋) = 𝛽0 + 𝛽1𝑌 

Where:  

𝛽0 is the Y-intercept with the y-axis, the predicted value of Y when X=0 

𝛽1 is the slope of the regression line 

(Skrondal, Everitt, 2010) 

 

Figure 9: Linear relationship in a data set 

(Source: Lund Research Ltd, @2018) 

The coefficients 𝛽0 and 𝛽1 are commonly estimated using the sum of squared error 

(SSE) method. Once the equation is solved, we can predict the value of y at unobserved 

x by substitution in the regression function (Boyle, 2020). 

1.5.12 F-statistic 

F-statics is used to assess the overall significance of a group of explanatory variables or 

factors in explaining the variability in a response variable when doing regression 

analysis. A high F-statistic indicates that regression coefficients are significantly 

different from each other, suggesting that the model explains the variance between the 

two. Low F-statics suggest the regression does not provide a good fit to the data. 

It is calculated by dividing the explained variance, the sum of squares regression, by the 

unexplained variance, the sum of squares residual. 
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Equation 15: F-statistics 

(Source: Processed according to Skrondal, Everitt, 2010, p. 286) 

𝐹 =
𝑅𝑆𝑆𝑚 − 𝑅𝑆𝑆𝑚+1

𝑅𝑆𝑆𝑚+1/(𝑛 − 𝑚 − 2)
 

Where RSS is the residual sum of squares with m explanatory variables (Skrondal, 

Everitt, 2010). 

1.5.13 Coefficient of Determination 

The coefficient of determination, often denoted as 𝑅2, assesses the correlation between 

two variables used in regression. It is a simple tool to quickly measure how well the 

regression model can predict the value of the dependent variable and allows us to 

compare regression models. It ranges from 0 to 1, where 0 indicates that the 

independent variables do not explain any of the variability in the dependent variable, 

and 1 indicates that they explain all the variability (Boyle, 2020). 

Equation 16: F-statistics 

(Source: Processed according to Skrondal, Everitt, 2010, p. 286) 

𝑅𝑋𝑌
2 =

𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

1.5.14 Null hypothesis 

The null hypothesis tests whether any observed difference between two possibilities 

arises from chance. Statistical testing involves constructing a model or distribution 

representing the data under the assumption of pure chance or randomness to assess this 

hypothesis. The observed results are compared against these expected outcomes, 

enabling the determination of whether the null hypothesis is to be rejected or accepted 

(Skrondal, Everitt, 2010). 

1.5.15 T-test 

The t-test tests hypotheses about population means under student’s t-distribution. 

T-test encompasses two primary versions: the single sample t-test, applied to evaluate if 

the mean of a population aligns with a specified value, and the independent samples t-

test, utilised to scrutinise the equality of means between two populations.  
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Equation 17: T-test statistics 

(Source: Processed according to Skrondal, Everitt, 2010, p. 420) 

𝑡 =
𝑥1̅̅̅ − 𝑥2̅̅ ̅

𝑠√
1

𝑛1
+

1
𝑛2

 

The test statistic t is calculated as the difference between the sample means, normalised 

by the standard error. This standard error is estimated using estimated sample standard 

deviation s. 

Equation 18: Estimated sample standard deviation 

(Source: Processed according to Skrondal, Everitt, 2010, p. 420) 

𝑠 = √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛1 − 2
 

If the null hypothesis of equal population is true, the t-test follows a Student’s t-

distribution with degrees of freedom 𝑛1 + 𝑛1 − 2 equal to the total sample sizes. This 

allows for the p-value to be calculated (Skrondal, Everitt, 2010). 

1.5.16 P-value 

The p-value indicates the likelihood of obtaining results as extreme as the sample 

outcome if the null hypothesis holds true. A lower p-value corresponds to a reduced 

probability of observing the result, thereby providing more robust evidence to reject the 

null hypothesis. As the p-value focuses on extreme cases, it computes the probability 

within the upper or lower tail of the distribution (Boyle, 2020). 

1.6 Modern Portfolio Theory 

An investment portfolio is a collection of investments. Investors are trying to allocate 

their resources across a spectrum of asset types to generate returns and diversify risk. 

By diversifying across multiple asset classes and securities, investors seek to mitigate 

the impact of individual asset volatility on overall portfolio performance, thereby 

enhancing the risk-return profile of their investments (Bodie, Kane, Marcus, 2008). 

Portfolio theory, pioneered by Harry Markowitz in the 1950s, begins with the 

fundamental premise that investors are inherently risk-averse, seeking high returns 

while minimising uncertainty. Markowitz’s groundbreaking work, for which he was 
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awarded the Nobel Prize in Economics in 1990, provided a rigorous mathematical 

framework for portfolio construction and risk management. 

Markowitz’s seminal book, “Portfolio Selection,” emerged from his PhD dissertation at 

the University of Chicago and remains a cornerstone of modern finance. His research 

revealed that by strategically combining assets in a portfolio, investors could achieve a 

lower risk level than any individual asset, a concept known as diversification (Malkiel, 

2016). 

1.6.1 Diversification according to Modern Portfolio Theory 

Modern Portfolio Theory (MPT) provides a framework for understanding the principles 

of diversification and portfolio optimisation, grounded in mathematical analysis. At its 

core, MPT emphasises the importance of constructing portfolios that balance risk and 

return by strategically allocating investments across a diverse set of assets (Malkiel, 

2016). 

Analytically, suppose there are N securities in the market. Let 𝑟𝑖 denote the anticipated 

return per dollar invested in security i at time t, and let d represent the discount rate for 

the return on security i at time t. The relative amount invested in security i is denoted as 

𝑋𝑖, where 𝑋𝑖 ≥ 0 for all I, reflecting the exclusion of short sales. Additionally, 

∑ 𝑥𝑖
𝑁
𝑖=1 = 1, ensuring all capital is used in investing and no cash is left in the portfolio. 

The discounted anticipated return of the portfolio (R) is expressed as: 

Equation 19: Expected return of portfolio under MPT 

(Source: Markowitz, 1952, p. 78) 

𝑅 = ∑ ∑ 𝑑𝑖 × 𝑟𝑖,𝑡 × 𝑥𝑖

𝑁

𝑖=1

∞

𝑡=1
= ∑ 𝑥𝑖

𝑁

𝑖=1
× 𝐸(𝑑𝑖 × 𝑟𝑖,𝑡) 

Where 𝑅𝑖 represents the discounter return of security i. The portfolio return R is thus a 

weighted average of the discounted returns of individual securities, with the weights 𝑥𝑖 

representing the allocation of capital across assets (Markowitz, 1952). 

1.7 Capital Asset Pricing Model (CAPM) 

The Capital Asset Pricing Model (CAPM) was developed in the 1960s by William 

Sharpe, John Lintner, and Jan Mossin, extending earlier work by Harry Markowitz on 

portfolio theory. William Sharpe’s seminal paper, “Capital Asset Prices: A Theory of 
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Market Equilibrium under Conditions of Risk”, published in 1964, laid the foundation 

for CAPM by introducing the concept of beta as a measure of systematic risk. 

CAPM operates under the assumption of market equilibrium, where asset prices adjust 

to reflect all available information and investor expectations. In equilibrium, the 

expected return on an asset compensates investors for the time value of money (risk-free 

rate) and the additional risk associated with holding that asset (market risk premium). 

The CAPM considers how imperfect correlation among asset returns influences the 

investor’s risk-return trade-off. While risk in a portfolio combines nonlinearly due to 

diversification, expected returns combine linearly. This means that the expected return 

of a portfolio is simply the weighted average of the expected returns of its constituent 

assets. By holding assets with similar expected returns and standard deviations in a 

portfolio, diversification lowers its risk without compromising its expected return. 

(Perold, 2004). 

There are four key assumptions underlying the CAPM model: 

1. Taxes, transaction costs, and other practical factors can be ignored. 

2. All investors employ mean-variance optimisation (MVO) principles outlined by 

Markowitz to formulate their investment portfolios. 

3. Investors share identical capital market assumptions regarding expected returns, 

standard deviations, and correlations when constructing portfolios. 

4. All investors have unrestricted access to borrowing and lending at the same risk-

free rate (Idzorek, Xiong, Kaplan, Ibbotson, 2015). 

1.7.1 Components of CAPM 

CAPM incorporates a risk-free rate 𝑅𝑓 representing the return on a hypothetical 

investment with zero risk, such as a government bond. The risk-free rate serves as the 

baseline return against which investors compare the expected returns of risky assets. 

The beta coefficient quantifies the concept of systematic risk 𝛽𝑖 of an asset. Beta 

measures the sensitivity of an asset’s returns to the returns of the overall market 

portfolio. Mathematically, beta is calculated as the covariance of the asset’s returns with 

the market returns divided by the variance of the market returns: 
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Equation 20: The beta calculation for the CAPM model 

(Source: Processed according to Idzorek, Xiong, Kaplan, Ibbotson, 2015, p. 75) 

𝛽𝑖 =
𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑚)

𝜎𝑅𝑚

2  

Where 𝑅𝑖 is a return of asset i, and 𝑅𝑚 return of a market portfolio. 

The beta of the portfolio can be easily calculated as the weighted average of individual 

assets beta. 

Equation 21: The beta of a portfolio 

(Source: Processed according to Lee, Su, 2015, p. 75) 

𝛽𝑝 = ∑ 𝛽𝑖 × 𝑤𝑖

𝑁

𝑖=1
 

Where 𝑤𝑖 is a weight of an asset i, in a portfolio p. 

The expected return 𝐸(𝑅𝑖) of an asset is determined by its systematic risk expressed as 

𝛽𝑖 and the market risk premium. 

Equation 22: Expected return of individual assets under CAPM 

(Source: Processed according to Idzorek, Xiong, Kaplan, Ibbotson, 2015, p. 75) 

𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖 × 𝑀𝑅𝑃 

Where 𝑀𝑅𝑃 = 𝐸(𝑅𝑚) − 𝑅𝑓 expressing the expected excess return of the market 

portfolio above the risk-free rate 𝑅𝑓(Idzorek, Xiong, Kaplan, Ibbotson, 2015). 

Five years of data are usually considered for the most accurate Beta estimations when 

applying the CAPM model (Syed Jawad Hussain, Zakaria, Naveed, 2014). In order to 

smooth out huge volatility spikes in the estimation, weekly data frequency is calculated 

as an arithmetic average of daily data (Yang, Xu, 2007). 

The most accurate risk-free rate for the CAPM model is the mean of US short-term 

treasury bills (Mukherji, 2011). 

1.7.2 Efficient Portfolio Frontier 

The efficient frontier illustrates the optimal trade-off between risk and return for a given 

set of investment opportunities. It is a graph curve showing all possible portfolio 

combinations and their risk-to-return trade-offs. 
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Figure 10: Efficient Frontier 

(Source: Bodie, Kane, Marcus, 2008, p. 210) 

The efficient frontier concept arises from mean-variance optimisation, which aims to 

construct portfolios that maximise expected return while minimising portfolio variance 

(or standard deviation). The efficient frontier is derived by systematically varying the 

allocation of assets in a portfolio to achieve different risk-return combinations, resulting 

in a curve representing the set of optimal portfolios. 

Portfolios lying below the efficient frontier are suboptimal, as they offer lower expected 

returns for the same level of risk or higher risk for the same expected return compared 

to portfolios on the efficient frontier. Conversely, portfolios lying above the efficient 

frontier are unattainable or infeasible, as they represent risk-return combinations that 

cannot be achieved using available assets (Markowitz, 1952). 

1.7.3 Analytical derivation of Efficient Frontier 

As introduced by Markowitz in 1952, the efficient frontier has been constructed only 

qualitatively as a graphical solution for more than three assets. In 1972, Merton 

introduced an analytical derivation of the efficient frontier to solve this problem. 

Like for a portfolio under MPT, for a portfolio of N assets with their expected return 

𝐸(𝐸𝑖) and their standard deviation 𝜎𝑖 , the portfolio return is given by the weighted sum 

of individual asset returns: 
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Equation 23: The expected return of the portfolio by Merton 

(Source: Processed according to Merton, 1972, p. 1852) 

𝐸 = ∑ 𝑥𝑖𝐸𝑖

𝑁

𝑖=1
 

Where 𝑤𝑖 represent the weight of asset i, with constrain ∑ 𝑥𝑖 = 1𝑁
𝑖=1 , so all the capital 

will be invested with no leverage. The portfolio variance is: 

Equation 24: Portfolio variance 

(Source: Processed according to Merton, 1972, p. 1852) 

𝜎2 = ∑ ∑ 𝑥𝑖𝑥𝑗𝜎𝑗𝑖

𝑁

𝑖=1

𝑁

𝑗=1
 

The covariance and inverse covariance matrix are calculated from portfolio returns 

(Merton, 1972). The covariance matrix is a symmetric matrix in which diagonal values 

represent the variances of individual assets. In the literature, it is often called a variance-

covariance matrix (Skrondal, Everitt, 2010). 

Equation 25: Covariance matrix 

(Source: Processed according to Skrondal, Everitt, 2010, p. 445) 

∑ [
𝜎1

2 … 𝐶𝑜𝑣(𝑅1, 𝑅𝑁)
⋮ ⋱ ⋮

𝐶𝑜𝑣(𝑅𝑁, 𝑅1) … 𝜎𝑁
2

] 

An inverse covariance matrix is calculated the same way as a standard inverse matrix.  

For 2x2 matrix Σ where:  

Equation 26: Inverse matrix calculation 

(Source: Stover, Weisstein, @2023) 

Σ = [𝑎 𝑏
𝑐 𝑑

] 

The matrix inverse is: 

Σ−1 =
1

𝑎𝑑 − 𝑏𝑐
[ 𝑑 −𝑏
−𝑐 𝑎

] 

Four vectors are needed to construct the efficient frontier.  

• Vector of ones (1).  

• Vector of expected returns of individual assets (R). 

• Vector of asset weights (X). 

• Portfolio mean-variance vector (G). 
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Vector (X) represents the weights of individual portfolio assets and is calculated as a 

matrix multiplication of (1) vector and inverse covariance matrix. 

Equation 27: X vector 

(Source: Processed according to Merton, 1972, p. 1853) 

𝑋 = (1) × Σ−1 

Portfolio mean-variance vector (G) calculated as matrix multiplication of (R) vector and 

inverse covariance matrix. It represents both the portfolio’s expected returns and the 

risk (measured by variance). By multiplying the vector of expected returns by the 

inverse covariance matrix, investors obtain a measure that combines the expected 

performance of the portfolio with its risk characteristics (Merton, 1972). 

Equation 28: G vector 

(Source: Processed according to Merton, 1972, p. 1853) 

𝐺 = 𝑅 × Σ−1 

These four vectors are then used to calculate four additional coefficients, allowing us to 

construct an efficient frontier and minimum variance portfolio. Denotation T implies 

that the vectors are transposed in the calculation. 

Equation 29: Efficient frontier constants 

(Source: Processed according to Lee, Su, 2014, p. 71) 

𝐴 = (1) × 𝑋𝑇  

𝐵 = (1) × 𝐺𝑇  

𝐶 = 𝑅 × 𝑋𝑇  

𝐷 = 𝐴 × 𝐶 − 𝐵2 

Efficient frontier function of risk σ is now given by: 

Equation 30: Efficient frontier risk function 

(Source: Processed according to Merton, 1972, p. 1854) 

𝜎 = √
𝐶𝐸2 − 2𝐴𝐸 + 𝐵

𝐷
 

Where E is the desired expected return. 

The minimum variance portfolio (MVP) is now constructed by calculating the weights 

of individual assets using their value in (X) vector divided by A. Its expected return is 

given by dividing coefficient B by coefficient A or the product of MVP vector and (R) 
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vector. Risk is given by the square root of 1/A or the square root of matrix 

multiplication of MVP and Covariance matrix times transposed MVP (Lee, Su, 2014). 

Equation 31: MVP function 

(Source: Processed according to Lee, Su, 2014, p. 75 and 76) 

𝑀𝑉𝑃 =
𝑋

𝐴
 

𝑅𝑀𝑉𝑃 =
𝐵

𝐴
= 𝑀𝑉𝑃 × 𝑅 

𝜎𝑀𝑉𝑃 = √
1

𝐴
= √𝑀𝑉𝑃 × (Σ × 𝑀𝑉𝑃𝑇) 

1.7.4 Capital Market Line and Tangency Portfolio 

The Capital Market Line (CML) describes the relationship between risk and return in 

the context of efficient portfolio construction. The CML is constructed based on the 

principles of mean-variance analysis and the efficient frontier, which defines the set of 

portfolios that offer the highest expected return for each level of risk or the lowest risk 

for each level of expected return. The CML extends this concept by introducing the 

risk-free asset, typically represented by short-term government securities, as a vital 

portfolio component. 

Mathematically, the CML is expressed as the linear combination of the risk-free rate 

and the efficient portfolio of risky assets. 

The tangency portfolio lies at the point of tangency between the efficient frontier and 

the CML. It is considered optimal because it offers the best risk-to-return ratio. 

Investors can then move the optimal tangency portfolio along the CML by incorporating 

risk-free assets into the portfolio. 
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Figure 11: Capital Market Line 

(Source: Bodie, Kane, Marcus, 2008, p. 282) 

For calculation, we will use the efficient frontier coefficients A, B, C and D in 

combination with the risk-free rate 𝑅𝑓 (Lee, Su, 2014). 

Equation 32: CML coefficients 

(Source: Processed according to Lee, Su, 2014, p. 73 and 74) 

𝑅𝑇 =
𝐶 + 𝐵 × 𝑅𝑓

𝐵 − 𝐴 × 𝑅𝑓
 

𝜎𝑇 = √
𝐴 × 𝑅𝑇

2 − 2 × 𝐵 × 𝑅𝑇 + 𝐶

𝐷
 

𝛽𝑇 =
𝑅𝑇 − 𝑅𝑓

𝜎𝑇
 

𝜆𝑇 =
𝐶 − 𝐵 × 𝑅𝑓

𝐷
 

𝜇𝑇 =
𝐷 × 𝑅𝑓 − 𝐵

𝐷
 

Where: 

𝑅𝑇 is the return of tangency portfolio, 𝜎𝑇 risk of tangency portfolio, 𝛽𝑇 the slope of the 

tangency portfolio, and 𝜆𝑇 and 𝜇𝑇 are additional constants used in the calculation of 

portfolio weights. 
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Equation 33: Tangency portfolio weights of individual assets 

(Source: Processed according to Lee, Su, 2014, p. 74) 

𝑇𝑎𝑛𝑔𝑒𝑛𝑐𝑦 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = 𝜆𝑇 × 𝑋 + 𝜇𝑇 × 𝐺 

Equation 34: Capital market line 

(Source: Processed according to Lee, Su, 2014, p. 74) 

𝐶𝑀𝐿 = 𝑅𝑓 + 𝜎𝑇 × 𝛽𝑇 

However, CML also explains why investors should hold a simple market portfolio 

composed of a weighted average of all assets available in the market. According to 

CAPM, investors are rational and seek to maximise their returns while minimising risk. 

The tangency portfolio, where the risk-return trade-off reaches an optimal balance, 

coincides with the market portfolio in CAPM. This alignment occurs because the 

market portfolio represents the most efficient combination of risk and return available to 

investors. As a result, under CAPM, all investors should seek to hold the market 

portfolio to achieve the highest possible return for a given level of risk. Holding the 

market portfolio ensures that investors are exposed to systematic risk, which is 

compensated with the market risk premium. 

If the market portfolio is used in the calculation, the tangency portfolio should have the 

same weights for each asset as the market portfolio (Elton, Gruber, Goetzmann Brown, 

2014). 

1.7.5 Security market line 

The security market line is used in the CAPM model to represent the trade-off between 

risk (beta) and expected return for individual securities or portfolios within a well-

diversified market (Lee, Su, 2014). 

1.8 Testing the CAPM 

In this section, possible tests are outlined to test assumptions underlying the CAPM 

model. The testing is usually done on portfolios comprising around ten assets. This is 

done to ensure that there is no selection and measurement bias, which could affect the 

equilibrium model of CAPM (Elton, Gruber, Goetzmann, Brown, 2014). 

However, because the cryptocurrency market is a new emerging market, it would be a 

challenge to gather five years of data for hundreds of cryptocurrencies. Mainly because 

many of the biggest cryptocurrencies have not been on the market for five years. For the 
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purpose of this thesis, I have decided to test individual cryptocurrencies, which is still 

possible based on the literature. 

1.8.1 Time series test 

This test is based on the regression of the time series of excess portfolio or asset returns 

on excess market return. 

Equation 35: CAPM time series test 

(Source: Processed according to Yang, Xi, 2007, p. 16) 

𝑟𝑒𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖 × 𝑟𝑒𝑚𝑡 

𝑟𝑒𝑖𝑡 = 𝑟𝑖𝑡 − 𝑟𝑓𝑡 

𝑟𝑒𝑚𝑡 = 𝑟𝑚𝑡 − 𝑟𝑓𝑡 

Where: 

𝑟𝑒𝑖𝑡 is the excess return of asset i at time t 

𝑟𝑒𝑚𝑡 is the excess return of market portfolio at time t 

𝑟𝑖𝑡 is the return of asset i at time t 

𝑟𝑖𝑡 is the return of the market portfolio at time t 

𝑟𝑓𝑡 is the risk-free rate at time t 

𝛽𝑖 is estimated beta 

𝛼𝑖 is regression intercept 

If CAPM is true, then there is no difference between the expected return based on the 

time series and the expected return based on CAPM. That means 𝛼𝑖 should be zero for 

all assets. The results are interpreted using a T-test with a 95% confidence interval 

(Yang, Xi, 2007). 

1.8.2 General equilibrium test 

If the CAPM as a general equilibrium model is true, then it follows three main 

assumptions: 

• The higher the risk of an investment the higher its expected return 

• The expected return is linearly related to the beta 

• There is no added return for non-market risk exposure 
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This would ensure that deviations of securities or portfolios from equilibrium are purely 

random and do not offer opportunities for above-market returns (Elton, Gruber, 

Goetzmann, Brown, 2014). 

The excess return of portfolio or asset i within a specified period is determined as the 

mean of its excess returns, while the beta 𝛽𝑖 was derived from a time series regression 

of the asset’s excess return on the market’s excess return.  

Equation 36: CAPM excess return testing 

(Source: Processed according to Yang, Xi, 2007, p. 19) 

𝑅𝑒𝑖 = 𝛾0 + 𝛾1 × 𝛽𝑖 

𝑅𝑒𝑖 =
1

𝑛
∑ 𝑟𝑖𝑡 − 𝑟𝑓𝑡

𝑛

𝑖=1
 

Where 𝑅𝑒𝑖 is average excess return above the risk-free rate.  

If CAPM is valid, the excess return 𝑅𝑒𝑖 is equal to regression 𝛾0 + 𝛾1𝛽𝑖, implying 𝛾0 =

0 and 𝛾1 = 𝑅𝑖 − 𝑅𝑓 . 

To test the non-linearity of returns and beta, the following regression equation is used: 

Equation 37: CAPM beta testing 

(Source: Processed according to Yang, Xi, 2007, p. 19) 

𝑟𝑝 = 𝛾0 + 𝛾1 × 𝛽𝑖 + 𝛾2 × 𝛽𝑖
2 

If the assumptions of CAPM are true, the coefficient 𝛾2 should equal to 0. That would 

mean that returns and betas are linearly dependent. 

Lastly, we test if the excess returns are determined by systematic risk. 

Equation 38: CAPM systematic risk testing 

(Source: Processed according to Yang, Xi, 2007, p. 19) 

𝑟𝑝 = 𝛾0 + 𝛾1 × 𝛽𝑖 + 𝛾2 × 𝛽𝑖
2 + 𝛾3 × 𝑅𝑆𝑆 

Additionally, it incorporates the impact of non-systematic risk, captured by the term 

𝑅𝑆𝑆, residual sum of squares, which denotes the residual variance of portfolio return, 

reflecting the portion of risk that is specific to individual assets and not explained by 

systematic factors. 

If the hypothesis holds true, 𝛾3 would be expected to be equal to zero, indicating that 

non-systematic risk does not play a significant role in determining expected excess 

returns beyond what is already captured by systematic risk. 
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T-test is used to statistically test the CAPM testing coefficients with a significance level 

of 95% (Yang, Xu, 2007). 

1.8.3 Benchmark market portfolio S&P 500 

The S&P 500, often considered a benchmark index for the U.S. stock market, comprises 

500 large-cap companies listed on stock exchanges in the United States. Established in 

1957 by Standard & Poor’s, the index aims to represent the broader market’s 

performance by including companies from various sectors such as technology, 

healthcare, finance, and consumer goods. The weight of each asset within the index is 

determined by market capitalisation and in total the index covers approximately 80% of 

the U.s. market capitalization. The S&P 500 is widely used by investors, analysts, and 

financial professionals as a benchmark for measuring the performance of investment 

portfolios and mutual funds (Laney, 2024). This index is used as a market portfolio in 

the construction of CAPM on the cryptocurrency market.  
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2 ANALYSIS OF THE CURRENT STATE 

In this section of the thesis, econometrics models are constructed and evaluated.  

For model construction, I have selected five cryptocurrencies for a year from 

31.12.2018 to 31.12.2023. The five cryptocurrencies were selected based on the 

following conditions: 

• Market capitalisation as of 31.12.2023 

• Being traded before 31.12.2018 

• Not being stablecoin 

The below table shows the biggest cryptocurrencies as of 31.12.2023. 

Table 1: Cryptocurrencies based on market capitalisation 

(Source: Own processing based on CoinMarketCap, @2023) 

Cryptocurrency Symbol 

Market 

capitalisation (in 

mil. USD) 

Price 

(USD) 
Type 

Bitcoin BTC 827 811    42 265.19  Cryptocurrency 

Ethereum ETH 274 194      2 281.47  Cryptocurrency 

Tether USDT USDT 91 675             0.99  Stablecoin 

Binance coin BNB 47 394         312.44  Cryptocurrency 

Solana SOL 43 576         101.51  Cryptocurrency 

XRP XRP 33 284             0.61  Cryptocurrency 

USDC USDC 24 520             1.00  Stablecoin 

Cardano ADA 21 015             0.59  Cryptocurrency 

The data in the table are from Coin Market Cap, a price-tracking website for 

cryptocurrencies owned by Binance and operating since 2013. Companies and even the 

US government trust Coin Market Cap for its real-life price information, making it a 

reliable source of price data for cryptocurrency analysis. 

Based on the criteria for portfolio selection, Tether USDT and USDC are not considered 

because, as a stablecoin, their price is pegged to the US dollar and is not supposed to be 

held as investments. Also, Solana is not considered because it was introduced in 2020, 

thus not having five years of market data (CoinMarketCap, @2024). 

The selected five cryptocurrencies for this thesis are: 

• Bitcoin (BTC) 

• Ethereum (ETH) 
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• Binance Coin (BNB) 

• XRP (XRP) 

• Cardano (ADA) 

The cryptocurrency market portfolio (MP) is based on a weighted average of market 

capitalisation. 

Table 2: Weights of the Cryptocurrency Market Portfolio 

(Source: Own processing based on CoinMarketCap, @2024) 

Symbol Market capitalisation 𝐰𝐢 

BTC 827 811 69% 

ETH 274 194 23% 

BNB 91 675 4% 

XRP 47 394 3% 

ADA 43 576 2% 

SUM 1 284 650 100% 

As of 31.12.2023, the entire cryptocurrency market capitalisation is 1 725 302 million 

USD, consisting of over 14 000 individual cryptocurrencies (CoinGecko, @2024). The 

selected cryptocurrency market portfolio covers 70% of the whole cryptocurrency 

market, which is sufficient coverage to represent the market as a whole. 

Table 3: Cryptocurrency market capitalisation 

(Source: Own processing based on table n. 2 and CoinGecko, @2024) 

Symbol Market capitalisation 𝐰𝐢 

BTC 827 811 48% 

ETH 274 194 16% 

BNB 47 394 3% 

XRP 33 284 2% 

ADA 21 015 1% 

Others 521 604 30% 

SUM 1 725 302 100% 
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Graph 1: Cryptocurrency market capitalisation 

(Source: Own processing based on table n. 3) 

I have chosen the S&P 500 index (ticker SPX), which covers approximately 80% of the 

U.S. equity market, as a benchmark and alternative market portfolio. The alternative 

market portfolio is used to compare results against the cryptocurrency market portfolio. 

Historical data are obtained from Yahoo Finance. Yahoo Finance is a financial news 

and data network that has been operating since 1997. It is one of the biggest finance 

websites in the world and a reliable source of market data (Wikipedia, @2024). 

I have chosen the US three-month treasury bills as a risk-free rate. Market data are 

obtained from the Federal Reserve Economic Data database, operated by the Federal 

Reserve Bank of St. Louis (FRED). As a government body, FRED is a reliable source 

of market data for treasury bills (FRED, @2024). 

2.1 Data 

Data for all cryptocurrencies are obtained from CoinMarketCap for a period of five 

years, from 31.12.2018 to 31.12.2023, denoted in US dollars. 

S&P 500 index market data are obtained for the same period from Yahoo Finance.  

  

BTC ETH BNB XRP ADA Others
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Table 4: Table of daily prices for selected portfolio and benchmark index 

(Source: Own processing in software Microsoft Excel 365) 

Date BTC ETH BNB XRP ADA S&P500 

31/12/2018 3742.7 133.3683 6.164732 0.352706 0.041063 2506.85 

01/01/2019 3843.52 140.8194 6.075273 0.364771 0.042547 n.a. 

02/01/2019 3943.409 155.0477 6.188613 0.375243 0.045258 2510.03 

03/01/2019 3836.741 149.135 5.903535 0.360224 0.042682 2447.89 

04/01/2019 3857.718 154.5819 6.065138 0.356747 0.043812 2531.94 

05/01/2019 3845.195 155.6386 6.065543 0.355275 0.044701 n.a. 

06/01/2019 4076.633 157.7462 6.395979 0.368395 0.049261 n.a. 

07/01/2019 4025.248 151.6992 6.291411 0.364347 0.047996 2549.69 

08/01/2019 4030.848 150.3596 6.640054 0.365315 0.048525 2574.41 

09/01/2019 4035.296 150.8031 6.64155 0.37089 0.052169 2584.96 

10/01/2019 3678.925 128.6252 5.915919 0.332652 0.044529 2596.64 

11/01/2019 3687.365 127.5483 6.075342 0.332904 0.044147 2596.26 

12/01/2019 3661.301 125.9665 5.976965 0.3288 0.043704 n.a. 

13/01/2019 3552.953 116.8978 5.568757 0.317863 0.040241 n.a. 

In order to obtain the most accurate beta estimation and smooth out huge volatility 

spikes, weekly data frequency is calculated as an arithmetic average of daily. Moreover, 

weekly data frequency allows data from crypto markets that are open non-stop seven 

days a week to be matched to the SP&500 index, which is traded only during business 

days. 

Table 5: Table of average weekly prices 

(Source: Own processing in software Microsoft Excel 365) 

Week BTC ETH BNB XRP ADA S&P500 

1 3877.99 149.477 6.12269 0.36191 0.04419 2499.18 

2 3810.28 135.986 6.15857 0.34468 0.0459 2580.39 

3 3665.39 123.342 6.33922 0.32806 0.04436 2623.14 

4 3593.26 116.713 6.70793 0.31646 0.04271 2644.67 

Weekly returns are now calculated. The first week of data is lost because there is no 

previous week against which the return can be calculated. After calculating the returns, 

we have 260 data points in total. Returns of the cryptocurrency market portfolio (MP) 

are calculated as the weighted average of weekly returns based on the market 

capitalisation. 
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Table 6: Table of weekly returns 

(Source: Own processing in software Microsoft Excel 365) 

Week BTC ETH BNB XRP ADA SP&500 MP 

1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

2 -0.017 -0.090 0.006 -0.048 0.039 0.032 -0.033 

3 -0.038 -0.093 0.029 -0.048 -0.034 0.017 -0.048 

4 -0.020 -0.054 0.058 -0.035 -0.037 0.008 -0.025 

The risk-free rate is calculated as a mean of short-term US treasury bills. Daily data for 

three-month treasury bills from the secondary market from 31.12.2018 to 31.12.2023 

were obtained from the Federal Reserve Economic Data database, operated by the 

Federal Reserve Bank of St. Louis. A simple mean of 1.91% was calculated from these 

data points, which is used as the risk-free rate in the model. 

2.2 Statistics calculation 

Annualized geometric mean return is used to calculate the return of individual 

cryptocurrencies. 

In Excel, we can express this using the formula: 

Equation 39: Annualized geometric mean return in Excel 

(Source: Processed according to equation number 2) 

= (1 + (𝑃𝑅𝑂𝐷𝑈𝐶𝑇(1 + 𝑖1: 𝑖𝑛)
1
𝑛 − 1)) ^𝑝 − 1 

Where 𝑖1: 𝑖𝑛 is a selection of weekly returns of cryptocurrency i, and p is the number of 

periods, in this case, 52, reflecting 52 weeks in a year to get annualised statistics from 

weekly data (Bodie, Kane, Marcus, 2008). 

The -1 on the end of the equation is used to calculate the return in percentage.  

Annualised standard deviation from weekly data is obtained using the STDEV.S 

function in Microsoft Excel with p=52 as well to get the annualised value.  

Equation 40: Annualised standard deviation in Excel 

(Source: Processed according to equation number 9) 

= 𝑆𝑇𝐷𝐸𝑉. 𝑆( 𝑖1: 𝑖𝑛) ∗ 𝑆𝑄𝑅𝑇(𝑝) 

The beta coefficient is the sensitivity of an asset’s returns to the returns of the overall 

market portfolio. In this case, the S&P500 and the cryptocurrency market portfolio will 

be considered. 
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Equation 41: Beta coefficient calculation in Excel 

(Source: Processed according to equation number 20) 

𝛽𝑖 = 𝐶𝑂𝑉𝐴𝑅𝐼𝐴𝑁𝐶𝐸. 𝑆(𝑖1: 𝑖𝑛 , 𝑚1: 𝑚𝑛))/𝑉𝐴𝑅. 𝑆(𝑚1: 𝑚𝑛) 

Where 𝑖1: 𝑖𝑛 is a selection of weekly returns of cryptocurrency i and 𝑚1: 𝑚𝑛 is a 

selection of weekly returns of the market portfolio. 

The expected return of individual cryptocurrencies can be calculated directly: 

Equation 42: Expected return of individual assets under CAPM 

(Source: Processed according to equation number 22) 

𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖 × (𝑅𝑚 − 𝑅𝑓) 

Where 𝑅𝑖 is the return of cryptocurrency i, 𝑅𝑓 is a risk-free rate, 𝑅𝑚 is the return of the 

market portfolio and 𝛽𝑖 is the beta of cryptocurrency i. 

Table 7: Table of return, risk, Beta and expected return based on S&P500 

(Source: Own processing in software Microsoft Excel 365) 

 
BTC ETH BNB XRP ADA S&P500 Risk-free 

Returns 61.55% 72.76% 118.93% 11.67% 69.20% 13.84% 1.91% 

Risk (σ) 57.53% 72.85% 89.10% 92.73% 88.22% 15.30% 0% 

𝜷𝒊 1.31 2.05 1.88 1.61 2.20 1.00  

𝐄(𝐑𝐢) 17.49% 26.34% 24.37% 21.07% 28.11% 13.84%  

Table 8: Table of return, risk, Beta and expected return based on MP 

(Source: Own processing in software Microsoft Excel 365) 

 
BTC ETH BNB XRP ADA MP Risk-free 

Returns 61.55% 72.76% 118.93% 11.67% 69.20% 69.71% 1.91% 

Risk (σ) 57.53% 72.85% 89.10% 92.73% 88.22% 58.46% 0% 

𝜷𝒊 0.96 1.12 1.02 0.87 1.08 1.00  

𝐄(𝐑𝐢) 67.09% 78.06% 70.89% 60.96% 75.12% 69.71%  

These tables outline basic metrics for our five picked cryptocurrencies, the risk-free rate 

and a comparison of beta and expected return if we use the S&P500 index or 

cryptocurrency market portfolio for calculation. 

The returns row indicates an annual cumulative return investors may expect from a 

given cryptocurrency based on five years of data. Notably, BNB has the highest return 

at 118.93%, experiencing the highest growth among the assets listed, while XRP had 

the lowest return at 11.67%. Besides XRP, all cryptocurrencies outperformed the 

market index of the S&P500. 

The row “Risk (σ)” displays the annualised standard deviation, which measures the 

volatility or risk associated with each asset's returns. Assets with higher standard 
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deviations are generally considered riskier investments. In this case, XRP has the 

highest risk, with a standard deviation of 92.73%, while the S&P 500 index exhibits the 

lowest risk, at 15.30% and MP 58.46%. 

 

 

Graph 2: Return and risk of picked assets 

(Source: Own processing in software Microsoft Excel 365) 

Based on historical return and risk, we can see that BTC has the lowest risk of 57.53% 

out of the picked cryptocurrencies, which is still higher than the risk of the S&P500 by 

over 40 percentage points. BNB experienced the highest growth but also has the second 

highest risk. The only cryptocurrency that did not outperform the S&P500, XRP, also 

has the highest risk.  

The beta coefficient 𝛽𝑖 measures each asset's systematic risk or sensitivity to market 

movements compared to the broader market. A beta greater than 1 indicates higher 

volatility relative to the market, while a beta less than 1 suggests lower volatility. We 

can compare all asset betas to the selected two market portfolios. For S&P500 as a 

market portfolio, ADA stands out with the highest beta of 2.20, indicating it is more 

volatile than the market, while the S&P 500 itself has a beta of 1.00 as the benchmark. 

On the other hand, if we calculate beta against the cryptocurrency market portfolio, the 

highest beta is 1.12 for ETH. 

 

0%

20%

40%

60%

80%

100%

120%

140%

BTC ETH BNB XRP ADA SP500 MP Risk free
rate

Returns Risk



53 

 

 

Graph 3: Beta coefficients 

(Source: Own processing in software Microsoft Excel 365) 

Finally, the 𝐸(𝑅𝑖) represents the expected return for each asset, calculated based on the 

Capital Asset Pricing Model (CAPM) using the beta coefficient and the market's 

expected return. 
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Graph 4: The expected return of assets based on the S&P500 

(Source: Own processing in software Microsoft Excel 365) 

While BNB recorded the highest returns among the assets listed, its expected return of 

24.37%, as derived from the S&P500, is surpassed by ADA's expected return of 

28.11%. This discrepancy between actual and expected returns suggests that ADA's 

performance may have exceeded what would be predicted by its systematic risk, as 

measured by its beta coefficient. While XRP had the lowest return out of the picked 

cryptocurrencies, its expected return is higher than BTC's expected return. 

 

Graph 5: The expected return of assets based on the MP 

(Source: Own processing in software Microsoft Excel 365) 
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When using a cryptocurrency market portfolio, the expected returns are notably higher 

for all cryptocurrencies. The market portfolio has an expected return of 69.71% 

compared to the expected return of the S&P500 of 13.84%. The highest expected return 

has, in this case, ETH of 78.06%, over 50 percentage points higher than ETH’s 

expected return based on S&P500. XRP has the lowest expected return of 60.96% 

which is still higher than any expected return based on S&P500. 

 

Graph 6: Expected return of assets comparison of market portfolios 

(Source: Own processing in software Microsoft Excel 365) 

These findings show the importance of selecting an appropriate market portfolio when 

estimating expected returns under the CAPM. Using a cryptocurrency market portfolio 

leads to higher expected returns for all assets, highlighting the differences between the 

cryptocurrency market and traditional equity markets represented by the S&P500. 

Investors and analysts should consider this when selecting a market portfolio used to 

calculate the beta coefficient and expected return. 

In order to decide which approach is better for the cryptocurrency market, we have to 

test both approaches individually and compare the results. 

2.3 Variance testing 

Variance and its statistical significance is tested using one-tail and two-tail f-tests. This 

is done to ensure the accuracy of the t-test done in testing the regression in the next step. 
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An F-test was done on individual cryptocurrencies against market portfolios using the 

“Data Analysis” pack in Microsoft Excel. See screenshot of Excel attached in Annex I. 

on page number 95. Variable 1 is the historical weekly returns of individual 

cryptocurrencies, and Variable 2 is the historical weekly returns of market portfolios. 

Alpha 0.05 is the significance level for p-values. 

For the two-tail f-test, the null hypothesis 𝐻0 is that there are no differences in variation 

in the two samples, the alternative hypothesis 𝐻1 is a difference in variance between the 

two samples. 

Table 9: F-Test Two-Sample for Variances for S&P500 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA S&P500 

μ 0.012 0.016 0.022 0.009 0.017 0.003 

𝝈𝟐 0.006 0.010 0.015 0.017 0.015 0.000 

Observations 260 260 260 260 260 260 

Degrees of freedom 259 259 259 259 259 259 

F-statistics 14.131 22.657 33.895 36.714 33.226  

Two-tail F-test p-value 0.000 0.000 0.000 0.000 0.000  

Above table is F-test for S&P 500 and individual cryptocurrencies. 

The highest F-statistic of 36.714 for XRP indicates a strong relationship between its 

mean return and variance compared to the other assets. Despite having the lowest return 

and highest risk among the assets in the previous table, the high F-statistic suggests that 

XRP’s returns are statistically significant relative to its risk. This implies that although 

XRP may have exhibited high volatility and lower returns compared to other assets, 

there is still a significant relationship between its mean returns and variances. 

On the other hand, Bitcoin (BTC) and Ethereum (ETH) show lower F-statistics of 

14.131 and 22.657, respectively, indicating less significant relationships between their 

mean returns and variances. While these assets may still offer investment opportunities, 

their returns are less tied to their volatility. 

We can reject the null hypothesis for two-tail F-tests, it was concluded that the variance 

of all tested cryptocurrencies was higher than that of the S&P500. This means that the 

accuracy of T-statistics used in testing 𝛽𝑖 is limited. 
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Table 10: F-Test Two-Sample for Variances for MP 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA MP 

μ 0.012 0.016 0.022 0.009 0.017 0.013 

𝝈𝟐 0.006 0.010 0.015 0.017 0.015 0.007 

Observations 260 260 260 260 260 260 

Degrees of freedom 259 259 259 259 259 259 

F-statistics 1.033 1.552 2.323 2.516 2.277  

Two-tail F-test p-value 0.796 0.000 0.000 0.000 0.000  

The above table is an F-test for the cryptocurrency market portfolio and individual 

cryptocurrencies. 

The variance observed is understandably the same as in the table for the S&P500 

because it is calculated from the same data. However, the variance for the market 

portfolio is 0.007, compared to 0 for the S&P500. 

For BTC, we can accept the null hypothesis that the variance is the same as that of the 

cryptocurrency market portfolio. Given that the cryptocurrency market portfolio 

consists mostly of BTC based on its highest market capitalisation. Based on this result, 

the beta coefficient of BTC based on the cryptocurrency market will probably be the 

most accurate. 

2.4 Regression testing 

Regression testing is done using the LINEST Excel function. This function calculates 

regression coefficients, standard error, T-stat, two-tail p-value based on T-stat, 

coefficient of determination 𝑅2, F-stat and degrees of freedom. 

Regression is calculated between cryptocurrency week returns and S&P 500 returns. 

Equation 43: Regression in Excel 

(Source: Processed according to equation n. 14) 

= 𝐿𝐼𝑁𝐸𝑆𝑇(𝑖1: 𝑖𝑛 , 𝑚1: 𝑚𝑛 , 𝑇𝑅𝑈𝐸, 𝑇𝑅𝑈𝐸) 

Where 𝑚1: 𝑚𝑛 are the weekly returns of the market portfolio, and TRUE signals to 

Excel to calculate coefficients and all the testing statistics. 

The null hypothesis is the coefficient being equal to zero, alternative hypothesis is the 

coefficient not being zero. The significance level selected for the p-value is 0.05. 
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Table 11: Regression based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

𝜷𝒊 1.307 2.048 1.883 1.606 2.197 

Standard error 0.219 0.267 0.343 0.364 0.332 

T-stat 5.955 7.657 5.490 4.416 6.623 

Two tail p-value 0.000 0.000 0.000 0.000 0.000 

𝑹𝟐 12.1% 18.5% 10.5% 7.0% 14.5% 

F-Stat 35.457 58.632 30.144 19.504 43.860 

Degrees of freedom 258 258 258 258 258 

Table 12: Regression based on MP 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

𝜷𝒊 0.961 1.123 1.017 0.871 1.080 

Standard error 0.013 0.034 0.071 0.083 0.066 

T-stat 73.567 33.443 14.404 10.555 16.460 

Two tail p-value 0.000 0.000 0.000 0.000 0.000 

𝑹𝟐 95.4% 81.3% 44.6% 30.2% 51.2% 

F-Stat 5412.106 1118.410 207.472 111.406 270.926 

Degrees of freedom 258 258 258 258 258 

The Standard error provides the beta coefficient estimates’ standard deviation, 

indicating the estimated betas’ precision. The T-stat assesses the significance of the beta 

coefficient. Higher t-statistic values indicate greater significance. The P-value 

represents the probability of observing a t-statistic as extreme as the one computed. 

Based on p-values being zero, we reject the null hypothesis, meaning all of our 

coefficients are different than zero. 

We can see that the coefficient of determination 𝑅2 for S&P 500 regression is between 

7% for XRP and 18.5% for ETH, below the customarily accepted threshold in the 

literature of 70%. 𝑅2 indicates the proportion of variation in the cryptocurrency’s 

returns that changes in the returns of the S&P 500 can explain. 

The 𝑅2 for betas calculated from the cryptocurrency market portfolio have considerably 

higher amounts between 30.2% for XRP and 95.4% for BTC. 

Based on these finding we concluded that all our beta coefficients for both market 

portfolios are statistically significant. For S&P 500 as market portfolio the most 

accurate beta estimation is for ETH while for cryptocurrency market portfolio the BTC 

has the most accurate beta estimation. 
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2.5 Efficient Frontier 

The covariance matrix, Σ, for the whole portfolio of cryptocurrencies is calculated using 

the COVARIANCE.S Microsoft Excel function. This function takes the weekly return 

of one cryptocurrency, 𝑖𝑋, against the weekly returns of the next cryptocurrency, 𝑖𝑌. 

This calculation is repeated for the whole matrix. 

Equation 44: Covariance matrix in Excel 

(Source: processed according to equation number 25) 

𝛴 = 𝐶𝑂𝑉𝐴𝑅𝐼𝐴𝑁𝐶𝐸. 𝑆(𝑖𝑋1
: 𝑖𝑋𝑛

, 𝑖𝑌1
: 𝑖𝑌𝑛

) 

Table 13: Covariance matrix 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

BTC 0.33 0.34 0.31 0.24 0.32 

ETH 0.34 0.53 0.37 0.36 0.45 

BNB 0.31 0.37 0.79 0.40 0.49 

XRP 0.24 0.36 0.40 0.86 0.45 

ADA 0.32 0.45 0.49 0.45 0.78 

The inverse covariance matrix is calculated using the MINVERSE function, which 

returns the inverted matrix. 

Equation 45: Inverse covariance matrix in Excel 

(Source: processed according to equation number 26) 

𝛴−1 = 𝑀𝐼𝑁𝑉𝐸𝑅𝑆𝐸(𝛴) 

Table 14: Inverse covariance matrix 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

BTC 9.29 -4.76 -1.19 0.13 -0.44 

ETH -4.76 6.49 0.01 -0.64 -1.39 

BNB -1.19 0.01 2.41 -0.34 -0.84 

XRP 0.13 -0.64 -0.34 1.83 -0.53 

ADA -0.44 -1.39 -0.84 -0.53 3.10 

The first two vectors for efficient frontier are already given as a vector of ones and a 

vector of the previously calculated expected return of individual assets. 

Two remaining vectors are calculated using the MMULT function, which multiplies 

matrixes. 
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Equation 46: Vector (X) and (G) 

(Source: processed according to equations number 27 and 28) 

𝑋 = 𝑀𝑀𝑈𝐿𝑇((1); 𝛴−1) 

𝐺 = 𝑀𝑀𝑈𝐿𝑇((𝑅); 𝛴−1) 

Table 15: Vector (X) and (G) 

(Source: Own processing in software Microsoft Excel 365) 

Vector 
     

(1) 1 1 1 1 1 

(X) 3.03 -0.29 0.05 0.45 -0.10 

(𝐑)𝑺&𝑷 𝟓𝟎𝟎 0.17 0.26 0.24 0.21 0.28 

(𝐑)𝑴𝑷 0.67 0.78 0.71 0.61 0.75 

(𝐆)𝑺&𝑷 𝟓𝟎𝟎 -0.02 0.35 0.07 0.01 0.11 

(𝐆)𝑴𝑷 1.42 0.45 0.08 0.06 0.03 

Vectors (1) and (X) are the same for both market portfolios. Only vectors (R) and (G) 

differ because they are calculated from expected returns. 

Coefficients A, B and C are calculated using the MMULT function and the function 

TRANSPOSE, which transposes a vector. 

Equation 47: Efficient frontier coefficients 

(Source: processed according to equation number 29) 

𝐴 = 𝑀𝑀𝑈𝐿𝑇((1); 𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑆𝐸(𝑋)) 

𝐵 = 𝑀𝑀𝑈𝐿𝑇((1); 𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑆𝐸(𝐺)) 

𝐶 = 𝑀𝑀𝑈𝐿𝑇((𝑅); 𝑇𝑅𝐴𝑁𝑆𝑃𝑂𝑆𝐸(𝑋)) 

𝐷 = 𝐴 × 𝐶 − 𝐵^2 

Table 16: Efficient frontier coefficients based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

Coefficient 
 

A 3.14 

B 0.53 

C 0.14 

D 0.16 
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Table 17: Efficient frontier coefficients based on MP 

(Source: Own processing in software Microsoft Excel 365) 

Coefficient 
 

A 3.14 

B 2.04 

C 1.42 

D 0.29 

An efficient portfolio function can be plotted by creating a row of expected returns (E) 

starting at 0% and adding 1% point and for each point of expected return, calculating 

risk given by the risk function of the efficient frontier. Function SQRT is used to 

calculate the square root. 

Equation 48: Efficient frontier risk calculation in Excel 

(Source: processed according to equation number 30) 

𝜎 = 𝑆𝑄𝑅𝑇((𝐶𝐸^2 − 2𝐴𝐸 + 𝐵)/𝐷) 

Table 18: Efficient frontier function based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

𝝈 𝐄(𝐑𝐢) 

93.69% 0.00% 

90.21% 1.00% 

86.81% 2.00% 

83.51% 3.00% 

80.31% 4.00% 

77.24% 5.00% 

Table 19: Efficient frontier function based on MP 

(Source: Own processing in software Microsoft Excel 365) 

𝝈 𝐄(𝐑𝐢) 

220.48% 0.00% 

217.31% 1.00% 

214.14% 2.00% 

210.98% 3.00% 

207.83% 4.00% 

204.67% 5.00% 

By calculating the risk for a large number of expected returns, we get the efficient 

frontier, which can be plotted into a graph with the expected returns of individual assets. 
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Graph 7: Efficient frontier function for S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

 

Graph 8: Efficient frontier function based on MP 

(Source: Own processing in software Microsoft Excel 365) 

This graph shows the risk and expected return relationship for our selected 
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under the function graph. No combination of selected cryptocurrencies could offer a 

combination of expected return and risk that lies outside of the function graph. 

We can now see the impact of different market portfolios selected for the construction 

of the model. 

2.6 Minimum variance portfolio 

With coefficients and vectors used in the efficient frontier calculation, we can also 

calculate the minimum variance portfolio (MVP), which minimises risk. The weights of 

MVP are given by vector (X) and divided by coefficient A. The sum of individual 

cryptocurrencies weights in the portfolio has to equal 100%, as investing all of our 

capital is one of the constraints. 

Equation 49: Weights of MVP in Excel 

(Source: processed according to equation number 31) 

𝑀𝑉𝑃 = (𝑋)/𝐴 

Table 20: Weights of MVP based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA SUM 

MVP 96.43% -9.19% 1.55% 14.29% -3.09% 100.00% 

Table 21: Weights of MVP based on MP 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA SUM 

MVP 96.43% -9.19% 1.55% 14.29% -3.09% 100.00% 

Because the weights are calculated using vector (X) and coefficient A, that have the 

same values for both market portfolios, the MVP weights are the same for both market 

portfolios. What will differ is the expected return, while the risk is going to be the same 

as well. 

The expected return of MVP can be calculated using two approaches: by dividing the B 

coefficient by the A coefficient or by multiplying the weights of the MVP with the (R) 

vector.  

Equation 50: Expected return of MVP in Excel 

(Source: processed according to equation number 30) 

𝑅𝑀𝑉𝑃 = 𝐵/𝐴 = 𝑀𝑉𝑃 × 𝑅 

The risk of MVP can be calculated using two approaches as well. 
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Equation 51: Risk of MVP in Excel 

(Source: processed according to equation number 30) 

𝜎𝑀𝑉𝑃 = 𝑆𝑄𝑅𝑇(1/𝐴) = 𝑆𝑄𝑅𝑇(𝑀𝑉𝑃 × (Σ × 𝑀𝑉𝑃^𝑇)) 

For precision purposes, the expected return 𝑅𝑀𝑉𝑃  and risk 𝜎𝑀𝑉𝑃 is calculated using 

both approaches to verify the model. 

Table 22: Expected return of MVP based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

 
𝑩/𝑨 𝑴𝑽𝑷 × 𝑹 

𝑹𝑴𝑽𝑷 16.97% 16.97% 

Table 23: Expected return of MVP based on MP 

(Source: Own processing in software Microsoft Excel 365) 

 
𝑩/𝑨 𝑴𝑽𝑷 × 𝑹 

𝑹𝑴𝑽𝑷 65.02% 65.02% 

Table 24: Risk of MVP based on S&P 500 and MP 

(Source: Own processing in software Microsoft Excel 365) 

  𝑺𝑸𝑹𝑻(𝟏/𝑨) 𝑺𝑸𝑹𝑻(𝑴𝑽𝑷 × (𝚺 × 𝑴𝑽𝑷^𝑻)) 

𝝈𝑴𝑽𝑷 56.41% 56.41% 

Both calculations have the same result, meaning the minimum variance portfolio and 

the efficient frontier are calculated correctly. 

 

Graph 9: Minimum variance portfolio based on the S&P 500 

(Source: Own processing in software Microsoft Excel 365) 
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Graph 10: Minimum variance portfolio based on MP 

(Source: Own processing in software Microsoft Excel 365) 

We can see that both calculations returned the exact numbers, and the MVP sits on the 

least risky part of the efficient frontier for both market portfolios. In theory, this 

portfolio consisting of these five cryptocurrencies should minimize the variance of our 

portfolio. It is worth noting that the portfolio lies very close to Bitcoin on the graph and 

consists of 96.43% of Bitcoin. This suggests that Bitcoin is the least risky of the 

selected cryptocurrencies. 

2.7 Capital market line and tangency portfolio 

Capital market line and tangency portfolio are calculated using the same coefficients 

utilizing the covariance matrix and vectors calculated before. 

Equation 52: CML coefficients in Excel 

(Source: Processed according to equation number 32) 

𝑅𝑇 = (𝐶 + 𝐵 × 𝑅𝑓)/(𝐵 − 𝐴 × 𝑅𝑓) 

𝜎𝑇 = 𝑆𝑄𝑅𝑇((𝐴 × 𝑅𝑇^2 − 2 × 𝐵 × 𝑅𝑇 + 𝐶)/𝐷) 

𝛽𝑇 = (𝑅𝑇 − 𝑅𝑓)/𝜎𝑇 

𝜆𝑇 = (𝐶 − 𝐵 × 𝑅𝑓)/𝐷 

𝜇𝑇 = (𝐷 × 𝑅𝑓 − 𝐵)/𝐷 
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Table 25: Tangency portfolio and CML coefficients based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

𝐑𝐓 27.84% 

𝛔𝐓 74.02% 

𝛃𝐓 0.35 

𝛌𝐓 -0.04 

𝛍𝐓 2.11 

Table 26: Tangency portfolio and CML coefficients based on MP 

(Source: Own processing in software Microsoft Excel 365) 

𝐑𝐓 69.71% 

𝛔𝐓 58.46% 

𝛃𝐓 1.16 

𝛌𝐓 -0.01 

𝛍𝐓 0.50 

Because the tangency portfolio and the cryptocurrency market portfolio are the same 

portfolios, the expected return and risk of the tangency portfolio are the same as the 

expected return and risk of the market portfolio, as calculated initially in table number 

8. 

The CML line function and Tangency portfolio can be constructed using these 

coefficients. 

Equation 53: Capital market line function 

(Source: Processed according to equation number 34) 

𝐶𝑀𝐿 = 𝑅𝑓 + 𝜎𝑇 × 𝛽𝑇 

CML function can be plotted by creating a vector of risk 𝜎𝑇 starting at 0% and adding 

1% point, and calculating the return given by the CML function for each point of risk. 

Table 27: CML based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

𝛔𝐓 CML 

0.00% 1.91% 

1.00% 2.26% 

2.00% 2.61% 

3.00% 2.96% 

4.00% 3.31% 

5.00% 3.66% 

6.00% 4.01% 

7.00% 4.36% 

8.00% 4.71% 
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Table 28: CML based on MP 

(Source: Own processing in software Microsoft Excel 365) 

𝛔𝐓 CML 

0.00% 1.91% 

1.00% 3.07% 

2.00% 4.23% 

3.00% 5.39% 

4.00% 6.55% 

5.00% 7.71% 

6.00% 8.87% 

7.00% 10.03% 

8.00% 11.19% 

The weight of individual assets in the tangency portfolio is given by: 

Equation 54: Tangency portfolio weights of individual assets 

(Source: Processed according to equation number 33) 

𝑇𝑎𝑛𝑔𝑒𝑛𝑐𝑦 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = 𝜆𝑇 × 𝑋 + 𝜇𝑇 × 𝐺 

Table 29: Tangency portfolio based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

BTC ETH BNB XRP ADA SUM 

-15.44% 75.96% 15.37% -0.23% 24.34% 100.00% 

Table 30: Tangency portfolio based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

BTC ETH BNB XRP ADA SUM 

68.77% 22.78% 3.94% 2.77% 1.75% 100.00% 

Adding CML and tangency portfolios to the efficient frontier graph shows that the CML 

function is tangent to the efficient frontier function and intercepts the y-axis at the risk-

free rate of a three-month treasury note. The tangency portfolio is at the tangent point of 

CML and the efficient frontier. This portfolio should, in theory, give investors the best 

risk-to-reward ratio for cryptocurrencies. 
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Graph 11: CML and tangency portfolio based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 
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Graph 12: CML and tangency portfolio based on MP 

(Source: Own processing in software Microsoft Excel 365) 

In the model using the cryptocurrency market portfolio, the tangency portfolio is the 
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2.8.1 Time series test 

In this test, we are testing the intercept of regression between excess returns of 

individual assets at time t, 𝑟𝑒𝑖𝑡, and excess returns of the market portfolio at time t, 𝑟𝑒𝑚𝑡. 

Excess return is calculated by subtracting the risk-free rate at time t. 

Equation 55: Time series test in Excel 

(Source: Processed according to equation number 35) 

= 𝐿𝐼𝑁𝐸𝑆𝑇(𝑟𝑒𝑖1: 𝑟𝑒𝑖𝑛 , 𝑟𝑒𝑚1: 𝑟𝑒𝑚𝑛 , 𝑇𝑅𝑈𝐸, 𝑇𝑅𝑈𝐸) 

Where: 

𝑟𝑒𝑖𝑡 = 𝑟𝑖𝑡 − 𝑟𝑓𝑡 

𝑟𝑒𝑚𝑡 = 𝑟𝑚𝑡 − 𝑟𝑓𝑡 

and TRUE signals to Excel to calculate coefficients and all the testing statistics. 

The null hypothesis is the intercepts 𝛼𝑖 being zero, the alternative hypothesis is the 

intercepts are different than zero. The significance level used for the p-value is 0.05. 

Table 31: Time series test based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

𝛂𝐢 0.016 0.035 0.038 0.020 0.040 

Standard error 0.007 0.008 0.010 0.011 0.010 

F-stat 35.457 58.632 30.144 19.504 43.860 

Degrees of freedom 258 258 258 258 258 

RSS 1.449 2.154 3.540 3.982 3.313 

T-stat 2.461 4.376 3.665 1.789 3.985 

p-value 0.015 0.000 0.000 0.075 0.000 

For the time series test based on the S&P 500, we reject the null hypothesis of intercept 

being zero for four of the cryptocurrencies; we accept the null hypothesis only for XRP 

based on a p-value of 0.075. This suggests that the expected returns predicted by the 

CAPM using the S&P 500 are not accurate; only the expected return for XRP might be 

statistically accurate. 
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Table 32: Time series test based on MP 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

𝛂𝐢 -0.001 0.003 0.008 -0.005 0.004 

Standard error 0.001 0.003 0.006 0.007 0.005 

F-stat 5412.106 1118.410 207.472 111.406 270.926 

Degrees of freedom 258 258 258 258 258 

RSS 0.075 0.495 2.192 2.991 1.891 

T-stat -1.392 1.229 1.452 -0.812 0.804 

p-value 0.165 0.220 0.148 0.417 0.422 

For the time series test based on the cryptocurrency market portfolio, we accept the null 

hypothesis for all five of our tested cryptocurrencies, meaning the CAPM assumptions 

are correct and all intercepts 𝛼𝑖 are zero. This makes the cryptocurrency market 

portfolio the correct market portfolio for CAPM construction, and the expected returns 

calculated using this market portfolio are statistically accurate. 

Based on the time-series test of CAPM, the cryptocurrency market portfolio is more 

accurate than the S&P 500 index for the calculation of expected returns. 

2.8.2 General Equilibrium Testing 

The general equilibrium test tests the assumptions of the CAPM model in three separate 

tests. For these tests, we need a new table that is used in regressions. The table consists 

of average excess returns, beta estimation, beta squared and residual sum of squares for 

each tested cryptocurrency. 

Equation 56: Average excess return in Excel 

(Source: Processed according to equation number 36) 

𝑅𝑒𝑖 = 𝐴𝑉𝐸𝑅𝐴𝐺𝐸𝐴(𝑟𝑒𝑖1: 𝑟𝑒𝑖𝑛) 

The average excess return 𝑅𝑒𝑖 is calculated based on individual excess returns 

calculated in the time-series test. Beta coefficient 𝛽𝑖 have been calculated before. The 

𝛽𝑖
2 is squared beta coefficient. The residual sum of squares, RSS, has also been 

calculated in the previous time-series test. 
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Table 33: General equilibrium table based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

𝐑𝐞𝐢 -0.012 -0.008 -0.002 -0.015 -0.007 

𝛃𝐢 1.307 2.048 1.883 1.606 2.197 

𝛃𝐢
𝟐 1.707 4.195 3.546 2.580 4.828 

RSS 1.449 2.154 3.540 3.982 3.313 

Table 34: General equilibrium table based on MP 

(Source: Own processing in software Microsoft Excel 365) 

  BTC ETH BNB XRP ADA 

𝐑𝐞𝐢 -0.012 -0.008 -0.002 -0.015 -0.007 

𝛃𝐢 0.961 1.123 1.017 0.871 1.080 

𝛃𝐢
𝟐 0.924 1.261 1.035 0.759 1.166 

RSS 0.075 0.495 2.192 2.991 1.891 

The first test is an extension of the time series test. It involves regressing the average 

excess returns above the risk-free rate for all assets against their beta coefficients. 

Equation 57: CAPM excess return testing in Excel 

(Source: Processed according to equation number 36) 

= 𝐿𝐼𝑁𝐸𝑆𝑇(𝑅𝑒𝑖1: 𝑅𝑒𝑖𝑛 , 𝛽𝑖1: 𝛽𝑖𝑛 , 𝑇𝑅𝑈𝐸, 𝑇𝑅𝑈𝐸) 

This test if the CAPM assumption about expected returns. The null hypothesis is 

regression intercept 𝛾0 being zero with a significance level of 0.05. 

Table 35: CAPM excess return test based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

 γ1 γ0 

Coefficient 0.008 -0.022 

Standard error 0.006 0.011 

T-stat 1.225 -1.979 

p-value 0.308 0.142 

𝐑𝟐 0.333  

F-stat 1.500 
 

Degree of freedom 3 
 

Because the p-value of the intercept 𝛾0 is 0.142, we accept the null hypothesis of the 

intercept being zero. This means that the expected returns of assets based on the S&P 

500 are accurate. However, when we combine this finding with previous time-series test 

of expected returns, where we rejected the same null hypothesis for four out of five 
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cryptocurrencies, we cannot comfortably reject nor accept that expected returns 

estimated based on the S&P 500 are accurate. 

Table 36: CAPM excess return test based on MP 

(Source: Own processing in software Microsoft Excel 365) 

 γ1 γ0 

Coefficient 0.029 -0.038 

Standard error 0.021 0.021 

T-stat 1.390 -1.793 

p-value 0.259 0.171 

𝐑𝟐 0.392  

F-stat 1.932 
 

Degree of freedom 3 
 

For the test of excess returns based on the cryptocurrency market, we accept the null 

hypothesis with a p-value of 0.171. This is in line with the result of the previous time 

series test, and we can comfortably say that the expected returns of cryptocurrencies are 

accurately estimated from the cryptocurrency market portfolio. 

Second, is the test of non-linearity of returns and beta. The test is done by regressing the 

excess returns of assets with their beta and beta squared. If the CAPM assumption of 

linearity is true, the regression coefficient 𝛾2 is equal to zero. This is our null 

hypothesis; the significance level is set to 0.05. 

Equation 58: CAPM beta testing in Excel 

(Source: Processed according to equation number 37) 

= 𝐿𝐼𝑁𝐸𝑆𝑇(𝑅𝑒𝑖1: 𝑅𝑒𝑖𝑛 , 𝛽𝑖1: 𝛽𝑖𝑛 , 𝛽𝑖1
2 : 𝛽𝑖𝑛

2 , 𝑇𝑅𝑈𝐸, 𝑇𝑅𝑈𝐸) 

Table 37: CAPM beta testing based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

  γ2  γ1 γ0 

Coefficient -0.005 0.024 -0.036 

Standard error 0.03 0.104 0.089 

T-stat -0.156 0.228 -0.407 

p-value 0.89 0.841 0.723 

𝐑𝟐 0.341   

F-stat 0.518 
 

 

Degree of freedom 2 
 

 

We can accept the null hypothesis of the linearity of beta coefficients and excess returns 

based on a p-value of 0.89 for coefficient 𝛾2. Beta linearity is one of the most important 

assumptions of the CAPM model. This means that while the S&P 500 as a market 
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portfolio might not accurately estimate expected returns, its beta estimation is 

statistically significant. Investors can use the S&P 500 index to estimate the beta 

coefficients of cryptocurrencies. 

Table 38: CAPM beta testing based on MP 

(Source: Own processing in software Microsoft Excel 365) 

  γ2  γ1 γ0 

Coefficient -0.328 0.684 -0.362 

Standard error 0.248 0.496 0.246 

T-stat -1.322 1.381 -1.475 

p-value 0.317 0.301 0.278 

𝐑𝟐 0.675   

F-stat 2.081 
 

 

Degree of freedom 2 
 

 

For the beta estimations based on the cryptocurrency market portfolio, we accept the 

null hypothesis as well, with a p-value of 0.317. This proves that expected returns and 

betas are linear, and investors can use the cryptocurrency market portfolio to estimate 

the beta of individual cryptocurrencies. 

The last test relates to the systematic risk of returns. If CAPM is true, then excess 

returns are not influenced by non-systematic risk outside of the cryptocurrency market, 

and investors cannot achieve above-market returns by exposure to this type of risk. The 

non-systematic risk is captured by the residual sum of squares, RSS, and the null 

hypothesis is that its regression coefficient 𝛾2 equals zero. 

Equation 59: CAPM systematic risk testing in Excel 

(Source: Processed according to equation number 38) 

= 𝐿𝐼𝑁𝐸𝑆𝑇(𝑅𝑒𝑖1: 𝑅𝑒𝑖𝑛 , 𝛽𝑖1: 𝛽𝑖𝑛 , 𝛽𝑖1
2 : 𝛽𝑖𝑛

2 , 𝑅𝑆𝑆1: 𝑅𝑆𝑆𝑛 , 𝑇𝑅𝑈𝐸, 𝑇𝑅𝑈𝐸) 

Table 39: CAPM systematic risk testing based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 

  γ3  γ2  γ1 γ0 

Coefficient -0.001 -0.013 0.055 -0.06 

Standard error 0.005 0.053 0.189 0.155 

T-stat -0.253 -0.25 0.292 -0.39 

p-value 0.842 0.844 0.819 0.763 

𝐑𝟐 0.381    

F-stat 0.205 
 

  

Degree of freedom 1 
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We accept the null hypothesis based on a p-value of 0.842 for the coefficient 𝛾3. This 

proves the CAPM assumption that non-systematic risk does not influence 

cryptocurrency returns when the model is constructed with the S&P 500 as a market 

portfolio. 

Table 40: CAPM systematic risk testing based on MP 

(Source: Own processing in software Microsoft Excel 365) 

  γ3  γ2  γ1 γ0 

Coefficient -0.001 -0.013 0.055 -0.06 

Standard error 0.005 0.053 0.189 0.155 

T-stat -0.253 -0.25 0.292 -0.39 

p-value 0.400 0.313 0.301 0.284 

𝐑𝟐 0.381    

F-stat 0.205 
 

  

Degree of freedom 1 
 

  

For CAPM constructed based on cryptocurrency market portfolio we also accept null 

hypothesis of non-systematic risks not influencing the cryptocurrencies returns. 

2.9 Evaluation Of The Practical Part 

In the practical part, I have selected five cryptocurrencies based on their market 

capitalisation, their time on the market and whether or not they are supposed to be 

investments or stablecoins. As a market portfolio, I have selected the cryptocurrency 

market portfolio (MP) based on a weighted average of market capitalisation and index 

S&P 500 as a benchmark market portfolio. I have gathered daily price prices for all 

selected cryptocurrencies and the S&P 500 for a period of five years from 31.12.2018 to 

31.12.2023. Their weekly returns have been calculated using a simple average of their 

daily price change and their annualised returns using geometric mean. The risk has been 

calculated as an annualised standard deviation. Lastly, I have selected 3-month treasury 

bills as risk-free rates and obtained their average rate of return in the same time period. 

Using the CAPM methodology, I calculated the expected return and beta coefficients 

for selected cryptocurrencies based on both selected market portfolios. Beta coefficients 

were tested using a standard statistical approach. First was the F-test of variance, 

followed by the T-statistic of regression slope. The coefficient of determination was 

also used to support the findings.  
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Overall, I rejected that cryptocurrencies have the same variation as both market 

portfolios, making the T-statistics used in testing the regression less accurate. T-

statistics has determined that all beta coefficients are different than zero, making them 

statistically significant. Lastly, the coefficient of determination allowed me to compare 

the beta coefficients between both market portfolios and with higher coefficient of 

determination based on the cryptocurrency market portfolio I supported the idea that the 

cryptocurrency market portfolio estimated betas are more accurate then the S&P 500 

estimated betas. 

Table 41: Beta estimation results 

(Source: Own processing in software Microsoft Excel 365) 

Test S&P 500 MP 

F-test Rejected Rejected 

T-stat Accepted Accepted 

𝐑𝟐 Lower Higher 

 

This allowed me to construct the efficient frontier function that outlines all possible 

portfolios and their expected return-to-risk ratios investors are able to achieve using 

these cryptocurrencies. The minimum variance portfolio has been constructed, which 

minimises variance in the investment portfolio. This portfolio, consisting of 96.43% 

from Bitcoin, has a risk of 56.41%. While the weights of individual cryptocurrencies 

and the risk of the minimum variance portfolio are the same when using both market 

portfolios, an expected return of the minimum variance portfolio is 16.97% based on the 

S&P 500 and an expected return of 65.02%. This shows investors' different return 

expectations when using different market portfolios. However, the minimum variance 

portfolio also has a lower risk than any individual cryptocurrency may offer. This 

demonstrates the power of diversification in the modern portfolio theory. 

The capital market line was calculated in order to find the tangency portfolio. In theory, 

this portfolio should offer the best expected return-to-risk ratio. When constructed based 

on the S&P 500, this portfolio, consisting mainly of Ethereum with a weight of 75.96%, 

has an expected return of 27.84% and a risk of 74.02%, which is a higher expected 

return than any single cryptocurrency as estimated based on the S&P 500. 

When constructing the tangency portfolio based on the cryptocurrency market portfolio, 

I discovered that the tangency portfolio is exactly the same as the cryptocurrency 
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market portfolio itself, as predicted by the literature. This means that if CAPM 

assumptions are true, the market portfolio is the most optimal portfolio. This portfolio 

has an expected return of 69.71% and a risk of 58.46%. This is not the highest expected 

return; three cryptocurrencies have higher expected returns as estimated by the 

cryptocurrency market portfolio. However, this portfolio has a higher expected return 

than the tangency portfolio based on the S&P 500 by 42% points and does not require 

any short selling to achieve this expected return. Because there might be additional 

costs related to short selling, I have concluded that a cryptocurrency market portfolio 

created as a weighted average of the overall market is the most optimal portfolio if the 

CAPM assumptions are correct. 

 

 

Graph 13: CML and tangency portfolio based on S&P 500 

(Source: Own processing in software Microsoft Excel 365) 
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Graph 14: CML and tangency portfolio based on MP 

(Source: Own processing in software Microsoft Excel 365) 

 

To test the CAPM assumptions, I have implemented four tests: 

1. Time series test of excessive returns 

2. Test of average excess returns 

3. Test of beta linearity 

4. Test of non-systematic risk 

All of these tests were done for both market portfolios to compare the results. 

Table 42: CAPM testing results 

(Source: Own processing in software Microsoft Excel 365) 

Test S&P 500 MP 

1 Rejected Accepted 

2 Accepted Accepted 

3 Accepted Accepted 

4 Accepted Accepted 

While the S&P 500 index failed to accurately estimate expected returns for most 

cryptocurrencies, the cryptocurrency market portfolio expected returns are statistically 

significant, suggesting its superiority for CAPM construction. The test of non-linearity 

of returns and beta indicated that beta estimation based on both market portfolios index 
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of cryptocurrencies. Furthermore, the analysis revealed that non-systematic risk does 

not significantly influence cryptocurrency returns in either CAPM model. Overall, the 

results support the use of a cryptocurrency market portfolio over the S&P 500 index for 

more reliable CAPM estimations in cryptocurrency markets.  

I conclude that CAPM theory is consistent with empirical test of selected five 

cryptocurrencies for period of five years between 31.12.20218 and 31.12.2023 and 

market portfolio of cryptocurrency market can be used by investors to estimate beta of 

cryptocurrencies.  
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3 PROPOSAL 

3.1 Recommendation for investors 

For passive investors looking to incorporate exposure to cryptocurrency, I recommend 

using a weighted average cryptocurrency market portfolio for the best risk-to-reward 

ratio. Passive investors may be willing to expose themselves to the fast-growing 

cryptocurrency market but may not be interested in active analysis and trading 

cryptocurrencies because they believe the markets are efficient and cannot generate 

above-average returns or because they find analysing cryptocurrencies too costly. 

Based on the findings, I recommend the cryptocurrency market portfolio as the optimal 

way to incorporate cryptocurrencies into investment portfolios. Furthermore, I believe 

that using a cryptocurrency market portfolio for beta calculations and expected returns 

yields the most accurate results, but investors can still use the index S&P 500 to 

calculate beta coefficients of cryptocurrencies in case they want to calculate beta 

coefficients for all of their investments based on the same benchmark. The calculated 

beta coefficients will still be statistically significant. 

3.2 Limitation 

While the most robust empirical tests of CAPM do so on high number of assets sorted 

into market portfolios that are tested to eliminate selection bias, I have carried the 

testing only on five individual cryptocurrencies. This was due to the relative youth and 

dynamics of the market, because currently many of the biggest cryptocurrencies, such 

as Solana, do not have five years’ worth of data. Also, as of May 2024 Cardano (ADA) 

is no longer fifth largest coin fitting our criteria. The biggest limitation of this study is 

lower number of cryptocurrencies tested, even though they covered 70% of the market 

at time of the selection. 

Selected time period of five years, that is standard in literature, is also limitation due to 

the high volatility of the market and market cycles based on halving events. Some 

studies on traditional markets split the testing period into smaller section and carry 

CAPM testing over more periods. 

Lastly some studies tried to test some aspects of CAPM on cryptocurrencies, but I have 

not been able to find a study conducting empirical test of CAPM on the cryptocurrency 
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market following similar methodology. The results of this study cannot be verified 

against another source at the time of writing. 

For these reasons I believe the findings do apply for five selected cryptocurrencies in 

the selected period, but a general application to the whole market is limited. 

3.3 Future studies 

Future studies on the issue could take two directions. First is elimination of described 

limitation and expanding the study across more cryptocurrencies and using time periods 

split into smaller testing periods. Second is linking the cryptocurrency returns to market 

cycles and creating adjusted model for cryptocurrency market. 
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CONCLUSION 

In conclusion, this thesis has aimed to investigate the applicability of the Capital Asset 

Pricing Model (CAPM) in the cryptocurrency effectiveness of the CAPM in capturing 

systematic risk in this asset class. Through a deductive approach, utilising academic 

literature and statistical methods, the study has tested various CAPM assumptions using 

two market portfolios: the S&P 500 index and a cryptocurrency market portfolio. 

The findings suggest that while the S&P 500 index struggled to estimate expected 

returns for most cryptocurrencies accurately, the cryptocurrency market portfolio 

exhibited statistically significant expected returns, indicating its superiority for CAPM 

construction. Moreover, beta estimation based on both market portfolios remained 

statistically significant, enabling investors to effectively estimate cryptocurrencies' beta 

coefficients. Additionally, the analysis revealed that non-systematic risk does not 

significantly influence cryptocurrency returns in either CAPM model. 

Overall, the results support using a cryptocurrency market portfolio over the S&P 500 

index for more reliable CAPM estimations in cryptocurrency markets. Moreover the 

study accept the assumption of CAPM in cryptocurrency market and find that CAPM 

theory is consistent with empirical data from the market. 

This study contributes to the understanding of portfolio management strategies in the 

emerging cryptocurrency asset class, providing valuable insights for investors seeking 

to apply traditional financial models on cryptocurrency markets. 
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ANNEX I. 

F-test in Data analysis pack in Microsoft Excel. 

 

(Source: Screenshot from Microsoft Excel) 

 


