
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY

A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

APACHE MODULE FOR THE DOS ATTACK MITIGATION
APACHE MODUL PRO MITIGACI DOS ÚTOKŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Robert Ruman
AUTOR PRÁCE

SUPERVISOR Ing. Michael Jurek
VEDOUCÍ PRÁCE

BRNO 2023

T
BRNO FACULTY OF ELECTRICAL
UNIVERSITY ENGINEERING
OF TECHNOLOGY AND COMMUNICATION

Bachelor's Thesis
Bachelor's study program Information Security

Department of Telecommunications

Student: Robert Ruman ID: 231273

Year of
3 Academic year: 2022/23

study:

TITLE O F THESIS:

Apache module for the DoS attack mitigation
INSTRUCTION:

The aim of this thesis is to create and test a module to detect and mitigate Slow DoS attacks on Apache web

server in the current version.

Tasks:

- Analysis of current solutions for mitigating Slow DoS attacks on Apache web server.

- Design and implementation of a custom module for Apache HTTP server that will detect and block Slow DoS

attacks (Slowloris, Slow Read, Slow Post, Slow Drop, Slow Next and RUDY).

e.g. The module will use a combination of various methods, such as limiting the number of requests from

individual clients or blacklisting IP addresses.

- Thorough testing of the developed module using unit tests, integration tests, functional and performance tests.

- Verification of the module functionality on simulated Slow DoS attacks, evaluation and clear processing of the

results (suitable graphical representation will be chosen).

- Comparison of the created module with other solutions.

- Preparation of documentation for the module, including instructions for installation and use.

R E C O M M E N D E D L I T E R A T U R E :

[1] LAURIE, Ben a Peter LAURIE. Apache: The Definitive Guide. 3rd ed. online: O'Reilly Media, 2002. ISBN

9780596002039.,

[2] M A C E A C H E R N , Doug a Lincoln STEIN. Writing Apache Modules with Perl and C. online: O'Reilly Media,

1999. ISBN 9781565925670.
Date of project Deadline for

6.2.2023 26.5.2023
specification: submission:

Supervisor: Ing. Michael Jurek

WARNING: d O C " l n 9 " J a " H ^ n * > P h D "

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not i n f ri n g P̂ f\§' Ficffif ̂AHfriif cPf̂ QfiffP̂ i r'ftplfl 6̂ 3e rs o n a I and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

ABSTRACT
This thesis is devoted to the mitigation of multiple types of DoS attacks. Our aim was to
create a custom apache module that is able to mitigate flood attacks as well as logical
attacks. The module was created in C language using VS Code. After creating the
module we ran multiple tests to gather data in order to be able to compare our module
to already existing apache modules. Comparing the test result we concluded that our
module is able to mitigate both types of attacks. The results of the tests are visualized
using graphs in the appendix.

KEYWORDS
DoS, UDP flood, ICMP flood, S Y N flood, Slowloris, H T T P flood, attacker, RUDY,
Apache, module, server

ABSTRAKT
Táto práca sa venuje mitigácii viacerých typov útokov DoS. Naším cieľom bolo vytvoriť
vlastný modul apache, ktorý dokáže zmierniť útoky typu flood, ako aj logické útoky.
Modul bol vytvorený v jazyku C pomocou programu VS Code. Po vytvorení modulu
sme vykonali viacero testov na získanie údajov, aby sme mohli náš modul porovnať s
už existujúcimi modulmi apache. Porovnaním výsledkov testov sme dospeli k záveru, že
náš modul dokáže zmierniť oba typy útokov. Výsledky testov sú vizualizované pomocou
grafov v prílohe.

KLÍČOVÁ SLOVA
DoS, UDP flood, ICMP flood, SYN flood, Slowloris, H T T P flood, útočník, RUDY,
Apache, modul, server

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Cieľom tohto projektu bolo vytvoriť Apache modul ktorý dokáže detekovat a

mitigovať DoS (Denial of Service) útoky rôznych typov. Zatiaľ sú dostupné iba
Apache moduly ktoré sa zamerávajú iba na jednotlivé DoS útoky.

DoS útoky a jej typy

DoS útoky sú typy kybernetických útokov, ktoré majú za cieľ prerušiť, obmedziť
alebo znemožniť normálnu prevádzku systému, služby alebo siete tak, že zasypávajú
zdroje, ktoré by mali byť dostupné pre legitímnych používateľov. Typy DoS útokov
sú:

• Záplavové útoky - Tieto útoky zaplavujú cieľ obrovským množstvom pre­
vádzky, čím zahlcujú sieťové linky, prepínače, smerovače a iné sieťové kompo­
nenty. Tým, že sa spotrebuje dostupná šírka pásma a sieťové zdroje, legitímni
používatelia nemajú prístup k systému alebo sieti.

• Protokolové útoky - Útoky na protokoly využívajú zraniteľnosti alebo slabiny
v sieťových protokolov na narušenie cieľového systému alebo siete. Tieto útoky
zvyčajne využívajú chyby v implementácii sieťových protokolov, čím sa systém
alebo sieť obete nedokážu správne spracovať prichádzajúce požiadavky. Medzi
príklady protokolových útokov DoS patria útoky S Y N Flood, pri ktorých
útočník zaplavuje cieľ veľkým počtom paketov S Y N , vyčerpá zdroje cieľa a
zabráni mu dokončiť protokol T C P procesu odovzdávania príkazov T C P

• Aplikačné útoky - Tieto útoky sa zameriavajú na zraniteľnosti v aplikačnej
vrstve cieľového systému alebo siete. Tieto útoky využívajú slabiny v spô­
sobe, akým aplikácie alebo služby spracúvajú a spracovávajú prichádzajúce
požiadavky, pričom ich cieľom je vyčerpať možnosti aplikácie zdrojov a spôso­
biť nedostupnosť

Ako vytvoriť vlastný Apache modul

Ak chcete vytvoriť vlastný modul pre Apache2, budete potrebovať určité znalosti
programovania a konfigurácie Apache2 servera. Tu je základný postup na vytvorenie
vlastného modulu:

1. P r í p r a v a prostredia - Uistite Sel, ZG máte nainštalovaný Apache2 server
a vývojové nástroje na vašom systéme. Skontrolujte, či máte nainštalované
balíčky potrebné pre vývoj modulov Apache2, napríklad apache2-dev (pre sys­
témy založené na Debiane/Ubuntu) alebo podobné.

2. Vytvorenie nového a d r e s á r a pre váš modu l - Vytvorte si adresár pre váš
modul v priečinku modules v adresári, kde sa nachádza konfiguračný súbor
Apache2 servera. Napríklad: /usr/src/apache2/modules/moj modul/.

3. Vytvorenie zd ro jových s ú b o r o v - Vytvorte súbory so zdrojovým kódom pre
váš modul. Typicky sa používa jazyk C. Napríklad moj modul.c pre zdro­
jový kód a mojmodul .h pre hlavičkový súbor. Implementujte požadovanú
funkcionalitu vášho modulu v zdrojovom kóde.

4. P r í p r a v a Makeŕ i le - Vytvorte súbor Makefile v priečinku vášho modulu na
kompiláciu modulu.

5. K o m p i l á c i a a inš ta lác ia modu lu - V termináli prejdite do priečinka vášho
modulu a spustite príkaz make, ktorý skompiluje váš modul. Ak kompilácia
prebehne úspešne, spustíte príkaz make install, ktorý nainštaluje váš modul do
adresára Apache2 modulov. Ak všetko prebehne správne, môžete pokračovať
krokom nasledujúcim.

6. Konf igurác ia Apache2 - Otvorte konfiguračný súbor Apache2, ktorý sa
zvyčajne nachádza na ceste /etc/apache2/apache2.conf. V konfiguračnom sú­
bore pridajte riadok LoadModule moj modul modules/moj modul.so, ktorý
načíta váš modul do Apache2. Uložte a zatvorte konfiguračný súbor.

7. R e š t a r t u j t e Apache2 server - V termináli spustite príkaz sudo service
apache2 restart, aby sa zmeny aplikovali a váš vlastný modul bol načítaný.

Po týchto krokoch by váš vlastný modul mal byť úspešne vytvorený a načítaný
v Apache2 serveri. Odporúča sa dôkladne testovať a overiť správne fungovanie
modulu.

Implementácia nášho modulu

Môj modul je možné stiahnuť z adresára na GitHub.com. Po stiahnutí je potrebné
vstúpiť do stiahnutej zložky pomocou príkazu "cd"

sudo cd < c e s t a _ k _ s t i a h n u t é m u _ s ú b o r u >

Je dôležité, že "<cesta k stiahnutému súboru>", by mala byť nahradená prísluš­
nou hodnotou. Pre inštaláciu a kompiláciu zdrojového kódu modulu je potrebné
použiť adminské práva pomocou príkazu sudo a pomocou nej vykonať nasledujúci
príkaz:

sudo apxs - i -a -c mod_apache_module.c

Po úspešnej kompilácii by mal terminál zobraziť príslušnú správu, ktorá indikuje,
že proces bol dokončený, sme žiadaný o reštartovanie serveru Apache, čo môžeme
dosiahnuť nasledujúcim príkazom:

systemctl restart apache2

http://GitHub.com

Simulácia útokov

Po úspešnej kompilácii modulu sme simulovali rôzne útoky. Pre toto testovanie sme
použili dva virtuálně počítače:

• Ubuntu s verziou 22.04.2 LTS - Server
• Kal i s verziou 2023.1 - Útočník
Pre vykonanie útokov som použil súbor nástrojov hping, test.pl (testovací kód

ktorý patrí k modulu mod_evasive) a verejný projekt slowloris ktorý sa dá stiahnuť
z GitHub-u.

Najprv som vykonal záplavové útoky pomocou hping a test.pl, ak nebol žiadny z
dvoch modulov (mod evasive a mod apache2) tak útok úspešne prebehol a došlo k
nedostupnosti serveru. Vyskúšal som oba moduly individuálne a dostal som identické
výsledky, že útok bol zastavený a pre legitímneho používateľa bol server dostupný,
týmto sme overili že modul je schopný mitigovať záplavové útoky. Ďalší na rade bol
slowloris. Ak boli moduly mod_apache2 a mod antiloris vypnuté, útoky prebehli
úspešne a server bol nedostupný. Ak sme aktivovali jednotlivé moduly zvlášť, mohol
som vidieť Že útoky boli úspešne zastavené, to znamená že modul je použiteľný aj
na mitigovanie logických útokov.

Záver

Po vykonaní testov a porovnaní modulov, je možné vyhlásiť že naše zadanie bolo
úspešne splnené. Môj vlastný modul je možné použiť na mitigovanie rôznych DoS
útokov. Jednotlivé grafy nasnímané počas simulovania útokov je možné pohliad-
nuť v prílohe. Na grafoch je možné vidieť že počas záplavových útokov aj keď sa
jedná o záplavový útok s väčšou kapacitou pri dosiahnutí limitu počet žiadostí za
sekundu náhle klesne, je to z dôvodu že bola adresa útočníka blacklistovaná. Pri
slowloris útoku je možné na grafu vidieť že náš modul automaticky zamieta žia­
dosti od útočníka, totiž bol dosiahnutý maximálny počet spojení z jednej adresy. V
tomto prípade som simuloval útok s 400 socketmi a náš modul zamietal 360 z nich.
V modulu bolo nastavené aby každý používateľ mohol mať maximálne 20 pripojení
na čítanie dat resp. G E T request, a 20 pripojení na písanie resp. POST request.

http://test.pl
http://test.pl

Author's Declaration

Author: Róbert Ruman

Author's ID: 231273

Paper type: Bachelor's Thesis

Academic year: 2022/23

Topic: Apache module for the DoS attack miti­

gation

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank the advisor of my thesis, Ing. Michael Jurek for his valuable

comments, support, guidance and expertise throughout the entire process of creating

this project.

Contents

Introduct ion 13

1 Theory of D o S attacks and Apache2 modules 14
1.1 What is a DoS (Denial of Service) attack 14

1.1.1 Types of DoS attacks 14
1.2 Volumetric Attacks 15

1.2.1 U D P Flood 15
1.3 H T T P flood attack 17

1.3.1 How it works 17
1.3.2 How can it be detected 18

1.4 Protocol Attacks 18
1.4.1 ICMP (Ping) Flood 18
1.4.2 S Y N Flood Attack 20

1.5 Application Layer Attacks 23
1.5.1 Slowloris 23
1.5.2 R U D Y 25

1.6 Application of Apache2 modules 26
1.6.1 mod evasive 26
1.6.2 mod antiloris 26

1.7 Introduction to creating a custom module for Apache2 27
1.7.1 Parts of a module 27
1.7.2 Planning and Design 28

1.8 Module Development 29
1.8.1 Creating the Module Structure 29
1.8.2 Configuring the Module 29
1.8.3 Implementing Module Functionality 30
1.8.4 Error Handling and Logging 30

1.9 Module Integration 30
1.9.1 Compilation 30
1.9.2 Installation 30
1.9.3 Loading the Module 31
1.9.4 Configuring Apache for the Custom Module 31

1.10 Creation of my module 32
1.10.1 Principle of the program 32

1.11 Parameters of the module 32
1.12 Download and setup of my module 35

2 Thesis Results 37
2.1 Research 37
2.2 Basic usage of Apache2 37

2.2.1 Installing modules on Apaclie2 38
2.3 Implementation 38

2.3.1 Mitigation of DoS attacks using mod_evasive 38
2.3.2 Mitigation of Slowloris using mod_antiloris 40

2.4 Tests and Evaluation 40
2.4.1 Testing a U D P flood attack 41

2.5 Tests and Evaluation of my custom module 42
2.5.1 Datadog 42
2.5.2 Simulating a Slowloris attack 43

2.5.3 Simulating a Flood attack 44

Conclus ion 45

Bib l iography 46

Symbols and abbreviations 50

Lis t of appendices 51

A Graphs of Apache metrics dur ing attacks 52

B Content of the electronic attachment 57

List of Figures
1.1 A n attacker committing a U D P flood attack on a server through a

bot device [3] 16
1.2 Principle of a H T T P flood attack[6] 17
1.3 Principle of an ICMP flood attack[8] 18
1.4 Principle of a S Y N flood attack. [10] 20
1.5 Settings for the module mod reqtimeout 22
1.6 Difference between a legitimate connection and a Slowloris Attack. [12] 23
1.7 Expected displayed message after a successful compilation 35
2.1 Basic commands for the Apache2 server 37
2.2 Commands to interract with modules in Apache 37
2.3 Creating the log directory for mod evasive 39
2.4 Source code of test.pl 40
2.5 Steps to download and install mod antiloris 40
2.6 Error message received by the attacker 42
A . l Apache C P U usage during a flood attack with my module turned off. 52
A.2 Bytes served by the server during a flood attack with my module

turned off 52
A.3 Bytes served by the server during a flood attack with my module

turned on 53
A.4 Connections closed during a slowloris attack with my module turned

on 53
A.5 Connections during a slowloris attack with my module turned on. . . 53
A.6 C P U usage of server during an attack with my module turned on. . . 54
A.7 Amount of hits on the server with my module turned off 54
A.8 Rate of bytes on the server during a flood attack with my module

turned on 55
A.9 Rate of bytes served by the server with my module turned off 55
A.10 Rate of requests during a flood attack with my module turned off. . . 55
A. 11 Rate of requests during a flood attack with my module turned on. . . 56

http://test.pl

List of Tables
2.1 Comparison of the mitigation capabilities of the modules

Introduction
This thesis is devoted to the M i t i g a t i o n of DoS (Denial of Service) attacks
on the Apache2 servers.

These attacks are becoming more common and they have the potential to cause
billions of dollars worth of damage. It is impossible to completely protect web servers
from DoS attacks as there is not much control the admin has over the traffic coming
to your site.

Experiencing DoS attacks may appear inevitable when operating online, espe­
cially if your site is successful, increasing the likelihood of becoming a target at some
point. However, there are measures you can take to decrease the probability of a
DoS attack affecting your website.

There are various motives behind an attacker's desire to render your website
inoperable through a DoS attack. These motives include attacks from competitors
and attacks based on the content of your website. In an ideal scenario, competitors
would strive to outperform you online through legitimate means. However, in certain
cases, competitors may resort to more extreme measures. They might hire someone
to launch a DoS attack on your site, knowing that it will not only impact your
website but also harm your business. Proving the identity of the perpetrator behind
any DoS attack is undoubtedly a challenging task.

The aim of the thesis was to get a better understanding of how Apache and
its modules work and to create a custom Apache module that is able to mitigate
multiple types of DoS attacks such as flood attacks and logical attacks. Later both
the already available modules and my custom module were applied to the server
and different types of attacks were simulated in aim of comparing each module and
their capabilities.

13

1 Theory of DoS attacks and Apache2 mod­
ules

1.1 What is a DoS (Denial of Service) attack

A Denial-of-Service (DoS) attack is a cyber-attack on a system or device with a goal
to make its service unavailable to legitimate users. The attacker achieves it by a
overwhelming the target with traffic or by sending information causing it to crash.
The outcome of this attack causes the target to be unavailable to legitimate users.

DoS attacks can be classified into two general groups: flood attacks and logical
attacks. A flood attack occurs when a system capacity and ability to process requests
caused by an excessive amount of data received. As a result, the server slows down
and eventually becomes unresponsive.

Alternatively, certain DoS attacks make use of weaknesses or flaws in the targeted
system or service, intentionally leading to its failure. These attacks occur by sending
input that capitalizes on vulnerabilities or errors in the target, leading to crashes or
significant disruptions that render the system unattainable or inoperable. [1]

1.1.1 Types of DoS attacks

The categorization of Denial of Service (DoS) attacks encompasses multiple princi­
ples, and broadly speaking, they are commonly classified in the following manner:

1. Volumet r ic Attacks: Volumetric attacks, also known as flood attacks, target
the network bandwidth and infrastructure resources of the victim system or
network. These attacks flood the target with an overwhelming amount of traf­
fic. By consuming the available bandwidth and network resources, legitimate
users are unable to access the system or network.

2. P ro toco l Attacks: Protocol attacks exploit vulnerabilities or weaknesses in
network protocols to disrupt the targeted system or network. These attacks
typically exploit flaws in the implementation of network protocols, making the
victim's system or network unable to handle incoming requests properly.
A n example of protocol-based DoS attacks is S Y N Flood attack, where the
attacker floods the target with a large number of S Y N packets, exhausting
the target's resources and preventing it from completing the T C P handshake
process.

14

3. App l i ca t i on Layer At tacks: Application layer attacks, also known as layer
7 attacks, target vulnerabilities in the application layer of the target system or
network. These attacks exploit weaknesses in the way applications or services
handle and process incoming requests, aiming to exhaust the application's
resources and cause a denial of service.
Slowloris and R U D Y (R-U-Dead-Yet) are examples of application layer at­
tacks. Slowloris maintains multiple connections to a target web server and
sends partial H T T P requests, keeping the connections open and consum­
ing server resources, ultimately rendering the server unavailable to legitimate
users. R U D Y , on the other hand, sends specially crafted H T T P POST requests
with large payloads that are designed to tie up server resources, causing delays
and potentially leading to a denial of service. [2]

1.2 Volumetric Attacks

1.2.1 UDP Flood

A U D P flood is a type of DoS attack in which the attacker sends spoofed User
Datagram Protocol (UDP) packets at a very high packet rate to a host with the aim
of overpowering the systems resource causing it to be unavailable to users.

How it works

A U D P flood works exploits the steps that a server takes when it responds to a U D P
packet sent to one of its ports. Under normal conditions, when a server receives a
U D P packet at a particular port, it goes through two steps in response:

1. The server verifies whether any active programs are currently listening for
requests on the designated port.

2. If no programs are detected to be actively receiving packets on that partic­
ular port, the server promptly sends an ICMP (ping) packet as a response,
indicating to the sender that the destination is unreachable.

When a server receives a new UDP packet, it goes through a series of operations
to handle the request, which in turn consumes server resources. Each U D P packet
transmitted includes the IP address of the device that sent it. In the context of
a DDoS attack, the attacker typically alters or falsifies the source IP address of
the U D P packets, employing this deceptive tactic to avoid disclosing their actual
location. By doing so, they mitigate the risk of their location being overwhelmed
by the response packets generated by the targeted server.

Consequently, due to the server's utilization of resources to inspect and respond
to each received U D P packet, its resources can quickly deplete when faced with a

15

Attacker

Bot
Target Server

Fig. 1.1: A n attacker committing a U D P flood attack on a server through a bot
device [3].

large influx of U D P packets. This depletion ultimately results in a denial-of-service
situation, impeding the regular flow of traffic. [4]

Mitigation of UDP Flood

Most operating systems limit the response rate of ICMP packets in part to disrupt
DDoS attacks that require ICMP response. One drawback of this type of mitigation
is that during an attack legitimate packets may also be filtered in the process. If
the U D P flood has a volume high enough to saturate the state table of the targeted
server's firewall, any mitigation that occurs at the server level will be insufficient as
the bottleneck will occur upstream from the targeted device.

Using the command Iftop on linux it is possible to continuously monitor the
bandwidth usage of the server.

16

1.3 H T T P flood attack

H T T P flood attack is an attack, which floods a server with process-intensive requests
until it no longer has the capacity to respond to legitimate user requests. Opposed
to S Y N or A C K flood attacks which are carried out on the network and application
layer (Layers 3 and 4) H T T P flood attacks target the application layer (Layer 7)
in order to penetrate the weakest component of an infrastructure and thus cause
overload. Unlike other attacks, H T T P floods are based on technically correctly
formulated (valid) requests to the web server being attacked. [5]

Bot

Fig. 1.2: Principle of a H T T P flood attack[6].

1.3.1 How it works

In an H T T P flood attack attackers flood a web server with H T T P requests that
specifically request pages with large loading volumes. This causes the server to
overload to the point it is no longer able to process legitimate requests. As a result,
the website or web application is no longer accessible for users. Attackers often
employ botnets for such attacks to maximize the efficiency and impact of their
attack. Botnets usually consist of thousands of commandeered and then remotely
controlled computers and networked systems from the IoT (Internet of Things).

17

1.3.2 How can it be detected

To reliably distinguish attack traffic from legitimate user requests, it is essential to
understand the content of the requests and put them in context. It can be done by
analyzing all incoming requests before they reach the web server. This enables them
to automatically detect abnormal traffic patterns and ward off H T T P flood attacks
at an early stage. Once the attack traffic is identified, the requests associated with
it can be rigorously blocked or discarded. It can be achieved by multiple Apache2
modules.

1.4 Protocol Attacks

1.4.1 ICMP (Ping) Flood

A n ICMP flood also known as Ping flood is a denial-of-service attack in which the
attacker floods a targeted device with ICMP packets, causing the target to become
inaccessible to normal traffic. [7]

Attacker

Bot

ICMP E C H O R E Q U E S T

ICMP E C H O R E P L Y

ICMP E C H O R E Q U E S T

I C M P E C H O R E P L Y

ICMP E C H O R E Q U E S T

I C M P E C H O R E P L Y

Target Server

Fig. 1.3: Principle of an ICMP flood attack[8].

18

How it works

The Internet Control Message Protocol (ICMP), which is utilized in a Ping Flood
attack, is an internet layer protocol used by network devices to communicate. The
network diagnostic tools traceroute and ping both operate using ICMP. Commonly,
ICMP echo-request and echo-reply messages are used to ping a network device for the
purpose of diagnosing the health and connectivity of the device and the connection
between the sender and the device.

When an ICMP request is made, server resources are required to process each
request and send a response. Bandwidth is also needed for both the incoming
message (echo-request) and outgoing response (echo-reply). The Ping Flood attack
seeks to overwhelm the targeted device's capacity to handle the high volume of
requests and potentially overload the network connection with fraudulent traffic. By
utilizing numerous devices in a botnet to direct ICMP requests at the same internet
property or infrastructure component, the attack traffic is significantly increased,
potentially leading to disruption of normal network operations. In the past, attackers
would often falsify the IP address to conceal the source device. However, in modern
botnet attacks, malicious actors no longer find it necessary to mask the bot's IP
(Internet Protocol) and instead rely on a large network of unspoofed bots to saturate
the target's capacity.

The extent of damage caused by a Ping Flood attack is directly proportional to
the number of requests directed at the targeted server. Unlike reflection-based DDoS
attacks such as N T P (Network Time Protocol) amplification and DNS amplification,
Ping Flood attack traffic is symmetrical. The bandwidth received by the targeted
device simply reflects the cumulative traffic sent from each bot.

Mitigation of ICMP Flood attack

• Ping flood attack utilizes Internet Control Message Protocol (ICMP), an in­
ternet layer protocol used by network devices to communicate. Disabling a
ping flood becomes easiest by disabling the ICMP functionality of the victim
device. However, doing this will disable all activities that use I C M P like ping
requests, traceroute requests, and other network activities.

• Blocking ping floods from outside your network can be achieved by reconfig­
uring firewall to disallow pings. However, internal attacks from within your
network cannot be mitigated by firewall configurations.

• A robust mitigation strategy against ICMP floods will put a cap on the number
of requests and the rate at which they are received.

19

1.4.2 SYN Flood Attack

A S Y N Flood, also known as a half-open attack, is a form of Denial of Service (DoS)
attack that seeks to render the server inaccessible to legitimate users by depleting all
available server resources. The attacker achieves this by continuously sending SYN
(connection request) packets, overwhelming the server's available ports. As a result,
the server's responsiveness to legitimate users is greatly diminished or completely
disrupted. [9]

Attacker

Bot
Target Server

Fig. 1.4: Principle of a S Y N flood attack. [10]

How it works

The attacker floods the server with a large number of S Y N packets, utilizing a
falsified IP address. Upon receiving each request, the server responds and keeps a
port open, expecting a final A C K (Acknowledgment) packet that never materializes.
Meanwhile, the attacker persists in sending additional S Y N packets. With each new
S Y N packet, the server temporarily establishes a new open port connection for a
specific duration. As this process continues and all available ports become occu­
pied, the server's normal functionality is impaired, rendering it unable to operate
effectively.

20

Three different ways a SYN flood can occur

• Direc t A t t ack - A S Y N Flood attack where the IP address is not spoofed
is known as a direct attack. In this case, the attacker does not mask their IP
address. The attacker is using a single source device with a real IP address to
create the attack. This results in the attacker highly vulnerable to discovery
and mitigation. To do this attack, the attacker prevents their device from
responding to the server's S Y N - A C K packets. This is can be achieved by
firewall rules. In practice this method is used rarely, as mitigation is fairly
straightforward (blocking the IP address of each malicious system).

• Spoofed At t ack - A user can spoof the IP address on each S Y N packet they
send in order to inhibit mitigation efforts and makes them less discoverable.
These packets are spoofed, however they can potentially be traced back to
their source.

• Dis t r ibu ted At t ack (DDoS) - In this case the attacker is using some kind
of botnet, which makes the likelihood of tracking the attack back to its source
is low. For an added level of obfuscation the attacker may have each device
also spoof the IP address from which it sends packets.

By using S Y N flood attack, the attacker can attempt a DoS attack in a target
device or service with a substantially less traffic than other DoS attacks. Instead of
volumetric attacks, S Y N attacks only need to be larger than the available backlog
in the target's operating system. If the attacker is able to determine the size of
the backlog and how long each connection will be left open before timing out, the
attacker can target the exact parameters needed to disable the system. This way
he can reduce the traffic to the minimum necessary amount to deny the servers
functioning or its service.

Mitigation of SYN Flood attack

The limit on the number of simultaneous requests that will be served by Apache
is decided by the MaxRequestWorkers (called MaxClients before version 2.3.13)
directive, and is set to 256, by default. Any connection attempts over this limit will
normally be queued, up to a number based on the ListenBacklog directive, which
is 511, by default. However, it is best to increase this, to prevent T C P S Y N flood
attacks.

In this example the system is configured to wait up to 20 seconds for header
data. If the client sends data, the server increases the timeout by 1 second for every
500 bytes received, but does not allow more than 40 seconds for the request header.
The server is also set to wait up to wait 10 seconds to receive the request body. If

21

ro o t @ kaLi: /et c/apac h e2/m o d 5 - en ab I ed

File Actions Edit View Help
<:IfModule reqtimeoLit_module>

8 mod_reqtimeout l i m i t s the time waiting on the c l i e n t to prevent an
attacker from causing a denial of service by opening many connections
fl but not sending requests. This f i l e t r i e s to give a sensible default
U configuration, but i t may be necessary to tune the timeout values to
it the actual s i t u a t i o n . Note that i t i s also possible to configure
mod_reqtimeout per v i r t u a l host.

S Wait max 20 seconds for the f i r s t byte of the request line+headers
S From then, require a minimum data rate of 538 bytes/s, but don't
S wait longer than 48 seconds in t o t a l .
Note: Lower timeouts may make sense on non-ssl v i r t u a l hosts but can

|# cause problem with s s l enabled v i r t u a l hosts: This timeout includes
$ the time a browser may need to fetch the CRL for the c e r t i f i c a t e . If
8 the CRL server i s not reachable, i t may take more than 10 seconds
u n t i l the browser gives up.
RequestReadTimeout header=2B-40,minrate=500

Wait max 10 seconds for the f i r s t byte of the request body (i f any)
8 From then, require a minimum data rate of 588 bytes/s
RequestReadTimeout body=10,minrate=500

</lfModule>

" vim: syntax=apache ts=4 sw=4 sts=4 sr noet

15,1-8 A l l

©

Fig. 1.5: Settings for the module mod reqtimeout

the client sends data, the system increases the timeout by 1 second for every 500
bytes received, with no upper limit for the timeout.

Apart from the above, an alternative solution exists, which is mod_devasive.
This module will allow you to specify a maximum number of requests executed by
the same IP address. If the threshold is reached, the IP address is blacklisted for
the time period you specify. The only problem with this module is that users, in
general, do not have unique IP addresses. Many users browse through proxies, or are
hidden behind a NAT (network address translation) system. Blacklisting a proxy
will cause all users behind it to be blacklisted.

22

1.5 Application Layer Attacks

1.5.1 Slowloris

Slowloris is a DOS attack program which allows an attacker to overwhelm a targeted
server by opening and maintaining many simultaneous H T T P keep-alive connections
between the attacker and the target.[11]

Normal HTTP Request - Response Connect ion

Slowloris DoS Attack

Complete HTTP Incomplete
Request - Response Cycle HTTP Requests

Fig. 1.6: Difference between a legitimate connection and a Slowloris Attack. [12]

H o w it works

Slowloris is an application layer attack that operates by leveraging fragmented
H T T P requests. The attack strategy involves establishing connections with a tar­
geted server and prolonging them for as long as possible. Slowloris is a specific
attack tool devised to bring down a server using minimal bandwidth from a single
device. This attack consumes server resources by generating requests that appear

23

slower than usual but mimic regular traffic. The server possesses a limited num­
ber of threads to handle existing connections. Each server thread strives to remain
active while awaiting the completion of the slow request, which never transpires.
Once the server's maximum allowable connections have been surpassed, any addi­
tional connection attempts go unanswered, thereby preventing legitimate users from
establishing a connection with the server.

Four steps of a Slowloris attack

• The attacker opens multiple connections to the targeted server by sending
partial H T T P request headers.

• The server opens a thread for each incoming request, with the intent of closing
the thread once the connection is completed. If a connection takes too long,
the server will timeout the exceedingly long connections in order to free the
thread up for new requests.

• To prevent the target from timing out the connections, the attacker periodi­
cally sends requests to the server in order to keep the connection alive.

• The targeted server is never able to release and of the open connections while
waiting for the termination of the request. Once all threads are in use, the
server is unable to respond to new additional requests made from legitimate
users, resulting in a Denial Of Service

Mitigation of Slowloris

• Increase server availabil i ty - By increasing the maximum number of clients
the server will allow, the attacker is forced to increase the number of connec­
tions used to overload the server.

• Ra te l imi t incoming requests - Restricting access based on certain usage
factors will help mitigate a Slowloris attack. Techniques such as limiting the
maximum number of connections a single IP address is allowed to make, re­
stricting low transfer speeds, limiting the maximum time a client is allowed
to stay connected, are all possible solutions to limit the effectiveness of this
attack.

• Cloud-based protection - Use a service that can function as a reverse proxy,
protecting the origin server

24

1.5.2 RUDY

R U D Y (R-U-Dead-Yet) is a type of application layer Denial-of-Service (DoS) attack
that specifically targets web servers and exploits vulnerabilities in the way they han­
dle H T T P (Hypertext Transfer Protocol) requests. This attack aims to exhaust the
server's resources, rendering it unresponsive to legitimate users. The R U D Y attack
method capitalizes on the server's behavior of allocating resources, such as mem­
ory and processing power, for each incoming request. By keeping these connections
open for an extended period, the attack exhausts the server's resources, preventing
it from accepting new connections or serving legitimate requests. The slow and
persistent nature of R U D Y makes it particularly effective against servers that are
not adequately equipped to handle long-duration requests or lack proper mitiga­
tion mechanisms.During a R U D Y attack, the attacker sends partial H T T P POST
requests, incrementally sending small chunks of data, which keeps the connection
open without completing the request. Additionally, the attacker periodically sends
headers with the "Content-Length" field set to a large value, further exacerbating
the resource exhaustion by tricking the server into allocating additional resources to
handle the incoming request. [13]

Mitigation of RUDY

Mitigating R U D Y attacks requires a multi-layered defense strategy. Web adminis­
trators can employ various techniques such as rate limiting, connection timeouts,
and request validation to identify and block suspicious or slow connections. In­
trusion detection and prevention systems can also be utilized to detect and block
abnormal H T T P traffic patterns associated with R U D Y attacks.

How it works

The R U D Y attack method revolves around creating a deliberate but gradual H T T P
POST connection with the targeted server. In contrast to conventional flood-based
attacks that prioritize a large number of requests, R U D Y takes advantage of the
server's resource allocation mechanisms by transmitting H T T P POST requests that
appear legitimate but proceed at an exceptionally slow pace. The attacker deliber­
ately sends these requests at a sluggish rate, aiming to prolong the duration of the
connection and occupy server resources.

25

1.6 Application of Apache2 modules

Modules are plugins that add a specific functionality to the web server. These
modules can be turned on/off by the administrators. Debian stores these plugins in
special directories in /etc/apache2, there two directories can be found
mods-available which consists of all the modules with a known configuration, and
mods-enabled which contains links to certain modules found in the mods-available
(these modules are in use).

1.6.1 mod_evasive

This module is used to stop the attackers from bringing down the server with a SYN
Flood attack. It creates a hash table in which the hashes of connected devices are
stored. The module keeps count of each repeated connection from a same address,
if the number of connections exceeds a certain amount in a short amount of time
the address gets timed out for a limited time (these parameters are set by the
server administrator). These parameters can be changed /e tc /apache2/mods-
enabled / evasive, conf.

1.6.2 mod_antiloris

This module is a convenient way to limit the number of simultaneous connections
per IP address that are in the "reading request" state on Apache 2.x systems. It is
best to use in pair with mod reqtimeout.

26

1.7 Introduction to creating a custom module for

Apache2

1.7.1 Parts of a module

Apache modules usually consist of the following parts:
• M o d u l e structure - The module structure defines the organization of code

and resources within the module. It typically includes source code files, head­
ers, configuration files, and makefiles. The structure ensures proper encapsu­
lation and separation of concerns, making it easier to maintain and extend the
module.

• M o d u l e hooks - Apache modules interact with the server through hooks.
Hooks are specific points in the request/response processing lifecycle where
modules can intervene and modify the server's behavior. Examples of hooks in­
clude request parsing, authentication, response generation, and logging. Mod­
ules register their interest in specific hooks, and Apache calls the module's
associated functions at those points during request processing.

• M o d u l e in i t ia l iza t ion - When Apache starts, it initializes each module by
calling its initialization function. This function allows the module to perform
any necessary setup tasks, such as allocating memory, registering hooks, and
initializing data structures. The initialization function ensures that the module
is ready to handle requests effectively.

• M o d u l e configuration - Modules can define their configuration directives,
allowing administrators to customize the module's behavior through Apache's
configuration files. Configuration directives specify parameters and settings for
the module. When Apache starts, it processes the configuration files, parses
the directives, and assigns the values to the corresponding module configura­
tion data structures.

• M o d u l e functions - Modules implement various functions to handle spe­
cific tasks and provide the desired functionality. These functions can include
request/response processing, data manipulation, filtering, logging, and more.
Modules can also define callback functions to be executed at specific events,
such as connection establishment or request completion. By implementing
these functions, modules extend the server's capabilities and modify its be­
havior as required. [14]

27

1.7.2 Planning and Design

Before diving into the development process, it's crucial to plan and design your
custom module. This stage sets the foundation for a successful implementation.
Here are the key aspects to consider:

• Defining Objectives - Clearly articulate the objectives and goals of your cus­
tom module. Determine the specific functionality you intend to add or modify
within Apache. Consider whether the objective is to enhance performance,
introduce new features, or integrate with external systems. Establishing clear
objectives will provide a solid foundation for the development process.

• Unders tanding Apache Archi tec ture - Thoroughly acquaint yourself with
the underlying architecture of Apache to gain a comprehensive understanding
of how your custom module fits into the server's ecosystem. Study the re­
quest/response lifecycle, including stages such as request parsing, URI map­
ping, content generation, and response delivery. Identify the precise stages
where your module will intervene and modify the server's behavior.

• Apache M o d u l e A P I Overview - Familiarize yourself with the Apache
Module API , which offers a set of functions, data structures, and hooks for
interacting with the server. Diligently study the A P I documentation to com­
prehend the available functions and hooks that can be utilized within your
custom module. Identify the appropriate hooks for achieving your module's
objectives and establish their placement within the request/response lifecycle.

• M o d u l e Development Environment Setup - Establish an appropriate
development environment for building your custom module. Ensure that you
have a compatible version of Apache installed on your system. Install the
necessary development libraries, headers, and tools required for module com­
pilation. Gain familiarity with Apache's directory structure and configuration
files to ensure a smooth development workflow.

• Crea t ing the M o d u l e Structure - Define the structure of your custom
module, adhering to industry best practices. Typically, a module comprises
source code files, headers, and makefiles for compilation purposes. Organize
these files within a dedicated directory for your module. Employ a modular
and well-organized approach, separating distinct functionalities into separate
files for clarity and maintainability.

• Configuring the M o d u l e - Determine the configuration options for your
module, taking into account the needs of your intended users. Establish the
mechanism for exposing these options within Apache's configuration system.
This may involve defining custom directives that users can include in their
configuration files. Pay careful attention to the syntax, validation rules, and

28

default values of these directives.
• Implementing M o d u l e Funct ional i ty - Implement the desired functional­

ity within your custom module, aligning with the defined objectives. Utilize
the Apache Module A P I to interact with the server and modify the request/re­
sponse flow as required. Develop the necessary code to handle the identified
hooks, ensuring that it adheres to coding standards, is thoroughly documented,
and follows established best practices.

• E r r o r Hand l ing and Logging - Employ robust error handling and logging
mechanisms within your custom module. Gracefully handle error conditions,
providing clear and informative error messages to users. Leverage Apache's
logging facilities to record pertinent information, aiding in debugging efforts
during both development and deployment stages. Effective error handling and
logging contribute to the stability and maintainability of your custom module.

By meticulously planning and designing your custom module, you establish a
strong foundation for its successful implementation. Comprehending Apache's ar­
chitecture, the Module API , and the development environment is of paramount
importance. In the subsequent section, I will delve into the actual development
process, guiding you in coding your custom module for Apache2.

For deeper understanding of how to create a custom module it is recommended
to visit the official documentation of Apache.

1.8 Module Development

1.8.1 Creating the Module Structure

A well-organized module structure is crucial for maintaining code clarity and mod­
ularity. Create a dedicated directory for your custom module and define the appro­
priate file structure within it. This typically includes source code files, header files,
and any additional resources required by your module.

1.8.2 Configuring the Module

To provide flexibility and customization, your custom module may require config­
uration options. Define the configuration directives that your module will support
and specify their behavior. This allows administrators to modify the module's be­
havior through Apache's configuration files. Ensure proper validation and handling
of the configuration values in your module code.

29

1.8.3 Implementing Module Functionality

Identify the specific functionality you want to add or modify within Apache. De­
termine the appropriate hooks provided by the Apache module A P I to intervene
and modify the server's behavior at specific points in the request/response lifecycle.
Write the necessary code within your module to implement the desired functional­
ity. Utilize the available A P I functions and data structures provided by Apache to
interact with the server effectively.

1.8.4 Error Handling and Logging

Robust error handling and logging are essential aspects of module development.
Implement proper error checking and reporting mechanisms in your module code to
handle exceptional scenarios gracefully. Use Apache's logging facilities to provide
informative and actionable logs to aid in troubleshooting and debugging.

Remember to follow coding best practices, including proper documentation,
modular design, and adherence to coding standards.

1.9 Module Integration

1.9.1 Compilation

• Ensure that the Apache development libraries and tools are installed in your
development environment.

• Use the appropriate compiler commands to compile the module source code
into a shared object (.so) file. Make sure to link against the necessary Apache
libraries and include the required headers.

1.9.2 Installation

• Copy the compiled shared object (.so) file to the appropriate directory in your
Apache installation. The exact location may vary depending on your system
configuration, but it is typically the modules directory.

• Set the correct file permissions and ownership for the module file to ensure
that it is accessible by the Apache server process.

30

1.9.3 Loading the Module

After installing the module, you need to configure Apache to load and use the custom
module. Follow these steps:

1. Locate the Apache configuration file, commonly named httpd.conf or apache2.conf.
This file is usually found in the Apache installation directory or the /etc/a-
pache2 directory.

2. Open the configuration file in a text editor and search for the section where
Apache loads modules. This section is typically labeled LoadModule or Dy­
namic Shared Object (DSO) Support.

3. Add a new line to load the custom module. The line should follow the format:

LoadModule <module_name> <path_to_module_file>

Replace <module name> with the desired name for your module and
<path to module file> with the absolute path to the module shared object
(.so) file.

4. Save the configuration file and exit the text editor.

1.9.4 Configuring Apache for the Custom Module

To utilize the functionality provided by the custom module, you may need to con­
figure Apache to enable specific features or behavior. The configuration options
for your module should be clearly defined and documented. Follow these steps to
configure Apache:

1. Open the Apache configuration file (httpd.conf or apache2.conf) in a text
editor.

2. Locate the appropriate configuration section for your module. This section
may already exist or you may need to create it. Consult the Apache documen­
tation for guidance on the configuration options available for your module.

3. Set the desired configuration options based on your requirements. Ensure that
the configuration syntax adheres to Apache's guidelines and is error-free.

4. Save the configuration file and exit the text editor.

31

1.10 Creation of my module

1.10.1 Principle of the program

As inspiration for my module I used the already available modules, mod evasive
and mod antiloris. The module implemented in the system performs continuous
monitoring of the number of established connections originating from a specific IP
address within a specified time period. In this particular example, it tracks if there
are 200 connections made within a duration of 10 seconds.

When the number of connections exceeds the allowed threshold, the IP address
is added to an array of blocked addresses. Each time a connection attempt is made,
the module verifies whether the IP address is in the blocked list. If the address has
been on the block list for a duration longer than the time period defined by the
system administrator, the connection is allowed to proceed, and the IP address is
removed from the blacklist.

However, if the time spent on the block list is less than the predefined duration,
the server automatically returns an H T T P F O R B I D D E N response, indicating a
403 error code. This response signifies that the server denies access to the requested
resource due to the IP address being temporarily blacklisted.

Furthermore, the system continually monitors the number of connections made
for R E A D requests as well as W R I T E requests. The system imposes a limit of
10 connections for both types. This means that a single user is only permitted to
establish a maximum of 10 connections to the server, regardless of the request type.

In the event that a user attempts to establish a new connection of the same type
(READ or WRITE) after reaching the limit, the system rejects the new connection
request and returns an appropriate error code to the user. However, it is important
to note that the previously established connections of the same type will remain
functional and unaffected by the limit reached.

1.11 Parameters of the module

The module in question offers several configurable parameters that allow for cus­
tomization and fine-tuning of its behavior. These parameters are designed to control
various aspects of the module's functionality and adapt it to specific requirements.
Here is an elaboration of these parameters:

Parameters used for the mitigation of Volumetric Attacks

• M A X H I T S : This parameter specifies the maximum allowable number of
connections a client can make within a certain time interval. It sets an up-

32

per limit on the number of connections to prevent abuse or excessive usage.
The value of M A X H I T S defines the threshold that triggers the monitoring
mechanism.

• I N T E R V A L : INTERVAL refers to the time interval, measured in seconds,
during which the module monitors the number of connections made by clients.
It determines the frequency at which the module checks for the total number
of connections established by a client.

. B L O C K I N G _ P E R I O D : B L O C K I N G _ P E R I O D represents the duration,
measured in seconds, for which a user's IP address is blacklisted if they ex­
ceed the M A X H I T S threshold. During this period, any further connection
attempts from the blacklisted IP address are denied. After the B L O C K ­
ING PERIOD elapses, the IP address is automatically removed from the
blacklist.

Parameters used for the mitigation of Application Layer Attacks

. A N T I L O R I S _ C O U N T E R _ T Y P E _ C O U N T : This is a variable that stores
the total number of connection type variables used by the module. These
connection type variables allow tracking and monitoring of different types of
connections, such as R E A D and W R I T E .

. A N T I L O R I S _ R E A D _ C O U N T _ I N D E X : This variable serves as an in­
dex within an array that stores two variables. The first variable tracks the
number of connections a user has established for reading data. The second
variable, A N T I L O R I S _ W R I T E _ C O l T N T _ I N D E X , stores the number of con­
nections a user has established for writing data.

• M A X C O N N : M A X C O N N denotes the maximum number of simultane­
ous connections that a user can have. It restricts the total number of connec­
tions a user can establish at any given time. This parameter helps manage
server resources and prevents excessive resource utilization by limiting the
concurrent connections from a single user.

• M A X R E A D : M A X R E A D represents the maximum number of connec­
tions that a user is allowed to establish specifically for reading data. It sets a
threshold on the number of read connections to ensure fair usage and prevent
excessive resource consumption.

• M A X _ W R I T E : M A X W R I T E defines the maximum number of connec­
tions that a user can have specifically for writing data. It sets a limit on the
number of write connections to prevent abuse or disproportionate usage of
server resources.

33

These parameters provide administrators with flexibility and control over the
module's behavior, allowing them to define appropriate limits and thresholds based
on the specific requirements and capacity of their system. By adjusting these param­
eters, administrators can ensure efficient resource allocation and mitigate potential
abuses or disruptions caused by excessive connections from individual clients.

34

1.12 Download and setup of my module

To acquire the module, it can be downloaded from a designated location provided
via a specific link. Once downloaded, the user can navigate to the downloaded folder
through the terminal by utilizing the "cd" command, followed by the appropriate
path.

sudo cd <path_to_downloaded_file>

To proceed with the installation, compilation, and execution of the code, it is
advisable to employ administrative privileges by utilizing the "sudo" command. The
following command can be executed in the terminal to install, compile, and run the
code:

sudo apxs - i -a -c mod_apache_module.c

The aforementioned command initiates the installation process, integrating the
module into the Apache server by utilizing the Apache Extension Tool ("apxs"). The
parameters specified include " - i " to install the module, "-a" to add the module to
the server's configuration, and "-c" to compile the provided C file, which should be
denoted as "mod apache module.c".

Upon successful compilation, the terminal should display a corresponding mes­
sage, indicating that the process has been completed. The specific message can vary,
and its content would depend on the implementation and customization of the code,
but it is expected to adhere to a specific format, which is as follows:[1.7]

See any operating system documentation about shared l i b r a r i e s f o r
more information, such as the l d (l) and ld.so(8) manual pages.

chmod 644 /usr/lib/apache2/modules/mod_apache2_module.so
[preparing module apache2' i n /etc/apache2/mods-available/apache2.load]
Enabling module apache2.
To a c t i v a t e the new c o n f i g u r a t i o n , you need to run:

systemctl r e s t a r t apache2
xrunan02§xrunan02-virtual-machine: $ |

Fig. 1.7: Expected displayed message after a successful compilation.

Following the successful compilation and integration of the module, it is neces­
sary to restart the Apache server to ensure the changes take effect. The appropriate
command for restarting the Apache server may differ depending on the operating
system and server configuration. However, a common command used for this pur­
pose is:

systemctl restart apache2

35

By executing this command, the Apache server will be restarted, allowing the
newly installed module to be loaded and utilized effectively.

It is important to note that the instructions provided above assume a certain
level of familiarity with terminal commands, compilation processes, and server ad­
ministration. Users should exercise caution and ensure that they have the necessary
permissions and understanding of the steps involved before proceeding with the mod­
ule installation. Additionally, "<path to downloaded_file>", should be replaced
with the appropriate value.

36

2 Thesis Results

2.1 Research

Detailed research was needed to be able to solve this problem. The first step was
to thoroughly learn about the attacks, how they work, what are they used for and
how to mitigate them.Using the official documentation of Apache we took a look at
the list of already existing modules used for mitigation, after that we investigated
them in order of finding their weak points.

2.2 Basic usage of Apache2

When using linux, the following commands can be run in the terminal to interract
with the server:

- • X

1 sudo apt I n s t a l l apache2 [I n s t a l l a t i o n of apache2]

apache2 -v [Checking the apache2 version that i s i n s t a l l e d]

systemctl s t a r t apache2 [To Start the Apache2 service]

4 systemctl stop apache2 [To Stop the Apache2 service]

5 systemctl restart apache2 [To Retart the Apache2 service]

systemctl reload apache2 [To Reload the Apache2 service]

systemctl status apache2 [To Status the Apache2 service]

systemctl enable apache2 [To Enable the Apache2 service]

Fig. 2.1: Basic commands for the Apache2 server.

To interact with the modules you can use the commands:

1 apachectl -M [To see loaded modules]

2 a2enmod name_of_module [To enable a module]

Fig. 2.2: Commands to interract with modules in Apache.

37

2.2.1 Installing modules on Apache2

Before installing any modules on Apache2 it is best to update the package repository
with the following command:

$ sudo apt update
After finishing the first step, a helper utility needs to be installed with the

command:
$ sudo apt instal l apache2-utils
The next step is to install the selected module, but the command for this action

varies on the selected module.

2.3 Implementation

2.3.1 Mitigation of DoS attacks using mod_evasive

First mod evasive had to be installed using the command: $ sudo apt instal l
libapache2-mod-evasive

Like most Linux software packages, mod evasive is controlled by a configura­
tion file. This configuration file can be accessed with any in-terminal text edi­
tor, depending on the preferences of the user. After opening the configuration file
which is located at /etc/apache2/mods-enabled/ (with the command $ sudo v i
/etc/apache2/mods-enabled/evasive.conf for example) I are presented with a
list of variables which are:

• DOSHashTableS ize - Increase this for busier web servers. This configuration
allocates space for running the lookup operations. Increasing the size improves
the speed at the cost of memory.

• D O S P a g e C o u n t - The number of requests for an individual page that triggers
blacklisting. This is set to 2, which is low (and aggressive) - increase this value
to reduce false-positives.

• D O S S i t e C o u n t - The total number of requests for the same site by the same
IP address. By default, this is set to 50. You can increase to 100 to reduce
false-positives.

• DOSPage ln te rva l - Number of seconds for DOSPageCount. By default, this
is set to 1 second. That means that if you don't change it, requesting 2 pages
in 1 second will temporarily blacklist an IP address.

• DOSSi t e ln t e rva l - Similar to DOSPagelnterval, this option specifies the
number of seconds that DOSSiteCount monitors. By default, this is set to
1 second. That means that if a single IP address requests 50 resources on the
same website in a single second, it will be temporarily blacklisted.

38

• D O S B l o c k i n g P e r i o d - The amount of time an IP address stays on the black­
list. Set to 10 seconds by default, you can change this to any value you like.
Increase this value to keep blocked IP addresses in time-out for a more ex­
tended period.

• D O S E m a i l N o t i f y - A n email address where the user gets sent an email,
notifying him about blocking an IP address. However this is advised to not be
active, because there may be lots of robots trying to brute force authentication
and spamming can occur this way even though they are not committing a
targeted attack on the server.

• D O S S y s t e m C o m m a n d - First, you may have noticed that this option was
left disabled as a comment. This command allows you to specify a system
command to be run when an IP address is added to the blacklist. You can use
this to launch a command to add an IP address to a firewall or IP filter.

• D O S L o g D i r - By default, this is set to write logs to /var/log/mod_evasive.
These logs can be reviewed later to evaluate client behavior.

The log files need to be saved in a directory, which you can create by the following
commands:

1 sudo mkdlr /var/log/apache/mod_evasi.ve [To create a directory]

2 sudo chown -R apache:apache /var/log/apache/mod_evaslve [The owner must be changed to Apache]

3 sudo nano /etc/apache2/mods-enabled/evaslve.conf [It i s recommended to double-check whether the location

of the directory and the value set in the variable "DOSLogDir" correspond]

Fig. 2.3: Creating the log directory for mod evasive.

After configuring these settings, the server should be restarted in order to make
sure the module is running. As a next step it can be tested by running a pre-built
code which is located at /usr/share/doc/libapache2-mod-evasive/examples named
test.pl [2.4]. When opening the code with a text editor of our choice, a source code
is displayed.

Here the amount of requests sent by changing how many times does the for
cycle run can be changed, this value is set to 100 by default. It also possible change
the IP address of the server to be attacked, and the protocol used to carry out the
attack. [15]

39

http://test.pl

F1 root@kaLi:/u5r/5hare/doc/libapache2-mod-evasive7exampLe5

File Actions Edit View Help

t./usr/bin/perl

ff test.pl: small script to test mod_dosevasive"s effectiveness

se 10:: Socket;
use s t r i c t ;

for(e..25B) {
rry($response);
rry<$SOCKET) - new 10:: Socket:: INETt =. p",

'eerAddr^ "127.6.6.1:60");
i f (! defined $SOCKET) { die $!; }
p r i n t $50CKET "GET /?$_ HTTP/1.fl\r\nH05t:127.8.8.l\r\n\r\|";
$response - <$SDCKET>;
p r i n t ^response;
tlose($50CKET);

"test.pl" 1SL, -.28B

Fig. 2.4: Source code of test.pl.

2.3.2 Mitigation of Slowloris using mod_antiloris

The easiest way to install m o d antiloris is to run the following commands:

1 g i t clone https://github.cotn/Delti_k/mod_antilori_s.git

2 cd mod_antiloris

5 apxs - t -a -n a n t i l o r i s mod_antiloris.so [Run t h i s command where mod_antiloris.so i s located]

Fig. 2.5: Steps to download and install mod antiloris.

After running these commands, the server should be safe from Slowloris attack and
other slow H T T P attacks.

2.4 Tests and Evaluation

After successfully downloading, configuring and importing the modules into Apache,
a test has been done for each attack individually. For the purpose of testing these
attacks, both the upload and download bandwidth of the virtual machine have been
capped at 2000 kb /s . The attack involved the utilization of a secondary PC,
disguised as a legitimate user. As the secondary P C a virtual machine was used For
the tests two virtual machines were used to simulate a legitimate attack:

1. Kal i version 2023.1 as the attacker
2. Ubuntu 22.04.2 LTS as the server

40

http://test.pl
http://test.pl
http://test.pl
https://github.cotn/Delti_k/mod_antilori_s.git

2.4.1 Testing a UDP flood attack

I tested U D P flood using the hping3 network tool. Running the command:

$hping3 --udp --flood 192.168.112.130

• —udp - is the mode of attack
• —flood - the tool sends packets as fast as possible to bring the server down,

and the command does not show replies
After running this command, the tool is not able to bring the server down and

the server is still accessible for legitimate users.

Testing an I CMP flood attack

The same method is used as in the U D P flood attack simulation with a small change:
$ hping3 —icmp —flood 192.168.112.130 Where I changed the
parameter —udp to — icmp in order to commit an ICMP attack.

However the outcome does not change. The tool keeps flooding the server but it
is not able to cause any harm.

Testing a SYN flood attack

The same method is used as in the previous two situations, but with a small change
again:

$ hping3 --syn --flood 192.168.112.130

Testing a Slowloris attack

I simulated a Slowloris attack using the slowloris toolkit on linux, which can be
installed using the commands:
sudo apt i n s t a l l python3-pip

sudo pip3 i n s t a l l slowloris

This command generates 1000 connections on the server with a 1 second delay
between each connection:

slowloris -v -s 1000 192.168.112.130 --sleeptime 1

This tool starts occupying each socket, but after reaching a certain amount of
keep-alive connections, the server disables this option and the attack is not successful
because there are sockets still available for legitimate users. Then the attacker gets
an error message [2.6]. Connection reset by peer meaning the server has sent the

41

attacker an RST packet indicating an immediate dropping of the connection. The
attack has failed to bring the server down.

Q roo l@kal i : /home/kaL i

FiLe Actions Edit View Help

[11-12-2022 08:47:41] Creating socket nr 195
[11-12-2022 08:47:41] Creating socket nr 196
[11-12-2022 08:47:41] Creating socket nr 197
[11-12-2022 08:47:41] Creating socket nr 198
[11-12-2022 08:47:41] Creating socket nr 199
[11-12-2022 08:47:41] Creating socket nr 200
[11-12-2022 08:47:41] Creating socket nr 201
[11-12-2022 08:47:41] Creating socket nr 202
[11-12-2022 08:47:41] Creating socket nr 203
[11-12-2022 08:47:41] Creating socket nr 204
[11-12-2022 08:47:41] Creating socket nr 205
[11-12-2022 08:47:41] Creating socket nr 206
[11-12-2022 08:47:41] Creating socket nr 207
[11-12-2022 08:47:41] Creating socket nr 208
[11-12-2022 08:47:41] [Errno 104] Connection reset by peer
[11-12-2022 08:47:41] Sending keep-alive headers...
[11-12-2022 08:47:41] Socket count: 208
[11-12-2022 08:47:41] Creating 991 new sockets...
[11-12-2022 08:47:41] Failed to create new socket: [Errno 104] Connection reset by peer
[11-12-2022 08:47:41] Sleeping for 1 seconds
[11-12-2022 08:47:42] Sending keep-alive headers...
[11-12-2022 08:47:42] Socket count: 403
[11-12-2022 08:47:42] Creating 991 new sockets...
[11-12-2022 08:47:42] Failed to create new socket: [Errno 104] Connection reset by peer
[11-12-2022 08:47:42] Sleeping for 1 seconds

Fig. 2.6: Error message received by the attacker.

2.5 Tests and Evaluation of my custom module

2.5.1 Datadog

For the purpose of monitoring and visualizing the metrics of the server I used the
tool Datadog. Datadog is a monitoring and analytics platform designed to provide
comprehensive visibility into the performance and health of various components
within an organization's infrastructure, applications, and services. It allows busi­
nesses to collect, analyze, and visualize data from a wide range of sources, including
servers, databases, cloud services, containers, and more. I chose this tool for multiple
reasons:

• Centra l ized Mon i to r ing : Datadog offers a centralized platform to monitor
the entire IT stack, enabling businesses to gain real-time insights into the
health, performance, and availability of their systems. It provides a holistic
view of infrastructure, applications, and services, allowing teams to identify
and resolve issues efficiently

• Scalabil i ty and F lex ib i l i ty : With the increasing complexity and scale of
modern IT environments, Datadog is designed to handle large-scale deploy­
ments. It can monitor thousands of hosts and automatically adapt to dy­
namic cloud environments. This scalability and flexibility make it suitable for

42

organizations of all sizes, from startups to large enterprises.
• Collaboration and Integration: Datadog promotes collaboration among teams

by providing shared visibility into monitoring data. It supports integrations
with various tools and services commonly used in IT environments, such as
cloud providers, orchestration platforms, collaboration tools, and more, en­
abling seamless data exchange and workflow automation.

In order of better understanding of how Datadog works and for its installation and
setup I used their official blog guide. [16]

2.5.2 Simulating a Slowloris attack

I employed the project hosted at the following GitHub repository, specifically accessi­
ble at https ://github. com/gkbrk/slowloris, as an instrumental tool to replicate
and simulate a slowloris attack within the context of my research endeavor.

Download and Setup of Slowloris

To download and set up the before mentioned project enter the command shown
below:

git clone https://github.com/gkbrk/slowloris.git

Upon successfully downloading the tool, it is possible to simulate a slowloris
attack using the following command:

slowloris <IP to be attacked > -s <number of sockets>

eg. slowloris 192 . 1(38.112.130 -s 200

Simulation of an attack

After successfully setting up the Slowloris tool, first I simulated an attack on the
server with my module disabled, then I repeated the same steps but with the custom
module running this time.

Attack with the module disabled

Upon attacking the server using the before mentioned steps, I measured the capacity
of the servers resources such as its memory. The server has reached a state of resource
depletion, specifically exhaustion of available memory. The results can be seen on
the graphs.

43

https://github.com/gkbrk/slowloris.git

Attack with the module enabled

With the module enabled, the steps mentioned in the previous section were repeated.
The module was designed to limit the number of simultaneous connections from a
single IP address, hence the attacker was only able to establish a limited number of
connections. This resulted in the slowloris attack being unsuccessful. The module
logged the denial of the request to establish a connection which can be found in the
/var / log/apache2/er ror . log file. A n error phrase should be displayed, varying
based on the IP of the attacker and the type of connection the attacker exceeded:

Connection limit exceeded by user: 192.166 3.112.128!

CONNECTION LIMIT FOR READING EXCEEDED

2.5.3 Simulating a Flood attack

Attack with my module disabled

With the module disabled an attack is simulated. For the simulation of these types
of attacks I used multiple tools. I used the tool provided by mod evasive (test.pl).
Upon running the source code 200 connections are tried to be establish.

After finishing the test with the test.pl source code I also did tests using packages
available for Debian devices.

Attack with the module enabled

I enabled my module, and ran the same tests as in the previous section.When the
attacker is trying to exceed the limit set by the administrator, the connections get
rejected and the IP address from which the requests are coming gets blacklisted.
A timestamp is stored in the module which works as a timeout counter. If the
attacker tries to establish a connection before the expiry of the timeout counter, the
connections get rejected and the timer is reset. In case the timeout expires, new
connections can be made to the server from the attacker but only under the same
circumstances as before.

44

http://test.pl
http://test.pl

Conclusion
This thesis was devoted to the mitigation of DoS attacks on Apache2 servers. The
aim of the thesis was to thoroughly make research on the types of attakcs and their
mitigation.

The first chapter focuses on both the theoretical and practical principle of various
DoS attacks. Each attack was individually described. After describing the attakcs.
there are sections to introduce us to the Apache modules which are used to mitigate
these attaks. Furhtermore a detailed guide was documented what parts does an
Apache module have and how one should me created.

The second chapter is devoted to the implementation and demonstration of the
already available Apache modules as well as of my custom module. Multiple at­
tacks were simulated on the server, comparing the capabilities of each module. The
available Apache modules were only able to mitigate one type of DoS attack individ­
ually, but my module was able to mitigate both the Volumetric Attacks (eg. SYN
FLOOD) as well as Application layer attacks (eg. Slowloris) 2.1. The metrics of the
server such as its C P U usage, average requests per second, the rate of bytes served
by the server were all measured using the combination of mod status and Datadog
which is a tool to graphically display the measured data.

mod evasive m o d antiloris mod apache2
• Volumet r ic At tacks • X

Logica l At tacks X • •

Tab. 2.1: Comparison of the mitigation capabilities of the modules.

45

Bibliography
[1] What is a denial of service attack (DoS) [online], [cit. 2022-12-

9j. Dostupné z: <https://www.paloaltonetworks.com/cyberpedia/

what-is-a-denial-of-service-attack-dos>

[2] DDoS Attacks [online], [cit. 2022-12-10]. Dostupné z:
<https://www.imperva.com/learn/ddos/ddos-attacks/>

[3] Method of a HTTP flood attack [online], [cit. 2022-12-10]. Dostupné z: https:

//www.cloudflare.com/img/learning/ddos/udp-flood-ddos-attack/

udp-flood-attack-ddos-attack-diagram.png

[4] U DP flood attack [online], [cit. 2022-12-10]. Dostupné z: <https://www.

cloudflare.com/learning/ddos/udp-flood-ddos-attack/>

[5] HTTP flood attack [online], [cit. 2022-12-10]. Dostupné z: https://www.

cloudflare.com/learning/ddos/http-flood-ddos-attack/

[6] Method of a HTTP flood attack [online], [cit. 2022-12-10]. Dostupné z: https:

//www.cloudflare.com/img/learning/ddos/http-flood-ddos-attack/

http-flood-attack.png

[7] What is an ICMP Flood Attack [online], [cit. 2022-12-10]. Dostupné z: https:

//www.netscout.com/what-is-ddos/icmp-flood

[8] Method of an ICMP flood attack [online], [cit. 2022-12-10]. Dos­
tupné z: https://www.cloudflare.com/img/learning/ddos/

ping-icmp-flood-ddos-attack/ping-icmp-flood-ddos-attack-diagram.

Png

[9] SYN flood attack [online], [cit. 2022-12-12]. Dostupné z: https://www.

cloudflare.com/learning/ddos/syn-flood-ddos-attack/

[10] Method of a SYN flood attack [online], [cit. 2022-12-12]. Dostupné z: https:

//www.cloudflare.com/img/learning/ddos/syn-flood-ddos-attack/

syn-flood-attack-ddos-attack-diagram-2.png

[11] What is a Slowloris Attack? [online], [cit. 2023-4-3]. Dostupné z: https:

//www.netscout.com/what-is-ddos/slowloris-attacks

[12] Slowloris DDoS attack [online], [cit. 2022-4-4]- Dostupné z: https:

//www.cloudflare.com/img/learning/ddos/ddos-slowloris-attack/

slowloris-attack-diagram.png

46

http://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos
http://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos
https://www.imperva.com/learn/ddos/ddos-attacks/
http://www.cloudflare.com/img/learning/ddos/udp-flood-ddos-attack/
https://www.?cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://www.?cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://www
http://www.cloudflare.com/img/learning/ddos/http-flood-ddos-attack/
http://www.netscout.com/what-is-ddos/icmp-flood
https://www.cloudflare.com/img/learning/ddos/
https://www
http://www.cloudflare.com/img/learning/ddos/syn-flood-ddos-attack/
http://www.netscout.com/what-is-ddos/slowloris-attacks
http://www.cloudflare.com/img/learning/ddos/ddos-slowloris-attack/

[13] R.U.D.Y. (R-U-Dead-Yet?) [online], [cit. 2023-4-4]. Dostupne z: https:

//www.imperva.com/learn/ddos/rudy-r-u-dead-yet/

[14] STEIN, Lincoln a Doug M A C E A C H E R N . Writing apache modules with Perl
and C. Sebastopol, 1999. ISBN 15-659-2567-X.

[15] List of Apache2 packages [online], [cit. 2022-4-7]. Dostupne z: <https://

packages.debian.org/search?searchon=names&keywords=libapache2>

[16] How to monitor Apache web server with Datadog [online], [cit.
2022-4-7]. Dostupne z: <https://www.datadoghq.com/blog/

monitor-apache-web-server-datadog/>

[17] Developing modules for the Apache HTTP Server 2.4 [online], [cit. 2022-
4-5]. Dostupne z: <https://httpd.apache.Org/docs/2.4/developer/

modguide.html#page-header>

[18] ROBINSON, Scott. Protect your Apache server from DoS attacks [online],
[cit. 2022-12-12]. Dostupne z: <https://www.techrepublic.com/article/

protect-your-apache-server-from-dos-attacks/>

[19] Types of Denial of Service Attacks [online], [cit. 2022-12-12]. Dostupne
z: <https://developer.okta.com/books/api-security/dos/what/#_

1-application-layer-flood>

[20] BAJPAI, Arpit. Securing Apache, DoS & DDoS Attacks [online], [cit.
2022-12-12]. Dostupne z: <https://www.opensourceforu.com/2011/04/

securing-apache-part-8-dos-ddos-attacks/>

[21] HELME, Scott. Mitigating a HTTP GET DoS attack [online], [cit. 2022-12-
12]. Dostupne z:
<https://scotthelme.co.uk/mitigating-http-get-dos-attack/>

[22] MUSCAT, Ian. Mitigate Slow HTTP GET/POST Vulnerabilities in the Apache
HTTP Server [online], [cit. 2022-12-12]. Dostupne z: <https://bit.ly/

3MgqZEC>

[23] Slow Loris Attack [online], [cit. 2022-12-12]. Dostupne z:
<https://www.youtube.com/watch?v=XiFkyR35v2Y>

[24] Defending Against DoS/DDoS Attacks in Apache Server With mod_evasive
Module [online], [cit. 2022-12-12]. Dostupne z: <https ://codingshower.

com/apache-mod-evasive/>

47

http://www.imperva.com/learn/ddos/rudy-r-u-dead-yet/
https://?packages.debian.org/search?searchon=names&keywords=libapache2
https://?packages.debian.org/search?searchon=names&keywords=libapache2
http://www.datadoghq.com/blog/monitor-apache-web-server-datadog/
http://www.datadoghq.com/blog/monitor-apache-web-server-datadog/
http://httpd.apache.Org/docs/2.4/developer/modguide.html%23page-header
http://httpd.apache.Org/docs/2.4/developer/modguide.html%23page-header
http://www.techrepublic.com/article/protect-your-apache-server-from-dos-attacks/
http://www.techrepublic.com/article/protect-your-apache-server-from-dos-attacks/
https://developer.okta.com/books/api-security/dos/what/%23_
http://www.opensourceforu.com/2011/04/securing-apache-part-8-dos-ddos-attacks/
http://www.opensourceforu.com/2011/04/securing-apache-part-8-dos-ddos-attacks/
https://scotthelme.co.uk/mitigating-http-get-dos-attack/
http://bit.ly/3MgqZEC
http://bit.ly/3MgqZEC
https://www.youtube.com/watch?v=XiFkyR35v2Y

[25] MYERSCOUGH, Damian. Protecting Apache against DOS attack with
mod_evasive [online], [cit. 2022-12-12]. Dostupné z: <https://www.suse.

com/c/protecting-apache-against-dos-attack-modevasive/>

[26] PEDAMKAR, Priya. Types of DOS Attacks [online], [cit. 2022-12-12]. Dos­
tupné z:
<https://www.educba.com/types-of-dos-attacks/>

[27] FUND, Fraida. Layer 7 DoS attack with slowloris [online], [cit. 2022-12-12].
Dostupné z:
<https://witestlab.poly.edu/blog/slowloris/>

[28] How to best defend against slowloris [online], [cit. 2022-12-12]. Dostupné z:
<https: //bit. ly/3IikiRt>

[29] How to prevent DoS attacks against Apache - Practical Linux security [online],
[cit. 2022-12-12]. Dostupné z:
<https://www.youtube.com/watch?v=XoNbgqgP-dc>

[30] UNDERSTANDING THE THREE MAIN TYPES OF DOS ATTACKS [on­
line], [cit. 2022-12-12].
Dostupné z: <https ://cwatch. comodo. com/types-of-dos-attack.php>

[31] DELGADO, Carlos. How to perform a DoS attack "Slow HTTP" with
SlowHTTPTest [online], [cit. 2022-12-12]. Dostupné z:
<https://bit.ly/42KH78p>

[32] How to Launch an Untraceable DoS Attack with hping3 [online], [cit. 2022-12-
12]. Dostupné z:
<https://www.hackingloops.com/hping3/>

[33] Ping Flooding DoS Attack in a Virtual Network <https: //sandilands. info/
sgordon/ping-flooding-dos-attack-in-a-virtual-network>

[34] DOS Flood With hpingS <https://linuxhint.com/hping3/>

[35] JOHN, Veena K. How To Protect Against DoS and DDoS with mod_evasive
for Apache on CentOS 7 [online], [cit. 2022-12-12]. Dostupné z: <https:

//bit.ly/3Wbr8xD>

[36] IMPE, Koen Van. Defending Against Apache Web Server DDoS Attacks [on­
line], [cit. 2022-12-12]. Dostupné z: <https://bit.ly/3o8wEVo>

48

http://www.suse.com/c/protecting-apache-against-dos-attack-modevasive/
http://www.suse.com/c/protecting-apache-against-dos-attack-modevasive/
https://www.educba.com/types-of-dos-attacks/
https://witestlab.poly.edu/blog/slowloris/
https://www.youtube.com/watch?v=XoNbgqgP-dc
https://bit.ly/42KH78p
https://www.hackingloops.com/hping3/
http://linuxhint.com/hping3/
http://bit.ly/3o8wEVo

[37] VIJAYAKUMAR, Lakshmi. Prevent DDoS in Apache - Steps to safeguard your
web server from DDoS [online], [cit. 2022-12-12]. Dostupne z: <https://

bobcares.com/blog/apache-prevent-ddos/>

[38] Installing Mod_Antiloris To Mitigate SlowLoris DOS Attack [online], [cit.
2022-12-12]. Dostupne z: <https: //www. bullten. com/knowledgebase/3/

Installing-ModAntiloris-To-Mitigate-SlowLoris-DOS-Attack.html>

[39] MARSHALL, John. Slowloris Attack Defense & Mitigation [online], [cit. 2022-
12-12]. Dostupne z: <https://www.fixscam.com/slowloris/>

[40] BROUCKE, Seppe. Slowloris And Mitigations For Apache [online], [cit.
2022-12-12]. Dostupne z: <https://blog.macuyiko.com/post/2011/

slowloris-and-mitigations-for-apache.html>

[41] Mod_antiloris / Mitigate Slowloris DoS attacks [online], [cit. 2022-12-12].
Dostupne z: <https://kandi.openweaver.com/c/Deltik/mod_antiloris#

Code-Snippets>

[42] Apache Module mod_reqtimeout. Apache Module mod_reqtimeout [online], [cit.
2022-12-12]. Dostupne z: <https://httpd.apache.Org/docs/2.4/mod/mod_
reqtimeout.html>

[43] Module mod_reqtimeout [online]. [cit. 2022-12-12]. Dostupne z:
<https://www.ibm.com/docs/en/i/7.2?topic=ssw_ibm_i_72/rzaie/

rzaiemod_reqtimeout.html>

[44] The most important steps to take to make an Apache server more secure [on­
line], [cit. 2022-12-12]. Dostupne z: <https://bit.ly/3BvSmFM>

[45] How to configure mod_reqtimeout in Apache2 [online], [cit. 2022-12-
12]. Dostupne z: <https://serverfault.com/questions/507542/

how-to-configure-mod-reqtimeout-in-apache2>

[46] Developing modules for the Apache HTTP Server 2.4 [online], [cit. 2023-05-17].
Dostupne z: https://httpd.apache.org/docs/2.4/developer/modguide.

html#page-header

49

https://?bobcares.com/blog/apache-prevent-ddos/
https://?bobcares.com/blog/apache-prevent-ddos/
http://www.fixscam.com/slowloris/
http://blog.macuyiko.com/post/2011/slowloris-and-mitigations-for-apache.html
http://blog.macuyiko.com/post/2011/slowloris-and-mitigations-for-apache.html
https://kandi.openweaver.com/c/Deltik/mod_antiloris%23?Code-Snippets
https://kandi.openweaver.com/c/Deltik/mod_antiloris%23?Code-Snippets
http://httpd.apache.Org/docs/2.4/mod/mod_reqtimeout.html
http://httpd.apache.Org/docs/2.4/mod/mod_reqtimeout.html
https://www.ibm.com/docs/en/i/7.2?topic=ssw_ibm_i_72/rzaie/?rzaiemod_reqtimeout.html
https://www.ibm.com/docs/en/i/7.2?topic=ssw_ibm_i_72/rzaie/?rzaiemod_reqtimeout.html
http://bit.ly/3BvSmFM
http://serverfault.com/questions/507542/how-to-configure-mod-reqtimeout-in-apache2
http://serverfault.com/questions/507542/how-to-configure-mod-reqtimeout-in-apache2
https://httpd.apache.org/docs/2.4/developer/modguide

Symbols and abbreviations
DoS Denial of Service

R U D Y R-U-Dead-Yet?

A P I Application programming interface

C P U Central Processing Unit

I P Internet Protocol

S Y N synchronization

T C P Transmission Control Protocol

U D P User Datagram Protocol

I C M P Internet Control Message Protocol

H T T P Hypertext Transfer Protocol

D D o S Distributed Denial-of-Service

A C K Acknowledgment

D N S Domain Name System

N T P Network Time Protocol

50

List of appendices

A Graphs of Apache metrics dur ing attacks

B Content of the electronic attachment

•51

A Graphs of Apache metrics during attacks

Fig. A . l : Apache C P U usage during a flood attack with my module turned off.

— I 1 1 1 —
18:00 19:00 20:00 21:00

Fig. A.2: Bytes served by the server during a flood attack with my module turned
off.

52

Bytes served

I I
1B:46 18:47 18:4E 18:49 13:50 18:51 13:52 18:53 16:54 13:55 18:5* 13:57 18:58 18:59 19:00 19:01 19:02 19:03

Fig. A.3: Bytes served by the server during a flood attack with my module turned
on.

Async connections

Fig. A.4: Connections closed during a slowloris attack with my module turned on.

Async connections

72

Fig. A.5: Connections during a slowloris attack with my module turned on.

53

2.2

2.1

2

1.5

1.8

I
I

-—t- L
0 1 1 1 1 1 1 1 1 1 1 1 1

18:40 18:45 18:50 18:55 19:00 19:05 19:10 19:15 19:20 19:25 19:30 1935

host in avgiapache.performance.cpujoad{host:xrun.an02-virtual-machine} Avg Min Max Sum Value

• xruman02-virtual-machine 0.14 % 0.038 % 1.75 % 24.7 % 0.073 %

Fig. A.6: C P U usage of server during an attack with my module turned on.

Apache - Hits rate

7C

•C

18:47 18:48 13:49 1fi:50 18:51 18:52 IS: 53 18:54 1B:55 1B:M 18:57 18:58 18:59 19:00 19:01 19:82 19:03 19:04

Fig. A.7: Amount of hits on the server with my module turned off.

54

1.25

1

0.75

0.5

0.25

isloo~ 19:00 20:00 21:00

Fig. A.8: Rate of bytes on the server during a flood attack with my module turned
on.

768

S 384
>>

| 256 J

il i\ 11 I I I I I I I
18:35 18:40 18:45 18:50 18:55 19:00 19:05

Fig. A.9: Rate of bytes served by the server with my module turned off.

Rate of requests

220 20a
180

1E:40 13:41 18:42 13:43 18:44 13:45 13:46 13:47 1 3:43 1E:4S 13:50 18:51 1B:5Z 18:53 18:54 13:55 1B:H 13:57 13:5« 13:59 19:00 19:01

Fig. A . 10: Rate of requests during a flood attack with my module turned off.

55

120

100

U 1 I I
18:30 18:45 19:00 19:15

Fig. A . 11: Rate of requests during a flood attack with my module turned on.

56

B Content of the electronic attachment
/ root directory of the attached archive

apache2_module

. git root directory for Git

. libs Folder to store artifacts generated during the build process
_mod_apache2_module .la . . Metadata and configuration about the module
_mod_apache2_module. l a i Index of symbols and their offsets
_mod_apache2_module .o Compiled object code
mod_apache2_module. so Represents the compiled module

vscode Folder for configuration files
c_cpp_properties. json Settings related to the C language support

.settings, json Project specific settings and configuration

.tasks, json . . Definition of custom tasks executable from within VS Code
. deps Dependencies-related files and information
Makefile Defines and manages the build process of the project
mod_apache2_module. c Source code of the project
mod_apache2_module.la

mod_apache2_module. lo Helps manage libraries and their compilation
mod_apache2_module.o

mod_apache2_module.so

modules.mk . . Build instructions and configurations for compiling and linking
the module

git_link.txt Link to the GitHub repository of the project
Bakalarska_praca_231273 Electronic version of this document

57

