
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
DEPT. OF CONTROL AND INSTRUMENTATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

DESIGN AND IMPLEMENTATION OF CONTROL
SOFTWARE LIBRARIES FOR FIBER CHARACTERIZATION
DESIGN AND IMPLEMENTATION OF CONTROL SOFTWARE LIBRARIES FOR
FIBER CHARACTERIZATION

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. LADISLAV PODIVÍN
AUTOR PRÁCE

SUPERVISOR Ing. PETR HONZÍK , Ph.D.
VEDOUCÍ PRÁCE

BRNO 2010

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav automatizace a měřicí techniky

Diplomová práce
magisterský navazující studijní obor

Kybernetika, automatizace a měření

Student: Be. Ladislav Podivín ID: 78309
Ročník: 2 Akademický rok: 2009/2010

NÁZEV TÉMATU:

Design and implementation of control software libraries
for fiber characterization

POKYNY PRO VYPRACOVÁNÍ:

1 Design and implementation of real-time image processing library with C++
- In this topic a real-time image processing library for Linux will be developed. The design is made in
co-operation with another MSc. student.
- The library will be developed on real-time environment and shall employ Qt4 framework
- Selection of suitable real-time kernel is part of the topic.
-The goal is to develop a platform, which has sufficient processing capabilities for machine vision
applications and allows flexible changing of used machine vision algorithms.

2 Design and implementation of Haptic interface with force-feedback
- This topic includes design and implementation for a library controlling a haptic device, Phantom
Desktop (SensAble).
- The haptic device receives its feedback from a force sensor or from a machine vision library.
- The goal is to develop an application, which can be integrated into the mentioned framework. The
given interfaces must be used without changes.

DOPORUČENÁ LITERATURA:

Termín zadání: 8.2.2010 Termín odevzdání: 2.8.2010

Vedoucí práce: Ing. Petr Honzík, Ph.D.

prof. Ing. Pavel Jura, CSc.
Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

A B S T R A C T
This thesis deals with the design and the implementation of two software libraries (often
referred as modules in the following text). The modules are parts of the distributed
control system CoSMic, which is meant to control a special hardware platform for paper
fiber characterization.
The first of the two modules is HapticFiber - module to provide an interface between the
control system and a haptic input device. The second one is ViCo - module to create a
software envelop to hold a user defined image processing algorithm. This module must
be ready to fulfill certain time restrictions, that is why it needs to be run on a real-time
operating system.

K E Y W O R D S

haptic device, machine vision, real-time operating system, control system

A B S T R A K T
Tato práce se zabývá návrhem a implementací dvou konkrétních softwarových modulů,
které jsou částí distribuovaného řídícího systému CoSMic. Tento systém je určen pro
řízení speciálního zařízení pro charakterizaci papírových vláken.
Prvním vyvinutým modulem je HapticFiber, ten má poskytovat rozhraní mezi řídícím
systémem a speciálním vstupním zařízením - haptic device. Druhým modulem je ViCo,
jehož účelem je poskytnout softwarovou obálku pro uživatelem definovaný algoritmus
zpracovaní obrazu. Tento modul musí být připraven splnit určitá časová omezení, proto
je nutné, aby běžel v rámci operačním systému reálného času.

KLÍČOVÁ S L O V A

haptic device, počítačové vidění, real-time operační systém, řídicí systém

PODIVÍN, Ladislav Design and implementation of control software libraries for fiber char­
acterization: master's thesis. Brno: Brno University of Technology, Faculty of Electrical
Engineering and Communication, Dept. of Control and Instrumentation, 2010. 71 p.
Supervised by Ing. Petr Honzík , Ph.D.

DECLARATION

I declare that I have elaborated my master's thesis on the theme of "Design and

implementation of control software libraries for fiber characterization" independently,

under the supervision of the master's thesis supervisor and with the use of technical

literature and other sources of information which are all quoted in the thesis and detailed

in the list of literature at the end of the thesis.

As the author of the master's thesis I furthermore declare that, concerning the creation

of this master's thesis, master's thesis, I have not infringed any copyright. In particular,

I have not unlawfully encroached on anyone's personal copyright and I am fully aware

of the consequences in the case of breaking Regulation §11 and the following of the

Copyright Act No 121/2000 Vol., including the possible consequences of criminal law

resulted from Regulation §152 of Criminal Act No 140/1961 Vol.

Brno

(author's signature)

I would like to use this space to thank all the members of the Micro- and Nanosystems

Research Group for creating such a great working environment. I especially appreciate

the trust Prof. Pasi Kallio gave me, and all the support from my colleague Mathias von

Essen.

CONTENTS

1 Introduction 11

1.1 Role of This Thesis 11

1.2 Thesis Structure 12

2 Software Background 13

2.1 Suitable Real-Time Operating Systems 13

2.1.1 Linux with C O N F I G _ P R E E M P T _ R T Patch 15

2.1.2 Xenomai 16

2.1.3 RTAI 17

2.2 Comparison and Conclusion 19

2.3 Qt Framework 20

2.3.1 Signals and Slots 20

2.3.2 Meta-Object Compiler 21

2.4 OpenCV 21

3 Haptic Module Software Design 22

3.1 Device Output Processing 24

3.2 Device Input Processing 26

3.3 State Machine 28

4 Machine Vision Module Software Design 30

4.1 Image Acquisition 32

4.2 Image Processing 34

4.2.1 Current Algorithm 35

4.2.2 Other Ways to Implement User Defined Algorithm 36

4.3 Buffers and Data Exchange 36

4.3.1 Writer Thread 37

4.3.2 Reader Threads 38

4.3.3 Summary 38

4.4 GUI 40

4.5 Image Writer 42

4.6 Real time Capabilities 42

4.7 Code Migration 43

4.7.1 Unified Threading 44

4.7.2 Unified Synchronization 45

4.8 Error Handling 45

5 Experiments 47

5.1 Haptic Experiment 47

5.2 Machine Vision Experiments 48

5.2.1 Code Profiling 49

5.2.2 Pre-allocation Verification 52

5.2.3 Processing Times 54

5.2.4 Processing Chain Data Loss 57

5.2.5 Summary 58

6 Conclusion 60

6.1 Achievements 60

6.2 Future Work 62

Bibliography 64

List of symbols, physical constants and abbreviations 68

A How to Compile Linux Kernel as Quick as Possible 69

A . l Config File 69

A.2 distcc 69

A.3 ccache 69

A.4 A l l Together Step by Step 70

B Software Versions 71

LIST OF FIGURES

3.1 Haptic module class diagram - main classes 23

3.2 Haptic output data exchange 25

3.3 Axis locker block diagram - x axis 26

3.4 Haptic input data exchange 27

3.5 State machine current configuration 29

4.1 Image processing chain 30

4.2 Image processing chain - class diagram 31

4.3 Tailored OpenCV classes 33

4.4 Reader writer access model - class diagram 39

4.5 GUI class diagram 41

4.6 Unified thread representation - class diagram 44

4.7 Mutex representation - class diagram 46

5.1 Simplified call graph - Sony DFW-V300 attached 49

5.2 Simplified call graph - Sony XCD-X710 attached 51

5.3 Memory allocation profile - pre-allocation enabled 53

5.4 Memory allocation profile - pre-allocation disabled 54

LIST OF TABLES

5.1 Testing computer's hardware configuration 47

5.2 Statistical time measurement based on 418633 samples, Linux mode . 55

5.3 Statistical time measurement based on 436627 samples, Xenomai mode 55

5.4 Data loss dependency on frame rate and image resolution 58

B . l Versions of used software 71

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
11

FŕiKULTA
tLbKI ROI tCHNIKľ
A KOMUNIKAČNÍCH
TECHNOLOGIÍ

1 INTRODUCTION

This thesis describes a software project which is a part of the Control Software for

Microrobotic Platform (CoSMic) framework. CoSMic is a distributed system de­

signed to control a hardware microrobotic platform for paper fiber characterization.

The platform consists of three main subsystems - microrobotic actuators, machine

vision and data acquisition system. CoSMic is supposed to control each of the

subsystems platform fully autonomously, but currently this requirement cannot be

satisfied, because of missing software modules. CoSMic consists of two main soft­

ware parts - Control of Micromanipulation System and Control of Data Acquisition

System. It is necessary to extend CoSMic's control capabilities by implementing

new modules. To develop and implement two of them is the goal of this thesis.

A l l the software described in the thesis was developed in C++ language and

highly relies on Qt framework, introduced in Section 2.3. The QtCreator [24] was

used as Integrated Development Environment (IDE).

A l l the development was performed in the Micro and Nanosystems Research

Group of the Department of Automation Science and Engineering at Tampere Uni­

versity of Technology in Finland.

The main goal of this thesis is to design and implement two new parts of the CoSMic

framework according to given requirements. The first part is the Haptic Module.

Its purpose is to create a layer connecting a haptic device with the framework. A

haptic device could be shortly characterized as a tactile input output device using

force feedback to create virtual objects [2]. The particular haptic device used in

this project was the Sensable PHANTOM Desktop [3], which is in fact a force feed­

back joystick with six degrees of freedom. The software layer should be responsible

especially for the safe data exchange with the device.

The other part is the Machine Vision part - also called Vision System Control

(ViCo). Its purpose is to create a software envelop for user defined image processing

algorithm. Thanks to such an envelop a user does not need to care about camera

1.1 Role of This Thesis

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
12

data acquisition, threading and other problems. His/her responsibility is to define

the desired image processing algorithm. For a better idea what "define" means in

this case, see Section 4.2. For a better idea, what it could mean in the future, see

6.2.

Moreover, the envelop is supposed to meet some processing deadlines - i.e. to

keep processing images in certain bounded time. The particular time requirements

depend on a chosen image processing algorithm, so they cannot be specified now, but

the envelop has to be ready to satisfy them. This implies that the other important

goal of the thesis is to choose a suitable real time operating system.

1.2 Thesis Structure

Chapter 2 is dedicated to a description of used software frameworks and especially

to a survey of suitable real time operating systems. Chapters 3 and 4 both deal with

software design - the former is about the Haptic Module, while the latter about the

Machine Vision Module. Chapter 5 introduces results of the tests taken to verify

the implemented modules. Finally, Chapter 6 provides overall conclusion and lists

steps needed to be done as a part of a future development.

Appendix A provides a few hints on how to speed up Linux kernel compilation

and Appendix B summarizes versions of all used software.

Another important supplement of the thesis is the source code documentation

generated with Doxy gen tool [4]. The documentation is a standalone source of

detailed information about particular classes and methods. Although the documen­

tation is meant to be independent on the thesis, references to it are frequent in

the text. That is the way to connect the abstract approaches described with their

real implementation. To make this connection easier, the documentation provides a

full-text search.

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
13

2 SOFTWARE BACKGROUND

This chapter describes software projects the developed modules are based on. The

first section describes suitable real time operating system. The next one chooses the

best system for the Machine Vision Module. The rest of the chapter is dedicated to

the important Qt framework and the very last part briefly describes the OpenCV

framework.

2.1 Suitable Real-Time Operating Systems

A n operating system is a piece of software responsible for computer's resources

management and providing an environment for other programs to run. In fact it is

an abstract layer between user applications and hardware.

Real Time Operating System (RTOS) is a system which is always able to meet

certain deadlines [5] [6]. For example, if an event arises (e.g. external interrupt) the

maximal time needed to serve it must be bounded. In other words, the maximal

time needed to perform every operation can be determined.

The next question is, how to achieve such behavior. The system has to be based

on preemptive multitasking, so its essential part is a deterministic scheduler with

system of priorities [7]. Such system also has to handle interrupts in deterministic

way. Anyway, this is just a brief description provided for better understanding of

the following text, a comprehensive description is out of the scope of this work.

Although all developers take care of a maximal code portability, the preferred

operating system for the CoSMic platform is Linux. So Linux compatibility of a

chosen Real Time (RT) solution is the requirement number one. Linux itself is not

an RTOS, but there are several extensions enabling it to run RT tasks. Some of

those systems are for free, which leads us to the second requirement - the price.

The main advantage of commercial solutions over the free ones is obviously a

better customer support. In case of the free systems, one can rely only on his own

skills and especially on help from community. However, I decided not to burden

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
14

the project budged, to take the risk and to try one of the non-commercial systems.

This decision was quite easy, because the CoSMic is not intended to control any

potentially dangerous technological processes. In this situation we can just try a

free operating system and abandon it in the future, if it does not work properly,

because it is always less painful to replace a cost free solution with a commercial

one than vice-versa.

The possible Linux based and cost free systems are Linux with RT patches,

Xenomai, RTAI and RTLinuxFree. Next subsections are dedicated to description of

the first three of them. The RTLinuxFree is not discussed here, because it is just

a side project of Wind River company developing the commercial RTLinux. The

commercial version has most likely a bigger priority for the company and moreover

the community around the free version is quite small. It is impossible to prove

the first statement without buying the commercial license. It is quite difficult to

prove the second statement too, because one cannot blindly rely on an advice of

people from related internet discussions. At least a small proof is that Google

returns approximately 1000 results concerning word RTLinuxFree, and circa 55000

for Xenomai.

Even if all this RTLinuxFree investigation was wrong, there are still three more

systems to choose from, which decreases a possible impact of a bad decision.

Remark on System Management Interrupts

Since the CoSMic is intended to run on x86 or x86_64 architectures, the System

Management Interrupt (SMI) has to be mentioned, before we can proceed to the

next sections describing particular systems.

The SMI is a hardware interrupt of the highest priority switching Central Pro­

cessing Unit (CPU) into the System Management Mode (SMM). In this mode all

execution is suspended and a special software takes control [8]. This can be unpleas­

ant even if one does not use an RTOS - e.g. buggy firmware can omit a clean up

and let a hardware in an undefined state. In case, one uses an RTOS, the SMIs may

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
15

become very good source of high latencies, because a RT task of high priority can

be interrupted by the SMI for unspecified amount of time and an operating system

cannot do anything about that.

SMIs used to be just a part of power management, but nowadays they cover a

wider range - e.g. they emulate missing or buggy hardware [8]. There are usually

ways to disable SMIs but it may lead to hardware malfunction or in extreme cases

even to hardware damage (but this is said to be rare).

Anyway, the SMI is an Intel specific issue. On the other hand, Section 2.4

shows, that Intel processors have certain advantage for this project and moreover

the previous sentence does not say, that all Intel processors mean a serious problem

with the SMI - it depends also on a chipset etc.

2.1.1 Linux with CONFIG_PREEMPT_RT Patch

Standard Linux 2.6 series kernel can be compiled to be almost fully preemptible.

Documentation of the related compilation option CONFIG .PREEMPT says: "This op­

tion reduces the latency of the kernel by making all kernel code (that is not executing

in a critical section) preemptible." [9]

The patch CONFIG_PREEMPT_RT changes Linux kernel to be fully preemptible.

Since fully preemptible kernel is not sufficient guarantee of RT behavior, the patch

adds also few more features [10]. There will be mentioned only the most important

ones here.

The first significant change introduced by the patch is, that all interrupt service

routines run in dedicated threads, thus allowing to be preempted. Another impor­

tant feature is adding the priority inheritance to synchronization objects to prevent

the priority inversion problem.

To apply this patch and compile the kernel is most likely the easiest way to get

a working RTOS. Moreover, if an existing Linux application was implemented with

the RT manners in mind, it can run in RT without a recompilation.

Linux with CONFIG_PREEMPT_RT patch provides no official SMI workaround.

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
16

2.1.2 Xenomai

The Xenomai project introduces an approach of two kernels running beside each

other. One is the normal Linux kernel and the other is Xenomai nucleus. The

project called ADEOS ensures this symbiosis. Its purpose is to provide a layer

enabling hardware sharing among multiple operating systems [11].

The most important part of ADEOS is the way it distributes events (mainly

interrupts). It creates a pipeline (called i-pipe) providing a possibility to process

events sequentially by all the operating systems. Once an interrupt is served by the

first operating system, it is passed to the next one and then to the next one etc.

Xenomai kernel is in the pipeline before Linux kernel, which ensures all interrupts

are delivered to the real time kernel first. Xenomai may also ask the i-pipe not to

pass interrupts to the Linux kernel.

Xenomai allows to create RT tasks either in kernel or user space. The kernel

tasks are considered deprecated [12] and their support will be discontinued in the

future. Anyway, there are two modes of execution for the user space tasks. Normally

a RT task runs in Xenomai domain (primary execution mode), but it can also call

Linux services. Every call to a Linux system service causes the task to be switched

to the Linux domain (secondary execution mode).

A task in the primary mode is scheduled by Xenomai nucleus and by Linux kernel

while in the secondary mode. As discussed already, Linux is not an RTOS, so this

switch may violate RT behavior of the task. Anyway, task's priority remains the

same no matter of the mode.

If Xenomai is configured to do so, it makes the ADEOS interrupt pipeline to block

interrupt propagation towards the Linux kernel while a Xenomai task is performing

a Linux system call (so called interrupt shield). This prevents the task from being

preempted by any Linux interrupt service routine. A l l interrupts are delivered after

the blocking is over.

A n important information is, that a task leaves the secondary mode when it calls

Xenomai system call that requires the switch [13] - not any sooner.

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
17

It is also possible to create a standard Linux task (thus running in the secondary

mode from Xenomai point of view) and turn it into a Xenomai task.

To provide more flexibility there are several skins stacked over the nucleus. Each

skin represents one Application Program Interface (API), which makes a chameleon

system from Xenomai. The purpose of the skins is to ease porting of existing ap­

plications to other operating systems. Refer to the documentation for full list of

supported APIs. Xenomai provides skin called native, which is the preferred skin if

one does not need the A P I compatibility with any other operating system. Anyway

this native skin has no privileged status among the others [13].

As the described task migration between the two kernels indicates, Xenomai is

also very closely integrated to the Linux environment. It is possible for Xenomai

tasks to receive Linux signals, to be debugged with standard Linux debugger gdb

etc. [14].

Xenomai supports the Real-Time Driver Model (RTDM), which unifies environ­

ments for real time Linux drivers [15]. Another important part of Xenomai called

Analogy is based on R T D M . Analogy is intended to support data acquisition hard­

ware under Xenomai. Unfortunately, at the time of writing this thesis the current

Analogy implementation (Xenomai 2.5.3) provides only the very basic functionality.

Important functions concerning a hardware calibration are still missing.

Xenomai provides a detection of chipsets that use the SMI and also a possibility

to disable either all SMIs or just selected ones.

2.1.3 RTAI

The basic idea of Real Time Application Interface (RTAI) is very similar to Xenomai,

it is also based on "two kernels" approach using ADEOS. Although ADEOS is the

main common part, the main difference lies in the way it is used. Unlike Xenomai

Rtai uses so called immediate interrupt dispatching. In case of Xenomai, interrupts

are delivered via ADEOS first to the Xenomai nucleus and then to the Linux kernel.

Rtai bypasses ADEOS and takes the interrupts directly and then lets ADEOS to

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
18

pass them to Linux kernel [16]. This leads logically to a better performance of RTAI

tasks, since this approach skips one layer. On the other hand, it is obvious that such

a layer skipping is not the cleanest solution.

Another significant difference to Xenomai is, that RTAI provides only one API .

However, it also supports both kernel and user space tasks as well as the R T D M .

The situation about primary and secondary mode described in the Xenomai

section is also very similar here, although RTAI developers do not use this pri­

mary/secondary terminology. Any Linux system call puts a RTAI task under control

of Linux kernel until the call is done and a RTAI system call is called. Unlike Xeno­

mai, RTAI can be configured to force switching back to RTAI domain immediately

after finishing the Linux system call - i.e. without the need of a following RTAI

system call [17].

The main advantage RTAI has over Xenomai is the RTAI-Lab project. It is

a set of tools allowing to convert block diagrams created in Matlab/Simulink or

Scilab/Scicos to RTAI executable and tools to interact with the the running exe­

cutable [18]. Xenomai does not provide any similar utilities.

Although to generate a code from Simulink block diagrams could be useful in the

future (as discussed in Section 4.2.2), this advantage is not that significant, because

there are also other ways of the code generating and the possible interconnection

between Matlab and running binary is not necessary.

RTAI also supports Comedi framework. Comedi is a set of drivers and libraries

to work with data acquisition hardware under Linux [19]. By "supports" is meant,

that it is possible to use Comedi from kernel space and user space tasks without

violation of the RT behavior. Obviously, it is needed to use a special A P I instead

of the one normally available on Linux [19].

RTAI provides similar services concerning the SMI detection and disabling, as

Xenomai does.

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
19

FAKULTA
tLbKI ROIbCHNIKT
A KOMUNIKACNICH
TECHNOLOGIl'

2.2 Comparison and Conclusion

Xenomai and RTAI used to be one project called RTAI/Fusion. Their structure

is quite similar. According to Xenomai developers the main difference lies in the

goals of the projects [20]. They say, RTAI is focused on maximal performance while

Xenomai pays more attention to the portability (mainly the mentioned skins) and

code quality, thus maintainability.

Xenomai supports more hardware architectures than RTAI [21] and its configu­

ration is more user friendly, since it tries to get kernel patching more automated and

its main configuration is embedded into the Linux kernel one. On the other hand

RTAI has better support for RT data acquisition.

After reading of Section 2.1.1 dealing with the CONFIG_PREEMPT_RT patch, one

can possibly ask - why is there a need for Xenomai, RTAI and others when Linux

itself can be converted to an RTOS?. Xenomai and RTAI were first released in

the times when the RT patch was very young and not providing full RT behavior.

Another question is, how the today's situation is. Unfortunately the answer is

rather tricky. There is a lack of studies comparing capabilities of those systems

and developers of Xenomai as well as developers of RTAI are very diplomatic while

trying to answer this question - in fact they say "try it and you will see". Anyway,

the fact the projects RTAI and Xenomai still exist and there are still people using

them implies the RT patch solution is still not perfect, although there is no real

proof.

I decided to use Xenomai, because it has a clear vision of its future development.

In case of the future release (Xenomai 3 series) a user will be given a choice to use

the described "two-kernel" approach or to combine Xenomai with the RT patched

Linux kernel [22]. The latter means to use the RT capabilities the patched kernel

provides and to add the useful Xenomia skins, the SMI workaround etc. Moreover,

it will be still possible to use the "two-kernel" approach in situations where it gets

better results (e.g. architectures better supported by original Xenomai).

So to choose Xenomai means, in fact, to choose the RT patched kernel approach

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
20

too. Logically, if one takes two from three possibilities, the probability the decision

is right, is bigger than if only one approach is selected.

2.3 Qt Framework

"Qt is a cross-platform application and UI framework" [23]. It is a vast set of general

purpose C++ classes similar to the basic C++ Standard Template Library (STL).

Unlike the STL, a significant part of the framework is dedicated to a Graphical User

Interface (GUI) creation support.

Qt supports all the major operating systems like Windows, Linux Mac OS X

and few others. As stated, Qt is C++ based, but supports a few other languages

(Python, Java, Ruby etc.) through bindings. Thanks to all those facts, all CoSMic

software modules are based on Qt - including the two modules discussed in this

thesis.

A n interesting part of Qt is the threading support. It provides classes encapsu­

lating platform dependent threading routines, thus providing platform independent

threading. Those classes for Linux/Unix environments are based on Portable Op­

erating System Interface (POSIX) threads, so it is possible to use the Qt threading

even in POSIX compliant RTOSes.

Qt also provides development tools including the IDE Qt Creator [24].

2.3.1 Signals and Slots

This mechanism is probably the biggest advantage which Qt brings. It is intended

to replace the traditional callback approach, which is not flexible enough and not

type safe [25].

Instead of callbacks, Qt uses pairs of signals and slots. A n object can emit

a signal to let other objects know about any change of its state. If this signal is

connected to a slot of any other object (or even the same object), the slot is executed.

A slot is a normal method and thus can be called also in the usual way.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
21

A great benefit is, that it is possible to connect multiple signals to one slot or

one signal to many slots and even to connect a signal to another signal or signals.

It is possible to transfer signals across threads, but one must be aware of certain

rules [25].

It is obvious that signals and slots are more flexible techniques than the tra­

ditional callbacks. On the other hand, signals and slots are little bit slower than

callbacks thanks to certain background operations. Callbacks are quick, because all,

that must be done, is just to call a function one have a pointer to.

Another drawback is, that template classes cannot use the signal oriented ap­

proach [26].

2.3.2 Meta-Object Compiler

The described signals and slots are extensions to the standard C++ [27]. Since

programs using Qt are intended to use standard compilers, there is a need for a tool

to convert those extensions into the standard C++. Qt uses a mechanism of meta-

objects generated with the meta-object compiler [28] from a source code containing

the extensions.

2.4 OpenCV

OpenCV stands for Open Source Computer Vision and it is a free image processing

software library written in C++ [29]. It does not provide only image processing

functionality, it offers also some other services - e.g. classes to represent a generic

input device or a generic video writer. This effort should enable user to focus mainly

on the image processing.

OpenCV's performance can be boosted using Intel Integrated Performance

Primitives (IPP) framework, which is a set of optimized routines for multimedia

data processing [30]. This framework is available for Intel processor only.

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
22

FAKULTA
tLbKI ROIbCHNIKT
AKOMUNIKACnILH
TECHNOLOGIl'

3 HAPTIC M O D U L E SOFTWARE DESIGN

A haptic device is an input output device providing an interface between computer

and human. It is the input device, because it behaves as a tactile position sensor

usually sensing a position of its handle. It is the output device, because the handle

is capable of generating forces and thus move itself or prevent a user from moving

it. Thanks to these abilities a haptic device is suitable for creating virtual objects,

an operator can touch [2].

This module is not supposed to generate any virtual object. This is a task for

framework structures built in top of this module. The haptic module should provide

a layer between the SDTouch library and the rest of the framework. The library is

shipped together with the Sensable Phantom Desktop device and defines certain low

level functionality to control the device.

This library is callback oriented. It controls the physical device from a special

thread and a user of the library is allowed to communicate with the device via

callback functions. From the software point of view, the most important objective of

the module is to implement suitable callbacks and to provide a comfortable callback

management. The main part of the management is implemented as a state machine,

switching suitable callbacks according to the situation.

Figure 3.1 shows the main module's classes and their relationships. The most

important class is the CHaptCore which provides the mentioned callback manage­

ment functionality. The class CHapticFiber implements particular callbacks and it

is meant to be instantiated in a program using this module. The class ChapticHW

encapsulates the low-level device related functionality. The classes CHapticOut and

CHapticIn are responsible for the data exchange between a haptic device and an­

other software module. This topic is discussed in Section 3.1 and Section 3.2. The

CAxisLocker is responsible for the approach of the axis locking described in Section

This module is meant to be executed in the Windows environment. To be more

specific - Windows X P and better. Anyway, at cost of minor project file modifica-

3.2.

TIVYSOKE
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
23

CHapticCore
+ CHapticCoreO
+ ~ CHapticCoreO
+ PerformSynCallbackO
+ RegisterAsynCallbackO
+ UnRegisterAsynCallbackO
+ UnRegisterAIIO
+ GetNumberOfCal lbacksO
+ GetOutpu tBu f fe r ()
+ Get lnputBuf fer ()
+ Start Schedule r()
+ StopSchedulerO
+ IsSchedRunningO
+ LockX()
+ LockY()
+ LockZ()
+ UnLockXO
+ UnLockYO
+ UnLockZ()

CHapticDataln
+ fill()
+ g e t P a t a Q

CHapticDataOut
+ CHapt icDataOutO
+ ~ CHapt icDataOutO
+ fill()
+ g e t P a t a Q

ChapticHW
+ ChapticHW()
+ ~ ChapticHWO
+ Star tDev iceFrameO
+ StopDeviceFrameO
+ islnFrameO
+ G e t B u t t o n S t a t e O
+ CheckLastErrorO
+ Get 0 u t put Buffer()
+ Get lnputBuf ferO
+ ExchangelnBuffsO
+ ExchangeOutBuffsO
+ Get Posit ionBuffO
+ GetForceBuffO
+ ConsultAxisLockerO
+ LockXO
+ LockYO
+ LockZO
+ UnLockXO
+ UnLockYO
+ UnLockZO

CHapticFiber
+ CHapticFiberO
+ ~ CHapticFiberO
+ CalibrationO
+ IdleO
+ InitO
+ Run()
+ UpdateForcesO
+ SetZeroForcesO
+ GetPosit ionO
+ Print ErrQ

CAxisLocker
+ CAxisLockerO
+ GetBlockForceO
+ GetBlockForces3D()
+ LockXO
+ LockYO
+ LockZO
+ UnLockXO
+ UnLockYO
+ UnLockZO
+ IsLockedO
+ SetDeadBandQ

Fig. 3 .1 : Haptic module class diagram - main classes

tions, it can be compiled for the Linux environment too.

To summarize the above run environment discussion - there are no real time

requirements for the Haptic Module.

In the Introduction section it was mentioned, that the main goal of this module is

to exchange data with the rest of the framework. Let us focus on the more detailed

description of the goal. To exchange data with the device means to grab information

about the device handle coordinates and to send values of desired forces, the device

is supposed to generate. The next two subsections are dedicated to these topics,

while the last subsection covers the topic of the software state machine.

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
24

FAKULTA
tLbKI ROIbCHNIKT
AKOMUNIKACNltH
TECHNOLOGIl'

3.1 Device Output Processing

The Sensable Phantom Desktop haptic device has six degrees of freedom - three

Cartesian axes plus three angles (roll, pitch and yaw). Currently, the module asks the

device only for the 3D Cartesian information, the angles are ignored. It is possible

to get the full position information after minor code changes. This is described in

the source code documentation in Section "Data Exchange".

The device is asked to provide the handle position as 3D Cartesian coordinates

in the device space and the unit of measurement is millimeter. The device space is

fixed and its consistency is ensured by the calibration procedure. The output values

are meant to control positioning actuators working in their own Cartesian coordinate

system, so the Haptic Module needs to convert the data from one space to another.

The first idea was to directly map the device output to the actuator space via a

linear transformation, but this approach has a serious disadvantage. The assumed

movement of the actuators is much slower compared to the handle movement, which

depends only on user's will. The question is, how to deal with the situation when the

user takes a sequence of quick moves in various directions. The controlled actuators

can either follow the drawn trajectory or just track the last point of it.

The first possibility is not flexible enough, because when the actuators would

follow the way-points, they logically cannot respond to actual data quick enough,

which can be even dangerous in certain situations.

The second approach is not suitable when a user changes the point to follow

frequently, because that means to keep sending to an actuator requests for the new

position immediately followed by requests to stop the movement. Moreover, there

is no guarantee that all actuator types provide the command to interrupt current

movement.

The solution of this problem is not to map device's coordinates directly to ac­

tuator's coordinates, but to map handle displacement to the desired speed of the

actuators. In fact, this means to simulate behavior similar to the well known joystick

controller. When the handle is in its zero position, nothing is happening, but when

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
25

it is displaced, the desired speed is set to be proportional to the displacement. So

this linear conversion (in fact scaling) is another task for this module.

The used device does not provide any built-in scaling of the output. That is why

the Haptic Module provides functionality for linear output scaling according to a

defined range of desired output values. The real range of device's output values is

mapped linearly to the desired range. The real range of device's output, which is in

fact the boundary of the device space, is asked directly from the device.

Moreover, a dead band can be defined. The dead band is a zone around handle's

zero point where any displacement is considered as zero. The purpose of this measure

is to minimize an influence of disturbing effects caused by a human operator - for

example shaking hands.

The last output parameter, not mentioned yet, is an output of a button. A

haptic device can provide several buttons similar to the ones of common computer

mice. The module can also handle a button and send the information the button

was clicked to the framework.

:HapticComm :CHatpticDataOut :CHatpticFiber

I 1: SamplingTimer::timeout()

1

3: scaled

15="

4: SIGNAL(DataFteady)|-> SLOT(HandleNewData)

5: getData()

Fig. 3.2: Haptic output data exchange

Figure 3.2 schematically shows the way another software module represented by

the class HapticComm can get the output data from the haptic module. A software

periodic timer determines how often the instance of CHapticDataOut is to be filled.

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC. N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
26

The instance is also responsible for the scaling. After that, CHapticFiber emits a

signal DataReaty to notify the listening module (or modules), that fresh data are

available.

3.2 Device Input Processing

The only data the framework may send to the device are values of desired forces in

Newtons. The module provides exactly the same possibilities for linear input scaling

(including the dead band) as in case of the output processing.

This part provides one more interesting feature - the axes locking. The module

can be commanded to lock any of the axis in which the handle moves. If an axis

is locked, all the incoming desired forces are discarded and a new force value is

computed instead. The new force is generated to restrict the handle to leave the

dead band in the locked axis direction.

A simple P controller is used to achieve this behavior. When the distance from

the zero of the locked axis is greater than the size of the dead band, the difference

of those two values is used as an input for the P controller. The controller's gain is

tuned to allow only a very small violation of the dead band.

Even the smallest measurable distance from the boundary of the dead band

would result in sending new data, which is not the desired behavior of a locked axis.

That is why the module discards also all outgoing data from locked axes.

Lock.:

Dataln.x

% 2 > P Controller
Haptic Device hx DataOut.x

Fig. 3.3: Axis locker block diagram - x axis

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NIKAC N ICH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
27

Figure 3.3 shows the described locking functionality in a form of a block diagram.

The control circuit for the unlocked x axis is displayed. The circuits for the other

axes are identical. The haptic device is displayed as one simple block, since its

inner control algorithms controlling directly the hardware are embedded into the

driver and thus invisible for the module. The symbol Dataln.x represents the force

requested by a user, the Px is the requested force from the P controller, the symbol

Fx is the requested force entering the device, the hx represents the current handle's

displacement in the axis, the dx is the dead band of the axis and the DataOut.x is

the output sent to a user. The symbol Lock.x represents the command to lock the

axis.

The feature of axis locking is useful, for example, when a user wants to move an

actuator only in one axis at the time. He can lock the other axes not to accidentally

cause any movement in unwanted direction.

If all the axes are locked at the same time, a side effect is, that the device, in

fact, simulates the handle is being inside a virtual cube. The dimensions of the cube

are determined by the axes dead band dimensions. The dead band must not be too

thin or even of zero size while using the locking, because the too thin dead band

may cause oscillations.

The class responsible for the locking is called CAxisLocker, it can be seen in

Figure 3.1.

:HapticComi im J :CHapticDatali aln I :CHatpticFiber

T

1:fill
2: scaled

< L
3: SIGNAL(DataFteady) -> SLOT(UpdateForces)

Fig. 3.4: Haptic input data exchange

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
28

Figure 3.4 schematically shows the way another software module represented

by the class HapticComm can send data to the haptic module. After the instance of

CHapticDataln is filled, the sending module is supposed to notify the CHapticFiber

using its slot UpdateForces, that new data are available.

3.3 State Machine

To allow the haptic device to run in different modes without any source code changes,

this module provides a software finite state machine. Every state represents one

mode of operation. Current implementation provides an idle state, a calibration, a

normal run and an initialization.

As was already described, the handle's displacement from the zero point is con­

verted to the desired actuator speed. When the program is started, the handle can

be in any possible position, so the displacement can be big. Without any safety

measure actuators could start moving immediately after the module is started. This

behavior is dangerous and highly unwanted. That is why the state machine contains

the initialization state. This state moves the handle to the zero point of the device

space and holds this position. The movement is based on the same principle as the

axis locking - a P controller.

This way of initialization prevents the actuators from unwanted moving after the

start, but it introduces a new problem. Without any additional measures, the handle

starts moving when the program is started. In an extreme case it could damage itself

or an obstacle standing in its way. That is the reason the state machine has the idle

state.

The idle state is very simple - no data are grabbed from device (except for the

button click) and no forces are generated. So it is suitable to be the starting state. A

user is supposed to start the program, hold the handle and switch to the initialization

state when he is ready. The idle state may be used in any other situation when the

device should be just idle.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
29

The next provided state is responsible for the device calibration. In case of the

Phantom Desktop device, it means just to move the handle around the device space

until it is configured.

It is possible to use this state instead of the idle state at the place before the

initialization, because calibration does not generate any forces either.

The last remaining state is the run state. This one represents the normal duty

- all measurements are taken and the device forces are generated according to the

desired forces.

It is obvious that the particular order of the states as well as the transition

conditions must be defined according to current hardware configuration. The source

code documentation describes needed modifications of the code in order to adjust

the transitions or even the states - see module "User API". A n effort was made to

make the corresponding code as flexible as possible.

The state diagram 3.5 shows the current state machine configuration. A l l the

state transitions are driven by a single click of the device button.

T
ClickedO

f A ClickedO f \ ClickedO (\
Calibration Initialization Run Calibration Initialization Run

>- •>

Fig. 3.5: State machine current configuration

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
30

4 MACHINE VISION M O D U L E SOFTWARE

DESIGN

The basic requirements concerning the Machine Vision Module were already stated

in the Introduction. Let us take a more detailed look now. This module provides a

functionality for camera type agnostic image acquisition, for processing of images,

for storing them and for visualizing the results. Further in this text the name "image

processing chain" is used for all those task together.

Logic

Image buffer Output buffer

Image acquisition Image processing GUI GUI

Processed image

Unprocessed image

Anv image

File writer

Fig. 4.1: Image processing chain

Figure 4.1 shows basic structure of the image processing chain. Every thick line

drawn bar means one thread. The structure is quite self-explanatory except for

the fact the main processing thread puts also unprocessed images into the output

buffer. A user will most likely want the GUI to show him/her the image from camera

and next to it the corresponding image resulting processed image. That is why the

second buffer can store two sorts of images.

The next question is, why the processing thread is responsible for feeding the out­

put buffer with unprocessed images. Especially when the GUI (or another consumer

thread) could ask for them directly the first buffer and avoid copying data between

the two buffers. The problem is, that the consumer threads have lower priority, so

they are slow and can be few frames behind the acquisition. In this situation the

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
31

synchronization of the "before" and "after" images would be very difficult. When the

processing itself is responsible for feeding the output buffer with pairs of correspond­

ing images, no complicated image synchronization is needed. The only drawback is

the mentioned necessity of copying data from one buffer to the other. The copying

overhead is negligible compared to the data processing overhead, Section 5.2.1 gives

a proof.

D a q B u f f t

imdaq
+ prepareDaqBufferO
+ imdaqO
+ getCamFeatValuesO
+ ge tBusDependen tO
+ se tBusDependen tO
+ ChangeCamFeatureValueQ

Logic
+ Logic()
+ ~ LogicO
+ GetNewDataO
+ Ready4New()
+ getCamFeatValuesO
+ ge tCamBusDependen tO
+ isChainStoppedO
+ St art ()
+ StopO
+ PauseO
+ ChangeCamFeture Valued
+ se tCamBusDependen tQ

ProcessingCore
+ ProcessingCoreO
+ ProcessingCoreO
+ coreO

Out Buff t

GUIcomm
+ GUIcommO
+ ~ GUIcommO
+ SetGUIReady()
+ StartSamplingO
+ StopStamplingO
+ Print St at s()
+ Ge tNewDataO

Processi ngCoreBase
+ Process ingCoreBaseO
+ Process ingCoreBaseO
+ RegisterNewlnputO
+ P re pa re Out Buff 0
+ mainJoopO
+ coreO
+ Pr intStatsQ

imwriter
+ imwri terO
+ VideoCapStartO
+ VideoCapStopO
+ ImageCapStartO
+ ImageCapStopQ

Fig. 4.2: Image processing chain - class diagram

Figure 4.2 shows almost the same as the chain block diagram in Figure 4.1, but

expressed by U M L class diagram. This diagram is here to connect the provided

chain description and the implemented source code. The imdaq class represents

the image acquisition, the ProcessingBase and the ProcessingCore represent the

image processing, the GUIcomm is a part of the GUI and the imwriter corresponds

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
32

to the file writer. The remaining classes DaqBuff _t and Out Buff _t represent the

image buffer and the output buffer.

This module depends on the OpenCV library, which is an open-source library

for image processing briefly described in Section 2.4. The module is supposed to

run in the Xenomai environment, but could be ported to another environment by

following recommendations in Section 4.7.

Section 4.1 deals with the image acquisition part. Section 4.2 discusses the image

processing part design including the current algorithm and future plans. Section 4.3

describes the design of the buffers. Section 4.4 deals with the GUI design. Section

4.5 discusses the design of the image writer part. Section 4.6 describes real time

capabilities of the module. Section 4.7 deals with the problem of code migration to

a different platform. Finally, Section 4.8 describes the way of the error handling in

the module.

4.1 Image Acquisition

The first step of the processing chain is the image acquisition. It is supposed to

support as many camera types as possible. The OpenCV provides an abstract

layer encapsulating many commonly used cameras, but unfortunately at least in the

current version 2.1.0 this layer has several serious drawbacks. The biggest one is that

the possibilities of camera parameters configuration are very restricted. For example

there is no possibility to set a bus speed for Fire Wire cameras. Although the support

for many camera types is required, the framework is currently used mainly together

with the FireWire cameras. Speaking about FireWire cameras, there is another

problem to be mentioned. A low level function used in the OpenCV to grab data

from a camera waits for the data without any timeout. So when the camera stops

to send data, e.g. because of some error, the function will block forever, which is

not acceptable.

This was just an example, there are a few more similar issues common for all

camera types. It is impossible to ask camera for a list of supported video modes etc.

TIVYSOKE
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
33

This information implies that OpenCV is not suitable for image grabbing. Now

there are two possibilities. The first one is to write our own camera module from

scratch and the second one is to modify the OpenCV. The first approach means

lots of work and takes lots of time spent writing and especially testing. The second

one means to create our own version of the OpenCV possibly incompatible with

its newer releases. Fortunately, the OpenCV classes, which need the modification

have important methods defined as virtual. So I decided for a compromise - to

copy these classes to my project, to inherit from them and finally to redefine those

important members. This solution uses existing tested code of the OpenCV and is

also compatible with its newer versions, at least as long as they do not change the

inner structure dramatically.

imdaq
+ prepareDaqBufferO
+ imdaqO
+ getCamFeatValuesO
+ ge tBusDependen tO
+ se tBusDependentO
+ getBr ightnessO
+ getFPS()
+ ChangeCamFeatureValueQ

cv::VideoCapture
+ VideoCaptureO
+ VideoCaptureO
+ VideoCaptureO
+ ~ VideoCaptureO
+ open()
+ open()
+ isOpenedO
+ re leased
+ grabO
+ r e t r i e v e d
+ operator > > ()
+ se t ()
+ ge t ()

CvCapture
+ ~ CvCaptureO
+ ge tProper tyO
+ se tProper tyO
+ grabFrameO
+ ret r ieveFrameO
+ queryFrameO
+ getCaptureDomainO

+ ~ CvCaptureO
+ ge tProper tyO
+ se tProper tyO
+ grabFrameO
+ ret r ieveFrameO
+ queryFrameO
+ getCaptureDomainO

VideoCapture
+ open()
+ _VideoCapture()
+ _VideoCapture()
+ ge tBusDependen tO
+ se tBusDependen tO

CvCaptu reCAM DC1394_v2_CPP
+ CvCapture CAM_DC1394_v2_CPP0
+ ~ CvCaptureCAM_DC1394_v2_CPP()
+ open()
+ c losed
+ getProper tyO
+ setProper tyO
+ grabFrameO
+ retr ieveFrameO
+ getCaptureDomainO

0..1

CvCapt ureCAM_DC1394_v2_EX
+ CvCaptureCAM_DC1394_v2_EX()
+ se tProper tyO
+ getProper tyO
+ grabFrameO
+ ge tBusDependen tO
+ se tBusDependen tO

Fig. 4.3: Tailored OpenCV classes

Figure 4.3 shows relationships between the original OpenCV classes Video-

Capture, CvCapture, CvCaptureCAM_DC1394_v2_CPP and the newly implemented

classes CvCaptureCAM_DC1394_v2_EX, _VideoCapture. The class imdaq is here just

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
34

to demonstrate how this part belongs to the chain class diagram 4.2.

The class VideoCapture is the mentioned layer providing generalized camera

API . More precisely, it provides support also for video files, but that is not important

in this project. The class CvCapture is in fact core of the VideoCapture, because

it defines A P I every particular camera class must implement.

As can be seen the .VideoCapture just redefines few methods and adds a new

functionality regarding the camera type dependent settings.

As was said already, the most important cameras are the Fire Wire ones at the

moment. That is why all the significant modifications are Fire Wire related. But

that does not mean the module is not ready for the other types, it certainly is. It

is legal to use the other ones, but you cannot use the extra settings - e.g. ask the

camera for a list of supported video modes, frame rates etc, because those settings

are camera type specific and currently were implemented for Fire Wire cameras only.

That is why Figure 4.3 does not show, for example, a vJ^l camera related classes. It

shows only the common ones and FireWire ones.

The FireWire modifications are represented by the class CvCaptureCAM_-

DC1394_v2_EX, which redefines few methods from the CvCaptureCAM_DC1394_v2_CPP

and adds also a few extensions.

Anyway, the code documentation is written to make the developing of the bus

dependent settings functionality for custom camera type as easy as possible - see

"Tailored OpenCV Parts".

The thread running the data acquisition has together with the image processing

one the highest priority. It also should be real time capable, but there is a serious

complication, described in Section 4.6.

4.2 Image Processing

The image processing is supposed to be user defined. The main task here is to find

a compromise between the amount of the developer's effort and the user's effort.

The envelop should provide the user a possibility to define the algorithms as easily

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NIKAC N ICH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
35

as possible and, on the other hand, cost the developer as little effort as possible.

Obviously, to lower the effort on one side means to increase the effort on the other

side.

In the end, I decided for the easiest way for a developer and thus the hardest

for a user. The main reason was the complexity of the other possibilities and the

limited amount of time. At least Section 4.2.2 discusses the other possible solutions.

The chosen solution means to create a base class providing all the functionality

needed for the processing but not providing the processing itself - the Process-

ing_Core_Base class in Figure 4.2. A user is supposed to inherit from this base

class and define one virtual method, which is the core of the processing. It is called

every iteration while the supporting actions are done behind the scene and a user

need not care about them. This derived class is the Processing_Core in Figure 4.2.

So the summary is, that currently the user has to write the algorithm in C++

and the only simplification is that he need not care about data exchange between

threads, synchronization etc. Anyway, he has to obey certain rules not to violate

real time behavior. The rules are discussed in Section 4.6.

It is recommended to use the OpenCV framework to implement the custom

algorithm, since the chain uses its classes to represent the image data.

4.2.1 Current Algorithm

The current configuration of this module contains a simple algorithm for tracking

liquid in a special cartridge. This algorithm was developed as a part of completely

different project and was written by someone else. The tracking itself is not impor­

tant for this project, it serves only as an example how to use this module together

with a custom algorithm. The source code documentation says more about this

problem and gives hints how to define a new algorithm.

Moreover, this tracking algorithm violates real time behavior of the module,

because it contains OpenCV function cvCalcMotionGradient (). This function dy­

namically allocates some of its local objects and it is not allowed to do that in real

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
36

time context. Section 4.6 explains how to avoid such problems.

4.2.2 Other Ways to Implement User Denned Algorithm

A more difficult solution for a developer and at the same time more convenient for

a user would be to use dynamic libraries. The user defined algorithm would live in

a dynamic library and the module could load it. This solution is better than the

existing one, because it enables algorithm switching on the fly - the module can

unload current library, load another one etc.

Usually, people educated in field of image processing are more familiar with

Matlab environment than with C++. A translator from Matlab language to C++

code could be added to the library oriented solution to make it even more user

convenient.

Matlab provides so called Real-Time Workshop, which is capable of generating

C / C + + code from Simulink models and Matlab scripts [31].

Since Xenomai provides also RTAI A P I via the skins, it would be theoretically

possible to use the RTAI-Lab or at least its parts as the code generator.

A n alternative to those conversions of Matlab source is to create a set of basic

parametrized image processing operations (threshold etc.) and allow a user to build

the algorithm from those basic blocks. Flexibility of this solution is obviously low,

unless a developer is willing to prepare a huge set of those basic blocks. But even if

a developer was willing, to prepare such a set would be very infective in this case.

However, all the described possibilities are supposed to be just a hint for the

future developers. The final decision is out of scope of this thesis.

4.3 Buffers and Data Exchange

One of the most important and also one of the most challenging problems is the

data exchange among the threads of the processing chain, as illustrated in Figure

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
37

4.1. As can be seen from this picture, all needed data exchange is provided by two

buffers - the Image Acquisition Buffer and the Output Buffer.

Although both of them hold different data types, their inner structure is the

same. They are internally represented as ring buffers (also called circular buffers)

based on a linear linked list. Such a structure is very convenient to use, because

there is no need to care about index overflow and even about indexes at all. The

both buffers are single writer, which makes situation a bit easier. The number of

readers is not limited.

Since there is no similar structure provided by Qt or OpenCV, it was whole

written from a scratch.

The buffer structure keeps track of a writer pointer (referred as writer in the

following) and about all reader pointers (referred as readers). Before the detailed

description how the structure handles those pointers, let us assume that the buffer

is meant to be accessed from different threads.

4.3.1 Writer Thread

If a thread calls buffer's writing method to put some data to a buffer, the buffer

structure checks the buffer cell currently pointed by the writer. If this cell is pointed

by any reader, it is considered as occupied and the writer moves to the next cell.

Besides that the writer marks the occupied cell as outdated to prevent the other

readers from reading it in the future. Readers skip outdated cells. This is important

because of data continuity. The cells before the outdated one contain newer data. So

the outdated one is a hole that must be skipped by every reader not to mix old and

new data. It is assumed that algorithms using data from a buffer can accept a data

loss caused by too quick writer, but they cannot accept a stream of new continuous

data corrupt by one old image. Since the buffer is circular, the writer returns to the

skipped cell soon and deletes the outdated mark when finishes its filling with new

data.

The writer skips occupied cells until it finds a free cell. Then the writer copies

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
38

new data to this cell and moves to the next one and the buffer's writing method

exits. The advantage of this approach is that the writer does not block the last filled

cell, because it shifts to the next one immediately.

The last important remark is, that the buffer is not allowed to put to sleep

the thread calling buffer's method working with the writer. Or more precisely -

theoretically the writing thread can sleep, because there is a short critical section

protected by a mutex, so the thread may, in fact, sleep when it cannot acquire

the mutex. But there is nothing like a possibility to put the thread to sleep on a

condition variable etc.

4.3.2 Reader Threads

If a thread calls buffer's reading method, the method identifies the right reader and

then checks the cell after the one pointed by the reader. If it is not pointed by the

writer, the reader is shifted to it. Otherwise, the reading thread is put to sleep and

woken up by the writing method as soon as any new data are written.

If the reading thread is not put to sleep, the method checks the outdated mark.

If it is set, the method skips the cell by repeating the so far described procedure.

Otherwise the reading method returns a pointer to the cell and thus exits.

So the reader method does not copy any data, it just returns a pointer to them

and protects the cell against rewriting until the next call of the reading method

occurs.

The reader method never cares about other readers, because one cell can be read

by multiple readers at the same time without any restrictions.

4.3.3 Summary

This reader writer oriented approach has one big advantage, because the thread

synchronization on the buffer means just to protect by a mutex only the short parts

comparing the writer and reader pointers. In another words - there is no need to

protect reading or writing.

T I V ^ O K E
_U UCENt
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
39

After reading the two previous sections, a question may arise - why the writer

blocks readers when it is one cell ahead, instead of when it is at the same cell? That

is because of a smoother initialization. The buffer must be initialized to state when

the writer blocks the readers since there are no data at the very beginning. Let

us imagine the situation when the writer blocks readers pointing the same cell. So

after the initialization all the pointers point the same cell. When the writer tries to

fill this cell it has to skip it and mark it as outdated. The readers skip outdated

cells, so they will skip the very first cell, as soon as they start to work. The "writer

ahead" method has a smoother start, because there is no useless skipping.

lODataType
FBBuff_Writer

+ WhteNextO
+ PreallocateDataO
+ WriterQuitsO
+ RestartO

CoreDataType
lODataType

FbbutTbase
+ Wr i teNex tO
+ Preal locateDataO
+ Wri terQuitsO
+ Restar tO
+ ReadNextO
+ RegisterNewReaderO
+ FBBuffBaseO
+ ~ FBBuffBaseO

Fig. 4.4: Reader writer access model - class diagram

lODataType
FBBuff Read er

+ ReadNextO
+ RegisterNewReaderO

T

To provide a more comfortable user interface and to make a work with this kind

of buffers a bit safer, the implementation provides two data types to represent the

reader and the writer functionality separately. Figure 4.4 shows the basic idea. It

is possible to use a pointer of a base class type to access an instance of an inherited

class. So a thread on the writing side owns a pointer of type FBBuf f _Reader and

threads on the reading side own a pointer of type FBBuf f_Writer. This safety

measure ensures that a writer thread cannot call the reading methods and a reading

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
40

thread cannot call the writing methods. To call the writing methods from a reading

thread (or vice versa) may cause a deadlock, because of a thread waiting for itself.

This approach also prevents a reader threads from modifying a buffer and helps to

ensure that only one writer side exists.

4.4 GUI

This module also contains a standalone graphic user interface. The GUI is stan­

dalone, because the module has not been completely embedded into the CoSMic

framework yet. The GUI's purpose is to demonstrate the current capabilities of the

module.

The GUI provides basic settings widgets and a control functionality - the whole

processing chain can be started or stopped by a single button. It also visualizes the

grabbed and the processed images.

As discussed in Section 4.1, there are two sets of settings. Settings supported by

OpenCV and then camera type dependent ones. That is why the GUI provides two

settings widgets. Again, the camera type dependent widget was implemented only

for the FireWire cameras. If this module is run with any other camera type, this

widget will automatically hide itself. There are hints on how to implement similar

widget for different cameras, in the source documentation (see EXsettingsFW class

reference).

Anyway, the most beneficial part of the GUI is the widget to display images - to

display the OpenCV native image format in a Qt based GUI. Since both of those

frameworks are quite popular, this widget can find its place also in another future

project.

So far it was mentioned just as "widget" but, in fact, there are two widgets. Their

functionality is the same, but one is based on software rendering (class OCVdisplay)

and the other one on Open Graphics Library (OpenGL) rendering (class OCVdis-

playGL). The advantage of the OpenGL version is that it moves related load from

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
41

a C P U to a Graphical Processing Unit (GPU), but unfortunately there is a seri­

ous drawback. This module is supposed to run on Linux systems and it is a well

known fact that quality of certain Linux G P U drivers is poor [32], and so can be

the OpenGL support. The result is, that the OpenGL widget may work slowly or

even refuse to work on certain system. The version without OpenGL should run

everywhere.

PropertyDialog
+ PropertyDialogO
+ ~ PropertyDialogO
+ setCamlnfoO
+ getContro ledFeaturesO

WSettings
+ WSett ingsO
+ ~ WSett ingsO
+ SetValuesO
+ getContro ledFeaturessQ

Logic

0..1

MainWindow
+ Dis t r ibute lmagesO
+ openSett ingsO
+ ReCheckExtrasO
+ PlayStopClickedO
+ ErrorCaughtO

0

EXsettingsFW
+ EXsett ingsFWO
+ ~ EXsett ingsFWO
+ Set l temValuesO
+ SetCmbxValuesO
+ get ln foO
+ TurnOff ()

OCVdisplay
+ OCVdisplay()
+ DrawlmageO

OCVdisplayGL
+ OCVdisplayGL()
+ paintGLO
+ resizeGLO
+ DrawlmageO

Fig. 4.5: GUI class diagram

Diagram 4.5 shows the main GUI classes. The class Logic is here just to demon­

strate the relationship between the GUI and the processing chain. The discussed

widgets can be identified in the diagram by the class names quite easily - the only

confusing name could be WSettings, which is a widget handling the basic set of

settings.

The diagram is a little bit inaccurate for the sake of simplicity. A l l the aggre­

gations (except for the one between Logic and MainWindow) are not that direct.

Since the used IDE (Qt Creator) provides a GUI design support that can generate

pieces of source code automatically, there is one more layer in the middle of the

aggregations.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
42

4.5 Image Writer

The last part of the image processing chain is the Image Writer. Its task is obvious

- to store images (no matter if the processed ones or the ones directly from camera)

in form of file sequences or a video file. The thread the writer is running in has

together with the GUI thread the lowest priority.

OpenCV provides classes for convenient writing of OpenCV images to a harddrive

in one of the typical formats. So the code of this part is very short and simple.

4.6 Real time Capabilities

As mentioned in the introduction, this module was designed to fulfill certain real

time requirements. Although it is based on the Xenomai Linux extension (Section

2.1.2) it cannot be fully real time. The reason is that, there is no suitable Fire Wire

driver compatible with the current version of Xenomai (or Rtai). This situation

forces the module to use the ordinary Linux driver, which is not designed to be real

time. To call the driver related kernel services means to switch the execution to the

Xenomai secondary mode (Section 2.1.2).

The maximal care was taken not to create any new problems preventing the

module from running in real time. If there is a suitable driver in the future, the

module will run in real time. Obviously, certain modifications of the image data

acquisition part will be needed to make it compatible with the new driver's API ,

but this is not important right now.

Important is to keep in mind, how to modify the existing code or how to define

a custom image processing algorithm in a real time friendly way. The rule number

one says, that it is prohibited to call any native Linux kernel service. Those services

are usually called via library functions like printf () , pthread_create() etc. Use

Xenomai equivalents where possible or avoid those functions completely.

The rule number two says, that one must avoid dynamic memory allocation.

There are lots of data to allocate in this module, but all the allocations are done

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
43

before the main loops of the threads. A l l is pre-allocated.

The first advice to avoid dynamic allocations is to pre-allocate everything pos­

sible. Unfortunately, this advice is useless for the user image processing algorithm,

because there is no suitable place for the pre-allocation in this part. The second

possibility is to use the allocation routines provided by Xenomai, explained in the

related part of the A P I documentation [33].

Anyway, the two approaches are suitable only for a custom code. The situation

is even more complicated when a user wants to exploit a third party library, for

example OpenCV. Then there are only two options. First, to modify the code of

a library to force it to use pre-allocations, or the Xenomai heap management. The

conversion to the real time heap management can be done by overloading the new

and the delete operators.

The second option on how to use a third party library is just to avoid all functions

that allocate memory dynamically.

Fortunately, Xenomai (and thus this module) provides functionality to detect

real time behavior violating spots - see XenoSwitchWatchdog class reference.

4.7 Code Migration

Every operating system provides its own A P I for thread management. This module

provides an abstract layers unifying certain parts of the threading related API . That

significantly simplifies a migration of the whole module to a different operating

system. The only action that has to be taken is to write a short code connecting

the selected system's threading A P I with the abstract layers.

Currently, the module can be switched between Xenomai and Linux mode. The

popular tools like Valgring are not Xenomai compatible. That is why the pure Linux

port was made.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NIKAC N ICH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
44

QThread

QThread_rt
convertToRealtimeO

QNonRtThread
run()
convertToReal t imeO

FibThread

QXenoThread
run()
convertToRealt imeO

Fig. 4.6: Unified thread representation - class diagram

4.7.1 Unified Threading

As can be seen in Figure 4.6, the whole layer is based on the QThread class. This

fact itself provides a certain level of generalization, because Qt can run at Linux,

Windows and Mac OS X . So the portability among the major operating systems

is achieved, but we need to add something more to cover also real time systems.

Paradoxically, here the QThread happens to be a limiting factor, because it restricts

possible RT systems only to RT extensions of the mentioned major operating sys­

tems. But that is acceptable in this project, since we consider only the RT extensions

of Linux.

The next class introduced in Figure 4.6 is QThread_rt. It just adds one method

- the method to convert an ordinary thread to RT thread. This level of the diagram

defines the API .

The most important inheritance level in Figure 4.6 is the one providing classes

QNonRtThread and QXenoThread. Those classes are two implementations of the API

defined by the previous described classes. If someone wants to add a support, for

example, for the RTAI API , he needs to add his own class to this level.

The last level contains the class meant to be instantiated in the program. This

class is in fact the unified layer. In the situation described in Figure 4.6 it inherits

from QNonRtThread, but the trick is, that this inheritance is conditional, based on

preprocessor macros.

TIVYSOKE
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
45

This model has a huge advantage. It allows to extend the set of supported APIs

very easily and at the cost of minimal changes of the existing code.

No matter of the chosen implementation, the usage of the class FibThread is,

in fact, the same as the usage of the original QThread - the only difference is that

FibThread provides the function allowing to convert a running thread into a real

time thread.

The source code documentation provides more details about the abstract layer -

see "Threading support".

4.7.2 Unified Synchronization

The module provides the class FibThread representing a generalized thread. The

project needs one more feature - unified synchronization objects. Currently, only

two types are in use - mutex and condition variable. Their generalization is done

in the same way, so let us focus on the mutex case only. If you compare Figure 4.6

and Figure 4.7, it is obvious, that the latter one is missing the lowest layer - the

equivalent of the FibThread class. That is because the design of the generalized

mutex is older that the thread related one. This older idea is less comfortable but

the effect is the same. There is the class defining A P I and the classes providing

the implementation. Since there is no class encapsulating the A P I selection via

the conditional inheritance, we need pointers to the base class FBMutex and to

allocate an instance representing the chosen API . The allocation is conditional using

preprocessor directives.

The drawback of this approach is, that if someone wants to add a support for a

new API , he needs to change more places in the code.

4.8 Error Handling

Usually, there are two ways of program errors handling - the C style, when a function

return value determines whether the function was successful, and the C++ style

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
46

FBMutex
+ unlockO
+ trylockQ
+ lockO
+ get()

nonrt FBMutex
+ n o n r t F B M u t e x Q
+ ~ n o n r t F B M u t e x Q
+ unlockO
+ trylockQ
+ lockQ
+ getQ

rt FBMutex
+ n o n r t F B M u t e x Q
+ ~ n o n r t F B M u t e x Q
+ unlockO
+ trylockQ
+ lockQ
+ getQ

Fig. 4.7: Mutex representation - class diagram

using exceptions. Qt provides the signal technique (Section 2.3.1), so it is also

possible to emit a signal in case of error. That is quite similar to the exceptions,

but the signals have one huge weak point - constructors. The only way one can

handle errors in constructors is to throw an exception. It is impossible to emit a

signal from a constructor, because the related connection was not established yet.

One cannot connect signals/slots between objects that are not constructed yet. So

the connection has to be established after the call of a constructor and that is why

one cannot emit signals from constructors.

The superior CoSMic framework uses signals for the error handling. So this mod­

ule has to use them too to make the integration easier. I decided to use exceptions

internally thanks to the constructor issue. There are places in the code catching

exceptions thrown from lower layers and converting them into signals.

Unfortunately, this error handling compromise is not capable of converting all

possibly thrown exceptions. The current main constructor (MainWindow class) may

throw an exception. But this is the only place - the rest of the module does not

throw anything.

Previous Chapter 3 does not include a section similar to this one, because the

haptic module does not use exceptions at all. It uses signals for error handling.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
47

5 EXPERIMENTS

Several tests were taken to verify capabilities of the implemented modules. Since the

task of the haptic module is rather simple, only one test concerning haptic device

was taken. The rest of the tests is aimed to the vision module.

A l l the tests were run on the same computer. Its brief hardware configuration is

summarized in Table 5.1. For further information, see the enclosed file containing

the output of the Ishw command. In this configuration, OpenGL works correctly

Tab. 5.1: Testin

C P U

Width

Cores

Memory

G P U

Chipset

computer's hardware configuration

Intel Core 2 Duo C P U E6750

64 bit

2

3 GiB

GeForce 8400 GS

Intel Q35

only with the proprietary G P U driver from the manufacturer. Unfortunately, there

was no time left to make this driver run together with the Xenomai kernel. A l l the

test were performed using the software rendering.

5.1 Haptic Experiment

The purpose of this test was to verify all the implemented functionality the module

provides. The equipment consisted of the Sensable Phantom Desktop haptic device,

three actuators, a stabilized voltage supply and the testing P C . The haptic device

controlled the actuators and received values of desired forces from another software

module responsible for a voltage measurement. The desired forces were proportional

to the voltage level.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
48

A n operator was manipulating the handle and watching whether all the actuators

were moving correctly. Then he was changing the level of the analog voltage and

checking whether the device was generating corresponding forces. During both of

the tasks the operator was also locking and unlocking the axes randomly.

The test was successful and proved all the implemented functionality including

axis locking worked, but it revealed an issue, that deserves to be noted here.

The haptic module is relatively C P U time demanding because of the software

control loop embedded in the device driver and in the 3dTouch library - i.e. not

created in this project. The running module took circa one core of the processor.

When a computer is serving the device under a heavy load (other than caused by

the control loop itself) the inner closed loop cannot fulfill certain deadlines and the

device starts to operate in an unpredictable way. Moreover, the library is not robust

enough and there is a high probability of crash due to segmentation fault under

these conditions.

One could argue that an RT operating system should be used to solve this issue,

but the 3DTouch library comes only in two versions - for Windows and for Linux.

None of them is an RT operating system. Even if one decides to deploy any of the

described RT extensions, the library cannot run in the RT mode without appropriate

source code changes.

The resume is, keep this in mind and do not run any other C P U demanding

tasks on the computer dedicated to the haptic device.

5.2 Machine Vision Experiments

This section groups all experiments performed to verify Machine Vision Module's

capabilities and to learn more about its performance.

The first experiment is described in Section 5.2.1 and its purpose is to find C P U

time expensive spots in the code using the method of code profiling. The second

experiment described in Section 5.2.2 verifies whether the memory management

does not restrict the RT behavior of the module. The next experiment explained in

TTVYSOKE
I I UCENI

77 TECH NICKE
/ V BRNE

FAKULTA
bLbKI ROIbCHNIKT
AKOMUNIKAÖNlfCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
49

Section 5.2.3 compares the times needed to perform certain task of the module in

Xenomai and in Linux. Finally, the last experiment discussed in Section 5.2.4 deals

with a possible image loss among the processing chain parts.

5.2.1 Code Profiling

imdaq: :daq_loop[) <cycle 13>

156,08 %

12 159 X

cv: :VideoCapture::operator»(cv::
Mat&)

• • 5 4 . 6 3 %

12 159 X

cv::VideoCapture:: grabQ

4.63 %

12 159 X

cvGrabFrame

• • 5 4 . 6 3 %

12 159 X

• 1 x

OCVdisplay:: Draw lmage[cv:: Mat*) <
cycle 13>

• 15.22 %

[• 2 3 0 X

OCVdisplay: :Mat20lmage[cv:: Mat const
*)

• 15.11 %

CvCaptureCAM_DC1394_v2_EX::grab Frame
t)

• • 5 4 . 6 3 %

IED2 159X • 2 159 X

dcl394_convert_frames

•=140.41 %

I 11=12 159 X

dcl394_YUV411_tO_RGE

r « 4 0 . 4 1 %

cvConvertlmage

• 12.76 %

1

• 2 159 X

icvCvt_BGR2RGB_8u_C3R[unsigned char
const*, int, unsigned char*, int, CvSize)

• 12.76 %

ProcessingCore_Base::main_loop[) <
cycle 13>

• 27,54%

• 1 1 3 4 X

ProcessingCore: :core()

• 27.36 %

• 1 1 3 4 X

ProcessingCore: :update_mhi(_lpl
Image*, _lpllmage+, int, double*)

• 27.24%

Fig. 5.1: Simplified call graph - Sony DFW-V300 attached

Code profiling means to determine how long a program spends in certain routines

and how often calls them [34]. In this experiment the tool called Callgrind [35] was

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
50

used to profile the code and the tool KCachegrind [36] to visualize the results.

Callgrind is a member of the Valgrind family, which is a framework grouping several

tools for a dynamic analysis of a code [37].

This test is based on the code profiling of the Machine Vision Module and it

aims to find whether there is a place for any code optimizations resulting in a better

module performance. The module was run for certain time with a color camera Sony

DFW-V300. The camera was not focused on anything special, since the current

image processing algorithm is in the module only as a placeholder, so its results

were not important.

Figure 5.1 shows resulting call graph. Every block represents one function, ex­

cept for the block < cycle 13>, which is used by KCachegrind to group cyclically

called functions. The number inside of each block denotes how many time the pro­

gram spent inside the function. Arrows mean function calls and the numbers next

to the arrows say how many times the call was performed. This call graph is sim­

plified. Only functions that cost more than 10 % of the overall program run time

are displayed.

Figure 5.1 tells that the most C P U time expensive part is the image acquisi­

tion (daq_loop()). It is even more expensive than the whole image processing

(main_loop()) and than the GUI (DrawImageO). The main purpose of a profil­

ing is to identify places in a code that have a negative impact on a performance (so

called bottle necks). After another look at the graph, such a bottle neck in the image

acquisition can be found - dcl394_YUV411_to_RGB8(). This function is responsible

for the image data format conversion. Different cameras may send images in differ­

ent formats, so a conversion to one common format is needed and this format has to

be also compatible with OpenCV. The used camera Sony DFW-V300 sends images

in the YUV411 format, so the function converts them into the RGB8 format 1 . As

can be seen, this conversion is the most expensive operation in the program.

However, this conversion is necessary and there is not much one can do with the
xTo be precise - OpenCV uses BGR format, but the next conversion from RGB to BGR is very

cheap compared to the discussed one.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
51

function. It is a part of an open-source library, so theoretically there is a possibility

to modify it and optimize it, but that would cost lots of effort and a probability that

the library is already optimized as possible is high.

There is a very simple solution to this performance issue. One cannot change

the function, but one can change the camera. This is a good place to remember the

module is camera type agnostic, so the camera change will result in a change of the

conversion procedure automatically. The next call graph in Figure 5.2 describes the

same situation as the previous one and also obeys the "above 10 %" rule. The only

difference is the camera used. Now it is Sony XCD-X710. The resulting call graph

<cycle 7>

M 9 9 . 8 5 %

ProcessingCore_Base: :main_loop[) <
cycle 7>

H 8 4 . 2 1 %

3281 X

ProcessingCore::core()

B 8 3 . 8 2 %

3281 X

ProcessingCore::update_mhi(_lpl
Image*, Jpl Image*, int. double*)

B 8 3 . 8 2 %

• 281 x

cvSegmentMotion

IZZ114.16 %

JZZI281 X

] 1 X

OCVdisplay:: DrawImagefcv:: Mat*) <
cycle 7>

IZZI12.79 %

• 110 X

OCVdisplay:: Mat2Qlmage[cv:: Mat const

1281 x

cvCalcGlobalOrientation

HZZ113.86 %

cvCalcMotionGradient

•ZI44.01 %

Fig. 5.2: Simplified call graph - Sony XCD-X710 attached

in Figure 5.2 is much simpler and especially does not contain the image acquisition

branch at all. It was pruned away because it takes less than 10 % now. The used

camera is monochromatic and thus can be asked to send data in the 8 bits per pixel

mode. To convert this format to the one OpenCV uses to represent monochromatic

images is very simple and especially cheap.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NIKAC N ICH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
52

This shows how important is to pick right camera, set up in right mode of

operation.

Remark on Data Copying

Both of the call graphs show also one more fact. Section 4 mentions the theoretical

problem of expensive data copying between buffers. The function responsible for all

significant copying in the module is memcpyO. As can be seen, none of the graphs

contains this function. That means the program spent less than 10 % of its execution

in the function. The enclosed full outputs of the profiling tool prove that the share

of the function was around 3 %. So all the copying is really negligible compared to

the image processing and to the rest of the module.

5.2.2 Pre-allocation Verification

Another useful member of the Valgrind family is the heap-profiler Massif [38]. It

shows how an analyzed program manages its memory during its run. As discussed

in Section 4.6, the right dynamic memory allocation is very important in an RT

environment. That is why the Machine Vision Module pre-allocates all image data

before the point the threads are switched to the RT mode. The aim of this test is

to prove the pre-alio cat ions work correctly.

Figure 5.3 shows a piece of Massif's profiling output, it is memory usage versus

time 2 diagram. The meaning of the characters Massif uses to build the diagram is

not important here. The only aspect that matters is the shape of the diagram.

The diagram was created under the following conditions. The program was

started in time 0, then the image processing chain was started (time A), in time B

the desired size of the taken images was lowered and finally the program was killed

in time denoted as C. If a user changes the desired image size, the chain has to be

stopped first. Then the module performs a new pre-allocation before it starts the

chain again. So there should be two rapid changes of the allocated memory amount
2The time is expressed in number of executed instructions.

TIVYSOKE
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
53

Fig. 5.3: Memory allocation profile - pre-allocation enabled

around the points A and B, because of the related pre-allocations. That is exactly

what can be seen in Figure 5.3.

But this is not yet the promised proof. The proof is the obvious difference be­

tween discussed Figure 5.3 and Figure 5.4. Both of them show the similar situation,

but the latter was created with disabled pre-allocations.

Disabled pre-allocation means that the data are allocated when they are really

needed. The memory is allocated step by step in smaller pieces for a certain amount

of time. Figure 5.4 demonstrates this behavior. The curve of the diagram starts to

increase slowly in the spot A and to decrease again in B.

To conclude this discussion - a working pre-allocation means a rapid change of the

used memory in a short time. The situation without a pre-allocation is characterized

by many smaller changes spread around a longer time interval, because the memory

is allocated when it is needed. Figure 5.3 and especially the attached Massif's

output file, which was the diagram taken from, prove the pre-allocation approach

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
AKOMUNIKAÖNlfCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
54

MB

187.4-

Q##
@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

@#

0 + -
0

C->Gi
9.155

Fig. 5.4: Memory allocation profile - pre-allocation disabled

works correctly.

One last remark - the corresponding spots A, B and C are not exactly at the same

places at the time axis of the figures. That is because the program was controlled by

a human during the test, so it was impossible to achieve a precious timing. Anyway,

a precious timing is not needed here.

5.2.3 Processing Times

The aim of this experiment is to compare times needed by the module to perform

certain tasks, while running in Xenomai and in Linux environment. This measure­

ment is not meant to be a scientific proof of the module qualities in the Xenomai

mode. Its purpose is to find out, whether one can expect a better time related

behavior of the Xenomai version even despite the restriction of the RT capabilities

described in Section 4.6.

This experiment is based on a measurement and a statistical evaluation of two

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
55

time intervals in the running module. The first interval 7\ represents the time be­

tween the finished image acquisition and the finished image processing (the point

when the processed image is in the output buffer already). The interval T2 deter­

mines the time between the finished image processing and the finished drawing by

GUI. The statistical evaluation means, that the module also computes the mean

value and the sample standard deviation of the measured intervals.

No special tool was used, since the module provides the desired information. Two

sets of measurements were taken. The first was performed with the module in the

non RT mode and the second one with the module in the Xenomai mode. In both

cases the module was let running for about twelve hours with the color camera Sony

DFW-V300, configured to send images with resolution 800x600 and framerate 7.5

fps. The camera was not pointed at anything special. Table 5.2 shows the results of

the first set and Table 5.3 the results of the second one.

Tab. 5.2: Statistical time measurement based on 418633 samples, Linux mode

train [ms] tavg [ms] traax [ms] s [ms]

Ti 18.1844 34.0191 219.2550 2.1922 • 104

T2 36.0622 58.6217 337.573 3.4305 • 104

Tab. 5.3: Statistical time measurement based on 436627 samples, Xenomai mode

train [ms] taVg [ms] traax [ms] s [ms]

Ti 28.0656 48.6059 98.2234 1.1183 103

T2 44.5772 68.2044 209.7330 1.2038 103

After a comparison of those two tables, it is obvious that the ranges < tmin,tmax >

are shorter and the standard deviations are smaller in case of the Xenomai results.

Now a question can arise - how is it possible to achieve such a huge standard

deviation in the RT environment? First, there are certain restrictions of the RT

capabilities described in 4.6, but even if there were no such restrictions, the standard

TIVYSOKE
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
56

deviation could be high. The reason is that the image processing algorithm does

not work in a constant time. The time of its executions depends on the quality of

input images - not on operating system's RT capabilities.

However, the interval T 2 is independent on the time of processing and its standard

deviation is huge too. That is true, but the GUI thread runs with the lowest priority,

in fact not in RT mode.

There are still two more possible questions. First, why are the Xenomai results

slightly better (shortest ranges < tmin,tmax > and smaller standard deviations)

despite the restrictions mentioned in Section 4.6? The main restriction of the RT

behavior is the absence of the RT driver causing switches to the Xenomai secondary

mode. But that does not mean the thread exits the primary mode for good, it can

be entered again by calling any Xenomai service. A program exiting the primary

mode periodically cannot guarantee bounded maximal processing times, but as the

tables show, it is still able to achieve shorter maximal values than a program running

completely in the secondary mode.

One last question remains. Why are the mean values of the time intervals smaller

in Linux than in Xenomai? It is important to realize, that "real time" need not

mean "quick" [5]. Since a RT system is designed to fulfill certain deadlines, its inner

structure logically has to be more complicated than the structure of a non RT system.

That is why a performance of a RT system may be worse than a performance of a

comparable non real time system. A l l the changes making the system real time cost

some C P U time. The discussed issue of the higher means in Xenomai environment

is a good example of this behavior.

A weakness of this test is a fact, that there was no defined scene to be a reference

input for the camera. The input was random, but for a significant amount of time it

was static, because the measurements were done partially during the night. Anyway,

there is no guarantee the input was the same during the both measurements and

different inputs can result in different times the image processing takes. On the other

hand, the interval T2 is independent on the time of processing, as noted already. So

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
AKOMUNIKAÖNlfCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
57

the T 2 should be more reliable.

The reason why a reference image was not used as the common input for both

of the experiments, is that this would mean to bypass the image acquisition. Since

the image acquisition part contains the RT related issue described in Section 4.6, it

had to be included in this experiment.

This test proves, it makes sense to use Xenomai for this module even despite the

restriction of the RT capabilities described in Section 4.6. More precisely, it makes

sense when a bounded interval of possible processing times is needed. When one

prefers shorter average processing times, the Linux solution is better.

5.2.4 Processing Chain Data Loss

If a writer is putting data to a buffer quicker than a reader is consuming them, a

data loss may occur. The image processing chain contains two buffers, so there are

two possible spots, where a data loss may occur. The purpose of this experiment is

to determine how serious the losses are.

The module uses image indexes to determine how many images were lost. Table

5.4 summarizes data losses between the image processing part and the GUI. Data

losses between the data acquisition and the processing are not displayed, because

there were not any during the test. The test conditions were very simple - running

module using the Sony DFW-V300 camera. A l l possible combination of frame rates

and image resolution were tested. The "-" sign in the table denotes a combination

which is not possible for this camera.

The GUI thread has a low priority and it is acceptable for it to lose a certain

amount of images, but the numbers in the last row of Table 5.4 are unacceptable

- the GUI cannot afford to lose over 40% of incoming images. But there is one

additional fact, that should be mentioned. The GUI takes data from the buffer with

constant period, which was at the time of the test set to 100 ms. Logically, if there

are 30 incoming images per second and the drawing rate is 10 per second, a data

loss is imminent.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NIKAC N ICH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
58

Tab. 5.4: Data loss dependency on frame rate and image resolution

fps [s 1] Image loss [s - 1]

160x120 320x240 640x480

3.75 - 0 -

7.5 0 0 0

15 4.8 4.8 8

30 12.8 12.8 -

The same test was taken with the module compiled in Xenomai mode, but the

results remained the same.

It would be interesting to repeat this test with the GUI sampling set to some

reasonable value. Another interesting test would be to observe the dependency of

the values in the table on the priority of the GUI thread.

This experiment reveals how important the mentioned sampling period is. A l ­

though it is probably not evident, the most important result of this test is the proof

there was no data loss between the data acquisition and data processing parts. This

result is very positive, because any data loss between those two parts is unacceptable.

5.2.5 Summary

The first experiment in Section 5.2.1 is dedicated to the code profiling of the module.

The experiment shows that the conversion between a camera native image format

and the format used in the module can be surprisingly C P U time expensive. It also

shows that the C P U load caused by the data copying performed in the module is

negligible compared to the data processing load. So there is no need to avoid the

possibly problematic copying discussed in Section 4.

The experiment from Section 5.2.2 verifies the functionality of the memory pre-

allocation measures. It discusses a memory profiler output to successfully prove the

measures work correctly.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
59

The experiment discussed in Section 5.2.3, deals with the image processing times.

It showed that in the current configuration Xenomai was able to ensure shorter

maximal processing times even despite the RT restrictions explained in Section 4.6.

On the other hand, the experiment shows that a non RT solution should be chosen

instead, if the shorter average processing times are more important.

The Data Loss experiment described in Section 5.2.4 showed that there were no

image losses between the image acquisition and the image processing parts. Also,

it revealed the important fact, that it was a bad idea not to adjust image sampling

timer of the GUI to a current frame rate.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
60

6 CONCLUSION

This chapter summarizes all the issues discussed so far and also proposes steps to

take in order to improve the existing implementations.

6.1 Achievements

The most significant contribution of the thesis is the design and the implementation

of the two software modules extending the functionality of the CoSMic framework

- the Haptic Module and the Machine Vision Module (also called ViCo). The both

modules were written in C++ language using the Qt framework.

The next significant output of this work is the decision about the most suitable

real time operating system for the CoSMic platform. The system Xenomai was

chosen, because of its flexibility and especially its clear and reasonable future plans.

The Haptic Module was implemented to safely exchange data between the Sens-

able Phantom Desktop haptic device and the framework. It also provides a possibility

of the axis locking. The module can be asked to use the force generating capabilities

of a haptic device to prevent a handle movement in a direction of a certain axis.

Moreover, this module provides a software finite state machine to enable behavior

switching on the fly, and to enable a smooth and safe initialization of the device. A l l

these capabilities were successfully experimentally verified. The haptic device was

used to control three actuators and another software module was commanding the

device to generate desired forces.

The Machine Vision Module was implemented especially to provide a camera

independent envelop to hold a user defined algorithm. This envelop was supposed

to be real time capable, but this requirement was not met completely due to given

restrictions. The main restriction is the absence of a suitable FireWire driver com­

patible at least with one of the discussed real time operating systems. However,

care was taken to let this restriction to be the only one preventing the module from

real time run. This means to implement several measures, especially concerning a

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
AKOMUNIKAÖNlfCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
61

pre-allocations of all data as discussed in Section 4.6.

The module is designed as a chain where each part represents one responsibility

and runs in its own thread. The first part is responsible for the image acquisition.

It is based on tailored parts of OpenCV framework, because it provides support

for a vast range of camera types. The original OpenCV code does not provide all

needed functionality, so the code had to be extended. Since the module is intended

to be used together with Fire Wire cameras, the most of the extensions are Fire Wire

related. However, the code is written that way, that it is possible to add the extended

features for another camera types easily, but if a user does not need them, it is not

necessary to implement them.

The next part of the chain is the image processing. In fact, this is the envelop to

hold the user defined image processing algorithm. A compromise between the effort

of the developer and the effort of a user was chosen. The user has to implement

his algorithm in C++ using the provided base class, which takes care of all needed

background operations as data exchange between the threads etc. A user need not

care about the chain implementation details, but he still has to create his own C++

class.

The whole chain uses classes from OpenCV to represent image data, so it is sug­

gested to base the custom algorithm on this framework, although it is not necessary.

The chain contains also a Graphical User Interface (GUI) responsible for the

data visualization and communication with a user. A widget to display OpenCV

images in Qt based GUIs was developed. It is ready to be used in any other software

project without any changes.

A generic single writer multiple reader circular buffer class was developed to

exchange data among threads. Since the class is based on a template, it is also

ready to be used in another project immediately.

Several tests were taken to determine module's qualities. The first experiment is

based on the code profiling and it showed that the image format conversion could be

surprisingly C P U time expensive. It is very important to use a properly configured

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
62

camera and thus avoid such conversions when possible.

The second experiment successfully verified the memory pre-allocation measures.

The memory pre-allocation is a prerequisite for the desired real time behavior.

The next experiment proved that the real time operation system Xenomai was

still able to achieve smaller maximal image processing times, despite the discussed

obstacles the module contains. However, the test showed that the non real time solu­

tion was more suitable when the lower average processing times were more important

than the maximal ones.

The last experiment was meant to show possible data losses due to buffer over­

flows. It proved there were no losses between the image acquisition part and the

image processing part. This result is very important, because any image data loss

between those two parts is unacceptable. Certain data loss between the processing

and the GUI can be tolerated. This experiment showed it was very important to

adjust the sampling timer the GUI uses to grab data from the output buffer to a

current frame rate in order to lover the the losses in this spot.

6.2 Future Work

The next step that must be taken is to integrate both of the modules into the CoSMic

framework. The integration was not completed, because the needed specifications

were not ready at the time of development of the modules.

A task of a high importance will probably be to provide a better support for

the custom image processing algorithms definition. For example, to create a tool

converting existing image processing scripts in the Matlab language into dynamic

libraries attachable to the module.

The last of the most serious topics is the need to create a new Fire Wire controller

driver compatible with Xenomai and thus capable of the real time behavior.

Appropriate effort should be invested in performance enhancements. First logical

step on this way is to use the IPP to possibly speed up OpenCV operations. A good

next step would be to ensure working OpenGL on a targeted computer. That usually

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
63

means to make proprietary drivers run together with the Xenomai kernel, or to use

a G P U with sufficient support in the Linux kernel - typically Intel integrated GPUs.

The source code documentation has a special section called "todo". It is a list of

recommended minor changes to improve the code.

There is a place for different tasks than the changes in the source code. I rec­

ommend to take more tests with the Machine Vision module. Especially tests to

determine how much is the performance dependent on thread priorities and tests to

determine suitable lengths of the buffers. Then the described processing times test

should be enhanced by adding a a histogram creation functionality.

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
64

A KOMUNIKAČNÍCH
TECHNOLOGIÍ

BIBLIOGRAPHY

[1] ESSEN, Mathias von. Control Software for Micro Robotic Platform. Tampere,

2010. 75 p. Master of Science Thesis. Tampere University of Technology.

[2] SALISBURY, Kenneth. Haptics: The Technology of Touch HPCwire Spe­

cial. Nov. 10, 1995. Van Dam, Andries. "Post-Wimp User Interfaces: The

Human Connection." Available at: http://www.sensable.com/documents/

documents/Salisbury_Haptics95.pdf

[3] PHANTOM Desktop Haptic Device [online]. 2010 [cited 2010-07-08]. Sens-

Able Products and services. Available at: http://www.sensable.com/

haptic-phantom-desktop.htm

[4] V A N H E E S C H , Dimitri. Doxygen [online]. 1997-10-27, 2010-06-15 [cited 2010-

06-23]. Generate documentation at source code. Available at: http://www.

doxygen.nl/index.html.

[5] M C K E N N E Y , Paul. "Real Time" vs. "Real Fast": How to Choose?. Ot­

tawa Linux Symposium [online]. 2008-06-23, [cited 2010-07-08]. Avail-

RealTimeVsRealFast.2008.07.23a.pdf.

[6] Real-time operating system [online]. 2006, [cited 2010-06-23]. Wikipedia. Avail­

able at: http://en.wikipedia.org/wiki/Real_time_operating_system.

[7] KUČERA, Pavel. Introduction to Real Time Operation Systems [online, Czech

language]. 2008, [cited 2010-06-23]. Available at: http://sciotech.cz/tc/

lectures/mrts/data/01_uvod_cz.pdf

[8] System Management Mode [online]. 2010, [cited 2010-06-23]. Wikipedia.

Available at: http://en.wikipedia.org/wiki/System_Management_

Mode#Entering_SMM

able at: http://www.rdrop.com/users/paulmck/realtime/paper/

http://www.sensable.com/documents/
http://www.sensable.com/
http://www
http://en.wikipedia.org/wiki/Real_time_operating_system
http://sciotech.cz/tc/
http://en.wikipedia.org/wiki/System_Management_
http://www.rdrop.com/users/paulmck/realtime/paper/

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
65

[9] Linux Kernel Configuration Context Help, [cited 2010-07-12]. C O N -

F I G - P R E E M P T option.

[10] How does the CONFIG-PREEMPT_RT patch work [online]. 2001, 2010-

04-01 [cited 2010-07-08]. Real-Time Linux Wiki . Available at: https:

//rt.wiki.kernel.org/index.php/Frequently_Asked_Questions#How_

does_the_C0NFIG_PREEMPT_RT_patch_work.3F

[11] Y A G H M O U R , Karim. Adaptive Domain Environment for Operating Systems.

2001, Available at: http://opersys.com/ftp/pub/Adeos/adeos.pdf

[12] Life With Adeos. [online], 2005, [cited 2010-07-08]. Available at: http://www.

xenomai.org/documentation/xenomai-2.0/pdf/Life-with-Adeos.pdf

[13] A Tour of the Native API. [online], 2006, [cited 2010-07-08]. Avail­

able at: http://www.xenomai.org/documentation/branches/v2.3.x/pdf/

Native-API-Tour-rev-C.pdf

[14] How can GDB be used?, [online], 2010, [cited 2010-07-08]. Xenomai FAQ. Avail­

able at: http://www.xenomai.org/index.php/FAQs#How_can_GDB_be_used.

3F

[15] Real-Time Driver Model, [online], 2010, [cited 2010-07-08]. Available

at: http://www.xenomai.org/documentation/branches/v2.4.x/html/api/

group rtdm.html

[16] M A N D U C H I , Gabriele, B A R B A L A C E , Antonio, RTAI: Embedded Linux vs

Legacy RTOS. 2007, Available at: http://www.dei.unipd.it/corsi/so2/

RTAI/RTAI.pdf

[17] RTAI Configuration Context Help. [cited 2010-07-12], C O N -

FIG_RTAI_IMMEDIATE_LINUX_SYSCALL option.

[18] RTAI-Lab project, [online], 2006-01-31, 2006-07-13, [cited 2010-07-12], RTAI

- the RealTime Application Interface for Linux from D I A P M , Available

http://opersys.com/ftp/pub/Adeos/adeos.pdf
http://www
http://www.xenomai.org/documentation/branches/v2.3.x/pdf/
http://www.xenomai.org/index.php/FAQs%23How_can_GDB_be_used
http://www.xenomai.org/documentation/branches/v2.4.x/html/api/
http://www.dei.unipd.it/corsi/so2/

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
66

at: https://www.rtai.org/index.php?module=pagemaster&PAGE_user_op=

view_page&PAGE_id=8

[19] Linux Control and Measurement device interface [online], 2006, [cited 2010-07-

12], Available at: http://www.comedi.org/

[20] What are the differences between Xenomai and RTAI?. [online], 2010, [cited

2010-07-08]. Xenomai FAQ. Available at: http://www.xenomai.org/index.

php/FAQs#What_are_the_differences_between_Xeriomai_and_RTAI.3F

[21] Embedded Device Support [online]. 2006, [cited 2010-07-08]. Xenomai. Available

at: http://www.xenomai.org/index.php/Embedded_Device_Support

[22] Towards Xenomai 3 [online]. 2006, [cited 2010-07-08]. Xeno-

mai:Roadmap. Available at: http: //www. xenomai. org/index. php/Xenomai:

Roadmap#Toward_Xenomai_3

[23] Qt framework [online], 2008, [cited 2010-07-08]. Available at: http://qt.

nokia.com/products

[24] QtCreatorWhitepaper [online]. 2010 [cited 2010-07-08]. Qt Developer Network.

Available at: http: //developer. qt. nokia. com/wiki/QtCreatorWhitepaper

[25] Signals and Slots [online]. 2010 [cited 2010-07-08]. Qt 4.6. Available at: http:

//doc.trolltech.com/4.6/signalsandslots.html

[26] Why Doesn't Qt Use Templates for Signals and Slots? [online]. 2010 [cited 2010-

07-08]. Qt 4.6. Available at: http://doc.trolltech.eom/4.6/templates.

html

[27] Meta-Object System [online]. 2010 [cited 2010-07-08]. Qt 4.6. Available at:

http://doc.trolltech.com/4.6/metaobj ects.html

[28] Using the Meta-Object Compiler (moc) [online]. 2010 [cited 2010-07-08]. Qt 4.6.

Available at: http: //doc. trolltech. com/4.6/moc. html

https://www.rtai.org/index.php?module=pagemaster&PAGE_user_op=
http://www.comedi.org/
http://www.xenomai.org/index
http://www.xenomai.org/index.php/Embedded_Device_Support
http://qt
http://doc.trolltech.eom/4.6/templates
http://doc.trolltech.com/4.6/metaobj

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
AKOMUNIKAÖNlfCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
67

[29] OpenCV Wiki [online]. 2010, 2010-06-10 [cited 2010-06-23]. Welcome. Available

at: http://opencv.willowgarage.com/wiki/.

[30] Intel® Software Network, [cited 2010-06-23]. Available at: http://software.

intel.com/en-us/intel-ipp/

[31] Real-Time Workshop® 7, [cited 2010-06-23]. Available at: http://www.

mathworks.com/mason/tag/proxy.html?dataid=9547&f ileid=43808

[32] Linux Graphics Essay [online]. 2009-01-25, [cited 2010-06-23]. The Linux

Foundation. Available at: http://www.linuxfoundation.org/collaborate/

workgroups/technical-advisory-board-tab/linuxgraphicsessay

[33] Xenomai API [online]. 2010, 2010-05-05 [cited 2010-06-23]. Dynamic memory

allocation services. Available at: http://www.xenomai.org/documentation/

xenomai-2.5/html/api/group heap.html.

[34] Profiling [online]. 2001, 2010-05-26 [cited 2010-06-29]. Wikipedia. Available at:

http: //en. wikipedia. org/wiki/Prof iling_°/
0
28computer_programming°/

0
29

[35] Callgrind: a call-graph generating cache profiler [online]. 2009, [cited 2010-

06-29]. Valgrind User Manual. Available at: http://valgrind.org/docs/

manual/cl-manual.html

[36] The KCachegnnd Handbook [online]. 2009-10-07, [cited 2010-06-29]. K D E

documentation. Available at: http: //docs . kde. org/stable/en/kdesdk/

kcachegrind/index.html

[37] Valgrind [online]. 2009, [cited 2010-06-29]. Valgrind Home. Available at: http:

//valgrind.org/

[38] Massif: a heap profiler [online]. 2009, [cited 2010-06-29]. Valgrind User Manual.

Available at: http: //valgrind. org/docs/manual/ms-manual.html

http://opencv.willowgarage.com/wiki/
http://software
http://www
http://www.linuxfoundation.org/collaborate/
http://www.xenomai.org/documentation/
http://valgrind.org/docs/

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
68

LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

A P I Application Program Interface

C P U Central Processing Unit

CoSMic Control Software for Microrobotic Platform

G P U Graphical Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

IPP Intel Integrated Performance Primitives

OpenGL Open Graphics Library

POSIX Portable Operating System Interface

R T D M Real-Time Driver Model

RTOS Real Time Operating System

RT Real Time

SMI System Management Interrupt

S M M System Management Mode

STL Standard Template Library

ViCo Vision System Control

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
69

FAKULTA
tLbKI ROIbCHNIKT
A KOMUNIKACNICH
TECHNOLOGIl'

A HOW TO COMPILE LINUX K E R N E L AS

QUICK AS POSSIBLE

To set Xenomai of RTAI up and running means to compile patched kernel. Kernel

compilation is well known for its high time consumption. The purpose of this text

it to provide several hints on how to significantly speed up the compilation process.

A prerequisite of this text is a basic knowledge of the kernel compilation process on

Debian like Linux systems (you just need to know the way of compiling a kernel on

Ubuntu).

The easiest way to compile a working custom kernel is to use the config file of your

currently running distribution kernel (located in /boot) as a basic configuration

file for the custom kernel. On the other hand, to use this file leads to a very

long compilation time, because a distribution kernel has to support vast variety of

devices etc. So the very first hint is: Make your kernel configuration file as minimal

as possible.

The next hint is a little bit more sophisticated: Use distributed compilation. Usually

there are several computers in a local network and it is possible to abuse them for

the compilation. There is a Linux tool distcc providing possibility of distributed

compilation.

The last hint is also based on usage of one handy tool - ccache. This tool creates

in fact a compiler cache, so it can speed up recompilations. This is useful, because

A . l Config File

A.2 distcc

A. 3 ccache

TIVYSOKE
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA.
bLbKI ROIbCHNIKT
A KOMU NI KAC N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
70

usually at least few recompilations are need.

A.4 All Together Step by Step

The very last step is to put all those hints together. Let us call the main computer

master and the helper computers in the network slaves. Moreover, let us assume,

that all the computers contain typical development tools like gee already as well as

the described tools.

Steps to be taken on every slave:

1. export PATH="/usr/lib/ccache:$PATH"

2. distccd -daemon -allow 192.168.99.12

The IP adress is the address of the master.

Steps to be taken on the master:

1. export C0NCURRENCY_LEVEL=10

2. export PATH="/usr/lib/ccache:$PATH"

3. export DISTCC_HOSTS="130.230.42.65 localhost"

4. sudo MAKEFLAGS="HOSTCC=/usr/bin/gcc CCACHE_PREFIX=distcc" make-

kpkg -rootcmd fakeroot -initrd kernel-image

The CONCURRENCY_LEVEL determines how many jobs will be the compilation split

into. Adjust it according to the overall number of processors (I usually use 2 • N,

where N is the number of CPUs). The DISTCC_H0STS is a list of slave IP addresses,

separated with spaces - do not forget to include localhost.

The result of all this effort should be a deb package with the new kernel and it

should be built very quickly.

This procedure can be easily tailored to any other time consuming compilation.

T I V ^ O K E
_U UCENI
77 TECH NICKE
y V BRNE

FAKULTA
bLbKI ROIbCHNIKT
A KOMU NI KAC" N fCH
TECHNOLOG II

D E P T . OF C O N T R O L A N D I N S T R U M E N T A T I O N
Faculty of Electrical Engineering and Communication

Brno University of Technology
71

B SOFTWARE VERSIONS

Table B . l shows versions of all used or discussed software (if it is possible to deter­

mine a version).

Tab. B . l : Versions of used software

version

Linux kernel 2.6.31

Xenomai 2.5.3

RTAI 3.8

Qt 4.6.3

Qt Creator 1.3.1

OpenCV 2.1.0

