

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND BIOMECHANICS

VYUŽITÍ NEURONOVÝCH SÍTÍ PRO VÝPOČET PRŮBĚHU ZÁBĚROVÉ TUHOSTI SOUKOLÍ S ČELNÍMI OZUBENÝMI KOLY

USE OF NEURAL NETWORKS FOR THE STIFFNESS CALCULATION OF A SPUR GEAR TRANSMISSION

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR **Bc. Michal Planka**

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Petr Lošák, Ph.D.

BRNO 2017

Zadání diplomové práce

Ustav:	
Student:	
Studijní program:	
Studijní obor:	
Vedoucí práce:	
Akademický rok:	

Ústav mechaniky těles, mechatroniky a biomechaniky Bc. Michal Planka Aplikované vědy v inženýrství Inženýrská mechanika a biomechanika Ing. Petr Lošák, Ph.D. 2016/17

Ředitel ústavu Vám v souladu se zákonem č. 111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Využití neuronových sítí pro výpočet průběhu záběrové tuhosti soukolí s čelními ozubenými koly

Stručná charakteristika problematiky úkolu:

Se zvyšováním rychlostí ozubených převodů je stále důležitější zabývat se jejich dynamikou. Zejména proměnlivá tuhost v průběhu záběru zubů může být příčinou mnoha nežádoucích jevů. Stanovení průběhu tuhosti pomocí metody konečných prvků je poměrně časově náročné. Cílem této práce je pokusit se vytvořit neuronovou síť, která na základě zadaných parametrů soukolí vypočítá průběh tuhosti zubů v záběru.

Cíle diplomové práce:

1. Vytvořit parametrický model soukolí s čelními ozubenými koly.

2. Pomocí metody konečných prvků provést simulaci záběru jednoho páru zubů.

3. Stanovit průběh tuhosti zubového záběru.

 Pro dané rozsahy vstupních parametrů ozubených kol provést simulace a získat průběhy tuhosti, které budou sloužit jako trénovací množina neuronové sítě.

5. Vytvořit neuronovou síť, která na základě zadaných parametrů soukolí vrátí průběh tuhosti záběru.

Seznam literatury:

BYRTUS, M., HAJŽMAN, M., ZEMAN, V.: Dynamika rotujících soustav, Západočeská univerzita v Plzni, 2010, ISBN 978-80-7043-953-1

VOLNÁ, E.: Neuronové sítě 1, Ostravská univerzita v Ostravě, 2008

DRESIG, H., HOLZWEISSIG, F.: Dynamics of Machinery, Theory and Applications, Springer-Verlag Berlin Heidelberg 2010

Fakulta strojního inženýrství, Vysoké učení technické v Brně / Technická 2896/2 / 616 69 / Brno

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2016/17.

V Brně, dne 4. 11. 2016

Fakulta strojního inženýrství, Vysoké učení technické v Brně / Technická 2896/2 / 616 69 / Brno

ABSTRAKT

Cieľom diplomovej práce bolo vytvoriť neurónovú sieť, ktorá po zadaní určených vstupných parametrov, vráti priebeh mernej tuhosti jedného páru zubov čelného ozubeného súkolesia. Ako tréningová množina pre neurónovú sieť slúžil súbor výsledkov priebehov tuhosti určených výpočtovým modelovaním, konkrétne pomocou metódy konečných prvkov. Dielčím cieľom práce preto bolo vytvorenie výpočtového modelu pre získanie daných priebehov. Za vstupné parametre boli zvolené počet zubov hnacieho i hnaného kolesa a zaťaženie súkolesia. Po vytvorení výpočtového modelu a ukončení série výpočtov nasledovalo vytvorenie neurónovej siete, pričom bola zvolená viacvrstvová architektúra siete s adaptačným algoritmom so spätným šírením chyby. Podarilo sa vytvoriť dostatočne výkonnú neurónovú sieť, ktorá je schopná určiť priebehy tuhosti pre naučené vzory i ne-naučené vzory ležiace v intervale vstupných údajov. Vytvorenú neurónovú sieť je možné využiť na určenie priebehu mernej jednopárovej tuhosti čelného ozubeného súkolesia v rozsahu určených vstupných parametrov.

KĽÚČOVÉ SLOVÁ

Tuhosť ozubenia, čelné ozubené súkolesie, umelá neurónová sieť, metóda konečných prvkov.

ABSTRACT

The aim of this master's thesis is to build artificial neural network that is able to calculate varying single tooth-pair mesh stiffness of spur gear for given input parameters. The training set for this network was determined by computational modelling by finite element method. Therefore, creating of computational model and mesh stiffness calculating were a partial aim of this thesis. Input parameters for stiffness calculation were number of driving and driven gear teeth and gear loading. Creating of computational model and performing series of simulations was followed by creating artificial neural network. Multilayer neural network with backpropagation training was chosen as a type of the network. Created neural network is sufficiently efficient and can determine varying mesh stiffness in input set range for learned input parameters and for values of parameters that are not included in training set as well. This neural network can be used for varying single tooth-pair mesh stiffness estimation in input set range.

KEYWORDS

Mesh stiffness, spur gear, aritificial neural network, finite element method.

BIBLIOGRAFICKÁ CITÁCIA

PLANKA, M. Využití neuronových sítí pro výpočet průběhu záběrové tuhosti soukolí s čelními ozubenými koly. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2017. 65 s. Vedoucí diplomové práce Ing. Petr Lošák, Ph.D.

ČESTNÉ PREHLÁSENIE

Prehlasujem, že som diplomovú prácu s názvom Využití neuronových sítí pro výpočet průběhu záběrové tuhosti soukolí s čelními ozubenými koly vypracoval samostatne s použitím odbornej literatúry a prameňov uvedených v zozname, ktorý je súčasťou tejto práce.

V Brne, dňa 25. mája 2017

Bc. Michal Planka

POĎAKOVANIE

Moje poďakovanie patrí vedúcemu diplomovej práce Ing. Petrovi Lošákovi, Ph.D. za cenné rady a pomoc počas vypracovávania tejto práce. Zároveň moja vďaka patrí i mojej rodine za podporu počas celého štúdia.

Obsah

1	Úvod				
2	For	muláci	a problému a ciele práce	16	
	2.1	Formu	llácia problému	16	
	2.2	Ciele j	práce	16	
3	Súč	asný s	tav poznania	17	
	3.1	Mecha	unické prevody	17	
		3.1.1	Prevody ozubenými kolesami	17	
	3.2	Čelné	súkolesie s priamymi zubami	18	
		3.2.1	Teória rovinného ozubenia	18	
		3.2.2	Evolventa a evolventný tvar profilu zubu	20	
		3.2.3	Geometrické prvky ozubenia	21	
		3.2.4	Združenosť ozubených kolies	22	
		3.2.5	Podmienky záberu	23	
		3.2.6	Silové pomery	25	
	3.3	Deform	nácia a tuhosť ozubenia	27	
		3.3.1	Tuhosť jedného páru zubov	28	
		3.3.2	Výsledná tuhosť priameho ozubenia	29	
	3.4	Neuró	nové siete \ldots	30	
		3.4.1	Biologický neurón	30	
		3.4.2	Umelé neurónové siete (ANN)	31	
		3.4.3	Viacvrstvové neurónové siete so spätným šírením	32	
4	Ana	alýza p	roblému a systém podstatných veličín	35	
5	\mathbf{Pos}	tup na	určenie tuhosti páru zubov	37	
	5.1	Voľba	metódy	37	
	5.2	Vytvo	renie výpočtového modelu	37	
		5.2.1	Model geometrie	37	
		5.2.2	Model materiálu	39	
		5.2.3	Vytvorenie siete konečných prvkov	39	
		5.2.4	Model záberu ozubeného súkolesia	41	
		5.2.5	Model zaťaženia a vzájomnej väzby ozubených kolies $\ .\ .\ .\ .$	42	
		5.2.6	Určenie deformácie a tuhosti zubov z výpočtového model u $\ .\ .\ .$	43	
		5.2.7	Použité softvérové a hardvérové vybavenie	44	

Michal Planka

6	Rie	šenie výpočtového modelu	45
	6.1	Voľba vstupných parametrov ozubeného súkolesia a zaťaženia	45
	6.2	Nastavenie riešenia modelu	46
	6.3	Voľba veľkosti prvkov siete	46
	6.4	Voľba kontaktnej tuhosti	47
	6.5	Čas výpočtu	47
7	Pre	zentácia výsledkov riešenia výpočtového modelu	48
	7.1	Deformácia zubov	48
	7.2	Normálová sila	49
	7.3	Tuhosť ozubenia \ldots	50
	7.4	Aproximácia priebehu tuhosti	50
8	Vyı	ıžitie neurónovej siete pre určenie záberovej tuhosti	51
	8.1	Proces tvorby umelej neurónovej siete	51
		8.1.1 Určenie vhodnej topológie siete	52
	8.2	Prezentácia výsledkov z neurónovej siete	52
9	\mathbf{Disl}	kusia	55
10	Záv	er	57
Zo	oznar	n bibliografických zdrojov	59
Zo	oznar	n skratiek a symbolov	61
Zo	oznar	n obrázkov	64
Zo	oznar	n tabuliek	65

1 Úvod

Ozubené kolesá sú jedny z najdôležitejších strojných súčastí pre prenos mechanickej energie a pohybu v mnohých strojoch a zariadeniach. Pochopenie ich správania je preto veľmi dôležité [1]. S prudkým zväčšovaním technologickej zdatnosti spoločnosti sa zvyšujú i požiadavky ovplyvňujúce správanie ozubených súkolesí. Aj kvôli zvyšovaniu rýchlosti ozubených prevodov je dôležité skúmať ich dynamické vlastnosti. Premenlivá tuhosť ozubenia výrazne vplýva na dynamické správanie ozubeného súkolesia, je zdrojom vibrácií a hluku, môže byť príčinou rôznych negatívnych aj pozitívnych dôsledkov. V praxi je dôležité minimalizovať hluk a zachovať čo najstabilnejší chod ozubeného prevodu [2].

Tuhosť ozubenia je kvantitatívnym vyjadrením deformácie zubov ozubenia, ide o pomer zaťaženia a deformácie. Deformácia ozubenia má nelineárny priebeh, závislý na mnohých parametroch a je premenlivá v priebehu záberu. Analytické určenie deformácie, a teda i tuhosti ozubenia, je z dôvodu zložitosti tvaru zubov veľmi obtiažne. Tuhosť ozubenia je možné určiť experimentálne i pomocou metódy konečných prvkov. Obe metódy sú však pomerne náročné na čas či vybavenie pre realizáciu experimentu [2]. Viacero autorov sa pokúšalo vyjadriť priebeh tuhosti ozubenia v priebehu záberu, pričom vychádzali z tzv. strednej mernej tuhosti či maximálnej tuhosti jedného páru ozubenia, ktorej výpočet určuje norma ČSN ISO 6336-1. Ďalší autori riešili problematiku premenlivej tuhosti ozubenia numerickými metódami, ktoré však nezohľadňuje vplyv zaťaženia [3]. Určenie premenlivej tuhosti ozubenia počas záberu s vplyvom zaťaženia je teda problémová situácia. Cieľom tejto práce je preto vytvorenie neurónovej siete, ktorá po zadaní určených vstupných parametrov, vrátane zaťaženia, vráti priebeh tuhosti počas záberu. Tento priebeh bude primárne určený numerickým modelovaním a jeho výsledky budú slúžiť ako tréningová množina pre neurónovú sieť.

2 Formulácia problému a ciele práce

2.1 Formulácia problému

Pre vyriešenie problémovej situácie je v rámci tejto práce potrebné vytvorenie algoritmu na určenie priebehu jednopárovej tuhosti ozubenia počas záberu, pomocou metódy konečných prvkov, pre určené vstupné parametre, ktoré tuhosť ovplyvňujú. Následne bude zahájená séria výpočtov, ktorých výsledky budú slúžiť ako tréningová množina pre neurónovú sieť. Naučená neurónová sieť po zadaní vstupných parametrov vráti priebeh premenlivej tuhosti ozubenia počas záberu.

2.2 Ciele práce

Pre riešenie daného problému je potrebné vyriešiť nasledujúce dielčie ciele:

- Vytvoriť parametrický model geometrie čelného ozubeného súkolesia.
- Stanoviť rozsah parametrov vstupujúcich do výpočtu tuhosti ozubenia.
- Metódou konečných prvkov vypočítať priebeh tuhosti zubového záberu pre stanovené parametre.
- Vytvoriť neurónovú sieť, ktorá vráti priebeh tuhosti súkolesia so zadanými vstupnými parametrami. Ako tréningová množina bude slúžiť súbor výsledkov získaných predchádzajúcimi výpočtami.

3 Súčasný stav poznania

3.1 Mechanické prevody

Mechanické prevody slúžia na vytvorenie kinematickej a silovej väzby medzi hnaným a hnacím hriadeľom a k zaisteniu plynulého toku výkonu pri predpísanej transformácii jeho prvkov, a to zmene uhlovej rýchlosti a odpovedajúcej zmene točivého momentu. Slúžia na prenos a rozvod otáčavého pohybu i mechanickej energie. Počas prenosu sa teda môže meniť obvodová rýchlosť i zmysel otáčania hnaného hriadeľa. Všeobecne sa mechanický prevod skladá najmenej z dvoch kolies, hnacieho a hnaného, ktoré sú spojené s hnacím a hnaným hriadeľom. Všeobecne sa pohyb medzi hriadeľmi prenáša bezprostredným dotykom kolies (prevody s priamym prenosom pohybu) alebo prevodovým členom ako remeň, reťaz či lano (prevody s nepriamym prenosom pohybu) [1].

3.1.1 Prevody ozubenými kolesami

Ozubené prevody tvoria najrozšírenejší a najvýznamnejší druh prevodových mechanizmov. Fungujú na princípe záberu (prenosu síl tlakom) s bezprostredným dotykom spoluzaberajúcich členov. Dvojica ozubených kolies, súkolesie, je najjednoduchšia a základná stavebná jednotka pre zložitejšie mechanizmy. Súkolesie je tvorené z hnacieho a hnaného kola, menšie sa označuje pastorok, väčšie koleso. Úlohou tejto dvojice je vytvorenie kinematickej a silovej väzby medzi relatívne blízkymi hriadeľmi pri požadovanej transformácii úhlovej rýchlosti a otáčavého momentu pri zachovaní čo najvyššej mechanickej účinnosti [1].

Zmena otáčavého pohybu medzi dvoma hriadeľmi je charakterizovaná prevodovým pomerom i, ktorý pri číselnom značení spoluzaberajúcich kolies 1 pre hnacie a 2 pre hnané, je kinematicky definovaný vzťahom [1] [4]:

$$i_{12} = \frac{\omega_1}{\omega_2} \qquad \qquad [-] \quad (3.1)$$

kde:

 ω_1, ω_2 sú uhlové rýchlosti spoluzaberajúcich kolies [s⁻¹]

Ozubené kolesá sa všeobecne rozdeľujú podľa dvoch hľadísk, a to podľa vzájomnej polohy osí oboch kolies a podľa tvaru bočnej krivky zubov. Bočná krivka zubu je priesečnica bočnej plochy zubu s rozstupnou, valivou alebo inou súosou plochou ozubeného kola rovnakého typu. Podľa vzájomnej polohy osí rozoznávame súkolisie pre osi rovnobežné, rôznobežné a mimobežné. Pre rovnobežné osi sa využívajú čelné ozubené súkolesia s vonkajším alebo vnútorným ozubením, v prípade rôznobežných osí súkolesia kužeľové, ktorých uhol osí býva najčastejšie 90°. Pre mimobežné osi sa používajú súkolesia skrutkové, závitovkové (šnekové) a hypoidné.

Podľa bočnej krivky zubov rozlišujeme čelné súkolesia so zubami priamymi, šikmými, oblúkovými, šípovými alebo kužeľové súkolesia so zubami priamymi, šikmými, zakrivenými a šípovými.

Ozubené prevody by mali spĺňať nasledujúce požiadavky:

- konštantný prevodový pomer,
- nezávislosť prevodového pomeru na tolerovaných výrobných odchýlkach od teoreticky presnej vzdialenosti osí hriadeľov,
- jednoduchosť nástrojov a strojov na výrobu, kontrola i výroba ozubenia lacná a presná,
- straty trením a opotrebenie zubov majú byť čo najmenšie.

Tieto požiadavky vplývajú na voľbu profilu zubového boku. V súčasnosti sa používajú najmä evolventné ozubenia, v špeciálnych prípadoch i cykloidné alebo kruhové. Evolventné i cykloidné profily zabezpečujú stálosť prevodového pomeru. Evolventné profily navyše nie sú citlivé na odchýlky od teoretickej vzdialenosti osí. Opotrebenie a straty trením sú nižšie pri cykloidnom boku, no rozdiel nie je príliš významný a vhodnou voľbou korekcie evolventného ozubenia je možné tento rozdiel znížiť. Navyše výroba je jednoduchšia v prípade evolventného tvaru boku zubu, aj preto tento druh ozubenia výrazne prevažuje nad ostatnými [4].

Cieľom tejto práce je stanoviť priebeh tuhosti páru zubov čelného ozubeného súkolesia s priamymi evolventnými zubami. Preto sa v nasledujúcom texte zameriame na problematiku tohto druhu ozubenia.

3.2 Čelné súkolesie s priamymi zubami

Celné súkolesia s priamymi zubami a evolventným profilom vychádzajú z teórie rovinného ozubenia, ktorá predstavuje súbor základných poznatkov o kinematike, geometrii a záberových vlastnostiach rovinných profilov [1].

3.2.1 Teória rovinného ozubenia

Ozubené kolesá s priamymi zubami predstavujú hmotnú realizáciu teoretického rovinného ozubenia. Základný zákon ozubenia je vyjadrený kinematickou väzbou medzi dvoma stredmi otáčania O_1 a O_2 , ktorú je možné vytvoriť záberom dvoch vhodne tvarovaných profilov - palcov (obr. 3.1). Spoluzaberajúce profily majú v spoločnom bode Y spoločnú dotyčnicu t a spoločnú normálu n. Bod Y príslušný k členu 1 má absolútnu rýchlosť $v_1 = O_1 Y \cdot \omega_1$, bod príslušný k členu 2 má rýchlosť $v_2 = O_2 Y \cdot \omega_2$ [1].

Požiadavka trvalého záberu je vyjadrená závislosťou medzi geometrickými parametrami spoluzaberajúcich profilov v bode dotyku a okamžitým prevodovým pomerom *i*. Pre zachovanie stáleho dotyku je nutné, aby elementárne posunutia oboch profilov v smere spoločnej normály boli rovnaké. To je splnené pre $v_{1n} = v_{2n} = v_n$.

Vyjadrenie rýchlostí v_{1n} a v_{2n} a využitie úmernosti na lúčoch zväzku vedie k rozšíreniu vzťahu (3.1) na:

$$i_{12} = \frac{\omega_1}{\omega_2} = \frac{O_2 N_2}{O_1 N_1} = \frac{O_2 P}{O_1 P}$$
[-] (3.2)

kde P je pól relatívneho pohybu profilov a jeho absolútna rýchlosť je rovnaká pre člen 1 i 2. Pre plynulý záber dvoch profilov je nevyhnutné, aby spoločná normála v bode ich

Obr. 3.1: Rovinné ozubenie [1]

vzájomného dotyku prechádzala v každom okamžiku pólom relatívneho pohybu P. Relatívny pohyb profilov je možné kinematicky nahradiť valením dvoch polodií, teda kriviek pevne spojenými s rotujúcimi palcami, ktoré sa dotýkajú v póle P. V technickej praxi sa využívajú profily so špeciálnym tvarom, najčastejšie evolventným, ako bolo uvedené v kapitole 3.1.1. Ich spoločná normála pretína spojnicu stredov stále v rovnakom bode, a preto je pól pohybu P nehybný. Polodiové krivky potom nadobúdajú podobu valivých kružníc s polomerom r_{w1} a r_{w2} , a teda vyjadrenie prevodového pomeru i vo vzťahu (3.3) je možné rozšíriť o vzájomný pomer valivých kružníc $i=r_{\omega2}/r_{\omega1}$.

Ostrý uhol, ktorý zviera spoločná normála v bode dotyku s priamkou vedenou pólom P kolmo na spojnicu stredov sa označuje ako *uhol záberu* α_w . V prípade evolventných profilov je počas celého záberu uhol α_w konštantný.

Bod dotyku Y sa v priebehu záberu posúva po spoluzaberajúcich profiloch a zároveň voči nehybnej základnej rovine. Trajektória bodu Y v tejto rovine sa nazýva *čiara záberu*. Pri konštantnom uhle záberu (evolventné ozubenie) je čiarou záberu priamka, ide teda o *priamku záberu*.

Z rozloženia absolútnych rýchlostí v_1 a v_2 do spoločnej normály a dotyčnice (obr. 3.1) vyplýva, že v prípade $v_{1n} = v_{2n}$ sú zložky v smere dotyčnice vo všeobecnosti rozdielne, a teda platí $v_{1t} \neq v_{2t}$. Medzi profilami dochádza k vzájomnému pohybu, tzv. sklzu, ktorý je charakterizovaný sklzovou rýchlosťou v_k :

$$v_k = PY \cdot (\omega_1 + \omega_2) \tag{3.3}$$

Sklzová rýchlosť je pri rovnomernom otáčaní palcov priamo úmerná vzdialenosti bodu dotyku a pólu pohybu. Pri vzájomnom pohybe profilov dochádza medzi palcami k čistému valeniu iba v prípade dotyku v póle, kedy $Y \equiv P$ a $v_k = 0$ [1].

3.2.2 Evolventa a evolventný tvar profilu zubu

Evolventné ozubené koleso je charakteristické tým, že v čelnom reze (kolmom na osu kolesa) sú zubové profily evolventy kružnice a boky zubov tzv. evolventné skrutkové plochy [2].

Obr. 3.2: Evolventa [4]

Evolventa je z hľadiska geometrie rovinná krivka, pretínajúca kolmo všetky dotyčnice kružnice, ktorá je zároveň jej evolutou, teda množinou stredov krivosti evolventy. V prípade ozubenia nazývame túto kružnicu základná a označujeme ju indexom *b*. Jednoznačné určenie evolventy je možné jediným parametrom, a to polomerom základnej kružnice r_b . Evolventu je možné získať ako trajektóriu bodu, ako obálku vytvorenú priamkovým úsekom alebo ako obálku vytvorenú inou evolventou. Pri výpočtoch niektorých rozmerov ozubenia i teoretickej konštrukcii sa používa analytické vyjadrenie evolventy. Pre určenie jej všeobecného bodu je výhodné použiť polárne súradnice. Uhol ε (obr. 3.2) predstavuje polárny uhol bodu *B*, *r* sprievodič bodu *B* a α je uhol tlaku pre bod *B*. Vzťah medzi uhlami ε a α sa určí zo zákona vytvárania evolventy bezsklzovým odvalovaním tvoriacej priamky *t* po základnej kružnici k_b . Odvalený oblúk na tejto kružnici \widehat{AC} a úsečka \overline{BC} na tvoriacej priamke musia mať rovnakú dĺžku. Z obrázku 3.2 vyplýva:

$$\widehat{AC} = \widehat{AD} + \widehat{CD} = \overline{BC} \tag{3.4}$$

$$\overline{BC} = r_b \cdot \tan \alpha; \quad \widehat{AD} = r_b \cdot \varepsilon; \quad \widehat{CD} = r_b \cdot \alpha$$
(3.5)

$$r_b \cdot \tan \alpha = r_b \cdot \varepsilon + r_b \cdot \alpha \tag{3.6}$$

pričom po dosadení 3.6 do 3.5 dostávame funkciu tlakového uhla α

$$\varepsilon = \tan\alpha - \alpha = inv\alpha \tag{3.7}$$

ktorú označujeme ako $inv\alpha$ a určuje polárny uhol ε bodu na evolvente [4].

3.2.3 Geometrické prvky ozubenia

Geometrickým základom evolventných kolies sú axoidy v tvare kruhových valcov. Rozstupná, hlavová a pätná plocha sú súosé kruhové valcové plochy. V axiálnom smere sú tieto válce omedzené čelnými rovinami, ktorých vzdialenosť určuje šírku ozubeného venca b. Tento charakteristický rozmer rozširuje geometriu z popísanej teórie rovinného ozubenia do priestoru reálnych kolies. Kružnica sa mení na valec s šírkou b, priamka záberu je nahradená rovinným pásom záberu, bočný profil zubu bočnou plochou atď. [1].

Obr. 3.3: Ozubené súkolesie [5]

Pre plynulý otáčavý pohyb valivých kružníc je potrebné, aby po ich obvode bol rozložený systém združených profilov, teda zubov. Počet zubov z je základným parametrom ozubeného kolesa. Vzdialenosť medzi rovnoľahlými bokmi susedných zubov, ktorá je meraná na oblúku rozstupovej kružnice sa nazýva rozstup zubov p. Obvod valivej kružnice musí byť z-násobkom zvoleného rozstupu p. Valivá kružnica sa potom nazývá rozstupná a jej polomer sa označuje r, resp. priemer d. Rozstup p sa určuje ako istý konečný násobok π , teda:

$$p = m \cdot \pi \qquad [mm] \quad (3.8)$$

kde $m \,(\text{mm})$ je modul ozubenia, ktorý je možné chápať ako istú úsečku, teda ako z-tý diel priemeru d. Modul je je nutné prispôsobiť normalizovanej rade podľa normy a určuje všetky rozmery ozubeného kolesa. Pre priemer rozstupnej kružnice platí vzťah:

$$d = m \cdot z \qquad [mm] \quad (3.9)$$

Okrem charakteristického rozstupu p je významný i rozstup na základnej kružnici k_b s polomerom r_b definovaný ako:

$$p_b = p \cdot \frac{d_b}{d} = p \cdot \cos \alpha$$
 [mm] (3.10)

Hrúbka zubu s a šírka medzery e, ktoré sú zároveň dĺžkami oblúkov na rozstupnej kružnici sú zviazané vzťahom:

$$s + e = p \qquad [mm] \quad (3.11)$$

Michal Planka

Na rozstupovej kružnici k (priemer d) je rozstup rovný rozstupu normalizovaného výrobného nástroja a uhol profilu evolventy rovný uhlu profilu α výrobného nástroja. Je totožná s valivou kružnicou a rozdeľuje zub s výškou h na dve časti, na hlavu s výškou h_a a pätu s výškou h_f . Základná kružnica k_b (priemer d_b) je evolúta jednoznačne určujúca evolventu. Kružnica obmedzujúca vonkajší obrys ozubeného venca sa nazýva hlavová kružnica k_a , na rozdiel od pätnej kružnice k_f , ktorá obmedzuje vnútorný obrys ozubeného venca. Hlava zubu je teda časť zubu medzi rozstupovou a hlavovou kružnicou. Päta zubu je vymedzená pätnou a rozstupovou kružnicou. Záberová priamka u je priamka, po ktorej sa pri pohybe súkolesia pohybuje bod záberu a je to spoločná dotyčnica k základným kružniciam oboch kolies súkolesia. Rozdiel medzi polomerom hlavovej kružnice jedného kolesa a pätnej kružnice druhého kolesa sa nazýva hlavová vôľa c. Vzdialenosť osí a je dĺžka úseku strednice medzi bodmi O_1O_2 , teda vzdialenosť osí spoluzaberajúcich kolies.

Pre hlavné rozmery ozubených kolies súkolesia s priamymi zubami a základným profilom ozubenia platia vzťahy:

$$m = \frac{d}{d} = \frac{p}{d} \qquad (3.12) \qquad d_b = d \cdot \cos \alpha \qquad (3.13)$$

(3.16)

(3.20)

$$h_a = m$$
 (3.14) $h_f = m + c = 1,25 \cdot m$ (3.15)

$$c = 0.25 \cdot m \tag{3.17}$$

$$d_a = d + 2 \cdot h_a = m \cdot (z+2) \qquad (3.18) \qquad d_f = d - 2 \cdot h_f = m \cdot (z-2,5) \qquad (3.19)$$

3.2.4 Združenosť ozubených kolies

 $h = h_a + h_f = 2,25 \cdot m$

 $a = \frac{d_1 + d_2}{2} = \frac{m}{2} \cdot (z_1 + z_2)$

Ozubené kolesá sa označujú ako združené, ak sú spolu schopné zabezpečiť trvalý a plynulý záber pri i = konst. Dva evolventné profily sú vždy združené, bez ohľadu na priemery základných kružníc. Združenosť dvoch evolventných kolies je podmienená náväznosťou záberu po sebe nasledujúcich dvojíc profilov (zubov), a to s okamžikmi prekrývania, teda keď sú v zábere súčasne dva páry (obr. 3.4). Táto situácia môže nastať v prípade, že vzdialenosť AB susedných rovnoľahlých profilov meraná na spoločnej normále je u oboch kolies rovnaká, teda platí $AB = \widehat{A_1B_1} = \widehat{A_2B_2}$. Keďže oblúky $\widehat{A_1B_1}$ a $\widehat{A_2B_2}$ zodpovedajú rozstupom na základných kružniciach

Obr. 3.4: Združené kolesá [1]

 p_{b1} a p_{b2} , je možné vyjadriť podmienku združenosti dvoch evolventných kolies ako rovnosť ich základných rozstupov, tj. $p_{b1} = p_{b2} = p_b$, kde p_b je spoločný rozstup na základnej kružnici [1].

Všetky evolventné kolesá s rovnakým modulom m a uhlom záberu α , teda kolesá vyrobené rovnakým nástrojom sú združené, a to bez ohľadu na počet zubov z.

3.2.5 Podmienky záberu

Zubový bok kolesa 1 vonkajšieho ozubenia je tvorený evolventou, ktorá je vytvorená odvalovaním tvoriacej priamky po základnej kružnici kolesa 1. Pri výškovo neobmedzených evloventných profiloch prebieha záber v celej dlžke úsečky N_1N_2 (obr. 3.5). Vzhľadom k faktu, že evolventy oboch kolies končia na svojich základných kružniciach k_{b1} a k_{b2} , bude pod týmito kružnicami zubný bok tvorený prechodovou krivkou. Táto prechodová krivka v prípade bežného ozubenia prechádza ďalej zaoblením $Q_f = 0,38 \cdot m$ do pätnej kružnice. Z druhej strany sú evolventné profily obmedzené hlavovými kružnicami prislúchajúcich kolies. Zubový záber

Obr. 3.5: Podmienky záberu [1]

bude realizovaný na tvoriacej priamke, a teda tvoriaca priamka bude súčasne dráha záberu evolventného ozubenia. Množina bodov, v ktorých dochádza k záberu sa teda nazýva dráha záberu a je obmedzená priesečníkmi hlavových kružníc s tvoriacou priamkou, teda bodmi E a F. Záber začína v bode E, kde sa profil hnacieho kolesa prvýkrát dotkne profilu hnaného kolesa a záber je ukončený v bode F. Dráha záberu je teda vymedzená priesečníkmi záberovej priamky s hlavovými kružnicami kolies. Na obr. 3.6 je poloha spoluzaberajúcich bokov na začiatku a konci záberu vyznačená čiarkovane [1].

Dĺžku záberovej úsečky g_{α} podľa obr. (3.6) je možné vyjadriť ako:

$$g_{\alpha} = \overline{EF} = \overline{EP} + \overline{PF} \tag{3.21}$$

kde:

$$\overline{PF} = \overline{N_1F} - \overline{N_1P} = r_{b1} \cdot (\tan \alpha_{a1} - \tan \alpha)$$
(3.22)

$$\overline{EP} = \overline{N_2F} - \overline{N_2P} = r_{b2} \cdot (\tan \alpha_{a2} - \tan \alpha)$$
(3.23)

 α_{a1} a α_{a2} sú uhly profilu vo vrcholových bodoch bokov, teda na hlavových kružniciach kolies a sú vyjadrené vzťahom:

$$\cos \alpha_{a1,2} = \frac{d_{b1,2}}{d_{a1,2}} \tag{3.24}$$

Dráhy záberu ozubených kolies na rozstupných kružniciach od začiatku do konca záberu sa nazývajú *oblúky záberu*. Oblúk $\widehat{Q_1G_1}$, prislúchajúci kolesu 1, má rovnakú dĺžku ako oblúk $\widehat{Q_2G_2}$, prislúchajúci kolesu 2. Dĺžka oblúku záberu je viazaná s dĺžkou záberovej úsečky vzťahom:

$$\widehat{QG} = \widehat{E_b F_b} \cdot \frac{r}{r_b} = \frac{\overline{EF}}{\cos \alpha}$$
(3.25)

Michal Planka

Pre zachovanie neprerušovaného a kľudného záberu musí byť splnená podmienka, aby bol oblúk záberu väčší než rozstup. Skôr než sa jeden spoluzaberajúci zubový pár dostane zo záberu, musí už byť v zábere druhý zubový pár. Okamžik, kedy sa k záberu boku zubu I, ktorý je v záberovej oblasti, pripája záber boku zubu II je zobrazený na obr. 3.6. V tomto okamžiku začína etapa dvojpárového záberu, ktorá pokračuje do bodu, v ktorom bok I vychádza zo záberu. Následne bok II zostáva v záberovej oblasti sám až do polohy patriacej pôvodne boku I, teda než bok III dosiahne začiatku záberu. Bok II spolu s bokom III dokončuje záber a celý dej sa opakuje. Na rozdelenie úseku záberu na jednopárovú a dvojpárovú oblasť je vhodné použiť body U a V, pre ktoré platí:

$$\overline{EV} = \overline{FU} = p_b \tag{3.26}$$

Obr. 3.6: Záberové pomery [1]

Ako kvantitatívna charakteristika pre hodnotenie záberových pomerov sa zavádza súčiniteľ záberu profilu:

$$\varepsilon_{\alpha} = \frac{\widehat{QG}}{p} = \frac{\overline{EF}}{p_b} \qquad [-] \quad (3.27)$$

Pre nekorigované čelné súkolesie je možné ε_{α} vyjadriť ako:

$$\varepsilon_{\alpha} = \frac{g_a}{p_b} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2a \cdot \sin \alpha}{2\pi \cdot m \cdot \cos \alpha}$$
[-] (3.28)

kde:

$d_{a1,2}$	sú priemery hlavových kružníc kolesa a postorku	[mm]
$d_{b1,2}$	sú priemery základných kružníc kolesa a postorku	[mm]
a	je osová vzdialenosť súkolesia	[mm]
m	je modul ozbuenia	[mm]
α	je uhol záberu	[°]
g_a	je dĺžka záberovej úsečky	[mm]
p_b	je základný rozstup	[mm]

Súčiniteľ záberu vyjadruje priemerný počet zubov v zábere, a teda musí byť väčší ako 1, pričom typické hodnoty bývajú $\varepsilon_{\alpha} > 1, 2$ [4]. Keďže obe evolventy končia na základných kružniciach, záber nemôže pokračovať za bodmi N_1 a N_2 , v ktorých sa tvoriaca

priamka dotýka základných kružníc. Správnosť záberu je teda obmedzená podmienkou, že sa záberové koncové body môžu nanajvýš zhodovať s bodmi N_1 a N_2 . V prípade nesplnenia tejto podmienky dochádza k takzvanej *interferencii*. Je to jav, pri ktorom dochádza ku kolízii dvoch spoluzaberajúcich zubov. Interferencia nastáva mimo združených častí profilov, teda keď hlava jedného zubu zasahuje pri zábere do neevolventej časti boku zubu (prechodovej krivky) druhého kolesa. Rozoznávame prevádzkovú interferenciu, ku ktorej dochádza pri zábere súkolesia a výrobnú interferenciu, ktorá nastáva pri výrobe kolesa pri jeho zábere s nástrojom. V prípade výroby ozubenia odvalovacím spôsobom je interferencia eliminovaná v priebehu procesu výroby, kedy nástroj odstráni prekážajúci materiál. Dochádza však k *podrezaniu boku zubu*, ktoré zoslabuje jeho pätu. Tento jav je rovnako nežiadúci ako interferencia.

Minimálny počet zubov kolesa, pri ktorom nedochádza pri výrobe k podrezaniu boku zubu, je možné určiť zo vzťahu:

$$z_{min} = \frac{2h_a^*}{\sin^2 \alpha} \tag{3.29}$$

kde:

 $\begin{array}{ll} h_a^* & \mbox{ je súčiniteľ výšky hlavy zubu} & [-] \\ \alpha & \mbox{ je uhol záberu} & [^\circ] \end{array}$

V prípade základného profilu, kde $h_a^*=1,$ a pri $\alpha=20^\circ$ je minimálny počet zubov:

$$z_{min} = \frac{2 \cdot 1}{\sin^2 20^\circ} = 17, 1 \doteq 17$$

3.2.6 Silové pomery

Ozubené súkolesie popri prenose rotačného pohybu prenáša taktiež výkon P. Pri uhlových rýchlostiach kolies ω_1 a ω_2 pôsobí na kolesách točivý moment M_{t1} a M_{t2} . Pri uvažovaní ideálneho ozubenia bez trenia, je možné prenášaný výkon P vyjadriť ako [1]:

$$P = M_{t1} \cdot \omega_1 = M_{t2} \cdot \omega_2 \tag{3.30}$$

Nominálny točivý moment M_{t1} sa privádza na koleso 1 vo forme silovej dvojice. V mieste dotyku spoluzaberajúcich zubov je možné vzájomné pôsobenie ozubených kolies vyjadriť silou F_N v strednom priečnom reze na priamke záberu (obr. 3.7). Veľkosť tejto sily vyplýva z momentovej podmienky rovnováhy pre koleso 1 v tvare:

Obr. 3.7: Silové pomery [1]

$$M_{t1} = F_N \cdot r_{b1} = F_N \cdot r_1 \cdot \cos\alpha \tag{3.31}$$

kde:

 M_{t1} je moment prenášaný kolesom 1

[Nm]

 F_N je normálová sila

 r_{b1} je základná kružnica kolesa 1 [m]

Vzťah (3.31) musí byť splnený bez ohľadu na počet zubov v zábere. V prípade dvojpárového záberu je sila F_N výslednicou síl F_n^I a F_n^{II} prenášaných pármi I a II. Zo silovou dvojicou M_{t1} bude v rovnováhe opäť dvojica síl (dve sily F_N rovnakej veľkosti a opačného zmyslu uložené do stredu O_1). Sila F_N leží na priamke záberu, preto je v ľubovolnom stykovom bode kolmá na zubové profily. Vzhľadom k tomu, že pôsobí na konštantnom ramene r_b , je pri zachovaní stálosti krútiaceho momentu nemenná v každom stykovom bode počas celej dráhy záberu.

Pre sledovane vonkajších silových pomerov je výhodné posunúť silu F_N do pólu pohybu P, ktorý je zároveň valivým bodom a tam ju rozložiť na obvodovú zložku F_t v dotyčnicovom smere k valivej kružnici a radiálnu zložku F_r v radiálnom smere. Pre zložky platia vzťahy:

$$F_t = F_N \cdot \cos\alpha \tag{3.32}$$

[N]

$$F_r = F_N \cdot \sin\alpha = F_t \cdot \tan\alpha \tag{3.33}$$

Keďže vonkajší moment M_t je v rovnováhe iba s dvojicou $F_t r_1$, obvodovú silu je možné vyjadriť priamo:

$$F_t = \frac{M_{t1}}{r_1}$$
(3.34)

Vzťahy pre zložky sily F_N sú na základe princípu akcie a reakcie platné aj pre koleso 2. Momentová podmienka rovnováhy, pri zanedbaní trecích síl v ozubení, má potom následovný tvar:

$$M_{t2} = F_N \cdot r_{b2} = F_t \cdot r_2 = i \cdot M_{t1} \tag{3.35}$$

Vnútorné silové pomery

Počas záberu ozubenia dochádza k striedaniu jednopárového a dvojpárového úseku. Rozdelenie sily F_N počas dvojpárového záberu závisí predovšetkým na presnosti ozubenia, na mernej ohybovej tuhosti dvojíc zubov a na ich veľkosti. Merná tuhosť $c [\text{N} \text{mm}^{-1} \text{µm}^{-1}]$ odpovedá normálovej sile, ktorá by v dotykovom mieste spoluzaberajúcich zubov s šírkou 1 mm vyvolala v svojom smere celkové posunutie 1 μ m. Veľkosť tuhosti *c* závisí na tvare a veľkosti zubov, na materiáli kolies aj na polohe čiary dotyku. Mení sa v priebehu záberu, pričom najväčšiu hodnotu dosahuje v zábere v okolí pólu P, najnižšiu na začiatku alebo konci záberu. Záberovej tuhosti ozubenia sa podrobnejšie venuje kapitola 3.9. Pri ideálne presnom súkolesí s absolútne tuhými členmi, by dvojpárový záber prebiehal v oblasti EU a VF.

Obr. 3.8: Vnútorné silové pomery [1]

Delenie sily F_N medzi súčasne zaberajúce dvojice zubov I a II by bolo rovnomerné, tj. $F_n^I = F_n^{II} = 0, 5 \cdot F_N$. Išlo by teda o ustálený priebeh sily F_N , prenášanej ľubovoľnou dvojicou pri jej priechode záberovou oblasťou (obr. 3.8).

V prípade teoreticky presného ozubenia s poddajnými zubami by delenie sily F_N záviselo na okamžitých záberových merných tuhostiach spoluzaberajúcich dvojíc zubov, teda na c^I a c^{II} . Pri predpoklade rovnakých celkových posunutí je možné jednotlivé sily F_n^I a F_n^{II} určiť z rovníc:

$$F_n^I + F_n^{II} = F_N \tag{3.36}$$

$$F_n^I / F_n^{II} = c^I / c^{II} (3.37)$$

V prípade reálneho súkolesia s nepresnosťami v ozubení a s poddajnými zubami sú silové pomery podstatne komplikovanejšie. Každá zubová dvojica predstavuje individuálny prípad. Záber zubov býva sprevádzaný rázmi, ktoré vedú k prídavnému dynamickému zaťaženiu F_{dyn} , k nerovnomernému pohybu a kmitaniu kolies, k zvýšenej hlučnosti a pod.

3.3 Deformácia a tuhosť ozubenia

Premenná tuhosť ozubenia vnáša do chodu ozubenia parametrický zdroj budenia a je príčinou rady negatívnych i pozitívnych dôsledkov. Modelovanie tuhosti ozubenia prešlo dlhoročným vývojom. V prvých prácach publikovaných v päťdesiatych rokoch bola v modeloch ozubených prevodov uvažovaná konštantná, tzv. ekvivalentná, tuhosť ozubenia. Tieto práce väčšinou vychádzajú z klasickej teórie pružnosti a uvažujú zub ako votknutý nosník. Z dôvodu, že tuhosť jedného páru zubov sa v priebehu záberu výrazne mení, boli vyvinuté viaceré modely tuhosti ozubenia. V poslednej dobe je otázka záberovej tuhosti ozubenia stále v popredí záujmu a je riešená pomocou numerických metód alebo s použitím najnovšej meracej techniky [6].

Obr. 3.9: Deformácia zubov [2]

Počas zubového záberu dochádza vplyvom pôsobenia normálovej sily F k deformácii jednotlivých zubov zubového páru. Deformácia samostatného zubu je ilustrovaná na

obr. 3.9 a) hrubou čiarou. Celková deformácia v normálnom smere δ_i , kde index *i* označuje koleso 1 resp. 2, je zložená z deformácie ohybovej, šmykovej a dotykovej [2].

Deformáciu páru zubov je možné chápať podľa predstavy zobrazenej na obr. 3.9 b). Tenká čiara naznačuje pár zubov v nezaťaženom stave, ktorý sa dotýka na priamke záberu v bode X. Vplyvom zaťaženia zubov sa jednotlivé profily myslene deformujú o deformáciu $\delta_{1,2}$ a pretnú záberovú priamku v bodoch $X_{1,2}$. Tento deformovaný tvar je naznačený čiarkovanou čiarou. Pre opätovný dotyk v bode X, ako k tomu dochádza v skutočnosti, sa musia jednotlivé kolesá pootočiť o uhly $\varphi_{1,2}$.

Celková deformácia páru zubov δ je definovaná ako:

$$\delta = \delta_1 + \delta_2 = \delta_{F1} + \delta_{F2} + \delta_H \tag{3.38}$$

kde:

$\delta_{1,2}$	je celková deformácie jednotlivých zubov	$[\mu m]$
$\delta_{F1,2}$	je ohybová a šmyková deformácia	$[\mu m]$
δ_H	je dotyková deformácia	[µm]

3.3.1 Tuhosť jedného páru zubov

Tuhosť jednotlivých zubov, v prípade priameho ozubenia, je definovaná ako podiel šírkového zaťaženia páru zubov a celkovej deformácie daného zubu v normálnom smere. Tuhosť jednotlivých zubov vyjadruje vzťah (3.39).

$$c_{1,2} = \frac{w}{\delta_{1,2}} \qquad [\text{N}\,\text{mm}^{-1}\,\mu\text{m}^{-1}] \quad (3.39)$$

kde:

w je šírkové zaťaženie zubov $[N m^{-1}]$ δ je celková deformácie jednotlivých zubov[µm]

Výslednú tuhosť jedného páru zubov (jednopárovú) si je možné predstaviť ako sériové spojenie dvoch pružín s tuhosťami jednotlivých zubov $c_{1,2} = w/\delta_{1,2}$ (obr. 3.10), čo je možné vyjadriť vzťahom (3.40). V praxi sa šírkové zaťaženie zubov w vyjadruje v N mm⁻¹, deformácia sa spravidla vyjadruje v µm a teda výsledná tuhosť v N mm⁻¹ µm⁻¹.

$$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} \tag{3.40}$$

kde:

 $c_{1,2}$ sú tuhosti jednotlivých zubov $[N \text{ mm}^{-1} \mu \text{m}^{-1}]$

Tuhosť a deformácia páru zubov je po dráhe záberu premenná. Najväčšia deformácia zubu nastáva pri pôsobení sily na vrchole zubu z dôvodu veľkej ohybovej deformácie. Typický priebeh ohybových deformácií $\delta_{F1,2}$, dotykovej deformácie δ_H aj celkovej deformácie je znázornený na obr. 3.10. Zároveň je tu zobrazená aj odpovedajúca jednopárová tuhosť priameho ozubenia v závislosti na dráhe záberu. K maximálnej hodnote jednopárovej tuhosti dochádza približne v polovici dĺžky priamky záberu a označuje sa c'.

Tuhosť jedného páru zubov čelného súkolesia je závislá na tvare zubov, ktorý je ovplyvnený predovšetkým počtom zubov, uhlom záberu a použitými korekciami. Tuhosť nezávisí

Obr. 3.10: Jednopárová tuhosť a celková tuhosť [2]

na veľkosti zubov, teda ani na module ozubenia. Pre štandardné ozubenie je možné maximálnu hodnotu jednopárovej tuhosti určiť podľa normy ČSN ISO 6336-1 [17]. Typická hodnota je c' = 14 až 16 N mm⁻¹ µm⁻¹. Priebeh tuhosti počas dráhy záberu je pre rôzne parametre ozubenia podobný a je zobrazený na obr. 3.10 a).

3.3.2 Výsledná tuhosť priameho ozubenia

V priebehu záberu priameho ozubenia dochádza k striedaniu jednopárového (úsek UV) a dvojpárového úseku (úsek EU a VF). Pri dvojpárovom úseku spolu súčasne zaberajú dva páry zubov I a II, čo si je možné predstaviť ako paralelné spojenie dvoch pružín (obr. 3.10 b)). Typický priebeh výslednej tuhosti c zobrazuje obr. 3.10, ktorá je vyjadrená ako súčet dielčích tuhostí podľa vzťahu:

$$c = c_I + c_{II} \tag{3.41}$$

kde:

$$c_{I,II}$$
 sú tuhosti jednotlivých párov zubov $[N \,\mathrm{mm^{-1}}\,\mu\mathrm{m^{-1}}]$

3.4 Neurónové siete

Pojem neurónová sieť je z hľadiska metód umelej inteligencie chápaný ako *umelá* neurónová sieť, teda Artificial Neural Netwrok (ANN). Tento názov bol odvodený od základného princípu metódy napodobňovania štruktúry a procesov na skutočnej neurónovej sieti človeka. Umelo vytvorené neurónové siete je možné považovať za výpočtové modely skutočných neurónových sietí. Pre pochopenie podstaty ANN je vhodné analyzovať štruktúru, funkciu a prvky neurónovej siete človeka [7].

3.4.1 Biologický neurón

Ľudská nervová sústava je zložitý biologický systém, ktorý je neustále predmetom výskumu. Pre formuláciu matematického modelu ANN budú uvedené iba zjednodušené princípy nervovej sústavy u človeka. Základným prvkom nervovej sústavy, teda i neurónovej siete je nervová bunka, **neurón**. Ide o samostatné špecializované bunky, ktoré slúžia na zber, prenos a uchovanie informácií, ktoré sú potrebné pre realizáciu životných funkcií ľudského organizmu [7][8]. Štruktúru neurónu schematicky znázorňuje obr. 3.11.

Obr. 3.11: Štruktúra neurónu [9]

Neurón je prispôsobený na prenos signálov tak, že okrem vlastného tela (somatu), má vstupné i výstupné prenosové kanály, dendrity a axon. Axon je ďalej rozvetvený na radu vetiev, tzv. terminálov, ktoré sú zakončené blanou stýkajúcou sa s výbežkami dendritov iných neurónov. Na prenos informácií sú určené medzineurónové rozhrania, tzv. synapasie. Synapsie sú z funkčného pohľadu možné rozdeliť na inhibičné, ktoré neurón utlmujú a excitačné, ktoré naopak umožňujú šírenie vzruchu v nervovej sústave. Informácie sú šírené vďaka membráne obaľujúcej somu i axon, ktorá je schopná generovať elektrický impulz. Tieto impulzy sú následne prenášané z axonu na dendrity iných neurónov pomocou synaptických brán, ktoré svojou priepustnosťou určujú intenzitu podráždenia ďalších neurónov. Po dosiahnutí určitej prahovej hodnoty, tzv. prahu, tieto podráždené neuróny samy generujú impulz a zabezpečujú tak šírenie príslušnej informácie. Synaptická priepustnosť sa po každom prechode signálu mení, čo umožňuje existenciu pamäťovej schopnosti neurónov. Prepojenie neurónov sa taktiež počas života organizmu vyvíja, počas učenia sa vytvárajú nové pamäťové stopy, prípadne pri zabúdaní sa synaptické spoje prerušujú [8].

3.4.2 Umelé neurónové siete (ANN)

Umelú neurónovú sieť je možné považovať z hľadiska systémového pojatia podľa [7] ako funkčný model skutočnej ľudskej neurónovej siete. Tento model je možné rozložiť na 4 ďalšie dielčie modely, a to na model štruktúry, vlastností a procesov neurónov i synapsií, priestorovej štruktúry siete a procesu jej učenia.

Model prenosu signálu neurónom

Základom matematického modelu ANN je formálny neurón, ktorý má vo všeobecnosti n reálnych vstupov, ktoré modelujú dendrity a určujú vstupný vektor $X = (x_1, \ldots, x_n)$. Tieto vstupy sú ohodnotené synaptickými váhami tvoriacimi vektor $W = (w_1, \ldots, w_n)$. Jednoduchý model prenosu signálu neurónom je na obr. 3.12. Matematicky je možné prenos signálu neurónom vyjadriť ako:

$$y(t) = f\left[\sum_{i=1}^{n} w_i(t) x_i(t) - \Theta(t)\right]$$
(3.42)

y

kde:

x_1,\ldots,x_n	vstupné signály do neurónu
w_1,\ldots,w_n	koeficienty synaptických váh
$\Theta(t)$	prahová úroveň signálu aktivujúca neurón
f	prenosová funkcia neurónu
y(t)	výstupný signál neurónu
t	čas
($\begin{array}{c} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{array} \qquad w_i \qquad \overbrace{\sum x_i} f(x) \qquad \Theta(t) \qquad \\ \Theta(t) \qquad \\ \vdots \\ w_n \end{array}$

Obr. 3.12: Model prenosu signálu neurónom [7]

Pri excitácii synapsie nadobúda koeficient synaptickej váhy kladnú hodnotu, pri inhibícii synapsie zápornú hodnotu. Medzi najpoužívanejšie prenosové funkcie v ANN sa v súčastnosti používajú najmä:

• Dvojhodnotová funkcia f (obr. 3.13a), ktorá je definovaná ako

$$f = \begin{cases} 1 & \text{ak} & x > \Theta \\ 0 & \text{pro} & x < \Theta \end{cases}$$

• Sigmoidálna funkcia (obr. 3.13b) vyjadrená vzťahom:

$$f(x) = f(1 + e^{-ax})^{-1}$$
 $0 \le f(x) \le 1$ (3.43)

Michal Planka

• Hyperbolická funkcia (obr. 3.13c) popísaná vzťahom:

$$f(x) = f(1 - e^{-ax})(1 + e^{-ax}) \qquad -1 \le f(x) \le 1 \qquad (3.44)$$

Obr. 3.13: Prenosové funkcie [7]

Model prenosu signálu synapsiou

Signálové procesy prebiehajúce na synapsiách je možné považovať za informačné rozhranie, do ktorého signály vstupujú vstupnými a vystupujú výstupnými bránami. V prípade ANN sa pracuje v najväčšej miere so zjednodušeným modelom prenosu signálu synapsiou, u ktorých sa za podstatné veličny považujú nasledujúce entity:

Obr. 3.14: Podstatné veličny modelu prenosu signálu synapsiou [7]

- prenosová funkcia f_{ij} ,
- koeficient synaptickej váhy w_{ij} ,
- doba synaptického oneskorenia Δt_{ij} .

Model štruktúry neurónovej siete

V ľudských neurónových sieťach majú neuróny viaceré priestorové usporiadania, tvz. topológie, v prípade neurónových sietí označované ako architektúra siete. V ANN sa využíva veľké množstvo modelov architektúr sietí. Medzi najvýznamnejšie patria:

- viacvrstvové neurónové siete,
- rekurentné siete,
- siete s premennou architektúrou.

Model funkcie neurónovej siete

Model funkcie neurónovej siete je možné chápať ako transformáciu T, resp. ako zobrazenie vstupného signálu $X = (x_1, \ldots, x_m)$ na výstupný signál $Y = (y_1, \ldots, y_n)$ podľa predpisu:

$$Y = T(X) \tag{3.45}$$

3.4.3 Viacvrstvové neurónové siete so spätným šírením

Neurónové siete je možné použiť na riešenie veľkého množstva úloh z oblasti klasifikácie, predikcie, optimalizácie a pod. Z matematického hľadiska ide o aproximáciu funkcie. Najrozšírenejším typom neurónovej siete používaným na tento účel je predovšetkým viacvrstvová neurónová sieť s dopredným šírením a s adaptačným algoritmom back-propagation (BP), čo znamená spätné šírenie [10]. Preto sa v nasledujúcom texte obmedzíme na definovanie základného princípu a pojmov súvisiacich s týmto typom ANN.

3.4.3.1 Viacvrstvové neurónové siete

Viacvrstvová neurónová sieť je špeciálnym prípadom acyklickej ANN, v ktorej je možné neuróny vždy disjunktne rozdeliť do vrstiev, ktoré sú usporiadané tak, že spojenia neurónov vedú vždy len z nižších vrstiev do vyšších [8]. Skladá sa z vstupnej vrstvy, ktorá je tvorená vstupnými neurónmi, výstupnej vrstvy zloženej z výstupných neurónov a z určitého počtu skrytých vrstiev, ktoré obsahujú skryté neuróny. Architektúru takejto siete je preto možné zadať počtom neurónov v každej vrstve v poradí od vstupnej k výstupnej [8].

Charakteristikou toho typu siete je, že teoreticky ku každému zobrazeniu Y = T(X) je možné pri dostatočnej mohutnosti siete (danej počtom skrytých vrstiev) vytvoriť sieť s takými parametrami, že zobrazenie je realizované s určitou požadovanou presnosťou [7]. Pri tvorbe architektúry siete je problematické určiť počet skrytých neurónov. Pre správne zvolenie počtu skrytých vrstiev a neurónov neexistuje univerzálne pravidlo. Preto sa odporúča metóda, pri ktorej sa navrhne úvodný počet vrstiev a neurónov a sleduje sa správanie siete. Pri nedostatočnej výkonnosti siete sa počet vrstiev, prípadne neurónov zvyšuje až do okamžiku, kedy je výkonnosť siete možné požadovať za dostačujúcu [11].

3.4.3.2 Metóda Back-propagation (BP)

V prípade viacvrstvovej doprednej siete typu Back-propagation ide o učenie siete s učiteľom. Učením ANN sa rozumie adaptácia vlastností štruktúry siete pre dosiahnutie požadovaného zobrazenia T(X). Pri spôsobe učenia siete s učiteľom vychádzame z predpokladu existencie tzv. tréningovej množiny, ktorá je tvorená dvojicami vstupný-výstupný vektor. Učenie ANN sa realizuje predovšetkým úpravou synaptických váh siete, čo je možné realizovať viacerými metódami. V prípade metódy BP sa využíva gradientná metóda, ktorá vychádza z vhodnej definície tvz. chybových funkcií, ktoré sú závislé na parametroch siete. Gradientné metódy hľadajú také hodnoty synaptických váh, aby minimalizovali chybovú funkciu. Základný princíp adaptačného algoritmu BP je teda určovanie takých hodnôt synaptických váh w_{ij} siete, ktoré postupne znižujú hodnotu zvolenej chybovej funkcie E [7].

Algoritmus spätného šírenia chyby sa skladá z troch etáp:

- dopredné šírenie vstupného signálu tréningového vzoru,
- spätné šírenie chyby,
- a aktualizácia váhových hodnôt na spojeniach.

Počas dopredného šírenia signálu je ku každému vstupnému neurónu priradený vstupný signál a sprostredkuje sa jeho prenos ku všetkým neurónom vnútornej vrstvy. Každý neurón vo vnútornej vrstve určí svoju aktiváciu a pošle tento signál všetkým neurónom vo výstupnej vrstve. Následne všetky neuróny výstupnej vrstvy určia svoju aktiváciu, ktorá odpovedá skutočnému výstupu daného neurónu. Ide teda o odozvu neurónovej siete na vstupné podnety, danú excitáciou nerónov vstupnej vrstvy. Proces stanovenia synaptických váh je realizovaný adaptáciou neurónovej siete. Do algoritmu učenia vstupuje tzv. tréningová množina T, ktorá sa skladá z p vektorov vstupných údajov α^v

a im odpovedajúcim p vektorov požadovaných odoziev γ^{v} . Vstupné vektory obsahujúce n parametrov a výstupné vektory obsahujúce *m* parametrov je možné vyjadriť nasledovne:

$$\alpha^{v} = (\alpha_{1}^{v}, \dots, \alpha_{n}^{v}), \qquad \gamma^{v} = (\gamma_{1}^{v}, \dots, \gamma_{m}^{v}), \qquad 1 \le v \le p$$

Usporiadané dvojice (α^v, γ^v) potom tvoria tréningovú množinu T:

$$T = \left\{ \left(\alpha^1 \gamma^1 \right), \dots, \left(\alpha^p \gamma^p \right) \right\}$$
(3.46)

a vektory skutočných odoziev siete pri danej kofigurácii váh w tvoria množinu:

$$\beta^v = (\beta_1^v, \dots, \beta_m^v) \tag{3.47}$$

Tieto vektory skutočných odoziev sú funkciou vstupných údajov, ktorá je vyjadrená transformačnou funkciou φ_w :

$$\beta^v = \varphi_w(\alpha^v). \tag{3.48}$$

Počas spätného šírenia, v ktorom sa realizuje prepočet váh w_{ij} , sa hľadá taká konfigurácia týchto váh, aby sa minimalizovala chybová funkcia E_w , ktorá má tvar:

$$E_w = \sum_{v=1}^p E_w^v = \frac{1}{2} \sum_{v=1}^p \sum_{j=1}^m \left(\beta_j^v - \gamma_j^v\right)^2$$
(3.49)

Proces adaptácie ANN je teda rovnocenný procesu hľadania takej funkcie φ_w , ktorá čo najpresnejšie realizuje transformáciu:

$$\varphi_w(\alpha^v) \cong (\gamma^v)$$

Pre učenie sa v základnom modele používa už zmieňovaná gradientná metóda. Pre znázornenie procesu učenia je na obr. 3.15 schematicky znázornená chybová funkcia E(w), kde na ose x je premietnutý vektor váh w. Proces začína náhodne zvolenou konfigurácio
u $w^{(0)},\,{\rm pri}$ ktorej je chyba siete pravdepodobne veľká. Pri adaptácii zostrojíme v tomto bode $w^{(0)}$ ku grafu chybovej funkcie dotyčnicový vektor $\frac{\partial E}{\partial w} \left(w^{(0)} \right)$ a posunieme sa v smere tohto vektoru smerom dole o ε . Pri dostatočne nízkej hodnote

Obr. 3.15: Schéma gradientnej metódy [8]

 ε tak získame novú konfiguráciu $w^{(1)} = w^{(0)} + \Delta w^{(1)}$, pre ktorú je chybová funkcia menšia ako v prípade $w^{(0)}$. Tento proces sa opakuje pre $w^{(1)}$, tak že platí $E(w^{(1)}) \ge E(w^{(2)})$ atď., až sa limitne dostaneme do lokálneho minima chybovej funkcie [8].

4 Analýza problému a systém podstatných veličín

Pred samotným návrhom riešenia problémovej situácie určenia záberovej tuhosti ozubenia je potrebné analyzovať danú problémovú situáciu. Pôjde teda o výber podstatných veličín, ktoré významne ovplyvňujú chovanie skúmaného ozubeného súkolesia s dôrazom na tie, ktoré ovplyvňujú hodnoty tuhosti ozubenia v priebehu záberu. Tieto veličiny je výhodné rozdeliť do kategórií podľa ich charakteru [12].

Prvky okolia

Ozubené súkolesia sú súčasťou prevodových mechanizmov, uložené sú na hriadeli, ktorý je uložený v skrini, ráme alebo stojane. Tieto prvky vytvárajú podstatnú časť okolia ozubených kolies. Do okolia sa zaraďuje i mazivo slúžiace na mazanie ozubených kolies. Vzhľadom k zvolenej úrovni riešenia tejto práce však nebudú prvky okolia zahrnuté do riešenia problému.

Topolóia a geometria objektu

Topológia ozubeného súkolesia predstavuje vzájomné usporiadanie ozubených kolies v priestore. Vzdialenosť osí ozubených kolies je definovaná osovou vzdialenosťou, ktorá zavisí na polomeroch rozstupných kružníc kolies, zároveň sa vzájomná poloha ozubených kolies mení počas dráhy záberu. Geometria ozubeného súkolesia je daná tvarom zubov a tvarom disku ozubeného kolesa. Tvar zubov evolventného ozubenia je riadený počtom zubov kolesa, uhlom záberu a použitými korekciami a modifikáciami zubového profilu. Veľkosť ozubených kolies je riadená veľkosť ou modulu ozubenia.

Väzby medzi objektami a väzby s okolím

Väzba s okolím predstavuje väzbu medzi hriadeľom a ozubeným kolesom, ktorá slúži na prenos pohybu a mechanickej energie a je realizovaná uložením kolesa na hriadeli. Vzájomná väzba medzi jednotlivými zubami ozubených kolies funguje na princípe prenosu síl tlakom.

Aktivácia sústavy

Sústava je aktivovaná zaťažením hnacieho kolesa točivým momentom, ktorý interakciou s hnaným kolesom prenáša na toto koleso mechanickú energiu a spôsobuje pohyb oboch členov.

Ovplyvnenie sústavy okolím

Tuhosť uloženia kolies na hriadeli a uloženie hriadeľa v ráme ovplyvňuje vzájomnú polohu ozubených kolies počas záberu a teda i tuhosť ozubenia. Plynulosť toku a veľkosť mechanickej energie prenášanej z okolitých objektov na vstupný člen prevodového mechanizmu významne vplýva na tuhosť ozubenia ako aj interakcia výstupného členu s okolím. Druh použitého maziva i parametre mazacej vrstvy na povrchu zubov ovplyvňuje hodnotu tuhosti zubového páru.

Vlastnosti sústavy

Medzi vlastnosti štruktúry ozubených kolies patria najmä charakteristiky materiálu použitého na výrobu ozubených kolies, spôsob výroby ozubených kolies, prítomnosť vád či porúch vzniknutých prevádzkou ozubených kolies.

Procesy a stavy sústavy

Hlavným procesom pri zábere ozubených kolies je prenos mechanickej energie a ro-

Michal Planka

tačného pohybu. Záber jedného páru zubov súkolesia je možné rozdeliť na viacero fáz. Začiatkom záberu sa rozumie prvý dotyk hnaného a hnacieho zubu, ide o tzv. fázu nábehu, záber pokračuje vzájomnou interakciou zubov, teda vzájomným pohybom a prenosom sily. Vzájomný pohyb zubov je kombináciou pohybu valivého a klzného až do polohy zubov, kedy bod kontaktu dosiahne valivý bod súkolesia. V tomto momente ide o čisté odvaľovanie zubových profilov. Následne sa mení zmysel vzájomnej relatívnej rýchlosti profilov zubov a záber pokračuje opäť pohybom valivo-klzným a končí v momente, kedy sa zuby dotýkajú posledný krát. Klzný pohyb zubových profilov vyvoláva medzi jednotlivými zubami treciu silu. Keď že vo valivom bode nedochádza ku klznému pohybu, trecia sila tu má nulovú hodnotu. Po prekonaní toho bodu opäť pôsobí medzi zubami trecia sila, no s opačnou orientáciou [4].

Prejavy a stavy sústavy

Popísané procesy prebiehajúce na súkolesí spôsobujú silové pôsobenie na jednotlivé zuby súkolesia. Pôsobením týchto síl dochádza k deformácii zubov, ktorú je kvantitatívne možné vyjadriť tuhosťou ozubenia. Deformácia a teda ani tuhosť ozubenia nie je počas záberu konštantná, ale periodicky sa mení, čo pôsobí ako periodický zdroj budenia.

Dôsledky prejavov a chovanie sústavy

Premenlivá hodnota tuhosti ozubenia má množstvo pozitívnych ale i negatívnych dôsledkov. Môže ísť o zdroj hluku, zmenu záberových pomerov, zmenu plynulosti chodu, zdroj budenia torzného kmitania hriadeľov a pod.

Zahrnutie všetkých horeuvedených veličín v rámci riešenia tejto práce je z dôvodu nadradených reštrikcií len ťažko realizovateľné. Pre zachovanie ostrosti riešenia problému a zachovania prijateľného rozsahu práce boli zvolené vybrané veličiny vstupujúce do procesu riešenia. Bude vytvorený rovinný model súkolesia s priamymi evolventnými zubami a bežným, teda nekorigovaným profilom. Súkolesie bude aktivované zaťažením hnacieho kolesa točivým momentom. Kontakt medzi jednotlivými zubami bude modelovaný bez vplyvu trenia. Riešenie nebude zahŕňať rýchlosť otáčania súkolesia ani vplyv zotrvačných síl a dynamických javov.

Vstupné veličiny budú zadávané ako deterministické, v skutočnosti sú však hodnoty zaťaženia aj rozmerov stochastickými veličinami.

Dalším krokom je analýza problému vytvorenia umelej neurónovej siete a výber podstatných veličín ovplyvňujúcich správanie tejto neurónovej siete. K tým patrí najmä voľba architektúry neurónovej siete, topológia siete, matematický model neurónu či zvolený algoritmus pre učenie siete.

5 Postup na určenie tuhosti páru zubov

Určenie premenlivej záberovej tuhosti ozubeného súkolesia je priamy príčinný problém. Teda vstupom do algoritmu riešenia sú geometria objektu, vlastnosti prvkov štruktúry objektu, väzby objektu na okolie, aktivácia objektu. Výstupom z algoritmu sú odozvy na tieto príčiny. Priamy príčinný problém je najvhodnejšie riešiť modelovaním. V nasledujúcej kapitole sa zameriame na vytvorenie algoritmu pre určenie záberovej tuhosti a na vytvorenie modelu ozubeného súkolesia v zábere.

5.1 Voľba metódy

Určenie záberovej tuhosti ozubeného súkolesia je možné viacerými metódami. Analytické určenie tuhosti ozubenia je veľmi obtiažne z dôvodu zložitého tvaru zubov. Ďalšou možnosťou je využitie experimentálneho modelovania, čo je však veľmi náročné z hľadiska finančného i časového [2]. Pre riešenie daného problému bude využité výpočtové modelovanie, konkrétne numerické modelovanie pomocou metódy konečných prvkov (ďalej iba MKP). Ide o efektívnu a modernú metódu umožňujúcu náročné simulácie. Medzi hlavné dôvody pre zvolenie danej metódy patrí dostupnosť softvérového i hardvérového vybavenia. Ako výpočtový program bol zvolený softvér Ansys s parametrickým programovacím jazykom APDL. Výpočtový model bol v rámci programu Ansys vytvorený pomocou sekvencie príkazov s parametrickými vstupmi, tzv. makro súborom (ďalej iba makro).

5.2 Vytvorenie výpočtového modelu

Pri vytváraní výpočtového modelu je dôležité zohľadniť pomerne veľký súbor skutočností, aby daný model čo najlepšie reprezentoval skutočnosť na danej úrovni riešenia problému. Tvorbu celkového výpočtového modelu je potrebné rozložiť na vytvorenie dielčich modelov. Dôraz treba klásť hlavne na dostatočne presný model geometrie, na kvalitu siete konečných prvkov a vhodný výber prvkov, model materiálu či model zaťaženia a väzieb.

5.2.1 Model geometrie

V prvom kroku je potrebné vytvoriť parametrický model geometrie jednotlivých ozubených kolies súkolesia. Pre zabezpečenie správnosti výpočtu je dôležité klásť dôraz na to, aby model čo najlepšie vystihoval tvar ozubenia. V rámci tejto práce bol uvažovaný teoretický tvar ozubenia, bez zahrnutia výrobných nepresností či vád spôsobených prevádzkou a opotrebovaním. Celková topológia by mala byť navrhnutá tak, aby bolo po výpočte možné čo najefektívnejšie získavať potrebné výsledky. Pre tvorbu modelu geometrie bolo využité prostredie Ansys APDL.

Keďže cieľom tejto práce je určenie tuhosti v priebehu záberu pre určený rozsah vstupných parametrov, ide o relatívne veľký počet výpočtov. Preto je dôležité okrem presnosti výpočtu dbať aj na jeho časovú náročnosť. Keďže sa jedná o kontaktnú úlohu

interakcie medzi dvoma zubmi ozubeného súkolesia bude potrebná relatívne jemná sieť v mieste kontaktu a teda i veľký počet prvkov. Model geometrie bude preto rovinný, čo výrazne zníži počet prvkov i čas výpočtu. Cieľom práce je určenie záberovej tuhosti jedného páru zubov, preto bude model ozubeného kolesa obsahovať jeden zub, čo je do-stačujúce pre simuláciu záberu jedného páru zubov.

Obr. 5.1: Model geometrie kolesa

Model ozubeného kolesa bol rozdelený na dve časti, resp. plochy. Prvou je zub s prechodovou oblasťou do telesa ozubeného kolesa P_z a druhou je samotné teleso P_t (obr. 5.1). Dôvodom rozdelenia je rôzna požadovaná veľkosť prvkov pre dané dve plochy. Prvým krokom pri vytváraní zubu ozubeného kolesa bolo vytvorenie evolventnej časti zubového profilu $E_{1,2}$, čoho bolo dosiahnuté vygenerovaním bodov (tzv. keypoint), ktoré boli následne preložené rovinným splajnom. Body boli generované pomocou parametrického vyjadrenia evolventy v kartézskom súradnicovom systéme so stredom v ose ozubeného kolesa v čelnom reze. Pre súradnice bodov evolventy x, y platí vzťah [2]:

$$\begin{aligned} x &= r_b(\cos t + t\sin t) \\ y &= r_b(\sin t - t\cos t) \end{aligned}$$
(5.1)

kde:

$$x, y$$
sú súradnice bodov evolventy[mm] r_b je polomer základnej kružnice[mm] t je parameter reprezentujúci veľkosť polárneho uhlu bodu evolventy[rad]

Ako bolo uvedené v kapitole 3.2, evolventná časť profilu zubu začína na základnej kružnici a končí na kružnici hlavovej. Podľa tejto skutočnosti bol vymedzený interval, v ktorom prebiehal parameter t. Vytvorený evolventný profil bol následne odzrkadlený podľa osi symetrie zubu do polohy rešpektujúcej šírku zubu na rozstupnej kružnici. Nasledovalo vytvorenie hlavovej krivky H, teda výseku hlavovej kružnice, obmedzeného evolvenými bokmi profilu zubu. Poslednou časťou tvorby zubu bolo vytvorenie prechodovej

krivky $P_{1,2}$. Profil zubu plynule prechádza z bodu evolventy na základnej kružnici úsečkou smerujúcou do stredu ozubeného kolesa a následne plynulým zaoblením s polomerom $Q_f = 0,38 \cdot m$ do pätnej kružnice. Prechod evolventy do hlavovej kružnice bol vytvorený bez uvažovania zaoblenia špičky hlavy zubu.

Druhú plochu modelu geometrie ozubeného kolesa tvorí teleso kolesa s hladkou kruhovou dierou D, ktorá predstavuje dieru na osadenie hnacieho alebo hnaného hriadeľa.

Po vytvorení modelu oboch ozubených kolies súkolesia boli jednotlivé kolesá umiestnené tak, aby rešpektovali osovú vzdialenosť a vzájomné natočenie na začiatku záberu.

5.2.2 Model materiálu

Veľmi rozšíreným materiálom na výrobu ozubených kolies je konštrukčná ocel'. Pri výpočtoch bude uvažovaný homogénny izotropný lineárne pružný model materiálu, ktorý je možné popísať dvoma nezávislými parametrami, a to modulom pružnosti v ťahu E a Poissonovým pomerom μ . Použité hodnoty materiálových konštánt pre konštrukčnú oceľ uvádza tabuľka 5.1.

		=
Modul pružnosti	E [MPa]	2.1×10^5
Poissonov pomer	μ [-]	0.3

5.2.3 Vytvorenie siete konečných prvkov

Vytvorenie kvalitnej siete konečných prvkov je dôležitá súčasť tvorby výpočtového modelu. Vo všeobecnosti platí, že čím je sieť hustejšia, tým sa spresňuje riešenie problému. S počtom prvkov však rastie i výpočtový čas.

Pre zníženie počtu použitých prvkov je vhodné použiť nerovnomernú hustotu siete, teda v potrebných miestach modelu geometrie použiť hustejšiu, v iných redšiu sieť. V prvom kroku je výhodné navrhnúť kvalitatívne rozloženie hustoty siete a pred samotným výpočtom vykonať analýzu závislosti výsledkov riešenia na veľkosti prvkov siete (v anglickej literatúre *mesh convergence study*). Model geometrie ozubeného kolesa bol rozdelený na dve časti, a to na zub s prechodovou oblasťou do disku, ktorá vyžaduje použitie hustejšej siete a na samotný disk, kde bola použitá hrubšia sieť.

V rámci samotnej zubovej časti ozubeného kolesa boli taktiež použité rozdielne veľkosti prvkov. Najjemnejšiu sieť vyžaduje časť zubu, v ktorej dochádza ku kontaktu so spoluzaberajúcim zubom. Keďže riešenie kontaktných problémov je výrazne nelineárny proces, príliš hrubá sieť v mieste kontaktu môže viesť k problémom s konvergenciou výpočtu. Naopak príliš hustá sieť v prípade nelineárneho riešenia mnohonásobne zvyšuje čas výpočtu. Ďalšou oblasťou, ktorá má výrazný vplyv na tuhosť, resp. ohybovú deformáciu zubu v zábere, je prechod zubu do disku ozubeného kolesa, kde bola taktiež použitá hustejšia sieť. Pre nastavenie hustoty siete v rámci programu Ansys APDL bolo použité predpísanie veľkosti prvku na čiary geometrického modelu, pre zvyšok plochy zubu bola nastavená jednotná veľkosť prvku. Nakoľko bola použitá metóda voľnej tvorby siete, bola nastavená i rýchlosť rastu prvkov od čiar s predpísanou veľkosťou prvku do plochy zubu.

Michal Planka

Veľkosť prvkov na kontaktnom povrchu v_k (obr. 5.2) bola zvolená ako riadiaci parameter veľkosti ostatných prvkov plochy zubu, ktoré sú od nej závislé podľa uvedených vzťahov:

- veľkosť prvkov na prechodových krivkách $v_p = 2, 5 \cdot v_k$,
- veľkosť prvkov predpísaná na plochu zubu $v_z = 5 \cdot v_k$.

Obr. 5.2: Nastavenie veľkosti prvkov

Pre disk ozubeného kolesa bola nastavená jednotná veľkosť prvkov, závislá od priemeru disku, pričom boli nastavené i parametre prechodu siete zo zubovej časti do disku. Veľkosť prvkov disku ozubeného kolesa bola zvolená ako $v_d = 0.025 \cdot d_f$, kde d_f je priemer pätnej kružnice.

Výsledná veľkosť prvkov na kontaktnom povrchu v_k bola určená analýzou závislosti výsledkov na hustote siete, ktorej sa venuje kapitola 6.2.

Voľba typu prvkov

Pre celý model ozubeného súkolesia, s výnimkou kontaktných prvkov, bol použitý rovinný 8-uzlový prvok s kvadratickou bázovou funkciou označovaný ako *PLANE183*. Tento typ prvku bol zvolený pre lepšie popísanie geometrického modelu zubu a deformácie zubu v porovnaní s prvkom s lineárnou bázovou funkciou.

Keďže v rámci tejto práce je použitý rovinný model ozubeného súkolesia, a teda i rovinné prvky, je potrebné nastaviť podmienky ich správania. Pri výpočtoch rovinného modelu ozubeného súkolesia je možné použiť podmienky rovinnej napätosti či rovinnej deformácie. Podmienky rovinnej napätosti sú využívané pre analýzu telies, ktorých jeden rozmer je mnohonásobne menší (ideálne blížiaci sa k nule), než ostatné rozmery a zaťaženie pôsobí rovnomerne v rovine jeho väčších rozmerov. Podmienky rovinnej deformácie sú zase použiteľné pre teleso, ktorého jeden rozmer je mnohonásobne väčší než ostatné (ideálne blížiaci sa k nekonečnu) a zaťaženie je rovnomerne rozložené po tomto najväčšom rozmere. V technickej praxi sú teda podmienky rovinnej napätosti používané pre tenké dosky, plechy a pod. a podmienky rovinnej deformácie pri riešení úloh dlhých telies ako válce s rovnomerne rozloženým zaťažením po dĺžke a pod [14]. V rámci tejto práce sú pre model ozubeného súkolesia použité podmienky rovinnej deformácie, a to pri uvažovaní dostatočnej šírky ozubených kolies a rovnomerne rozloženého zaťaženia po šírke zubu.

5.2.4 Model záberu ozubeného súkolesia

V rámci riešenia problému určenia tuhosti ozubenia je potrebné modelovať vzájomný záber páru zubov. Reálnu spojitú interakciu medzi jednotlivými zubami súkolesia, teda simuláciu zubového záberu, je však numerickým modelovaním veľmi obtiažne realizovateľné. Preto bol spojitý záber súkolesia rozdelený do postupnosti kvazistatických rovnovážnych stavov, tzv. krokov. Záber páru zubov začína v momente, kedy sa zub hnaného kolesa prvý krát dostane do kontaktu so zubom hnaného kolesa. Následne sú aplikované okrajové a väzbové podmienky. Hnací člen je zaťažený točivým momentom a je nastavené zamedzenie posuvu voči jeho stredu. Hnanému členu je zamedzené otáčanie a posuv voči jeho stredu, medzi zubami súkolesia je vytvorený kontakt. Vyriešením tejto situácie, teda vytvorením rovnovážneho stavu medzi jednotlivými kolesami, dochádza k vyriešeniu prvého kroku záberu. Pokračovanie záberu je realizované pootočením hnaného kolesa o určitý malý uhol v smere otáčania súkolesia a opätovné ustálenie do rovnovážneho stavu. Ostatné okrajové podmienky zostávajú nezmenené. Riešením celého záberu je teda sled takýchto rovnovážnych stavov. Posledný krok (koniec záberu) nastáva v situácii, kedy sa hnacie koleso posledný krát dotýka hnaného kolesa.

Pohyb súkolesia počas záberu je riadený natočením hnaného kolesa voči jeho stredu. Zaťaženie, teda silové okrajové podmienky sú aplikované na hnacie koleso. Celkovo sa hnané koleso počas simulácie celého záberu pootočí o uhol α_{rot2} , ktorý je možné určiť zo vzťahov uvedených v kapitole 3.2.5, konkrétne zo súčiniteľa záberu profilu ε_{α} a počtu zubov z_2 podľa vzťahu:

$$\alpha_{rot2} = \frac{2 \cdot \varepsilon_{\alpha} \cdot \pi}{z_2} \qquad [rad] \quad (5.2)$$

V rámci programu Ansys bol výpočet rozdelený do dvoch záťažných krokov (loadstep), ktoré boli ďalej rozdelené na kroky výpočtu (substep). V prvom záťažnom kroku (loadstep 1) boli na ozubené kolesá v počiatočnej pozícií aplikované nasledujúce okrajové podmienky:

- $\bullet\,$ na hnacie koleso točivý moment M_{t1} a zamedzenie posuvu stredu kolesa,
- na hnané koleso zamedzenie posuvu i natočenia stredu kolesa.

Prvý záťažný krok bol rozdelený na daľšie 3 kroky výpočtu pre aktiváciu kontaktu zubov a k aplikovaniu plného zaťaženia točivým momentom. V druhom záťažnom kroku (loadstep 2) zostali okrajové podmienky pre hnacie koleso nezmenené, hnanému kolesu bolo predpísané natočenie voči stredu o uhol α_{rot2} . Výpočet druhého záťažného kroku bol rozdelený na 30 krokov výpočtu, teda v každom kroku je hnané koleso pootočené o uhol $\alpha_{rot2}/30$.

5.2.5 Model zaťaženia a vzájomnej väzby ozubených kolies

Pri zábere ozubeného súkolesia je prenášaná mechanická energia a otáčavý pohyb z hnacieho na hnané koleso pomocou väzby spoluzaberajúcich zubov. Vo výpočtovom modele je potrebné modelovať zaťaženie hnacieho člena, teda prenos točivého momentu z hnacieho hriadeľa na koleso, vzájomnú interakciu zubov ozubeného kolesa a prenos točivého momentu z hnaného kolesa na hriadeľ.

Zaťaženie točivým momentom je možné modelovať v programe Ansys viacerými spôsobmi. V rámci tejto práce bol využitý tzv. *surface-based constraint*, konkrétne *force-distributed constraint*. Ide o spojenie definovaného povrchu, respektíve zvolených uzlov siete, s tzv. riadiacim uzlom (pilot node) [13]. Okrajové podmienky boli aplikované na riadiaci uzol, z ktorého sú tieto aplikované podmienky následne distribuované do kontaktných prvkov požadovaného povrchu. Riadiaci uzol bol vytvorený v strede diery ozubeného kolesa, následne naň bol aplikovaný točivý moment a bolo mu zabránené v posuve v oboch smeroch čelnej roviny ozubeného kolesa. Vnútorný algoritmus programu Ansys vytvorí väzbu medzi riadiacim uzlom a definovaným povrchom diery ozubeného kolesa. Táto väzba následne prenáša okrajové podmienky z riadiaceho uzlu na zvolený povrch. Natočenie hnaného kolesa voči jeho stredu a zamedzeniu posuvu stredu bolo taktiež realizované pomocou riadiaceho uzlu, analogicky ako v prípade hnacieho kolesa.

Na riešenie kontaktu medzi zubami súkolesia bol vytvorený kontaktný pár prislúchajúcich evolvetných častí zubových profilov. V rámci systému Ansys bol z hľadiska výberu kontaktných entít nastavený typ kontaktu povrch na povrch a podľa vzájomného chovania povrchov typ poddajný-poddajný. Kontakt je modelovaný pomocou špeciálnych typov kontaktných prvkov, ktoré pokrývajú povrchy telies na miestach, ktoré počas zaťažovania môžu prísť do styku. Jeden kontaktný povrch zubového páru bol pokrytý prvkami typu TARGET a prislúchajúci povrch druhého zubu prvkami typu CONTACT. Táto dvojica prvkov spolu tvorí kontaktný pár.

Na riešenie kontaktnej úlohy bola zvolená rozšírená Lagrangeova metóda (Augmented Lagrangian), ktorá je vhodná pre riešenie úloh so zmenami stavov kontaktných dvojíc [13]. Zároveň je menej citlivá na voľbu kontaktnej tuhosti oproti pokutovej metóde. Túto kontaktnú tuhosť je však možné korigovať tzv. faktorom kontaktnej tuhosti. Primárne je nastavený na hodnotu 1. Pri zvýšení faktoru dochádza k menšiemu prestupu kontaktných povrchov, no zároveň sa zvyšuje čas výpočtu a môže dôjsť k problémom s konvergenciou výpočtu. Keďže deformácia ozubenia sa pohybuje v rádoch mikrometrov, prestup povrchov zubových profilov ovplyvňuje hodnotu vypočítanej deformácie i tuhosti ozubenia. Overeniu vplyvu kontaktnej tuhosti na veľkosti prestupu povrchov sa venuje kapitola 6.4.

Na začiatku každého kroku výpočtu (s výnimkou prvého) dochádza k oddialeniu kontaktných povrchov z dôvodu natočenia hnaného kolesa. Pre zachovanie konvergencie výpočtu bola preto aktivovaná automatická úprava úvodnej medzery či penetrácie povrchov, ktorá numericky koriguje vzniknutú úvodnú medzeru medzi kontaktnými povrchmi a dochádza k aktivácii kontaktného páru.

Voľba typu kontaktných prvkov

Na kontaktnom povrchu zubu hnacieho kolesa bol použitý 3-uzlový prvok *CONTA172* kvôli kompatibilite s prvkom *PLANE183*, ktorý obsahuje stredové uzly. Kontaktný povrch

zubu hnaného kolesa bol pokrytý prvkamiTARGE169,ktoré sú kompatibilné s prvokomCONTA172.

5.2.6 Určenie deformácie a tuhosti zubov z výpočtového modelu

Po ukončení výpočtu je potrebné z výsledkov analýzy určiť deformáciu a tuhosť ozubenia. Na získanie týchto údajov bol vytvorený makro súbor, ktorý z výsledkov analýzy určil pre každý prípad vstupných parametrov tuhosť a deformáciu daného súkolesia. Tuhosť zubov jednotlivých súkolesí bola určovaná vyhodnotením každého z krokov výpočtu záberu súkolesia. Výsledky jednotlivých krokov boli priebežne ukladané v rámci programu Ansys a následne exportované do textového súboru prislúchajúcemu danému súkolesiu. Určenie tuhosti bolo realizované kombináciou výsledkov z výpočtového modelu a teoretických znalostí i vzťahov platných pre záber čelného ozubené súkolesia s priamymi zubami.

Obr. 5.3: Deformácia zubu

Deformácia zubu δ bola vyhodnocovaná podľa situácie naznačenej v obr. 5.3. Zelenou farbou je zobrazený nezaťažený zub, červenou farbou je naznačená deformácia samotného zubu. Vo výpočtovom modele dochádza okrem deformácie samotného zubu i k obvodovej deformácii disku ozubeného kolesa. Po zaťažení sa zub dostane do stavu zobrazeného modrou čiarou. Veľkosť obvodovej deformácie bola vyjadrená uhlom natočenia φ_d priesečníka osi zubu a pätnej kružnice D_d , voči stredu otáčania kolesa O. Deformácia zubu δ v normálnom smere, teda deformácia na priamke záberu, bola vyhodnocovaná z veľkosti posuvu bodu D_0 v smere záberovej priamky. V MKP modele bod D_0 reprezentuje najbližší uzol k priesečníku priamky záberu a krivky boku zubu. V rámci simulácie záberu v použitej analýze dochádza k rotácii kolesa okolo svojho stredu otáčania z východzej polohy, a preto nie je možné získať posuv bodu D_0 vrámci jedného kroku výpočtu priamo z výsledkovej databázy. Posuvy uzlov sú totiž vyhodnocované voči pôvodnej polohe a geometrii modelu na začiatku záberu.

Deformácia samotného zubu δ bez uvažovania obvodovej deformácie disku bola získaná ako dĺžka strany pomyselného trojuholníka $\Delta D_0 D_1 O$ (obr. 5.3), kde bod D_0 reprezentuje

Michal Planka

bod dotyku nezaťaženého zubu, D_1 je bod dotyku po zaťažení a deformácii samotného zubu a bod O reprezentuje stred otáčania ozubeného kolesa. Pomocou sínusovej vety je možné po určení dĺžky strany $|D_0O|$, uhlu φ_{δ} a uhlu φ_p vypočítať δ podľa vzťahu (5.3). Pre získanie týchto parametrov bol vytvorený polárny systém súradníc so stredom v strede otáčania ozubeného kolesa O. Uhol φ_{δ} bol určený ako rozdiel celkového uhlu natočenia $\varphi_{\delta d}$ bodu D_0 voči ose kolesa a uhlu natočenia bodu disku ozubeného kolesa φ_d , t.j. $\varphi_{\delta} = \varphi_{\delta d} - \varphi_d$. Dĺžka strany $|D_0O| = r_{D0}$ je rovná vzdialenosti bodu D_0 od stredu ozubeného kolesa a uhol φ_p bol určený pomocou geometrických vzťahov platných pre danú situáciu.

$$\delta = r_{D0} \frac{\sin \varphi_{\delta}}{\sin \varphi_{p}} \tag{5.3}$$

Tuhosť jednotlivých zubov $c_{1,2}$ bola určená podľa vzťahu:

$$c_{1,2} = \frac{w}{\delta_{1,2}} \qquad [\text{N}\,\text{mm}^{-1}\,\mu\text{m}^{-1}] \quad (5.4)$$

kde:

w je šírkové zaťaženie zubov $[N \, mm^{-1}]$ $\delta_{1,2}$ je celková deformácie jednotlivých zubov $[\mu m]$

Výpočet bol realizovaný pre podmienky rovinnej deformácie, kde sa silové zaťaženie vzťahuje na jednotku rozmeru, v našom prípade teda na 1 mm [13]. Šírkové zaťaženie zubov w bolo určené ako:

$$w = \frac{F_N}{1}$$
 [N mm⁻¹] (5.5)

[N]

kde:

 F_N je veľkosť pôsobiacej normálovej sily

Výsledná jednopárová tuhosť ozubenia c bola určená podľa vzťahu (3.40).

5.2.7 Použité softvérové a hardvérové vybavenie

Pre riešenie výpočtového modelu bol použitý simulačný nástroj Ansys Mechanical APDL 17.0. Samotné riešenie prebiehalo na osobnom počítači s nasledujúcim parametrami:

- CPU 4 jadrový procesor s frekvenciou 3 GHz,
- RAM operačná pamäť 12 GB.

6 Riešenie výpočtového modelu

Riešením výpočtového modelu je simulácia záberu čelných ozubených kolies a následné určenie premenlivej tuhosti jedného páru zubov ozubenia počas tohto záberu. V predchádzajúcej kapitole bola pozornosť venovaná vytvoreniu výpočtového modelu. Pre samotný výpočet je potrebné určiť rozsah vstupných parametrov ozubeného súkolesia, veľkosť prvkov siete, či nastaviť parametre kontaktu zubov súkolesia.

6.1 Voľba vstupných parametrov ozubeného súkolesia a zaťaženia

Ako bolo uvedené v kapitole 3.9, tuhosť jedného páru zubov čelného súkolesia s priamymi zubami závisí najmä na tvare zubov, ktorý je ovplyvnený počtom zubov kolesa, uhlom záberu, šírkou ozubenia či použitím korekcií a modifikácií profilu. Zároveň je ovplyvnená i výrobnými nepresnosťami a vadami vzniknutými opotrebením. Keď že deformácia zubu nie je lineárny dej, závisí aj na veľkosti zaťaženia [2].

Pre výpočet bol použitý rovinný model ozubeného súkolesia s priamymi zubami s bežným, t.j. nekorigovaným evolventným ozubením. Geometria použitého súkolesia je definovaná modulom m, počtom zubov $z_{1,2}$ hnacieho a hnaného kolesa, uhlom záberu α , výškou hlavy zubu h_a , výškou päty zubu h_f , polomerom zaoblenia prechodovej krivky Q_f a polomerom diery pre hriadel r_d .

Za premenné vstupné parametre geometrie súkolesia boli zvolené:

- počet zubov hnacieho kolesa z_1 v rozsahu 20 až 50 zubov s krokom 5,
- počet zubov hnaného kolesa z_2 v rozsahu 20 až 50 zubov s krokom 5.

Zaťaženie súkolesia bolo riadené veľkosťou momentu M_{t1} pôsobiaceho na hnacie koleso, ktorý je možné vyjadriť z veľkosti obvodovej zložky sily F_t a polomeru rozstupnej kružnice hnacieho kolesa r_1 podľa vzťahu (3.34). Polomer rozstupnej kružnice závisí od počtu zubov kolesa, ktorý sa pre každý výpočet mení. Preto bol ako vstupný parameter zaťaženia zvolená veľkosť pôsobiacej obvodovej zložky sily. Pomerná tuhosť páru zubov je definovaná pre zaťaženie vzťahujúce sa na jednotku šírky ozubeného kolesa. Hodnota zaťaženia je vyjadrená ako šírkové zaťaženie w_t , určené z veľkosti sily F_t obdobne ako vo vzťahu (5.5). Rozsah hodnôt pôsobiaceho zaťaženia w_t bol zvolený nasledovne:

- 50 až $150\,\mathrm{N\,mm^{-1}}$ s krokom $50\,\mathrm{N\,mm^{-1}},$
- $300 \text{ až } 600 \text{ N mm}^{-1} \text{ s krokom } 150 \text{ N mm}^{-1}$.

Veľkosť deformácie zubu δ ani tuhosť c nezávisí na veľkosti ozubených kolies, preto je nezávislá i na module m [2] [15]. Vrámci riešenia vytvoreného výpočtového modelu boli však pre výpočet zvolené dve hodnoty modulu ozubenia m z dôvodu pomerne veľkého rozsahu zaťaženia, a to takto:

- pri zaťažení 50 až 150 N mm⁻¹ bol zvolený modul m = 2 mm,
- pri zaťažení 300 až 600 $\rm N\,mm^{-1}$ bol zvolený modul $m\!=\!8\,\rm mm.$

Pri zaťažení modelu súkolesia silou neúmernou rozmerom kolesa dochádza k deformácii celého ozubeného kolesa, ktorá mení záberové pomery. Preto boli zvolené hodnoty modulov tak, aby približne rešpektovali typické maximálne zaťaženie pre dané rozmery kolies.

Celkovo bolo realizovaných 294 výpočtov pre zahrnutie všetkých kombinácií vstupných parametrov výpočtu.

Ostatné nemenné parametre ozubeného súkolesia vstupujúce do výpočtu sú uvedené v tabuľke 6.1. Tabuľka 6 1: Nemenné parametre kolies

Tabuika 0.1: Nemenne para	metre kones
Uhol záberu	$\alpha = 20^{\circ}$
Výška hlavy zubu	$h_a = m$
Výška päty zubu	$h_f = 1.25 \cdot m$
Polomer zaoblenia päty zubu	$Q_f = 0.38 \cdot m$
Polomer diery pre hriadel'	$r_d = 0.2 \cdot d_f$

6.2 Nastavenie riešenia modelu

Spojitý záber ozubených kolies bol modelovaný ako postupnosť kvazistatických rovnovážnych stavov, preto bol nastavený statický typ analýzy. Riešenie záberu ozubených kolies obsahuje okrem kontaktnej úlohy i ďalšie nelineárne chovanie a to veľké posuvy. Na začiatku každého kroku, s výnimkou prvého, dochádza k rotácii modelov ozubených kolies ako tuhých telies. Z toho dôvodu je potrebné aktivovať uvažovanie efektu veľkých posuvov pomocou príkazu *NLGEOM,ON*.

Na riešenie výpočtového modelu bol použitý priamy riešič, v programe Ansys označovaný ako *Sparse direct equation solver*. Tento typ riešiča je vhodný pre kontaktné analýzy, pri ktorých dochádza k zmenám kontaktných stavov počas riešenia. V našom prípade dochádza v každom kroku výpočtu k zmene jednotlivých kontaktných dvojíc uzlov [13].

6.3 Voľba veľkosti prvkov siete

Kvalitatívne rozloženie hustoty siete bolo popísané v kapitole 5.2. Ďalším krokom je určenie výslednej veľkosti prvkov siete. Ako riadiaci parameter hustoty siete bola zvolená veľkosť prvkov na evolventných častiach profilov zubov v_k , na ktorých dochádza ku kontaktu. Na ostatných častiach ozubeného kolesa je veľkosť siete závislá od riadiacej veľkosti prvku. Pre tento účel bola vykonaná analýza závislosti výsledkov analýzy od hustoty siete. Sledovaný parameter bola hodnota záberovej tuhosti. V úvodnom kroku bola určená veľkosť prvkov, pri ktorej výpočet konverguje a následne bola veľkosť prvkov zmenšovaná a sledovaná závislosť zmeny tuhosti na zmene veľkosti prvkov. Sieť je možné považovať za dostatočne hustú, ak pri zmenšení veľkosti prvkov nedochádza k významnej zmene hodnoty výsledku.

Pre výpočet bolo zvolené jedno súkolesie s parametrami ozubenia m = 2 mm, počet zubov oboch kolies $z_{1,2} = 20$ a zaťaženie $w_t = 150 \text{ N mm}^{-1}$. Hodnota tuhosti ozubenia je určená pre polohu kolies pri kontakte vo valivom bode. Porovnanie výsledkov je zobrazené v tabuľke 6.2.

Tabuľka 6.2: Voľba veľkosti prvkov					
Veľkosť prvku (v_k)	Tuhosť	Zmena	Počet prvkov	Čas výpočtu	
[mm]	$[N/(mm\mu m)]$	[%]	[-]	$[\min]$	
0.2	16.90	-	2630	1.5	
0.1	16.12	4.62	4256	2.4	
0.05	15.61	3.16	10235	5.8	
0.02	15.42	1.22	30334	17.4	

Za výslednú veľkosť prvku na evolventnej časti zubu bola pre modul m = 2 mm zvolená hodnota $v_k = 0,02 \text{ mm}$, od ktorej závisia veľkosti prvkov v ostatných častiach modelu zubu. Pre modul m = 8 mm bola zvolená rovnaká hustota siete, a teda riadiaca veľkosť prvku bola zväčšená v pomere modulov na 0,08 mm.

6.4 Voľba kontaktnej tuhosti

Faktor normálovej kontaktnej tuhosti FKN vplýva na konvergenciu a rýchlosť výpočtu i presnosť riešenia ako bolo popísané v kapitole 5.2.5. Pre určenie tohto parametru bol realizovaný výpočet pre dve rôzne hodnoty FKN. Parametre i zaťaženie ozubenia bolo zhodné ako v prípade výpočtu pre určenie veľkosti prvkov v predchádzajúcej podkapitole. Hodnota tuhosti ozubenia je taktiež vyhodnotená pre polohu kolies s kontaktom vo valivom bode a výsledky sú zobrazené v tabuľke 6.3.

FKN	Tuhosť	Zmena	Prestup povrchov	Čas výpočtu
[-]	$[\rm N/(mm\mu m)]$	[%]	[mm]	$[\min]$
1	15.38	-	$0.68 imes10^{-5}$	18
10	15.40	0.13	$0.67 imes 10^{-4}$	146

Tabuľka 6.3: Porovnanie výsledkov pre rôzne hodnoty FKN

Keď že zmena hodnoty FKN nemá výrazný vplyv na hodnotu vypočítanej tuhosti a čas výpočtu mnohonásobne vzrástol, bude pre výpočet použitá hodnota FKN = 1.

6.5 Čas výpočtu

Celkovo trval výpočet všetkých 294 výpočtov 4 dni a 8 hodín.

7 Prezentácia výsledkov riešenia výpočtového modelu

Po vytvorení výpočtového modelu, určení parametrov vstupujúcich do výpočtu a parametrov samotného výpočtového modelu bolo spustené riešenie modelu. Keďže výpočet záberovej tuhosti bol realizovaný pre pomerne rozsiahly súbor vstupných parametrov (294 kombinácii parametrov), bolo zvolené jedno súkolesie, na ktorom budú výsledky výpočtového modelu prezentované a ktoré kvalitatívne reprezentuje celý súbor výsledkov. Konkrétne ide o súkolesie s modulom $m = 2 \,\mathrm{mm}$, počtom zubov hnacieho členu $z_1 = 20$, hnaného členu $z_2 = 30$ a zaťažené momentom vyvolávajúcim šírkové zaťaženie $w_t = 150 \,\mathrm{N}\,\mathrm{mm}^{-1}$.

7.1 Deformácia zubov

Pre určenie záberovej tuhosti ozubenia je potrebné určiť deformáciu zubov v normálnom smere v priebehu dráhy záberu. Ide o deformáciu samotného zubu v bode dotyku v smere záberovej priamky. Graficky je deformácia zubov zobrazená na obr. 7.1 pre tri vzájomné polohy kolies, a to na začiatku záberu, pri kontakte vo valivom bode a na konci záberu.

Obr. 7.1: Grafické znázornenie deformácie zubov [µm]

Obrázok 7.2 zobrazuje priebeh deformácie zubu hnacieho kolesa δ_1 , hnaného kolesa δ_2 a celkovú deformáciu páru zubov δ v závislosti na súradnici dráhy záberu ξ . Poloha kontaktného bodu zubového páru na dráhe záberu je vyjadrená pomernou dráhou záberu $\bar{\xi} = \xi/(p_b \varepsilon_{\alpha})$.

7.2 Normálová sila

Ďalším parametrom potrebným pre určenie tuhosti ozubenia je veľkosť normálovej sily, ktorá pôsobí v mieste dotyku páru zubov v smere priamky záberu. Pre výpočet tuhosti bola použitá jednotná hodnota získaná analyticky zo vzťahu (3.31), teda z hodnoty momentu, ktorým bolo zaťažené hnacie koleso, a z polomeru základnej kružnice. Analyticky získaná hodnota sily bola porovnaná s hodnotou získanou z výpočtového modelu. Porovnanie priebehu je znázornené na obr. 7.3.

7.3 Tuhosť ozubenia

Po určení deformácie jednotlivých zubov v priebehu záberu bol vyhodnotený priebeh tuhosti zubu hnacieho kolesa c_1 , hnaného kolesa c_2 a celková tuhosť páru zubov c. Priebeh v závislosti na súradnici pomernej dráhy záberu zobrazuje obr. 7.4.

7.4 Aproximácia priebehu tuhosti

Z prezentovaných výsledkov výpočtového modelu je zrejmé, že vypočítaný priebeh tuhosti zubového páru počas dráhy záberu nie je celkom hladký a plynulý. Dôvodom je najmä diskretizácia ozubených súkolesí a nelineárna povaha riešenia. Pre účely efektívnejšieho učenia neurónovej siete boli výsledky výpočtového modelu aproximované pre dosiahnutie plynulého priebehu. Priebehy deformácií jednotlivých zubov boli preložené polynomickou funkciou a výsledná tuhosť zubového páru bola následne určená z týchto upravených hodnôt deformácie. Z obr. 7.5 je zrejmé, že rozdiel medzi pôvodnými a aproximovanými výsledkami nie je výrazný, no môže zefektívniť učenie neurónovej siete. Drobné odchýlky aproximovaných a pôvodných hodnôt priebehu tuhosti nie sú z pohľadu využitia týchto hodnôt významné.

Obr. 7.5: Aproximácia priebehu tuhosti

8 Využitie neurónovej siete pre určenie záberovej tuhosti

Po realizácii série výpočtov a určení záberovej tuhosti ozubenia pre daný diskrétny rozsah vstupných parametrov pomocou MKP nasleduje vytvorenie umelej neurónovej siete. Táto neurónová sieť slúži ako univerzálny aproximátor [16], ktorý po zadaní žiadaných vstupných parametrov z intervalu, v ktorom ležia parametre vstupujúce do výpočtu MKP, vráti priebeh tuhosti ozubenia. Pre tvorbu neurónovej siete bol použitý softvér *Matlab* s aplikačnou knižnicou *Neural Netwrok Toolbox*.

8.1 Proces tvorby umelej neurónovej siete

Pred samotnou tvorbou neurónovej siete je potrebné určiť model architektúry siete. Ako model architektúry bola zvolená viacvrstvová neurónová sieť, ktorá sa skladá z vstupnej vrstvy, skrytých vrstiev a výstupnej vrstvy. Ako adaptačný algoritmus bola použitá metóda *Back-propagation*, tzv. spätné šírenie chyby. Daný typ siete sa využíva v približne 80 % všetkých aplikácií neurónových sietí [8].

V prvom kroku bol vytvorený súbor vstupných a výstupných vektorov pre učenie siete, tvz. tréningová množina. Keď že výpočet záberovej tuhosti bol realizovaný pre tri skupiny vstupných parametrov a priebeh tuhosti počas záberu bol rozdelený do 31 krokov, jeden vstupný vektor do neurónovej siete obsahuje 4 údaje:

- počet zubov hnacieho kolesa z_1 ,
- počet zubov hnaného kolesa z_2 ,
- šírkové zaťaženie w_t ,
- pomernú súradnicu dráhy záberu reprezentujúcu krok výpočtu (1 až 31).

Výstupný vektor pre danú skupinu vstupných údajov obsahuje hodnotu jednopárovej tuhosti ozubenia pre dané parametre a v danej pozícii počas dráhy záberu.

Na optimalizáciu váh siete je možné použiť viacero optimalizačných metód. Lavenberg-Marquardtova metóda je všeobecne odporúčaná pre riešenie väčšiny problémov, preto bola zvolená aj v našom prípade. Ďalším krokom je určenie počtu skrytých vrstiev s prislúchajúcim počtom skrytých neurónov, čo v praxi prestavuje výrazný problém. Obvykle sa topológia volí heuristicky. Navrhne sa úvodná topológia s nižším počtom neurónov. Po adaptácii sa v prípade veľkej chyby siete pridajú skryté neuróny [8]. S rastúcim počtom skrytých vrstiev sa zvyšuje čas výpočtu, no použitie viacerých vrstiev v prípade komplexných problémov umožňuje efektívnejšie riešenie. Počet skrytých neurónov taktiež ovplyvňuje čas výpočtu, vyšší počet umožňuje riešenie komplikovaných problémov, no príliš vysoký počet spôsobuje efekt pretrénovania siete [11]. To znamená, že sieť príliš zovšeobecňuje tréningové vzory a pre nenaučené vzory dáva nepresné výsledky, teda zle generalizuje. V takomto prípade je potrebné znížiť počet vstupných neurónov. Kvalita generalizácie ANN sa počas procesu učenia vyjadruje chybou siete F k tzv. testovacej množine, čo je časť vstupných údajov, ktorá sa nevyužíva k adaptácii siete. V rámci

softvéru Matlab je táto chyba definovaná ako *stredná kvadratická chyba (mean square error)*:

$$F = mse = \frac{1}{N} \sum_{v=1}^{N} e_1^2 = \frac{1}{N} \sum_{v=1}^{N} (t_i - a_i)^2$$
(8.1)

kde:

- tje hodnota výstupu z tréningovej množiny
- a je sieťou určený výstup

Ďalším parametrom, ktorý výrazne ovplyvňuje výkonnosť siete je kritérium ukončenia procesu adaptácie. V našom prípade bolo použité kritérium dosiahnutia zvolenej hodnoty chyby siete F. Algoritmus automaticky počas učenia vyhodnocuje túto hodnotu a po dosiahnutí požadovanej hodnoty chyby ukončí proces učenia. Sieť s nízkou hodnotou chyby síce dobre popisuje vzory z tréningovej množiny, no môže spôsobiť spolu s danou topológiou siete už zmieňovaný efekt pretrénovania.

8.1.1 Určenie vhodnej topológie siete

Pre určenie vhodnej topológie siete bolo postupované nasledovne. Bola vytvorená úvodná topológia siete s dvoma skrytými vrstvami a s 10 neurónmi v každej vrstve. Následne bol zahájený proces učenia siete. Po naučení bola následne vyhodnotená výkonnosť siete z týchto parametrov:

- celková stredná kvadratická chyb
a F_c pre všetky kombinácie vstupných parametrov
- maximálna absolútna hodnota odchýlky požadovaných a sieťou určených výstupov Δ_{max}
- $\bullet\,$ schopnosť generalizácie

Pri nedostatočnej výkonnosti siete bol zvýšený počet neurónov v každej vrstve, prípadne bola zmenená hodnota chyby pre ukončenie adaptácie. V prípade, že príliš vysoký počet neurónov spôsoboval slabú schopnosť generalizácie, bol počet vrstiev zvýšený o jednu, opäť s 10 neurónmi pre každú vrstvu. Tento proces bol opakovaný až do okamihu, kedy bola daná topológia siete vyhodnotená ako dostačujúca. Pre overenie schopnosti generalizácie siete boli realizované i dodatočné výpočty pre náhodne zvolené vstupné parametre, ktoré nie sú obsiahnuté v tréningovej množine. Následne boli porovnané výsledky z MKP analýzy a výsledky z ANN.

Po tomto procese bola zvolená topológia siete so štyrmi skrytými vrstvami a so 40 neurónmi v každej vrstve ([40, 40, 40, 40]), pričom sledované parametre výkonnosti pre túto sieť sú:

- $F_c = 2.75 \times 10^{-5} \left[(\text{N}\,\text{mm}^{-1}\,\mu\text{m}^{-1})^2 \right]$
- $\Delta_{max} = 0.09 \; [\mathrm{N \, mm^{-1} \, \mu m^{-1}}]$

8.2 Prezentácia výsledkov z neurónovej siete

V nasledujúcej časti sú prezentované výsledky naučenej neurónovej siete. Pre tento účel sú vytvorené viaceré grafy prezentujúce správanie neurónovej siete. Schopnosť neurónovej siete aproximovať naučené vzory z tréningovej množiny je ilustrovaná na obr. 8.1, kde na vodorovných osiach je počet zubov kolies (z_1 pre hnacie, z_2 pre hnané) a na zvislej ose

je hodnota maximálnej jednopárovej tuhosti c' počas záberu. Modré body reprezentujú hodnoty z MKP výpočtu. Farebná plocha grafu reprezentuje rovnakú veličinu, pričom hodnoty sú získané z naučenej neurónovej siete. Výsledky sú prezentované pre zaťaženie $w_t=150\,\mathrm{N\,mm^{-1}}$.

Obr. 8.1: Porovnanie výsledkov MKP a ANN

Pre ukážku závislosti maximálnej hodnoty jednopárovej tuhosti c' na zaťažení slúži obr. 8.2. Hodnoty tuhosti sú zobrazené pre zhodné počty zubov oboch kolies $z_1=z_2$.

Obr. 8.2: Porovnanie výsledkov MKP a ANN - zaťaženie

Michal Planka

Výsledky z neurónovej siete boli porovnané aj so 14 dodatočnými MKP výpočtami pre náhodné vstupné parametre, ktoré ležia v intervale tréningovej množiny ale nezhodujú sa so žiadnym členom tréningovej množiny. Graficky je rozdiel priebehov tuhosti zubov zobrazený na obr. 8.3. V nadpise jednotlivých grafov sú uvedené parametre ozubenia, maximálna percentuálna chyba a stredná kvadratická chyba (MSE) medzi výsledkom určeným výpočtom MKP a neurónovou sieťou.

Porovnanie pre 10 zvyšných výpočtov je uvedené v tabuľke 8.1.

Tabulka 6.1. 1 ofovname with a Ann						
Paı	rame	etre súkolesia	MSE			
z_1	z_2	$w_t \; [\mathrm{N}\mathrm{mm}^{-1}]$	[%]	$[(N mm^{-1} \mu m^{-1})^2]$		
21	39	312	3.19	0.122		
22	48	282	3.18	0.015		
24	42	515	1.72	0.008		
28	38	184	2.17	0.074		
28	46	89	1.39	0.035		
34	37	140	2.75	0.098		
36	21	125	1.76	0.036		
37	32	580	0.90	0.014		
42	28	108	2.09	0.055		
49	35	61	2.04	0.073		

Tabul'ka 8.1: Porovnanie MKP a ANN

9 Diskusia

Cieľom tejto práce je vytvorenie neurónovej siete, ktorá po zadaní určených parametrov súkolesia, vráti priebeh tuhosti zubového páru. Tréningovou množinou pre neurónovú sieť je súbor výsledkov, určených výpočtom, metódou konečných prvkov. Preto sa najprv zameriame na analýzu výsledkov výpočtového modelu. Následne bude analyzovaná výkonnosť vytvorenej neurónovej siete a výsledky budú porovnané s normou a so vzťahom pre určenie priebehu od autora Cai.

Výsledky výpočtového modelu sú uvedené v kapitole 7. Keďže celkovo bolo realizovaných 294 výpočtov a z kvalitatívneho hľadiska sú výsledky pre všetky kombinácie vstupných parametrov podobné, na prezentáciu výsledkov bol zvolený jeden prípad, ktorý reprezentuje celý súbor výsledkov. Priebehy deformácií jednotlivých zubov i celkovej deformácie páru zubov súhlasia s typickým priebehom uvádzaným v literatúre [2]. Pre určenie tuhosti zubov je potrebné poznať hodnotu zaťaženia zubov v smere záberovej priamky. Preto bola vyhodnotená veľkosť tejto sily z výpočtového modelu. V porovnaní s analyticky určenou hodnotou, v súvislosti s tuhosťou zubov, ide o nevýznamný rozdiel. Priebeh jednopárovej tuhosti taktiež zodpovedá typickému priebehu, no je možné sledovať, že priebeh nie je celkom hladký a plynulý. Pre zvýšenie efektivity adaptácie neurónovej siete boli priebehy deformácie zubov aproximované polynomickou funkciou a výsledný priebeh tuhosti bol určený z týchto aproximovaných priebehov deformácie. Rozdiel medzi aproximovanými a pôvodnými hodnotami tuhosti v priebehu záberu však nie je z hľadiska riešenia daného problému významný.

Ďalším krokom v riešení práce bolo vytvorenie neurónovej siete. Najproblematickejšou časťou pri tvorbe neurónovej siete bolo určenie vhodnej topológie siete a určenie kritéria pre zastavenie učenia siete. Vhodnej vo význame, aby vytvorená sieť s dostatočnou presnosťou popisovala priebeh tuhosti pre naučené i nenaučené vzory. Vo všeobecnosti sa potvrdilo, že čím presnejšie sa sieť naučí interpretovať tréningové vzory, tým sa znižuje schopnosť generalizácie mimo tréningovú množinu. Preto bol hľadaný kompromis medzi uvedenými dvoma parametrami. Tohto bolo dosiahnuté vytvorením súboru neurónových sietí s rôznymi topológiami a hodnotami kritéria ukončenia učenia. Z tohoto súboru bola následne zvolená sieť s najlepšou výkonnosťou, vzhľadom k riešenej problematike. Pre overenie úrovne schopnosti siete určiť priebeh záberovej tuhosti pre hodnoty vstupných parametrov, ktoré nie sú obsiahnuté v tréningovej množine, bolo vykonaných 14 dodatočných výpočtov. Následne boli porovnané priebehy tuhostí určené neurónovou sieťou a z modelu MKP. Z tohto porovnania i z hodnôt maximálnej absolútnej chyby a strednej kvadratickej chyby medzi výsledkami neurónovej siete a vzormi tréningovej množiny je možné danú neurónovú sieť považovať z hľadiska riešenia problému za dostatočne výkonnú.

Závislosť maximálnej tuhosti zubového páru počas záberu na počte zubov jednotlivých kolies je možné sledovať na obr. 8.1. Vo všeobecnosti je možné konštatovať, že so zvyšujúcim počtom zubov rastie i tuhosť ozubenia. Pre určité kombinácie počtu zubov súkolesia je však možné sledovať i mierne poklesy hodnoty tuhosti s rastúcim počtom zubov. Tento jav môže byť spôsobený najmä zložitým tvarom zubu a zmenami tvaru v závislosti na počte zubov. S rastúcim zaťažením hodnota tuhosti páru zubov opäť rastie (obr. 8.2).

Výsledky z neurónovej siete boli porovnané s hodnotami maximálnej jednopárovej tuhosti určenej normou. Norma ČSN ISO 6336-1 [17] uvádza vzťah pre stanovenie *teore*-

Obr. 9.1: Porovnanie výsledkov s normou

tickej jednotkovej tuhosti c'_{th} . Tento vzťah bol odvodený pre plné čelné ozubené kolesá pri mernom zaťažení $F_t/b = 300 \text{ N mm}^{-1}$ (pre $\alpha = 20^\circ$, $h_a = m$, $h_f = 1.2 \cdot m$ a $Q_f = 0.2 \cdot m$). Výsledky získané z neurónovej siete (pre rovnaké zaťaženie) v porovnaní s hodnotou c'_{th} z uvedenej normy sú zobrazené na obr. 9.1. Z porovnania je zrejmé, že hodnoty tuhosti získané vrámci riešenia tejto práce sú vo všeobecnosti vyššie ako hodnoty, ktoré určuje norma. Pre výpočet tuhosti však boli v tejto práci použité rozdielne parametre geometrie ozubenia, a to výška päty zubu h_f a polomer prechodovej krivky Q_f , čo môže prispieť k tomuto rozdielu.

Určeniu priebehu jednopárovej tuhosti počas záberu sa venuje publikácia [18]. Cai v tejto práci odvodil vzťah pre aproximáciu tuhosti pomocou známej hodnoty maximálnej tuhosti jedného páru zubov c' a súčiniteľa záberu profilu ε_{α} . Priebeh tuhosti určený v tejto práci bol pre parametre zhodné ako v kapitole 7 porovnaný s priebehom podľa Cai (obr. 9.2), pričom je možné konštatovať dobrú zhodu priebehov určených v rámci tejto práce a podľa Cai.

Počas riešenia tejto práce boli zavedené viaceré zjednodušenia. Pri výpočtovom modelovaní bol použitý rovinný model, teda nebol

uvažovaný vplyv šírky jednotlivých kolies ani tvar telesa, nebol uvažovaný vplyv trenia, mazacej vrstvy ani tuhosti uloženia kolies. Profil ozubenia bol uvažovaný bez korekcií a modifikácií. Skúmanie vplyvu týchto faktorov na tuhosť ozubenia môže slúžiť ako námet na ďalšie práce. Zároveň je možné v rámci ďalšieho skúmania vyšetrovať priebeh tuhosti ozubenia pre väčší rozsah vstupných parametrov a pre iné druhy ozubených súkolesí.

10 Záver

Cieľom tejto diplomovej práce bolo vytvorenie umelej neurónovej siete, ktorá po zadaní určených vstupných parametrov určí priebeh tuhosti jedného páru zubov čelného ozubeného súkolesia. Ako tréningová množina slúžil súbor výsledkov zo série výpočtov uskutočnených metódou konečných prvkov.

V úvodných častiach práce je pozornosť venovaná teoretickému rozboru čelných ozubených súkolesí. Ide o zhrnutie poznatkov o geometrii, záberových vlastnostiach či silových pomeroch pri zábere súkolesia. Tieto poznatky boli využité na vytvorenie výpočtového modelu, resp. na tvorbu jeho dielčích modelov. Zároveň je pozornosť venovaná definícii a dostupným poznatkom o tuhosti ozubenia. Teoretický úvod je zakončený staťou o umelých neurónových sieťach, so zreteľom na viacvrstvové siete so spätným šírením chyby.

Pre výpočet priebehu tuhosti počas záberu bolo zvolené výpočtové modelovanie. Konkrétne numerické modelovanie pomocou metódy konečných prvkov. Pre tieto účely bol vytvorený parametrický model súkolesia. V rámci tejto práce bola riešená tuhosť jedného páru zubov. Model každého z kolies preto obsahoval iba jeden zub. Model geometrie bol vytvorený ako rovinný, so zreteľom na dostatočne presnú interpretáciu teoretického tvaru ozubenia. Ako materiál ozubeného súkolesia bola uvažovaná konštrukčná oceľ. Sieť bola vytvorená ako nerovnomerná, so zhustením prvkov v oblasti kontaktných povrchov profilov zubov i v miestach prechodu zubov do telesa kolies. Konečná veľkosť prvkov bola určená analýzou závislosti výsledkov riešenia na hustote siete. Spojitý záber súkolesia bol simulovaný ako postupnosť kvazistatických rovnovážnych stavov. Záber páru zubov bol teda rozdelený na konečný počet krokov riešenia. Hnacie koleso bolo zaťažené točivým momentom a pohyb súkolesia bol primárne riadený otáčaním hnaného kolesa okolo svojho stredu. Interakcia medzi profilami zubov jednotlivých kolies bola realizovaná nastavením kontaktu medzi prislúchajúcimi evolventnými časťami zubov. Okrem voľby algoritmu riešenia kontaktného problému bola pozornosť venovaná aj vplyvu kontaktnej tuhosti.

Po vytvorení výpočtového modelu boli zvolené parametre vstupujúce do výpočtu a ich rozsah. Sú to počet zubov hnacieho a hnaného kolesa a zaťaženie súkolesia. Celkovo bolo realizovaných 294 výpočtov. Následne boli priebehy tuhostí získané z týchto výpočtov aproximované pre zvýšenie efektivity učenia neurónovej siete. Nasledovala tvorba neurónovej siete, pričom bol zvolený typ neurónovej siete, tzv. viacvrstvová sieť so spätným šírením chyby. Najnáročnejšou časťou tvorby neurónovej siete bola voľba vhodnej topológie a určenie vhodnej hodnoty ukončovacieho kritéria učenia. Riešenie tohto problému malo za cieľ vytvoriť sieť, ktorá s dostatočnou presnosťou určuje hodnoty tuhosti pre naučené vzory a zároveň je schopná generalizácie pre vzory, ktoré nie sú obsiahnuté v tréningovej množine. Pre overenie boli realizované dodatočné výpočty s náhodne zvolenými hodnotami vstupných parametrov, ktoré ležia v rozsahu pôvodnej množiny vstupov, no nie sú v nej obsiahnuté. Výsledná chyba siete v porovnaní s tréningovou množinou bola nízka a rozdiel medzi výsledkami z neurónovej siete a kontrolnými výpočtami je možné považovať za akceptovateľný. Výsledky z naučenej neurónovej siete boli porovnané s hodnotami získanými z normy CSN ISO 6336-1. Výsledky získané v rámci riešenia tejto práce dosahovali vyššie hodnoty, no vzťah určený normou bol odvodený pre rozdielne geometrické parametre, čo mohlo spôsobiť rozdielnosť výsledkov. Priebeh tuhosti počas záberu bol porovnaný s priebehom určeným podľa [18], s relatívne dobrou zhodou.

Z uvedeného je možné konštatovať, že daná diplomová práca splnila všetky ciele, ktoré boli definované pred samotným riešením. Výsledky tejto práce je možné využiť pre určenie maximálnej tuhosti jedného páru priamych zubov, ktorá je potrebná pre výpočet faktoru dynamických síl pri pevnostných výpočtoch, k určeniu výslednej tuhosti priameho ozubenia, teda so zahrnutím jednopárového i dvojpárového úseku záberu [17]. Z výslednej tuhosti je možné určiť strednú hodnotu tuhosti všetkých zubov v zábere, ktorá sa využíva pre stanovenie faktorov čelného zaťaženia. Priebeh tuhosti počas záberu je možné využiť ako vstup do modelovania sústav s ozubenými kolesami, kde pôsobí ako periodický zdroj budenia [6]. Postup použitý v tejto práci je možné využiť v ďalších prácach pri skúmaní tuhosti ozubenia.

Zoznam bibliografických zdrojov

- BOLEK, Alfred a J. KOCHMAN. Části strojů. 5. přeprac. vyd. Praha: SNTL Nakladatelství technické literatury, 1990. Technický průvodce. ISBN 8003004268.
- [2] ŠALAMOUN, Čestmír a M. SUCHÝ. Čelní a šroubová soukolí s evolentním ozubením. Praha: Státní nakladatelství technické literatury, 1990. ISBN 8003005329.
- [3] FERNANDEZ DEL RINCON, A., F. VIADERO a M. IGLESIAS. A model for the study of meshing stiffness in spur gear transmissions. Mechanism and Machine Theory [online]. Elsevier, (2013) [cit. 2017-01-14]. Dostupné z: http://www.sciencedirect. com/science/article/pii/S0094114X1200208X
- [4] BOHÁČEK, František. Části a mechanismy strojů III: převody. 2. uprav. vyd. Brno: VUT, 1987.
- [5] KAŤUCH P., J. Kováč a M. Dovica. Metrológia v strojárstve. Laboratórne úlohy. TU SjF-CI Košice, 2010. ISBN 978-80-553-0543-1.
- [6] BYRTUS, Miroslav, M. HAJŽMAN a V. ZEMAN. Dynamika rotujících soustav. Plzeň: Západočeská univerzita v Plzni, 2010. ISBN 9788070439531.
- [7] JANÍČEK, Přemysl. Systémové pojetí vybraných oborů pro techniky: hledání souvislostí: učební texty. Brno: Akademické nakladatelství CERM, 2007. ISBN 9788072045549.
- [8] VOLNÁ, Eva. Neuronové sítě. Ostrava: Ostravská univerzita, 2008. Učební texty Ostravské univerzity.
- [9] Perceptrons the most basic form of a neural network. In: Applied Go [online]. 2016 [cit. 2017-04-12]. Dostupné z: https://appliedgo.net/perceptron/
- [10] ZELINKA, Ivan. Umělá inteligence. Brno: VUTIUM, 1998. ISBN 8021411635.
- [11] BEALE, Mark, Martin T. HAGAN a Howard B. Demuth. Neural Network Toolbox: User's Guide (R2017a)[online]. 2017 [cit. 2017-04-25]. Dostupné z: https: //www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
- [12] JANIČEK, Přemysl. Systémová metodologie: brána do řešení problémů. Brno: Akademické nakladatelství CERM, 2014. ISBN 9788072048878.
- [13] ANSYS Help 17.0 [software]. © SAS IP, Inc.
- [14] ABBEY, Tony. Simplifying FEA Models: Plane Stress and Plane Strain. Digital Engineering [online]. 2015 [cit. 2017-04-01]. Dostupné z: http://www.digitaleng.news/ de/simplifying-fea-models-plane-stress-and-plane-strain/
- [15] MEDVECKÁ BEŇOVÁ, Silvia. Deformácia a tuhosť čelného ozubenia [online]. Košice: Katedra konštruovania, dopravy a logistiky [cit. 2017-03-15]. Dostupné z: http://www.engineering.sk/clanky2/stroje-a-technologie/ 719-deformacia-a-tuhos-elneho-ozubenia

- [16] VOLNÁ, Eva. Vícevrstvá neuronová síť jako univerzální aproximátor. AUTO-MATIZACE [online]. Ostrava, 2009, 52(11), 658-660 [cit. 2017-05-15]. Dostupné z: http://k612.fd.cvut.cz/vyuka/its/ANN/V%C3%ADcevrstv%C3%A1%20neuronov% C3%A1%20s%C3%AD%5B0165%5D%20jako%20univerz%C3%A1ln%C3%AD%20aproxim%C3% Altor.pdf
- [17] ČSN ISO 6336-1. Výpočet únosnosti čelních ozubených kol s přímými a šikmými zuby
 Část 1: Základní principy, doporučené a obecně ovlivňující faktory. 2. vydání. Praha:
 Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2014.
- [18] CAI, Y. a T. HAYASHI. The linear approximated equation of vibration of a pair of spur gears (theory and experiment). Journal of Mechanical Design, 116, 558–564, 1994.

Zoznam skratiek a symbolov

Skratky

ANN	Umelá neurónová sieť (Artificial Neural Network)	
BP	Spätné šírenie (Backpropagation)	
FKN	Faktor normálovej tuhosti (Normal Stiffness Factor)	
MKP	Metóda konečných prvkov	
MSE	Stredná kvadratická chyba (Mean Squeare Error)	
Symbol	y	
a	Osová vzdialenosť	[mm]
c	Hlavová vôľa	[mm]
c	Merná tuhosť zubov	$[{\rm Nmm^{-1}\mu m^{-1}}]$
c'	Maximálna hodnota mernej tuhosti jedného páru zubov	$[{\rm Nmm^{-1}\mu m^{-1}}]$
c_{th}'	Teoretická jednotková tuhosť	$[{\rm Nmm^{-1}\mu m^{-1}}]$
d	Priemer rozstupnej kružnice	[mm]
d_a	Priemer hlavovej kružnice	[mm]
d_b	Priemer základnej kružnice	[mm]
d_f	Priemer pätnej kružnice	[mm]
E	Modul pružnosti v ťahu	[MPa]
e	Šírka zubovej medzery	[mm]
E_w	Chybová funkcia	
F	Stredná kvadratická chyba siete k testovacej množine	[podľa veličiny]
f	Prenosová funkcia neurónu	
F_c	Celková stredná kvadratická chyba siete	$[\rm Nmm^{-1}\mu m^{-1}]^2$
F_{dyn}	Prídavné dynamické zaťaženie	[N]
F_N	Normálová sila	[N]
F_r	Radiálna zložka sily	[N]
F_t	Obvodová zložka sily	[N]
g_a	Dĺžka záberovej úsečky	[mm]
h	Výška zubu	[mm]
h_a	Výška hlavy zubu	[mm]
h_a^*	Súčiniteľ výšky hlavy zubu	[-]
h_f	Výška päty zubu	[mm]
i_{12}	Prevodový pomer	[-]
m	Modul ozubenia	[mm]
m	Počet parametrov výstupného vektoru	[-]
M_t	Točivý moment prenášaný ozubeným kolesom	[Nm]

Michal Planka

n	Počet parametrov vstupného vektoru	[-]
P	Výkon prenášaný súkolesím	[W]
p	Počet vektorov vstupných údajov	[-]
p	Rozstup	[mm]
p_b	Základný rozstup	[mm]
Q_f	Polomer zaoblenia prechodovej krivky	[mm]
r_d	Polomer diery pre hriadeľ	[mm]
r_{ω}	Polomer valivej kružnice	[mm]
s	Hrúbka zubu	[mm]
T	Tréningová množina	
t	Parameter reprezentujúci veľkosť polárneho uhlu bodu evolventy	[rad]
v	Absolútna rýchlosť bodu dotyku	$[\rm ms^{-1}]$
v_d	Veľkosť prvkov predpísaná na plochu disku ozubeného kolesa	[mm]
v_k	Sklzová rýchlosť	$[\rm ms^{-1}]$
v_k	Veľkosť prvkov na kontaktnom povrchu zubov	[mm]
v_n	Rýchlosť bodu dotyku v smere normály \boldsymbol{n}	$[\rm ms^{-1}]$
v_p	Veľkosť prvkov na prechodovej krivke	[mm]
v_z	Veľkosť prvkov predpísaná na plochu zubu	[mm]
W	Vektor synaptických váh	[podľa veličiny]
w	Šírkové zaťaženie zubov	$[{ m Nmm^{-1}}]$
w_t	Šírkové zaťaženie zubov vyjadrené z obvodovej zložky sily	$[\rm Nmm^{-1}]$
X	Vstupný vektor neurónovej siete	[podľa veličiny]
x, y	Súradnice bodu evolventy	[mm]
Y	Výstupný signál	[podľa veličiny]
y(t)	Výstupný signál neurónu	[podľa veličiny]
z	Počet zubov	[-]
Grécke s	symboly	
α	Uhol záberu	[°]
α	Uhol tlaku bodu evolventy	[rad]
α_a	Uhol profilu vo vrcholovom bode	[°]
α_{rot2}	Uhol natočenie hnaného kolesa vo výpočtovom modele	[rad]
β^v	Vektor skutočných odoziev	[podľa veličiny]
δ	Deformácia zubu v normálnom smere	[µm]
δ_F	Ohybová a šmyková deformácia zubu	$[\mu m]$
δ_H	Dotyková deformácia zubu	$[\mu m]$
Δ_{max}	Maximálna absolútna hodnota odchýlky požadovaných	
	a sieťou určených výstupov	$[{ m Nmm^{-1}\mu m^{-1}}]$

Δt_{ij}	Doba synaptického oneskorenia	$[\mathbf{s}]$
ε	Polárny uhol bodu evolventy	[rad]
ε_{lpha}	Súčiniteľ záberu profilu	[-]
φ	Uhol deformácie daného bodu modelu zubu	[rad]
φ_w	Funkcia realizujúca transformáciu	
μ	Poissonov pomer	[-]
ω	Uhlová rýchlosť	$[s^{-1}]$
$\Theta(t)$	Prahová úroveň signálu aktivujúca neurón	[podľa veličiny]
ξ	Súradnica dráhy záberu	[mm]
Geometri	cké útvary	
В	Bod evolventy	
D	Diera telesa ozubeného kolesa	
D_d	Priesečník osi zubu a pätnej kružnice	
$D_{0,1,2}$	Priesečníky boku zubu s priamkou záberu	
E	Evolventná časť profilu zubu	
E, U, V, F	Charakteristické body záberovej úsečky	
Η	Hlavová krivka zubu	
k	Rozstupová kružnica	
k_a	Hlavová kružnica	
k_b	Základná kružnica	
k_f	Pätná kružnica	
N	Priesečník čiary záberu a hlavovej kružnice kolesa	
n	Spoločná normála v bode dotyku zubov hnacieho a hnaného kolesa	
0	Stred otáčania kolesa	
P	Prechodová krivka zubu	
P	Pól relatívneho pohybu	
P_t	Plocha telesa ozubeného kolesa	
P_z	Plocha zubu	
r	Sprievodič bodu evolventy	
t	Spoločná dotyčnica v bode dotyku zubov hnacieho a hnaného koles	a
t	Tvoriaca priamka evolventy	
u	Priamka záberu	
Y	Spoločný bod dotyku zubov hnacieho a hnaného kolesa	

Zoznam obrázkov

3.1	Rovinné ozubenie [1]	19
3.2	Evolventa [4] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	20
3.3	Ozubené súkolesie [5]	21
3.4	Združené kolesá [1]	22
3.5	Podmienky záberu [1]	23
3.6	Záberové pomery [1]	24
3.7	Silové pomery [1]	25
3.8	Vnútorné silové pomery [1]	26
3.9	Deformácia zubov [2]	27
3.10	Jednopárová tuhosť a celková tuhosť [2]	29
3.11	Štruktúra neurónu [9]	30
3.12	Model prenosu signálu neurónom [7]	31
3.13	Prenosové funkcie [7]	32
3.14	Podstatné veličny modelu prenosu signálu synapsiou [7]	32
3.15	Schéma gradientnej metódy [8]	34
5.1	Model geometrie kolesa	38
5.2	Nastavenie veľkosti prvkov	40
5.3	Deformácia zubu	43
7.1	Grafické znázornenie deformácie zubov [µm]	48
7.2	Deformácia zubov v priebehu záberu	49
7.3	Normálová sila	49
7.4	Tuhosť zubov	50
7.5	Aproximácia priebehu tuhosti	50
8.1	Porovnanie výsledkov MKP a ANN	53
8.2	Porovnanie výsledkov MKP a ANN - zaťaženie	53
8.3	Porovnanie výsledkov z MKP a ANN - priebeh tuhosti	54
9.1	Porovnanie výsledkov s normou	56
9.2	Porovnanie priebehu tuhosti	56

Zoznam tabuliek

5.1	Materiálové konštanty	39
6.1	Nemenné parametre kolies	46
6.2	Voľba veľkosti prvkov	47
6.3	Porovnanie výsledkov pre rôzne hodnoty FKN	47
8.1	Porovnanie MKP a ANN	54