
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

APPLICATION FOR APPROVING BANK PAYMENTS
ON S/4 HANA SYSTEM
APLIKACE PRO SCHVALOVÁNÍ BANKOVNÍCH PLATEB V SYSTÉMU S/4 HANA

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. PETR BEČKA
AUTOR PRÁCE

SUPERVISOR Doc. Ing. JAROSLAV ZENDULKA, CSc.
VEDOUCÍ PRÁCE

BRNO 2018

Master's Thesis Specification/21075/2017/xbecka02

Brno Univers i ty of Techno logy - Faculty of In fo rmat ion Techno logy

Department of Information Systems Academic year 2017/2018

M a s t e r ' s T h e s i s S p e c i f i c a t i o n
For: Bečka Pe t r , Be.
Branch of study: Information Systems
Title: A p p l i c a t i o n f o r B a n k P a y m e n t A p p r o v a l i n S A P S /4HANA
Category: Information Systems

Instructions for project work:
1. Get acquinted with workflow and business process management and its application for

bank business approval and related payment processes.
2. Analyze requirements for application that will support these processes,
3. Explore available frameworks for the development of web application in JavaScript and

based on agreement with you supervisor choose one for implementation.
4. Design the application.
5. Implement the application using the choosen framework.
6. Verify the functionality on a suitable sample of data.
7. Summar ize achieved results and discuss possible further development,

Basic references:
• Workflow Management Coalit ion, http://www.wfmc.org/.
• Okungbowa, A.: SAP ERP Financial Accounting and Controll ing. Apress, 2015, 596 p.
• Bavaraju, A.: SAP Fiori Implementation and Development. SAP Press, 2nd Edition.

2017, 614 p.
• Bônnen, C. at al .: OData and SAP Gateway. SAP Press, 2nd Edition, 2016, 780 p.

Requirements for the semestral defense:
Items 1 to 4.

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT, In order to allow regular handling, the medium will be securely attached to the printed report.

Supervisor: Z e n d u l k a J a r o s l a v , d o c . I n g . , C S c , DIPS FIT BUT
Consultant: Čus Ľuboš, Ing., SAP
Beginning of work: November 1, 2017
Date of del ivery: May 23, 2018

VYSOKÉ Uéfeřír TECHNICKÍ; V BRNĚ
Eaku I t a M e m m ^ e c m ô í b Q l í

ala^ttíímacních systému

Dušan Kolář
Associate Professor and Head of Department

http://www.wfmc.org/
http://www.fit
http://vutbr.cz/info/szz/

Abstract
The main goal of this thesis is to develop user interface and database queries to gain
necessary business data for an application for the approval of bank payments using modern
technologies and technologies provided by SAP company. The first part describes bank
payment issues in general, key concepts are explained and some problems are mentioned
from this area, with which companies struggle today. The S A P S / 4 H A N A architecture,
for which the application is developed, is also described. Last but not least, there are
mentioned technologies for creating user interfaces that are suitable for this development or
are one of the most used today. The application design process describes its requirements,
the creation of a prototype application that visualizes the way the user sees the data and
the design of the data model. The resulting application allows you to retrieve the correct
data from the database, display it in a predefined way, and offers the option of editing and
managing it.

Abstrakt
Hlavním cílem této práce je vyvinout uživatelské rozhraní a získávání nezbytných pod­
nikových dat v aplikaci sloužící pro schvalování bankovních plateb za použití moderních
technologií a technologií poskytovaných společností SAP. V první části je obecně popsáno
téma bankovních plateb, jsou vysvětleny klíčové pojmy a zmíněny některé problémy z této
oblasti, se kterými se společnosti a soukromníci v dnešní době potýkají. Dále je popsána ar­
chitektura SAP S / 4 H A N A , pro kterou je aplikace vyvíjena. V neposlední části jsou zmíněny
technologie pro tvorbu uživatelských rozhraní, jenž jsou pro tento vývoj vhodné anebo jsou
dnes nejvíce používány. Proces návrhu aplikace popisuje její požadavky, tvorbu prototypu
aplikace, jenž vizualizuje způsob zobrazení dat uživateli a návrh datového modelu. Výsledná
aplikace umožňuje získávat správná data z databáze, zobrazovat je definovaným způsobem
způsobem a nabízí možnost jejich editace a správy.

Keywords
JavaScript, SAPUI5, React, Angular 2, Vue.js, S/4 H A N A , SAP H A N A , OData, S A P
Gateway, web, testing

Klíčová slova
JavaScript, SAPUI5, React, Angular 2, Vue.js, S/4 H A N A , SAP H A N A , OData, S A P
Gateway, web, testování

Reference
BEČKA, Petr. Application for approving bank payments on S/4 Hana system. Brno,
2018. Master's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Doc. Ing. Jaroslav Zendulka, CSc.

Application for approving bank payments on S/4
Hana system

Declaration
Hereby I declare that this diploma's thesis was prepared as an original author's work under
the supervision of Mr . Doc. Ing. Jaroslav Zendulka, CSc. The supplementary information
was provided by Mr. Ing. Luboš Cus A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Petr Bečka
May 23, 2018

Acknowledgements
I would like to thank my superior Mr . Doc. Ing. Jaroslav Zendulka, C S c , who was
very helpful, understanding and willing during the development of the thesis. He was very
supportive and calm during the whole process.

I would also like to thank SAP employees for the time they gave me during the dis­
cussions on effective problem solving and help with searching for information, namely my
consultant Mr. Ing. Luboš Cus and my colleagues Mr . Ing. Norbert Volf and Mr. Ing.
Michal Uhlíř.

I would also like to thank my always supporting family and girlfriend, because of them
I have always had the time and the determination to do everything.

Contents

1 Introduction 3

2 Accounts Payable 4
2.1 Accounts Payable area 4
2.2 Accounts Payable function 4

2.2.1 Vendor Payments 5
2.2.2 Internal Payments 5
2.2.3 Business Travel Expenses 5
2.2.4 Other Payments 5

2.3 Payment Process in general 5
2.3.1 Purchase order 7
2.3.2 Receiving report 7
2.3.3 Vendor Invoice 7
2.3.4 Three-way match 7
2.3.5 Vouchers 8
2.3.6 Vendor invoices without purchase orders or receiving reports 8
2.3.7 Statements from vendors 8

2.4 Accounts Payable - F I -AP modul 8
2.5 Bank Communication Management - B C M modul 10
2.6 Approve Payments in S A P 10

2.6.1 Approving with one approver 11
2.6.2 Approving with two approvers 11

3 S A P S / 4 H A N A 12
3.1 S A P H A N A Database 12
3.2 Core Data Services 13

3.2.1 Entities 14
3.2.2 Annotations 14
3.2.3 Associations 14

3.3 SAP Gateway 15
3.4 OData protocol 15

3.4.1 Data model 16
3.5 SAP Fiori 17

3.5.1 SAP Fiori Launchpad 18
3.5.2 SAP Web IDE 18

4 Front-end technologies 20
4.1 React JS 20

1

4.2 Vue.js 22
4.3 Angular 2 22
4.4 SAPUI5 23
4.5 Evaluation 24

5 Application for approving bank payments 26
5.1 Methodology of development 26

5.1.1 D-Gate 0 27
5.1.2 D-Gate 1 28
5.1.3 D-Gate 2 28

5.2 Requirements analysis 29
5.2.1 Functionality design 29

5.3 Design of application UI 31
5.3.1 Design of data view 31
5.3.2 Design of data components 32

5.4 Application architecture 34
5.4.1 Architecture of Fiori application in general 35
5.4.2 Architecture of Approve Bank Payments application 37

5.5 Implementation 40
5.5.1 Accessing the application 40
5.5.2 List of payment batches 40
5.5.3 Payment batch detail 42
5.5.4 Payment detail 42
5.5.5 Router object 43
5.5.6 Draft 2.0 45
5.5.7 Message popover 46
5.5.8 CDS views implementation 46
5.5.9 Read Access Logging configuration 49

5.6 Testing 49
5.6.1 Unit and Opa5 tests 49
5.6.2 Automation tests 50
5.6.3 Performance tests 51

5.6.4 Acceptance tests 52

6 Conclusion 54

Bibliography 56

A Content of attached C D 60

2

Chapter 1

Introduction

Approval of bank payments is a very important process that is now practiced in large,
medium but even in a smaller companies. In the end, without such a measure, a company
employee could generate payments for their or other own accounts. Payments would then
be unchecked and fraudulent within the company. This process can be controlled by the au­
thorized person using predefined documents, which, according to some pre-arranged steps,
could confirm payments. In large companies that generate large amounts of payments, the
whole department can be set up for this purpose. Even in this case, the process of approv­
ing bank payments is opaque and risky. Application for the approval of bank payments
will serve to fully automate this process of controlling the payments made, and to increase
the transparency. It will also provide an overview of the company's over all payments and
reduce the possibility that they will be lost or omitted.

In this diploma thesis will be in following chapters described the issue of generating
payments on accounts payable. There will be explained what the accounts payable is and
what it represents for the company and why it is important to have and keep a good overview
of them. Plus there will be mentioned how this process works in SAP environment.

In chapter about SAP S / 4 H A N A will discuss and represent the components of this
architecture on which the application will be deployed. There will be mentioned their
importance and the role they play within architecture, the way in which each component
is connected and how they communicate between each other.

The chapter on front-end frameworks will present the strengths and weaknesses of those
of today's most powerful and most widely used frameworks. The aim of this chapter is to
evaluate which technology will the most suitable to implement such an application.

Then, the chapter titled application for approving bank payments will discuss the pro­
cess of developing the entire application, including collection of requests and design of the
user interface. Besides, the basic application architecture will be discussed here, and then
the necessary adaptation of the architecture of this particular application will be explained.
It will be mentioned in more detail how application basic and necessary functionality were
implemented. It will also describe how the use of SAPUI5 framework libraries, that provide
time consuming functionality for implementation, have been tailored to the application.

The last chapter will show how the testing was done. Examined will be the types of
tests that have been performed, their purpose, and the results that developers provide.

3

Chapter 2

Accounts Payable

This chapter provides a general introduction into the topic about obligations from the ac­
counting point of view, how it looks like when someone is processing payment for approval
from the time when commitment has been created up to the time where payment is suc­
cessfully approved and debit is sent to the bank institution. Last but not least, there will
be introduced solutions that are frequently used and available for SAP's customers.

2.1 Accounts Payable area

Accounts payable are huge and important part of the company's liabilities. It is therefore
necessary to keep and record them in the company's accounting tables for an evidence. In
the resulting register, accounts payable are shown in the balance sheet and divided into
short-term and long-term categories.

Accounts payable are created on the basis of some events that happened in the past and
are expected to result into any expense on the part of the company to cover such a fact.
These resources can be both monetary, tangible and / or intangible. These obligations are
usually legally enforceable by signing a binding contract.

In the accounting area, it is a legal obligation to have all the liabilities saved and
correctly recorded, they are then shown in the balance sheet. A short-term commitment
is expected to be paid within less than 12 months. Otherwise, we are talking about a
long-term commitment.

In the end of the day, if company doesn't want to pay for things or services that were
not ordered and received, it is necessary to keep an eye on and keep track of the payables
and receivables. [18]

2.2 Accounts Payable function

Business accounting departments often have more things to do in their job description
than just paying bills and incoming invoices. Especially in larger companies are accounts
payable employee mostly responsible for accounting payments, while in a smaller businesses
are account payable and accounts receivable very often connected. Accounts payable could
be divided into some basic categories, namely it is vendor payments, internal payments,
travel expenses and other payments. [16]

4

2.2.1 Vendor Payments

Processing incoming invoices and paying suppliers' obligations is the first thing that comes
to mind under the accounting department term. Vendor payments include monthly end-of-
month debt analysis and reports showing how the business is running and how much the
business currently owes to suppliers.

2.2.2 Internal Payments

Accounts payables also work internally, they usually divide intra-company payments. In­
ternal reimbursement costs are managed by predefined business management procedures.
These procedures determinate that employees should process a manual report, confirma­
tions or substantiate claims for payments. Smaller amounts are mostly used for smaller cash
expenses such as postage, office supplies, or lunches. Accounting payables are then used to
gain sales on taxes for a department managers when purchasing the necessary equipment
to ensure the smooth running of their business.

2.2.3 Business Travel Expenses

This fact is very common in larger enterprises where owners and / or employees travel more
frequently. Accounts payable department then can add travel costs and local payments
on the go between accounts. Internal audits may require for example travel expenses on
which they can provide funding to employees. After they come back, the due accounts are
compared with the provided funds compared to the actual expenses.

2.2.4 Other Payments

The acounts payable department also works hard to reduce costs by paying attention to
details that can save business money, for example, when an invoice is paid within the
discount period, that is provided by suppliers, it is many times the front contact between
sales representatives and dealer representatives.

As a result, building and maintaining good relationships often falls into accounts payable.
Strong and healthy relationships can beneficial for the business when working with suppli­
ers. For example during a seasonal sales decline a good relationship may lead to loose credit
conditions. [20]

2.3 Payment Process in general

The method or function of accounts payable is extremely important because it includes
almost all company payments except the employees salaries. The whole accounting process
can be carried out by the accounting department within a large company, a small personnel
department in a medium-sized company, by an accountant or a business owner in small-sized
company. [14]

Regardless the size of the company, the responsibility of the accounting department is
to pay the statutory and precise defined company's invoices. This means that the invoice
itself must reflect information about what the company ordered and received, correct unit
costs, calculations, sums, conditions, etc.

To make sure that the funds and other assets of the company are processed correctly,
the process of accounts payable should be a subject of internal control. The reason for

5

introducing internal control may be to prevent from the payment of a fraudulent invoice,
the payment of an inaccurate invoice, or to prevent multiple payment of the supplier's
invoice.

^ : Invoice payment *

:AecountingDepartn nonl

1: Pu rchase order

2: Reced ing report

3: Vendor invoice

6: [unpaid ar rounts l Statements frorr ^ tndo fs

Figure 2.1: Communication diagram showing the sequence of individual steps from creating
an order up to invoice payment.

The due date of the accounting obligations must be also effective and accurate so that
the company's accounts could be accurate and complete as well. Due to double-entry
bookkeeping, forgetting of the supplier's invoice may eventually lead into two accounts to
report incorrect amounts. For example, if the repair costs are not recorded on time, the
liability will be removed from the balance sheet and repair costs will be omitted from the
profit and loss statements. If the supplier's invoice for repair is recorded twice, there are
also issues coming up. First, commitments will be overestimated, and repair costs will
be overestimated as well. To tell it different, without having billing process well observed
and organized, management and the other users of the financial statements will receive
inaccurate feedback on the performance and financial position of the company.

Poor evidence of billing could also mean a missing discount for too early payed debt. If
suppliers' invoices are not payed at the due date time, the relationships with vendors could
go cold. This may lead to the situation sellers requiring charge for a cash on delivery . If
such a situation occurs, it could have extreme consequences for the company's existence.

As well as delays in paying bills, early payment of accounts payable may also lead into
problems. If the supplier's invoices are paid earlier than necessary, then sufficient budget
may not longer be available, which may cause that other invoices could not be paid within
the due date. Each bank payment is also supported by documents like purchase order,
receiving report, vendor invoice, vouchers and statements from vendors that all confirm the
validity and authorization of such payment. Process of receiving such a documents could
be seen on figure 2.1.

In general, the documents that are generated during this process are preserved and
pinned to payments to verify the validity its for later reimbursement. Usually they are a
purchase order, a receipt report and a vendor invoice.

G

2.3.1 Purchase order

The resulting purchase order is a document prepared by the company to accurately disclose
and record what the company orders from the vendor. The paper version of the order is
a form with copies distributed to the several people. People or departments that receive a
copy of the purchase order include:

• person requesting the issuance of a purchase order for goods or services,

• department that is required to pay the order,

• receiving department,

• suppliers,

• person who prepares the order.

A l l the information as the purchase order number, date of issue, company name, seller's
name, contact person and phone number, description of purchased items, quantity, unit
price, shipping method, date and other relevant information will be specified in the order.
One copy of the order is then used in a three-way (explained later) match.

2.3.2 Receiving report

The receiving report is the company's documentation of the goods it has received. The
receiving report may be in paper form or it may be an electronic record. The quantity and
description of the goods that are mentioned in the receiving report should be compared
with the company's order data.

Once someone receive the purchase order information, it must be compared with sup­
plier's invoice. For this reason, the receiving message is the second one of three documents
in three-way agreement.

2.3.3 Vendor Invoice

The supplier or vendor will send the invoice to the company that has received the goods
or some services for the loan. After receiving the invoice or receipt, the customer refers
to this invoice or receipt from the vendor. Each vendor's invoice is listed as payable bill
for the reason of another processing. Once the invoice has been verified and approved, the
final amount will be moved from debited account to the company's account and debited to
another account (most often as an expense or property).

The most frequently used method for verifying the supplier's invoice is a three-way
match.

2.3.4 Three-way match

The accounts payable process often uses a technique known as a three-way match to ensure
that only valid and accurate invoices are recorded and paid. The three-way agreement then
includes the following:

• Purchase order,

• Receiving report,

7

• Vendor Invoice.

If the data in all three documents agrees the supplier's invoice is entered into a payable
account and scheduled for payment.

2.3.5 Vouchers

Some companies use a voucher to document or guarantee that the approval process is suc­
cessfully completed. The voucher can be displayed as a cover sheet for attaching supporting
documents (document order, message receipt, supplier's invoice, etc.) and for registering
approvals, account numbers and other information for each invoice or account from the
vendor.

After the payment of the supplier's invoice is successfully completed, the voucher and
its attachments (including a copy of the check that was issued) will be stored in a paid
voucher and / or invoice. Unpaid invoices and bills will be stored in an open file.

2.3.6 Vendor invoices without purchase orders or receiving reports

Not all vendor invoices have purchase orders or receiving reports, it means that three-
way match agreement is not always possible. For example, the company does not issue
a purchase order for a predetermined amount of electricity for the following month. The
same works for telephone bills, natural gas bills, water bills, etc.

There are also payments that are required to be paid each month to meet rental contracts
or other negotiated contracts. Between examples we can find monthly rent for a warehouse,
office rental, car payments and so on. Even when these obligations will not have any order
documents, responsibility remains unchanged, only legitimate and accurate amounts are
paid.

2.3.7 Statements from vendors

Suppliers often send to their customers statements indicating amounts that have not been
paid yet (indicated by the invoice number). After receiving the statement from the supplier,
details of the report should be compared with the company records.

When company receives two same invoices and a vendor's declaration, means, that
there is a possibility of the payment been duplicated. To avoid duplicate payments, com­
panies often pay only for vendor invoices and at the same time they never pay for vendor
statements. [12]

2.4 Accounts Payable - F I - A P modul

Accounts Payable Module alias SAP F I - A P records and manages accounting data for all
company vendors. It is also an important part of the purchasing system where deliver­
ies and invoices are managed respecting agreement made with the supplier. The system
automatically performs accounting in response to operational transactions. Likewise, the
system delivers Cash Management application, which returns detailed data of the invoice
to optimize liquidity planning.

Payments are paid with the payment program. The payment program is implemented
in F I -AP and supports all the standard payment methods (such as checks and transfers)
in printed form and in electronic form (exchange of data media on disk and electronic

8

V. J

first approver

Figure 2.2: Diagram of activity showing work flow of processing created orders from creating
purchase order, waiting for three documents necessary for a three-way match or processing
payment without some. In B C M module is checked validity of all documents. If they are
valid, F I -AP module mediates bank payment.

data exchange) as well. This program also covers country-specific payment methods. If
necessary, the program supports the functionality for creating reminders to outstanding
claims (like receiving a credit note).[24]

The debits made in the F I -AP are simultaneously recorded in the general ledger, where
the different account types of the general ledger are updated on the basis of the realized

9

transaction (for example commitments and advances). The system includes maturity fore­
casts and other standard overviews that can be used to monitor open items in payment
accounts. F I - A P module configures balancing confirmations, account statements, and other
notifications to meet the correspondence requirements. Balance sheets, balance records, and
other evaluations are available to document transactions in payment accounts. []

2.5 Bank Communication Management - B C M modul

B C M , or Bank Communication Management is used to manage multiple banking interfaces.
Allows to connect to the bank system, track the life cycle of created payment transactions,
and improve direct payment processes. The module is also responsible for creating and
approving batches that include individual payments, monitor the status of bank payments
and their statements.[]

Wi th the Bank Communication Management module, payments in one or more payment
flows can be presented and processed in the payment status monitor. The monitor is also
responsible for transmitting status messages from SWIFT and individual banks. Individual
payments could be split into one or more payment batches as needed. For example, you can
group payments based on the amount to be paid - bigger amounts and smaller amounts.
You can use a digital signature to approve, reject or defer the batch.

The SAP Bank Communication Management module is part of the SAP E R P Financial
package. It allows to close integration of processing payments in E R P Financial. []

2.6 Approve Payments in S A P

The entire payment process is carried out in SAP using the Accounts Payable F I -AP module
which is part of S A P S / 4 H A N A solution. The workflow is modeled on figure 3.1 However,
the process of approving and verifying individual payment batches is implemented in the
B C M module. Without that, it would not be even possible to automate the confirmation
of payments process, that would lead into inefficient work, especially in large companies.

When performing an action from a certain part of the payment process above the batch,
the corresponding work item entry must be also automatically executed on the system.
Depending on the release strategy (steps that need to be taken before the payments are
released) defined for the batch (including payments), the approval of the first user may
also be the final approval. In this case, the system will automatically create a payment
medium for that particular batch to transfer into the bank. If more approvals (usually
two approvers) are required, the system instead creates additional work items for the next
approval step. These work items will be visible in other users' work lists. In the multi-user
approval process, it is very important that none of the approvers can be present in the role
of the other one. As a result, it would mean that one of the approvers will confirm the
payment twice, and they could be paid without the second participant's notice.[1]

In conclusion it means that in approval process exists two kinds of approver:

• first approver,

• second approver.

10

2.6.1 Approving with one approver

As the first approver, the user can change the batch by removing specific payments from
him. These payments can either be defered (so that they can later be included in another
batch) or can be totally rejected. If this happens, the corresponding payment documents
in the FI module should be canceled. The entire batch can also be defered or rejected as
well. Finally, the approver can confirm the (remaining) batch and the system proceeds to
create a payment medium.

2.6.2 Approving with two approvers

The same like the first approver, the second one can see the changed and released batches.
In the role of the final or later approver there appears the next steps to release batches. In
this role it is no longer possible to change the content of the processing payment batch, can
either be approved or (if it should not go to the bank) be sent back to the first approver.
A l l actions and changes are recorded and executed only after confirmation by the approver.

11

Chapter 3

S A P S / 4 H A N A

SAP Business Suite 4 SAP H A N A or SAP S / 4 H A N A is a real-time digital solution for
enterprise resource management that is developed on the S A P database operating system
and SAP H A N A platform. The goal of this product is to cover everyday business processes.
Because it runs only on the S A P H A N A database, it is offered as one product and integrates
both enterprise and industry solutions. It offers also the S A P Fiori user interface, S A P
S / 4 H A N A can be run as a cloud solution or as an on-premise solution directly at the
customer side.

This application will be developed and later on deployed on this platform. In spite of
the fact that only the implementation of the user interface and database queries will be part
of this work, it will also be necessary to connect this parts with the other SAP S / 4 H A N A
components to be able to run the application, (overview of components structure on figure
3.1) The data that will be retrieved from the database will be processed using logic located
on a server that is implemented in A B A P . This existing layer also provides control of user
authorizations and their rights to read and edit data. This logic is then available on a
specific U R L address, which is provided by SAP Gateway. Data exchange between the
client side and SAP Gateway is then based on the OData protocol.

3.1 S A P H A N A Database

SAP H A N A represents an application and database platform that enables fast processing
of large volumes of data in real time as well as processing of their instant analysis. S A P
H A N A is built to achieve fast response to database queries. One of the key features is
the location of entire databases in R A M memory - this technique is called the in-memory
database and because of that, compared to a regular SQL database, the processing time is
much shorter. It means that the data is not stored primarily on hard disks. Hard drives are
still used, but only passively. The standard process that allows database recovery is regular
logs creation. The data are written into log files that are stored in persistent memory.
This important process guarantee durability in enterprise applications. These properties
ensure reliability of database transactions and are considered as basis for reliable enterprise
computing technology.

Another important information is how data storing is implemented. H A N A database
primarily store data in columns rather than in rows. In practice it means that if the
database contains, for example, data of the inhabitants of the Czech Republic, there are
certain surnames that appear a lot more that others (like Novak), but the data are stored

12

S A P F i o r i a n d S A P S / 4 H A N A U X
High level stack architecture SAP S/4HANA cloud & on-premise

Figure 3.1: SAP S / 4 H A N A architecture overview illustrating selecting data from database
tables with Core Data Service views that is a part of the thesis. Then extracted data are
modified in A B A P layer and this backend logic is then placed in SAP Gateway and provides
data to user interface. Data are consumed by user interface, that is part of this thesis as
well, by OData protocol. Source: [32].

in columns, the corresponding surname will only be saved in the column once and could be
searched much faster. [30]

However, saving data into rows is also supported. SAP H A N A also works as a appli­
cation server with already built features with H T M L 5 . Among other things, it supports
development of new applications on mobile devices such as smartphones or tablets.

3.2 Core Data Services

Core Data Services (CDS) is an infrastructure that helps developers create a durable data
model that transfers application services to client interface users. The developer can define
analytic and data persistence models that are used to transmit data in response at the
request of the H T T P client. CDS allows you to define the persistence model that contains
objects such as views, spreadsheets, and structured types. These objects determine the
data and how to use them in the application. [30] CDS as a data definition language is
also extended by entities, associations, calculated fields and annotations that add semantic
meaning to extracted data, (visualized on figure 3.2)

Wi th CDS the development paradigm has shifted. The rule is that to get the best
performance, it is necessary to move as many calculations as possible to the database
system.

13

3.2.1 Entities

Core data services bring a framework for defining semantic data models on the central
database of the application server based on the data definition language (DDL) and the
data control language (DCL) managed by A B A P Dictionary. It means that CDS entity is
defined as source code in the CDS data definition.[29]

3.2.2 Annotations

When an object defined in CDS source code is activated, the metadata defined by the
annotations is saved in internal accesable database tables. This is how it works for ev­
ery annotation with correct syntax. A B A P annotations and component annotations are
evaluated in different ways:

A B A P annotations define technical and semantic attributes of a CDS object. They are
usually evaluated for every CDS object when activated by the A B A P runtime environment.
A B A P annotations can modify the behavior of Open SQL statement and provide access to
a CDS entity. Value of an annotation is saved in special table with a translatable language
key.

The component annotations are evaluated by the frameworks of the corresponding soft­
ware components using an A P I . Names and values must follow the rules of the relevant
framework. For S A P components, these can be taken from the tables of the SAP annota­
tion documents. [25]

3.2.3 Associations

Associations are used to define relationships between entities, they are specified by an
element added to a source entity with an association that points to a target entity, it is
complemented by cardinality and by keys designed to join entities.

Target Entities in associations specify the target data holder that should be accessed
represented by name of an entity in a CDS document. A target entity specification is
requiered because there does not exist something like default target value in an association
relationship. [26]

CDS DDL

SQL DDL

^ Entities with structured and custom-defined types

+
+
+

Assoc ia t ions i.e. captured relationships

Calculated Fields pre-defined in data models

Annotat ions to extend the meta models

Figure 3.2: Image showing Core Data Services composition. Source: [13]

14

3.3 S A P Gateway

SAP Net Weaver Gateway is a technology that provides a way to connect any device, envi­
ronment, and platform to SAP software. The framework allows development of centralized
solutions that bring social and collaborative environments, mobile and tablet devices and
web applications into software.

It means that Netweaver Gateway is a set of A B A P add-ons to an existing S A P E R P
system that provides access to business information for the user and reduces the complex­
ity for consuming data that are exposed by Web Services. Gateway is an ABAP-based
add-on and can be installed in three configurations. To develop new, or modify existing
Web services is primarily A B A P programming language knowledge. Consuming these ex­
posed Web services is reachable by making A J A X and network calls to specified U R L .
SAP Gateway handles secutrity issues by using existing system user authorizations, and
provisions have been built into the product for SSO (single sign-on), C S R F (Cross-Script
Request Forgery) and HTTPS . f l 1] No additional knowledge of the internal SAP operation
is required. Gateway provides an A P I to access business data and features in SAP systems.

Consuming data from S A P Net Weaver Gateway require an HTTP(S) query creation
capability. It does not require usage of any SAP software or protocols. Data consumption
through SAP Net Weaver Gateway does not require knowledge of A B A P software imple­
mentation or even an understanding of SAP's internal system.

Using well known development tools such as Microsoft .Net, Apple XCode, or Open
Source languages such as Ruby, PHP, or JavaScript, we can easily create user interfaces
for business data by consuming OData (explained in next chapter) from the client side
provided by SAP Net Weaver Gateway server. [17]

3.4 OData protocol

Open Data Protocol (OData) allows you to create REST-based data services that allow
you to publish and edit web clients using simple H T T P messages specified by the URLs
defined in the data model. This specification defines semantics and protocol behavior.

OData is an application-level protocol for interacting with created data via the RESTful
A P I interface. The protocol supports description of data models, editing and querying data
by these predefined models. It provides description for:

• metadata - machine readable description of a data model (figure 3.3),

• data - set of data entities and relationships between them,

• query - requires the service to perform a set of filters and other transformations to
data and then returns the results,

• editing - creating, updating and deleting data,

• operation - invoking own logic,

• dictionaries - assign own semantic value.

The OData protocol is different from other REST-based protocols because it provides
a unified way of describing data and data models. This improves semantic interoperabil­
ity between systems.[21] For this purpose, the OData protocol is guided by the following
principles of proposal:

15

https://HTTPS.fl

• preference of mechanisms that work on different data repositories

• not taking a relational data model,

• importance of extensibility - services should be able to support enhanced functionality
without side effects on the client side of the application that is not informed about
these extensions,

• following R E S T A P I rules,

• OData should be built step by step way - a very basic service should be easy to build,

• leaving it designed simple - only for common cases and possible extensions.

3.4.1 Data model

This section provides a description of an abstract data model that is used to describe
OData protocol. OData metadata document is a representation of a service data model
that is used for a client consumption. Central extended data model concept contain entities,
relationships, sets of entities, activities and functions. Entities are in the end instances of
entity types (like customer, employee, etc.).

Entity types are named with structured types with key. They define named properties
and relationships. Entity types can be derived from inheritance of other already existing
entity types. Key is made up from a subset of primitive properties (such as Customerld,
Orderld, Lineld, etc.) of the entity type. Complex types are key less structured types
consisting of a set of properties. These are types of values whose instances can not be ref­
erenced outside of their content. Complex types are commonly used as values of properties
within an entity or like parameters for operations.

T<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
T<edrax: DataServices>

T<Schema xmlns="http : //docs . oasis-open.org/odata/n s/edm'- Name5pace="deino">
T<EntityType Name="Product">

<Property Name="_id,r Type="Edm.String'/>
<Property Name ="ProductNum" Type="Edm.Int32"/>
<Property Name="Name" Type="Edm.String"/>
<Property Name ="Description" Type="Edm.String"/>
<Property Name = "ReleaseDate" Type="Edm. DateTinne'V >
<Property Name ="DiscontinuedDate" Type^'Edm.DateTime"/^
<Property Name = "Rating" Type = "Edm . Int32,'/:>
<Property Name="Price" Type="Edni, Double"/>

T<Key>
<PropertyRef Name="_id"/>

</Key>
</EntityType>

T<EntityContainer Name= "Context" >
<EntitySet EntityType="demo.Product" Name="products"/>

</EntityContainer>
e t a >

</edmx:DataServices>
</ednfix: Edmx>

Figure 3.3: Example of the structure of OData metada file. Source: [23]

Relationships from one entity to another are represented as navigation properties. Nav­
igation properties are generally defined as part of an entity type, but they can also be

16

http://docs.oasis-open.org/odata/ns/edmx

displayed on entity instances as undeclared dynamic navigation properties. Every relation­
ship has its cardinality.

Enumeration types are the naming for primitive types whose values are constants with
basic integer values.

Type definitions are primitive types with fixed values such as maximum length or accu­
racy. Type definitions can be used instead of primitive specified properties such as property
definitions.

Sets of entities are named collections of entities (for example, Customers are a set of
entities that contain customer subjects). The key in the set identifies an entity in an entity
set. If multiple entity units use the same entity type, the same combination of key values
may appear in more than one entity group and identify different entities, one per unit entity
on which this key combination is displayed. Each of these entities has different entity id.
Entity sets provide entry points into the data model. [22]

3.5 S A P Fior i

SAP Fiori is brand new user interface for S A P applications. It provides a platform of
applications that are used on daily basis in business processes. There are included financial
applications, computing applications, approval applications, etc.

Technology delivers real-time solutions for all existing business roles available for portable
devices as well. For each role, it provides easy to use applications that are adaptable to
smartphones, tablets, desktops and / or laptops.

Based on the survey, it was found that customers are using applications that focus
on interaction between the employer and the employee, for example approving business
trips and vacations. These applications had more than 300,000 screens with a variety of
functionality. After identifying the most visited transactions, features, it has been decided
that the existing solutions need to be redesigned and simplified. That's how S A P Fiori
development has started. [8]

Application development is directed by five rules. By helping to regulate development
into easy-to-understand applications and easy to control. These rules are:

• role separation - SAP has divided individual transactions and created user-friendly
applications that display data based on roles in the system,

• reactivity - if SAP Fiori is combined with a strong SAP H A N A database, as a result
we get short response time for a database query,

• simplicity - to create the best user experience, it was necessary to keep the application
simple, so development follows the rule 1-1-3 (1 user, 1 use case, maximum of 3
screens),

• availability - S A P provides all Fiori applications based on the same language, devel­
opment platform does not matter,

• usability - SAP Fiori is designed to work with E C C 6.0 to make it easy for users to
develop into an existing SAP system.

SAP Fiori Launchpad is the root element of all Fiori applications, and users can access
individual applications via tiles. The tile is therefore the basic navigation element in Fiori
Lauchpad, which is built as flexible and customizable item. [9] At Fiori we can find exactly
three types of applications:

17

• transactional applications - usually represent views and interactions with existing
business processes and solutions,

• analytical applications - typical representatives are the so-called Smart Business (KPI
Cockpits) applications for analyzing the business plan implementation, but also other
analytical, predictive and planning applications,

• fact sheet application - a search application that supports a combination of different
applications so users can navigate from data view screen to a data editing action
screen.

3.5.1 SAP Fiori Launchpad

The SAP Fiori Launchpad is the entry point of Fiori technology for both mobile and desktop
devices. It is a page that basically works as a container for all applications that are available
for the logged-in user in the system. Through all applications, it provides personalization,
navigation, global filter settings, etc. Example on figure 3.4. Each tile in Fiori Launchpad
is an application that can be run by the user. S A P Fiori tiles run on multiple types of
devices and provide a single access point for business applications provided by SAP, these
are transactional, analytical, intelligent, and intelligent business applications.

Figure 3.4: Fiori Launchpad example showing available tiles (applications entry point) and
user menu in the left side panel.

3.5.2 SAP Web IDE

SAP Web IDE is a extensible, web-based development tool built to simplify application
development. It provides templates, samples, code and graphical editors and modelers to
speed up application development.

SAP Web IDE is designed to be easily used to launch new business scenarios when de­
veloping new application. Wi th graphical extension editor it is easy to add some predefined

18

extension point into new and existing applications as well. For mobile development there is
integrated a ready to use tool for developing mobile hybrid applications called Cordova. [28]

Using S A P Web IDE user can also discover a try built in services for developing Big
Data analytic applications and IoT (internet of things) scenarios. For SAP H A N A IDE
provides web-based set of tools for creating native S A P H A N A applications. User is able
to develop database models, calculation views, stored procedures, business logic and more.

19

Chapter 4

Front-end technologies

The purpose of this chapter is to get an overview of the most commonly used and best
known JavaScript frameworks for creating graphical user interface. Consider each other
and all their strengths and weaknesses.

4.1 React J S

React is a user interface library developed by Facebook, simplifying the creation of interac­
tive and reusable user interface elements. Framework is commonly used and both Facebook
and Instagram are written entirely in React.

The difference from other JavaScript frameworks is that this is a library for composing
user interfaces, so it is not M V C framework, (could be seen on figure 4.2) It supports the
creation of repeatable user interface elements that represent data that changes over time.

React does not use templates. Traditionally, the web application's user interface is built
using H T M L templates. These templates determine the full range of abstractions that can
be used to create a user interface. React uses a real, full-featured programming language
for building UI, which is an advantage for several reasons:

• javascript is a flexible, powerful programming language with the ability to create
abstractions and that is very important for larger applications,

• by grouping a tag with the corresponding display logic, React can actually extend
and maintain user interface,

• Creating tags and content in javascript means that there is a smaller vulnerability
area for XSS.

JSX is an optional syntax extension to convert H T M L code to raw JavaScript. React
is very effective if the data changes at runtime. Traditionally, one has to look at what data
has changed and imperatively change corresponding D O M elements to be up to date. Since
React uses a fake D O M rather than a real one as you can see from figure 4.1, there is a
special possibility to plot a fake D O M on the server - which means creating a server-side
user interface.[31]

Once React component is initialized for the first time, the rendering method is invoked so
creating the user interface is easy and fast. From displayed user interface is created a string
of tags and inserted into the document. When the data changes, the rendering method is
retrieved so that updates can be performed as efficiently as possible. Each component has

20

Builds/rebuilds the
component tree marked dirty
in Virtual DOM

Runs cliffing algorithm to compare
the previous created component
tree with the new one
and does Reconciliation

Figure 4.1: Relationship between application, D O M and virtual D O M created by React
framework. Source: [19]

a state object and a props object, and the components can also set the default status of a
component before any action is triggered. []

Forms Workflows

Higher Order React Component

Request Module

http request

User Interface
React Component

Redux Store
Single source of truth, middleware

Cache
Middleware

http response

Service End Points

OData Services

Figure 4.2: Basic architecture of a web application written in React framework. Source:
[33]

21

4.2 Vue.js

Vue is a framework that is also designed to create user interfaces. It is designed to be able
to adapt and gradually build on the required functionality. Core library contains only the
display layer and is easy to integrate it with other libraries or existing projects. [5]

The composite system is very important for creating complex and difficult applications
with reusable components. It is easy to split applications into more logical, independent
parts.

Very important is huge support of the Vue framework reactivity. The individual com­
ponents of the user interface implemented as JavaScript objects. This means that when
you change an object, it also updates the component that represents the object's con­
tent. By passing a simple object to a Vue instance, it goes through all of its properties
and converts them into the getter and setter (visible on figure 4.3) functions using the
Object.defineProperty method. Getters and setters are invisible to the user, but mean­
while allowing Vue to track dependencies and changes when it's properties are accessed or
modified. []

Component
Render •*-

Function

render

Trigger
re-render

Virtual DOM Tree

N o t i f y

"Touch" \

Figure 4.3: Workflow of Vue.js framework when rendering or changing displayed data.
Source: []

4.3 Angular 2

The Angular Framework is used for creating user interfaces using H T M L , JavaScript and
/ or TypeScript (which must then be recompiled into JavaScript). It is a compositional
framework based on a set of libraries, which can optionally be extended by the import of
other libraries. Source: [10]

Applications are created by composing H T M L templates with Angularized tags, class
components that control H T M L templates. Application logic is contained in service classes
and modules. The root module is always the first one to load.

A l l created applications are modular and Angular implements their own modular system
called NgModules. Each application contains at least one NgModule which is AppModule

22

root module. Modules are otherwise usually divided by application domain, workflow and
/ or related set of functionality as it is presented on figure 4.4 .

Modules are represented as classes containing decorator. Decorator contains a feature
that modifies JavaScript objects based on metadata. As a result, this means that by
assigning object metadata we know what it is used for and how it works.

Components work as a tool to control the displayed components. The application logic
of each component is then defined here. Created classes interact with components using
Angular methods and internal variables. []

Component
Morfw.te \[Module |

Moduli
vflLne

' service i
:_____£_j______j
i Module
1 Fn

A I I

feJIE

Property

Template

< >

Metadata

n 1

Figure 4.4: Image illustrating relationship between components and templates created by
provided metadata description a provided service. Source: [2]

4.4 S A P U I 5

SAPUI5 is library originated for rendering a client-side user interface. It contains a large
number of predefined controls that build the final application. Another great advantage is
the ability of bind data models directly to user interface controls.

Applications are created by folding individual SAPUI5 libraries, which are then com­
bined into one application, each library contain different interface controls and allows us to
access these controls functionality. Figure 4.5 shows screen combined from different con­
trols from different libraries. SAPUI5 uses the Model View Controller concept to separate
visualization of data from application logic and data model definition.

User Interface control is an object that defines the style and behavior of a given area
on the screen. Individual controls inherit either the main control class sap.ui.core.Control
or from other control to inherit or extend their basic functionality. They typically have
some properties such as „text" or „width" that modify the way they are rendered on client-
side. One control can also group other user interface controls. This means that it could
behave like a container or user interface control. If the application can add child controls
or a composite control, then the user interface control itself determines what are the child
controls of the user interface and only uses these components.

View (user interface) is built up using the controls that are available in SAPUI5 libraries.
Here is one of the biggest differences with other front-end technologies for creating user

23

SplitContainer control
(sap.m)

MasterPage control
(sap.m.semantic)

List control
(sap.m)

3ouiei E»Crange 20.00

rk configuration 10.00

CRM Project Phai« 2 2K

r̂iiterCleailng 1DO.O0

CRM Project Phase 4

VerticalLayout control

DetailPage control
(sap.m.semantic)
ObjectHeader control
(sap.m)

IconTabBar control
(sap.m)

SimpleForm control
(sap.ui.layout.form)

Progresslndicator control
(sap.m)

(sap.ui.layout)

Table control
(sap.m)

Figure 4.5: A n example of a view built from the individual controls that are occupied in
the libraries mentioned in brackets.

interface. SAPUI5 provides already completed functional elements such as tables, lists,
inputs, filters, combo boxes, etc. The library then takes care of the rendering of each
individual control and also provides the appropriate functionality.

The model stores the data and provides methods for loading these stored data. It also
allows the presentation, automatic update and synchronization of data by linking view
controls with data models. SAPUI5 supports several different data sources, such as X M L ,
JSON and OData when linking is independent of the source type. A client-side model,
most of the time JSONModel, is used to link user interface controls to JavaScript objects.
JSONModel is primarily designed for small data sets. A serialized JSON string is typically
used for data transmission. The second type of model is a server-side model, which is
designed to retrieve data from server. It includes implementation of methods (POST,
G E T , etc.) that can be used to query for individual entities that hold data provided by
SAP gateway service or for entities to save user-edited data.

Controllers are designed to handle events that are triggered by user, obtain user inter­
face logic, communicate with the server and to create and store client-side and server-side
models.

4.5 Evaluation

As mentioned above, React, Angular 2, and SAPUI5 stand for large companies that are
actively developing, updating, and maintaining them. A l l frameworks are also based on
components. This allows to pass the input into the component, after completing the internal
functions, it returns the rendered part of the user interface, whose shape is derived from
the input. React and Vue.js frameworks excel in creating so-called dump components that
do not keep the internal state. Angular 2 allows to store the state of data inside the
components. In any case, it is necessary to implement the rendering functions of user
interface and the style of the displayed component. Here is also the advantage of the
SAPUI5 framework that provides predefined components, including rendering functions
and implementation of internal state preservation.

24

Figure 4.6: This is how M V C architecture works in SAPUI5 framework. Controller updates
view when data is changed and handles user interaction. Model works like container full of
data and moves with them between view and controller.

Another important aspect is O D A T A consumption from SAP Gateway. Could be seen
on figure 3.1. While with the React framework, you can use the npm package service to
install the OData extension, for Angular 2 it is necessary to implement this functionality
separately. SAPUI5 is natively ready to work with this protocol and provides methods for
reading, deleting, and updating data over this protocol.

The biggest factor in choosing a framework was that SAP business applications are
being deployed using the SAPUI5 framework, which means you can get inspiration when
choosing the right components and working with data. It means that selected framework
for creating user interface is SAPUI5.

25

Chapter 5

Applicat ion for approving bank
payments

In the very first part of this chapter will be introduced how Fiori web applications are
driven by the design while its development (figure 5.1). The stages of development, their
meaning and content will be described. In the second part, a specific design for Approve
Bank Payments application will be introduced and described. Chapter will then introduce
the development of the application itself and its specific parts.

5.1 Methodology of development

This section describes and explains the methodology by which cloud customer applications
are created in S A P environment. The methodology is called the Design-Led Development
Process. Wi th a strong focus on users and their needs, the process of developing and
supporting developer teams is governed to deliver the best possible applications. The
process uses proven ways of thinking to achieve optimal user experience. It's simple and
easy to follow, providing a solid foundation for the scale design for approving applications

whole.
Design-based development is useful because it supports unity during development be­

tween designers and developers while ensuring that end-user needs are addressed at every
design and / or development step.

Design-Led Development Process covers the entire development life cycle of a web ap­
plication and consists of three main phases and their corresponding layers. Of course,
iterations are part of this approach and are strictly adhered to. If there is such a sig­
nificant change that should be incorporated into the application and re-submitted to the
design gates, then it is up to the development team to decide whether the changes will be
incorporated. [27]

The individual phases are sequentially numbered and are called design gate 0, design
gate 1 and gate design 2 (shorthanded: D-Gate 0, D-Gate 1, D-Gate 2). Phases have a
predetermined fixed execution order, and summarize application development, from request
generation, user role definition, UI design to custom implementation and testing. The
section will illustrate clearly which of the three phases each of these activities belongs to.
It will be said what is the input and output of each such part of the development and what
steps are needed during this part.

26

Prototype

Research Test

Problem Space » — Solution Space >

Figure 5.1: Picture representing process of development application from phase discover
which ends with D-Gate 0, over to design phase that includes brainstorming and produces
prototypes and ends with D-Gate 1. Up to development phase where application is built
and tested and ends with D-Gate 2. Source: [27].

5.1.1 D-Gate 0

The goal of D-Gate 0, the discovery phase, is to understand the end user's business require­
ments and capture his problems and needs. Before diving into design and implementation,
it is important to perform research with potential end-users and keep mockup of the appli­
cation in the design area.

After gaining a clear understanding from the business point of view, collecting descrip­
tions of typical representatives for the roles that appears in application and tasks to be
solved, the team is able to leave this part and move on to the implementation part. A n
overview of the collected information and documents in Design Gate 0 are designed to de­
termine whether the application is ready for design. A review in Design Gate 0 should be
done before prototypes begin to be created.

Design Gate 0 ensures that user research is established and discussed with the customer,
that developer has an overview of business roles and that application focuses on the end
user's requirements.

To evaluate the completeness of Design Gate 0, the following facts help:

• business role description: an explanation of the business role, including industrial or
business processes, from a commercial point of view,

• mapping application to business roles: explanation of context and content for a given
issue, scheduled response and device-specific integration features,

• description of the end user: indication of all names of customers, regions and sec­
tors involved in the research activities. Including the numbers and types of research
activities and the number of end-users involved,

• personality: describe a person for this application, including details such as goals, job
responsibilities, needs, competencies and obstacles in their everyday work,

27

• usage of use case diagram: description of user interaction with the system using case
diagram for each relevant case of use.

Then there are also optional steps to help improve D-Gate 0:

• description of business processes: their high level description, showing where and how
applications fit into business processes,

• observing a sequence of activities: explaining or drawing steps in the flow of user
activity. Inclusion of all steps, needs and demands of users, work events and edge
cases within the work.

5.1.2 D-Gate 1

In D-Gate 1, the design phase, the main goal is to create an initial design based on D-Gate
0. Here, it is important to really apply the principles of design thinking, develop design
prototypes and decide what the technology should be used. Ideally, a team of scientists and
developers should be created to brainstorm, create a scenario, and make a first prototype
that can be verified by users.

Design-Gate 1 ensures the compliance of the planned design with the SAP Fiori Design
Guidelines to create a user-friendly environment.

To evaluate the outcome of Design Gate 1, these artifacts will helpful to summarize the
work and develop a design for each application:

• Fiori App Portfolio in O A M : create a record in the Fiori application portfolio in O A M
to create a new application and deliver or extended version of existing applications,

• point of viewpoint: creating a view that includes user needs and insights based on user
research and interviews. Understanding why user needs to perform certain activities,

• application basis: explanation of application. Using a comprehensible language, that
can also be understood by people outside of the expertise needed, for application
development. Unifying application before its designing,

• mocku-ps and prototypes: using simple mock-ups to help communicate ideas about
the application and support design discussion, provide interactive prototypes to pro­
vide real-life experience with the future product.

5.1.3 D-Gate 2

The goal of the development phase, D-Gate 2, is to design and create a described product
that has been requested and approved by the customer.

During implementation, it is often necessary to change some aspects of web applica­
tion design for possible integration of user feedback, application optimization, or technical
constraints. When an application is first implemented and tested, the initial design may
require further iterations and modifications before the developer team arrives at the final
design and implementation.

The purpose of Design Gate 2 is to ensure that the final implementation and design is
done according to the SAP Fiori Design Guidelines. A n overview is made using a demo
version of the application that publishers prepared for reviewers.

28

5.2 Requirements analysis

This section corresponds to the D-Gate 0 phase of the Design-Led Development Process.
There will be briefly described the requirements for the application, how the requirements
were created and how they were specified. This first part of creation of the application
should decide whether the application provides a new functionality that will bring new
opportunities to the customer and simplify his work in some way.

To do this, of course, it is very important to have an experienced product owner who
comes with an application idea. He must have a rich experience and a deep knowledge of
the application domain. He also becomes the main person who is consulted about adhering
to the application domain rules while development.

A n important role at this stage is also played by a customer who works very closely
with development team and discusses the functionality of the application. It is then, to a
certain extent, tailored to the user.

This section will then mention the Approve Bank Payments design process, present
requirements for the application, and the design of the specific functionality that should be
provided and offered to end users.

5.2.1 Functionality design

As indicated on the use-case diagram in the figure 5.2, key functionality has been estab­
lished for the resulting application to automate the process of approving bank payments
for customers. First of all, the application was emphasized to provide functionality that
covers the entire process of approving bank payments.

After discussions with customers, it was first determined and defined that the application
would be made available for two user's roles (accounts payable manager and cash manager)
because of the possibility of two way approval of bank payments and the prevention of
fraudulent or hidden payments within companies during the process. This requirement
follows from the general rules of two way bank payments approval process (see 2.6.2). Each
user role will have very similar operations, but they will operate with different data based
on assigned authorizations to access the particular data. For this reason, in the use case
diagram of figure 5.2, both roles are modeled as a single user.

The basic functionality of the application is the payment batch manipulation. These
batches contain individual payments that can be generated for one or more invoices. In the
payment batch, then, on the dependency of a customer's environment set-up, payments that
are somehow similar (depending on the settings already mentioned) are grouped together.
The user must then be able to execute three types of operations over a payment batch.
The first is the approval operation. If this operation is performed as a accounts payable
manager role, it will cause the payment batch to be passed on to the user logged in as a
cash manager role for further approval. If the operation is executed by the user logged in
as a cash manager, the payment batch, including all payments, is approved and ready for
further processing. In addition, the payment batch may be defered or postponed. This
happens if, for example, payment cannot be paid at all for a variety of reasons or there is
insufficient means to prove and check the validity of the payment batches. The last of three
operations that could be done is a rejection. If a payment batch is rejected at any level of
processing, then it is flagged as defected or incorrect and treated in accordance with the
company's internal guidelines.

29

Figure 5.2: Use case diagram covering possible interaction between user and application.

Another key requirement for the application was a change of the due date value. This
generally indicates the date by which the payment batch, as a whole, should be paid into
the bank account. However, this date may be very depending on the conditions or changes
in the contract, and it is therefore appropriate for the application to offer an opportunity
to modify this value for a individual payment batch.

The payment batch must also include detailed information on which user is able to
decide how payment process will be handled. Basic information to help identify the batch
is the company code of the company to which the payment is sent, the total amount to
be paid in local currency, the date of creation and the rules under which the payments
are paid, called instruction key, are also important. In each organization or country, these
rules are different and the rules are determined by the country or organization to which the
payment is sent. Useful information may include the payee's account number, IB A N and
house bank.

30

The application also provides the ability to modify attachments that are attached to the
payment batch. There is visible the name of the user who uploaded the attachment and the
date of the action. Last but not least, the user will be able to view individual payments from
which the batch is composed, and then a timeline that expresses and accurately visualizes
how the payment batch was treated in the past and who did particular changes.

The application was also designed for the case when only part of the payment batches
need to be approved. It means that there is also possibility of approval at the level of
individual payments. For this decision, it is necessary to display the important details that
will allow such a decision, the details are, specifically for this application, payee name,
amount, payment number, country key, instruction key and more.

For payments, user will also be able to view individual billing invoices. The sum of the
individual invoice values then indicates the final payment amount. The company to be sent
the payment could also change the way how bank payments are internally processed and
deals over time. It is therefore possible to customize the payment key in an application
with the instruction key field, which defines the process of repaying the liability to another
party. It can, of course, also be rejected or postponed, as well as the whole payment batch.

5.3 Design of application U I

This chapter discusses the process of designing an application's user interface. From the
perspective of Design-Led Development Process. This chapter is part of the D-Gate 1 phase.
Its entry is the application requirements and the output is then a user interface design that
is discussed with the product owner of the application and, of course, the customer. It will
describe how the available data has been separated, and then using this separation, the
individual screens, that can be made available to the user, are defined.

In the next phase, a detailed design of the application's user interface will be described
and visualized as well as the UI components by which the data is transmitted and presented
to the end user.

5.3.1 Design of data view

The data that will be displayed in the application is necessary to gather together based
on their semantic meaning. This procedure will create several groups whose data are
semantically very similar or describe a similar object. This section will introduce what
data has been merged and how it has been grouped into individual groups. Each group
at this moment expresses one screen that the end user can see. These screens are clearly
shown in the picture 5.3.

It is crucial for users to recognize the payment batch they are currently looking for
and over which they want to perform the appropriate operations. A screen containing a
payment batches should serve for this purpose. Data that clearly defines a payment batch
including the total amount, the company code of the company to be paid, the identification
number, the creation date and the payment order (List of batches screen on 5.3) are visible
there.

The next screen is the detailed information that can be obtained from the payment
batch and which can play an important role in the approval of the payment batch. Here is
also important to incorporate the detail payment batch screen option (Batch detail screen
on 5.3).

31

•>• iJ í i =iiTid g-li 3-jU-i(Ju Ti; =((.•:• 3ÖMU-:3-IÜ _TI - -c /v t r Ttxí indag>:: T
Initialize application / A p p . c n l n i t í)

^ L l s t of b a t c h ů s

A

Shew batch, detail / sap.m.List.sokret(cvcnt)

Navigate back / N a v i g a t o r . ů n N a v B a c k O

. . . . J Navigate back / Navigator.onNavBackO

Paym&iit dutali List of payments <- Batch datall Batch approval
p rocess

Navigate back / N a v i g a t o r . ů n N a v B a c k O Navkjate back i N a v i g a t c r . ů n Na v Bac k ü A

Show attach rrents / shcwAttach rrentsf)

->
S h ů w batcri apprcval p r ů c e s s / s h c w H i s t o r v O

Navigate back / N a v i g a t o r . ů n N a v B a c k O

v
Bat cl i a t t a t h r m ů n t s

Figure 5.3: Screen diagram about how the information will be passed on to the user.

A screen showing a list of payments that are linked to a payment batch (made up of
these payments) could be another screen. It is important to consider the option that such
payments could be many and the amount of information that could be displayed increases
with each additional payment (List of payments screen on 5.3).

In addition, the screen for the history of actions, that were executed on the payment
batch, was designed. Here is the name of the action that was taken, the date when this
change was made, the user's note for the performed action that serves as additional infor­
mation for following users (Batch approval process screen on 5.3).

The next screen is an overview of attachments that is binded to the payment batch.
There should be visible the name of the user who uploaded the attachment, the date when
attachment was uploaded, the size and type of the file (Batch attachments screen on 5.3).

The final screen and a group of data that can be viewed separately from others are
detailed information about the selected payment. This detail also includes a list of individ­
ual invoices and important data allowing user to decide whether approve payment or not
(Payment detail screen on 5.3).

5.3.2 Design of data components

To maximize the user experience, the payment batches was firmly located on the left side
of the application. Finding such a payment batch serves as the initial action of all other
operations that can be performed inside the application, see use-case diagram 5.2. These

32

batches will be displayed in a list that can be filtered and organized for an easier searching
through the list.

The right part of the screen (visible on figure 5.4) is designed to be able to change
its context. In the first case, it shows the detail of the payment batch at the top. This
information will be displayed with text elements, or others when there is need to edit
information. At the bottom of the right-hand part of the screen, the List of Payments,
Batch Approval Process, and Batch Attachments screens (see figure 5.3) will appear based
on the user's choice. From this, the List of Payments and Batch Attachments screens
will be solved using a table that will set up columns that are important to users, sort
individual records based on selected attributes, or filter through specific values for that
column. The Batch Approval Process screen will be resolved using a timeline component
to clearly visualize the actions taken and, in particular, the order in which the actions were
performed.

•prove Sank Payments

Payment Batch

8.000:DD
EUR

ID: 301
4 Payments
"•eutsche Bank
C e-l Dale: 09/01G016
Rule: Amaunl under 1Ci.000.Dt> EUR

gj* Paying Company Code C0001 (SAP SE) 8.000.00 E U R

Company Code:
C0001

13.000,00
= U=3

ID: 302
5 Payments
Deutsche Bank
Cieation Dale: 09/010016
Rule: Arnounl above 10.000 00 EUR

Company Code:
C0001

2.000,00
= J~

ID: 303
2 Payments
Deutsche Bank
Creation Dale: DG/01G016
Rule:Amounl under 10.000.DO EUR

ID: 301

4 Payments

Creation Dale: M/OIJ2016

Due Dale: 09tf)3/2016 #

Urgent: No

House Bank: Deutsche Eank

I BAN: DE54500700100113369801

Account ID: 50070011

Refference Number S95504714657&3 R

Balch Rule: Amount under 10.000 QC EUR

Payments (4) Standard Q Edil Instmclion Key Set tc Rejecl Set lo Defer Sei lo Approve (5)

Status Payment Payee Urgenl Gross
Amount Deductions Hel Amount Currency

l~l Approve 2000002200 F0002 (Bohi und Hammer) Ik 2.050,00 SO.CO 2.000.00 FL R >

l~l Approve 20000022C1 F0003 [Services 1 PLC] Ik 2. M0.00 S0.OJ 2.000.00 FL R >

Reject 20000022C3 Fr>004<Services2PLC) Ik 2.050,00 BO.'X' 2.000.00 E^ R >

Q Deter (HJ03/a)i6) 2000002203 F0005 (Services 3-PLC) Ik 2.050.00 50.00 2.000.00 E^ R >

S 200 00 200,00 £ . 0 0 0 , 0 0 EUR

J Su bin it Reviewed n v 1 Reject Batch Defer Batch
Foiwaid Batch _f J

Figure 5.4: Mock-up of detail batch view provides detailed information about selected
batch. There are, in the upper part, visualized some details inside text labels. The second
part is showing table of batch payments and their status, timeline of payment approval
history or attached documents.

In the another context (visible on figure 5.5), could be seen detailed payment information
in the right part of the screen (Payment detail screen). This view can be navigated from
the List of Payments screen. There wil l be on top, drawn as text elements, visualized
detailed information identifying the payment itself. The lower part will then include a
table component that shows the individual invoices that make up the displayed payment.

33

http://1Ci.000.Dt

ISAR,
Payment Batches

Company Code
CCCCr

13.000,DD

ID: 302
5 Payments
Deutsche Bank
Creation Dale: OM11/2016
RuleiAmounl aoove 10.000.00 EUR

Company Code
CGGG"

2.000:00
E J =

ID: 303
2 Payments
Deutsche Bank
Creation Dale: 09/01/2016
Rule:Amounl under 10.000.00 EUR

Payment

For Review <3) ^ 1 Reviewed (1)

Company Code: 8.000.00
C0001 EUR

ID: 301
4 Payments
Deutsche Bank
Creation Dale: 09/01/2016
Rule: Amounl under 10.000,00 EUR

ID:2000002200 2.000.00 E U R
Sei Payment Status: | Reject | Defer | Approve

Payee: FOÜ02 (Bohr und Hammer GmbH;

Bank: Deutsche Bank

Bank Number 260

Account Number: 25SO06I

I BAN: DE28B208ÜOOC0253ÜQ610Q

SWIFT: DEUTDEFFVAC

Payment Method: Foreign bank transfer (DTAZV)

Invoices (1) Standard 0 © &
Journal Entry Nel Due Dale Gross Amount Deduction Net Amount Currency

£ 0 5 2 1 2 1 4 0 1 4 09^1/2016 2.050 00 5J OC 2.0DO 00 EUR

2.050.00 50.00 2.000,00 EUR

Submit Reviewed T.J, ^r7

Figure 5.5: Mock-up of a detail payment page. Showing payment that belongs into selected
batch from the list in the left side panel. User can defer, reject or approve payment and
search through all invoices included in payment.

5.4 Applicat ion architecture

This chapter, called Application architecture, is designed to clarify and explain what the
implementation of Fiori application takes. This is a description of the beginning of the
D-Gate 2 phase of the Design-Led Development methodology used in SAP. First of all,
there will be introduced what is necessary to be done for each Fiori application in general
to be able to run such an application. It will indicate what parts it contains, what are the
necessary files located, what they contain, the necessary settings and what techniques are
used when implementing them. There will also be a solid link to the SAPUI5 javascript
framework, which simplifies the whole process of creating an application itself, what advan­
tages it brings for a developer. It will also indicate how each parts of the application work
together and how the initialization and start of such applications are done.

In the second section, the specific architecture features of Approve Bank Payments
application will be listed. These will be used and useful in the process of creating the
application itself. In particular, we will deal with decomposition of application into logical
parts, division of functionality into individual classes and adaptation of data models to
individual application screens.

34

5.4.1 Architecture of Fiori application in general

Each Fiori application (figure 3.1 - S A P Fiori Apps) generally consists of several essential
parts without which it could not be executable and could not run in general. Technically
every application is registered as a component in the component container called Fiori
Launchpad (section 3.5.1). Generally, if a user clicks on a tile representing a Fiori applica­
tion, the Component.js file is uploaded using the index.html file and the Fiori Launchpad
environment. The class implemented in this file then takes care of initializing the entire ap­
plication. Since used SAPUI5 framework is based on M V C architecture, the required user
view, the controllers that takes care of actions invoked by user on view, the data models
through them the view and the controller move data, and the other customization files are
also initialized (figure 5.6).

Fiori App

create (JSON) Model

'M8n'
(Ressource)

Model

118n.properties

App.view.xml
Component.js

metadata
App Descriptor
"models" : (

index.html

Browser

Component
Container

Fiori Launchpad

Figure 5.6: A n illustration of how to load a Fiori application using Fiori Launchpad. How
component controller initialization (Component.js) using the manifest.json (called App De­
scriptor in the figure) works and how it creates additional, essential, parts of an application
such as root view (App.view.xml) and corresponding data models.

Bootstrapping

Bootstrapping is simply a technique to load and activate the libraries that are necessary for
running the application. In the case of Fiori, the application downloads and initializes the
SAPUI5 framework and the other libraries that are used and required in the framework.
Once the download and initialization is complete, the Component.js file is loaded.

The entire bootstrapping process takes place in index.html, which then creates the
necessary global variables that can be used generally across all application files.

35

Component .js

The Component .js file is the component controller and provides the runtime metadata and
the component methods visible across all other view controllers. A component controller
is defined with the asynchronous module definition (AMD) syntax. To create an SAPUI5
component, it is required to extend the UlComponent base class provided by SAPUI5
framework, that contains methods for initialization of runtime metadata and also returns
the UI as a tree of SAPUI5 controls. Those runtime metadata are written in manifest.json
file and must be defined as a property of component controller.

As mentioned, manifest.json contains properties that are used during runtime. Using
this approach means developers need to write less application code, and can already ac­
cess the information before the application is fully instantiated. Some attributes in the
application descriptor (manifest.json) are just for information purposes, such as the mini­
mum SAPUI5 version (minUI5version), others help external components (for example the
SAP Fiori launchpad) to integrate the application correctly, but most of the attributes are
actually used to configure specific aspects of the application that are needed frequently.

The most important configuration settings are:

• Models. Examples of models are the configuration of the OData service (default
model) and language files (il8n model). A l l models described in the manifest.json file
are automatically instantiated when the application is started.

• Libraries and components that are used in the application and have to be loaded
during initialization.

• The root view of an application.

• Routing configuration that defines the navigation between views.

View

The App.view.xml file defines the root view of the application in general. In most cases, it
contains an App control or a SplitApp control as a root control. SAPUI5 supports multiple
view types (X M L , H T M L , JavaScript, JSON). X M L views are most recommended, as for
these developer has to separate the controller logic from the view definition. View is then
implemented as an xml file containing tags that define the SAPUI5 user interface controls.
This rule is then compiled to UI objects by using web browser build in compiler.

These controls (App, SplitApp) allow to create a Page control as its own aggregation.
The App control takes and displays only single one Page control while SplitApp allows to
display master-detail, that means, two Page controls are created at once. The application
views then contain the parent Page control, which then encapsulate the other UI controls
that define the shape and functionality of user interface. Navigation across the individual
application views is then ensured by the Router object. Based on the U R L , it destroys and
creates a new application view, so the navigation takes place at the level of Page controls
that are added or removed from the root view during the runtime by Router object created
and defined in manifest.json file.

Controller

Controllers are implemented as classes that inherit from the Controller class defined by the
SAPUI5 framework. Inheritance from this class provides event loop functionality, which are

36

an events triggered when a controller is instantiated, before the view is rendered, after the
view is rendered, and when the controller is destroyed. There are also important methods
that make view available. This makes it possible to manipulate the controls that are con­
tained inside the view, dynamically create, change, and delete data models. A n important
feature is also the ability to access the component controller instance (Component.js) and
manipulate the variables defined in manifests.json.

Each controller is created as a class that contains the properties and methods for exe­
cuting application logic, handling view events, and manipulating data models. This class is
then defined using the asynchronous module definition (AMD) template. In this template,
array of dependencies (paths to other files) whose functionality is utilized in the controller is
first defined. Thanks to this dependencies, application logic can easily be divided into more
classes where classes used as dependencies no longer have to inherit the properties from the
SAPUI5 framework Controller class. In the body of the template is a complete definition
of the view controller. The entire template is then initialized as a single class containing
the properties of all dependencies by calling globally visible sap.ui.define method.

Model

A model in the SAPUI5 Model View Controller concept holds the data and provides meth­
ods to retrieve the data from the database and to set and update data. There are two types
of models, server side and client side models. Server side model is called OData model.
It contains the methods by which the communication between the backend OData service
and the Fiori application is ensured. Each Fiori application contains an instance of at least
one OData model. Using the implemented read, create, update methods, communication
takes place via H T T P protocol and G E T , POST, U P D A T E and / or M E R G E requests are
generated with corresponding parameters.

The second type of model, the client side one, provides resources to pass data between
the view and the controller. The most common type of this model is JSONModel which
retains the data stored in JSON format, which is very similar format that javascript data
structures are written in (objects, arrays). There is two-way client model, which allows to
change the value of the model's properties both from the view and the controller plus there
is one-way type, where the data inside the model can only be changed by the controller.
A n instance of such a model always comes from the application controller and must be
explicitly binded to the appropriate view.

Another way to make data available for view or view controls is to use direct binding.
In this way, the data entity, which is available through OData protocol, is directly binded
into the view and / or the corresponding UI control. Data is then available in view without
using client side model, the disadvantage being that it is more difficult to access and edit
data inside the controller.

5.4.2 Architecture of Approve Bank Payments application

This section will briefly describe how the architecture has been adapted for developed
application. The reasons behind these adjustments and the benefits that it brings will be
mentioned. The main effort was to keep implementation of the application transparent and
logically separate implemented functionality to make it easier for maintenance. The effort
was also to identify the parts that could be used in many places and then adapt accordingly
the architecture.

37

Con-poncnt

1:crrj-arr-RcoiVitwri

2: iica1oRojtcr[)
. _ 1 5

4: cmatoModcIO
- r

2: creatoControllerl)

: ODataMcdcl

6: load 3age(] j_ J

7: eitatcControllcn!)

5: iir-aitfciitr^ trfj I fl: cneateModelii

• ->
: JSDNModol

i 10: createModel()

(j ;-H
: JSONMadcl

Figure 5.7: Sequence diagram illustrating how the most important parts of the application
are created and initialized. Component controller creates root view, OData model and
Router object. Using a Router object corresponding views that represents master and
detail aggregation of SplitApp components is created based on the U R L . Each view also
creates the appropriate controller that initializes its data model.

View

As already mentioned, the SplitApp component was used as a root view. Other views to
be used in the master or detail aggregation of SplitApp component are created using the
Page component. The inner components of the view are the ones defining the layout of the
page and the positioning of the inner components that visually represent the user data.

The components that represent this data are defined by fragments. This technique
allows us to logically separate those parts of the application that are meaningfully similar
from others. The fragment is, like the view, a X M L file that uses tags to define the elements
and their attributes that will be part of the UI. There can be added already defined fragment
to a particular view by using Fragment component with the path attribute to the defined
fragment to become part of the view.

Additionally, it is also possible to add an existing fragments to view dynamically. This
is done by a controller. There is passed fragment path to the controller and then it creates
an object from it, this object is then added as a child object to the view and / or another
component inside the view. This technique is used when working with dialogs that are
dynamically created and destroyed and can be used across multiple views.

Controller

The controller is primarily designed to handle user interaction with the UI, process and
move data to the view and also execute application logic. For Approve Bank Payments, the
controller inherits and extends the SAPUI5 Controller class. However, if all the application

38

logic is contained in one controller, it may seem very large and confusing. Adding new
functionality and maintaining the current would become very demanding.

For this reason, application logic has been split into several files. Within these files
there are designed classes that provide a portion of application logic. The classes are made
up by inheritance and extension of SAPUI5 Object class. The application logic was divided
as follows, each view, that was created, contains the appropriate controller, with exactly
the same name, that add application logic for a view. Very similarly are build other classes,
every fragment that was created has a class that contains the methods with application
logic of a fragment functionality. In this way, it is also possible to create separated classes
that provide independent functionality which can then be used in any controller.

As a result, the controller includes implementation of methods that handle user events
and communicate with the backend OData service. Implementation of methods providing
application logic is moved to more classes. These classes are then added to the controller
as its dependency.

Model

For Approve Bank Payments was created one OData model, defined in the manifest.json
file, which makes it part of the component controller class and is therefore accessible to all
application controllers that take control each view.

The remaining models are created by using the JSONModel class of the SAPUI5 frame­
work. These models store the current UI state, its configuration, or the calculated values
that can not be obtained directly from the entity set available through the OData protocol.
There is stored information about which buttons should be visible, which list element is
currently selected, the status of the application that indicates whether the user data is
loaded, etc. Each view has created the corresponding data model (see table 5.1), because
each screen contains different settings which need to be preserved and modified. To be able
to customize the model for a specific view, it was created like a new class that inherits from
the JSONModel class and contains all its methods and properties. A l l the methods to work
with the settings of a specific view have been implemented inside newly created class.

JSONModel View file Other files
BatchViewModel Batch, view.xml Batch.controller .js

BatchDraftcont roller. j s
Master ViewModel List.view.xml Master.controller .js
Payment ViewModel Payment.view.xml Payment.controller .js
Models - Component.js

Table 5.1: Table shows existing JSON models and corresponding view that is model binded
to. Last column shows another javascript files that manipulates JSON model.

This all means that user data is not moved into the view from its controller using
the instance of model. Controls displaying data hold a fixed binding path to the entity set
exposed by the OData protocol (see table 5.2). Since it is in many cases necessary for a data
format to be different from what is provided by entity set, it was necessary to implement
formatters. Formatter is a class implementing methods that format these data before they
are rendered using UI controls. A n example of a formatter can be a date formatter that is
displayed differently in different countries.

39

Entity Set SAPUI5 Control File
C_AbpInstructionKey Smart Table EditlnstructionKeyDialog.fragment .xml
C_AbpPayment Smart Table Payments .fragment .xml
C_ApbInvoice Smart Table Payment .view.xml
C_AbpPayment Batch List List.view.xml

Table 5.2: Table showing existing entity sets provided by OData service trough OData
protocol and UI components that shows provided data. Last column mention view files
that contain corresponding SAPUI5 control.

5.5 Implementation

In this section, called Implementation, main parts of the application will be described in
more detail. There will be described the necessary steps to make the application accessible
to end users in the Fiori Launchpad environment (section 3.5.1).

There will be space for the most important UI elements that make up the individual
screens of the application and the key functionality that was implemented in the controller
will be mentioned as well.

Another subsection will also be a description of the implementation of CDS views that
access the data stored in the SAP H A N A database for backend O D A T A service. The
structure of CDS views and their hierarchical structure will be introduced.

Last but not least, the Router object, which is used to navigate between individual
application screens, will be described and important libraries that have been implemented
and adapted to the application to be able to use the functionality they offer.

5.5.1 Accessing the application

In order to make application visible for the end-user, it is necessary to perform initial
user settings. Developed Fiori applications could be visible from the Fiori Launchpad.
From this user environment, the application can then be accessed by clicking the tile with
its name. Users in the cloud environment, provided by SAP, have assigned user roles.
Individual roles could be assigned to particular users using account with administrator
rights via Maintain Roles application. However, the individual roles are built, among
other things, from business catalogs. These business catalogs contain references to the
technical catalog. In this technical catalog, there are finally all Fiori applications that
are available and visible from SAP Gateway (see 3.2.3). Approve Bank Payments, avail­
able in technical catalog S A P _ T C _ F I N _ F O _ C O M M O N , is referenced into two business
catalogs because it is designed for two different user roles and they have different data
permissions. For the first approver (accounts payable manager role) is prepared catalog
called S A P _ S F I N _ B C _ A P _ P A Y _ A P V and for the second one (cash manager role) cata­
log called S A P _ S F I N _ B C _ B A N K _ A P P R O V E . The first is then written to a role named
A P M A N A G E R and the other is for C A S H M A N A G E R role. The administrator can
then assign these roles to the users responsible for approving bank payments.

5.5.2 List of payment batches

This subchapter describes the customization of the screen for displaying list of payment
batches (figure 5.8). The screen header is done by Search component, which is a text

40

sap.m.Toolbar

Payment Batches

For Review {286)

sap,m.List
Company Code:

1310 12.340,00
CNV

New ID: D000GOO900

1 Paym&nt

House Bark CNBK1

Creation Date: 01/29^2018

Rule: Payment method G (Local Transfer 6)

sap.m.GbjeetList lteir
Company Code:

1310 12.340,00
ID: 0000000907

1 Payment

House Bark: CNBK1

Creation Dale: 01/29y2018

Ruler Payment method G (Local Transfer 6)

Company Code:

1310 12.340,00
CN V

N r '.v
ID: 0000000908

1 Payment

House Bark CNBfCl

Creation Date: 01/29^2018

Rule: Payment method G (Local Transfer G)

Company Code:

1310

- sap, m. Button

- sap.m.SearchField

- sap.m.SegmentedButton

P sap.m.OverflowToolbar

-sap.m.Overflo'.-vToolbarButton

Figure 5.8: Overview of main controls that are visible on master area of application user
interface.

input that can be used to search for a specific payment batch. Right below is the Seg-
mentedButton component, which indicates whether the batches to be approved or already
approved are visible. The main page control is a List. It displays payment batch items.
There is used ObjectListltem layout control that determines the layout and appearance of
individual list item information. ThefFooter area, created by Overflow Toolbar, contains
OverflowToolbatButtons that can be used to sort or filter over the List.

The controller implements the functionality by which the entity set C_AbpPaymentBatch
is binded to the List control. The search operation then dynamically adds and removes the
parameters of this binding between the control and the entity set. In the same way, it is
implemented when switching between approved and rejected payment batches. When list
item is clicked, the application U R L is dynamically changed. At this U R L address, the
value of the selected payment batch identifier is changed. This change is registered with a
Router object which, based on the U R L , invokes the action for the data displayed on the
Payment Batch detail screen. Sorting and filtering actions are done by predefined dialogs
with sorting or filtering options over all the data that is visible on the payment batch.

41

These actions are implemented by controller methods without modifying the relationship
between the list control and the entity set. This results in faster list response.

5.5.3 Payment batch detail

The top of the Payment Batch Detail screen (figure 5.9) consists of the ObjectHeader
component. It makes it easy to display payment documents. It contains title and total
properties that can highlight the name of the payment document and its final amount. In
the body of this component, Object Attribute is used to create a responsive fragment of
detailed payment batch information. Information Due Date, House Bank, and Account are
made up of a Link component to capture click events on these values. At the bottom of
the ObjectHeader, IconTabHeader, which serves as a menu that determines the content of
the bottom of the screen, is inserted.

This section may display Smart Table showing individual payments. A n important role
here is played by OwerflowToolbar containing buttons for handling selected payments and
table settings. This section also includes the TimeLine component or the List compo­
nent that contains the attachment names and their links using the CustomListltem view
template.

The bottom of the screen is finally created by the OverflowToolbar component, which
contains buttons that manipulates the entire payment batches.

For the Due Date, House Bank, and Account attributes is dialog box dynamically cre­
ated when a link of an attribute is clicked. For the Due Date attribute, the entity set
C_AbpInstructionKey is red to be able to select appropriate value. Other dialogs show
detailed information describing the attribute. The bottom of the screen changes and loads
data depending on the option selected from IconTabBar. The payment table is displayed
by default, and the data for other tabs is loaded once the tab is selected and displayed. A l l
three fragments, that could be displayed by the user, are stored in memory after reading,
including the data they display so they do not need to be reloaded while switching between
fragments.

A JSONModel is created for the Smart Table component, which maintains the state
of the selected lines. Individual selected payments could be approved or rejected, or a
combination of both. By JSONModel inner state then enabled and disallowed the use of
individual buttons so that data inconsistency can not be caused by a mishandling of the
application. On the fragment showing attachments are controls that allow users to edit
only attachments they are created and attached to the payment batch by them.

5.5.4 Payment detail

The Payment Detail screen (figure 5.10) is the same as the one above, the Payment Batch
Detail, made up of the ObjectHeader to display a payment document. The difference is
that instead of the IconTabHeader control, there is a Bar component containing SAPUI5
Select. There is then option to approve or reject the specific payment displayed using this
Select. The bottom part is then a Smart Table component in which the invoices, related to
the payment, are visible. The Journal Entry column values in the table are created by a
Link component that allows you to navigate to Manage Journal Entries application to view
the details of this document. The OverflowToolbar above the table allows to customize or
export table to excel file.

On this screen, user can manipulate the displayed payment with the Select control.
The value selection is captured and there is a logic that changes PaymentAction attribute

42

Figure 5.9: A n image showing the user interface of the detail area composed of the men­
tioned controls.Image shows brief overview of controls visible for an end user. Including
Payments.fragment.xml file with a table of payments is displayed.

of binded C_AbpPayment entity set to the Smart Table. Navigating to Manage Journal
Entries to reach document details is ensured by changing the U R L and adding identifiers
that uniquely define the selected document (invoice in this case).

5.5.5 Router object

SAPUI5 comes with a powerful routing A P I that helps to control the state of implemented
application. In classical web applications, the server determines which resource is requested
based on the U R L pattern of the request and serves it accordingly.

In single-page applications, only one page is initially requested from the server and
additional resources are dynamically loaded using client-side logic. The user only navigates

43

Figure 5.10: Image showing some really basic controls visible on the view of payment.

within this page. The navigation is persisted in the hash instead of the server path or U R L
parameters.

For example, a classical Web application might display the employee page when U R L
http://<host>/<app>/employee.html?id=3 or http://<host>/<app>/employee/3 is called
A single-page application instead would do the same thing by using a hash-based U R L like
http://<host>/<app>/#/employee/3.

The information in the hash, namely everything that is following the # character, is
interpreted by SAPUI5 router.

Single-page applications based on SAPUI5 can use a so-called router object to dispatch
hash-based URLs to one or more views of the application. Therefore, the router needs to
know how to address and show the views. In SAPUI5, there is simply added a routing

44

http://%3chost%3e/%3capp%3e/employee.html?id=3
http://%3chost%3e/%3capp%3e/employee/3
http://%3chost%3e/%3capp%3e/%23/employee/3

section into manifest.json file to configure the router. There are three properties that are
used to configure the routing of application:

• Config: this section contains the global router configuration and default values that
apply for all routes and targets. To load and display views automatically, we also
specify the controlld of the control that is used to display the pages and the viewPath
to tell router where all views are located.

• Routes: each route defines a name, a pattern, and one or more targets to navigate
to when the route has been hit. The pattern is basically the hash part of the U R L
that matches the route. The sequence of the routes is important because only the
first matched route is used by the router. The target property references one or
more targets from the section below that will be displayed when the route has been
matched.

• Target: a target defines the view that is displayed. It is associated with one or more
routes or it can be displayed manually from within the application. Whenever a
target is displayed, the corresponding view is loaded and added to the aggregation
configured with the controlAggregation option of the control.

5.5.6 Draft 2.0

Draft is a technology that makes it easy to implement exclusive access to the data entities.
This exclusive access is limited by a time limit, usually 20 minutes, and the created draft
is then freed. A Draft creates a table containing deep copies of records that have been
edited for a particular entity set (basic usage on figure 5.11). It allows the user to keep
unsaved changes, to return to work later, to prevent the loss of unsaved changes when the
application crashes, and also to indicate to other users who have a locked source and edit
it at a given time.

Figure 5.11: Image showing typical scenario how draft is used when implemented in appli­
cation.

45

Creating a draft table is initialized from the application frontend part by setting the
isActiveEntity attribute to that set entity. To the application is then returned access to the
created draft table described using the DraftUUID attributes, isActiveEntity (indicating
whether the draft table is still active) and PreserveChanges (setting value true to avoid
creating another draft table). The library then provides save or cancel functionality to be
able to save changes in created draft or delete draft and discard all unsaved changes.

5.5.7 Message popover

Message Popover is used in application to provide a list of different types of messages like
errors, warnings, success and information type. Provides a handy and effective way to
navigate and show details for every message returned from OData service.

The MessagePopover control displays a list of messages which can be further drilled
down to reveal more details. It is placed in the footer of a detail area and can be expanded
when clicking on its icon because control inherits from the sap.m.Popover. The Message­
Popover control allows application to provide a long-text description for a message, which
includes markup and formatting of the content.

Array of messages, which is displayed using the MessagePopover control, is stored
in the JSON model named message. The footer are of views from Batch.view.xml and
List.view.xml contain a button made up of the sap.m.semantic.messageslndicator con­
trol with the callback function handleMessagePopoverPress registered to the press event.
Within the callback function, a delegation of the program execution is passed to the Mes­
saging .js object. This object includes the implementation of message processing methods
and the creation of a MessagePopover control to display received messages.

5.5.8 CDS views implementation

CDS views are a tool that allows to select data from database tables. Once these views
are created, they are registered to OData service and allow them to read or edit database
tables. Five CDS views were created for Approve Bank Payments application, namely:
C_AbpInstructionKey, C_AbpInvoice, C_AbpPayee, C_AbpPayment (figure 5.12), and
C_AbpPaymentBatch. Such view could be divided into several parts that are more or less
similar every time developing one.

The first part that each CDS view must contain is the annotation header. It pro­
vides several basic annotations, which may, of course, be extended if necessary. One of
these is ©AbapCatalog.sqlViewName, which defines the unique name of CDS view. Then
©AbapCatalog.compiler.compareFilter defines that results from view could be filtered ac­
cording to the exposed columns. Using ©AccessControl.authorizationCheck, it is defined
that when accessing a view, user authentication will be checked to be able to even display
data. ©AccessControl.personalData.blocking defines the information that the R A L (see
5.5.8) configuration has to be used to access some of exposed data and then the CDAccess-
Control.privilegedAssociations annotation specifies which data sources this configuration
will be configured for. On the view we have to additionally enable the update and delete
operations using the ObjectModel.updateEnabled and ObjectModel.deleteEnabled annota­
tions.

The second part, which is common to all CDS views, is its own definition. It is con­
structed using the following structure:

DEFINE VIEW viewName AS SELECT FROM SourceView

46

C_AbpPayment

_Ear*PaynKntBatclitE" Fay-sntBatcli
_Ba nkPa y m en tBa t ch t e m.Fa y in enlBa tch t e m
BankFay~entBa:c--:e~ =aidte~[>.iel»te
_E. :." " ; " ;E. : . ; : " CBIT DataB: nangehslrucli...

_BankPay5ntBatc-vs" ^Bys-A";1.!-: "Ru;
, nkPa j. men tBa 1 ch le mFa ymenffia IchRuleQj i...

_Ba r*Pa ymenffia tchle mNumbeiOf PaidfenB
_BankPay-sntBatchte~ slrgsncpaysut
J3a nlffl ymen tBa t ch te mFa ye eNa me
_Ba r*PB ymen tBa t ch te mFa ye eBa nkName
_BankPaymentBatchte~ =kyeeBank
_Ba nkPa ymen tBa t ch le mSV\iFTCa*
_BankPay-;̂ E.:.;:" :-s~ T;E.:. "
_BankFBynientBa:c-ve~ =Syse5Asi
_BankPa/"s-:5j::":;" ^yäs
_Ba nkPa y m en tBa t ch t e mPa ymerfMethod
_Ba nkFfe /men tBa t ch le mFa /menlUet f»*b.nie
_Ba r*Pa ymeniBa I ch le mCuslamer
_BankPa ymen (Bate" terr =3.. "nentRuntsFropasal
_3a--;=av,"s":5a:c • :s~ = J . ; "r"E a^' a ;a;
_Ba nkPa y m en tBa t ch le mFa ymenffia IchMeige
_BankPsy~s-:3j:c • :s~ :J.. - 5" : "a-yCode
_Ba nld̂ ymen IBa t ch t e mFa y rn eniRu nDa t e
jtenkPaysr^c-ve" ^i"! n :T ! i n 3
_5a"-flay s":5a:c-vs" =ay S--REC " snt
_Ba nkPa ymen tBa t ch le mSta tus

& caslt_BankPaymentBatchlem.Status as char128) a:
"i:z-:.:" :-3" : i-:" "'"-a

_Ba riiPa ymenffia t ch t E m.sta tus Rafil e
_Ba r*Pa ymeniBa t ch t E iiBankGnu nlry
_Ba nkPa j. m en tBa t ch le mHause Bai*
_Ba nkPa /men tBa t ch le mHause Ban fcftc count
.BantPay sn tBa t crue~ -aus eBanKBAts
_Ba riiPa ymenffia t ch t E m.BanW* m e
_BankPay antBa:c-vs" =ay s--Ds'"s'3a:s
_Ba nld̂ y m en tBa t ch t e mPa y rn entAct ion
JtankPaymentttatchle mSysiemS taiushbme

& _Bar*Payi«BrffiaDjlilEiiiftkl^miHjnltiF&y(Ojrr...
i> _BankPa¥mentBatchtem.Pa¥men(Ojrrency

_5a"-flay s":5a:c-vs" A-otint iGE-canyCod
1> _Ba nkPa ymenffia tchle ni Company Code Cuiiency

_BankPayn

aymentBatchltt

PaidlerrDjeDale
:"_-E :'s-ss "struct sn

- Paymen [Document
> PaymentAnnunUriRiileacy

j:e~s
SLn-gentPayniEnt

- Payee Name

- SWTCpde
Pay BEBankAccount
Payee BAN

* Payee
daymen (Method
Paymen [Method Name

- Customea
=S.y-e':Äi.i-5=";c;5^

"gCc-canyCode
PaymentRunDate
ŷmentRun

=äy S'^Ö/C- ' ls'gs:>a:s
- PaymentBatchMerge
* Pay m en (Recipient

Status
v Sys tenet atusShartName
* StatusFtolile
- BankCountry
- HouseBank

Hau s eB ankAccou nt
* HouseBartEAN

Bi'. ' .a-a
v SystemStatusName
* PaidAmountkiPaytCurrency
T Paymen[Currency

Co - c a -yCc 3 sO.i" s " cy

Payment Document
PayrviEhtRunDatE
=S.y~e':Ru- D

ŷmEntDocurriEnt
Payment Recipient
Pay men (Run Date
^s/ye-v îr 2
Payin gGnmpanyGnde
SuppfcrAccöurtGroup

.Status Profile as _Sta1us Profile

_5tatusProfile

Figure 5.12: Example of database scheme for C_AbpPayment entity showing its attributes
and associated internal views.

Where using the D E F I N E V I E W command specifies the name of the created CDS view,
this name will then be used through the OData protocol, which, for the frontend part of
the application, describes the data model with the OData service is working. Finally, using
the AS S E L E C T F R O M command, we define the target data source providing data to our
CDS view. However, the data that is available for Approve Bank Payments is not read
directly from database tables, but from existing CDS views, these are called interface views
and always start with the prefix I_. For all existing SAP H A N A database tables, interface
views, that make all their columns available, are created. This means that CDS views,
created for a particular application, will never pick data directly from the database table
itself but only from another existing interface view. The resulting views that are visible to
applications are called consumption views and always start with the prefix C _ .

Once the primary data source is defined using the select statement, the part, in which
the associations are made with other source views, is followed. This association represents
a JOIN operation and includes the cardinality of the relation as well as the conditions
under which JOIN itself is performed. The syntax of such an association, which is part of
previously defined view, then looks like this:

ASSOCIATION [min . . . max] TO t a r g e t AS a s s o c i a t i o n N a m e ON c o n d i t i o n s .

The association attribute [min ... max] define the cardinality between the CDS view and
the target data source, T O command is used to define the associated data source, consump­
tion or interface view in most cases, the AS keyword defines the name of the connection
under which the associated data can be accessed and O N keyword defines conditions and
according to them is JOIN done (see table 5.3).

47

CDS view Source CDS view Associations
C_AbpInstructionKey I_DataExchangeInstructionKeys
C_ApbInvoice IPaymentProposalltem I_Supplier
C_ApbPayee IPaymentProposlaHeader I_AddressPhoneNumber

I_AddressEmailAddress
I_CountryText
I_Supplier

C_AbpPayment I_AbpPaymentTP C_AbpPaymentBatch
C_AbpInvoice
C_AbpPayee
C_AbpInstructionKey
IPaymentProposalHeaders

C_AbpPaymentBatch I_AbpPaymentBatchTP C_AbpPayment
IAbpHouseBank
IAbpBankAccount
I_AbpRefNum
IHouseBank
I_StatusCode
I_StatusProfile
I_Currency

Table 5.3: Table showing all existing consumption CDS views created for Approve Bank
Payments application in the very first column. The second column mentions interface view
from where are data selected and in the last column associated CDS views are mentioned.

The last part of the CDS view is its own body definition. It lists individual columns
selected with the S E L E C T statement or through associations. Mentioned columns in the
body are then visible to the OData service which can perform read, update, or delete
operations above these columns. Additional annotations can be added to these exposed
columns, the most common of annotations are ©Consumption.hidden, which determines
whether the column can be seen by the user and the ©EndUserText .label annotation that
specifies the text that will describe the column in the user interface.

Partial example of CDS view showing implementation of C_AbpInvoice from table 5.3:

© A b a p C a t a l o g . sqlViewName : 'CABPINVOICE '
© A b a p C a t a l o g . c o m p i l e r . c o m p a r e F i l t e r : t rue
© A c c e s s C o n t r o l . a u t h o r i z a t i o n C h e c k : ^CHECK
© C l i e n t H a n d l i n g . a l g o r i t h m : ^SESSION_VAPJABLE
© A c c e s s C o n t r o l . p e r s o n a l D a t a . b l o c k i n g :#REQUffiED
©Sea rch . s e a r c h a b l e : t rue
©VDM. v iewType : CONSUMPTION

de f ine view C _ A b p I n v o i c e
as s e l e c t from I P a y m e n t P r o p o s a l l t e m as Paymen tP roposa l l t em

a s s o c i a t i o n [0 . . 1] to I _ S u p p l i e r as _ S u p p l i e r
on S u p p l i e r . S u p p l i e r = Paymen tP roposa l l t em . S u p p l i e r

{
key Paymen tP roposa l l t em . PaymentDocument ,

18

key Paymen tP roposa l l t em . F i s c a l Y e a r ,
key Paymen tP roposa l l t em . Accoun t ingDocumen t l t em ,
key Paymen tP roposa l l t em . PaymentRunDate ,
key Paymen tP roposa l l t em . PaymentRunID ,
key Paymen tP roposa l l t em . PayingCompanyCode ,
key Paymen tP roposa l l t em . Account ingDocument ,
© C o n s u m p t i o n . h idden : t rue

Paymen tP roposa l l t em . P a y m e n t R e c i p i e n t ,
© C o n s u m p t i o n . h idden : f a l s e
@EndUserText . l a b e l : 'Net Amount '

Paymen tP roposa l l t em . Net A m o u n t l n T r a n s a c C u r r e n c y

5.5.9 Read Access Logging configuration

Read access logs represent business-relevant information that refers to a specific user.
Therefore, it needs to be ensured that the creation of such information is protected against
cross-site forgery. Since GET-requests do not provide XSRF-protection then any request,
that is subject to read access logging, needs to be wrapped into a $batch request.

As soon as an active read access log configuration is created for a service then service
metadata document changes. It shows the annotation U S E B A T C H at the entity container
indicating that the client is supposed to deliver $batch requests only.

Configuration takes place in a backend system using the S R A L M A N A G E R transaction
(understand as application in SAP backend system). This transaction simply allows to drag
fields (columns) defined in CDS view into the R A L table to provide their registration to
the R A L framework. Once configuration is activated, framework will create an access log
on the system when reading previously registered fields.

5.6 Testing

There is a wide range of tests that can be used to verify the implementation of the ap­
plication or to make it easy to maintain. It is possible to verify the correctness of the
implemented methods, user interface behavior or meeting customer requirements. It all
depends on what tests will be used. In this chapter we will mention unit tests that will be
used for refactoring or minor change of functionality. Additionally, automated tests that
run at regular intervals, and can capture errors, such as deploying a new framework version
or adding new functionality. Using performance tests, you can measure the application
response time when communicating with the backend, and eventually authorization tests
confirm or disprove the logical execution of the application.

5.6.1 Unit and Opa5 tests

The goal of unit tests is to write an automated test for a certain program functionality.
Then, we can them run unlimitedly times and validate code functionality after refactoring.
Unit tests serve the programmer as an instant feedback to just written and committed
code. Tests will be used to test smaller source code units. In development, it worked
so that commit always contained implemented source code and relevant unit tests. Each
time a code was written, then tests were immediately written as well. It is important

49

that they are written immediately as long as the programmer has a logic function fresh in
mind. The test should verify the behavior of the code both in standard situations and in
extraordinary situations. E.g. what happens if the input method gets null, undefined or any
other unexpected parameters. The purpose of the Opa5 (stands for One Page Acceptance)
tests is then to check the inputs received by the individual user environment controls as
well as outputs which will be returned after the input processing. In this way, it is possible
to verify the correctness of the data transmitted to the UI controls by methods as well as
the correctness of the output of UI controls which serves as the input parameter of the
implemented method.

Tests for Approve Bank Payments are written using a framework called Gherkin 1 . Writ­
ing unit tests requires detailed knowledge of the platform on which the application is being
developed, as well as a deep knowledge of the programming language and possibly other
libraries. But most often, this knowledge may not be enough to understand the purpose of
each unit test. Especially when working in a team, when the development and maintenance
of the application is controlled by different groups of people, this problem is in place. The
framework then allows tests to be written as simple and comprehensible sentences. Tests
are created by using a .feature file, which is a template file that specifies how particular tests
will be executed. They are written as consecutive sentences describing the test. There are
individual scenarios in the template that form the test template. The script is a complex
test of selected functionality, it consists of several consecutive sentences, a sentence should
be described in the way like: click on a button, entering text into, etc., as well as a result
such ctS ct p£l ge redirection, or opening dialog. A corresponding template/sentences is/are
implemented in the file, that, in this case, is written in JavaScript programming language.
This file matches methods for individual sentences written in a file with the .featrure ex­
tension. The sentences are then replaced by the appropriate source code methods that
implement unit or Opa5 tests.

Such tests are also very easy to read for a person who is not familiar with the technology
in which the application is implemented. It is possible to find out which parts of the appli­
cation are critical and what functionality tests cover. Which is advantageous, for example,
for a tester who is not a developer of application, but will have an age of maintenance. For
other developers it is appropriate for not having to read a lot of code for a long time. It
can happen that the refactoring of the application is done by someone other than the one
who actually wrote it, thanks to this verbal description of tests, it is possible to quickly
identify the place for which the tests of the refactoring code are written.

Using unitTests.gherkin.qunit.html, unit tests could be run to control the functionality
of selected application the most important core methods that should not be changed or
overwritten during refactoring at all. In the integrationTests.gherkin.qunit.html file, Opa5
tests could be run, tests emulate the application itself, and using the defined scenarios it is
possible to verify the functionality of the UI. It is also possible to test the inputs that the
UI controls accept and the outputs they return.

5.6.2 Automation tests

Automation tests are one of the advanced techniques used to implement new software. It
serves as a tool for both developers and testers. They are ran at regular intervals, either
when committing a new changes or in a constant time interval, such as once a day, every
two days or another. These tests primarily serve to verify the functionality of each element

1 Gherkin test framework: https://github.com/cucumber/cucumber/wiki/Gherkin

50

https://github.com/cucumber/cucumber/wiki/Gherkin

of the user interface. There should be included key components that are often used and
play an important role when using the application.

Individual tests can be understood as scenarios that are performed on a running ap­
plication, and their feasibility is evaluated. The information that is very important is, of
course, the results of the test, if all the tests have passed successfully or vice versa. If the
test fails in any part of the action, it is important to identify a collision point in order to
fix the error.

Robot framework2 was designed to implement automated tests and its core programming
language is Python. Its big advantage is, that it provides a wide range of predefined
functions, these functions takes passed parameters most often in the form of a screen element
identifier. These functions could be gradually composed and create test scenarios. If any
function of the scenario is unsuccessful, execution will be interrupted and the new scenario
will begin. The great advantage is, that these scripts can be fired on different systems and
in different web browsers. Scenarios can also be parameterized and logically separated from
each other, for example, determining which scenarios are testing data model and which are
testing functionality of the user interface controls.

The framework automatically generates results.html and log.html files after the script
ends. The results.html file generally contains information about how many scenarios have
been successful and how many have ended unsuccessfully. It also provides statistics on the
execution time of individual scenarios and the total run time. The log.html file provides
more detailed view on the progress of individual scenarios. If a scenario has not been
performed successfully, we can find an error statement describing the cause and screenshot
of the application state prior to the occurrence of an error.

Tests are currently run every midnight and are tasked with verifying the OData service
data model and the form of the data which OData service returns. The frontend part is
closely related to the provided data model and any change could affect its functionality.
Then there are tests that verify the functionality of the relationship between master and
detail view.

5.6.3 Performance tests

Performance tests serve as a tool to check that the implemented application meets the
limits set across all Fiori applications that are delivered to customers. Tests should check
the application's weaknesses, these are the actions where the frontend part communicates
with the backend of the application. These operations could transfer large amount of
data and / or load dependent data. The location where dependent data are red can be
recognized by the fact, that the frontend sends a query to retrieve the data that can just
and only be used to obtain the target data that user requested. These operations are usually
time-consuming. According to the prescribed rules, the application architecture should be
designed so that a maximum of three dependent queries can be sent to obtain user data
or perform other operations (tables 5.4 and 5.5 show results for Approve Bank Payment
application).

First place that is measured, case one scenario, in terms of performance is application
start. Rules say that only the most necessary data should be read after the application
starts. By reading other, not user critical, data, the time when the application is fully
usable for the end user is delayed and this reduces the resulting user experience. Measure

2Robot framework: http://robotframework.org/

51

http://robotframework.org/

counting begins by clicking the tile on the Fiori launchpad and takes until the libraries and
the necessary data are loaded.

The second place, case two, that was designed as a risk and on which the performance
measurement was done is the payment batch approval. In this case, one P O S T query
indicating the payment batch approval is sent, then two G E T queries are sent for re-
rendering the modified batch list in the master view and the second, which receives the
updated data displayed in the batch detail view.

The third case that is included for performance testing is action to display a payment
detail, in which case two G E T queries are sent to the OData service, which in the first case
accepts the payment details that describe it, and secondly the invoices that are included in
the payment. There could be up to several tens of invoices included in one payment. Tests
were made on payments with twenty invoices.

The last test case is confirmation of all approved payment batches. Since such payment
batches might be more, then so many P O S T operations will be sent as many payment
batches were approved. A l l of these operations are sent at one time to the OData service
in one $batch query. The server response is only sent when the last P O S T operation is
processed.

Case Num. of queries Num. of operations inside query
1 3 10
2 3 12
3 2 3
4 2 6

Table 5.4: Table showing the complexity of queries when loading data. It outlines how
many backend calls have to be made and how many operations these calls contain.

Case Average resp. time Minimal resp. time Maximal resp. time
1 2,958 s 2,322 s 3,785 s
2 2,763 s 2,12 s 3,417 s
3 0,973 s 0,767 s 1,384 s
4 6,658 s 8,284 s 9,925 s

Table 5.5: Table showing performance test results for each case.

5.6.4 Acceptance tests

Acceptance tests primarily serve as a tool to verify the accuracy of the implemented func­
tionality with respect to customer requirements for application. In addition to the func­
tionality, the correct distribution of the visual elements and the logical structure of the
application are verified. The goal is to ensure that the application is as comprehensible as
possible, simple to use, provides clear information on key and necessary information, and
last but not least, to ensure intuitiveness of available functionality for the end user.

Tests took place as a skype meeting with the selected customer. The customer was
approached by product owner of an application. The customer has had to move around

52

the financial sector for a while to ensure that the test results take into account his own
experience and business knowledge.

These tests took place in two phases. In the first stage, there was in a discussion appli­
cation prototype that contained only mock data and did not provide any data manipulation
functionality. At this stage it was important whether the customer would be able to quickly
and easily understand the information displayed on the screen. The conclusion of the first
phase of the accessibility tests was, that some values in the list showing particular payment
batches from the master view aggregation should be reassessed as more important than
others. Which results in their highlighting within the item and thus ensuring that they
are better visible and payment batches will be easier to identify and read. Specifically, this
was a company code entry. Additionally, there was a rule entry that was missing in the
previous proposal. On the payment batch detail screen, there was a request for the option
to be able to select multiple payments at once for the possibility of approving or rejecting
them.

In the second and also the final phase, the intuitive of the implemented functionality,
that manipulates displayed data, was tested. Several key scenarios have been predeter­
mined, such as showing a specific payment batches, approving a payment batch as a whole,
defering specific payments, changing the due date value of the payment batch, and then
displaying the detail screen of the selected payment. The conclusion of this test was that
deferal and approval actions lack confirmation dialogs to check user decisions.

A l l the requirements were discussed with the product owner of the application. Sugges­
tions for design changes were taken into account in the new design mockups developed by
the application designer and subsequently implemented.

53

Chapter 6

Conclusion

In this thesis was explained and clarified that Approve Bank Payments will be used to
validate and approve intra-company accounts payable that arise from vendor payments,
internal payments, or travel expenses. Thesis also introduced the business logic behind
payment processes and accounts payable.

SAP S / 4 H A N A platform as it exists in SAP cloud environment was explained. It is
represented by services that the platform provides to customers, a technological structure
from S A P H A N A database, through Core Data Services, which retrieve database data and
access it through a service located in SAP Gateway that exposes data to client applications.
Also there is mentioned OData protocol, which works like a description of data that is passed
to client applications and is available in SAP Fiori Launchpad using tiles as an application
entry points.

Subsequently, the most commonly used and the most suitable frameworks for creating
the user interface were mentioned, namely those are ReactJS, Angular 2, Vue.js and SA-
PUI5. Frameworks are discussed from the work with data, structure and construction point
of view.

At the end of the thesis, the development of the whole application is explained. It was
created by the Design-Led Development Process methodology, which controls the devel­
opment of all Fiori applications in SAP. The development is explained from the phase of
mapping application's requirements. In this section was worked closely with the customer
to cover all the necessary functionality that application should provide. Then has also been
data provided by application analyzed to be able to design individual screens of application.
Based on this, a detailed application design was created, including the SAPUI5 components
taht could be found in the application.

At the implementation stage, the UI part, containing empty UI controls, was first pro­
cessed. In addition, CDS views were implemented to retrieve data from the database that
the backend OData service and the Fiori application itself are working with. In the final
phase, the frontend part of the application was connected to the real data provided by the
OData service. The main focus was on effective data loading, readability of the source
code for future maintenance, and logical separation of implemented individual parts of the
application.

Simultaneously with the implementation, OPA5 and Unit tests were written using the
Gherkin framework to cover the implemented functionality. Upon completion, the heavy
focus was put on testing the communication speed of the application when communicating
with the OData service. There is still room for improvement and efficiency in the future.

54

Last but not least, acceptance tests were conducted directly with prospective users who
tested the functionality and understanding of the application.

The application is currently deployed on internal testing cloud systems, and for users
should be made available in August 2018 when a new cloud release is planned. Until then,
the UI should no longer change. Some modifications could be expected in the form of OData
service backend communication and OPA5 tests extension that validate the functionality
of key SAPUI5 components that make up the user interface.

55

Bibliography

[1] Approve Payments. SAP Documentation. [Online; navštíveno 13.12.2017].
Retrieved from: h t tps : //help.sap.com/erp2005_ehp_06/helpdata/en/51/
7ad0531d8b4208el0000000al74cb4/frameset.htm

[2] Architecture Overview. Angular. [Online; navštíveno 08.11.2017].
Retrieved from: h t t p s : / / angu la r . i o /gu ide / a r ch i t ec tu r e

[3] Bank Communication Management. SAP Documentation. [Online; navštíveno
13.12.2017].
Retrieved from: h t tps : //help.sap.com/erp2005_ehp_06/helpdata/en/60/
7ad0531d8b4208el0000000al74cb4/frameset.htm

[4] BANK COMMUNICATION MANAGEMENT - USER GUIDE. SAP User
Documentations. [Online; navštíveno 13.12.2017].
Retrieved from:
h t tps : / / p o r t al .wdf.sap.corp/ ir j / go/km/docs/corporate_portal/WS 0/,
20Financeyo20yo260/o20Administration/Toolsyo20yo26yo20Resources/
P2P_Tools_Resources/Accountsy o20Payable/Guidelinesy o20yo26yo20Relatedy„
20materials/Bankyo20Communicationy„20Managementy„20-y o20Usery„20guide.pdf

[5] Introduction. Vue.js. [Online; navštíveno 05.11.2017].
Retrieved from: h t tps : / /vue j s.Org /v2 /gu ide /#Get t ing-S ta r ted

[6] Reactivity in Depth. Vue.js. [Online; navštíveno 05.11.2017].
Retrieved from: h t t p s : / / vue j s . o rg /v2 /gu ide / r eac t i v i t y .h tml

[7] SAP FI - Accounts Payable, tutorials point. [Online; navštíveno 16.12.2017].
Retrieved from:
h t tps : / / www.tutorialspoint.com/sap_f ico/sap_fi_accounts_payable.htm

[8] SAP Fiori - Introduction, tutorialspoint. [Online; navštíveno 19.11.2017].
Retrieved from:
h t tps : //www.tut or i a l spo in t . com/sap_f io r i / sap_f io r i_ in t roduc t ion .h tm

[9] What Fiori Means to SAP and Its Customers, computer economics. [Online;
navštíveno 19.11.2017].
Retrieved from: h t tps : //www.computereconomics.com/article.cfm?id=1952

[10] What is Angular? Angular. [Online; navštíveno 08.11.2017].
Retrieved from: h t tps : / / angu la r . io /docs

56

http://sap.com/erp2005_ehp_06/helpdata/en/51/
https://angular.io/guide/architecture
https://vuejs.Org/v2/guide/%23Getting-Started
https://vuejs.org/v2/guide/reactivity.html
http://www.tutorialspoint.com/
http://www.tut
http://ialspoint.com/sap_fiori/
http://www.computereconomics.com/article.cfm?id=1952
https://angular.io/docs

[11] Aschmann, P.: Despite little notoriety, SAP Gateway making a big impact.
TechTarget. [Online; navštíveno 2.1.2018].
Retrieved from: h t tp : / / sea rchsap . t ech ta rge t . com/fea tu re /Desp i te - l i t t l e -
n o t o r i e t y - SAP-Gateway-making-a-big-impact

[12] Averkamp, H . : Accounts Payable Process. Accounting Coach. [Online; navštíveno
23.10.2017].
Retrieved from:
h t tps : / / www.accountingcoach.com/accounts-payable/explanation/2

[13] Bisht, S.: Core Data Services [CDS] in SAP S/4 HANA. SAP. September 2016.
[Online; navštíveno 02.12.2017].
Retrieved from:
h t tps : / /b logs .sap .com/2016/09/26/core-data-services-cds- in-sap-s4-hana/

[14] Bragg, S.: The invoice approval process. Accounting Tools. May 2017. [Online;
navštíveno 14.11.2017].
Retrieved from: h t tps : / /www.accountingtools .com/art ic les/2017/5/5/ the-
invoice-approval -process

[15] Hunt, P.: Why did we build React? ReactJS. June 2013. [Online; navštíveno
03.11.2017].
Retrieved from: h t tps : / / r e a c t js .org/blog/2013/06/05/why-react .html

[16] Instructor, M . : Understanding Accounting: Accounts Payable Function. M O N E Y
I N S T R U C T O R . [Online; navštíveno 28.10.2017].
Retrieved from:
h t tp : / / content.moneyinstructor.com/1473/accountspayable.html

[17] Joseph, A . : A simple overview on SAP Netweaver Gateway. S A P Blogs. January
2013. [Online; navštíveno 08.12.2017].
Retrieved from: h t tps :
/ /blogs.sap.com/2013/01/24/a-simple-overview-on-sap-netweaver-gateway/

[18] Králová, I. K . : Závazky z pohledu účetnictví portal.pohoda.cz. September 2013.
[Online; navštíveno 17.10.2017].
Retrieved from: h t tps : / /por ta l .pohoda .cz /dane-uce tn ic tv i -mzdy/uce tn ic tv i /
z avazky-z -poh ledu -uce tn i c tv i /

[19] Kurian, G . G. : How Virtual-DOM and diffing works in React. Medium. January
2017. [Online; navštíveno 03.11.2017].
Retrieved from: h t tps : //medium.com/@gethylgeorge/how-virtual-dom-and-
d i f f ing-works - in - reac t -6 fc805f9f84e

[20] Lohrey, J.: Accounts Payable Department Functions. Chron. [Online; navštíveno
09.11.2017].
Retrieved from: h t tp : / /smallbusiness.chron.com/accounts-payable-
department-functions-73537.html

[21] OASIS: OData Version 4.0. Pari 1: Protocol Plus Errata 03. OASIS. June 2016.
[Online; navštíveno 05.12.2017].

57

http://searchsap.techtarget.com/
http://www.accountingcoach.com/
https://blogs.sap.com/2016/09/26/core-data-services-cds-in-sap-s4-hana/
http://www.accountingtools.com/articles/2017/5/5/the-
http://js.org/blog/2013/06/05/why-react.html
http://content.moneyinstructor.com/
http://sap.com/2013/01/24/a-simple-overview-on-sap-netweaver-gateway/
http://portal.pohoda.cz
http://smallbusiness.chron.com/

Retrieved from: h t tp :
/ / docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part 1-protocol.html

[22] OASIS: OData Version 4.0. Pari 2: URL Conventions Plus Errata 03. OASIS. June
2016. [Online; navštíveno 05.12.2017].
Retrieved from: h t tp : / /docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-
par t2-ur l -convent ions .h tml

[23] Pandey, N . : Create OData endpoint for MongoDB on MEAN stack. C O D E
P R O J E C T . November 2016. [Online; navštíveno 07.12.2017].
Retrieved from: https:/ /www.codeproject .com/Articles/1111490/Create-0Data-
endpo i n t - f or-MongoDB-on-MEAN-st ack

[24] saiprasadbagrecha: SAP FI - Account Payable (AP). Linkedln. January 2013.
[Online; navštíveno 20.11.2017].
Retrieved from:
h t tps : / / www.slideshare.net/ saiprasadbagrecha/sap-f i -account-payable-ap

[25] S A P : ABAP CDS - Annotations. S A P Help Portal. [Online; navštíveno 4.1.2018].
Retrieved from: h t tps : //help.sap.com/doc/abapdocu_750_index_htm/7.50/en-
US/ index.htm?file=abencds_annot at ions.htm

[26] S A P : CDS Associations. SAP Help Portal. [Online; navštíveno 4.1.2018].
Retrieved from:
https://help.sap.com/viewer/b3d0daf2a98e49ada00bf31b7ca7a42e/2.0.02/en-
US/6fCd6e5883f04de5b618a6d91141afb4 .h tml

[27] S A P : Design-Led Development Process. Fiori Design Guidelines. [Online; navštíveno
20.12.2017].
Retrieved from: h t tps : / /exper ience .sap .com/f ior i -des ign-web/des ign- led-
development-process-external/

[28] S A P : SAP Web LDE. SAP. [Online; navštíveno 18.12.2017].
Retrieved from: h t tps : //www.sap.com/developer/topics/sap-webide.html

[29] Sharma, T.: ABAP Core Data Services - Pari 1(ABAP CDS Entities). September
2017.

[30] Uhlíř, I. M . : A P P L I C A T I O N F O R RISK M A N A G E M E N T R E P O R T I N G IN SAP.
2016.

[31] Wheeler, K . : Learning React.js: Getting Started and Concepts, scotch.io. October
2014. [Online; navštíveno 03.11.2017].
Retrieved from:
h t tps : / / s co tch , i o / t u t or i a l s / l e a rn ing - r eac t -ge t t i ng - s t a r t ed -and -concep t s

[32] Wong, K . W.: Other then ABAP, can CDS consumed by others reporting tools? SAP
Archive. Apr i l 2016. [Online; navštíveno 21.11.2017].
Retrieved from: h t tps : / /archive.sap.com/discussions/thread/3834390

[33] Xourse: ReactJS App Architecture. Medium. January 2017. [Online; navštíveno
03.11.2017].

58

http://docs.oasis-open.org/
https://www.codeproject.com/Articles/1111490/Create-0Data-
http://www.slideshare.net/
https://help.sap.com/viewer/b3d0daf2a98e49ada00bf31b7ca7a42e/2.0.02/en-
http://sap.com/fiori-design-web/design-led-
http://www.sap.com/developer/topics/sap-webide.html
http://archive.sap.com/

Retrieved from:
h t tps : //medium. com/@Xourse/react j s-app-architecture-7a33d7ae9834

59

Appendix A

Content of attached C D

• folder application/ - application's frontend source code,

• folder views/ - implementation of CDS views,

• folder roboTests/ - source code of automation tests written in Robot framework.

60

