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Abstrakt
Předložená disertační práce se zabývá popisem charakteru optimální strategie řízení pro
elektrický vlak a výpočtem přepínacích okamžiků mezi jednotlivými optimálními jízdní-
mi režimy pro standardní typy odporové funkce. S využitím Pontrjaginova principu a
souvisejících nástrojů teorie optimálního řízení odvodíme optimální strategii řízení a rov-
nice pro výpočet přepínacích okamžiků včetně odpovídajících rychlostních profilů. Kromě
základního tvaru úlohy o energeticky optimální jízdě vlaku budeme uvažovat i její modi-
fikace zahrnující globální rychlostní omezení, sklon trati i časově-energeticky optimální
řízení vlaku. Navíc uvedeme i analýzu řešení s využitím teorie nelineární parametrické
optimalizace. Důraz je kladen na exaktní tvar řešení s minimálním využitím numerických
metod.

Summary
This thesis deals with the description of the nature of optimal driving strategy for an
electric-powered train as well as the calculation of switching times of optimal driving
regimes for standard types of resistance function. We apply the Pontryagin principle and
related tools of optimal control theory to develop the optimal driving strategy and to
derive equations for computation of switching times and the corresponding speed profiles.
Besides the basic form of the energy efficient train control problem we consider also its
modifications including the global speed constraint, track gradient as well as time-energy
efficient train control. Moreover, we analyse also the solution with use of the theory of
nonlinear parametric programming. The emphasize is put on exact forms of solutions with
a minimal use of numerical methods.
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1. Introduction
The basic problem of the energy efficient train control was formulated and solved in

some particular cases by Horn [8] in 1971 with use of the general form of the Pontryagin
principle and relating mathematical tools. Since then, it has become a typical problem
that can be solved with use of these means.
Many articles discussing this topic appeared especially during the nineties. The type

of the optimal strategy consisting of four successive control levels (full power, speed hol-
ding, coasting and full braking) was introduced by Howlett et al. [13, 14]. Among articles
dealing with various modifications of the basic problem we recall that Pudney et al. [26]
considered a vehicle with discrete control settings and speed limits. Howlett et al. [11] dis-
cussed a track with non-zero gradient. Both of these assumptions were assumed by Cheng
et al. [6] and Khmelnitsky [15]. Howlett and Pudney [12] summarized the above mentioned
results. This theoretical background enabled the development of on-board computational
systems (such as Metromiser or Freightmiser) for calculating of the efficient driving stra-
tegy which were successfully implemented in timetabled suburban and long-haul trains,
e.g. in Brisbane or Toronto (see Yee et al. [27]). Let us note that some alternative ap-
proaches to these and relating problems were discussed e.g. by Han et al. [7], Howlett et
al. [9, 10], Ko et al. [16], Li et al. [18], Liu et al. [19] and Pickhardt [20].
This thesis deals with the energy efficient train control problem and its modifications

and introduces a different approach to developing the optimal control strategy along
with exact calculation of the switching times and analysis of the solution based on the
mathematical tools of nonlinear parametric programming. Under assumption of most
common and typically used resistance functions and with use of the properties of the
Hamilton function and Lagrange multipliers we derive algebraic equations for computation
of the switching times for both feasible control strategies. Thereafter, we introduce the
notion of the critical time (or critical parameter in case of the time-energy efficient train
control problem) and explain its significance for determination of optimal control strategy.
The modifications of the basic energy optimal control problem discussed in this thesis

represent natural enhancement of the basic problem and yield significant results leading to
more realistic behaviour of the mathematical model. Assumption of the speed constraints
and track gradient broadens the applicability of the model. The time-energy efficient train
control enables a suitable combination of the energy optimal drive with respect to time
requirements and thus can be used to develop effective timetables.
Let us emphasize that the results presented in previous papers were more or less based

on use of numerical methods for solving optimal control problems and thus the analysis
of solution in the way introduced in this thesis could not have been performed. Most of
the results presented in this thesis were introduced in the papers [21]–[24]. All results are
illustrated with use of sample speed profiles.
Let us shortly mention the structure of the thesis. This introduction chapter is followed

by the overview of the basic theoretical results that we shall use to derive solution of the
later introduced optimal control problems and their analysis. There are basic concepts
and theorems of the optimal control theory including constraints on state variables. We
recall an interesting area of nonlinear parametric programming as well as general notions
relating to controllability and reachability of controlled systems necessary for analysis of
the feasible solutions of optimal control problems. The following Chapter 3 describes the
optimal control strategy for the energy efficient train control problem. This chapter as
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well as the next three chapters dealing with various modifications of the basic problem
are organized as follows. First, we state the formulation of the problem including its
interpretation. Thereafter, we introduce the general optimal control strategy. The next
section describes the calculation of the switching times. Then we analyse the solution with
use of the nonlinear parametric programming. In the Chapter 4 we discuss the energy-
efficient train control problem with speed constraints. The following Chapter 5 deals with
the time-energy efficient train control problem. The Chapter 6 is devoted to the problem
of energy optimal train control under additional assumption of track gradient (downhill or
uphill drive). The last chapter summarizes the obtained results and introduces directions
for future investigations.
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2. Some preliminaries
2.1. Optimal control theory and Pontryagin principle

This section introduces some essential concepts and assertions of optimal control theory,
especially the Pontryagin maximum principle, that we shall use in the following chapters
of this thesis to derive the optimal control strategy for the later specified train control
problems. Most of the theorems and notions from this section as well as the corresponding
proofs can be found in Cermak [5] and Pontrjagin et al. [25].
We are going to investigate the behaviour of an object whose specific state can be

described for a fixed point in time with use of n real numbers x1, x2, . . . , xn. Let us
introduce a vector space X of the variable x = (x1, . . . , xn) as the state space of the
investigated object. Themotion of the object denotes the change of the variables x1, . . . , xn

in time t. In order to introduce the optimal control problem let us assume that the motion
of the object can be controlled by setting of certain parameters, that can vary in specific
boundaries throughout the course of time, i.e. by use of control. Let us further assume,
that this control can be specified by r real numbers u1, . . . , ur depending on time. We shall
assume that their values belong to the set U ⊂ Er, where Er denotes an r-dimensional
Euclidian space. The set U will be referred to as the control space.

Definition 1. (Control) Vector variable u(t) = (u1(t), . . . , ur(t)), defined on a certain
interval 〈0, T 〉 and with values in the control space U ⊂ Er, will be denoted as the control.

Further, we will asume that the behaviour of the given object can be specified by the
following system of differential equations which can be rewritten in the vector form

ẋ = f(x,u). (2.1)

The dot in the previous equation represents a time derivation, f(x,u) is a vector con-
sisting of elements f1(x,u), f2(x,u), . . . , fn(x,u), where x = (x1, x2, . . . , xn) ∈ X and
u = (u1, . . . , ur) ∈ U . The system (2.1) will be denoted as the controlled system. Let us
further assume that the functions f1, . . . , fn are defined and continuous in all variables and
continuously differentiable in x1, x2, . . . , xn. We shall restrict our further considerations
only on the following set of controls:

Definition 2. (Feasible controls) The set of controls u(t) will be called the set of
feasible controls, if all its elements are piecewise continuous functions defined on the
interval 〈0, T 〉.

Definition 3. Let a,b ∈ X. We say that a feasible control u(t), t ∈ 〈0, T 〉 transfers the
point from a location a to a location b, if the corresponding solution x(t) of the equation

ẋ = f(x,u(t)) (2.2)

satisfying the initial condition

x(0) = a, a ∈ X (2.3)

is defined on the interval 〈0, T 〉 and in the time T it crosses the point b, i.e. it satisfies
the condition

x(T ) = b, b ∈ X.
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2.1. OPTIMAL CONTROL THEORY AND PONTRYAGIN PRINCIPLE

The pair (x(t);u(t)), t ∈ 〈0, T 〉 will be denoted as the controlled process transferring the
point from location a to b.

Basic optimal control problem. Let us choose points a, b in the state space X.
Among all feasible controls u(t), transferring the point from location a to location b, we
ought to find such a control û(t) that the value of the functional

J = J(T,u) =
∫ T

0
f0(x(t),u(t)) dt

is minimized. Here x(t) denotes the solution of the Equation (2.2) with the initial con-
dition (2.3), which corresponds to the control u(t) and in time T this solution passes
through the point b. Simply, it could be expressed in the following form

J =
∫ T

0
f0(x(t),u(t)) dt → min (2.4)

ẋ(t) = f(x(t),u(t)) (2.5)

x(0) = a, x(T ) = b, a,b ∈ X, u ∈ U. (2.6)

Definition 4. The control û(t), t ∈
〈
0, T̂

〉
, which is a solution of the problem (2.4)–

(2.6), is called optimal control and the corresponding trajectory x̂(t) is denoted as optimal
trajectory. The pair (x̂(t); û(t)), t ∈

〈
0, T̂

〉
will be called the optimal control process.

The maximum principle. For an easier formulation of this theorem we shall enhance
the system (2.1) with the equation

ẋ0 = f0(x,u),

where the function f0 was introduced in the definition of the functional J . Thus, we obtain
the following enhanced control system of equations

ẋi = fi(x1, x2, . . . , xn,u), i = 0, 1, . . . , n. (2.7)

Further, we will investigate the system of equations for adjoint variables in the form

λ̇i = −
n∑

k=0

∂fk

∂xi

(x,u)λk, i = 0, 1, . . . , n. (2.8)

Let us denote λ∗ = (λ0, λ1, . . . , λn), f∗(x,u) = (f0(x,u), f1(x,u), . . . , fn(x,u)) and further
we introduce the Hamilton function H in variables x1, x2, . . . , xn, u1, . . . , ur, λ0, λ1, . . . , λn

in the form (by symbol (. , .) we shall denote the scalar product)

H = H(λ∗,x,u) = (λ∗, f∗(x,u)) =
n∑

k=0

λkfk(x,u). (2.9)

With use of this function we can easily rewrite the systems (2.7) and (2.8) into the form
of the Hamilton system

ẋi =
∂H

∂λi

, i = 0, 1, . . . , n,

λ̇i = −
∂H

∂xi

, i = 0, 1, . . . , n.
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2.2. A PROBLEM WITH CONSTRAINED STATE VARIABLES

Theorem 1. (The maximum principle) Let us choose points a,b in the state space X.
Let (x̂(t); û(t)), t ∈

〈
0, T̂

〉
be the optimal control process transferring the point from

location a to location b. Then, there exists a continuous non-zero solution λ∗(t) =
(λ0(t), λ1(t), . . . , λn(t)) on the interval

〈
0, T̂

〉
of the system

λ̇i = −
∂H

∂xi

(λ∗, x̂, û), i = 0, 1, . . . , n (2.10)

such that the Hamilton function H satisfies for all t ∈
〈
0, T̂

〉
the maximum condition

H(λ∗(t), x̂(t), û(t)) = max
u∈U

H(λ∗(t), x̂(t),u). (2.11)

Moreover, H(λ∗(t), x̂(t), û(t)) ≡ 0 and λ0(t) is nonpositive and constant on
〈
0, T̂

〉
.

Remark. The maximum principle represents a necessary condition for existence of the
optimal control process, not a sufficient one. It is a sufficient condition e.g. in case of
time optimization of linear control systems.

In case of a fixed value of the time T for the transfer of the point from location a to
location b, we obtain the following formulation of the maximum principle:

Theorem 2. (The maximum principle for the problem with a fixed time) Let
us choose points a,b in the state space X. Let (x̂(t); û(t)), t ∈ 〈0, T 〉 be the optimal
control process transferring the point from location a to location b (for a fixed time T ).
Then, there exists a continuous non-zero solution λ∗(t) = (λ0(t), λ1(t), . . . , λn(t)) on the
interval 〈0, T 〉 of the system (2.10) such that the Hamilton function H (see (2.9)) satisfies
for all t ∈ 〈0, T 〉 the maximum condition (2.11). Moreover, H(λ∗(t), x̂(t), û(t)) ≡ const.
and λ0(t) is nonpositive and constant on 〈0, T 〉.

Definition 5. (Singular control) Let ū(t), t ∈
〈
0, T̄

〉
be an extremal control, i.e. a

control, which satisfies for all t ∈
〈
0, T̄

〉
the maximum condition

H(λ∗(t), x̄(t), ū(t)) = max
u∈U

H(λ∗(t), x̄(t),u).

Let there exist a nontrivial interval I and a set ω(t) ⊆ U which for every t ∈ I consists
of at least two elements and the following condition is satisfied

H(λ∗(t), x̄(t), ū(t)) = H(λ∗(t), x̄(t),u)

for every u ∈ ω(t), t ∈ I. Then the control ū(t) is called the singular control on I and
the interval I is denoted as singular interval. We can determine the values of the singular
control on the interval I with use of derivations of the Hamilton function, if they exist.

2.2. A problem with constrained state variables

In this section we shall introduce the main concepts and theorems relating to the solution
of the optimal control problems with constrained state variables. The following notions
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2.2. A PROBLEM WITH CONSTRAINED STATE VARIABLES

can be found mainly in Bryson et al. [4]. A more general attitude to this area is mentioned
in Pontrjagin et al. [25].
Let us enhance the problem (2.4)–(2.6) with the constraint on the state variable of

the inequality type
S(x, t) ≤ 0 , (2.12)

where S is a scalar function. The Hamilton function is defined by the relation:

H = (λ∗, f∗) + µS(q),

where S(q) is obtained by derivation of the function S given by (2.12) according to time t
until the resulting function is explicitly dependent on variable u (ẋ is substituted by
f(x,u, t) where necessary). If the control variable u appears explicitly in the q-th deri-
vation of S according to time, we shall denote the constraint as of the q-th order. Then S(q)

denotes the corresponding q-th derivation. The function µ(t) is an additional Lagrange
multiplier. Further, on the constraint boundary it holds:

S(q) = 0, S = 0, µ(t) ≤ 0.

Off the constraint boundary the following relations hold:

S < 0, µ = 0.

The adjoint system of equations is in the form

λ̇∗T = −Hx ≡
{
−(λ∗, f∗x)− µS(q)x , S(q) = 0
−(λ∗, f∗x), S(q) < 0.

The necessary optimality condition is given by (2.11). Within the entry on the boundary
constraint there have to be fulfilled the so-called tangency conditions

N(x, t) def=


S(x, t)
S(1)(x, t)
...

S(q−1)(x, t)

 = 0.

Let us denote the entry point in time onto the constraint boundary as t1 and the exit
point in time as t2. Let us choose the time t1 as the point where the Lagrange multipliers
and the Hamilton function do not have to be continuous, whereas in time t2 the continuity
must be fulfilled. Let us further denote with symbol t−1 the corresponding left-sided limit
of time t1 and with t

+
1 the right-sided limit of t1. Then, the discontinuity of the Lagrange

multipliers λ∗ and the Hamilton function H can be expressed with use of the following
relations

λ∗T (t−1 ) = λ
∗T (t+1 ) + π

T ∂N

∂x(t1)
,

H(t−1 ) = H(t
+
1 )− πT ∂N

∂t1
,

where π is a q-dimensional vector of constant multipliers. These relations are called the
jump conditions. Let us note that the state variables x are continuous in time t1, i.e. it
holds x(t−1 ) = x(t

+
1 ).
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2.3. NONLINEAR PARAMETRIC OPTIMIZATION

2.3. Nonlinear parametric optimization

The last section of this chapter deals with the concepts and theorems from the area
of nonlinear parametric optimization, which enable us later to calculate a certain criti-
cal parameter. They are mainly related to continuity of the elements of solution to the
nonlinear optimization problem with a parameter. Most of this theoretical results with
corresponding proofs can be found in Bank [1].
In this section we assume the following nonlinear parametric optimization problem:

min {f (x, λ) | x ∈M (λ)} , λ ∈ Λ , (2.13)

where M (λ) ⊂ X, X and Λ are metric spaces and f is a function mapping X × Λ into
R ∪ {+∞,−∞}. Let us further denote

ϕ : λ→ ϕ (λ) := inf
x∈M(λ)

f (x, λ)

the function corresponding to the optimal value of the cost functional f relating to pro-
blem (2.13) depending on the vector of parameters λ. Let us further denote

ψ : λ→ ψ (λ) := {x ∈M (λ) | f (x, λ) = ϕ (λ)}

the mapping which assigns to every vector of parameters λ a set of all optimal solutions x ∈
X of the problem (2.13).

Definition 6. Let (X, dX) and (Λ, dΛ) be metric spaces. The point-to-set mapping Γ :
Λ→ 2X is a function mapping each λ ∈ Λ into a (possibly empty) subset Γ (λ) of X.

Remark. As it is customary, for a subset A of the metric space X and for arbitrary ε > 0
the ε-neighbourhood of the set A is the set

UεA := {x ∈ X | dX (x, A) < ε} , where dX (x, A) = inf
y∈A

dX (x,y)

and dX denotes the corresponding metric. If A is an empty set, then dX (x, A) is by
definition equal to +∞. To avoid misunderstanding, we denote by the symbol VεB the ε-
neighbourhood of the set B ⊂ Λ. We shall further assume the euclidean metric.

Definition 7. A point-to-set mapping Γ : Λ→ 2X is said to be

1. closed at a point λ0 if for each pair of sequences {λt} ⊂ Λ and {xt} ⊂ X, t = 1, 2, . . .
with the properties

λt → λ0, xt ∈ Γλt, xt → x0

it follows that x0 ∈ Γλ0;

2. upper semicontinuous (according to Berge or, simply, B) at a point λ0 if for each
open set Ω containing Γλ0 there exists a δ = δ (Ω) > 0 such that Γλ ⊂ Ω for
every λ ∈ Vδ {λ0};

3. lower semicontinuous (according to Berge or, simply, B) at a point λ0 if for each
open set Ω satisfying Ω∩Γλ0 6= ∅ there exists a δ = δ (Ω) > 0 such that Ω∩Γλ 6= ∅
for every λ ∈ Vδ {λ0};

8



2.4. A REMARK ON CONTROLLED SYSTEMS

4. upper semicontinuous (according to Hausdorff or, simply, H) at a point λ0 if for
each ε > 0 there exits a δ > 0 such that Γλ ⊂ UεΓλ0 for every λ ∈ Vδ {λ0};

5. lower semicontinuous (according to Hausdorff or, simply, H) at a point λ0 if for
each ε > 0 there exits a δ > 0 such that Γλ0 ⊂ UεΓλ for every λ ∈ Vδ {λ0}.

Remark. We use, according to Bank [1], the following abbreviations: u.s.c.-B for up-
per semicontinuous (B) mapping, l.s.c.-B for lower semicontinuous (B) mapping and by
analogy u.s.c.-H, l.s.c.-H.

Remark. The following relations hold (see Bank [1]):

u.s.c.-B⇒ u.s.c.-H, l.s.c.-H⇒ l.s.c.-B.

Definition 8. A point-to-set mapping Γ : Λ → 2X is continuous at λ0 if it is u.s.c.-H
and l.s.c.-B at λ0.

Lemma 1. If the mapping Γ is u.s.c.-H at λ0 and if the set Γλ0 is closed, then the
mapping Γ is closed at λ0.

Let us further assume the problem (2.13) again. The following theorems describe
the continuity properties of the mappings which determine the optimal solution of the
problem.

Theorem 3. Let M be a closed mapping at λ0, M (λ0) be a non-empty set, f be a con-
tinuous function and the metric space X be compact. Then ϕ is lower semicontinuous
at λ0; ϕ is also upper semicontinuous at λ0 if and only if the mapping ψ is u.s.c.-B at λ0.

Theorem 4. ϕ is upper semicontinuous at λ0 if M is l.s.c.-B at λ0 and f is upper
semicontinuous on M (λ0)× {λ0}.

2.4. A remark on controlled systems

For the sake of completeness we mention also some basic notions and theorems relating
to controllability and reachability of controlled systems. The Pontryagin principle itself
does not deal with the existence of the optimal control. Therefore, it is convenient to deal
with the question whether there exists a feasible control which transfers the system from
an initial state to a target point because a solution which satisfies the maximum principle
does not have to be necessarily optimal. We recall that the Pontryagin principle is only
a necessary condition. For more detailed explanation of the following concepts and exact
proofs of the theorems see e.g. Brunovsky [3].
Let us assume the controlled system (2.1) again.

Definition 9. A state x1 is called reachable if there exists a control u ∈ U that transfers
the state of the system from the initial state x0 to x1 in some finite time T .

Definition 10. The set Ω (T,x0) = {x (T,x0,u) |u ∈ U}, i.e. the set of all points x that
the initial point x0 can be transferred to in time T , is called the reachability region (from
point x0 in time T ).

9



2.4. A REMARK ON CONTROLLED SYSTEMS

Definition 11. The system (2.1) is reachable at time T if every state x1 in the state
space X is reachable at time T from the initial point x0.

Let us denote
Ω+ (x0) =

⋃
T≥0
Ω (T,x0)

the set of all x ∈ X that the initial state x0 can be transferred to with use of a feasible
control u.

Definition 12. The system (2.1) is called

• locally controllable from x0 if Ω+ (x0) contains the surrounding of the point x0,

• controllable from x0 if Ω+ (x0) = X,

• completely controllable if Ω+ (x0) = X for every x0 ∈ X.

Let us further assume the linear controlled system in the form

ẋ = Ax+Bu , (2.14)

where A and B are constant matrices and U = Rr.

Theorem 5. The system (2.14) is completely controllable if and only if the rank of the
matrix (B,AB, . . . , An−1B) is n, i.e. if we can choose n linearly independent columns of
the matrix (B,AB, . . . , An−1B).

10



3. Energy efficient train control
This chapter deals with the basic energy efficient train control problem introduced

by Horn [8]. This problem has been solved mainly with use of numerical methods. We
describe an analytical approach that leads to development of an energy efficient train
control with exact relations for computation of the switching times between individual
driving modes and to introduction of the critical time as the key factor for determination
of the optimal control strategy. Main results of this chapter were introduced in papers [22]
and [24].

3.1. Formulation of the problem

Throughout the Chapter 3 we are going to study the problem of the energy efficient train
control in the following form. The aim is to minimize the objective functional

J =
∫ T

0
u+ (t) v (t) dt (3.1)

with respect to the system of differential equations

ẋ (t) = v (t) , (3.2)

v̇ (t) = u (t)− r (v) (3.3)

and boundary conditions
x (0) = 0 , v (0) = 0 , (3.4)

x (T ) = L , v (T ) = 0 . (3.5)

The function u+ is defined as follows

u+ (t) :=

{
u (t) , for u (t) > 0 ,
0 , for u (t) ≤ 0 .

We assume that the control variable u is a piecewise continuous function mapping
the interval [0, T ] into [−α, β], where α, β > 0 are given constants, and r = r (v) is
a differentiable function (with respect to v) with the properties r, r′ ≥ 0 and r′ (v) v
is a nondecreasing function for v ≥ 0. We shall illustrate our following considerations
utilizing the linear and quadratic form of the resistance function r (which satisfy the
above mentioned properties). A generalization to the most common type of resistance
function:

r (v) = bv + c (v)2 .

is only a technical matter.
Let us emphasize that the problem (3.1)–(3.5) describes the motion of a train along

a straight level track of length L > 0 with minimal consumption of electric energy J .
Without loss of generality let us further assume that the mass of the train m = 1. The
phase coordinates x and v correspond to position and speed of the train, respectively. The
given parameter T represents the time that is available according to the timetable for the
train to complete the track. The function r represents the frictional resistance.

11



3.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

3.2. Description of optimal control strategy

In this section we develop the optimal control strategy for the problem (3.1)–(3.5). First,
we need to determine the value of the minimum time Tmin that it is possible to complete
the track within. Solving the corresponding minimum time problem (i.e. J = T → min .)
we can easily arrive at the standard well-known “bang-bang” control.
As it is obvious, the value of the time Tmin can be exactly determined if we specify

the form of the resistance function r. Under assumption r (v) = bv (b > 0) we obtain the
following relation

Tmin =
1
b
ln η ,

where η has to satisfy the equation

(α+ β) eLb2/(α+β) ·ηα/(α+β) − αη − β = 0 .

Similarly for quadratic type of resistance function r (v) = cv2 (c > 0) the value Tmin can
be determined from the equation

Tmin = t
∗ +

1√
αc

· arctan

√β
α
tanh

√
βct∗

 ,
where t∗ is calculated from the equation

α cosh2
(√

βct∗
)
+ β sinh2

(√
βct∗

)
= α e2cL .

A sample speed profile for the time optimal problem is shown in the Figure 3.1. Let us

Figure 3.1: A typical speed profile for time optimization, parameters α = 1, β = 1, c = 1,
L = 1 and r = cv2

further assume that the given time T satisfies the relation T > Tmin.
Now, let us recall the assertion which yields the energy efficient control strategy for

the problem (3.1)–(3.5) (for more details and exact proof see e.g. Howlett [14]).
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3.3. THE CALCULATION OF SWITCHING TIMES

Theorem 6. Let (x̂ (t) , v̂ (t) ; û (t)), t ∈ 〈0, T 〉 be the energy optimal solution of the
problem (3.1)–(3.5). Then there exist t1, t2, t3, where 0 < t1 ≤ t2 < t3 < T , such that

û (t) =


β for 0 ≤ t < t1
r (v̂ (t)) ≡ const. for t1 ≤ t < t2
0 for t2 ≤ t < t3
−α for t3 ≤ t ≤ T .

The research of the author was directed mainly on the type of the relation between
the switching times t1 and t2 (equality or sharp inequality) and other relating topics,
especially the calculation of the switching times. The type of the relation between t1 and
t2 cannot be specified directly from Pontryagin principle.

3.3. The calculation of switching times

Let us assume that t1 = t2. Then we can easily arrive at the values of the switching times
by integration of the relations (3.2) and (3.3) on individual time intervals, comparing
values of position and velocity in boundary points of these time intervals (i.e. in t = t1 = t2
and t = t3) and involving conditions (3.4) and (3.5). Of course, the second phase (speed-
holding) is omitted in this consideration.
In particular, let us assume the linear resistance function r. We obtain an equation for

the unknown t3 in the form:

Lb2 + αbT − αbt3 = β ln

(
α

β
ebT −α

β
ebt3 +1

)
. (3.6)

Consequently, the value of the switching time t1 = t2 is determined from the relation

t1 =
1
b
ln

(
α

β
ebT −α

β
ebt3 +1

)
(3.7)

and the value of the maximum speed vmax within the whole track according to the relation

vmax = −
β

b

(
α

β
ebT −α

β
ebt3 +1

)−1
+
β

b
. (3.8)

In case of quadratic resistance function r we obtain similarly the equation for calculation
of time t3 in the form:√

c

β
arcsinh

{√
α

β
ecL

∣∣∣sin [√αc (T − t3)
]∣∣∣}+√ c

α
cot

[√
αc (T − t3)

]
=√

c

β
coth arcsinh

{√
α

β
ecL

∣∣∣sin [√αc (T − t3)
]∣∣∣}+ ct3 .

Afterwards, we can compute the value of the time t1 from the relation

t1 =
1√
βc
arcsinh

{√
α

β
ecL

∣∣∣sin [√αc (T − t3)
]∣∣∣}

13



3.3. THE CALCULATION OF SWITCHING TIMES

and the value of the maximum speed vmax from the relation

vmax =

√
β

c
tanh arcsinh

{√
α

β
ecL

∣∣∣sin [√αc (T − t3)
]∣∣∣} .

The Figure 3.2 displays a sample speed profile for the case t1 = t2 and for quadratic type
of resistance function r.

Figure 3.2: A typical speed profile for t1 = t2, parameters α = 1, β = 1, c = 1, L = 1,
T = 2.1 and r = cv2

Let us assume the relation t1 < t2. In this case we need to determine the values
of three unknown variables t1, t2 and t3. However, position and speed with boundary
conditions yield only two equations. Therefore, it is necessary to compare the values of
the corresponding Hamilton function under a suitable choice of the variable t, make use
of the property H ≡ const. on 〈0, T 〉 and further use the continuity of the Lagrange
multipliers on the interval 〈0, T 〉. To illustrate this, let us consider the linear resistance
function r (v) = bv (the following considerations can be performed for quadratic type of
function r by analogy).
The Hamilton function is generally in the form

H = −u+v + λ1v + λ2 (u− r(v)) .

Let us determine the values of the function H in the following points in time for the linear
function r:

H (0) = λ2 (0) β ,

H
(
t−1
)
= −βvmax + C1vmax + λ2

(
t−1
)
(β − bvmax) ,

H
(
t+1
)
= −bv2max + C1vmax ,

H
(
t+2
)
= C1vmax − λ2

(
t+2
)
bvmax ,

H
(
t−3
)
= C1v (t3) ,

H (T ) = −λ2 (T )α ,

where vmax denotes the highest speed that the train reaches along its track (on the inter-
val 〈t1, t2〉) and H

(
t−1
)
(respectively H

(
t+1
)
) denotes the corresponding one-sided limit

14



3.3. THE CALCULATION OF SWITCHING TIMES

(and similarly in the remaining cases). The constant C1 corresponds to the Lagrange
multiplier λ1 as the solution of the adjoint system for multipliers λ1 and λ2 in the form:

λ̇1 = 0 , (3.9)

λ̇2 = û
+ − λ1 + bλ2 . (3.10)

Let us recall that the variable λ2 is continuous on the interval 〈0, T 〉. Therefore, it holds
that λ2

(
t−1
)
= λ2

(
t+1
)
= λ2 (t1) and by analogy in other cases. Further, the relation

λ2 (t) = vmax must be satisfied on (t1, t2) (this assertion follows directly from Pontryagin
principle for this type of optimal control). Thus, λ2 is constant here and therefore λ̇2 (t) = 0
on (t1, t2). Consequently, the relations (3.9) and (3.10) imply that

λ1 (t) ≡ C1 = 2bvmax . (3.11)

Now, we can use the relation for the Hamilton function in the point t+1 to derive the
equation

H (t) ≡ b (vmax)
2

for t ∈ 〈0, T 〉. The value of H (t3) and the Equation (3.11) lead us to conclude that

v (t3) =
vmax
2

. (3.12)

A similar approach can be used for quadratic type of resistance function to derive the
relation

v (t3) =
2
3
vmax . (3.13)

The last two equations represent the required third equation that we need to derive the
relations for calculation of the switching times for the case t1 < t2.
Thus, for linear type of resistance function r it is possible to derive (by analogy to the

case t1 = t2 with use of the Equation (3.12)) the following equation for the unkwnown t2[
α eb(T−t2)−2α− β

]
ln

[
−α
β
eb(T−t2)+

2α
β
+ 1

]
=

Lb2 + αbT + αbt2 − α ln 2− αbt2 e
b(T−t2)

(3.14)

and the relations for remaining switching times t1 and t3 in the form

t1 = −
1
b
ln

[
−α
β
eb(T−t2)+

2α
β
+ 1

]
, (3.15)

t3 = t2 +
1
b
ln 2 . (3.16)

The value of the maximum velocity vmax can be determined based on the following relation

vmax =
α

b
eb(T−t2)−2α

b
. (3.17)

Analogously as in the previous case of the linear resistance function r we can solve
the case t1 < t2 under assumption of the quadratic form of the function r with use of the
Equation (3.13). The value t1 can be calculated from the equation

(T − t1) ·
√
βc tanh

(√
βct1

)
= ln

23 cos arctan
√β

α

2
3
tanh

(√
βct1

)+ 12
− ln cosh

(√
βct1

)
+ cL+

√
β

α
tanh

(√
βct1

)
· arctan

√β
α

2
3
tanh

(√
βct1

) (3.18)
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3.3. THE CALCULATION OF SWITCHING TIMES

and consequently we can determine the values of the remaining switching times t2 and t3
according to the relations

t3 = T −
1√
αc

· arctan

√β
α

2
3
tanh

(√
βct1

) , (3.19)

t2 = t3 −
1
2
√
βc

· coth
(√

βct1

)
. (3.20)

The value of the maximum velocity of the train within the whole track can be easily
calculated via the relation

vmax =

√
β

c
tanh

(√
βct1

)
.

A sample speed profile for the optimal control strategy with t1 < t2 is shown in the
Figure 3.3 under assumption of the quadratic type of the function r.

Figure 3.3: A typical speed profile for t1 < t2, parameters α = 1, β = 1, c = 1, L = 1,
T = 5 and r = cv2

We have determined the values of the switching times for both possible control strate-
gies which follow directly from the Pontryagin principle, i.e. including the speed holding
phase or not. However, we still have not stated which of these two strategies is optimal
for given entry parameters of the problem. We can choose the optimal case based on the
value of the cost functional J . With use of the relation (4.1) we can derive the relations
for calculation of J . In case t1 = t2 and under assumption of linear resistance function r
we obtain the relation

J = −β
2

b2
+
β2

b
t1 +

β2

b2
e−bt1 (3.21)

and for quadratic type of the function r we derive the relation

J =
β

c
ln cosh

(√
βct1

)
.

For a control strategy containing the speed holding control mode, i.e. if t1 < t2, the value
of the cost functional J can be determined according to the relation

J = −β
2

b2
+
β2

b
t1 +

β2

b2
e−bt1 +b (vmax)

2 (t2 − t1) (3.22)
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3.3. THE CALCULATION OF SWITCHING TIMES

for linear type of function r and

J =
β

c
ln cosh

(√
βct1

)
+ c (vmax)

3 (t2 − t1)

for quadratic resistance function.
We easily choose the lower value (of course, if more than one of the two possible

strategies t1 = t2, resp. t1 < t2, is feasible). Some sample resulting values of the switching
times t1, t2 and t3 for quadratic and linear type of resistance function r (v) can be found
in the Table 3.1 and the Table 3.2, respectively.

T t1 t2 t3 vmax J

2.062 1.344 1.344 1.344 0.873 0.717
2.100 1.167 1.167 1.537 0.823 0.567
2.172 1.052 1.052 1.691 0.782 0.474
2.500 0.628 1.247 2.145 0.557 0.292
3.000 0.449 1.539 2.726 0.421 0.179
4.000 0.303 2.106 3.806 0.294 0.091
5.000 0.233 2.663 4.849 0.229 0.056
6.000 0.190 3.216 5.875 0.188 0.038
8.000 0.140 4.313 7.908 0.139 0.021
10.000 0.111 5.406 9.926 0.111 0.013

Table 3.1: Sample values of the switching times t1, t2, t3 and maximum velocity vmax for
quadratic resistance function r and input parameters α = 1, β = 1, L = 1 and c = 1 for
various values of parameter T

T t1 t2 t3 vmax J

2.170 1.585 1.585 1.585 0.795 0.790
2.200 1.445 1.445 1.755 0.764 0.681
2.300 1.323 1.323 1.977 0.734 0.590
2.316 1.311 1.311 2.005 0.731 0.581
2.500 0.846 1.556 2.249 0.571 0.506
3.000 0.533 2.119 2.812 0.413 0.390
4.000 0.331 3.175 3.868 0.282 0.275
5.000 0.244 4.204 4.897 0.217 0.214
6.000 0.195 5.222 5.915 0.177 0.175
8.000 0.139 7.244 7.937 0.130 0.129
10.000 0.109 9.257 9.950 0.103 0.103

Table 3.2: Sample values of the switching times t1, t2, t3 and maximum velocity vmax for
linear resistance function r and input parameters α = 1, β = 1, L = 1 and c = 1 for
various values of parameter T

The Figure 3.4 displays the values of the cost functional J for both types of resistance
functions r for various values of the parameter T .
A different approach for determination of the optimal control strategy via the notion

of critical time and theory of nonlinear parametric programming will be introduced in the
Section 3.4.
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

Figure 3.4: Sample profile of values of the cost functional J for parameters α = 1, β = 1,
c = 1, L = 1 in dependence on parameter T for linear and quadratic type of resistance
function r

3.4. Analysis of the solution - critical time

Numerical calculations (based on algorithms from Bazaraa et al. [2]) show that the choice
of the optimal control strategy depends only on the given value of the entry parame-
ter T . The Figure 3.5 shows the dependence of the optimal control strategy on the input
parameter T as well.

Figure 3.5: Typical speed profiles for parameters α = 1, β = 1, c = 1, L = 1, various
values of parameter T and resistance function r = cv2

In order to analyse the properties of the solution of the problem (4.1)–(4.5) with
respect to the value of the parameter T it is convenient to use the theory of nonlinear
parametric programming with relating tools (see the Section 2.3). To simplify the analysis
let us assume that there exists a certain value Tmax, sufficiently large, with the property
Tmin ≤ T ≤ Tmax and consider only the case of the linear resistance function r (the
quadratic case can be solved by analogy).
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

Using the Theorem 6 we can easily rewrite the problem (4.1)–(4.5) into the following
form of the nonlinear programming problem. We wish to minimize the objective function

J =
β2

b2

(
bt1 + e

−bt1 −1
)
+
β2

b
(t2 − t1)

(
1− e−bt1

)2
→ min (3.23)

with respect to the equations

α
(
eb(T−t3)−1

)
= β

(
1− e−bt1

)
eb(t2−t3) , (3.24)

α (t3 − T ) + β
(
t2 − t2 e

−bt1 +t1 e
−bt1

)
= bL (3.25)

and inequalities
0 ≤ t1 ≤ t2 ≤ t3 ≤ T . (3.26)

The constraints (3.24) and (3.25) can be derived with use of the boundary conditions (3.4)
and (3.5). Since the set of all feasible solutions has to be closed for our future considera-
tions, we assume the inequalities for t1, t2 and t3 in the form (3.26) (let us note that the
cases t1 = 0, t2 = t3 and t3 = T cannot be optimal provided T > Tmin > 0).
Let us denote by symbol M (T ) the set of all feasible solutions of the given problem,

i.e. the set of all (t1, t2, t3) satisfying the relations (3.24)–(3.26) for a given parameter T .
Let us further introduce the following assumption:

Hypothesis 1. The point-to-set mapping M (T ) is continuous in T for all T ≥ Tmin.

Note that the validity of the Hypothesis 1 can be verified under specified values of the
parameters α, β, b and L.

Lemma 2. Let the Hypothesis 1 be fulfilled. Then the point-to-set mapping

ψ (T ) := {(t1, t2, t3) ∈M (T ) |J (t1, t2, t3;T ) = ϕ (T )} ,

where
ϕ (T ) := inf

(t1,t2,t3)∈M(T )
J (t1, t2, t3;T ) ,

is u.s.c.-B for every Tmin ≤ T ≤ Tmax.

Proof. We apply the Theorem 3 and the Theorem 4 to our problem. The mapping ϕ (T )
represents now the optimal value of the cost functional J which is specified by the
Equation (3.23) for a fixed value of the parameter T . The mapping ψ (T ) is a point-
to-set mapping which to every fixed value T ≥ Tmin assigns a set of all optimal solutions
of the given nonlinear programming problem, i.e. a set of all optimal (t1, t2, t3). Un-
der the Hypothesis 1 the mapping M (T ) is also l.s.c.-B for every T ≥ Tmin. Moreover,
J = J (t1, t2, t3;T ) from the relation (3.23) is upper semicontinuous on R3 × R (it is
even continuous). Thus, ϕ (T ) is an upper semicontinuous mapping for every T ≥ Tmin
according to the Theorem 4. Further, let us note that M (T ) is a non-empty set for
every T ≥ Tmin. Metric space X occuring in the Theorem 3 represents in our case the
set of all (t1, t2, t3) satisfying inequalities (3.26) and therefore X is compact because of
T ≤ Tmax. Further, we need the mapping M (T ) to be closed in T for every T ≥ Tmin.
This property follows from the Lemma 1 since M (T ) is (according to the Hypothesis 1)
u.s.c.-H at T and the set of all (t1, t2, t3) satisfying (3.24), (3.25) and (3.26) is closed. The-
refore, by the Theorem 3 the mapping ψ (T ) is u.s.c.-B at T for every Tmin ≤ T ≤ Tmax.
ut
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

The assertion of the Lemma 2 ensures that if we choose some fixed value T = T ∗ and
the corresponding optimal solution (t∗1, t

∗
2, t

∗
3) of the problem (3.23)–(3.26), then conside-

ring T sufficiently close to T ∗ we obtain a solution (t1, t2, t3) close to (t∗1, t
∗
2, t

∗
3).

Now we shall introduce the concept of the critical time Tcr and present the way of its
computation.

Definition 13. A parameter T is said to be the critical time of the problem (3.23)–
(3.26) (and we shall further denote it as Tcr), if there exists an ε > 0 such that for
T = Tcr the nonlinear programming problem (3.23)–(3.26) has an optimal solution with
the property t1 = t2 and for T ∈ (Tcr, Tcr + ε) the corresponding optimal solution satisfies
t1 < t2.

In other words, the value Tcr represents the critical driving time when the most inte-
resting optimal driving mode, i.e. the speed holding phase, appears in the optimal control
strategy.

Lemma 3. Let Tcr be the critical time of the problem (3.23)–(3.26) and let the Hypo-
thesis 1 be fulfilled. Then Tcr is the unique positive solution of the equation

αbTcr + Lb
2 + (α+ β) ln

(
2α+ β

β + α ebTcr

)
= α ln 2 . (3.27)

Proof. In the Section 3.3 we determined the values of t1, t2 and t3 under assumption t1 <
t2. Due to the Lemma 2, ψ (T ) is u.s.c.-B for every T ≥ Tmin. Hence, by letting t2 → t+1
and comparing both calculations performed for t1 < t2 and t1 = t2 we arrive at the
determination of the relation for Tcr.
More precisely, the Equation (3.15) determines time t1 provided t1 < t2. Now, let us

use the relation t1 = t2 to obtain

t2 = −
1
b
ln

[
−α
β
eb(Tcr−t2)+

2α
β
+ 1

]
.

This relation leads us to the expression

t2 = −
1
b
ln

[
2α+ β

β + α exp (bTcr)

]
.

This value is substituted to the Equation (3.14) and after some simple modifications we
arrive at the Equation (3.27).
To show that the Equation (3.27) admits a unique solution we put

F (T ) := αbT − α ln 2 + Lb2 + (α+ β) ln

(
2α+ β
β + α ebT

)

denoting the function which describes the left-hand side of the Equation (3.27). Thereafter

F

(
ln 2
b

)
= Lb2 > 0 .

Further,

lim
T→∞

F (T ) = lim
T→∞

[
αbT − (α+ β) ln

(
β + α ebT

)]
− α ln 2 + Lb2+

(α+ β) ln (2α+ β) = −∞ ,

20



3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

because ln
(
β + α ebT

)
≈ ln

(
α ebT

)
= lnα+ bT as T →∞. Moreover,

F ′ (T ) = αb− (α+ β) αb ebT

β + α ebT
= αb

[
1− (α+ β)

ebT

α ebT +β

]
< 0

for T > 0 and this shows the uniqueness of the positive solution of the Equation (3.27). ut
An easy consideration shows that if for some fixed T = T ∗ the optimal solution

of the problem (3.23)–(3.26) satisfies the relation t1 < t2, then for every T ≥ T ∗ the
corresponding optimal solution of (3.23)–(3.26) has the same property. In other words, if
the optimal trajectory contains the speed holding phase for some T = T ∗, then the speed
holding phase will be contained in every optimal strategy with T > T ∗. The proof of this
assertion can be performed by analogy to the proof of the Lemma 3. Indeed, let us assume
that there exists a parameter T ∗∗ such that for T ∈ (T ∗∗ − ε, T ∗∗), ε > 0 being sufficiently
small, the problem (3.23)–(3.26) has an optimal solution with property t1 < t2 and for
T = T ∗∗ the corresponding optimal solution satisfies t1 = t2. Then the necessary condition
for T ∗∗ is given by the Equation (3.27) (where Tcr is replaced by T ∗∗). We have already
shown that this equation admits only one positive solution, i.e. the existence of T ∗∗ implies
that Tcr does not exist. Further, let us note that for T = Tmin the corresponding optimal
solution (t1, t2, t3) of the problem (3.23)–(3.26) has the property t1 = t2 = t3. Similarly,
if for T > Tmin this optimal solution satisfies the relation t1 < t2, then t3 = t2 + 1

b
ln 2.

However, the mapping ψ (T ) is u.s.c.-B for T ≥ Tmin, thus for T > Tmin, T being sufficiently
close to Tmin, the optimal solution must satisfy the relation t1 = t2. Therefore, T ∗∗ cannot
exist without the appearance of Tcr and this is a contradiction.
Summarizing the previous considerations we can arrive at the following theorem.

Theorem 7. Let (t1, t2, t3) be the optimal solution of the problem (3.23)–(3.26) and let
the Hypothesis 1 be fulfilled. Then either t1 = t2 for every T ≥ Tmin or there exists a
unique value of Tcr with the property that for T ∈ 〈Tmin, Tcr〉 the optimal solution satisfies
the relation t1 = t2 and for T > Tcr the property t1 < t2 is fulfilled (moreover, the value Tcr

can be determined as the unique positive solution of the Equation (3.27)).

The numerical results show that considering the value of the parameter T large enough
the optimal solution (t1, t2, t3) of the problem (3.23)–(3.26) satisfies the relation t1 < t2
for given fixed parameters α, β, L and b. We can therefore introduce a conjecture that
the first variant described in the Theorem 7 (i.e. t1 = t2 for every T ≥ Tmin) does not
actually occur.
Let us recall that the values of the switching times t1, t2 and t3 can be determined

for r (v) = bv via the relations (3.6)–(3.7) in case t1 = t2 and with use of the relations
(3.14)–(3.16) for t1 < t2. The cost functional J is specified by the Equations (3.21)
and (3.22) for t1 = t2 and t1 < t2, respectively. The value of the maximum velocity vmax
can be determined from the Equation (3.8) if t1 = t2 and according to the Equation (3.17)
under assumption t1 < t2.
So far the results of this section have been illustrated on the model with linear re-

sistance function r (v) = bv. The extension to models with nonlinear type of resistance
function consists only in more tedious computations and does not represent any qualitative
advancement.
Let us consider now the quadratic resistance function r. We can introduce and discuss

the problem of the critical time in a similar way to the case of the linear resistance.

21



3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

However, a formal justification of the existence of Tcr is much more complicated. Therefore,
we show at least the necessary condition for Tcr, i.e. an analogy of the Equation (3.27).
We use the above derived Equation (3.18) which we obtained under assumption t1 < t2.

By letting t2 → t+1 we get T → Tcr. We therefore put t1 = t2 = tcr in relevant formulas to
obtain

t3 = tcr +
1

2
√
βc tanh

(√
βctcr

) .
We compare this relation with Equation (3.19) and derive the relation

Tcr =
1√
αc
arctan

√β
α

2
3
tanh

(√
βctcr

)+ tcr + 1

2
√
βc tanh

(√
βctcr

) (3.28)

which can be substituted into Equation (3.18) and after some simple steps we arrive at
the following equation

2
3
ecL

∣∣∣∣∣∣cos arctan
√β

α

2
3
tanh

(√
βctcr

)∣∣∣∣∣∣− cosh
(√

βctcr

)
= 0

which can be used to determine the value of the time tcr. Thereafter, the value Tcr is
calculated via Equation (3.28).
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4. Energy efficient train control with
a speed constraint

This chapter is devoted to the description of the energy optimal driving strategy of an
electric-powered train with a global speed constraint and describes the way of calculation
of the switching times between the optimal driving regimes as well. We are going to use
the theoretical background introduced in the Section 2.2. Most of the results discussed in
this chapter were introduced in the paper [23].

4.1. Formulation of the problem

We are going to study the following optimal control problem:

J =
∫ T

0
u+v dt → min (4.1)

with respect to the system of differential equations

ẋ (t) = v (t) , (4.2)

v̇ (t) = u (t)− r (v) (4.3)

and boundary conditions
x (0) = 0 , v (0) = 0 , (4.4)

x (T ) = L , v (T ) = 0 , (4.5)

where function u+ is defined as

u+ (t) :=

{
u (t) for u (t) > 0
0 for u (t) ≤ 0 .

We shall further assume a global speed constraint in the form

v (t) ≤ vm , t ∈ 〈0;T 〉 . (4.6)

Now, we impose the same assumptions on functions u and r as in the Section 3.1. In
particular, we further assume that u is a piecewise continuous function mapping 〈0, T 〉
into 〈−α, β〉, where α, β > 0 are given constants. Function r = r (v) (which represents the
frictional resistance) is a differentiable function (with respect to v) with the properties
r, r′ ≥ 0 and r′ (v) v is nondecreasing for v ≥ 0. The most usual type of resistance function
r (which satisfies all these conditions) is a polynomial function

r (v) = bv + c (v)2 . (4.7)

To simplify the computations, we will consider the linear resistance function r (v) = bv
and the quadratic resistance function r (v) = c (v)2. The possible generalization of our
results to r given by (4.7) is only a technical matter.
The problem (4.1)-(4.6) describes the motion of a train along a straight level track of

length L > 0 with minimal consumption of electric energy J . We assume that the mass of
the train m = 1. Phase coordinates x and v correspond to position and speed of the train.
Given parameter T represents the time that is available according to the timetable for
the train to complete the track. The given constant vm is the maximum allowed velocity
of the train along the whole track.
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4.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

4.2. Description of optimal control strategy

In this section we are going to determine the character of the optimal control strategy
consisting of at most four successive driving modes (full power, speed-holding, coasting
and full braking). First, we need to specify the value of the maximal speed vmax of the
train within the whole track under assumption of the basic problem (4.1)–(4.5) without
any further constraints so that we determine whether the global speed constraint (4.6)
is active (vmax ≥ vm) or not. In the latter case, we may easily apply the results of the
Chapter 3 (optimal strategy and the values of switching times) also for the case of the
global speed constraint. The relevant relations for calculation of the value of vmax were
presented in the Chapter 3. Let us therefore further assume that the relation vmax ≥ vm

holds.
First, we have to determine the value of the minimal time T ∗min that it is possible to

complete the track within (involving the speed constraint (4.6)). Let vmax ≥ vm. With
use of Pontryagin principle and some further tools concerning the path constraints (for
further details see e.g. Bryson et al. [4]) we can easily arrive at the following equation for
calculation of T ∗min

T ∗min =
1

b2vm

ln

[
1 +

b

α
vm

]α

·
[
1− b

β
vm

]β

+
L

vm

+
1
b
ln

(
1 +

b

α
vm

)
− 1
b
ln

(
1− b

β
vm

)

in case of linear resistance function and similarly

T ∗min =
1
2cvm

[
ln

(
1− c

β
v2m

)
− ln

(
1 +

c

α
v2m

)]
+

L

vm

+
1√
βc
arctanh

(√
c

β
vm

)

+
1√
αc
arctan

(√
c

α
vm

)
for quadratic resistance function r.
The Figure 4.1 displays a sample speed profile for a time optimal driving strategy

under assumption of a speed constraint as well as the original speed profile for a trajectory
without the speed constraint (for comparison).
In what follows, we assume that T > T ∗min and vmax > vm. Let us denote

S(x, v, t) := v(t)− vm.

Then it holds for the first total time derivative of S that

S(1)(x, v, t) = v̇(t) = u(t)− r(v).

Thus, (4.6) is a first order state variable inequality constraint. Hamilton function is in the
form

H = λ0u
+v + λ1v + (λ2 + µ) [u− r (v)] ,

where λ0, λ1, λ2 and µ denote the corresponding Lagrange multipliers (without loss of
generality we put λ0 ≡ −1, the case λ0 ≡ 0 corresponds to time optimization). The
variables λ1 and λ2 have to satisfy the adjoint system

λ̇1 = −
∂H

∂x
= 0

λ̇2 = −
∂H

∂v
= u+ − λ1 + λ2r

′ (v) + µr′ (v) .
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4.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

Figure 4.1: A typical speed profile for time optimization with a speed constraint v (t) ≤ 0.6
and parameters α = 1, β = 1, c = 1, L = 1 and r = cv2

Further, µ ≤ 0 on the constraint boundary (S = 0) and µ = 0 off the constraint boundary.
The path entering onto the constraint boundary has to meet the tangency constraint S = 0
and if we denote t1 as the entry point onto the boundary constraint, then the following
jump conditions have to be satisfied:

λ1
(
t−1
)
= λ1

(
t+1
)

λ2
(
t−1
)
= λ2

(
t+1
)
+ π (π ∈ R)

H
(
t−1
)
= H

(
t+1
)
,

where t−1 and t
+
1 denote the corresponding one-sided limits. Thus, λ1(t) ≡ C1 = const.

for t ∈ 〈0, T 〉 and λ2 might be discontinuous at time t1. Off the constraint boundary we
may use the Pontryagin principle and derive the same four possible driving strategies as
in the case without the speed constraints, i.e. full power, speed holding, coasting and full
braking. Let us denote t2 the time when the path is leaving the speed boundary. On the
constraint boundary (if t1 < t2) it holds u (t) = r (vm) and ∂H

∂u
= 0. Thus, for t ∈ 〈t1, t2)

(with use of the relation v(t) ≡ vm) it holds

λ2 (t) = vm − µ (t) ≥ vm .

As µ (t) ≤ 0 on the constraint boundary the relation λ2(t) ≥ vm must hold for t ∈ 〈t1, t2).
Further, let us assume the linear case r (v) = bv (for quadratic resistance function r we
can use analogical approach). With use of jump condition for Hamilton function in time t1
it can be shown that λ2

(
t−1
)
= vm. Further, with respect to the continuity of λ2 in t2 it

holds λ2
(
t+2
)
> 0, thus u

(
t+2
)
= 0 and further λ2 (t2) = vm. Therefore,

H = C1vm − bv2m > 0 , hence C1 > bvm .

Summarizing the previous ideas and analysing the properties of function λ2 (t) based on
previous results it is possible to prove the following theorem.
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4.3. THE CALCULATION OF SWITCHING TIMES

Theorem 8. Let (x̂(t), v̂(t); û (t)), t ∈ 〈0, T 〉 be the energy optimal solution of (4.1)-(4.5)
and (4.6). Let r (v) = bv (r (v) = c (v)2). Then there exist t1, t2, t3 such that

û (t) =


β for t ∈ 〈0, t1)
bvm (c (vm)

2 ) for t ∈ 〈t1, t2)
0 for t ∈ 〈t2, t3)
−α for t ∈ 〈t3, T 〉

,

where 0 < t1 ≤ t2 < t3 < T .

4.3. The calculation of switching times

The case t1 = t2 corresponds to the relation vmax = vm. By integration of the Equati-
ons (4.2) and (4.3) on separate time intervals and involving the boundary conditions (4.4)
and (4.5) it is easy to find the equations for calculation of the switching times t1, t2 and
t3 for both linear and quadratic resistance functions. If r (v) = bv then

t1 = −
1
b
ln

(
1− bvm

β

)
.

Further, we can derive the equation for unknown t3 in the form(
vm

b
− β

b2

)
ln

(
1− bvm

β

)
− α

b
(T − t3) = L−

vm

b
ln
[
α

bvm

(
ebT −ebt3

)]

and consequently calculate the value of t2 via the relation

t2 =
1
b
ln
[
α

bvm

(
ebT − ebt3

)]
.

For r (v) = c (v)2 we obtain the relation

t1 =
1√
βc
arctanh

(√
c

β
vm

)
.

Thereafter we calculate the value of t3 via the equation√
c

α
vm cot

[√
αc (T − t3)

]
− ln vm + ln

√
α

c

|cos [
√
αc (T − t3)]|

cot [
√
αc (T − t3)]

+ cL

+

√
c

β
vm arctanh

(√
c

β
vm

)
= cvmt3 + 1−

1
2
ln

(
1− c

β
v2m

)

and the value of t2 from the relation

t2 = t3 +
1
cvm

− 1√
αc
cot

[√
αc (T − t3)

]
.

The equations for computation of the switching time t3 usually yield two different possible
values of t3. However, only one of them satisfies the relations 0 < t1 ≤ t2 < t3 < T .

26



4.3. THE CALCULATION OF SWITCHING TIMES

Figure 4.2: A typical speed profile for constrained optimization and parameters α = 1,
β = 1, c = 1, L = 1, T = 5, vm = 0.21 and r = cv2 (the dotted line represents the case
without speed constraint)

The Figure 4.2 shows a typical speed profile for energy-efficient strategy with global
speed constraint compared with the case without any constraints.
Let us note that a possible generalization of the problem with constrained velocity is

the assumption of local speed constraints in the form

v ≤Mj+1 for x ∈ (Xj, Xj+1) , (4.8)

where 0 = X0 < X1 < . . . < Xp = L. The complex problem of speed constraints in
the form (4.8) is much more complicated and it is going to be an object of author’s
further investigations. One way of solving this problem could be partitioning of the time
interval 〈0, T 〉 on subintervals

〈
t∗j , t

∗
j+1

〉
, j = 0, . . . p − 1 with respect to the speed

constraints (4.8), solving the corresponding energy-efficient train control problems on the
separate intervals with global speed constraints (4.8) and with unknown values of the
speed at the boundary points, comparing these values and solving the resulting nonlinear
programming problem of minimization J according to the values of t∗j . However, this
leads to application of some numerical algorithms or methods of artificial intelligence and
exceeds the aim of this thesis.
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5. Time-energy efficient train control
This chapter deals with the time-energy efficient train control, i.e. a problem where

both the time and energy consumption ought to be minimised with prescribed weight
coefficients. We assume a partial reloading of energy into electrical circuit while braking.
Some basic features of the problem were discussed by Kundrat et al. [17] by use of a
numerical approach. The essential results discussed in this chapter were presented in the
paper [21].

5.1. Formulation of the problem

We are going to investigate the following optimal control problem:

J =
∫ T

0
(puγv + q) dt → min (5.1)

with respect to the system of differential equations

ẋ (t) = v (t) , (5.2)

v̇ (t) = u (t)− r (v) (5.3)

and boundary conditions
x (0) = 0 , v (0) = 0 , (5.4)

x (T ) = L , v (T ) = 0 , (5.5)

where function uγ satisfies

uγ (t) :=

{
u (t) for u (t) ≥ 0
γu (t) for u (t) < 0 .

Here 0 < γ < 1, p, q > 0 and p+q = 1 are given real input parameters. A real constant
T > 0 is to be determined. By analogy to the Section 3.1 we shall further assume that u
is a piecewise continuous function mapping 〈0, T 〉 into 〈−α, β〉, where α, β > 0 are given
real constants. Similarily, function r = r (v) (which represents the frictional resistance)
is a differentiable function (with respect to v) with the properties r, r′ ≥ 0 and r′ (v) v
is nondecreasing for v ≥ 0. A typical type of resistance function r (which satisfies these
conditions) is again the quadratic function

r (v) = bv + cv2 . (5.6)

To determine the values of the switching times in the Section 5.3 and to simplify
the computations in the Section 5.4 we will consider the quadratic resistance function
r (v) = cv2 and the linear resistance function r (v) = bv. The possible generalization of
our results to r given by (5.6) is only a technical matter.
Let us emphasize that the problem (5.1)–(5.5) describes the motion of a train along

a straight level track of length L > 0 with the intention to minimize the consumption
of electrical energy as well as time of the journey (represented by parameter T ) with
prescribed weight parameters p and q, respectively. We assume that the mass of the train
m = 1. Phase coordinates x and v correspond to position and speed of the train. The real
parameter γ represents the portion of the electrical energy that is being reloaded to the
electrical circuit while braking.
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5.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

5.2. Description of optimal control strategy

The following theorems determine the character of the optimal control strategy consisting
of at most four successive driving modes (full power, speed-holding, coasting and full
braking).
First, let us introduce the Hamilton function in the form

H = λ0 (puγv + q) + λ1v + λ2 [u− r (v)] ,

where (without loss of generality) we consider λ0 = −1 (the case λ0 = 0 corresponds
to time optimal problem). The other two Lagrange multipliers λ1 and λ2 are continuous
solutions of the adjoint system

λ̇1 = −∂H
∂x
= 0 ,

λ̇2 = −∂H
∂v
= puγ − λ1 + λ2r

′ (v) .

The Pontryagin maximum principle yields the following optimality condition (here (x̂, v̂; û)
denote the optimal controlled process):

− pûγ v̂ − q + λ1v̂ + λ2 [û− r (v̂)] =

max
u∈〈−α,β〉

[−puγ v̂ − q + λ1v̂ + λ2 (u− r (v̂))]

This relation can be simplified for û ≥ 0 into the following form

û (λ2 − pv̂) = max
u∈〈0,β〉

[u (λ2 − pv̂)]

and similarly for û < 0 into form

û (λ2 − pγv̂) = max
u∈〈−α,0〉

[u (λ2 − pγv̂)]

which after some simple calculations and standard steps (including singular mode deter-
mination) imply the following theorem.

Theorem 9. Let (x̂ (t) , v̂ (t) ; û (t)), t ∈
〈
0, T̂

〉
be the time-energy optimal solution of

(5.1)–(5.5). Then

û (t) =


β for λ2 (t)− pv̂ (t) > 0 ,
r (v̂) ≡ const. for λ2 (t)− pv̂ (t) = 0 ,
0 for λ2 (t)− pv̂ (t) < 0 ∧ λ2 (t)− pγv̂ (t) > 0 ,
−α for λ2 (t)− pγv̂ (t) < 0 .

The following theorem specifies the optimal order of the driving modes.

Theorem 10. Let (x̂ (t) , v̂ (t) ; û (t)), t ∈
〈
0, T̂

〉
be the time-energy optimal solution of

(5.1)–(5.5). Then there exist t1, t2, t3, where 0 < t1 ≤ t2 < t3 < T̂ , such that

û (t) =


β for 0 ≤ t < t1 ,
r (v̂) ≡ const. for t1 ≤ t < t2 ,
0 for t2 ≤ t < t3 ,

−α for t3 ≤ t ≤ T̂ .
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5.3. THE CALCULATION OF SWITCHING TIMES

Proof. First, as v (0) = v
(
T̂
)
= 0, there exists t1 ∈

(
0, T̂

)
such that

λ2 (t)− pv (t) > 0 for all t ∈ 〈0, t1) and λ2 (t1)− pv (t1) = 0 .

Further, there exists t2 ∈
〈
t1, T̂

)
such that

λ2 (t)− pv (t) = 0 for all t ∈ 〈t1, t2)

(if t1 = t2, then the symbol 〈t1, t2) denotes the singular interval consisting of t1 only).
Finally, we can show that there exists t3 ∈

(
t2, T̂

)
such that

λ2 (t)− pv (t) < 0 ∧ λ2 (t)− pγv (t) > 0 for all t ∈ (t2, t3)

and λ2 (t3) − pγv (t3) = 0. This can be proved by contradiction. If λ2 (t) − pv (t) > 0 for
every t ∈

(
t2, t̃2

)
, where t̃2 > t2 is a real number, then v̇ is a decreasing function and λ̇2

is an increasing function on
(
t2, t̃2

)
. Hence, λ2 (t) − pv (t) > 0 for all t ∈ (t2,∞), which

contradicts the condition v
(
T̂
)
= 0. Since λ2 (t)− pv (t) < 0 and λ2 (t)− pγv (t) > 0 for

all t > t2 sufficiently close to t2, it holds u(t) = 0 for these t. Therefore, λ̇2 is decreasing
and v̇ is increasing and hence there exists t3 such that λ2 (t3) = pγv (t3). Further, we wish
to show that λ2 (t) < pγv (t) for all t ∈

(
t3, T̂

)
. In a similar way as previously we can

prove that v, λ2 and λ̇2 are decreasing functions on
(
t3, T̂

)
and function v̇ is increasing.

Thus, û (t) = −α for t ∈
(
t3, T̂

〉
. ut

5.3. The calculation of switching times

Let us now determine the values of the switching times t1, t2 and t3 and the value of the
total driving time T . Of course, this determination is possible if the type of resistance
function is specified. We emphasize that for unspecified driving time the Hamilton function
satisfies the relation H ≡ 0 for t ∈ 〈0, T 〉. Further, λ1 (t) ≡ C1 = const. on 〈0, T 〉.
Suppose that the relation t1 < t2 holds. Then, the following condition is satisfied on

(t1, t2):
λ̇2 = pr (vmax)− C1 + pvmaxr

′ (vmax) ≡ 0 , (5.7)

where vmax denotes the speed-holding velocity. Further,

H
(
t−1
)
= −q + C1vmax − pvmaxr (vmax) = 0 , (5.8)

H
(
t+3
)
= −q + C1v (t3)− pγv (t3) r [v (t3)] = 0 , (5.9)

where H
(
t−1
)
denotes the corresponding left-sided limit and H

(
t+3
)
the corresponding

right-sided limit of the Hamilton function. The Equations (5.7) and (5.8) yield the optimal
value of the maximum velocity vmax. For the resistance function r = cv2 we obtain the
relation

vmax = 3

√
q

2pc
,

whereas for linear case we can derive the equation

vmax =

√
q

pb
.
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5.3. THE CALCULATION OF SWITCHING TIMES

By use of the Equation (5.9) we may easily arrive at the following cubic equation for
calculation of the velocity v (t3) provided r = cv2

−q + 3pcv2maxv (t3)− pγc [v (t3)]
3 = 0 (5.10)

with a single feasible root and directly derive the relation

v (t3) = vmax ·
1−

√
1− γ

γ

for v (t3) in case of linear type of resistance function r. Consequently, integrating the
Equations (5.2) and (5.3) on corresponding time intervals, comparing the values of the
variables x and v in the switching times and employing conditions (5.4) and (5.5) we
obtain the following relations for calculation of the switching times t1, t2, t3 and the total
driving time T for quadratic type of resistance function r:

t1 =
1√
βc
arctanh

(√
c

β
· 3
√

q

2pc

)
, (5.11)

t2 = t1 +
1

cvmax
ln
∣∣∣∣cos arctan [√ c

α
v (t3)

]∣∣∣∣+ L

vmax

− 1
cvmax

ln

[
vmax
v (t3)

cosh
(√

βct1

)]
, (5.12)

t3 = t2 +
1
c

[
v−1 (t3)− v−1max

]
, (5.13)

T = t3 +
1√
αc
arctan

[√
c

α
v (t3)

]
(5.14)

and for linear type of resistance function we derive the following relations:

t1 = −1
b
ln

(
1− b

β
vmax

)
, (5.15)

t2 =
β

b2vmax
ln

(
1− b

β
vmax

)
+

α

b2vmax
ln

[
1 +

b

α
v (t3)

]

−1
b
ln

(
1− b

β
vmax

)
+
1−

√
1− γ

bγ
+

L

vmax
− v (t3)
bvmax

, (5.16)

t3 = t2 −
1
b
ln

(
1−

√
1− γ

γ

)
, (5.17)

T = t3 +
1
b
ln

[
1 +

b

α
v (t3)

]
. (5.18)

The Figure 5.1 shows a typical sample speed profile for this type of optimal strategy.
In the case t1 = t2 we need to determine the values of three unknown parameters

t1 = t2, t3 and T . We cannot use the Equation (5.7), whereas the Equation (5.8) is still
applicable. With use of the Equation (5.8), integrating the variables x and v on separate
time intervals, comparing the values of these variables at switching points t1 and t3 and
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5.3. THE CALCULATION OF SWITCHING TIMES

Figure 5.1: A typical speed profile for t1 < t2, parameters α = 1, β = 1, c = 1, L = 1,
γ = 0.5, p = 0.7 and r = cv2

employing the conditions (5.4) and (5.5) we arrive at the following relation for calculation
of the value v (t3) in case of the resistance function r = cv2:

q

[
1 +

(
c

α
+
c

β
e2cL

)
v2 (t3)

] 3
2

+ pcv3 (t3) e
3cL−[

1 +

(
c

α
+
c

β
e2cL

)
v2 (t3)

]
·
[
q ecL+pγcv3 (t3) e

cL
]
= 0 .

(5.19)

The value of the maximal velocity vmax = v (t1) can be calculated afterwards from the
following relation

vmax =
v (t3) ecL√

1 +
(

c
α
+ c

β
e2cL

)
v2 (t3)

> v (t3) .

The last inequality determines which of the roots of the Equation (5.19) it is necessary to
choose in order to obtain a feasible solution of the problem. Equations for the determi-
nation of the values of switching times for the resistance function r = cv2 in case t1 = t2
are as follows:

t1 = t2 =
1√
βc
arctanh

(√
c

β
· vmax

)
, (5.20)

t3 = t1 +
1
c

[
v−1 (t3)− v−1max

]
, (5.21)

T = t3 +
1√
αc
arctan

[√
c

α
v (t3)

]
. (5.22)

For linear case we can use a similar approach and derive the following equation for
calculation of the value v (t3):

qbv (t3) + pb
2

βb ·
1− e− b2L

β

[
1 +

b

α
v (t3)

]−α
β

− γv (t3)

 · v (t3) ·1− e− b2L
β

[
1 +

b

α
v (t3)

]−α
β

 = qβ
1− e− b2L

β

[
1 +

b

α
v (t3)

]−α
β

 .
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Thereafter, we can determine the value of vmax = v (t1) via the relation

vmax =
β

b
·

1− e− b2L
β

[
1 +

b

α
v (t3)

]−α
β

 > v (t3) .

The values of the switching times for the linear type of resistance function r can be
calculated by use of the following relations:

t1 = t2 = −1
b
ln

(
1− b

β
vmax

)
, (5.23)

t3 = t1 +
1
b
ln

(
vmax
v (t3)

)
, (5.24)

T = t3 +
1
b
ln

[
1 +

b

α
v (t3)

]
. (5.25)

The Figure 5.2 shows a typical sample speed profile for this type of optimal strategy (i.e.
t1 = t2).

Figure 5.2: A typical speed profile for t1 = t2, parameters α = 1, β = 1, c = 1, L = 1,
γ = 0.5, p = 0.3 and r = cv2

We have determined the values of the switching times t1, t2, t3 and the total driving
time T for both possible types of driving strategy which follow directly from the Pontrya-
gin principle. We can choose the optimal case based on the value of the cost functional J .
This value can be calculated according to the following relation for quadratic resistance
function r

J =
pβ

c
ln cosh

(√
βct1

)
+ pc

√β
c
tanh

(√
βct1

)3 · (t2 − t1)+

pγα

c
ln
∣∣∣cos [√αc (T − t3)

]∣∣∣+ qT
(5.26)
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and for linear type of resistance function r

J =
pβ2

b2

[
e−bt1 +bt1 − 1 + b

(
1− e−bt1

)2
· (t2 − t1)

]
+

pγα2

b2

[
1 + b (T − t3)− eb(T−t3)

]
+ qT .

We easily choose the lower value (of course, if more than one of the two possible strategies
t1 = t2, resp. t1 < t2, is feasible). Some sample resulting values of the switching times
t1, t2 and t3 and total driving time T for quadratic and linear type of resistance function
r (v) can be found in the Table 5.1 and the Table 5.2, respectively.

p t1 t2 t3 T J

0 1.344 1.344 1.344 2.062 2.062
0.1 1.322 1.322 1.367 2.062 1.900
0.2 1.291 1.291 1.398 2.065 1.742
0.3 1.249 1.249 1.443 2.073 1.588
0.4 1.192 1.192 1.508 2.090 1.439
0.5 1.081 1.139 1.600 2.126 1.290
0.6 0.854 1.209 1.737 2.206 1.116
0.7 0.691 1.323 1.935 2.348 0.924
0.8 0.549 1.512 2.244 2.595 0.705
0.9 0.402 1.901 2.860 3.132 0.442
0.99 0.173 4.051 6.185 6.309 0.093

Table 5.1: Sample values of the switching times t1, t2 and t3 and total driving time T for
quadratic resistance function r and input parameters α = 1, β = 1, γ = 0.5, L = 1 and
c = 1 for various values of parameter p

p t1 t2 t3 T J

0 1.585 1.585 1.585 2.170 2.170
0.1 1.568 1.568 1.603 2.170 2.015
0.2 1.546 1.546 1.626 2.172 1.861
0.3 1.519 1.519 1.657 2.176 1.710
0.4 1.485 1.485 1.699 2.184 1.562
0.5 1.443 1.443 1.758 2.201 1.417
0.6 1.389 1.389 1.845 2.234 1.276
0.7 1.063 1.463 1.997 2.322 1.082
0.8 0.693 1.821 2.355 2.612 0.888
0.9 0.405 2.724 3.259 3.437 0.633
0.99 0.106 9.571 10.106 10.163 0.201

Table 5.2: Sample values of the switching times t1, t2 and t3 and total driving time T for
linear resistance function r and input parameters α = 1, β = 1, γ = 0.5, L = 1 and c = 1
for various values of parameter p

The Figure 5.3 displays the values of the cost functional J for both types of resistance
functions r for various values of the parameter p.
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5.4. ANALYSIS OF THE SOLUTION - CRITICAL PARAMETER

Figure 5.3: Sample profile of values of the cost functional J for parameters α = 1, β = 1,
c = 1, L = 1, γ = 0.5 in dependence on parameter p for linear and quadratic type of
resistance function r

A different approach for determination of the optimal control strategy via the notion
of critical parameter and theory of nonlinear parametric programming will be introduced
in the Section 5.4.

5.4. Analysis of the solution - critical parameter

We have determined the way of calculation of the switching times and the total driving
time for both possible control strategies following from the Pontryagin principle, i.e. with
t1 = t2 or t1 < t2. As it is obvious from the numerical results shown in the Section 5.3,
we can conjecture that there exists a certain value of the input parameter p (that we
will further call critical parameter and denote as pcr) such that for p ≤ pcr the optimal
solution satisfies the relation t1 = t2 whereas for p > pcr it holds t1 < t2 (if the remaining
input parameters α, β, γ, L and c are fixed). The Figure 5.4 shows the dependence of the
optimal control strategy on the input parameter p as well. Let us verify this conjecture and
determine the value of pcr with use of the theory of nonlinear parametric programming (for
corresponding concepts, exact formulations and proofs of the theorems see Bank [1]). We
will further assume the resistance function r = cv2 again. For linear resistance function r =
bv we only derive the necessary condition for critical parameter pcr.

Figure 5.4: Typical speed profiles for parameters α = 1, β = 1, c = 1, L = 1, γ = 0.5,
various values of parameter p and resistance function r = cv2
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First, we rewrite the original optimal control problem (5.1)–(5.5) by use of the The-
orem 10 into the form of a nonlinear programming problem. We wish to minimize the
objective function (5.26) with respect to the equalities

ln

∣∣∣∣∣∣
√
βc (t3 − t2)

sinh
(√

βct1
)

cos [
√
αc (T − t3)]

+
cosh

(√
βct1

)
cos [

√
αc (T − t3)]

∣∣∣∣∣∣
+
√
βc (t2 − t1) tanh

(√
βct1

)
− cL = 0 ,

(5.27)

√
α tan

[√
αc (t3 − T )

]
·
[√
βc (t3 − t2) + coth

(√
βct1

)]
+ β = 0 (5.28)

and inequalities
0 ≤ t1 ≤ t2 ≤ t3 ≤ T . (5.29)

We shall denote by M (p) the set of all feasible solutions of the specified nonlinear
programming problem, i.e. the set of all (t1, t2, t3, T ) satisfying (5.27)–(5.29) for a given
p. It is easy to see that the point-to-set mapping M (p) is continuous in p for all p ∈ 〈0, 1)
(the set of feasible solutions of the problem actually does not depend on p).

Lemma 4. The point-to-set mapping

ψ (p) := {(t1, t2, t3, T ) ∈M (p) |J (t1, t2, t3, T ; p) = ϕ (p)} ,

where
ϕ (p) := inf

(t1,t2,t3,T )∈M(p)
J (t1, t2, t3, T ; p) ,

is upper semicontinuous (according to Berge - see Bank [1]) for every 0 ≤ p ≤ pmax < 1,
pmax ∈ (0, 1).

Proof. The mapping ϕ represents the optimal value of the cost functional J specified in
the Equation (5.26) for a fixed value of p. The mapping ψ is a point-to-set mapping which
assigns to every fixed value of p ∈ 〈0, pmax〉 a set of all optimal solutions of the given
nonlinear programming problem, i.e. the set of all optimal (t1, t2, t3, T ). The mapping M
is also lower semicontinuous (according to Berge) on 〈0, 1). Further, J = J (t1, t2, t3, T ; p)
is upper semicontinuous on M (p) × p for a fixed parameter p. Thus, ϕ is an upper
semicontinuous mapping for every p ∈ 〈0, pmax〉 (see Bank [1]).
Let us note that M is a non-empty set for every p ∈ 〈0, pmax〉. Further, there exists a

value Tmax such that all (t1, t2, t3, T ) ∈ ψ (p) satisfy the relation T ≤ Tmax for every p ∈
〈0, pmax〉 (the value Tmax obviously depends on pmax). Therefore, we may restrict (without
loss of generality) the set of all feasible solutions M (p) of the problem (5.26)–(5.29) on
those satisfying T ≤ Tmax for arbitrary p ∈ 〈0, pmax〉 (assuming Tmax large enough). The
set of all (t1, t2, t3, T ) satisfying (5.29) as well as the relation T ≤ Tmax is a compact metric
space. Further, mappingM is closed in p for every p ∈ 〈0, pmax〉 sinceM is continuous in p
and the set of all (t1, t2, t3, T ) satisfying (5.27)–(5.29) is closed. Therefore, the mapping
ψ is upper semicontinuous (according to Berge) for every 0 ≤ p ≤ pmax (see Bank [1]). ut
The assertion of the Lemma 4 ensures that if we choose some fixed p∗ and the corre-

sponding optimal solution
(
t̂∗1, t̂

∗
2, t̂

∗
3, T̂

∗
)
of (5.26)–(5.29), then considering p sufficiently

close to p∗ we obtain optimal solution
(
t̂1, t̂2, t̂3, T̂

)
close to

(
t̂∗1, t̂

∗
2, t̂

∗
3, T̂

∗
)
.

Now, let us introduce the notion of the critical parameter pcr and describe its calcu-
lation.
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Definition 14. A parameter p is said to be the critical parameter of the problem (5.26)–
(5.29) (and we shall further denote it as pcr) if there exists an ε > 0 such that for p = pcr

the nonlinear programming problem (5.26)–(5.29) has an optimal solution with property
t̂1 = t̂2 and for p ∈ (pcr, pcr + ε) the corresponding optimal solution satisfies t̂1 < t̂2.

Lemma 5. Let pcr be the critical parameter of the problem (5.26)–(5.29). Then

pcr =
1

2cv3cr + 1
, where vcr =

√√√√ 1− η2

c
β
+ c

α
e−2cL

(5.30)

and η is the unique solution, satisfying the relation η > e−cL, of the equation

2η3 e3cL−3η2 e2cL+γ = 0 . (5.31)

Proof. In the Section 5.2 we derived the values t1, t2, t3 and T under the assumption t1 <
t2 (the Equations (5.11)–(5.14)). According to the Lemma 4, mapping ψ (p) is upper
semicontinuous (according to Berge) for every 0 ≤ p ≤ pmax < 1, pmax ∈ 〈0, 1). Thus,
we may use the Equations (5.11)–(5.14) and letting t2 → t+1 (right-sided limit) we arrive
after some modifications at the Equation (5.31).
Let us show the uniqueness of the solution to the Equation (5.31) for η > e−cL. This

can be proved by setting

F (η) := 2η3 e3cL−3η2 e2cL+γ .

Then the following relations can be easily verified:

F
(
e−cL

)
= γ − 1 < 0 , lim

η→∞
F (η) =∞ , F ′ (η) > 0 on

(
e−cL,∞

)
.

Therefore, F (η) is a strictly increasing function on
(
e−cL,∞

)
with values of opposite

sign in boundary points of the interval. Hence, the Equation (5.31) has a unique solution
on

(
e−cL,∞

)
. The interval

(
e−cL,∞

)
corresponds to all feasible values of the velocity

v > 0 under assumption u ∈ 〈−α, β〉. ut

Theorem 11. Let
(
t̂1, t̂2, t̂3, T̂

)
be the optimal solution of the problem (5.26)–(5.29). Then

either t̂1 = t̂2 for every p ∈ (0, 1) or there exists a unique value pcr with the property that
for p ∈ (0, pcr) the optimal solution satisfies t̂1 = t̂2 and for p ∈ (pcr, 1) the relation t̂1 < t̂2
is fulfilled. Moreover, the value pcr can be found via the Equation (5.30).

Proof. Let us assume that there exists a parameter p∗ such that for p ∈ (p∗ − ε, p∗),
ε > 0 being sufficiently small, the problem (5.26)–(5.29) has an optimal solution with
property t̂1 < t̂2 and for p = p∗ the corresponding optimal solution satisfies t̂1 = t̂2.
Then the necessary condition for p∗ is given by (5.30) (with pcr replaced by p∗). We
have shown previously that there exists a unique such value p∗, i.e. the existence of p∗

implies that pcr does not exist. Further note that for p = 0 (time optimal control) the
corresponding optimal solution

(
t̂1, t̂2, t̂3, T̂

)
satisfies the relation t̂1 = t̂2 = t̂3. If for p > 0

the corresponding optimal solution satisfies t̂1 < t̂2, then the relations (5.10) and (5.13)
have to be fulfilled. However, the mapping ψ is upper semicontinuos (according to Berge)
for every 0 ≤ p ≤ pmax < 1, pmax ∈ (0, 1). Hence, for p > 0 (p being sufficiently close
to 0) the optimal solution has to satisfy t̂1 = t̂2. Consequently, p∗ cannot exist without
appearance of pcr and that is a contradiction. ut
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Numerical results show that for p large enough the optimal solution always satis-
fies t̂1 < t̂2 and therefore we may introduce a conjecture that the first variant described
in the Theorem 11 (i.e. t̂1 = t̂2 for all p ∈ (0, 1)) actually does not occur.
For linear type of resistance function r we may use a similar approach and derive the

following necessary condition for pcr:

pcr =
1

1 + bv2cr
,

where vcr is the unique solution of the following equation on
〈
0, β

b

〉
:

(
1− b

β
· vcr

)β

·
(
1 +

b

α
· 1−

√
1− γ

γ
· vcr

)α

− e−b2L = 0 .

Let us note that for α = 1, β = 1, L = 1, γ = 0.5 and under assumption of the
resistance function r = v2 (resp. r = v) we obtain the value of critical parameter pcr =
0.48347 (resp. pcr = 0.64384).
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6. Energy efficient train control on
a track with non-zero gradient

This chapter deals with the energy efficient train control under additional assumption
of a non-zero track gradient. We shall discuss the case of the uphill and downhill drive
with prescribed gradient of the track. We introduce the optimal driving strategy as well
as calculation of the switching times for all types of optimal control strategy. Further, we
will discuss the concept of the critical time and explain its significance for the choice of
the optimal type of control strategy. For downhill drive there are another two characteris-
tic values of the driving time that determine the optimal strategy which we are going to
investigate. For this case, the Pontryagin principle admits also a completely different opti-
mal driving strategy for certain values of input parameters of the problem in comparison
to the basic energy efficient train control problem. Let us note that most of the results
discussed in this chapter have not been published yet and will be a subject of author’s
further investigation.

6.1. Formulation of the problem

Throughout this chapter we are going to deal with the following optimal control problem:

J =
∫ T

0
u+v dt → min (6.1)

with respect to the system of differential equations

ẋ (t) = v (t) , (6.2)

v̇ (t) = u (t)− r (v) + g (6.3)

and boundary conditions
x (0) = 0 , v (0) = 0 , (6.4)

x (T ) = L , v (T ) = 0 , (6.5)

where function u+ fulfills the relation

u+ (t) :=

{
u (t) for u (t) > 0
0 for u (t) ≤ 0 .

Similar properties of the relevant functions to those presented in the Section 3.1 will
be applied for this type of optimal control problem as well. We assume that the cont-
rol variable u is a piecewise continuous function mapping the interval [0, T ] into [−α, β],
where α, β > 0 are given constants and r = r (v) is a differentiable function (with respect
to v) with the properties r, r′ ≥ 0, r (0) = 0 and r′ (v) v is a nondecreasing function for
v ≥ 0. We shall illustrate our considerations in this chapter utilizing the linear resistance
function r = bv (satisfying the required properties). A generalization to other common
types of resistance function is only a technical matter. To simplify our future considerati-
ons, we shall further assume that the constant g satisfies g ∈ (−α, β). The general case
g = g (x) will be briefly discussed in the next section (in such a case g is assumed to be
at least continuous and (obviously) constrained).
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6.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

Let us recall that the problem (6.1)–(6.5) describes the motion of a train along a
straight track of length L > 0 with minimal consumption of electric energy J and with
a constant gradient. Parameter g represents the gravitational acceleration caused by the
track gradient (obviously, g > 0 corresponds to downhill drive whereas g < 0 describes an
uphill drive with a constant gradient). Without loss of generality let us further assume
that the mass of the train m = 1. The phase coordinates x and v correspond to position
and speed of the train, respectively. The given parameter T represents the time that is
available according to the timetable for the train to complete the track. The function r
represents the frictional resistance.

6.2. Description of optimal control strategy

In this section we are going to develop the optimal control strategy for the problem (6.1)–
(6.5). First, we need to determine the value of the minimum time Tmin again that it is
possible to complete the track within. Solving the corresponding minimum time problem
(i.e. J = T → min .) we easily arrive at the standard “bang-bang” control.
As it is obvious, the value of the time Tmin can be exactly determined if we specify

the form of the resistance function r. Under assumption r (v) = bv (b > 0) we obtain the
following relation

Tmin =
1
b
ln η ,

where η has to satisfy the equation

(α+ β) eLb2/(α+β) ·η(α−g)/(α+β) − (α− g) · η − β − g = 0 .

Let us further assume that the relation T > Tmin is satisfied for the given time T .
The following considerations determine the character of the optimal control strategy.

First, let us introduce the Hamilton function in the form

H = λ0u
+v + λ1v + λ2 [u− r (v) + g] ,

where (without loss of generality) we consider λ0 = −1. The other two Lagrange mul-
tipliers λ1 and λ2 are continuous solutions of the adjoint system

λ̇1 = −∂H
∂x
= 0 ,

λ̇2 = −∂H
∂v
= u+ − λ1 + λ2r

′ (v) .

The Pontryagin maximum principle yields the following optimality condition (here (x̂, v̂; û)
denote the optimal controlled process):

−u+v̂ + λ1v̂ + λ2 [û− r (v̂) + g] = max
u∈〈−α,β〉

[
−u+v̂ + λ1v̂ + λ2 (u− r (v̂) + g)

]
.

This relation can be simplified for û ≥ 0 into the following form

û (λ2 − v̂) = max
u∈〈0,β〉

[u (λ2 − v̂)]
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and similarly for û < 0 into form

ûλ2 = max
u∈〈−α,0〉

[uλ2] .

Summarizing this we obtain the relation

û (t) =



β for λ2 (t)− v̂ (t) > 0 ,
not specified in 〈0, β〉 for λ2 (t)− v̂ (t) = 0 ,
0 for λ2 (t)− v̂ (t) < 0 ∧ λ2 (t) > 0 ,
not specified in 〈−α, 0〉 for λ2 (t) = 0 ,
−α for λ2 (t) < 0 .

(6.6)

Further, let us assume that λ2 (t) = v̂ (t) on a nontrivial interval I ⊂ 〈0, T 〉. Then,
λ̇2 (t) = ˙̂v (t) on I. Hence, it holds the following relation

û− r (v̂) + g = û− λ1 + v̂r
′ (v̂) on I .

Therefore,
λ1 = r (v̂) + v̂r

′ (v̂)− g on I.

Thus, with respect to the relation λ̇1 ≡ 0 on 〈0, T 〉 and by utilizing properties of the
function r (namely, r, r′ ≥ 0 and r′ (v) v is nondecreasing for v ≥ 0) the previous equation
implies the relation ˙̂v ≡ 0 on I which yields the optimal singular control û = r (v̂)−g ≥ 0
on I (speed holding driving mode).
The second singular case can be easily excluded for g ≤ 0 by differentiating the

relation λ2 (t) = 0 on a nontrivial interval Ī ⊂ 〈0, T 〉 and utilizing the properties of the
function r. However, for g > 0 (downhill drive) it cannot be generally excluded and occurs
for certain values of input parameters of the problem. In such a case, by differentiating
the relation λ2 (t) = 0 we obtain λ̇2 (t) = 0 which results in the relation λ1 (t) ≡ 0 on Ī.
However, λ̇1 (t) ≡ 0 on 〈0, T 〉. Thus, λ1 (t) ≡ 0 on 〈0, T 〉. Hence

λ̇2 = û
+ + λ2r

′ (v̂) (6.7)

on 〈0, T 〉. By (6.7) the function λ2 is nondecreasing provided λ2 > 0 and nonincreasing
if λ2 < 0. Let us denote by tl the left endpoint of the interval Ī. If λ2

(
t̃
)
> 0 for

t̃ ∈ 〈0, tl), then λ2 (t) > 0 for all t ≥ t̃. That is a contradiction with the assumption λ2 ≡ 0
on Ī. Hence, λ2 (t) ≤ 0 for t ∈ 〈0, tl) ∪ Ī. The previous considerations along with the
condition (6.5) yield the relation λ2 (t) ≤ 0 for t ∈ 〈0, T 〉. Therefore, û (t) ≤ 0 on 〈0, T 〉.
Such a control yields the value of the cost functional J = 0 and therefore would

be optimal. However, to ensure a feasible control of this type the value of the time T
has to be sufficiently large to complete the track only with coasting and braking. The
minimum value of the time T (that we shall further denote as Tc) that yields a feasible
control of this type can be determined as the solution of the minimum time problem under
assumption u ∈ 〈−α, 0〉. Therefore,

Tc =
1
b
lnω ,

where ω satisfies the equation

α eLb2/α ·ω(α−g)/α − (α− g) · ω − g = 0 .

Summarizing the previous considerations we can prove the following theorem.
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Theorem 12. Let (x̂ (t) , v̂ (t) ; û (t)), t ∈ 〈0, T 〉 be the energy optimal solution of (6.1)–
(6.5). Then for g ≤ 0 it holds

û (t) =


β for λ2 (t)− v̂ (t) > 0 ,
r (v̂)− g ≡ const. for λ2 (t)− v̂ (t) = 0 ,
0 for λ2 (t)− v̂ (t) < 0 ∧ λ2 (t) > 0 ,
−α for λ2 (t) < 0 ,

(6.8)

where λ2 is defined by the corresponding adjoint system. For g > 0 there exists a certain
value T > Tmin (which we shall further denote as Tc) that for T < Tc the previous
relation (6.8) is fulfilled, whereas for T ≥ Tc the optimal solution satisfies

û (t) =


0 for 0 ≤ t < tc (coasting),
−α for tc ≤ t < Tc (full braking),
−g for Tc ≤ t < T (standstill),

where 0 < tc < Tc ≤ T .

Let us note that for g > 0 and T ≥ Tc the optimal solution described in the previous
theorem satisfies J = 0 and for T > Tc is not unique.
It can be easily shown that the value of the switching time tc can be determined via

the following relation for r (v) = bv

tc = T ·
(
1− g

α

)
+
bL

α
.

The following theorem specifies the optimal order of the driving modes for all values
of the input parameters except for the case g > 0 and T ≥ Tc. It can be proved with use
of the properties of the Lagrange multipliers (especially their continuity) and involving
the conditions (6.4) and (6.5).

Theorem 13. Let (x̂ (t) , v̂ (t) ; û (t)), t ∈ 〈0, T 〉 be the energy optimal solution of (6.1)–
(6.5). Then for g ≤ 0 there exist t1, t2, t3, where 0 < t1 ≤ t2 < t3 < T , such that

û (t) =


β for 0 ≤ t < t1 ,
r (v̂)− g ≡ const. for t1 ≤ t < t2 ,
0 for t2 ≤ t < t3 ,
−α for t3 ≤ t ≤ T .

The assertion of this theorem is valid for g > 0 and T < Tc as well (where the value Tc

was specified in the Theorem 12).

Let us note that the general case g = g (x) yields the same optimal driving modes
as specified in (6.6). The first singular case (i.e. λ2 (t) = v̂ (t) on a nontrivial interval I)
results again in the speed-holding control mode (i.e. û = r (v̂)− g (x̂) ≥ 0 on I). However,
the second singular case (i.e. λ2 (t) = 0 on a nontrivial interval Ī) cannot be generally
easily excluded or described.
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6.3. The calculation of switching times

Let us now determine the values of the switching times t1, t2 and t3. Of course, this
determination is possible if the type of resistance function is specified. We shall further
assume that r (v) = bv.
First, let us suppose that the relation t1 < t2 holds. The adjoint variable λ1 satisifies

λ1 (t) ≡ C1 = const. on 〈0, T 〉. Then, the following condition is satisfied on (t1, t2):

λ̇2 = r (vmax)− g − C1 + vmax · r′ (vmax) ≡ 0 , (6.9)

where vmax is the speed-holding velocity. Further,

H
(
t−1
)
= −βvmax + C1vmax + vmax · [β − r (vmax) + g] , (6.10)

H
(
t−3
)
= C1v (t3) , (6.11)

where H
(
t−1
)
and H

(
t−3
)
denote the corresponding left-sided limits of the Hamilton

function. The Equations (6.9)–(6.11) yield optimal value of the speed v (t3) for r (v) = bv

v (t3) = vmax ·
bvmax

2bvmax − g
.

Consequently, integrating the Equations (6.2)–(6.3) on corresponding time intervals, com-
paring the values of the variables x and v in the switching times and employing conditions
(6.4)–(6.5) we obtain the following relation for calculation of the velocity vmax:

(bvmax − g + α) · ln (α− g) · (bvmax − g)
(α− g) · (2bvmax − g) + b2v2max

− α · ln bvmax − g

2bvmax − g

= (β + g − bvmax) · ln
β + g − bvmax

β + g
+ bL2 − b2vmaxT

and derive the following relations for calculation of the switching times:

t1 = −1
b
ln

(
1− b

β + g
vmax

)
,

t2 = T +
1
b
ln

(α− g) · (bvmax − g)
(α− g) · (2bvmax − g) + b2v2max

,

t3 = T − 1
b
ln

[
1 +

b2v2max
(α− g) · (2bvmax − g)

]
.

In the case t1 = t2 we need to determine the values of two unknown parameters t1 = t2
and t3. Integrating the variables x and v on separate time intervals, comparing the values
of these variables at switching points t1 and t3 and employing the conditions (6.4) and
(6.5) we arrive at the following relation for calculation of the switching time t1 in case of
the resistance function r = bv:

αα eLb2+αbT−bgT =
[
(α− g) ebT −β ebt1 +β + g

]α
· eβbt1

The equation for determination of the value of the remaining switching time t3 in case t1 =
t2 is as follows:

t3 =
1
b
ln
[
(α− g) ebT −β ebt1 +β + g

]
− 1
b
lnα .
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6.3. THE CALCULATION OF SWITCHING TIMES

We have determined the values of the switching times t1, t2 and t3 for both possible
types of driving strategy which follow directly from the Pontryagin principle. We can
choose the optimal case based on the value of the cost functional J . This value can be
calculated according to the following relation

J = β

(
β + g
b2
e−bt1 +

β + g
b

t1 −
β + g
b2

)
+ (bvmax − g) vmax (t2 − t1) .

We easily choose the lower value (of course, if more than one of the control strategies
t1 = t2, resp. t1 < t2, is feasible). Some sample resulting values of the switching times t1, t2
and t3 for linear type of resistance function r (v) and parameters g = 0.1 (downhill drive)
and g = −0.1 (uphill drive) can be found in the Table 6.1 and the Table 6.2, respectively.

T t1 t2 t3 J

2.110 1.449 1.449 1.449 0.752
2.200 1.211 1.211 1.769 0.560
2.277 1.141 1.141 1.908 0.506
2.400 0.842 1.295 2.079 0.450
3.000 0.475 1.927 2.767 0.297
4.000 0.298 2.891 3.825 0.180
5.000 0.221 3.808 4.854 0.118
7.000 0.147 5.501 6.882 0.052
10.000 0.097 5.684 9.895 0.006
10.101 0.095 0.095 9.995 0.005
10.500 0.055 0.055 10.395 0.002
11.054 0.000 0.000 10.949 0.000

Table 6.1: Sample values of the switching times t1, t2, t3 for linear resistance function r
and input parameters α = 1, β = 1, L = 1, c = 1 and g = 1 for various values of
parameter T

T t1 t2 t3 J

2.257 1.741 1.741 1.741 0.825
2.300 1.586 1.586 1.944 0.711
2.386 1.498 1.498 2.127 0.650
2.500 1.046 1.664 2.281 0.604
3.000 0.613 2.255 2.845 0.486
4.000 0.373 3.345 3.897 0.372
5.000 0.274 4.403 4.923 0.312
6.000 0.218 5.446 5.940 0.274
8.000 0.155 7.511 7.959 0.228
10.000 0.121 9.560 9.969 0.202

Table 6.2: Sample values of the switching times t1, t2, t3 and maximum velocity vmax for
linear resistance function r and input parameters α = 1, β = 1, L = 1, c = 1 and g = −1
for various values of parameter T

The Figure 6.1 displays the values of the cost functional J for linear type of resistance
function r for various values of the parameter T for both uphill and downhill drive.
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Figure 6.1: Sample profile of values of the cost functional J for parameters α = 1, β = 1,
c = 1, L = 1 in dependence on parameter T for linear type of resistance function r and
downill (g = 1), resp. uphill (g = −1), drive

A different approach for determination of the optimal control strategy with use of the
notion of the critical time and nonlinear parametric programming will be introduced in
the Section 6.4.

6.4. Analysis of the solution - critical time

Numerical calculations (based on algorithms from Bazaraa et al. [2]) show that the choice
of the optimal control strategy depends only on the given value of the entry parameter T .
The Figure 6.2 and the Figure 6.3 show the dependence of the optimal control strategy
on the input parameter T as well.

Figure 6.2: Typical speed profiles for parameters α = 1, β = 1, c = 1, L = 1, g = −0.1,
various values of parameter T and resistance function r = bv

A similar analysis to that introduced for the basic energy efficient train control problem
in the Section 3.4 can be performed in this case as well. The resulting relation for calcu-
lation of the critical time under assumption of analogical condition to the Hypothesis 1
is as follows

Tcr =
1
b
ln
(β + g)
(α− g)

· (bvcr − g)2 + α (2bvcr − g)
(bvcr − g) · (β + g − bvcr)

,
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Figure 6.3: Typical speed profiles for parameters α = 1, β = 1, c = 1, L = 1, g = 0.1,
various values of parameter T and resistance function r = bv

where vcr can be determined according to the following equation(
bvcr − g

2bvcr − g

)α

·
(
β + g − bvcr

β + g

)β+g

·
[

(α− g) · (bvcr − g)
(α− g) · (2bvcr − g) + b2v2cr

]g−α

= e−b2L . (6.12)

This relation yields for g < 0 (according to numerical results) one positive solution sa-
tisfying Tcr > Tmin and thus the change of the optimal control strategy (from t1 = t2 to
t1 < t2) in relation to the value of the input parameter T can occur for at most one value
of T (analogy to the basic energy optimal problem).
An interesting behaviour of the optimal solution can be observed for g > 0 (downhill

drive). In such a case the Equation (6.12) results in two distinct values of Tcr (this can
be well understood in the Figure 6.3). One of them corresponds to the notion of the
critical time as was defined for the basic energy-efficient train control problem (in the
Definition 13). The other one (let us denote it further as T ∗) represents the reverse case
where the optimal solution of the problem (6.1)–(6.5) satisfies the relation t1 < t2 for
T ∈ (T ∗ − ε, T ∗), where ε > 0 is sufficiently small, and t1 = t2 for T = T ∗. Thus, the
optimal solution satisfies the relation t1 < t2 for T ∈ (Tcr, T

∗). The value T ∗ can be also
found as the transition value where for T > T ∗ the coasting phase (i.e. û = 0) leads to
accelerating of the train (which excludes the speed-holding phase). It can be therefore
determined per the relation

T ∗ =
1
bg
ln

[
ααββ eLb2

(α− g)α · (β + g)β

]
.

This behaviour will be a subject of author’s further investigation and will be introduced
in a prospective paper.
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7. Conclusion
7.1. Summary of obtained results

The thesis described the character of the optimal control strategy and the way of calcu-
lation of the switching times for the energy-efficient train control problem and its modifi-
cations. We performed an analysis of the solution for the presented mathematical models
with use of nonlinear parametric programming. We introduced the concept of the criti-
cal time (or critical parameter) and explained its significance as the deciding factor for
developing of the optimal control strategy.
We presented the basic energy-efficient train control problem under assumption of

standard types of resistance function as well as some of the natural generalizations of the
problem. We introduced and analysed the problem with speed constraint and discussed
the problem with a non-zero track gradient. We formulated and completely solved the
time-energy efficient train control problem which represents a different view on this area.
The emphasis was put mainly on exact form of solutions where the application of

numerical methods is restricted only on solving algebraic equations. Let us note that most
of the results presented in this thesis represent a different approach towards solving this
problem than introduced in previous papers. This approach enabled a detailed analysis
of the solution with use of analytical means.

7.2. Future directions

The energy-efficient train control problem can be generalized or modified in several ways.
The enhanced models can be more or less complicated than those presented in this thesis.
However, the general behaviour of the solution of such problems will remain similar. The
introduced optimal driving modes will be present in most of the models what was proved
by implementation of the results on real railway or suburban traffic with positive results.
The critical time (or critical parameter) and the relating analysis with use of nonlinear
parametric programming can be applied on several models as well.
The natural generalizations and extensions to our results can be achieved especially

for the speed constraints or track gradient. We may assume local speed constraints repre-
sented by the Equation (4.8) as it was introduced in the Section 4.3. The general form
of the track gradient can be represented by a function g (x) describing varying profile of
the track as it was mentioned in the Section 6.2. There will be performed a further in-
vestigation of the behaviour of the problem with constant track gradient as well. We may
also further investigate steep inclines (declines) as it was discussed by Cheng et al. [6] or
Howlett et al. [11]. Moreover, a combination of the restrictions and further assumptions
may be applied. Further, there might be used another types of resistance functions, e.g.
exponential form of the function r (v).
Most of the input parameters presented in this thesis are not constant in real situations.

Usually, we may observe stochastical behaviour with a mean value and a certain standard
deviation based on the corresponding probability distribution. This can be applied e.g. for
the maximum allowable accelaration of the train, for resistance function r or constant γ
and results in a completely different approach to the problem.
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7.2. FUTURE DIRECTIONS

The main aim of this thesis was to present an exact form of the solution for the energy
efficient train control problem and its modifications where it is applicable. However, most
of the problems mentioned in this section lead us to use some more or less sophisticated
numerical methods or methods of artificial intelligence which was out of the scope of this
thesis and will be a subject of author’s future investigation.
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8. List of the used abbreviations and
symbols

a, b, c coefficients in the resistance functions

α, β minimum and maximum allowed acceleration of the train

ϕ (λ) optimal value of the cost functional for a nonlinear parametric pro-
gramming problem

γ coefficient in the cost functional relating to return of electrical energy
while braking

g (x) gravitational acceleration caused by the track gradient

H Hamilton function

J cost functional

L length of the track

l.s.c.-B lower semicontinuous mapping (according to Berge)

l.s.c.-H lower semicontinuous mapping (according to Hausdorff)

λ0, λ1, λ2, µ Lagrange multipliers

m mass of the train

M (λ) set of all feasible solutions of a nonlinear parametric programming
problem for fixed value λ

N (x, t) function representing tangency conditions

p, q parameters in the cost functional for time-energy efficient train control

pcr critical parameter

r = r (v) frictional resistance

S (x, t) function representing constraint on the state variable

S(q) q-th derivative of the function S

t time variable

T time available according to timetable for the train to complete the
track

Tcr critical time

Tmin minimum time that it is possible to complete the track within
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t1, t2, t3 switching times

t+1 , t
−
1 right-sided (left-sided) limit of the corresponding function

u control variable

U control space

u.s.c.-B upper semicontinuous mapping (according to Berge)

u.s.c.-H upper semicontinuous mapping (according to Hausdorff)

v = v (t) velocity of the train along the track

vcr critical velocity

vmax maximum velocity achieved by the train along the whole track

vm maximum allowed velocity

x = x (t) position of the train along the track

ẋ derivative of the function x according to time

x = (x1, . . . , xn) state variables

X state space of the investigated object

(x̂(t); û(t)) optimal control process

ψ (λ) point to set mapping assigning to parameter λ the set of all optimal
solutions of the given nonlinear parametric programming problem
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