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Abstrakt

Predlozena disertacni prace se zabyva popisem charakteru optimalni strategie fizeni pro
elektricky vlak a vypoctem prepinacich okamziki mezi jednotlivymi optimalnimi jizdni-
mi rezimy pro standardni typy odporové funkce. S vyuzitim Pontrjaginova principu a
souvisejicich nastrojt teorie optiméalniho fizeni odvodime optimélni strategii fizeni a rov-
nice pro vypocet prepinacich okamziki véetné odpovidajicich rychlostnich profili. Kromé
zékladniho tvaru tlohy o energeticky optimalni jizdé vlaku budeme uvazovat i jeji modi-
fikace zahrnujici globalni rychlostni omezeni, sklon trati i ¢asové-energeticky optimalni
fizeni vlaku. Navic uvedeme i analyzu feSeni s vyuzitim teorie nelinedrni parametrické
optimalizace. Dtiraz je kladen na exaktni tvar feSeni s minimalnim vyuzitim numerickych
metod.

Summary

This thesis deals with the description of the nature of optimal driving strategy for an
electric-powered train as well as the calculation of switching times of optimal driving
regimes for standard types of resistance function. We apply the Pontryagin principle and
related tools of optimal control theory to develop the optimal driving strategy and to
derive equations for computation of switching times and the corresponding speed profiles.
Besides the basic form of the energy efficient train control problem we consider also its
modifications including the global speed constraint, track gradient as well as time-energy
efficient train control. Moreover, we analyse also the solution with use of the theory of
nonlinear parametric programming. The emphasize is put on exact forms of solutions with
a minimal use of numerical methods.
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1. Introduction

The basic problem of the energy efficient train control was formulated and solved in
some particular cases by Horn [8] in 1971 with use of the general form of the Pontryagin
principle and relating mathematical tools. Since then, it has become a typical problem
that can be solved with use of these means.

Many articles discussing this topic appeared especially during the nineties. The type
of the optimal strategy consisting of four successive control levels (full power, speed hol-
ding, coasting and full braking) was introduced by Howlett et al. [13, 14]. Among articles
dealing with various modifications of the basic problem we recall that Pudney et al. [26]
considered a vehicle with discrete control settings and speed limits. Howlett et al. [11] dis-
cussed a track with non-zero gradient. Both of these assumptions were assumed by Cheng
et al. [6] and Khmelnitsky [15]. Howlett and Pudney [12] summarized the above mentioned
results. This theoretical background enabled the development of on-board computational
systems (such as Metromiser or Freightmiser) for calculating of the efficient driving stra-
tegy which were successfully implemented in timetabled suburban and long-haul trains,
e.g. in Brisbane or Toronto (see Yee et al. [27]). Let us note that some alternative ap-
proaches to these and relating problems were discussed e.g. by Han et al. [7], Howlett et
al. [9, 10], Ko et al. [16], Li et al. [18], Liu et al. [19] and Pickhardt [20].

This thesis deals with the energy efficient train control problem and its modifications
and introduces a different approach to developing the optimal control strategy along
with exact calculation of the switching times and analysis of the solution based on the
mathematical tools of nonlinear parametric programming. Under assumption of most
common and typically used resistance functions and with use of the properties of the
Hamilton function and Lagrange multipliers we derive algebraic equations for computation
of the switching times for both feasible control strategies. Thereafter, we introduce the
notion of the critical time (or critical parameter in case of the time-energy efficient train
control problem) and explain its significance for determination of optimal control strategy.

The modifications of the basic energy optimal control problem discussed in this thesis
represent natural enhancement of the basic problem and yield significant results leading to
more realistic behaviour of the mathematical model. Assumption of the speed constraints
and track gradient broadens the applicability of the model. The time-energy efficient train
control enables a suitable combination of the energy optimal drive with respect to time
requirements and thus can be used to develop effective timetables.

Let us emphasize that the results presented in previous papers were more or less based
on use of numerical methods for solving optimal control problems and thus the analysis
of solution in the way introduced in this thesis could not have been performed. Most of
the results presented in this thesis were introduced in the papers [21]-[24]. All results are
illustrated with use of sample speed profiles.

Let us shortly mention the structure of the thesis. This introduction chapter is followed
by the overview of the basic theoretical results that we shall use to derive solution of the
later introduced optimal control problems and their analysis. There are basic concepts
and theorems of the optimal control theory including constraints on state variables. We
recall an interesting area of nonlinear parametric programming as well as general notions
relating to controllability and reachability of controlled systems necessary for analysis of
the feasible solutions of optimal control problems. The following Chapter 3 describes the
optimal control strategy for the energy efficient train control problem. This chapter as



well as the next three chapters dealing with various modifications of the basic problem
are organized as follows. First, we state the formulation of the problem including its
interpretation. Thereafter, we introduce the general optimal control strategy. The next
section describes the calculation of the switching times. Then we analyse the solution with
use of the nonlinear parametric programming. In the Chapter 4 we discuss the energy-
efficient train control problem with speed constraints. The following Chapter 5 deals with
the time-energy efficient train control problem. The Chapter 6 is devoted to the problem
of energy optimal train control under additional assumption of track gradient (downhill or
uphill drive). The last chapter summarizes the obtained results and introduces directions
for future investigations.



2. Some preliminaries

2.1. Optimal control theory and Pontryagin principle

This section introduces some essential concepts and assertions of optimal control theory,
especially the Pontryagin maximum principle, that we shall use in the following chapters
of this thesis to derive the optimal control strategy for the later specified train control
problems. Most of the theorems and notions from this section as well as the corresponding
proofs can be found in Cermak [5] and Pontrjagin et al. [25].

We are going to investigate the behaviour of an object whose specific state can be
described for a fixed point in time with use of n real numbers z,z,,...,z,. Let us
introduce a vector space X of the variable x = (z1,...,x,) as the state space of the
investigated object. The motion of the object denotes the change of the variables x4, ..., z,
in time ¢. In order to introduce the optimal control problem let us assume that the motion
of the object can be controlled by setting of certain parameters, that can vary in specific
boundaries throughout the course of time, i.e. by use of control. Let us further assume,
that this control can be specified by r real numbers uq, . .., u, depending on time. We shall
assume that their values belong to the set U C E,, where E, denotes an r-dimensional
Euclidian space. The set U will be referred to as the control space.

Definition 1. (Control) Vector variable u(t) = (uyi(t),...,u.(t)), defined on a certain
interval (0,T) and with values in the control space U C E,, will be denoted as the control.

Further, we will asume that the behaviour of the given object can be specified by the
following system of differential equations which can be rewritten in the vector form

x = f(x,u). (2.1)
The dot in the previous equation represents a time derivation, f(x,u) is a vector con-
sisting of elements fi(x,u), fo(x,u),..., fo(x,u), where x = (x1,29,...,2,) € X and
u = (uy,...,u,) € U. The system (2.1) will be denoted as the controlled system. Let us
further assume that the functions fi, ..., f,, are defined and continuous in all variables and
continuously differentiable in x1,zs, ..., x,. We shall restrict our further considerations

only on the following set of controls:

Definition 2. (Feasible controls) The set of controls u(t) will be called the set of
feasible controls, if all its elements are piecewise continuous functions defined on the
interval (0,T).

Definition 3. Let a,b € X. We say that a feasible control u(t),t € (0,T) transfers the
point from a location a to a location b, if the corresponding solution x(t) of the equation

x = f(x,u(t)) (2.2)
satisfying the initial condition
x(0) = a, acX (2.3)

is defined on the interval (0,T) and in the time T it crosses the point b, i.e. it satisfies
the condition

x(T) = b, bec X.



2.1. OPTIMAL CONTROL THEORY AND PONTRYAGIN PRINCIPLE

The pair (x(t);u(t)), t € (0,T) will be denoted as the controlled process transferring the
point from location a to b.

Basic optimal control problem. Let us choose points a, b in the state space X.
Among all feasible controls u(t), transferring the point from location a to location b, we
ought to find such a control u(¢) that the value of the functional

J = J(T,u) = /0 " o), u(t)) dt

is minimized. Here x(t) denotes the solution of the Equation (2.2) with the initial con-
dition (2.3), which corresponds to the control u(¢) and in time 7' this solution passes
through the point b. Simply, it could be expressed in the following form

J = /OT fo(x(t),u(t)) dt — min (2.4)
x(t) = £(x(1), u(t)) (2.5)
x(0) = a, x(T) =b, a,beX, uclU. (2.6)

Definition 4. The control 4(t), t € <0,T>, which is a solution of the problem (2.4)-
(2.6), is called optimal control and the corresponding trajectory X(t) is denoted as optimal
trajectory. The pair (X(t);a(t)), t € <0,T> will be called the optimal control process.

The maximum principle. For an easier formulation of this theorem we shall enhance
the system (2.1) with the equation

:tO - fO(X7 u)7

where the function f; was introduced in the definition of the functional J. Thus, we obtain
the following enhanced control system of equations

x'i:fi(xl,mg,...,xn,u), 7::0,17...,71. (27)

Further, we will investigate the system of equations for adjoint variables in the form

: n_ 9

h=-Y fk(x,u))\k, i=0,1,....n. (2.8)
Let us denote \* = (Ao, A1, ..., A\n), £ (x,u) = (fo(x,u), fi(x,u),..., fn(x,u)) and further
we introduce the Hamilton function H in variables x1,xo,...,Tp, U1, ..., Up, Aoy A1y. oy Ap
in the form (by symbol (.,.) we shall denote the scalar product)

H=H\, x,u) =\, f(x,u) = kﬁ: A fre(x,a). (2.9)

With use of this function we can easily rewrite the systems (2.7) and (2.8) into the form
of the Hamilton system

0H
xl_ai/\z’ Z_Ovla' » T,
oH
)\z:_al.i? 2_0717 v



2.2. A PROBLEM WITH CONSTRAINED STATE VARIABLES

Theorem 1. (The maximum principle) Let us choose points a, b in the state space X .
Let (x(t);u(t)), t € <0,T> be the optimal control process transferring the point from
location a to location b. Then, there exists a continuous non-zero solution \*(t) =

(Ao(t), A1(t), ..., Au(t)) on the interval <O,T> of the system

. H
)\i:_gxi(k*aﬁaﬁ% iZO,l,...,?’L (2'10)

such that the Hamilton function H satisfies for all t € <0,T> the mazimum condition

HO (), %(t), a(t)) = max H(\*(£), %(t), ). (2.11)

uelU
Moreover, H(A*(t),x(t),a(t)) = 0 and \o(t) is nonpositive and constant on <0,T>.

Remark. The mazimum principle represents a necessary condition for existence of the
optimal control process, not a sufficient one. It is a sufficient condition e.g. in case of
time optimization of linear control systems.

In case of a fixed value of the time 7" for the transfer of the point from location a to
location b, we obtain the following formulation of the maximum principle:

Theorem 2. (The maximum principle for the problem with a fixed time) Let
us choose points a,b in the state space X. Let (x(t);u(t)), t € (0,T) be the optimal
control process transferring the point from location a to location b (for a fized time T ).
Then, there exists a continuous non-zero solution N\*(t) = (Ao(t), A\1(t),..., A\n(t)) on the
interval (0,T) of the system (2.10) such that the Hamilton function H (see (2.9)) satisfies
for all't € (0,T) the mazimum condition (2.11). Moreover, H(X*(t),x(t),a(t)) = const.
and \o(t) is nonpositive and constant on (0,T).

Definition 5. (Singular control) Let u(t), ¢t € <O,T> be an extremal control, i.e. a

control, which satisfies for all t € <O7T> the mazximum condition
H(N™ (), (1), u(t)) = max H (X*(t), X(t), w).

Let there exist a nontrivial interval I and a set w(t) C U which for every t € I consists
of at least two elements and the following condition is satisfied

H(/\*(t>’ i(t), ﬁ(t)) = H(/\* (t>’ i(t>’ u)

for every u € w(t), t € I. Then the control u(t) is called the singular control on I and
the interval I is denoted as singular interval. We can determine the values of the singular
control on the interval I with use of derivations of the Hamilton function, if they exist.

2.2. A problem with constrained state variables

In this section we shall introduce the main concepts and theorems relating to the solution
of the optimal control problems with constrained state variables. The following notions



2.2. A PROBLEM WITH CONSTRAINED STATE VARIABLES

can be found mainly in Bryson et al. [4]. A more general attitude to this area is mentioned
in Pontrjagin et al. [25].
Let us enhance the problem (2.4)—(2.6) with the constraint on the state variable of
the inequality type
S(x,t) <0, (2.12)

where S is a scalar function. The Hamilton function is defined by the relation:
H =\ f) + uS@,

where S(@ is obtained by derivation of the function S given by (2.12) according to time ¢
until the resulting function is explicitly dependent on variable u (x is substituted by
f(x,u,t) where necessary). If the control variable u appears explicitly in the ¢-th deri-
vation of S according to time, we shall denote the constraint as of the ¢-th order. Then S(@
denotes the corresponding ¢-th derivation. The function p(t) is an additional Lagrange
multiplier. Further, on the constraint boundary it holds:

S@W =0 S=0 pult)<o.
Off the constraint boundary the following relations hold:
S <0, w=0.
The adjoint system of equations is in the form

T —(\*, ) — puSl), S@ —
AT =i = { —(\*, £), S@ < 0.

The necessary optimality condition is given by (2.11). Within the entry on the boundary
constraint there have to be fulfilled the so-called tangency conditions

S(x,t)

aer | SW(x,1)

N(x,t) = = 0.

S(q_l) (X, t)

Let us denote the entry point in time onto the constraint boundary as t; and the exit
point in time as t5. Let us choose the time ¢; as the point where the Lagrange multipliers
and the Hamilton function do not have to be continuous, whereas in time ¢, the continuity
must be fulfilled. Let us further denote with symbol ¢; the corresponding left-sided limit
of time ¢; and with ¢] the right-sided limit of #;. Then, the discontinuity of the Lagrange
multipliers A* and the Hamilton function H can be expressed with use of the following
relations

ON
*T 13—\ _ \*T [/4+ T
NT) = N+ g
ON
-\ +\ __TYiv
H<t1)—H(t1) ™ oty

where 7 is a ¢-dimensional vector of constant multipliers. These relations are called the
Jgump conditions. Let us note that the state variables x are continuous in time ¢y, i.e. it
holds x(¢7) = x(t]).

7



2.3. NONLINEAR PARAMETRIC OPTIMIZATION
2.3. Nonlinear parametric optimization

The last section of this chapter deals with the concepts and theorems from the area
of nonlinear parametric optimization, which enable us later to calculate a certain criti-
cal parameter. They are mainly related to continuity of the elements of solution to the
nonlinear optimization problem with a parameter. Most of this theoretical results with
corresponding proofs can be found in Bank [1].

In this section we assume the following nonlinear parametric optimization problem:

min{f(x,\) [x€ M(\)}, AeA, (2.13)

where M (A) C X, X and A are metric spaces and f is a function mapping X x A into
R U {400, —00}. Let us further denote

w:A—p(A):= inf f(x,))

x€EM(N)

the function corresponding to the optimal value of the cost functional f relating to pro-
blem (2.13) depending on the vector of parameters A. Let us further denote

PiA=d (A i={xe M) [ f(xA)=¢ )}

the mapping which assigns to every vector of parameters A a set of all optimal solutions x €
X of the problem (2.13).

Definition 6. Let (X, dx) and (A,dy) be metric spaces. The point-to-set mapping T :
A — 2% is a function mapping each X\ € A into a (possibly empty) subset ' (\) of X.

Remark. As it is customary, for a subset A of the metric space X and for arbitrary e > 0
the e-neighbourhood of the set A is the set

UA:={xeX|dx(x,A) <€}, where dx(x,A)= irelgdx (x,y)
y

and dy denotes the corresponding metric. If A is an empty set, then dx (x,A) is by
definition equal to +00. To avoid misunderstanding, we denote by the symbol V. B the e-
neighbourhood of the set B C A. We shall further assume the euclidean metric.

Definition 7. A point-to-set mapping I' : A — 2% is said to be

1. closed at a point \° if for each pair of sequences {\'} C A and {x'} C X, t=1,2,...
with the properties
M=\ xP e, xt—x°
it follows that x° € T\°;

2. upper semicontinuous (according to Berge or, simply, B) at a point \° if for each
open set Q containing TX° there exists a 6 = §(2) > 0 such that TA C Q for
every A € Vs {\°};

3. lower semicontinuous (according to Berge or, simply, B) at a point \° if for each
open set §) satisfying QN TN #£ O there exists a 6 = § () > 0 such that QNTX # ()
for every A € V5 {\°};



24. A REMARK ON CONTROLLED SYSTEMS

4. upper semicontinuous (according to Hausdorff or, simply, H) at a point \° if for
each € > 0 there exits a § > 0 such that TA C UT'X° for every A € V5 {\°};

5. lower semicontinuous (according to Hausdorff or, simply, H) at a point \° if for
each € > 0 there exits a § > 0 such that TA® C U\ for every A € Vs {\°}.

Remark. We use, according to Bank [1], the following abbreviations: w.s.c.-B for up-
per semicontinuous (B) mapping, l.s.c.-B for lower semicontinuous (B) mapping and by
analogy u.s.c.-H, l.s.c.-H.

Remark. The following relations hold (see Bank [1]):
u.s.c.-B= w.s.c.-H, l.s.c.-H=l.s.c.-B.

Definition 8. A point-to-set mapping I : A — 2% is continuous at \° if it is u.s.c.-H
and 1.s.c.-B at \°.

Lemma 1. If the mapping ' is u.s.c.-H at \° and if the set T\° is closed, then the
mapping I is closed at \°.

Let us further assume the problem (2.13) again. The following theorems describe
the continuity properties of the mappings which determine the optimal solution of the
problem.

Theorem 3. Let M be a closed mapping at \°, M (\°) be a non-empty set, f be a con-
tinuous function and the metric space X be compact. Then ¢ is lower semicontinuous
at \°; ¢ is also upper semicontinuous at \° if and only if the mapping 1 is u.s.c.-B at \°.

Theorem 4. ¢ is upper semicontinuous at \° if M is l.s.c.-B at \° and f 1is upper
semicontinuous on M (A\°) x {\°}.

2.4. A remark on controlled systems

For the sake of completeness we mention also some basic notions and theorems relating
to controllability and reachability of controlled systems. The Pontryagin principle itself
does not deal with the existence of the optimal control. Therefore, it is convenient to deal
with the question whether there exists a feasible control which transfers the system from
an initial state to a target point because a solution which satisfies the maximum principle
does not have to be necessarily optimal. We recall that the Pontryagin principle is only
a necessary condition. For more detailed explanation of the following concepts and exact
proofs of the theorems see e.g. Brunovsky [3].
Let us assume the controlled system (2.1) again.

Definition 9. A state x; is called reachable if there exists a controlu € U that transfers
the state of the system from the initial state x¢ to X1 in some finite time T.

Definition 10. The set Q(T,xq) = {x (T, %0, u) |u € U}, i.e. the set of all points x that
the initial point xo can be transferred to in time T, is called the reachability region (from
point Xq in time T').



24. A REMARK ON CONTROLLED SYSTEMS

Definition 11. The system (2.1) is reachable at time T if every state x; in the state
space X s reachable at time T from the initial point X,.

Let us denote

Q+ (Xo) = U Q (T, Xo)

>0

the set of all x € X that the initial state xq can be transferred to with use of a feasible
control u.

Definition 12. The system (2.1) is called
e locally controllable from xq if Q" (xq) contains the surrounding of the point X,
e controllable from xq if Q" (xq) = X,
e completely controllable if Q" (x¢) = X for every xo € X.
Let us further assume the linear controlled system in the form
x = Ax + Bu, (2.14)
where A and B are constant matrices and U = R”.

Theorem 5. The system (2.14) is completely controllable if and only if the rank of the

matriz (B, AB, ..., A" 1B) is n, i.e. if we can choose n linearly independent columns of
the matriz (B, AB, ..., A" 'B).

10



3. Energy efficient train control

This chapter deals with the basic energy efficient train control problem introduced
by Horn [8]. This problem has been solved mainly with use of numerical methods. We
describe an analytical approach that leads to development of an energy efficient train
control with exact relations for computation of the switching times between individual
driving modes and to introduction of the critical time as the key factor for determination
of the optimal control strategy. Main results of this chapter were introduced in papers [22]
and [24].

3.1. Formulation of the problem

Throughout the Chapter 3 we are going to study the problem of the energy efficient train
control in the following form. The aim is to minimize the objective functional

T
J= / ut () v (t)dt (3.1)
0
with respect to the system of differential equations

w(t) = v(t),
0(t) = u(t)—r(v)

and boundary conditions

2(0)=0, v(0)=0, 3.4
z(T)=L,v(T)=0 (3.5)
The function v is defined as follows
v Jou(t), foru(t) >0,
u (t)'_{O, for u(t) <0.

We assume that the control variable u is a piecewise continuous function mapping
the interval [0,7] into [—a, 3], where «, 3 > 0 are given constants, and r = r(v) is
a differentiable function (with respect to v) with the properties r,7" > 0 and 7’ (v)v
is a nondecreasing function for v > 0. We shall illustrate our following considerations
utilizing the linear and quadratic form of the resistance function r (which satisfy the
above mentioned properties). A generalization to the most common type of resistance
function:

r() =bv+c)?.

is only a technical matter.

Let us emphasize that the problem (3.1)—(3.5) describes the motion of a train along
a straight level track of length L > 0 with minimal consumption of electric energy .J.
Without loss of generality let us further assume that the mass of the train m = 1. The
phase coordinates x and v correspond to position and speed of the train, respectively. The
given parameter T' represents the time that is available according to the timetable for the
train to complete the track. The function r represents the frictional resistance.

11



3.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY
3.2. Description of optimal control strategy

In this section we develop the optimal control strategy for the problem (3.1)—(3.5). First,
we need to determine the value of the minimum time 7,,;, that it is possible to complete
the track within. Solving the corresponding minimum time problem (i.e. / =7 — min.)
we can easily arrive at the standard well-known “bang-bang” control.

As it is obvious, the value of the time T,,;, can be exactly determined if we specify
the form of the resistance function . Under assumption r (v) = bv (b > 0) we obtain the

following relation

1
Tinin = gh”%

where 7 has to satisfy the equation
L 2 O(+ﬂ « OC+,B

Similarly for quadratic type of resistance function 7 (v) = cv? (¢ > 0) the value Ty, can

be determined from the equation
1 /
Jac - arctan [ itanh \/Bct*] ,

where t* is calculated from the equation

a cosh? (@t*) + 3 sinh? (@t*) =ae’l

A sample speed profile for the time optimal problem is shown in the Figure 3.1. Let us

Tmin =t +

VITAY

o
fua]

0.6

0.4

o
[

t* Trrin

0.z 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20

o
fa]

o

o

Figure 3.1: A typical speed profile for time optimization, parameters a« =1, =1, c =1,
L =1 andr = cv?
further assume that the given time 7' satisfies the relation T" > T;,.

Now, let us recall the assertion which yields the energy efficient control strategy for
the problem (3.1)—(3.5) (for more details and exact proof see e.g. Howlett [14]).
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3.3. THE CALCULATION OF SWITCHING TIMES

Theorem 6. Let (Z(t),0(t);u(t)), t € (0,T) be the energy optimal solution of the
problem (3.1)-(3.5). Then there exist ty, ta, t3, where 0 < t; <ty <t3 < T, such that

I} for 0 <t <t
() = r(0(t)) = const. fort; <t <ty
0 fOTt2§t<t3
— forts <t <T.

The research of the author was directed mainly on the type of the relation between
the switching times ¢; and ¢, (equality or sharp inequality) and other relating topics,
especially the calculation of the switching times. The type of the relation between t; and
to cannot be specified directly from Pontryagin principle.

3.3. The calculation of switching times

Let us assume that t; = t5. Then we can easily arrive at the values of the switching times
by integration of the relations (3.2) and (3.3) on individual time intervals, comparing
values of position and velocity in boundary points of these time intervals (i.e. int = t; = t5
and ¢t = t3) and involving conditions (3.4) and (3.5). Of course, the second phase (speed-
holding) is omitted in this consideration.

In particular, let us assume the linear resistance function r. We obtain an equation for
the unknown ¢3 in the form:

LV + abT — abt; = Bln (g &7 _g elts +1> . (3.6)

Consequently, the value of the switching time ¢; = 5 is determined from the relation

1 o «
tp=-1In ebT—ebt?’—i—l) 3.7
=y (e (3.7)
and the value of the maximum speed v,,,x within the whole track according to the relation
Bla yw a u, B g
max — — 7 | & -5 1 7 - .
v b (3 e 3 e’ + +3 (3.8)

In case of quadratic resistance function r we obtain similarly the equation for calculation
of time t3 in the form:

\/ga,rcsinh {\/geCL sin [v/ac (T t3)] ’} + \/ECO'J Vae(T —ts)] =

c «Q
— coth arcsinh — ek
\ 3 {\/ o

Afterwards, we can compute the value of the time ¢; from the relation

t 1 inh @ ecl
— ——— arcsin —
' VBe g

sin [\/@ (T — tg)} ‘} + ct3.

sin [v/ac (T — 13)] \}

13



3.3. THE CALCULATION OF SWITCHING TIMES

and the value of the maximum speed vy, from the relation

Umax = \/E tanh arcsinh {\/E el
c B

The Figure 3.2 displays a sample speed profile for the case t; =t and for quadratic type
of resistance function r.

sin [\/&(T—tg)ﬂ} .
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Figure 3.2: A typical speed profile for t; = ty, parameters a =1, =1, c=1, L =1,
T =21 and r = cv?

Let us assume the relation ¢; < t,. In this case we need to determine the values
of three unknown variables 1, t5 and t3. However, position and speed with boundary
conditions yield only two equations. Therefore, it is necessary to compare the values of
the corresponding Hamilton function under a suitable choice of the variable ¢, make use
of the property H = const. on (0,7) and further use the continuity of the Lagrange
multipliers on the interval (0,7"). To illustrate this, let us consider the linear resistance
function r (v) = bv (the following considerations can be performed for quadratic type of
function r by analogy).

The Hamilton function is generally in the form

H=—u"v+X\v+ X (u—r()).

Let us determine the values of the function H in the following points in time for the linear
function r:

H(T) ==X (T)a,

where v, denotes the highest speed that the train reaches along its track (on the inter-
val (t1,t9)) and H <t1_> (respectively H (tf)) denotes the corresponding one-sided limit

14



3.3. THE CALCULATION OF SWITCHING TIMES

(and similarly in the remaining cases). The constant C} corresponds to the Lagrange
multiplier A\; as the solution of the adjoint system for multipliers A\; and A\, in the form:

M =0, (3.9)

Ao =0T — A\ 4 b)s. (3.10)
Let us recall that the variable A, is continuous on the interval (0,7"). Therefore, it holds
that Ay (tf) = Ay (tf) = Xy (t1) and by analogy in other cases. Further, the relation
A2 (t) = Umax must be satisfied on (Z1,?;) (this assertion follows directly from Pontryagin

principle for this type of optimal control). Thus, As is constant here and therefore A, () = 0
on (t1,t2). Consequently, the relations (3.9) and (3.10) imply that

/\1 (t) = Cl = 2bvmax . (311)

Now, we can use the relation for the Hamilton function in the point t{ to derive the
equation
H () = b (vmax)”
for t € (0, 7). The value of H (t3) and the Equation (3.11) lead us to conclude that
v (ts) = U‘g“" . (3.12)
A similar approach can be used for quadratic type of resistance function to derive the
relation

2
v(ts) = gvmax. (3.13)
The last two equations represent the required third equation that we need to derive the
relations for calculation of the switching times for the case t; < t5.
Thus, for linear type of resistance function r it is possible to derive (by analogy to the
case t; =ty with use of the Equation (3.12)) the following equation for the unkwnown ¢,

2
[oz etT=t2) _9q — ﬁ} In [_a HT=t) 4 22 11 =

5 5 (3.14)
Lb?* 4 abT + abty — aln2 — abty e?T—t2)
and the relations for remaining switching times ¢; and 3 in the form
1 o' 2c
t1=—-1In|——etTt) 4 2= 4 1] , 3.15
1= [ 3 3 (3.15)
1

The value of the maximum velocity v, can be determined based on the following relation

o' _ 2c
Umax = g eb(T t2) —T .
Analogously as in the previous case of the linear resistance function r» we can solve
the case t; < t, under assumption of the quadratic form of the function r with use of the

Equation (3.13). The value ¢; can be calculated from the equation
!
2
(3.18)

(3.17)

(T —ty) - \/@tanh (@h) =In {g cos arctan [\/Eg tanh (\/@tl)
— In cosh (@tl) +cL + \/Etanh (@h) - arctan [\/Ez tanh (@h)]

15



3.3. THE CALCULATION OF SWITCHING TIMES

and consequently we can determine the values of the remaining switching times ¢, and t3
according to the relations

t3 =T — \/1&_0 - arctan [\/g?, tanh (\/@tl)] : (3.19)
ty =13 — 2\}@ - coth (\/@tl) . (3.20)

The value of the maximum velocity of the train within the whole track can be easily

calculated via the relation
Umax = \/ftanh (\/ﬂctl) )

A sample speed profile for the optimal control strategy with ¢; < t5 is shown in the
Figure 3.3 under assumption of the quadratic type of the function r.
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Figure 3.3: A typical speed profile for t; < ty, parameters a =1, =1, c=1, L =1,
T =5 and r = cv?

We have determined the values of the switching times for both possible control strate-
gies which follow directly from the Pontryagin principle, i.e. including the speed holding
phase or not. However, we still have not stated which of these two strategies is optimal
for given entry parameters of the problem. We can choose the optimal case based on the
value of the cost functional J. With use of the relation (4.1) we can derive the relations
for calculation of J. In case t; = t5 and under assumption of linear resistance function r
we obtain the relation

L P

J:_bﬁ+?tl+b72€

and for quadratic type of the function r we derive the relation

J = flncosh <\/§t1> .

For a control strategy containing the speed holding control mode, i.e. if ¢; < ¢y, the value
of the cost functional J can be determined according to the relation
g, B

_ —bty 2
J = —b72 + ?tl + ﬁe ' +b (Umax> (t2 - tl) (322)

(3.21)
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3.3. THE CALCULATION OF SWITCHING TIMES

for linear type of function r and

J = fln cosh <\/@t1) +c (Umax)3 (ta — t1)

for quadratic resistance function.

We easily choose the lower value (of course, if more than one of the two possible
strategies t; = tq, resp. t; < t, is feasible). Some sample resulting values of the switching
times t1, ty and t3 for quadratic and linear type of resistance function r (v) can be found
in the Table 3.1 and the Table 3.2, respectively.

L T | 6 [t |t [ me | J |
2.062 | 1.344 | 1.344 | 1.344 | 0.873 | 0.717
2.100 | 1.167 | 1.167 | 1.537 | 0.823 | 0.567
2.172 | 1.052 | 1.052 | 1.691 | 0.782 | 0.474
2.500 | 0.628 | 1.247 | 2.145 | 0.557 | 0.292
3.000 | 0.449 | 1.539 | 2.726 | 0.421 | 0.179
4.000 | 0.303 | 2.106 | 3.806 | 0.294 | 0.091
5.000 | 0.233 | 2.663 | 4.849 | 0.229 | 0.056
6.000 | 0.190 | 3.216 | 5.875 | 0.188 | 0.038
8.000 | 0.140 | 4.313 | 7.908 | 0.139 | 0.021
10.000 | 0.111 | 5.406 | 9.926 | 0.111 | 0.013

Table 3.1: Sample values of the switching times t1, to, t3 and mazximum velocity Vmax for
quadratic resistance function r and input parameters « =1, =1, L=1 and ¢ =1 for
various values of parameter T’

| T |t [t |t [ Ve | J |
2.170 | 1.585 | 1.585 | 1.585 | 0.795 | 0.790
2.200 | 1.445 | 1.445 | 1.755 | 0.764 | 0.681
2.300 | 1.323 | 1.323 | 1.977 | 0.734 | 0.590
2316 | 1.311 | 1.311 | 2.005 | 0.731 | 0.581
2.500 | 0.846 | 1.556 | 2.249 | 0.571 | 0.506
3.000 | 0.533 | 2.119 | 2.812 | 0.413 | 0.390
4.000 | 0.331 | 3.175 | 3.868 | 0.282 | 0.275
5.000 | 0.244 | 4.204 | 4.897 | 0.217 | 0.214
6.000 | 0.195 | 5.222 | 5.915 | 0.177 | 0.175
8.000 | 0.139 | 7.244 | 7.937 | 0.130 | 0.129
10.000 | 0.109 | 9.257 | 9.950 | 0.103 | 0.103

Table 3.2: Sample values of the switching times tq, to, t3 and maximum velocity Vya. for
linear resistance function r and input parameters « = 1, 3 =1, L =1 and ¢ = 1 for
various values of parameter T

The Figure 3.4 displays the values of the cost functional J for both types of resistance
functions r for various values of the parameter T

A different approach for determination of the optimal control strategy via the notion
of critical time and theory of nonlinear parametric programming will be introduced in the
Section 3.4.
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME
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Figure 3.4: Sample profile of values of the cost functional J for parameters a =1, =1,
c=1, L =1 in dependence on parameter T' for linear and quadratic type of resistance
function r

3.4. Analysis of the solution - critical time

Numerical calculations (based on algorithms from Bazaraa et al. [2]) show that the choice
of the optimal control strategy depends only on the given value of the entry parame-
ter T'. The Figure 3.5 shows the dependence of the optimal control strategy on the input
parameter T as well.
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Figure 3.5: Typical speed profiles for parameters o = 1, 8 =1, ¢ = 1, L = 1, various
values of parameter T and resistance function r = cv?

In order to analyse the properties of the solution of the problem (4.1)-(4.5) with
respect to the value of the parameter 7' it is convenient to use the theory of nonlinear
parametric programming with relating tools (see the Section 2.3). To simplify the analysis
let us assume that there exists a certain value Ty,.x, sufficiently large, with the property
Toin < T < Thax and consider only the case of the linear resistance function r (the
quadratic case can be solved by analogy).
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

Using the Theorem 6 we can easily rewrite the problem (4.1)—(4.5) into the following
form of the nonlinear programming problem. We wish to minimize the objective function

-z (bty + e —1) + & (t2 — 1) (1 - e—b'fl)2 — min (3.23)
b2 b
with respect to the equations
o (P71 —1) = B (1 — e7thr) eblr2to), (3.24)
ot = T)+ B (ts — tye™ 4ty ™) = bL (3.25)
and inequalities
0<t; <ty <ts <T. (3.26)

The constraints (3.24) and (3.25) can be derived with use of the boundary conditions (3.4)
and (3.5). Since the set of all feasible solutions has to be closed for our future considera-
tions, we assume the inequalities for ¢;, t2 and ¢3 in the form (3.26) (let us note that the
cases t; = 0, ty = t3 and t3 = T cannot be optimal provided 7" > Ty, > 0).

Let us denote by symbol M (T') the set of all feasible solutions of the given problem,
i.e. the set of all (t1,1,t3) satisfying the relations (3.24)—(3.26) for a given parameter 7.
Let us further introduce the following assumption:

Hypothesis 1. The point-to-set mapping M (T') is continuous in 7" for all T > Tyyy.

Note that the validity of the Hypothesis 1 can be verified under specified values of the
parameters «, 3, b and L.

Lemma 2. Let the Hypothesis 1 be fulfilled. Then the point-to-set mapping
2/) (T) = {(t17t27t3) S M (T) ’J(t17t27t3;T> =g (T)} )

where

T) := inf J (t1,t0,t3;7T)
SD( ) (tl,tz,tlseM(T) (1 23 )

15 u.s.c.-B for every Toim < T < Thax-

Proof. We apply the Theorem 3 and the Theorem 4 to our problem. The mapping ¢ (T)
represents now the optimal value of the cost functional J which is specified by the
Equation (3.23) for a fixed value of the parameter 7. The mapping ¢ (7) is a point-
to-set mapping which to every fixed value T' > T),;, assigns a set of all optimal solutions
of the given nonlinear programming problem, i.e. a set of all optimal (¢1,%s,t3). Un-
der the Hypothesis 1 the mapping M (T) is also l.s.c.-B for every T" > Tp,. Moreover,
J = J(t1,t9,t3;T) from the relation (3.23) is upper semicontinuous on R?® x R (it is
even continuous). Thus, ¢ (7)) is an upper semicontinuous mapping for every 7' > T,
according to the Theorem 4. Further, let us note that M (T") is a non-empty set for
every T > T, Metric space X occuring in the Theorem 3 represents in our case the
set of all (¢1,ts,t3) satisfying inequalities (3.26) and therefore X is compact because of
T < Thax. Further, we need the mapping M (T') to be closed in T for every T > Tii.
This property follows from the Lemma 1 since M (T') is (according to the Hypothesis 1)
u.s.c.-H at 7" and the set of all (¢4, 2, 3) satisfying (3.24), (3.25) and (3.26) is closed. The-
refore, by the Theorem 3 the mapping 1 (T') is u.s.c.-B at T for every Tiin < T < Trax-
g
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

The assertion of the Lemma 2 ensures that if we choose some fixed value T'=T" and
the corresponding optimal solution (7, t5,¢5) of the problem (3.23)—(3.26), then conside-
ring 7" sufficiently close to 7™ we obtain a solution (1, ?s,t3) close to (3,5, t3).

Now we shall introduce the concept of the critical time 7., and present the way of its
computation.

Definition 13. A parameter T is said to be the critical time of the problem (3.23)-
(3.26) (and we shall further denote it as T..), if there exists an ¢ > 0 such that for
T = T, the nonlinear programming problem (3.23)—(3.26) has an optimal solution with
the property t| =ty and for T € (T, T.. + €) the corresponding optimal solution satisfies
t1 < to.

In other words, the value T, represents the critical driving time when the most inte-
resting optimal driving mode, i.e. the speed holding phase, appears in the optimal control
strategy.

Lemma 3. Let T,. be the critical time of the problem (3.23)-(3.26) and let the Hypo-
thesis 1 be fulfilled. Then T, is the unique positive solution of the equation

abT,, + Lb* + (a + 3)In (;&;gﬂ) =aln2. (3.27)
Proof. In the Section 3.3 we determined the values of ¢, t5 and ¢3 under assumption t; <
ty. Due to the Lemma 2, v (T') is u.s.c.-B for every T' > Ty, Hence, by letting to — ¢
and comparing both calculations performed for ¢t; < t, and t; = t; we arrive at the
determination of the relation for 7,.

More precisely, the Equation (3.15) determines time ¢; provided t; < t5. Now, let us
use the relation ¢; = t5 to obtain

1 o 2x
ty = ——In |—— ePTer—t2) 4y = 1 1|
2 b n[ 3 + 3 +

This relation leads us to the expression

1
t2 = —gln

2a0 + 3
ﬁ +a eXp (chr) ‘
This value is substituted to the Equation (3.14) and after some simple modifications we

arrive at the Equation (3.27).
To show that the Equation (3.27) admits a unique solution we put

2a0 + 3

denoting the function which describes the left-hand side of the Equation (3.27). Thereafter

F(ff):Lw>o.

Fav:QW—am2+m%ua+mm<

Further,
Tlim F(T)= Tlim [abT —(a+ ) In (ﬁ + aebT)} —aln2+ Lb*+

(a+ B)In(2a+ ) = —oc0,
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME
because In (ﬁ + « ebT> ~ In (oz ebT) =Ina+ 0T as T — oo. Moreover,

abetT

F’(T):ab—(oﬂ—ﬁ)m

:abll_mme”]m

aelT 43

for T' > 0 and this shows the uniqueness of the positive solution of the Equation (3.27). O

An easy consideration shows that if for some fixed T' = T™* the optimal solution
of the problem (3.23)—(3.26) satisfies the relation t; < t5, then for every T' > T* the
corresponding optimal solution of (3.23)—(3.26) has the same property. In other words, if
the optimal trajectory contains the speed holding phase for some 7" = T, then the speed
holding phase will be contained in every optimal strategy with 7" > T™. The proof of this
assertion can be performed by analogy to the proof of the Lemma 3. Indeed, let us assume
that there exists a parameter 7** such that for T € (T** — €, T**), € > 0 being sufficiently
small, the problem (3.23)—(3.26) has an optimal solution with property ¢; < ¢, and for
T = T** the corresponding optimal solution satisfies ¢; = t5. Then the necessary condition
for T** is given by the Equation (3.27) (where T, is replaced by T**). We have already
shown that this equation admits only one positive solution, i.e. the existence of 7™* implies
that T.,. does not exist. Further, let us note that for T = T},,;, the corresponding optimal
solution (ti,ts,t3) of the problem (3.23)—(3.26) has the property t; = to = t3. Similarly,
if for T" > Ty, this optimal solution satisfies the relation ¢; < to, then t3 = t5 + %ln 2.
However, the mapping ¢ (T') is u.s.c.-B for T > Ty, thus for T > Ty, T being sufficiently
close to T, the optimal solution must satisfy the relation ¢; = t5. Therefore, T** cannot
exist without the appearance of T, and this is a contradiction.

Summarizing the previous considerations we can arrive at the following theorem.

Theorem 7. Let (t1,t2,t3) be the optimal solution of the problem (3.23)-(3.26) and let
the Hypothesis 1 be fulfilled. Then either t; = ty for every T > Ty or there exists a
unique value of T, with the property that for T € (T, Twr) the optimal solution satisfies
the relation t| = ty and for T > T,, the property t; < ty is fulfilled (moreover, the value T,
can be determined as the unique positive solution of the Equation (3.27)).

The numerical results show that considering the value of the parameter 7" large enough
the optimal solution (¢y,s,t3) of the problem (3.23)—(3.26) satisfies the relation t; < ¢y
for given fixed parameters o, 3, L and b. We can therefore introduce a conjecture that
the first variant described in the Theorem 7 (i.e. t; = ty for every T' > Tpn) does not
actually occur.

Let us recall that the values of the switching times ¢;, 5 and t3 can be determined
for 7 (v) = bv via the relations (3.6)—(3.7) in case t; = t and with use of the relations
(3.14)—(3.16) for t; < ty. The cost functional J is specified by the Equations (3.21)
and (3.22) for t; = t5 and t; < to, respectively. The value of the maximum velocity vpax
can be determined from the Equation (3.8) if t; = t5 and according to the Equation (3.17)
under assumption t; < t».

So far the results of this section have been illustrated on the model with linear re-
sistance function r (v) = bv. The extension to models with nonlinear type of resistance
function consists only in more tedious computations and does not represent any qualitative
advancement.

Let us consider now the quadratic resistance function r. We can introduce and discuss
the problem of the critical time in a similar way to the case of the linear resistance.
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3.4. ANALYSIS OF THE SOLUTION - CRITICAL TIME

However, a formal justification of the existence of T, is much more complicated. Therefore,

we show at least the necessary condition for 7., i.e. an analogy of the Equation (3.27).
We use the above derived Equation (3.18) which we obtained under assumption ¢; < ts.

By letting ty — t{ we get T — T... We therefore put t; = t, = t,, in relevant formulas to

obtain
1

Sl 2y/fc tanh (v/Beter )

We compare this relation with Equation (3.19) and derive the relation
1

1 32
T, = Jac arctan {\/;3 tanh (@QJ + 2 /3 tanh (\/mtcr)

which can be substituted into Equation (3.18) and after some simple steps we arrive at
the following equation

cos arctan [\/gi tanh (\/@tm«)] ‘ — cosh (@tm) =0

which can be used to determine the value of the time t... Thereafter, the value T, is
calculated via Equation (3.28).

t3

(3.28)

+ tC’/‘

2 ecL
3
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4. Energy efficient train control with
a speed constraint

This chapter is devoted to the description of the energy optimal driving strategy of an
electric-powered train with a global speed constraint and describes the way of calculation
of the switching times between the optimal driving regimes as well. We are going to use
the theoretical background introduced in the Section 2.2. Most of the results discussed in
this chapter were introduced in the paper [23].

4.1. Formulation of the problem
We are going to study the following optimal control problem:
T
J = / utvdt — min (4.1)
0

with respect to the system of differential equations

z(t) = v(),
0(t) = u(t)—r(v)

and boundary conditions

where function u* is defined as

+ (1) ::{ u(t) foru(t) >0

¢ 0 for u (t) <0.

We shall further assume a global speed constraint in the form
v(t) <vp, te(0;T). (4.6)

Now, we impose the same assumptions on functions u and r as in the Section 3.1. In
particular, we further assume that u is a piecewise continuous function mapping (0,7’
into (—a, 3), where «, 5 > 0 are given constants. Function r = r (v) (which represents the
frictional resistance) is a differentiable function (with respect to v) with the properties
r,r’ > 0 and r’ (v) v is nondecreasing for v > 0. The most usual type of resistance function
r (which satisfies all these conditions) is a polynomial function

r(v) =bv+c()?. (4.7)

To simplify the computations, we will consider the linear resistance function r (v) = bv
and the quadratic resistance function r (v) = ¢(v)>. The possible generalization of our
results to r given by (4.7) is only a technical matter.

The problem (4.1)-(4.6) describes the motion of a train along a straight level track of
length L > 0 with minimal consumption of electric energy J. We assume that the mass of
the train m = 1. Phase coordinates x and v correspond to position and speed of the train.
Given parameter T' represents the time that is available according to the timetable for
the train to complete the track. The given constant v, is the maximum allowed velocity
of the train along the whole track.
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4.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY
4.2. Description of optimal control strategy

In this section we are going to determine the character of the optimal control strategy
consisting of at most four successive driving modes (full power, speed-holding, coasting
and full braking). First, we need to specify the value of the maximal speed v, of the
train within the whole track under assumption of the basic problem (4.1)—(4.5) without
any further constraints so that we determine whether the global speed constraint (4.6)
is active (Umax > Um) or not. In the latter case, we may easily apply the results of the
Chapter 3 (optimal strategy and the values of switching times) also for the case of the
global speed constraint. The relevant relations for calculation of the value of vy, were
presented in the Chapter 3. Let us therefore further assume that the relation vy, > vy,
holds.

First, we have to determine the value of the minimal time 7. that it is possible to
complete the track within (involving the speed constraint (4.6)). Let vpax > vy, With
use of Pontryagin principle and some further tools concerning the path constraints (for
further details see e.g. Bryson et al. [4]) we can easily arrive at the following equation for

calculation of T*

min

a B
1 b b L 1 b 1 b
o=~ |14 o, |1 2t Zon ) - cm(1-2
min bz'Um n [ + O{,Um‘| [ /va‘| + o + b n < + Oéﬂm) b n ( ﬁvm>

in case of linear resistance function and similarly

1 L 1
Tin = 2%, lln <1 - ;%%l) —In (1 + ;viﬂ + o + e arctanh (ﬁvm)
ztan (fom)
rctan 4/ —v,
Jac arcta av

for quadratic resistance function 7.

The Figure 4.1 displays a sample speed profile for a time optimal driving strategy
under assumption of a speed constraint as well as the original speed profile for a trajectory
without the speed constraint (for comparison).

In what follows, we assume that 7" > T*. and vy > v,,. Let us denote

min

+

S(x,v,t) == v(t) — v
Then it holds for the first total time derivative of S that
SW(z,v,t) = 0(t) = u(t) — r(v).

Thus, (4.6) is a first order state variable inequality constraint. Hamilton function is in the
form
H=Xu"v+ v+ A+ p)fu—r@)],

where Ao, A1, Ag and u denote the corresponding Lagrange multipliers (without loss of

generality we put A\g = —1, the case Ay = 0 corresponds to time optimization). The
variables A\; and \; have to satisfy the adjoint system
‘ oH
M=—7—=0
! Ox
: oOH
Ay = 5y = ut — A+ Aot (v) + pr' (v).
v
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Jemax
0.5 P
] ’// “\
] P )
DB - - e S
W : \"\\
0.4
] ,
] \
0.2 N
1 ,
i *,
0.0 | B |H| T T T tl | I — |t2| Tlmlr? ™ |Trr;lln|
0.0 0.5 1.0 1.5 2.0 2.8

Figure 4.1: A typical speed profile for time optimization with a speed constraint v (t) < 0.6
and parametersa =1, f=1,c=1, L=1 and r = cv?

Further, p < 0 on the constraint boundary (S = 0) and 1 = 0 off the constraint boundary.
The path entering onto the constraint boundary has to meet the tangency constraint S = 0
and if we denote t; as the entry point onto the boundary constraint, then the following
jump conditions have to be satisfied:

M () =M (H)

)\2 (tl_) = /\2 (ti_) + 7 <7T € R)
H(t;)=H(t),

where t; and ¢{ denote the corresponding one-sided limits. Thus, \;(¢t) = C; = const.
for t € (0,7) and Ay might be discontinuous at time ¢;. Off the constraint boundary we
may use the Pontryagin principle and derive the same four possible driving strategies as
in the case without the speed constraints, i.e. full power, speed holding, coasting and full
braking. Let us denote ¢, the time when the path is leaving the speed boundary. On the
constraint boundary (if t; < ¢5) it holds u (£) = r (v,,) and 22 = 0. Thus, for ¢ € (t1,t,)
(with use of the relation v(t) = v,,) it holds

Ao (t) = vy — () > vy

As 11 (t) < 0 on the constraint boundary the relation Ay(t) > v, must hold for ¢ € (t1,ts).
Further, let us assume the linear case r (v) = bv (for quadratic resistance function r we
can use analogical approach). With use of jump condition for Hamilton function in time ¢;
it can be shown that A, (tf) = v,,. Further, with respect to the continuity of A\, in 5 it

holds A, (t;) > 0, thus u (t;) = 0 and further A\, (t2) = v,,. Therefore,
H = Cw,, — bvg1 >0, hence C; > bv,,.

Summarizing the previous ideas and analysing the properties of function A (¢) based on
previous results it is possible to prove the following theorem.
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4.3. THE CALCULATION OF SWITCHING TIMES

Theorem 8. Let (&(t),0(t); 4 (t)), t € (0,T) be the energy optimal solution of (4.1)-(4.5)
and (4.6). Let v (v) = bv (r (v) = c(v)?). Then there exist ty, ty, t3 such that

&) fort €(0,t)
oo ) o (c(on)?)  fort € (t,ty)
@t =9 fort € (ta,ts5)
—a fort e (t3,T)

where 0 < t1 <ty <tz <T.

4.3. The calculation of switching times

The case t; = ty corresponds to the relation vy, = v,,. By integration of the Equati-
ons (4.2) and (4.3) on separate time intervals and involving the boundary conditions (4.4)
and (4.5) it is easy to find the equations for calculation of the switching times ¢;, ¢, and
ts for both linear and quadratic resistance functions. If r (v) = bv then

b= (1= B
1= bn 5 .

Further, we can derive the equation for unknown ¢3 in the form

(1}21 — Ii) In <1 - b;m> —%(T—tg) =L — U?mln L)zn (ebT —ebt3)]

and consequently calculate the value of ¢, via the relation

-]

For r (v) = ¢ (v)” we obtain the relation

t, = L arctanh <\/?v>
1 — \/@ ﬁ m .

Thereafter we calculate the value of ¢3 via the equation

. |cos[\/@( —t3)]|
\/;Umcot[\/@(T—tg,)] Inv,, +In ; cot[\/@( —t3)] +cL

c c
+ ./ = v,, arctanh — U | =copts+1— = ln 1-—

and the value of ¢, from the relation

1 1
to =1 — — ——=cot |/ T —t3)| .
2 3+cvm \/@CO [ ac( 3)}
The equations for computation of the switching time ¢3 usually yield two different possible
values of t3. However, only one of them satisfies the relations 0 < t; <ty <t3 <T.
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Figure 4.2: A typical speed profile for constrained optimization and parameters a = 1,
B=1,¢c=1,L=1,T =5, v, =021 and r = cv? (the dotted line represents the case
without speed constraint)

The Figure 4.2 shows a typical speed profile for energy-efficient strategy with global
speed constraint compared with the case without any constraints.

Let us note that a possible generalization of the problem with constrained velocity is
the assumption of local speed constraints in the form

v < Mj+1 for x € (XJ’XJ+1) y (48)

where 0 = Xy < X; < ... < X, = L. The complex problem of speed constraints in
the form (4.8) is much more complicated and it is going to be an object of author’s
further investigations. One way of solving this problem could be partitioning of the time
interval (0,7") on subintervals <t;‘»,t;+1>, Jj = 0,...p — 1 with respect to the speed
constraints (4.8), solving the corresponding energy-efficient train control problems on the
separate intervals with global speed constraints (4.8) and with unknown values of the
speed at the boundary points, comparing these values and solving the resulting nonlinear
programming problem of minimization J according to the values of ¢;. However, this
leads to application of some numerical algorithms or methods of artificial intelligence and
exceeds the aim of this thesis.
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5. Time-energy efficient train control

This chapter deals with the time-energy efficient train control, i.e. a problem where
both the time and energy consumption ought to be minimised with prescribed weight
coefficients. We assume a partial reloading of energy into electrical circuit while braking.
Some basic features of the problem were discussed by Kundrat et al. [17] by use of a
numerical approach. The essential results discussed in this chapter were presented in the
paper [21].

5.1. Formulation of the problem

We are going to investigate the following optimal control problem:

T
J:/ (pusv + ¢q)dt — min (5.1)
0

with respect to the system of differential equations

and boundary conditions

where function u., satisfies

u(t) foru(t)>0
uy () = { ~yu(t) foru(t) <O0.

Here 0 < v < 1, p,q > 0 and p+¢g = 1 are given real input parameters. A real constant
T > 0 is to be determined. By analogy to the Section 3.1 we shall further assume that u
is a piecewise continuous function mapping (0,7") into (—a«, 3), where «, > 0 are given
real constants. Similarily, function » = r (v) (which represents the frictional resistance)
is a differentiable function (with respect to v) with the properties r,7’ > 0 and 7’ (v) v
is nondecreasing for v > 0. A typical type of resistance function r (which satisfies these
conditions) is again the quadratic function

r(v) = bv + cv?. (5.6)

To determine the values of the switching times in the Section 5.3 and to simplify
the computations in the Section 5.4 we will consider the quadratic resistance function
r(v) = cv? and the linear resistance function r (v) = bv. The possible generalization of
our results to r given by (5.6) is only a technical matter.

Let us emphasize that the problem (5.1)—(5.5) describes the motion of a train along
a straight level track of length L > 0 with the intention to minimize the consumption
of electrical energy as well as time of the journey (represented by parameter T') with
prescribed weight parameters p and ¢, respectively. We assume that the mass of the train
m = 1. Phase coordinates x and v correspond to position and speed of the train. The real
parameter -y represents the portion of the electrical energy that is being reloaded to the
electrical circuit while braking.
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5.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY
5.2. Description of optimal control strategy

The following theorems determine the character of the optimal control strategy consisting
of at most four successive driving modes (full power, speed-holding, coasting and full
braking).

First, let us introduce the Hamilton function in the form

H = X (puv +q) + Mo+ Ag [u— 7 (v)]

where (without loss of generality) we consider Ay = —1 (the case \g = 0 corresponds
to time optimal problem). The other two Lagrange multipliers A\; and A, are continuous
solutions of the adjoint system

. o0H

M=o 0

. o0H ,

Ay = —%:puv—)\l—i—)\gr (v) .

The Pontryagin maximum principle yields the following optimality condition (here (Z, ;@)
denote the optimal controlled process):
— Pl 0 — g+ MO+ N [a—1(0)] =

Tnax [—puy© — g+ M0+ Ao (u—7(9))]

This relation can be simplified for # > 0 into the following form

(A — p0) = max [u(Ay — p0)]

u€(0,8)

and similarly for @ < 0 into form

i (Ay — py0) = max [u (Ao — pyD)]

u€(—a,0)

which after some simple calculations and standard steps (including singular mode deter-
mination) imply the following theorem.

Theorem 9. Let (z(t),v(t);u(t)), t € <O,T> be the time-energy optimal solution of
(5.1)-(5.5). Then

6] for Xy (t) —po(t) >0,

i (f) — r(0) = const. for Ao (t) —p0(t) =0,

@t) =4 o for A () —po () <0 A Ao (t) —pyd (£) >0,
—a for Ay (t) —py0 (t) <0

The following theorem specifies the optimal order of the driving modes.

Theorem 10. Let (Z(t),0(t);u(t)), t € <O,T> be the time-energy optimal solution of
(5.1)-(5.5). Then there exist ty, to, t3, where 0 <t <ty <t3 < T, such that

16 for0 <t<ty,
) r(0) = const. fort; <t <ty
w(t) =19 g forty <t <ty
—o fortggtST.
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5.3. THE CALCULATION OF SWITCHING TIMES
Proof. First, as v (0) = v (T) = 0, there exists t; € (O, T) such that
Xy (t) —pu(t) >0 forall ¢te€(0,¢;) and Ay(t1) —pv(t1)=0.
Further, there exists t5 € <t1, T) such that
Ao (t) —pv(t) =0 forall te (t1,ts)

(if t; = to, then the symbol (¢1,t5) denotes the singular interval consisting of #; only).
Finally, we can show that there exists ¢3 € (tg, T ) such that

X (t)—po(t) <0 A X(t)—pyv(t) >0 forall te (ty,t3)
and A (t3) — pyv (t3) = 0. This can be proved by contradiction. If \s (t) — pv (t) > 0 for
every t € (tg, fg), where t, > t, is a real number, then ¢ is a decreasing function and As
is an increasing function on (tg,fg). Hence, Ay (t) — pv () > 0 for all t € (t2,00), which
contradicts the condition v (T) = 0. Since Ay (t) — pv (t) < 0 and A (t) — pyv (t) > 0 for

all ¢t > t, sufficiently close to ts, it holds u(t) = 0 for these t. Therefore, )\, is decreasing
and ¢ is increasing and hence there exists t3 such that A (t3) = pyv (t3). Further, we wish

to show that A\ (t) < pyv (¢) for all ¢t € (tg,T). In a similar way as previously we can
prove that v, Ay and A, are decreasing functions on (tg, T) and function © is increasing.
Thus, @ (t) = —a for t € (t37T>. 0

5.3. The calculation of switching times

Let us now determine the values of the switching times ¢, t5 and ¢35 and the value of the
total driving time 7T'. Of course, this determination is possible if the type of resistance
function is specified. We emphasize that for unspecified driving time the Hamilton function
satisfies the relation H = 0 for ¢ € (0, 7). Further, A (t) = C; = const. on (0, 7).
Suppose that the relation ¢; < t5 holds. Then, the following condition is satisfied on

<t17t2>2

Ay = pr (Umax) = C1 + PVmax?”’ (Umax) = 0, (5.7)

where v, denotes the speed-holding velocity. Further,
H (tf) = —¢ + C1Vmax — PVmax” (Vmax) = 0, (5.8)
H(t5) = —q+ Crv(ts) = pyo (ta) 7 [v (1)) = 0, (5.9)

where H (tl_ ) denotes the corresponding left-sided limit and H (t?{) the corresponding

right-sided limit of the Hamilton function. The Equations (5.7) and (5.8) yield the optimal
value of the maximum velocity vp.c. For the resistance function r = cv? we obtain the

relation
q
Um X — 3 )
: \/ 2pc

whereas for linear case we can derive the equation

q

pb

Umax
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5.3. THE CALCULATION OF SWITCHING TIMES

By use of the Equation (5.9) we may easily arrive at the following cubic equation for
calculation of the velocity v (t3) provided r = cv?

—q + 3pev? v (ts) — pyelv (t3)] =0 (5.10)
with a single feasible root and directly derive the relation

1-yT—7

v (t3) = Umax *
7y

for v (t3) in case of linear type of resistance function r. Consequently, integrating the
Equations (5.2) and (5.3) on corresponding time intervals, comparing the values of the
variables x and v in the switching times and employing conditions (5.4) and (5.5) we
obtain the following relations for calculation of the switching times ¢4, t5, t3 and the total
driving time T" for quadratic type of resistance function 7:

tp, = \/16_Carctanh <\/§ 13/2?%) : (5.11)
1

c L
ty = t1+ cos arctan [, [—v (t3>:| l +
CUmax (67 Umax

L [:‘&3") cosh (@tl)] (5.12)

CUmax

1
ty = tz—l—g[v_l (t3) = Vimas| - (5.13)

\/104_0 \/zv (tg)} (5.14)

and for linear type of resistance function we derive the following relations:

In

arctan

T = t3+

1 b
tl = —5 In (1 — ﬁvmax> s (515)

15} b o b
t2 = m In(1-— B’Umax + m In |1 + EU (t3)

1 b 1—yI—=v L vty
——In{1— =Umax — : 5.16
b “( 5" )* by o e (5.16)
1. [(1-yI=
= tz_m( M) (5.17)
b gl
1 b

The Figure 5.1 shows a typical sample speed profile for this type of optimal strategy.

In the case t; = t5 we need to determine the values of three unknown parameters
t1 = tg, t3 and T. We cannot use the Equation (5.7), whereas the Equation (5.8) is still
applicable. With use of the Equation (5.8), integrating the variables = and v on separate
time intervals, comparing the values of these variables at switching points ¢; and t3 and
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5.3. THE CALCULATION OF SWITCHING TIMES
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Figure 5.1: A typical speed profile for t; < ty, parameters « =1, =1, ¢ =1, L =1,
v=0.5, p=0.7 and r = cv?

employing the conditions (5.4) and (5.5) we arrive at the following relation for calculation

of the value v (#3) in case of the resistance function r = cv?:

q[l—i—(;—l—c 2cL> ( )1 —f-pCU ( )e3cL_
[14— <;+ ) ] el +pycv? (t3) eCL] =0.

The value of the maximal velocity vmax = v (1) can be calculated afterwards from the
following relation
(tg) cL

\/1 chL) 2 (t3) g

The last inequality determines which of the roots of the Equation (5.19) it is necessary to
choose in order to obtain a feasible solution of the problem. Equations for the determi-
nation of the values of switching times for the resistance function r = cv? in case t; = t,

are as follows:
t t 1 a. tanh ¢ (5 20)
- - /—3 T 7)) " Umax | » .
1 2 c C [

1
ts = ti+- (07 (ts) = V] (5.21)

T = tz3+ \/:ty_c arctan [\/zv (tg)] . (5.22)

For linear case we can use a similar approach and derive the following equation for
calculation of the value v (t3):

(5.19)

v (t3) .

qbv (t3) + pb? {f : [1 _ et ll + qu (tg)] B] — v (tg)} - (t3) -

{1 — [sz(tg)]g} :qﬁ{l _ et l1+2v(t3)1§} .
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5.3. THE CALCULATION OF SWITCHING TIMES

Thereafter, we can determine the value of vy, = v (1) via the relation

b2L b ~5
vmaxzi~{1—e_ﬂ ll—i—av(t;:,)] ﬁ} > v (t3) .

The values of the switching times for the linear type of resistance function r can be
calculated by use of the following relations:

1 b
tl = tz = —5 In (1 - vaax> R (523)
by =ty s e (5.24)
3 - 1 b n U(t3) ) :
T o= tyt i |1+ Doty (5.25)
= 3 b 1 al) 3 . .

The Figure 5.2 shows a typical sample speed profile for this type of optimal strategy (i.e.
tl - tg)
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Figure 5.2: A typical speed profile for t; = ty, parameters a =1, =1, c=1, L =1,
v=0.5, p=0.3 and r = cv?

We have determined the values of the switching times t;, t9, t3 and the total driving
time T' for both possible types of driving strategy which follow directly from the Pontrya-
gin principle. We can choose the optimal case based on the value of the cost functional J.
This value can be calculated according to the following relation for quadratic resistance

function r
3
o () oo [ ()] e

Z% In ‘COS {\/a_c (T — tB)} ‘ +qT
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5.3. THE CALCULATION OF SWITCHING TIMES

and for linear type of resistance function r

2
J :pbﬁ [e—btl bty — 1+ b (1 - e—b“)2 (ty — tl)} +
2
pzs‘ [140(T — t3) — !T)] 4 gT.

We easily choose the lower value (of course, if more than one of the two possible strategies
t1 = tg, resp. t; < tg, is feasible). Some sample resulting values of the switching times
t1, to and t3 and total driving time 7" for quadratic and linear type of resistance function
r (v) can be found in the Table 5.1 and the Table 5.2, respectively.

| p [ 6 | B [t | T | J |

0 |[1.344 | 1.344 | 1.344 | 2.062 | 2.062
0.1 | 1.322 | 1.322 | 1.367 | 2.062 | 1.900
0.2 | 1.291 | 1.291 | 1.398 | 2.065 | 1.742
0.3 | 1.249 | 1.249 | 1.443 | 2.073 | 1.588
0.4 | 1.192 | 1.192 | 1.508 | 2.090 | 1.439
0.5 | 1.081 | 1.139 | 1.600 | 2.126 | 1.290
0.6 | 0.854 | 1.209 | 1.737 | 2.206 | 1.116
0.7 10.691 | 1.323 | 1.935 | 2.348 | 0.924
0.8 | 0.549 | 1.512 | 2.244 | 2.595 | 0.705
0.9 |0.402 | 1.901 | 2.860 | 3.132 | 0.442
0.99 | 0.173 | 4.051 | 6.185 | 6.309 | 0.093

Table 5.1: Sample values of the switching times t1, to and ts and total driving time T" for
quadratic resistance function r and input parameters « =1, 3 =1,v=0.5, L =1 and
c =1 for various values of parameter p

| p |t | & | B | T [ J |

0 | 1.585 | 1.585 | 1.585 | 2.170 | 2.170
0.1 | 1.568 | 1.568 | 1.603 | 2.170 | 2.015
0.2 | 1.546 | 1.546 | 1.626 | 2.172 | 1.861
0.3 | 1.519 | 1.519 | 1.657 | 2.176 | 1.710
0.4 | 1485 |1.485 | 1.699 | 2.184 | 1.562
0.5 | 1.443 | 1.443 | 1.758 | 2.201 | 1.417
0.6 | 1.389 | 1.389 | 1.845 | 2.234 | 1.276
0.7 ] 1.063 | 1.463 | 1.997 | 2.322 | 1.082
0.8 |1 0.693 | 1.821 | 2.355 | 2.612 | 0.888
0.9 | 0405 | 2.724 | 3.259 | 3.437 | 0.633
0.99 | 0.106 | 9.571 | 10.106 | 10.163 | 0.201

Table 5.2: Sample values of the switching times t1, ts and t3 and total driving time T for
linear resistance function r and input parametersa =1, 3 =1,vy=05, L=1andc=1
for various values of parameter p

The Figure 5.3 displays the values of the cost functional J for both types of resistance
functions r for various values of the parameter p.
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Figure 5.3: Sample profile of values of the cost functional J for parameters a =1, 3 =1,
c=1, L=1,~ = 0.5 i dependence on parameter p for linear and quadratic type of
resistance function r

A different approach for determination of the optimal control strategy via the notion
of critical parameter and theory of nonlinear parametric programming will be introduced
in the Section 5.4.

5.4. Analysis of the solution - critical parameter

We have determined the way of calculation of the switching times and the total driving
time for both possible control strategies following from the Pontryagin principle, i.e. with
t1 =ty or t; < to. As it is obvious from the numerical results shown in the Section 5.3,
we can conjecture that there exists a certain value of the input parameter p (that we
will further call critical parameter and denote as p..) such that for p < p.. the optimal
solution satisfies the relation t; = t5 whereas for p > p., it holds t; < t (if the remaining
input parameters «, 3, 7, L and c are fixed). The Figure 5.4 shows the dependence of the
optimal control strategy on the input parameter p as well. Let us verify this conjecture and
determine the value of p.. with use of the theory of nonlinear parametric programming (for
corresponding concepts, exact formulations and proofs of the theorems see Bank [1]). We
will further assume the resistance function r = cv? again. For linear resistance function r =
bv we only derive the necessary condition for critical parameter p.,.
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Figure 5.4: Typical speed profiles for parameters a« =1, § =1, c=1, L =1, v = 0.5,
various values of parameter p and resistance function r = cv?
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5.4. ANALYSIS OF THE SOLUTION - CRITICAL PARAMETER

First, we rewrite the original optimal control problem (5.1)—(5.5) by use of the The-
orem 10 into the form of a nonlinear programming problem. We wish to minimize the
objective function (5.26) with respect to the equalities

\/@ (to — 1a) sinh (\/@h) cosh (\/@h) |

In

cos [vac (T —t3)] | cos [y/ac (I — t5)
+/Be (ts — t1) tanh (\/@tl) —¢L =0,
Vatan [vac (t; — T)] - [\ﬁ(tg — 13) + coth <\/@t1>} +8=0 (5.28)

and inequalities

(5.27)

0<t <t <t3<T. (5.29)

We shall denote by M (p) the set of all feasible solutions of the specified nonlinear
programming problem, i.e. the set of all (1, s,t3,T) satisfying (5.27)—(5.29) for a given
p. It is easy to see that the point-to-set mapping M (p) is continuous in p for all p € (0, 1)
(the set of feasible solutions of the problem actually does not depend on p).

Lemma 4. The point-to-set mapping

Y (p) := {(ts, ta, t3,T) € M (p) | J (t1, 12,13, T;p) = 0 ()} ,

where

:: 1 f J t ’t 7t 7T; ,
gp (p) (t17t27t;%)6M(p) ( 1,402,503 p)

is upper semicontinuous (according to Berge - see Bank [1]) for every 0 < p < pmax < 1,
Pmax € (0,1).

Proof. The mapping ¢ represents the optimal value of the cost functional J specified in
the Equation (5.26) for a fixed value of p. The mapping 1 is a point-to-set mapping which
assigns to every fixed value of p € (0, pmax) a set of all optimal solutions of the given
nonlinear programming problem, i.e. the set of all optimal (¢, ts,t3,7"). The mapping M
is also lower semicontinuous (according to Berge) on (0, 1). Further, J = J (t1,t2,t3,T;p)
is upper semicontinuous on M (p) x p for a fixed parameter p. Thus, ¢ is an upper
semicontinuous mapping for every p € (0, pmax) (see Bank [1]).

Let us note that M is a non-empty set for every p € (0, ppax). Further, there exists a
value Thax such that all (¢q,t9,t3,T) € 1 (p) satisfy the relation T' < T, for every p €
(0, Pmax) (the value T,y obviously depends on ppax). Therefore, we may restrict (without
loss of generality) the set of all feasible solutions M (p) of the problem (5.26)—(5.29) on
those satisfying T' < Tyax for arbitrary p € (0, pmax) (assuming Ti., large enough). The
set of all (t1, t9,t3,T) satisfying (5.29) as well as the relation T' < Ty is a compact metric
space. Further, mapping M is closed in p for every p € (0, pmax) since M is continuous in p
and the set of all (¢1,%s,t3,T) satisfying (5.27)—(5.29) is closed. Therefore, the mapping
1) is upper semicontinuous (according to Berge) for every 0 < p < pyax (see Bank [1]). O

The assertion of the Lemma 4 ensures that if we choose some fixed p* and the corre-
sponding optimal solution (t*{,t;,t;;, T*) of (5.26)—(5.29), then considering p sufficiently

close to p* we obtain optimal solution (fl, to, s, T) close to (f’l‘, fé, i;;, T*)
Now, let us introduce the notion of the critical parameter p.. and describe its calcu-
lation.
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5.4. ANALYSIS OF THE SOLUTION - CRITICAL PARAMETER

Definition 14. A parameter p is said to be the critical parameter of the problem (5.26)-
(5.29) (and we shall further denote it as p..) if there exists an € > 0 such that for p = pe,
the nonlinear programming problem (5.26)-(5.29) has an optimal solution with property
t1 =ty and for p € (per, Per + €) the corresponding optimal solution satisfies t < 1.

Lemma 5. Let p.,. be the critical parameter of the problem (5.26)-(5.29). Then

1 1—n?
Per = QCUS’T 1 ) where Ver = 5 + e—2cL (530)
and 1 is the unique solution, satisfying the relation n > e~“F, of the equation
o el —3ptel 4y = 0. (5.31)

Proof. In the Section 5.2 we derived the values ¢y, 5, t3 and T under the assumption t; <
o (the Equations (5.11)—(5.14)). According to the Lemma 4, mapping ¢ (p) is upper
semicontinuous (according to Berge) for every 0 < p < puax < 1, Pmax € (0,1). Thus,
we may use the Equations (5.11)—(5.14) and letting t, — ¢ (right-sided limit) we arrive
after some modifications at the Equation (5.31).

Let us show the uniqueness of the solution to the Equation (5.31) for n > e~“F. This
can be proved by setting

F(U) — 277 e3cL 3?72 2cL _i_,y
Then the following relations can be easily verified:

F(e’CL) =v—-1<0, nli_péloF(n):oo, F’(n)>00n(e’CL,oo) :

Therefore, F'(n) is a strictly increasing function on (e_CL, oo) with values of opposite
sign in boundary points of the interval. Hence, the Equation (5.31) has a unique solution
on (e_CL, oo). The interval (e_CL,oo) corresponds to all feasible values of the velocity
v > 0 under assumption u € {(—a, (). O

Theorem 11. Let (fl, ty, s, T) be the optimal solution of the problem (5.26)-(5.29). Then

either t1 = ty for every p € (0,1) or there exists a unique value p., with the property that
forp € (0,p.) the optimal solution satisfies t1 =ty and for p € (per, 1) the relation t; < to
is fulfilled. Moreover, the value p.. can be found via the Equation (5.30).

Proof. Let us assume that there exists a parameter p* such that for p € (p* —¢€,p%),
¢ > 0 being sufficiently small, the problem (5.26)—(5.29) has an optimal solution with
property t; < t, and for p = p* the corresponding optimal solution satisfies t; = £,.
Then the necessary condition for p* is given by (5.30) (with p.. replaced by p*). We
have shown previously that there exists a unique such value p*, i.e. the existence of p*
implies that p.. does not exist. Further note that for p = 0 (time optimal control) the
corresponding optimal solution (fl, to, ts, T) satisfies the relation t; = ty = t5. If for p > 0
the corresponding optimal solution satisfies £, < f5, then the relations (5.10) and (5.13)
have to be fulfilled. However, the mapping ) is upper semicontinuos (according to Berge)
for every 0 < p < puax < 1, Pmax € (0, 1) Hence, for p > 0 (p being sufficiently close
to 0) the optimal solution has to satisfy 1 = t,. Consequently, p* cannot exist without
appearance of p.. and that is a contradiction. O
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5.4. ANALYSIS OF THE SOLUTION - CRITICAL PARAMETER

Numerical results show that for p large enough the optimal solution always satis-
fies 1 < f and therefore we may introduce a conjecture that the first variant described
in the Theorem 11 (i.e. £, = #, for all p € (0, 1)) actually does not occur.

For linear type of resistance function » we may use a similar approach and derive the
following necessary condition for p.,:

1

pcr:TbUzr,

where v, is the unique solution of the following equation on <O, %>

B a
1— 1=
(T I I R )
B ¢! gl

Let us note that for « = 1, § = 1, L = 1, v = 0.5 and under assumption of the
resistance function r = v? (resp. r = v) we obtain the value of critical parameter p., =
0.48347 (resp. p. = 0.64384).
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6. Energy efficient train control on
a track with non-zero gradient

This chapter deals with the energy efficient train control under additional assumption
of a non-zero track gradient. We shall discuss the case of the uphill and downhill drive
with prescribed gradient of the track. We introduce the optimal driving strategy as well
as calculation of the switching times for all types of optimal control strategy. Further, we
will discuss the concept of the critical time and explain its significance for the choice of
the optimal type of control strategy. For downhill drive there are another two characteris-
tic values of the driving time that determine the optimal strategy which we are going to
investigate. For this case, the Pontryagin principle admits also a completely different opti-
mal driving strategy for certain values of input parameters of the problem in comparison
to the basic energy efficient train control problem. Let us note that most of the results
discussed in this chapter have not been published yet and will be a subject of author’s
further investigation.

6.1. Formulation of the problem

Throughout this chapter we are going to deal with the following optimal control problem:
T
J = / v vdt — min (6.1)
0

with respect to the system of differential equations

z(t) = v(t),
o) = u()=r)+yg

and boundary conditions

where function v fulfills the relation

v Ju(t) foru(t) >0
“ (t)'_{O for u(t) <0.

Similar properties of the relevant functions to those presented in the Section 3.1 will
be applied for this type of optimal control problem as well. We assume that the cont-
rol variable u is a piecewise continuous function mapping the interval [0, 7| into [—a, ],
where a, 3 > 0 are given constants and r = r (v) is a differentiable function (with respect
to v) with the properties 7,7 > 0, r (0) = 0 and ' (v) v is a nondecreasing function for
v > 0. We shall illustrate our considerations in this chapter utilizing the linear resistance
function r = bv (satisfying the required properties). A generalization to other common
types of resistance function is only a technical matter. To simplify our future considerati-
ons, we shall further assume that the constant g satisfies g € (—a, ). The general case
g = g (z) will be briefly discussed in the next section (in such a case g is assumed to be
at least continuous and (obviously) constrained).
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6.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

Let us recall that the problem (6.1)—(6.5) describes the motion of a train along a
straight track of length L > 0 with minimal consumption of electric energy J and with
a constant gradient. Parameter g represents the gravitational acceleration caused by the
track gradient (obviously, g > 0 corresponds to downhill drive whereas g < 0 describes an
uphill drive with a constant gradient). Without loss of generality let us further assume
that the mass of the train m = 1. The phase coordinates x and v correspond to position
and speed of the train, respectively. The given parameter T represents the time that is
available according to the timetable for the train to complete the track. The function r
represents the frictional resistance.

6.2. Description of optimal control strategy

In this section we are going to develop the optimal control strategy for the problem (6.1)—
(6.5). First, we need to determine the value of the minimum time Ty, again that it is
possible to complete the track within. Solving the corresponding minimum time problem
(ie. J=T — min.) we easily arrive at the standard “bang-bang” control.

As it is obvious, the value of the time T},;, can be exactly determined if we specify
the form of the resistance function r. Under assumption r (v) = bv (b > 0) we obtain the

following relation

1
T‘minzf1 ’
b

where 7 has to satisfy the equation
2 (0% a— (0%
(a+ﬁ)e“’/( +8) .pla=a)/( +5)—(a—g)-n—5—g:0.

Let us further assume that the relation 1" > T, is satisfied for the given time 7.
The following considerations determine the character of the optimal control strategy.
First, let us introduce the Hamilton function in the form

H = Xutv+ Mo+ X u—7r@)+g],

where (without loss of generality) we consider Ay = —1. The other two Lagrange mul-
tipliers A\; and A\, are continuous solutions of the adjoint system
‘ OH
M = ——=0,
! ox
‘ 0OH
Ay = ——=u" =X+ X' (v) .
2 By 1 o1’ (V)

The Pontryagin maximum principle yields the following optimality condition (here (Z, ; @)
denote the optimal controlled process):

—ut O+ MO+ N[0 — 7 (D) + g = max {—u+@+)\1ﬁ+)\2(u—r(@)+g)}.

’U,E(—O{,ﬁ)

This relation can be simplified for & > 0 into the following form

(A —0) = max, [u (A2 — )]
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6.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

and similarly for @ < 0 into form

LAy = Ao .
e =, [ohd

Summarizing this we obtain the relation

15} for Ao (t) — 0 (t) > 0,
not specified in (0,5)  for Ay (t) — 0 () =0,
u(t)=2 0 for Ay (t) —0(t) <0 A Xa(t) >0, (6.6)
not specified in (—«,0) for Ay (t) =0,
—a for Ao (t) < 0.

Further, let us assume that Ay (f) = ©(¢) on a nontrivial interval I C (0,T). Then,
Ao (t) = 0 (t) on 1. Hence, it holds the following relation

U—1(0)+g=1u—\ +0r(0) on .

Therefore,
M=r(0)+0r'(0)—g  onl.

Thus, with respect to the relation \; = 0 on (0, T) and by utilizing properties of the
function r (namely, r,7" > 0 and 7’ (v) v is nondecreasing for v > 0) the previous equation
implies the relation ¥ = 0 on I which yields the optimal singular control & = r (0) —g > 0
on I (speed holding driving mode).

The second singular case can be easily excluded for ¢ < 0 by differentiating the
relation )y (t) = 0 on a nontrivial interval I C (0,7) and utilizing the properties of the
function r. However, for g > 0 (downbhill drive) it cannot be generally excluded and occurs
for certain values of input parameters of the problem. In such a case, by differentiating
the relation A, (£) = 0 we obtain A, (£) = 0 which results in the relation A (£) = 0 on 1.
However, A; (t) = 0 on (0, 7). Thus, \; (t) = 0 on (0, 7). Hence

Ao = T 4 Aot (D) (6.7)

on (0,7). By (6.7) the function A, is nondecreasing provided Ay > 0 and nonincreasing
if Ay < 0. Let us denote by t; the left endpoint of the interval I. If \, (f) > 0 for
t €(0,t;), then X, (t) > 0 for all t > #. That is a contradiction with the assumption Ay = 0

on I. Hence, Ay (t) < 0 for t € (0,t;) U I. The previous considerations along with the
condition (6.5) yield the relation Ay () < 0 for ¢ € (0,7'). Therefore, @ (t) <0 on (0, 7).

Such a control yields the value of the cost functional J = 0 and therefore would
be optimal. However, to ensure a feasible control of this type the value of the time T
has to be sufficiently large to complete the track only with coasting and braking. The
minimum value of the time 7" (that we shall further denote as 7,) that yields a feasible
control of this type can be determined as the solution of the minimum time problem under
assumption u € (—a, 0). Therefore,

T. = 1lnw ,

b

where w satisfies the equation
aeltleyle=ale _ (o — gy w—g=0.

Summarizing the previous considerations we can prove the following theorem.
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6.2. DESCRIPTION OF OPTIMAL CONTROL STRATEGY

Theorem 12. Let (z (t),0(t);u(t)), t € (0,T) be the energy optimal solution of (6.1)-
(6.5). Then for g <0 it holds

6] for Mo (t) —0(t) >0,

o) r(9) —g=const. for Xy (t)—0(t) =0,

wt) =19 g or () — o) <0 A @0, 6
—a for Xy (t) <O,

where o is defined by the corresponding adjoint system. For g > 0 there exists a certain
value T > Ty (which we shall further denote as T.) that for T < T, the previous
relation (6.8) is fulfilled, whereas for T'> T, the optimal solution satisfies

0 for0<t<t. (coasting),
u(t) =4 —a fort.<t<T. (full braking),
—g forT.<t<T (standstill),

where 0 < t. < T, <T.

Let us note that for ¢ > 0 and T" > T, the optimal solution described in the previous
theorem satisfies J = 0 and for T" > T, is not unique.

It can be easily shown that the value of the switching time ¢. can be determined via
the following relation for r (v) = bv

tc:T-<1—g)+bL.

« (0]

The following theorem specifies the optimal order of the driving modes for all values
of the input parameters except for the case g > 0 and 1" > T.. It can be proved with use
of the properties of the Lagrange multipliers (especially their continuity) and involving
the conditions (6.4) and (6.5).

Theorem 13. Let ((t),0(t);a(t)), t € (0,T) be the energy optimal solution of (6.1)-
(6.5). Then for g < 0 there exist t1, to, t3, where 0 < t; <ty < t3 < T, such that

16} for 0 <t <ty
i) = r(0) — g = const. forty <t <ty
0 fOTt2§t<t3,
— forts <t <T.

The assertion of this theorem is valid for g > 0 and T' < T, as well (where the value T,
was specified in the Theorem 12).

Let us note that the general case g = g (z) yields the same optimal driving modes
as specified in (6.6). The first singular case (i.e. A2 (¢) = 0 (¢) on a nontrivial interval )
results again in the speed-holding control mode (i.e. & = r (0) — g (&) > 0 on I). However,
the second singular case (i.e. Ay (t) = 0 on a nontrivial interval I) cannot be generally
easily excluded or described.
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6.3. THE CALCULATION OF SWITCHING TIMES
6.3. The calculation of switching times

Let us now determine the values of the switching times ¢, to and t3. Of course, this
determination is possible if the type of resistance function is specified. We shall further
assume that r (v) = bu.

First, let us suppose that the relation ¢; < ¢ holds. The adjoint variable \; satisifies
A1 (t) = Cy = const. on (0,T). Then, the following condition is satisfied on (¢, ts):

o =7 (Umax) = 9 = C1 + VUmmax * 7" (Vinax) = 0, (6.9)

where v,., is the speed-holding velocity. Further,
H (1) = ~Bimax + Citimax + Vmax* [6 = 7 (Umax) + 9] (6.10)
H(t;) = Col(ts) , (6.11)

where H (tf) and H (t; ) denote the corresponding left-sided limits of the Hamilton
function. The Equations (6.9)—(6.11) yield optimal value of the speed v (t3) for r (v) = bv
DUmax

13) = Umax - o5 -
vits) = 20Umax — ¢
Consequently, integrating the Equations (6.2)—(6.3) on corresponding time intervals, com-
paring the values of the variables x and v in the switching times and employing conditions
(6.4)—(6.5) we obtain the following relation for calculation of the velocity vmax:

(Oé - g) ) (bvmax - g) bvmax — g
b max ~ * 1 —_ . 1 - =
( ! g * O'/) " (a - g) : (2bvmax - g) + b2v§nax - vamax — g
5 + g — bvmax 2 2
= ﬁ—i_g_bvmax In—-———+bL _bvmaxT
( ) B+y
and derive the following relations for calculation of the switching times:

t = —1 1_7max )
1 bn( B+g )

1 (Oé—g) : (bvmax_g)

to = T+ -1

L T = g) - (bt — 9) + DR
1 b2v?

ts = T —=In|l max .

’ b n[ * (a_g)'(vamax_g)]

In the case t; = t5 we need to determine the values of two unknown parameters t; = t,
and t3. Integrating the variables = and v on separate time intervals, comparing the values
of these variables at switching points ¢; and ¢3 and employing the conditions (6.4) and
(6.5) we arrive at the following relation for calculation of the switching time ¢; in case of
the resistance function r = bu:

a® eLb2+abT—bgT _ {(a B g) el -8 bt 18+ g]a . efbt

The equation for determination of the value of the remaining switching time ¢3 in case t; =
ty is as follows:

1 1
ts = 6ln [(a—g)ebT—ﬁebtl —|—ﬁ—|—g} —glna.
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6.3. THE CALCULATION OF SWITCHING TIMES

We have determined the values of the switching times t;, t5 and t3 for both possible
types of driving strategy which follow directly from the Pontryagin principle. We can
choose the optimal case based on the value of the cost functional J. This value can be
calculated according to the following relation

B+g —w By, Gty
J=0|—5"e ™ t1 —
& ( 2 T T
We easily choose the lower value (of course, if more than one of the control strategies
t1 = to, resp. t1 < to, is feasible). Some sample resulting values of the switching times ¢1, ¢,

and t3 for linear type of resistance function r (v) and parameters g = 0.1 (downhill drive)
and g = —0.1 (uphill drive) can be found in the Table 6.1 and the Table 6.2, respectively.

) + (bvmax - g) VUmax (t2 - tl) .

| T | b [t | ts [ J |
2.110 | 1.449 | 1.449 | 1.449 | 0.752
2.200 | 1.211 | 1.211 | 1.769 | 0.560
2277 | 1.141 | 1.141 | 1.908 | 0.506
2.400 | 0.842 | 1.295 | 2.079 | 0.450
3.000 | 0.475 | 1.927 | 2.767 | 0.297
4.000 | 0.298 | 2.891 | 3.825 | 0.180
5.000 | 0.221 | 3.808 | 4.854 | 0.118
7.000 | 0.147 | 5.501 | 6.882 | 0.052
10.000 | 0.097 | 5.684 | 9.895 | 0.006
10.101 | 0.095 | 0.095 | 9.995 | 0.005
10.500 | 0.055 | 0.055 | 10.395 | 0.002
11.054 | 0.000 | 0.000 | 10.949 | 0.000

Table 6.1: Sample values of the switching times tq, to, t3 for linear resistance function r
and input parameters « = 1, 3 =1, L = 1, ¢ = 1 and g = 1 for various values of
parameter T’

| T |t [t | & [ J |
2.257 | 1.741 | 1.741 | 1.741 | 0.825
2.300 | 1.586 | 1.586 | 1.944 | 0.711
2.386 | 1.498 | 1.498 | 2.127 | 0.650
2.500 | 1.046 | 1.664 | 2.281 | 0.604
3.000 | 0.613 | 2.255 | 2.845 | 0.486
4.000 | 0.373 | 3.345 | 3.897 | 0.372
5.000 | 0.274 | 4.403 | 4.923 | 0.312
6.000 | 0.218 | 5.446 | 5.940 | 0.274
8.000 | 0.155 | 7.511 | 7.959 | 0.228
10.000 | 0.121 | 9.560 | 9.969 | 0.202

Table 6.2: Sample values of the switching times tq, to, t3 and maximum velocity Vya. for
linear resistance function r and input parametersa =1, =1, L=1,c=1and g = —1
for various values of parameter T

The Figure 6.1 displays the values of the cost functional J for linear type of resistance
function r for various values of the parameter 7" for both uphill and downhill drive.
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Figure 6.1: Sample profile of values of the cost functional J for parameters « =1, g =1,
c=1, L =1 in dependence on parameter T for linear type of resistance function r and
downill (g = 1), resp. uphill (9 = —1), drive

A different approach for determination of the optimal control strategy with use of the
notion of the critical time and nonlinear parametric programming will be introduced in
the Section 6.4.

6.4. Analysis of the solution - critical time

Numerical calculations (based on algorithms from Bazaraa et al. [2]) show that the choice
of the optimal control strategy depends only on the given value of the entry parameter 7.
The Figure 6.2 and the Figure 6.3 show the dependence of the optimal control strategy
on the input parameter 7" as well.

Ter=2.386
0B

ol W \ ™

Figure 6.2: Typical speed profiles for parameters « =1, 3 =1,c=1, L =1, g = —0.1,
various values of parameter T' and resistance function r = bv

A similar analysis to that introduced for the basic energy efficient train control problem
in the Section 3.4 can be performed in this case as well. The resulting relation for calcu-
lation of the critical time under assumption of analogical condition to the Hypothesis 1

is as follows )
_ 1 (ﬁ'f_g) (bUCT _g) +O‘(2bvcr _g)
TCT = —1In : )
b (a—g) (bvg —g) (B+g—bu)
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Figure 6.3: Typical speed profiles for parameters a =1, 3 =1, ¢=1, L =1, g = 0.1,
various values of parameter T and resistance function r = bv

where v, can be determined according to the following equation

b/UCT‘ —4g “ . 6 + g — bvcr Tro . (Oé - g) : (vaT - g) o — e—b2L (6 12)
QbUcr - g ﬁ + g (Oé - g) ’ (vacr - g) + b2/U(2:r . ‘

This relation yields for g < 0 (according to numerical results) one positive solution sa-
tisfying 7., > T and thus the change of the optimal control strategy (from t; = 5 to
t1 < t2) in relation to the value of the input parameter T' can occur for at most one value
of T' (analogy to the basic energy optimal problem).

An interesting behaviour of the optimal solution can be observed for g > 0 (downhill
drive). In such a case the Equation (6.12) results in two distinct values of T, (this can
be well understood in the Figure 6.3). One of them corresponds to the notion of the
critical time as was defined for the basic energy-efficient train control problem (in the
Definition 13). The other one (let us denote it further as 7) represents the reverse case
where the optimal solution of the problem (6.1)—(6.5) satisfies the relation t; < ¢y for
T € (T* —¢,T*), where € > 0 is sufficiently small, and t; = t5 for 7" = T*. Thus, the
optimal solution satisfies the relation t; < ¢y for T' € (1., T*). The value T™* can be also
found as the transition value where for 7' > T* the coasting phase (i.e. & = 0) leads to
accelerating of the train (which excludes the speed-holding phase). It can be therefore
determined per the relation

B LLb?
T*:iln afe 3
by [(a—g)" (B+9)

This behaviour will be a subject of author’s further investigation and will be introduced
in a prospective paper.
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7. Conclusion

7.1. Summary of obtained results

The thesis described the character of the optimal control strategy and the way of calcu-
lation of the switching times for the energy-efficient train control problem and its modifi-
cations. We performed an analysis of the solution for the presented mathematical models
with use of nonlinear parametric programming. We introduced the concept of the criti-
cal time (or critical parameter) and explained its significance as the deciding factor for
developing of the optimal control strategy.

We presented the basic energy-efficient train control problem under assumption of
standard types of resistance function as well as some of the natural generalizations of the
problem. We introduced and analysed the problem with speed constraint and discussed
the problem with a non-zero track gradient. We formulated and completely solved the
time-energy efficient train control problem which represents a different view on this area.

The emphasis was put mainly on exact form of solutions where the application of
numerical methods is restricted only on solving algebraic equations. Let us note that most
of the results presented in this thesis represent a different approach towards solving this
problem than introduced in previous papers. This approach enabled a detailed analysis
of the solution with use of analytical means.

7.2. Future directions

The energy-efficient train control problem can be generalized or modified in several ways.
The enhanced models can be more or less complicated than those presented in this thesis.
However, the general behaviour of the solution of such problems will remain similar. The
introduced optimal driving modes will be present in most of the models what was proved
by implementation of the results on real railway or suburban traffic with positive results.
The critical time (or critical parameter) and the relating analysis with use of nonlinear
parametric programming can be applied on several models as well.

The natural generalizations and extensions to our results can be achieved especially
for the speed constraints or track gradient. We may assume local speed constraints repre-
sented by the Equation (4.8) as it was introduced in the Section 4.3. The general form
of the track gradient can be represented by a function g (x) describing varying profile of
the track as it was mentioned in the Section 6.2. There will be performed a further in-
vestigation of the behaviour of the problem with constant track gradient as well. We may
also further investigate steep inclines (declines) as it was discussed by Cheng et al. [6] or
Howlett et al. [11]. Moreover, a combination of the restrictions and further assumptions
may be applied. Further, there might be used another types of resistance functions, e.g.
exponential form of the function r (v).

Most of the input parameters presented in this thesis are not constant in real situations.
Usually, we may observe stochastical behaviour with a mean value and a certain standard
deviation based on the corresponding probability distribution. This can be applied e.g. for
the maximum allowable accelaration of the train, for resistance function r or constant
and results in a completely different approach to the problem.
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7.2. FUTURE DIRECTIONS

The main aim of this thesis was to present an exact form of the solution for the energy
efficient train control problem and its modifications where it is applicable. However, most
of the problems mentioned in this section lead us to use some more or less sophisticated
numerical methods or methods of artificial intelligence which was out of the scope of this
thesis and will be a subject of author’s future investigation.
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8. List of the used abbreviations and
symbols

=2

min

o1

coefficients in the resistance functions
minimum and maximum allowed acceleration of the train

optimal value of the cost functional for a nonlinear parametric pro-
gramming problem

coefficient in the cost functional relating to return of electrical energy
while braking

gravitational acceleration caused by the track gradient
Hamilton function

cost functional

length of the track

lower semicontinuous mapping (according to Berge)
lower semicontinuous mapping (according to Hausdorff)
Lagrange multipliers

mass of the train

set of all feasible solutions of a nonlinear parametric programming
problem for fixed value A

function representing tangency conditions

parameters in the cost functional for time-energy efficient train control
critical parameter

frictional resistance

function representing constraint on the state variable

g-th derivative of the function S

time variable

time available according to timetable for the train to complete the
track

critical time

minimum time that it is possible to complete the track within



ty,tq,t3 switching times

th, 1 right-sided (left-sided) limit of the corresponding function

u control variable

U control space

u.s.c.-B upper semicontinuous mapping (according to Berge)

u.s.c.-H upper semicontinuous mapping (according to Hausdorff)
v=10(t) velocity of the train along the track

Vgp critical velocity

Umax maximum velocity achieved by the train along the whole track
Um maximum allowed velocity

r=2x(t) position of the train along the track

T derivative of the function x according to time

x = (21,...,x,) state variables

X state space of the investigated object

(x(t);a(t)) optimal control process

(M) point to set mapping assigning to parameter A\ the set of all optimal

solutions of the given nonlinear parametric programming problem
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