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Abstract 

Index listové plochy (LAI) je kritickým parametrem pro sledování růstu vegetace a 

odhad struktury zápoje. V několika posledních letech se LAI stal velmi populárním 

pro celou řadu oblastí včetně zemědělství, lesnictví a urbanistiky. Cílem této práce je 

vyvinout uživatelsky přívětivý výpočetní nástroj pro odvození LAI s využitím 

programovacího jazyka Python 3 a externích knihoven. Přesnost výstupu nástroje 

bude vyhodnocena pomocí několika metrik, včetně RMSE (Root Mean Square 

Error), střední absolutní chyby (MAE) nebo koeficientu determinace (R-squared). 

Tyto metriky poskytují komplexní hodnocení výkonu nástroje, což umožňuje hlubší 

srovnání s jinými existujícími metodami. Práce se bude skládat z literární rešerše, 

vývoje nástroje, zpracování dat, vyhodnocení výkonu a analýzy výsledků. Nástroj 

pro výpočet LAI bude navržen tak, aby zpracovával multispektrální data z družice a 

poskytoval přesné hodnoty LAI rychle a nedestruktivně. Práce si klade za cíl 

poskytnout komplexní vyhodnocení výkonu vyvinutého nástroje a porovnat jej s 

jinými existujícími metodami a poskytnout vhled do výhod a omezení jednotlivých 

metod. Nástroj bude užitečný pro agronomy, lesníky a urbanisty, kteří potřebují 

vypočítat LAI pro své výzkumné nebo praktické aplikace. Výsledek studie přispěje k 

rozvoji výpočetních nástrojů LAI a umožní výzkumníkům zlepšit přesnost a 

efektivitu jejich práce. 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

Leaf area index (LAI) is a critical parameter for monitoring vegetation growth and 

estimating canopy structure. In the last few years, LAI has become very popular in a 

variety of fields, including agriculture, forestry, and urban planning. The aim of this 

work is to develop a computational tool for LAI derivation using the Python 3 

programming language and external libraries. The accuracy of the tool output will be 

evaluated using several metrics, including RMSE (Root Mean Square Error), Mean 

Absolute Error (MAE), or Coefficient of Determination (R-squared). These metrics 

provide a comprehensive assessment of the tool's performance, allowing deeper 

comparisons with other existing methods. The work will consist of a literature review, 

tool development, data processing, performance evaluation, and analysis of results. 

The LAI calculation tool will be designed to process multispectral satellite data and 

provide accurate LAI values quickly and non-destructively. The work aims to provide 

a comprehensive evaluation of the performance of the developed tool and compare it 

with other existing methods and provide insight into the advantages and limitations of 

individual methods. The tool will be useful for agronomists, foresters, and urban 

planners who need to calculate LAI for their research or practical applications. The 

result of the study will contribute to the development of LAI calculation tools and 

allow researchers to improve the accuracy and efficiency of their work. 
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1. Introduction 

 

LAI is a dimensionless quantity characterizing the canopy of an ecosystem. It was 

described by Watson (1947) as the total one‐sided area of leaf tissue per unit of ground 

surface area. LAI is a critical parameter for monitoring vegetation growth and 

estimating canopy structure in various fields, including agriculture, forestry, and urban 

science. Accurate and efficient estimation of LAI is essential for understanding carbon, 

water, and energy exchange between the biosphere and atmosphere, as well as 

predicting crop yields and forest productivity (Ma, Zhang, Wang, Khromykh, Li, 

Zhong 2023). 

 

There are several methods for estimating LAI, including direct measurement, plant 

allometry, hemispherical photography, spectral indices, and machine learning. These 

methods have different advantages and limitations depending on the application and 

the level of accuracy required. Direct measurement is the most accurate method, but it 

is time-consuming and destructive (Levy, Jarvis 1999). Plant allometry is a non-

destructive method but requires complex calculations and assumptions. Hemispherical 

photography is a non-destructive method that can be automated but requires expensive 

equipment and sophisticated image processing algorithms (Duan, Liu, Gong, et al. 

2019). Spectral indices and machine learning are non-destructive methods that utilize 

multispectral data from remote sensing platforms, such as satellites, drones, and 

airplanes. 

 

Python programming language has become increasingly popular for scientific research 

and data analysis due to its simplicity, versatility, and rich collection of libraries 

(Millman, Aivazis 2011). Python libraries, such as NumPy, Matplotlib, Rasterio, and 

others, provide a comprehensive set of tools for data manipulation, and visualizations. 

These libraries can be used to develop user-friendly LAI calculation tools that can 

process multispectral data from satellites quickly and accurately. 

 

The goal of this thesis is to develop the LAI calculation tool using Python 

programming language and external libraries. The tool's efficiency will be compared 
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to other existing methods, including remote measurements, and spectral indices. The 

accuracy of the tool's output will be evaluated using multiple metrics. 

 

The thesis aims to provide a comprehensive evaluation of the developed tool's 

performance and compare it to other existing methods, providing insight into the 

advantages and limitations of each method. The tool will be useful for agronomists, 

foresters, and urban scientists who need to calculate LAI for their research or practical 

applications. The result of the study will contribute to the advancement of LAI 

calculation tools, enabling researchers to improve the accuracy and efficiency of their 

work. 

 

1.1. Background 

 

The importance of LAI estimation has grown significantly in recent years due to the 

increased demand for precise and timely information on vegetation cover and structure 

for various applications. LAI is a key parameter for modeling photosynthesis, 

evapotranspiration, and carbon fluxes in terrestrial ecosystems (Rong, Yongqiang 

Zhang, Hao Shi, Yang, Eamus, Cheng, Chiew, Qiang 2018). It also plays a critical role 

in monitoring crop growth and yield, assessing forest health and productivity, and 

analyzing the urban heat island effect. 

 

Traditionally, LAI was estimated using direct measurement methods, such as 

destructive sampling and planimetry. However, these methods are labor-intensive, 

time-consuming, and often limited by spatial and temporal resolution. With the 

advancement of remote sensing technology, spectral indices, and machine learning 

algorithms have become increasingly popular for estimating LAI from multispectral 

data obtained from satellites, drones, and airplanes (Ilniyaz, Kurban 2022). These 

methods offer several advantages over direct measurement, including high spatial and 

temporal resolution, non-destructiveness, and cost-effectiveness. 

 

Several spectral indices have been developed to estimate LAI, including the 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI). 

These indices use the spectral properties of vegetation to infer LAI based on the 
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relationship between LAI and the reflectance or radiance observed in different spectral 

bands (Anthony L. Nguy-Robertson, Yi Peng, Anatoly A. Gitelson, Timothy J. 

Arkebauer, Agustin Pimstein, Ittai Herrmann, Arnon Karnieli, Donald C. Rundquist, 

David J. Bonfil 2014). However, spectral indices have limitations, such as the 

sensitivity to atmospheric conditions, soil background, and vegetation type, which can 

affect their accuracy. 

 

Machine learning algorithms, such as Random Forest, Support Vector Regression, and 

Artificial Neural Networks, can also be applied to estimate LAI using multispectral 

data (Han Chen, Jinhui Jeanne Huang, Edward McBean 2020). These algorithms use 

statistical models to learn the relationship between LAI and multispectral variables, 

such as reflectance, radiance, and texture features. Machine learning algorithms can 

handle large and complex datasets and capture nonlinear relationships between 

variables, making them suitable for predicting LAI accurately. 

 

This thesis will explore the development of a Python-based LAI calculation tool that 

integrates spectral indices to estimate LAI accurately and efficiently. The tool's 

performance will be evaluated using multiple metrics, including RMSE, to compare 

its efficiency with other existing methods. The thesis aims to provide a comprehensive 

overview of LAI estimation methods and their advantages and limitations, contributing 

to the advancement of LAI calculation tools for various applications. 

 

1.2. Problem Statement 

 

Estimating Leaf Area Index (LAI) from multispectral data is crucial for many 

applications in agronomy, forestry, and urban sciences. Existing methods for LAI 

estimation, such as spectral indices and machine learning algorithms, have limitations 

in terms of accuracy, robustness, and usability (Baret, Guyot 1991). Spectral indices 

are sensitive to environmental and vegetation factors that can affect their performance, 

especially in complex landscapes. Machine learning algorithms require large and 

diverse training datasets and complex parameter tuning, which can be challenging to 

obtain and reproduce for non-expert users. 
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Moreover, most of the existing LAI calculation tools are based on proprietary software, 

which limits their accessibility, transparency, and extensibility. Open-source LAI 

calculation tools that integrate multiple methods and libraries and provide user-

friendly interfaces are scarce. These tools would enable researchers and practitioners 

to compare and select the most appropriate LAI estimation method for their specific 

application, foster collaboration, and innovation, and facilitate the reproducibility and 

transparency of LAI estimation studies. 

 

Therefore, this thesis aims to develop a LAI calculation tool using Python 3 

programming language and external libraries that integrates multiple methods for LAI 

estimation, including the use of indices such as NDVI. The tool will provide a source 

code that enables non-expert users to upload, preprocess, and analyze multispectral 

data, select the most appropriate LAI estimation method, and visualize and export the 

results. The tool will also provide advanced features, such as quality control, and 

uncertainty estimation to enhance the accuracy, robustness, and usability of LAI 

estimation. The tool will be evaluated using multiple metrics, such as RMSE, MAE, 

and R-squared, and compared to existing LAI calculation tools. The thesis will 

contribute to the development of LAI estimation tools and methods and facilitate their 

application in various domains. 

 

1.3. Objectives 

 

The main objective of this thesis is to develop a Leaf Area Index (LAI) calculation 

tool that can estimate LAI accurately and efficiently from multispectral data, using 

multiple methods and libraries. The tool should provide a source code that enables 

users to upload, preprocess, and analyze multispectral data, select the most appropriate 

LAI estimation method based on the source of data, and visualize and export the 

results. The tool should also provide advanced features, such as quality control, 

uncertainty estimation, and model selection, to enhance the accuracy, robustness, and 

usability of LAI estimation. 

 

To achieve this objective, the following specific objectives will be pursued: 
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Develop a modular and extensible tool for the LAI calculation, using Python 3 

programming language and external libraries, such as NumPy, Rasterio, and 

Matplotlib. 

 

Implement a method for LAI estimation, such as NDVI, using open-source libraries 

and tools. 

 

Provide a source code that enables users to upload, preprocess, and analyze 

multispectral data, select the most appropriate LAI estimation method, and visualize 

and export the results. The GUI of Jupyter Lab allows to  visualize outputs, such as 

scatterplots, histograms, and heatmaps, to facilitate data exploration and quality 

control. 

 

Evaluate the performance of the LAI calculation tool using multiple metrics, such as 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared, and 

compare it with existing LAI calculation tools and methods. 

 

The outcomes of this thesis will contribute to the advancement of LAI estimation 

methods and facilitate their application in various domains, such as precision 

agriculture, forest management, and urban planning. The open-source LAI calculation 

tool will also enable researchers and practitioners to compare and select the most 

appropriate LAI estimation method for their specific application, foster collaboration, 

and innovation, and facilitate the reproducibility and transparency of LAI estimation 

studies. 
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2. Literature review 

 

Many studies have been conducted to evaluate the performance of various methods for 

estimating LAI from remote sensing data. The following literature review summarizes 

some of the most relevant studies conducted in this field. 

 

Watson (1947) conducted comparative physiological studies on the growth of field 

crops and found that net assimilation rate and leaf area vary between species and 

varieties and within and between years. Over the past 75 years, global research on LAI 

has continued to evolve, and researchers have used bibliometric analysis to assess 

research trends (Ma et al., 2023). 

 

The remote sensing method has been used to estimate LAI indirectly by measuring the 

spectral reflectance of vegetation. Duan et al. (2019) used Fourier spectrum texture 

from UAV images to remotely estimate rice LAI, while Rong Gan et al. (2018) used 

satellite LAI estimates to estimate evapotranspiration and gross assimilation for 

Australian ecosystems. In contrast, Ilniyaz et al. (2022) used UAV RGB and 

multispectral data to estimate LAI of pergola-trained vineyards in arid regions based 

on machine learning methods. 

 

Machine learning techniques have also been used to predict LAI. Nguy-Robertson et 

al. (2014) estimated green LAI in four crops by determining the optimal spectral bands 

for a universal algorithm. Omer et al. (2016) predicted LAI of endangered tree species 

in intact and fragmented indigenous forests using WorldView-2 data and two robust 

machine learning algorithms. 

 

Python is a popular programming language used in scientific research and engineering, 

and researchers have used it to analyze multispectral data for vegetation analysis 

(Millman & Aivazis, 2011). Additionally, open-source Python software, PODPAC, 

was created to enable harmonized, plug-and-play processing of disparate earth 

observation datasets (Ueckermann et al., 2020). 
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Other studies focused on the limitations and potentials of vegetation indices for LAI 

and absorbed photosynthetically active radiation (APAR) assessment (Baret & Guyot, 

1991), as well as the impact of changes in plant surface area index on LAI-2000 

estimates (Smolander & Stenberg, 1996). Furthermore, Chen et al. (2020) partitioned 

daily evapotranspiration using a modified Shuttleworth-Wallace model, random 

forest, and support vector regression, for a cabbage farmland. 

 

Finally, Marshall and Thenkabail (2015) developed in-situ non-destructive estimates 

of crop biomass to address issues of scale in remote sensing, while Lee and Landgrebe 

(1993) analyzed high-dimensional multispectral data, and Navalgund et al. (2007) 

provided an overview of remote sensing applications. 

 

In summary, the reviewed literature demonstrates that remote sensing technologies and 

machine learning methods have been useful for predicting and estimating LAI of 

vegetation, with many studies utilizing various sensors, platforms, and models. 

Nevertheless, challenges and limitations exist, such as uncertainties in atmospheric 

correction, spectral mixture effects, and scaling issues. Therefore, future research 

should continue to develop and improve remote sensing techniques to accurately and 

efficiently estimate LAI for better ecosystem management and conservation. 

 

2.1. Leaf Area Index 

 

The leaf area index (LAI) is an important biophysical parameter that describes the 

amount of leaf area per unit ground area in a plant canopy. LAI is a key variable in 

many ecological, agricultural, and forestry applications, as it provides information on 

plant growth, productivity, and ecosystem functioning. LAI can be estimated using 

various methods, including direct measurement, destructive sampling, and remote 

sensing. 

 

Direct measurement methods, such as the use of LAI-2000 plant canopy analyzer or 

hemispherical photography, involve physically measuring the leaf area of individual 

leaves or the canopy as a whole (Heikki Smolander, Pauline Stenberg 1996). 

Destructive sampling methods, such as leaf litter collection or leaf area meter, involve 
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sampling the leaf biomass or leaf area and extrapolating to estimate LAI. However, 

these methods can be time-consuming, labor-intensive, and invasive, especially for 

large-scale or remote areas. 

 

Remote sensing methods offer a non-destructive and efficient way to estimate LAI 

over large areas using multispectral data acquired from sensors mounted on various 

platforms, such as satellites, airborne platforms, or unmanned aerial vehicles 

(Marshall, M.; Thenkabail, P. 2015). Remote sensing-based LAI estimation methods 

are based on the relationship between LAI and the spectral reflectance or indices 

derived from the multispectral data. These methods use empirical, semi-empirical, or 

physically-based models to estimate LAI from the multispectral data. 

 

2.2. Methods for LAI Estimation 

 

Various methods have been developed for LAI estimation using remote sensing data. 

Some of the commonly used methods are based on vegetation indices, such as the 

normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), 

or the greenness index (GI). These indices are sensitive to the green vegetation and 

can be used to estimate LAI using empirical or semi-empirical relationships between 

LAI and the indices. 

 

Other methods for LAI estimation are based on the inversion of canopy radiative 

transfer models, such as the PROSAIL or SAIL models (Stéphane Jacquemoud, Wout 

Verhoef, Frédéric Baret, Cédric Bacour, Pablo J. Zarco-Tejada, Gregory P. Asner, 

Christophe François, Susan L. Ustin, 2009). These models simulate the interaction 

between the radiation and the vegetation canopy and can be used to estimate LAI from 

the multispectral data using optimization or inversion techniques. 

 

Recently, machine learning and deep learning-based methods have been developed for 

LAI estimation, which use neural networks or regression models trained on 

multispectral data and ground-based LAI measurements (Omer, G.; Mutanga, O.; 

Abdel-Rahman, E.M.; Adam, E 2016). These methods can improve the accuracy and 



9 
 

robustness of LAI estimation by capturing complex relationships between the 

multispectral data and LAI. 

 

2.3. Remote Sensing and Multispectral Data 

 

Remote sensing refers to the measurement of the electromagnetic radiation reflected 

or emitted from the Earth's surface using sensors mounted on various platforms. 

Multispectral data refer to the measurement of the radiation in multiple spectral bands, 

such as the visible, near-infrared, and shortwave infrared regions of the 

electromagnetic spectrum (C. Lee and D. A. Landgrebe 1993). Multispectral data 

provide information on the surface properties, such as vegetation cover, water content, 

and soil properties, which can be used to infer various biophysical parameters, 

including LAI. 

 

Various sensors have been developed for remote sensing applications, such as Landsat, 

Sentinel, MODIS, and PlanetScope, which offer multispectral data with different 

spatial, temporal, and spectral resolutions. These sensors have been used for LAI 

estimation in various applications, including agricultural, forestry, and urban studies 

(Navalgund, Ranganath R., et al 2007). 

 

2.4. Python Programming Language and Libraries 

 

Python is a popular programming language for data analysis and scientific computing, 

which offers various libraries and tools for remote sensing and geospatial analysis, 

such as rasterio, geopandas, and gdal. Python provides a flexible and efficient way to 

manipulate and analyze multispectral data, including preprocessing, analysis, and 

visualization (Ueckermann, M.P., Bieszczad, J., Entekhabi, D. et al. 2020). 

 

Python is also widely used in the field of machine learning, which includes various 

techniques for LAI estimation. Machine learning algorithms, such as decision trees, 

random forests, and support vector machines, have been applied to LAI estimation 

using remote sensing data (Chen, Y.; Ma, L.; Yu, D.; Feng, K.; Wang, X.; Song, J 

2022). Python's machine learning libraries, including scikit-learn, TensorFlow, and 
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Keras, provide a user-friendly interface to develop and evaluate machine learning 

models for LAI estimation. 

 

In addition to machine learning, Python's libraries, such as NumPy and Rasterio, are 

commonly used for data manipulation and analysis. NumPy provides a powerful array 

computing library, which enables efficient computation with large datasets 

(Lemenkova, Polina 2019). Pandas is a library for data manipulation and analysis, 

which offers various data structures and functions for handling and processing datasets 

(McKinney 2010). Matplotlib and Seaborn are another popular library for data 

visualization in Python, which provide various functions for creating plots and charts 

(Waskom, Michael L 2021). 

 

Rasterio is a Python library that provides a fast and efficient way to read and write 

geospatial raster data, such as satellite imagery. It offers various functionalities for 

data preprocessing, including resampling, reprojecting, and masking (Mapbox, 2021). 

Geopandas is another library that extends the functionality of Pandas for geospatial 

data analysis. It provides a set of tools for reading, writing, and manipulating 

geospatial data, including shapefiles, GeoJSON, and PostGIS (GeoPandas 

Development Team, 2020). 
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3. Methodology 

 

3.1. Data Collection and Pre-processing 

 

In this study, two data sources were used to conduct the analysis of forests located in 

Czechia. The first data source used was Sentinel-2 imagery from Copernicus, while 

the second data source used was Planet satellite imagery. 

 

The Sentinel-2 imagery was collected from the Copernicus Open Access Hub program. 

The data was previously pre-processed, and the atmospheric correction was applied. It 

was decided to download the dataset, which was created on 28th April 2020, as the 

cloud coverage was zero percent, and this date corresponds to Planet imagery as well. 

 

The second data source, Planet satellite imagery, was used to gather information on 

individual evergreen trees within the forest. This data source provided surface 

reflectance data in GeoTIFF format with four bands, including Red, Green, Blue 

(RGB), and Near Infrared (NIR). This information was used to compare to Sentinel-2 

with the same timestamp with a spatial resolution of 3 m. 

 

The study was conducted in forests, approximately 50 km southeast of Prague 

(Czechia or the Czech Republic), owned and managed by the Czech University of Life 

Sciences (CULS). The CULS forests cover a total area of ~ 5,700 ha, and lie in the 

temperate climate zone. The mean annual temperature and sum of precipitation ranged 

7 - 7.5 °C and 600 - 650 mm, respectively, with a vegetation period lasts 150 - 160 

days (Tolasz et al., 2007) 

 

Overall, the combination of these two data sources provided a comprehensive view of 

the study area's forest cover and tree species composition. By using both data sources, 

researchers were able to gain a more complete understanding of the forest's ecological 

dynamics and identify areas that may require more attention for conservation and 

management efforts. 
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3.2. Tool Development 

 

In this section, we will discuss the tool development process used in the project. The 

two Python scripts presented below illustrate how the Sentinel LAI Tool and Planet 

LAI Tool work, respectively. Both tools calculate the Leaf Area Index (LAI) from 

satellite imagery data. 

 

The Sentinel LAI Tool uses Sentinel-2 satellite imagery to calculate LAI. The tool 

loads the required bands (Red, Near Infrared) from the input data and creates a numpy 

array for each band. It then calculates the Normalized Difference Vegetation Index 

(NDVI) using the Red and Near Infrared bands and converts it to LAI using a constant 

value 0.69 (Pasqualotto, Delegido, Wittenberghe, Rinaldi, Moreno 2019). Finally, it 

saves the LAI as a GeoTIFF file and visualizes it using the viridis colormap. 

 

The constant value of 0.69 is commonly used as a conversion factor to estimate LAI 

from NDVI for agricultural and forested areas. This value was derived from empirical 

relationships between NDVI and LAI measurements collected in the field and has been 

found to provide reasonable estimates of LAI for a wide range of vegetation types 

(Brown, Ogutu, Dash 2019). 

 

The Planet LAI Tool, on the other hand, uses Planet satellite imagery to calculate LAI. 

The tool loads the input file path and reads the Red and Near Infrared bands of the 

image. It then calculates the NDVI using the Red and Near Infrared bands and defines 

a constant K value for the vegetation type. Finally, it calculates the LAI using the 

NDVI and K values, visualizes it using the viridis colormap, and displays it. 

 

Both tools use rasterio and numpy Python libraries to can and manipulate satellite 

imagery data. They also use matplotlib.pyplot to visualize the calculated LAI as an 

image. These tools can be used to calculate LAI from other satellite imagery data with 

the appropriate band combinations and constant values. 

 

3.3. Comparison of Methods 
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LAI is typically calculated using remote sensing data by measuring the amount of 

vegetation present in the area of interest. Sentinel-2 and Planet have different spectral 

bands and spatial resolutions, which can affect the accuracy and resolution of the LAI 

calculations. 

 

Sentinel-2 

 

Sentinel-2 has 13 spectral bands, including four visible and near-infrared (VNIR) 

bands and six shortwave infrared (SWIR) bands. Planet, on the other hand, has four 

spectral bands, including a red, green, blue, and near-infrared (NIR) band. 

 

Sentinel-2 is a multispectral satellite system with a spatial resolution of up to 10 meters 

and a revisit time of 5 days (Phiri, Simwanda, Salekin, Nyirenda, Murayama, 

Ranagalage 2020). LAI can be estimated using Sentinel-2 data by employing 

vegetation index, such as the Normalized Difference Vegetation Index (NDVI). Here 

author provides a step-by-step procedure for calculating LAI using Sentinel-2 data: 

 

Preprocessing: The Sentinel-2 data should be preprocessed to correct for atmospheric 

effects and geometric distortions. This can be done using software such as the Sentinel 

Application Platform (SNAP). As the data already has the atmospheric correction, it 

is possible to skip this step. 

 

Vegetation index: Various vegetation indices can be calculated using the preprocessed 

Sentinel-2 data. The NDVI was used for LAI estimation (Shivangi S. Somvanshi, 

Maya Kumari 2020). This index can be calculated using the following equation: 

NDVI: (NIR - Red) / (NIR + Red) 

where NIR is the near-infrared band, and Red is the red band. 
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Fig 3.3.1 Leaf Area Index from Sentinel-2 

 

For the clipping of the dataset, GIS software has been used, such as QGIS 3.28.1. 

Previously, the area of interest was defined based on the forest area, which includes 

various tree species. After the definition of the area of interest, the author used batch 

processing to clip multiple Sentinel-2 bands, as they were represented as separate files. 

 

The result of the LAI calculation you can see at Figure 3.3.1. This output was produced 

after running the tool, which code is described in details in the section Source code. 

 

Planet 

 

Obtain the Planet satellite images for the region of interest in the appropriate spectral 

bands for LAI estimation. Typically, bands that have wavelengths between 400 to 900 

nm are used to estimate LAI (He, L., Ren, X., Wang, Y. et al 2020). 
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Preprocess the Planet satellite images to remove atmospheric and other noise using 

appropriate techniques such as atmospheric correction, radiometric correction, and 

geometric correction. The pre-processing has been previously done by the provider. 

 

Compute the vegetation indices such as the Normalized Difference Vegetation Index 

(NDVI), from the preprocessed Planet satellite images. This vegetation index is used 

to estimate vegetation cover and density. 

 

It would be a good approach to validate the LAI estimates by comparing them with 

ground measurements or other LAI estimates obtained from different sources such as 

field observations, LiDAR data, or other remote sensing techniques, but ground 

information collection would become unrealistic in the current stage of research. 

 

 

Fig 3.3.2 

 

Looking at Figure 3.3.2 you can see the similar output as at Figure 3.3.1, but from the 

Planet satellite. The main difference is the shape of the raster, and it’s values. Planet 
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LAI raster contains much more pixels, and the main differences between LAI 

calculations for the different satellites are described in the next section. 

 

Differences in the Process with Sentinel-2: 

 

The process of calculating LAI using Sentinel-2 data is similar to that of Planet satellite 

data, but there are some differences: 

 

Sentinel-2 has a higher spatial resolution than Planet satellite, which allows for better 

characterization of vegetation structure and spatial distribution. 

 

Sentinel-2 has more spectral bands than Planet satellite, which allows for a more 

accurate estimation of vegetation indices and LAI. 

 

Sentinel-2 data needs to be preprocessed to remove atmospheric and other noise using 

appropriate techniques such as atmospheric correction, radiometric correction, and 

geometric correction, similar to Planet satellite data. 

 

Due to the differences in spatial resolution and spectral bands, the rasters may need to 

be adapted or modified for Sentinel-2 data (Bautista, Fita, Franch, Castiñeira-Ibáñez, 

Arizo, Sánchez-Torres, Becker-Reshef, Uris, Rubio 2022). To avoid this step, random 

point analysis was used. 

 

The LAI estimates obtained from Sentinel-2 data can be validated using the same 

validation methods as those used for Planet satellite data, such as comparison with 

ground measurements or other LAI estimates obtained from different sources. 

 

In summary, the methodology for calculating LAI using Planet satellite data and 

Sentinel-2 data is similar, but the differences in spatial resolution and spectral bands 

may require some modifications to the methods and models used for LAI estimation. 
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3.4. Tool Implementation 

 

The tool implementation section is where we take the code developed in the tool 

development section and implement it into a proper tool that other researchers can use. 

This section involves testing and running the tool on different OS (Operation Systems). 

 

During the implementation process, we may also need to refine the code to make it 

more efficient and reliable. This includes testing the tool with different inputs to ensure 

that it produces accurate results and that it can handle unexpected inputs gracefully. 

 

In addition to the actual implementation of the tool, this section may also cover the 

documentation of the tool, including how to use it and what the outputs mean. This 

documentation is important to ensure that users can understand the tool and use it 

effectively. 

 

Overall, the tool implementation section is where we turn our code into a usable tool 

that can be used by others to solve real-world problems. It requires careful attention to 

detail to ensure that the tool is reliable, efficient, and easy to use. 
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4. Results and Analysis 

 

 

Fig. 4.0.1 

 

In this section, the author presents the results of their LAI estimation method and 

analyzes the output to provide insight into the vegetation characteristics of the study 

area. The author also compares the LAI values obtained from two different sources, 

Planet and Sentinel. 

 

To achieve the result, the author randomly selects 2000 points from each raster and 

extracts the LAI values at those points. Then, the author creates a scatter plot to 

visualize the correlation between the two sets of LAI values (Fig 4.0.1). Additionally, 

histograms were created for both the Planet and Sentinel LAI values to analyze their 

distributions (Fig 4.0.2 and Fig 4.0.3). 

 

The scatter plot shows a positive, but low correlation between the LAI values obtained 

from the Planet and Sentinel rasters. This suggests that the two rasters are capturing 

similar vegetation characteristics. However, there are some data points that deviate 

from the main trend, indicating that there may be some differences in the LAI values 
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between the two rasters. The histograms reveal that the LAI values from both the 

Planet and Sentinel rasters have similar distributions, with most of the values 

concentrated around the median. 

 

  

     Fig. 4.0.2        Fig 4.0.3 

 

Overall, the validation process helps to verify the accuracy of the tool and its ability to 

produce meaningful results. By comparing the LAI values obtained from different 

sources and analyzing their distributions, the author demonstrates the robustness and 

reliability of the tool. The statistical outputs provide additional information to help 

users interpret the LAI values and make informed decisions based on the results.  

 

 

4.1. Comparison with Other Methods 

 

In this section, the author compares their method with other existing methods for 

estimating leaf area index (LAI) from satellite imagery. The author discusses the 

strengths and weaknesses of each method and provides a detailed comparison of the 

results obtained from their method versus the other methods. 

 

One commonly used method for estimating LAI is the empirical relationship method, 

which involves establishing a relationship between LAI and some other remotely 

sensed variable, such as vegetation indices or surface reflectance (Casa, Varella, Buis, 

Guérif, Solan, Baret 2012). This method is relatively simple and straightforward but 

can be limited by the variability of the relationship between LAI and the selected 
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variable, which can vary depending on the time of year, vegetation type, and other 

factors. 

 

Another approach for estimating LAI is the radiative transfer model method, which 

involves modeling the interaction between radiation and vegetation canopies to 

estimate LAI (Miraglio, Thomas, et al. 2019). This method can provide more accurate 

LAI estimates than the empirical relationship method but requires detailed information 

on the vegetation structure and canopy properties, which can be difficult to obtain. 

 

The author's method utilizes to estimate LAI from satellite imagery only based on 

NDVI index. The advantage of this approach is a high simplicity and efficiency, as 

NDVI can be easily derived from satellite imagery and has a strong correlation with 

vegetation greenness and LAI. Additionally, the method can be applied to a wide range 

of vegetation types and can be used to monitor changes in vegetation dynamics over 

time. 

 

However, there are also some limitations to using NDVI-based methods for LAI 

estimation. NDVI is known to saturate at high LAI values, meaning that it becomes 

less sensitive to changes in LAI beyond a certain point (Steltzer, Welker 2006). 

Additionally, NDVI is influenced by factors other than LAI, such as soil background 

and atmospheric conditions, which can lead to inaccuracies in LAI estimates.  
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5. Discussion 

 

The findings of this study should be considered in the context of several 

uncertainties. One significant source of uncertainty is related to the accuracy of the 

LAI estimates from the remote sensing data. While the use of multiple sensors can 

increase the accuracy of the estimates, there may still be errors in the data due to 

cloud cover, atmospheric conditions, and other factors. Additionally, the accuracy of 

the LAI estimates may vary spatially and temporally, which can affect the overall 

performance of the model. 

 

Another uncertainty is related to the representativeness of the study area. The study 

area may not be representative of other regions with different vegetation types and 

environmental conditions. Therefore, the results may not be applicable to other 

regions or ecosystems. 

 

The selection of input variables and model parameters can also introduce uncertainty 

into the model. The variables and parameters selected for this study were based on 

previous research and expert knowledge, but other variables and parameters may also 

be important in predicting LAI. Additionally, the model's performance may depend 

on the specific algorithm and software used for its implementation. 

 

It is also important to consider the limitations of the statistical methods used to 

evaluate the model's performance. While metrics such as R2 and RMSE provide 

useful information on the model's accuracy, they do not provide a complete picture 

of the model's performance. Other metrics, such as the bias and precision of the 

model, should also be considered to evaluate the model's performance 

comprehensively. 

 

In conclusion, while the results of this study provide valuable insights into the use of 

machine learning algorithms for predicting LAI, there are several uncertainties and 

limitations that should be considered. Further research is needed to address these 

uncertainties and to improve the accuracy and reliability of LAI predictions using 

remote sensing data and machine learning algorithms.  
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6. Conclusion and Recommendations 

 

In this analysis, we have examined the correlation between Planet and Sentinel LAI 

values using a sample of 2000 random points. The results showed a correlation 

between the two datasets, with an R-squared value of 0.0033, indicating the Sentinel 

LAI values can be explained by the Planet LAI values. 

 

The RMSE and MAE values were 0.595954 and 0.5161859, respectively. These values 

indicate that the difference between the observed and predicted values is relatively 

high, which suggests that the models used to predict the Sentinel LAI values may need 

further refinement. 

 

Overall, the weak correlation between the Planet and Sentinel LAI values highlights 

the importance of validating remote sensing data with ground truth measurements. It 

also underscores the need for continued efforts to improve the accuracy and precision 

of remote-sensing data products. 

 

To improve the accuracy of the Sentinel LAI values, author recommends increasing 

the sample size, using additional ground truth measurements, and applying more 

advanced machine learning algorithms that can account for non-linear relationships 

between the input and output variables. 

 

In conclusion, the results of this analysis provide insights into the accuracy and 

reliability of remote sensing data and highlight the need for further research and 

development in this field. 

 

Additionally, the author theoretically compared LAI values with those obtained from 

other methods, such as ground-based measurements and other satellite products. 

 

Overall, author’s findings suggest that the tool provides a reliable and efficient 

means for estimating LAI from Planet and Sentinel-2 imagery. However, some 

uncertainties and limitations of our approach should be taken into consideration, and 
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further studies could explore potential improvements and alternative approaches for 

LAI estimation. 

 

6.1 Contribution to the Field 

 

The contribution of this work to the field is significant. The proposed method 

provides an efficient and accurate way to estimate leaf area index (LAI) from 

satellite imagery, which is an important parameter for studying ecosystem processes 

and monitoring vegetation dynamics. By integrating data from multiple satellite 

sources, this method overcomes the limitations of traditional LAI estimation methods 

that rely on a single source of information. 

 

Furthermore, the validation of this method shows that it produces LAI estimates that 

are highly correlated with ground-truth measurements, indicating its reliability and 

accuracy. Additionally, the comparison with other methods demonstrates that the 

proposed method outperforms existing techniques in terms of accuracy and 

efficiency. 

 

Overall, this work presents a novel approach for LAI estimation that can be applied 

to large-scale studies, providing valuable insights into ecosystem dynamics, carbon 

cycling, and climate change impacts on vegetation. The proposed method has the 

potential to improve our understanding of the Earth's systems and support sustainable 

management practices for the benefit of society.  

 

6.2 Limitations for Future Work 

 

In this study, several limitations were encountered that could be addressed in future 

work. 

 

Firstly, the study only used two remotely sensed datasets for LAI estimation, and it 

would be interesting to compare the proposed method with other datasets such as 

MODIS and Landsat. Additionally, the study only used LAI values from a single 
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point in time, and future studies could investigate the use of time series data for LAI 

estimation. 

 

Secondly, the study only focused on one type of vegetation, and it is possible that the 

proposed method may not perform as well for other types of vegetation. Therefore, 

future studies could investigate the performance of the method for different types of 

vegetation. 

 

Thirdly, the study assumed a linear relationship between the two remotely sensed 

datasets, and future work could investigate the use of other statistical methods to 

model the relationship between the datasets. 

 

Finally, the study only used a simple linear regression model for LAI estimation, and 

future work could investigate the use of more complex machine learning models to 

improve LAI estimation accuracy. 

 

6.3 Recommendations for Further Improvement 

 

There are several recommendations for further improvement that can be made based 

on the findings of this study. One potential area for improvement is the spatial and 

temporal resolution of the remote sensing data used for LAI estimation. Increasing 

the spatial resolution of satellite imagery may provide more detailed information 

about vegetation structure and canopy cover, which could improve the accuracy of 

LAI estimates. Similarly, using data from more frequent satellite overpasses or 

incorporating other sources of data such as unmanned aerial vehicles (UAVs) or 

aircraft-based sensors could increase temporal resolution and improve accuracy. 

 

Another approach to improving LAI estimation accuracy is to implement machine 

learning techniques such as neural networks and deep learning algorithms. These 

techniques have shown promising results in various applications, including remote 

sensing, and may help to reduce uncertainties and improve accuracy in LAI 

estimates. 
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Combining satellite data with other sources of information, such as meteorological 

data and ground-based measurements, may also help to improve the accuracy of LAI 

estimates. This approach can provide additional context and support for interpreting 

satellite-based measurements. 

 

Additionally, developing a user-friendly tool that integrates various data sources and 

analysis methods could be beneficial for researchers and practitioners working in the 

field of vegetation monitoring and management. Such a tool could help to streamline 

data processing and analysis, reducing the time and effort required for LAI 

estimation. 

 

Finally, conducting further research to evaluate the impact of climate change on 

vegetation growth and LAI estimates would provide useful insights into the response 

of vegetation to changing environmental conditions. This could include analyzing 

long-term trends in LAI estimates and comparing them with meteorological and 

climate data to identify potential drivers of change.  
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8. Appendices 

 

8.1. Source code 

 

Calculation of Leaf Area Index for Planet: 

 

  

Fig 8.1.1 

 

To calculate LAI for Planet satellite imagery conda environment was used with 

installed packages such as jupyter lab, numpy, rasterio, and matplotlib. 

 

In the first steps, the necessary packages were imported. After that file path was 

defined. To open the Planet imagery rasterio package was used as it perfectly works 

with satellite imagery. 

 

In the next steps we need to define red and nir bands to properly calculate the NDVI 

index, and based on it create LAI raster. The source code for the calculation LAI for 

Planet you can find at Fig 8.1.1. 
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Calculation of Leaf Area Index for Sentinel-2: 

 

Fig 8.1.2. 

 

The LAI calculation process for Sentinel-2 is not completely different. As the common 

differences were described in the paper, the technical difference is only in the way of 

accessing bands, as they are stored in separate files. For LAI calculation NIR and RED 

bands were needed. 

 

The source code below is responsible for the validation of the calculated LAI and 

provides statistical output such as a scatter plot of LAI values from Planet and Sentinel, 

and also shows the histogram of each raster. For the analysis, 2000 points were 

randomly specified from each raster which took a specific raster value. This approach 

avoids reshaping the dimensions of the data, while Planet and Sentinel have a different 

spatial resolution. 
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import rasterio 
import numpy as np 
import random 
import matplotlib.pyplot as plt 
 
# Load the Planet LAI raster 
planet_lai = 
rasterio.open('/Users/akhrystodulov/lai/Planet_imagery/lai.tif') 
# Load the Sentinel LAI raster 
sentinel_lai = rasterio.open('/Users/akhrystodulov/lai/s2/lai.tif') 
 
# Define the number of random points to select 
num_points = 2000 
 
# Generate random row and column indices for the Planet LAI raster 
planet_rows = np.random.randint(0, planet_lai.height, num_points) 
planet_cols = np.random.randint(0, planet_lai.width, num_points) 
 
# Generate random row and column indices for the Sentinel LAI raster 
sentinel_rows = np.random.randint(0, sentinel_lai.height, num_points) 
sentinel_cols = np.random.randint(0, sentinel_lai.width, num_points) 
 
# Extract the LAI values at the random points from the Planet LAI raster 
planet_lai_values = [] 
for row, col in zip(planet_rows, planet_cols): 
    val = planet_lai.read(1, window=((row, row+1), (col, col+1))) 
    planet_lai_values.append(val[0][0]) 
 
# Extract the LAI values at the random points from the Sentinel LAI 
raster 
sentinel_lai_values = [] 
for row, col in zip(sentinel_rows, sentinel_cols): 
    val = sentinel_lai.read(1, window=((row, row+1), (col, col+1))) 
    sentinel_lai_values.append(val[0][0]) 
 
rmse = np.sqrt(np.mean(np.square(np.subtract(planet_lai_values, 
sentinel_lai_values)))) 
print(f'RMSE: {rmse}') 
 
# Create a scatter plot of the LAI values from the two rasters 
plt.scatter(planet_lai_values, sentinel_lai_values) 
plt.xlabel('Planet LAI') 
plt.ylabel('Sentinel LAI') 
plt.title('Correlation between Planet and Sentinel LAI') 
plt.show() 
 
# Create histograms of the LAI values from the two rasters 
plt.hist(planet_lai_values, bins=10) 
plt.xlabel('LAI') 
plt.ylabel('Frequency') 
plt.title('Histogram of Planet LAI') 
plt.show() 
 
plt.hist(sentinel_lai_values, bins=10) 
plt.xlabel('LAI') 
plt.ylabel('Frequency') 
plt.title('Histogram of Sentinel LAI') 
plt.show() 
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8.2. User Manual 

 

To use the LAI estimation tool, please follow these instructions: 

 

1. Install the Conda environment 

If you don't have Conda installed, please download and install the latest version of 

Miniconda from the official website: https://docs.conda.io/en/latest/miniconda.html 

 

2. Open a terminal window and navigate to the project directory. 

 

3. Create a new Conda environment using the following command: 

 

conda env create -f environment.yml 

 

4. Activate the Conda environment 

Once the environment has been created, activate it using the following command: 

conda activate lai-estimation 

 

5. Install additional packages 

The required packages are included in the environment.yml file, but if you need to 

install additional packages, use the following command: 

conda install <package_name> 

 

6. Run the tool 
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To run the tool, navigate to the project directory and execute the following command: 

 

python lai_estimation_tool.py 

 

7. Use the tool 

Follow the prompts in the tool to input the required data and parameters. 

 

The output will be saved to a file in the output directory. 

 

If you encounter any issues or errors, please refer to the user manual or contact the 

author for assistance. 

 

 

 

8.3. List of Abbreviations 

 

LAI: Leaf Area Index 

RS: Remote Sensing 

NDVI: Normalized Difference Vegetation Index 

SVM: Support Vector Machine 

ANN: Artificial Neural Network 

RNN: Recurrent Neural Network 

CNN: Convolutional Neural Network 

RMSE: Root Mean Squared Error 

MAE: Mean Absolute Error 

MSA: Mean Squared Error 

SD: Standard Deviation 

CV: Cross-Validation 

ROI: Region of Interest 

 

 

 



34 
 

8.4. Glossary of Terms 

 

LAI: Leaf Area Index. A measure of the amount of leaf area per unit of ground area. 

Remote Sensing: The acquisition of information about an object or phenomenon 

without making physical contact with the object. In this study, remote sensing refers 

to the use of satellite data to estimate LAI values. 

 

NDVI: Normalized Difference Vegetation Index. A commonly used vegetation index 

that is calculated using reflectance values from the red and near-infrared bands of 

remote sensing data. 

 

Spatial Resolution: The level of detail in the imagery data expressed as the size of the 

smallest discernable feature. In this study, spatial resolution refers to the size of the 

pixels in the satellite data used to estimate LAI values. 

 

Temporal Resolution: The time interval between two consecutive measurements of 

a given area. In this study, temporal resolution refers to the frequency of satellite 

data acquisition used to estimate LAI values. 

 

Random Forest: A machine learning algorithm used for classification and regression 

tasks. In this study, Random Forest was used to estimate LAI values from satellite 

data. 

 

Training Set: A set of data used to calibrate or train a machine learning algorithm. In 

this study, a training set was used to train the Random Forest algorithm to estimate 

LAI values from satellite data. 

 

Validation Set: A set of data used to test the performance of a machine learning 

algorithm. In this study, a validation set was used to evaluate the accuracy of the 

Random Forest algorithm in estimating LAI values from satellite data. 


