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Abstract

From an early age, infants show an innate ability to infer linguistic structures from
the speech signal long before they learn to read and write. In contrast, modern speech
recognition systems require large collections of transcribed data to achieve a low error rate.
The relatively recent field of Unsupervised Speech Learning has been dedicated to endow
machines with a similar ability. As a part of this ongoing effort, this thesis focuses on the
problem of discovering a set of acoustic units from a language given untranscribed audio
recordings. Particularly, we explore the potential of Bayesian inference to address this
problem.

First, we revisit the state-of-the-art non-parametric Bayesian model for the task of acous-
tic unit discovery and derive a fast and efficient Variational Bayes inference algorithm. Our
approach relies on the stick-breaking construction of the Dirichlet Process which allows
expressing the model as a Hidden Markov Model-based phone-loop. With this model and a
suitable mean-field approximation of the variational posterior, the inference is made with an
efficient iterative algorithm similar to the Expectation-Maximization scheme. Experiments
show that this approach performs a better clustering than the original model while being
orders of magnitude faster.

Secondly, we address the problem of defining a meaningful a priori distribution over
the potential acoustic units. To do so, we introduce the Generalized Subspace Model, a
theoretical framework that allows defining distributions over low-dimensional manifolds
in high-dimensional parameter space. Using this tool, we learn a phonetic subspace—
a continuum of phone embeddings—from several languages with transcribed recordings.
Then, this phonetic subspace is used to constrain our system to discover acoustic units that
are similar to phones from other languages. Experimental results show that this approach
significantly improves the clustering quality as well as the segmentation accuracy of the
acoustic unit discovery system.

Finally, we enhance our acoustic units discovery model by using a Hierarchical Dirichlet
Process prior instead of the simple Dirichlet Process. By doing so, we introduce a Bayesian
bigram phonotactic language model to the acoustic unit discovery system. This approach
captures more accurately the phonetic structure of the target language and consequently
helps the clustering of the speech signal. Also, to fully exploit the benefits of the phonotactic
language model, we derive a modified Variational Bayes algorithm that can balance the
preponderance of the role of the acoustic and language model during inference.



Abstrakt

Děti mají již od útlého věku vrozenou schopnost vyvozovat jazykové znalosti z mluvené
řeči - dlouho předtím, než se naučí číst a psát. Moderní systémy pro rozpoznávání řeči
oproti tomu potřebují k dosažení nízké chybovosti značná množství přepsaných řečových
dat. Teprve nedávno založená vědecká oblast “učení řeči bez supervize” se věnuje přenosu
popsaných lidských schopností do strojového učení. V rámci této oblasti se naše práce
zaměřuje na problém určení sady akustických jednotek z jazyka, kde jsou k disposici pouze
nepřepsané zvukové nahrávky. Pro řešení tohoto problému zkoumáme zejména potenciál
bayesovské inference.

V práci nejprve pro úlohu určování akustických jednotek revidujeme využití state-of-
the-art neparametrického bayesovského modelu, pro který jsme odvodili rychlý a efek-
tivní algoritmus variační bayesovské inference. Náš přístup se opírá o konstrukci Dirichle-
tova procesu pomocí “lámání hůlky” (stick breaking) umožňující vyjádření modelu jako
fonémové smyčky založené na skrytém Markovově modelu. S tímto modelem a vhod-
nou středopolní (mean-field) aproximací variační posteriorní pravděpodobnosti je infer-
ence realizována pomocí efektivního iteračního algoritmu, podobného známému schématu
Expectation-Maximization (EM). Experimenty ukazují, že tento přístup zajišťuje lepší
shlukování než původní model, přičemž je řádově rychlejší.

Druhým přínosem práce je řešení problému definice smysluplného apriorního rozdělení na
potenciální akustické jednotky. Za tímto účelem představujeme zobecněný pod-prostorový
model (Generalized Subspace Model) - teoretický rámec umožňující definovat pravděpodob-
nostní rozdělení v nízkodimenzionálních nadplochách (manifoldech) ve vysokorozměrném
prostoru parametrů. Pomocí tohoto nástroje učíme fonetický podprostor — kontinuum vek-
torových reprezentací (embeddingů) fonémů — z několika jazyků s přepsanými nahrávkami.
Pak je tento fonetický podprostor použit k omezení našeho systému tak, aby určené aku-
stické jednotky byly podobné fonémům z ostatních jazyků. Experimentální výsledky ukazují,
že tento přístup významně zlepšuje kvalitu shlukování i přesnost segmentace systému pro
určování akustických jednotek.
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Mathematical notation

Vectors are denoted by lower-case bold Roman or Greek letters such as x or 𝜆; they are
assumed to be column vectors. Uppercase bold Roman or Greek letters, such as X or Λ,
denote matrices. A superscript ⊤ denote the transpose of a matrix or a vector. The list of
mathematical notations used in this thesis are shown in the following table:

Notation Name Description
tr(M) trace Sum of the diagonal elements of the

square matrix M.
vec(M) vectorize Returns all the columns of the ma-

trix M as a vector.
mat(m) inverse vectorize Returns a 𝐷 × 𝐷 square matrix M

from a 𝐷2-dimensional vector m.
The matrix is created column-wise.

diag(M) diagonal Returns the diagonal elements of a
square matrix M.

ltri(M) lower triangular Returns the lower triangular part of
a matrix (not including the diago-
nal) as a vector.

1[condition] indicator Returns 1 if “condition” is true, 0
otherwise.

𝛿x(y) Dirac delta function Returns +∞ if y = x, 0 otherwise,
and

∫︀
𝑦 𝛿x(y)dy = 1.

⟨𝑎⟩𝑝(𝑥) expectation Expectation of 𝑎 with respect to
𝑝(𝑥):

∫︀
𝑥 𝑎𝑝(𝑥)d𝑥.

DKL(𝑞(𝑥)||𝑝(𝑥)) Kullback-Leibler divergence Divergence between two distribu-
tions defined as:

∫︀
𝑥 𝑞(𝑥) ln 𝑞(𝑥)

𝑝(𝑥)d𝑥.
ℬ(𝛼, 𝛽) Beta distribution See appendix B.2.2.
𝒞(𝜋) Categorical distribution See appendix B.2.1.
𝒟(𝛼) Dirichlet distribution See appendix B.2.2.
𝒢(𝛼) Gamma distribution See appendix B.2.3.
𝒩 (𝜇,Σ) Normal distribution See appendix B.2.4.
𝒩𝒲(m, 𝛽,W, 𝜈) Normal-Wishart distribution See appendix B.2.5.
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Chapter 1

Introduction

Speech is a highly structured signal which serves as the primary mean of communication
among humans. The easiness and apparent simplicity with which we extract information
hide the profound complexity of the speech signal and the human hearing apparatus. In
acoustically challenging conditions, human listeners effortlessly decode phones, syllables,
words composing the message. Remarkably, infants learn to recognize speech long before
to know to read or write (Dupoux, 2018). They learn from a very limited set of speakers
(mostly their caregivers) and generalizes very well to other speakers and new acoustic
conditions. On the contrary, computers use an extremely large amount of data with high
diversity in terms of speakers and recording conditions to achieve similar performance to
human listeners (Xiong et al., 2016; Stolcke and Droppo, 2017). The difference between
humans and machines is particularly striking as the latter requires very strong supervision
whereas humans can learn to hear and speak with little guidance. The field of Unsupervised
Speech Learning (USL) (Glass, 2012; Goldwater and Johnson, 2007; Lee, 2014; Drexler,
2016; Kamper et al., 2017a) has been dedicated to endow machines with a similar capability:
to learn to recognize the speech signal with little or no supervision. This thesis is our
contribution to the USL research field and proposes a Bayesian approach to discover a
phonological system—the set of basic sounds called acoustic units used to communicate in
a language—from a collection of unlabeled audio recordings.

This introductory chapter is organized as follows: first we motivate the research interest
of this thesis in section 1.1. Then, we survey related works in section 1.2 and summarize
the contributions of this work in section 1.3.

1.1 Motivations
Automatic Speech Recognition (ASR) and related fields have made tremendous progress
over the last 50 years. From the single-speaker digit recognition system proposed by Bell’s
lab (Davis et al., 1952) to recent large vocabulary continuous speech recognition systems
(Sak et al., 2014, 2015; Sercu et al., 2016; Bi et al., 2015; Qian et al., 2016; Yu et al.,
2016), the ASR technology has matured to the point where, in certain conditions, it shows
similar performance to human listeners (Xiong et al., 2016; Stolcke and Droppo, 2017).
The growth of computational resources paired with advanced machine learning techniques
has yielded an almost continuous reduction of the error rates over time. Whereas early
systems relied on expert-designed rules (David and Selfridge, 1962), the field has gradually
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moved to statistical methods extracting empirical statistics from large collections of data.
The amount of necessary expert knowledge has decreased to the extent that a state-of-
the-art system can be built with solely audio recordings and their corresponding textual
transcriptions. However, the reduction of expert knowledge has been succeeded by a drastic
increase in the amount of data. Nowadays, commercial systems rely on thousands of hours
of transcribed data (Saon et al., 2015; Han et al., 2017; Xiong et al., 2018). These algorithms
are so data-hungry that the applicability of ASR systems is limited to the very small set
of languages in the world for which there is a sufficient amount of transcribed data and
commercial interest. Out of the 7000 languages spoken worldwide (Eberhard, David M.,
Gary F. Simons, and Charles D. Fennig, 2020), only about a hundred of them are covered
by ASR with varying degrees of accuracy1. This limitation is problematic as language
diversity is diminishing worldwide at an alarming pace. Data-driven methods to discover
a phonological system would be a strong help for on-field linguists to quickly document
endangered languages. Moreover, for languages having low amount of transcribed data,
the data-driven phonetic transcription of speech corpus can bootstrap a wide range of
downstream applications such as word discovery (Lee et al., 2015), language identification
(Shum et al., 2016), topic identification (Liu et al., 2017; Kesiraju et al., 2017) or text-to-
speech (Dunbar et al., 2019).

As already mentioned, infants learn to recognize speech long before they learn to read
and write (Dupoux, 2018). The inner details of this process remain largely unknown.
Yet, a better understanding of the human speech learning mechanism would have a great
impact on our knowledge of the brain and how to help children affected by neurological
disorders. Investigation on this matter is complicated for ethical and practical reasons. It
is impossible to constantly monitor children from their birth in a non-invasive way and
designing experiments with toddlers is particularly difficult due to their limited attention
and undeveloped verbal communication skills. An unsupervised machine learning model
simulating the acquisition of the phonology—and recognizing speech in general—would be
a precious tool to psycho-linguists to better understand the cognitive processes underlying
speech acquisition by humans.

Finally, the recent success of machine learning in a wide range of areas has heightened
the hope and the interest of our modern societies into building more intelligent systems.
However, the traditional approach based on training a deep neural network to discriminate
an input into a limited number of classes is very restrictive and severely narrows the range
of applications. Indeed, the assumption that we can collect a sufficient amount of labeled
data in all situations of interest is unrealistic. Conversely, the whole biosphere shows an
incredible capacity to learn and to adapt from its sole sensory data. We believe that
the development of unsupervised learning of such a complex signal as speech would be a
significant breakthrough in direction of a true—or at least a practical—artificial intelligence.

1.2 Related works
The task of discovering a phonological system from only speech data amounts to solve three
sub-problems:

∙ decomposing the speech into variable-length segments
1https://cloud.google.com/speech-to-text/docs/languages
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∙ clustering each of these segments, these clusters are often referred to as acoustic units

∙ finding an appropriate model complexity, that is choosing the appropriate number of
clusters necessary to describe the language.

These three sub-tasks have been addressed, jointly or independently in numerous works.
In the following, we attempt to give a general overview of the prior work on discovering
acoustic units.

Early approaches to discovering acoustic units have treated the segmentation and clus-
tering problem separately: (Cohen, 1981) proposes a dynamic programming based speech
segmentation algorithm, (Lee et al., 1988) uses two distinct and independent statistical
models to segment and cluster the segments respectively, (Černocký, 1998) decompose the
speech signal into quasi-stationary sub-signal before quantizing them, (Garcia and Gish,
2006) uses segmental Gaussian Mixture Model to cluster variable-length sequence of fea-
tures. These approaches have all in common that the number of acoustic units, i.e. clusters,
is a user-defined parameter and cannot be inferred from the data.

Another line of work relies on the Segmental Dynamic Time Warping (S-DTW) algorithm
(Park and Glass, 2005; Jansen et al., 2010; Jansen and Van Durme, 2011; Kamper et al.,
2017b) In these works, the S-DTW algorithm is used to spot re-occurring pattern in a
signal. This approach differs from other works as it tries to directly identify words or
syllables rather than phone-like units. The rationale is the following: since words last
much longer than phones, they are more easily discovered. While this may seem to be a
compelling idea, it has, nevertheless, a severe drawback: the number of words in a language
being literally infinite, it is clear that we will never have enough data to discover all possible
words. Moreover, clustering word-like units is more difficult as they have low occurrence
frequency compared to phones.

More recently, various Bayesian Generative Models (BGM) has been proposed to discover
acoustic units (Lee and Glass, 2012; Ondel et al., 2016, 2017; Varadarajan et al., 2008;
Kamper et al., 2016, 2017a; Kamper, 2017). These models improve over early approaches
such as (Lee et al., 1988) by using a single model to segment and cluster speech together.
Moreover, the use of non-parametric Bayesian modeling (Orbanz and Teh, 2010; Teh and
Jordan, 2010) allows these models to also infer the number of acoustic units from the
data itself. Whereas initial models were trained with Gibbs Sampling, the development of
variational methods for non-parametric models (Blei, 2004; Blei et al., 2006) has enabled
more efficient and scalable training approaches (Ondel et al., 2016). While BGMs have
shown to be more efficient than DTW based methods (Ondel et al., 2018), they have
relatively weak modeling power—compared to neural network based models—to preserve
the tractability of the training.

Neural networks based generative models have been successfully applied to learn a pow-
erful latent representation of speech (Dunbar et al.; Kamper et al., 2015; Hsu and Glass,
2018; Hsu et al., 2017; Milde and Biemann, 2018; Chorowski et al., 2019). While most of
these models are trained in an unsupervised fashion, other works replace the traditional
transcription with a different modality such as images or videos (Holzenberger et al., 2019;
Merkx et al., 2019; Harwath et al., 2016, 2018). While these models have generally more
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modeling capability compared to BGMs, they cannot easily cluster the speech signal as the
use of discrete latent variables precludes the back-propagation of gradients. Several works
have been proposed to incorporate layers with discrete output either by relaxing discrete
distributions (Jang et al., 2016; Maddison et al., 2017) or using some gradient approxima-
tion (van den Oord et al., 2017), nevertheless, clustering with neural network remains a
difficult issue. Finally, recent works have shown than BGMs can be combined in a prin-
cipled way with neural networks (Johnson et al., 2016). This line of work is particularly
interesting as it yields models that can learn jointly continuous and discrete hierarchical
representations of the signals.

1.3 Thesis Contributions
This thesis has three major contributions; each of them is presented in a distinct chapter:

Non-Parametric Bayesian Phone-Loop Model In chapter 2, we revisit a non-parametric
Bayesian model for acoustic unit discovery proposed in (Lee and Glass, 2012). Whereas
the authors originally used the Chinese Restaurant Process to sample from the distribution
of the model’s parameters, we propose to approximate this posterior distribution with the
Variational Bayes framework. To achieve this, we describe the generative process of the
model with the Sethuraman stick-breaking construction of the Dirichlet Process. Then,
by choosing an adequately structured mean-field factorization of the variational posterior
we show that the training of the model is amenable to a Variational Bayes Expectation-
Maximization (VB-EM) algorithm. This new inference scheme is beneficial as it consider-
ably speeds up the training and allows us to discover acoustic units from a larger amount
of data.

Generalized Subspace Model for Sound Representation Bayesian approaches for
acoustic unit discovery rely on, among other components, a prior distribution over sounds.
This prior distribution weighs which sounds are likely to be retained as acoustic units when
clustering the speech. In general, this distribution is chosen to be non-informative, that is,
it allows potentially any possible sounds to be an acoustic unit. In chapter 3, we propose to
build a more refined prior which gives higher weights to a subset of sounds similar to phones
from other languages. To do so, we introduce a new theoretical framework: the Generalized
Subspace Model (GSM). The GSM allows learning low-dimensional embeddings representing
probability distribution. In our case, we use the GSM in the following manner:

∙ given a set of phonetically transcribed speech data (from a different language than
the target one), we learn a Hidden Markov Model (HMM) model for each phone.

∙ using the GSM framework we learn a subspace in the total parameter space of the
HMM capturing the phonetic variability

∙ finally, we set the prior distribution over sounds of the acoustic unit discovery model
to be non-zero only on the subspace previously learned.

The GSM is a principle way to incorporate prior information into a model. For the task of
acoustic units discovery, we use the GSM to teach the model “what is a phone” (by using
transcribed data from other languages) before clustering the speech in the target language.
In addition to significantly improve the discovery of acoustic units, the GSM is very flexible
and can be applied to a wide family of models.
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Phonotactic Language Model Most of the Bayesian models for acoustic units dis-
covery rely on the Dirichlet Process prior. While mathematically convenient, this prior
assumes the probability of sequence of acoustic units to be given by an unigram distri-
bution. In chapter 4, we propose to address this limitation by developing a model based
on the Hierarchical Dirichlet Process (HDP). The HDP is a non-parametric prior which
defines a probability over an infinite set of conditional distributions. We use a two-level
HDP to build a non-parametric AUD model with bigram transition probabilites between
acoustic units. By using Teh’s stick-breaking construction of the HDP, we derive a VB-EM
training algorithm almost identical to the one used for the Dirichlet Process based model.
Additionally, to reduce the effect of the features; independence assumption of the HMM,
we propose a corrected version of the model by introducing language and acoustic scaling
factors. We show that these factors can be easily integrated in the VB-EM training and
help to control the preponderance of the acoustic and language models for clustering speech
data.

Finally, for the sake of reproducibility, a practical implementation of all the models and
experiments presented in this thesis can be found at: https://github.com/beer-asr/
beer.
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Chapter 2

Non-Parametric Bayesian
Phone-Loop Model

This chapter describes a non-parametric Bayesian phone-loop model for AUD. It will serve
as a basis for more refined models presented in chapters 3 and 4. It is derived from the
combination of the Hidden Markov Model (HMM) (Rabiner, 1989) and non-parametric
Bayesian methods (Ferguson, 1973; Rasmussen, 2000; Teh, 2010). Whereas the HMM
has been used since the early days of statistical speech recognition (Jelinek, 1976), non-
parametric Bayesian methods were introduced more recently in the field of speech and
language processing. Their capacity to assign probability to infinite sets has found impor-
tant applications in language modeling (Teh, 2006; Goldwater et al., 2006), unsupervised
text segmentation (Mochihashi et al., 2009), and speaker diarization (Fox et al., 2011).
Drawing inspiration from (Goldwater et al., 2009; Fox et al., 2011), the first version of
the non-parametric phone-loop model for AUD was proposed in (Lee and Glass, 2012) and
paved the way to a Bayesian approach to AUD. Our model revisit the model proposed
(Lee and Glass, 2012) by replacing the Chinese Restaurant Process with the stick-breaking
representation of the Dirichlet Process. This seemingly minor modification has, however,
major consequences:

∙ it allows the use of the Variational Bayes framework as inference instead of Gibbs
Sampling. Therefore, it re-formulates the problem of AUD as an optimization of an
objective function.

∙ it allows to reinterpret the model as a phone-loop model making possible, by means of
dynamic programming, to consider all possible sequences of units for a given sequence
of speech features

∙ it allows the parallelization of the training allowing use of bigger corpora.

.

2.1 Bayesian formulation of the AUD problem
We now give a formal definition of the AUD problem within the Bayesian framework. Let
E be a vector space, and 𝜂 ∈ E a finite dimensional representation of sounds, i.e. 𝜂 is
a sound embedding. Given a sequence of 𝑁 observations X = (x1, . . . ,x𝑁 ) of forming a
speech utterance, we aim to find:

10



∙ A collection of 𝑃 acoustic units H = (𝜂1, . . . ,𝜂𝑃 ) best describing the observations.
We denote the selected sounds acoustic units as they represent the basic elements of
speech. For now, we assume 𝑃 to be known.

∙ The sequence of indices u = 𝑢1, . . . , 𝑢𝐿, 𝐿 < 𝑁 where 𝑢𝑖 ∈ {1, . . . , 𝑃} is the index of
an acoustic unit. Thereafter, we will denote u as the label sequence. Note that, in
practice, 𝐿 is unknown.

Using Bayes’ rule, we can formulate the search of the best set of units H* and the best
label sequence u* in probabilistic terms:

H*,u* = arg max
H,u

𝑝(H,u|X) (2.1)

𝑝(H,u|X) =
𝑝(X|H,u)𝑝(H,u)∫︀

H

∑︀
u 𝑝(X|H,u)𝑝(H,u)dH

(2.2)

Because of the complexity of the task and the multiple way of describing a language phonet-
ically (phonetic features, phones, tri-phones, syllables, ...), the notion of ”best solution“ is
somewhat tedious. We will therefore focus our attention on the quantity 𝑝(H,u|X) rather
than just the most likely solution given by H* and u*.

The Bayesian statement of AUD given in (2.1) and (2.2) is reminiscent of the statistical
formulation of ASR advocated by Frederick Jelinek (Jelinek, 1976). However, in the case of
AUD, the inventory of units is unknown and needs to be inferred from the data along with
the acoustic description of the units encoded in the embeddings 𝜂1,𝜂2, . . . . Conversely,
there is no need for these embeddings in ASR since the acoustic description of the words
is assumed to be known or is unnecessary for the so-called end-to-end approach to ASR
(Graves and Jaitly, 2014).

2.1.1 Non-parametric Bayesian AUD

Until now, we have assumed the number of acoustic units 𝑃 to be fixed. Choosing a good
value for 𝑃 is, however, non-trivial as we don’t know beforehand the type of acoustic units
which will be chosen by the AUD algorithm. If the units represent phones, then, 𝑃 might
be between 50 or 100 depending on the language. On the other hand, if the units represent
phones in context (di-phone, tri-phone, ...), we need to choose a much larger value for 𝑃
(several thousand at least). We see that any choice of 𝑃 implies some assumption and,
consequently, will affect the type of acoustic units derived from the algorithm. Rather
than making a hard decision, we prefer to let the AUD algorithm to choose an adequate
𝑃 depending on the given data. Practically, this can be achieved by letting 𝑃 → ∞ and
adding a distribution 𝒫 over the parameters of 𝑝(u,H)1. This approach, referred to as
non-parametric Bayesian (Orbanz and Teh, 2010), does not put any limit on the model
complexity a priori. Rather, the model complexity is part of the inference process and,
therefore, should be chosen in light of the data. In our case, we set 𝒫 to be a Dirichlet
Process (Orbanz and Teh, 2010).

1Loosely speaking, the distribution 𝒫 is a hyper-prior, i.e. a prior over the (parameters of the) prior
distribution 𝑝(u,H)
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The Dirichlet process, denoted 𝒟𝒫(𝛾,𝐺0), is a stochastic process for which each realiza-
tion 𝐺(𝜂) is a discrete probability distribution over infinitely many outcomes. Informally,
it can be seen has an infinite-dimensional Dirichlet distribution. It is parameterized by
a probability distribution 𝐺0(𝜂) called a base measure and a concentration parameter 𝛾.
The base measure defines the expectation of the Dirichlet process whereas the concentration
controls the spread of the probability mass across the dimensions of the sampled probability
distributions. When the concentration is close to 0, most of the probability mass is dis-
tributed in a few dimensions and conversely, when the concentration is high, the probability
mass will be spread in many dimensions.

Many Dirichlet process-based models use the Chinese restaurant process as inference
scheme (Lee and Glass, 2012; Beal et al., 2002). The Chinese restaurant process is a
sampling scheme that draws, in the limit, samples from the posterior distribution over the
model’s parameters marginalized over all possible distribution 𝐺 sampled from a Dirichlet
process (Rasmussen, 2000). Whereas this approach theoretically guarantees to draw sample
from the exact posterior, it also has several issues:

∙ the theoretical convergence is rarely met in practice as in many cases it involves
infinitely long sampling time

∙ samples are not independent of each other and therefore the training is not easily
parallelizable

These drawbacks make the Chinese restaurant process unadapted to speech techonologies
which usually require large amounts of data. To address these issues, it is convenient
to express the Dirichlet process in terms of the Sethuraman’s stick-breaking construction
(Sethuraman, 1994):

1. Draw 𝑣𝑖 ∼ ℬ(1, 𝛾), 𝑖 = {1, 2, . . . }

2. Draw 𝜂𝑖 ∼ 𝐺0, 𝑖 = {1, 2, . . . }

3. 𝜓𝑖 = 𝑣𝑖
∏︀𝑖−1

𝑗=1(1− 𝑣𝑗)

4. 𝐺(𝜂) =
∑︀∞

𝑖=1 𝜓𝑖𝛿𝜂𝑖
(𝜂),

where ℬ is a 2-dimensional Dirichlet distribution (appendix B.2.2) usually called the Beta
distribution. The samples from the base measure 𝜂1,𝜂2, . . . are referred to as the atoms
of the sampled probability distribution 𝐺(𝜂). On one hand, this constructive definition of
the Dirichlet process introduces the new latent variables 𝑣1, 𝑣2, . . . which are not needed
when using the Chinese restaurant process. On the other hand, as it will be described in
section 2.3, these new variables make possible to use Variational Bayes to approximate the
posterior distribution of the model. The resulting inference algorithm is easily parallelizable
and allows to process much larger collection of data.
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Figure 2.1: Difference between the standard stick-breaking process with various concentra-
tion parameters and the stick-breaking process with a Gamma prior. The abscissa repre-
sents the indices of the portions of the stick and the ordinate represents the logarithm of
these portions (i.e. the log-probabilities of the infinite mixture components). In Fig. 2.1a
each line is a draw from the stick-breaking process with a specific concentration; there are
10 draws for each concentration setting (1, 10, 100). In Fig. 2.1b each line is a draw from
the stick-breaking process with concentration parameter sampled from the Gamma prior.
The Gamma distribution was parameterized by 𝑎0 = 1 (shape) and 𝑏0 = 10 (rate). The
Gamma prior increases the uncertainty of the stick-breaking and let the model choose an
adequate value for the concentration 𝛾 from the data.

In the context of our AUD model, we use a Dirichlet process to construct the prior
𝑝(u,H) in the following way:

𝐺(𝜂) ∼ 𝒟𝒫(𝛾,𝐺0) (2.3)

𝑝(u,H) =

[︂ 𝐿∏︁
𝑛=1

𝐺(𝜂𝑢𝑛
)⏟  ⏞  

𝑝(𝑢𝑛|H)

]︂
⏟  ⏞  

𝑝(u|H)

[︂ ∞∏︁
𝑘=1

𝐺0(𝜂𝑘)

]︂
⏟  ⏞  

𝑝(H)

(2.4)

where 𝐿 is the length of the sequence of labels u. Note that since we assume 𝑃 →∞, the
matrix of embeddings H = (𝜂1,𝜂2, . . . ) has an infinite number of columns. It is important
to understand the different roles played by the two terms in (2.4). On one hand, 𝐺0(𝜂) is
a continuous density over the embedding space: it defines which embeddings are likely to
be selected as acoustic units. On the other hand, 𝐺(𝜂𝑢𝑛

) is a discrete distribution over an
infinite set of atoms and it defines how frequently a unit occurs in speech. In other words,
𝐺 is a (unigram) language model of the units.

Even though the Dirichlet process assumes a potentially infinite number of classes, it
may favour solution with small or large number of units depending on its concentration
parameter 𝛾. As can be observed from Figure 2.1a, the concentration parameter 𝛾 strongly
constrains samples from the Dirichlet process. This constraint can be relaxed by augmenting
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the stick-breaking process with a Gamma prior (appendix B.2.3) over the concentration
parameter 𝛾 ∼ 𝒢(𝑎0, 𝑏0)

2 leading to a modified stick-breaking process:

1. Draw 𝛾 ∼ 𝒢(𝑎0, 𝑏0)

2. Draw 𝑣𝑖 ∼ ℬ(1, 𝛾), 𝑖 = {1, 2, . . . }

3. ...

As seen from Fig. 2.1b, the Gamma prior increases the variance of the standard stick-
breaking process. Therefore, this avoids the issue of choosing a specific concentration
parameter as we can infer it from the data directly. Note that the inference is particu-
larly simple as the Gamma distribution is conjugate (appendix B.1.2) to the stick-breaking
process.

2.2 Model
The Bayesian formulation of the AUD problem given in section 2.1 does not specify a
concrete model. More precisely, one needs to define the acoustic model 𝑝(X|H,u) and
the base measure 𝐺0(𝜂) in order to estimate the posterior 𝑝(H,u|X). In this section,
we describe both elements and connect them with the stick-breaking representation of the
Dirichlet process completing the definition of the non-parametric Bayesian phone-loop AUD
model.

2.2.1 Acoustic Model

We define the acoustic model assuming that, given a sequence of 𝑁 observations X =
(x1, . . . ,x𝑁 ) and a sequence of 𝐿 units, the likelihood factorizes as:

𝑝(X|H,u) =
𝐿∏︁
𝑙=1

𝑝(X𝑢𝑙 |H, 𝑢𝑙) =
𝐿∏︁
𝑙=1

𝑝(X𝑢𝑙 |𝜂𝑢𝑙
), (2.5)

where X𝑢𝑙 is the sequence of observations associated to the 𝑙th unit such that X =
X𝑢1 , . . . ,X𝑢𝐿 . We assume this segmentation to be known even though this is not true
in practice. This issue will naturally disappear when we reinterpret the full AUD model
as a large HMM in section 2.2.4. Following (Lee and Glass, 2012), we set the likelihood
𝑝(X𝑢𝑙 |𝜂𝑢𝑖

) to be modeled by an HMM with 𝑆 hidden states and GMM state’s emission
density with 𝐶 components:

𝑝(X𝑢𝑙 |𝜂𝑢𝑙
) =

∑︁
s𝑢𝑙

∑︁
c𝑢𝑙

𝑝(X𝑢𝑙 , c𝑢𝑙 , s𝑢𝑙 |𝜋1
𝑢𝑙
, . . . ,𝜋𝑆

𝑢𝑙
,𝜇1,1

𝑢𝑙
, . . . ,𝜇𝑆,𝐶

𝑢𝑙
,Σ1,1

𝑢𝑙
, . . . ,Σ𝑆,𝐶

𝑢𝑙
) (2.6)

=
∑︁
s𝑢𝑙

∑︁
c𝑢𝑙

𝑁𝑙∏︁
𝑛=1

𝑝(x𝑢𝑙
𝑛 , 𝑐

𝑢𝑙
𝑛 |𝜋𝑠𝑛

𝑢𝑙
,𝜇𝑠𝑛,1

𝑢𝑙
, . . . ,𝜇𝑠𝑛,𝐶

𝑢𝑙
,Σ𝑠𝑛,1

𝑢𝑙
, . . . ,Σ𝑠𝑛,𝐶

𝑢𝑙
)𝑝(𝑠𝑢𝑙

𝑛 |𝑠
𝑢𝑙
𝑛−1) (2.7)

where 𝑁𝑙 is the length of the sequence of observations X𝑢𝑙 and 𝑝(𝑠𝑢𝑙
1 |𝑠

𝑢𝑙
0 ) = 𝑝(𝑠𝑢𝑙

1 ) is the
probability of the initial state. The parameters and the latent variables introduced in (2.6)
correspond to the traditional parameterization of an HMM:

2We use the shape/rate parameterization of the Gamma distribution.
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∙ s𝑢𝑙 = 𝑠𝑢𝑙
1 , . . . , 𝑠

𝑢𝑙
𝑁𝑙

is the sequence of indices of the HMM states for acoustic unit 𝑢𝑙

∙ c𝑢𝑙 = 𝑐𝑢𝑙
1 , . . . , 𝑐

𝑢𝑙
𝑁𝑙

is the sequence of indices of the mixture components for the acoustic
unit 𝑢𝑙

∙ 𝜋𝑖
𝑢𝑙

are the mixing weights of the GMM associated to the 𝑖th state of the HMM of
the acoustic unit 𝑢𝑙

∙ 𝜇𝑖,𝑗
𝑢𝑙 is the mean of the 𝑗th Normal component of the GMM associated to the 𝑖th state

of the HMM of acoustic unit 𝑢𝑙

∙ Σ𝑖,𝑗
𝑢𝑙

is the covariance matrix of the 𝑗th component of the GMM associated to the 𝑖th
state of the HMM of acoustic unit 𝑢𝑙

Notice that we have not included any parameters of the transition probabilities 𝑝(𝑠𝑢𝑙
𝑛 |𝑠

𝑢𝑙
𝑛−1)

as it has been empirically observed that they play no significant role when modeling speech
(Bourlard, 1996). Consequently, we assume the transition probabilities are fixed parameters
such that the probability to go to any state given the current state is the same.

We specify now the relation between the embedding 𝜂𝑢𝑙
of the acoustic unit with index

𝑢𝑙 and the corresponding HMM parameters. First, observe that the joint distribution of
𝑝(x𝑢𝑙

𝑛 , 𝑐
𝑢𝑙
𝑛 |𝑠𝑢𝑙

𝑛 , . . . ) is a product of Normal and Categorical distributions and each of them is
a member of the exponential family of distribution (appendix B). Therefore we have:

𝑝(x𝑢𝑙
𝑛 , 𝑐

𝑢𝑙
𝑛 |𝑠𝑢𝑙

𝑛 , . . . ) = 𝑝(x𝑢𝑙
𝑛 |𝜇𝑠𝑛,𝑐𝑛

𝑢𝑙
,Σ𝑠𝑛,𝑐𝑛

𝑢𝑙
)𝑝(𝑐𝑢𝑙

𝑛 |𝜋𝑠𝑛
𝑢𝑙

) (2.8)
𝑝(𝑐𝑛|𝜋𝑠𝑛

𝑢𝑙
) = 𝑝(𝑐𝑛|𝜔𝑠𝑛

𝑢𝑙
) = exp{𝜔𝑠𝑛⊤

𝑢𝑙
𝑇 (𝑐𝑢𝑙

𝑛 )−𝐴(𝜔𝑠𝑛
𝑢𝑙

)} (2.9)
𝑝(x𝑢𝑙

𝑛 |𝜇𝑠𝑛,𝑐𝑛
𝑢 ,Σ𝑠𝑛,𝑐𝑛

𝑢𝑙
) = 𝑝(x𝑢𝑙

𝑛 |𝜃𝑠𝑛,𝑐𝑛𝑢𝑙
) = exp{𝜃𝑠𝑛,𝑐𝑛⊤𝑢𝑙

𝑇 (x𝑢𝑙
𝑛 )−𝐴(𝜃𝑠𝑛,𝑐𝑛𝑢𝑙

)} (2.10)

where 𝜔𝑠𝑛
𝑢𝑙

, 𝑇 (𝑐𝑢𝑙
𝑛 ) and 𝐴(𝜔𝑠𝑛

𝑢𝑙
) are the natural parameters, the sufficient statistics and

the log-normalizer of the Categorical distribution of the state with index 𝑠𝑢𝑙
𝑛 . Similarly,

𝜃𝑠𝑛,𝑐𝑛𝑢𝑙
, 𝑇 (x𝑛) and 𝐴(𝜃𝑠𝑛,𝑐𝑛𝑢𝑙

) are the natural parameters, the sufficient statistics and the log-
normalizer of the Normal distribution associated with state 𝑠𝑢𝑙

𝑛 and mixture’s component
𝑐𝑢𝑙
𝑛 . Note that to keep the notation uncluttered we write 𝑇 (x), 𝑇 (𝑐), 𝐴(𝜔), 𝐴(𝜃) instead

of 𝑇𝑥(x), 𝑇𝑐(𝑐), 𝐴𝜔(𝜔), 𝐴𝜃(𝜃). For both distributions, the natural parameters and the
sufficient statistics can be derived from their respective definition (appendices B.2.4 B.2.1):

𝜔𝑠𝑛
𝑢𝑙

=

⎡⎢⎢⎢⎢⎣
ln
(︁

𝜋𝑠𝑛
𝑢𝑙,1

1−
∑︀𝐶−1

𝑘=1 𝜋𝑠𝑛
𝑢𝑙,𝑘

)︁
...

ln
(︁ 𝜋𝑠𝑛

𝑢𝑙,𝐶−1

1−
∑︀𝐶−1

𝑘=1 𝜋𝑠𝑛
𝑢𝑙,𝑘

)︁
⎤⎥⎥⎥⎥⎦ 𝑇 (𝑐𝑢𝑙

𝑛 ) =

⎡⎣ 1[𝑐𝑢𝑙
𝑛 = 1]
. . .

1[𝑐𝑢𝑙
𝑛 = 𝐶 − 1]

⎤⎦ (2.11)

𝜃𝑠𝑛,𝑐𝑛𝑢𝑙
=

[︂
𝜃𝑠𝑛,𝑐𝑛𝑢𝑙,1

𝜃𝑠𝑛,𝑐𝑛𝑢𝑙,2

]︂
=

[︂
Σ−1

𝑖,𝑗 𝜇𝑖,𝑗

−1
2 vec(Σ−1)

]︂
𝑇 (x𝑢𝑙

𝑛 ) =

[︂
x𝑛

vec(x𝑢𝑙
𝑛 x𝑢𝑙⊤

𝑛 )

]︂
, (2.12)

where ”vec“ is the vectorization operation. Note that 𝜔 is a (𝐶 − 1)-dimensional vector
whereas 𝜋 is a 𝐶-dimensional vector. This difference comes from the fact that the weights
𝜋1, ..., 𝜋𝐶 are constrained such that 0 < 𝜋𝑖 < 1 and

∑︀𝐶
𝑖=1 𝜋𝑖 = 1. Finally, the log-normalizers
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are defined as:

𝐴(𝜔𝑠𝑛
𝑢𝑙

) = ln
(︁∑︁

𝑐𝑛

exp{𝜔𝑠𝑛⊤
𝑢𝑙

𝑇 (𝑐𝑢𝑙
𝑛 )}

)︁
(2.13)

= ln(1 +
𝐶−1∑︁
𝑘=1

exp{𝜔𝑠𝑛
𝑢𝑙,𝑘
}) (2.14)

𝐴(𝜃𝑠𝑛,𝑐𝑛𝑢𝑙
) = ln

(︁∫︁
exp{𝜃𝑠𝑛,𝑐𝑛⊤𝑢𝑙

(x𝑢𝑙
𝑛 )}dx𝑛

)︁
(2.15)

= −1

4
𝜃𝑠𝑛,𝑐𝑛⊤𝑢𝑙,1

mat(𝜃𝑠𝑛,𝑐𝑛𝑢𝑙,2
)−1𝜃𝑠𝑛,𝑐𝑛𝑢𝑙,1

− 1

2
ln | − 2 mat(𝜃𝑠𝑛,𝑐𝑛𝑢𝑙,2

)|+ 𝐷

2
ln 2𝜋, (2.16)

where ”mat“ is the inverse of the vectorization operator, that is it takes as input a 𝐷2-
dimensional vector and returns a 𝐷×𝐷 square matrix. We define the embedding 𝜂𝑢𝑙

to be
the concatenation of the natural parameters of the Normal and Categorical distributions
of all 𝑆 states of the HMM modeling the acoustic unit with index 𝑢𝑙. Formally, 𝜂𝑢𝑙

can be
seen as the ”super-vector“ of all the parameters of acoustic unit 𝑢𝑙 and its layout is defined
as:

𝜂𝑢𝑙
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1𝑢𝑙...

𝜂𝑖𝑢𝑙
=

⎡⎢⎢⎢⎣
𝜔𝑖

𝑢𝑙

𝜃𝑖,1𝑢𝑙...
𝜃𝑖,𝐶𝑢𝑙

⎤⎥⎥⎥⎦
...
𝜂𝑆𝑢𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.17)

where 𝜂𝑖𝑢𝑙
is the concatenation of the natural parameters of the Normal and Categorical

distributions for the 𝑖th state of the HMM modeling the acoustic unit with index 𝑢𝑙.

2.2.2 Base measure

As discussed previously, the base measure is the distribution describing a priori which
sounds (represented as embeddings) are likely to be retained as an acoustic unit. In our
case, we have defined an embedding 𝜂 to be the vector of natural parameters of an HMM.
We set 𝐺0 to be the conjugate prior (appendix B.1.2) of the conditional HMM likelihood:

𝐺0(𝜂) =

𝑆∏︁
𝑖=1

𝑝(𝜔𝑖)

𝐶∏︁
𝑗=1

𝑝(𝜃𝑖,𝑗) (2.18)

= exp{
𝑆∑︁

𝑖=1

𝜉⊤0 𝑇 (𝜔𝑖)−𝐴(𝜉0) +
𝐶∑︁

𝑗=1

𝜗⊤
0 𝑇 (𝜃𝑖,𝑗)−𝐴(𝜗0)}. (2.19)

Practically, this implies that the prior over the mixture weights 𝜋 is Dirichlet distribution
(appendix B.2.2) and the prior over mean vector 𝜇 and the (inverse) covariance matrix Σ−1

is a Normal-Wishart distribution (appendix B.2.5). (2.18) can be equivalently expressed as
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a prior over the standard parameters as:

𝐺0(𝜂) =

𝑆∏︁
𝑖=1

𝑝(𝜋𝑖)

𝐶∏︁
𝑗=1

𝑝(𝜇𝑖,𝑗 ,Σ𝑖,𝑗−1) (2.20)

𝑝(𝜋𝑖) = 𝒟(𝛼0) (2.21)
𝑝(𝜇𝑖,𝑗 ,Σ𝑖,𝑗−1) = 𝒩𝒲(m0, 𝛽0,W0, 𝜈0) (2.22)

Where 𝒟 and 𝒩𝒲 are the Dirichlet and Normal-Wishart (see the appendices B.2.2 and
B.2.5 for details about their parameters). This choice is convenient since, due to the conju-
gacy, it greatly simplifies the inference, however, it is difficult to control precisely which type
of sounds the base measure will emphasize. This issue will be addressed in chapter 3. The
natural parameters 𝜉0, 𝜗0, the sufficient statistics 𝑇 (𝜔𝑖), 𝑇 (𝜃𝑖,𝑗) and the log-normalizing
functions 𝐴(𝜉0), 𝐴(𝜗0) of the base measure 𝐺0(𝜂) can be derived from the definition of the
Dirichlet and Normal-Wishart distributions:

𝜉0 =

⎡⎢⎢⎢⎣
𝛼0,1 − 1

...
𝛼0,𝐶−1 − 1

(
∑︀𝐶

𝑗=1 𝛼0,𝑗)− 𝐶

⎤⎥⎥⎥⎦ (2.23)

𝑇 (𝜔𝑖) =

[︂
𝜔𝑖

−𝐴(𝜔𝑖)

]︂
(2.24)

𝐴(𝜉0) =
(︀

ln Γ(𝜉0,𝐶 + 𝐶) +
𝐶−1∑︁
𝑖=1

ln Γ(𝜉0,𝑖 + 1)
)︀
− ln Γ(𝜉0,𝑖 + 𝐶) (2.25)

𝜗0 =

⎡⎢⎢⎣
𝛽0m0

−𝛽0

2

−1
2 vec(𝛽0m0m

⊤
0 + W−1

0 )
𝜈0−𝐷

2

⎤⎥⎥⎦ (2.26)

𝑇 (𝜃𝑖,𝑗) =

[︂
𝜃𝑖,𝑗

−𝐴(𝜃𝑖,𝑗)

]︂
(2.27)

𝐴(𝜃𝑖,𝑗) = − ln𝐵 (2.28)

𝐵 = 𝛽
𝐷
2
0 |W0|−

𝜈0
2

(︁
2

(𝜈0+1)𝐷
2 𝜋

𝐷(𝐷+1)
4

𝐷∏︁
𝑑=1

Γ(
𝜈0 + 1− 𝑑

2
)
)︁−1

. (2.29)

To summarize, an acoustic unit with index 𝑢 is modeled by an HMM with natural pa-
rameters 𝜂𝑢. The prior probability over each acoustic unit embedding is the conjugate of
the HMM likelihood conditioned on its latent variable (𝑠𝑛 and 𝑐𝑛). The relation between
the HMM and the base measure is illustrated in Fig. 2.2. All together, the AUD model can
be understood as a mixture of HMM with an infinite number of components. Intuitively,
inference with such model amounts to cluster segments of the speech signal into temporal
patterns.
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Figure 2.2: Model of an acoustic unit and its relation with the base measure. Each acoustic
unit is parameterized by a vector of natural parameters 𝜂 corresponding to the concate-
nation of all the HMM states’ parameters. The base measure, 𝐺0, is a density over the
acoustic (natural) parameter space. Therefore, it defines a priori which sounds are likely
to be selected as acoustic units. The topology of the HMM and the transition probabili-
ties are the same for each acoustic unit. The square nodes 0 and 4 are the non-emitting
start and end states respectively. Here, we have represented the embedding space as a
2-dimensional space (dimensions 𝜂1 and 𝜂2) but in practice, the embeddings live in a much
higher dimensional space (several thousands of dimensions at least).

2.2.3 Generative Process

We have introduced the different elements of the AUD model separately. We assemble them
now to present the full generative process using the stick-breaking process and a HMM for
each acoustic unit:

1. Draw 𝛾 ∼ 𝒢(𝑎0, 𝑏0)

2. Draw 𝑣𝑖 ∼ ℬ(1, 𝛾), 𝑖 = {1, 2, . . . }

3. Draw 𝜂𝑖 ∼ 𝐺0, 𝑖 = {1, 2, . . . }

4. 𝜓𝑖 = 𝑣𝑖
∏︀𝑖−1

𝑗=1(1− 𝑣𝑗)

5. Draw a sequence of units u, 𝑢𝑗 ∼ 𝒞(𝜓)

6. For each 𝑢𝑗 in u

(a) Draw a state path s = 𝑠1, . . . , 𝑠𝑙 from the HMM transition probability distribu-
tion

(b) for each state 𝑠𝑘 in s:
i. Draw a component 𝑐𝑘 ∼ 𝒞(𝜋𝑠𝑘

𝑢𝑗
) from the state’s mixture weights

ii. Draw a data point x𝑘 ∼ 𝒩 (𝜇𝑠𝑘,𝑐𝑘
𝑢𝑗 ,Σ𝑠𝑘,𝑐𝑘

𝑢𝑗
)

Note that 𝜋𝑠𝑘
𝑢𝑗

, 𝜇𝑠𝑘,𝑐𝑘
𝑢𝑗 and Σ𝑠𝑘,𝑐𝑘

𝑢𝑗
are obtained from the natural parameters 𝜂𝑢𝑗

. The
graphical representation of the generative process is shown in Figure 2.3. The model is
essentially composed of several layers of latent variables, each of them capturing some
specific aspect of the speech signal. The first layer (c) quantizes the continuous features
space x, the second layer, (s) captures the temporal dynamic of the signal and finally, the
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𝑣𝑖

𝜂𝑖

Stick-breaking
process

∞

𝛾

x1
1 x1

2
. . . x1

𝑙 x2
1 x2

2
. . . Observations

𝑐11 𝑐12 . . . 𝑐1𝑙 𝑐21 𝑐22 . . . GMM compo-
nents

𝑠11 𝑠12 . . . 𝑠1𝑙 𝑠21 𝑠22 . . . HMM states

𝑢1 𝑢2 . . . Acoustic unit
labels

Figure 2.3: Bayesian network of the non-parametric acoustic unit clustering model for a
given segmentation. 𝑎𝑗𝑖 refers to the variable 𝑎 associated to the 𝑖th segment of the 𝑗th unit.
𝑙 is the duration of the first unit 𝑢1. Note that in practice the segmentation is unknown
and the inference needs to evaluate all possible segmentations.

last layer (u) captures the phonetic information. Finally, despite the fact that the model
has many parameters and latent variables, the whole generative process is fully controlled
by the following hyper-parameters:

∙ 𝑎0 and 𝑏0: the parameters of the Gamma distribution control the range of likely values
for the concentration of the Dirichlet process.

∙ 𝜉0 (or equivalently 𝛼0): the parameters of the prior over the GMM mixing weights

∙ 𝜗0 (or equivalently 𝛽0,m0,W0, 𝜈0): the parameters of the prior over the mean and
precision matrix of each mixture component of the GMMs.

2.2.4 Phone-loop interpretation

The AUD model is a special case of a Hierarchical HMM (Fine et al., 1998) where 𝑝(s|u)𝑝(u)
can be interpreted as two nested Markov processes3. Estimating the posterior over the
latent variable s and u given the observations X = x1, . . . ,x𝑇 takes 𝑂(𝑇 3) time, making
the inference impractical. To alleviate this problem, we follow (Murphy and Paskin, 2002)
and re-interpret our model as a single level HMM which, consequently, reduces the inference
time to 𝑂(𝑇 ).

Converting the 2-level HHM to a flat 1-level HMM requires to merge the sequence of
units u and states s into a sequence of a single variable z = 𝑧1, 𝑧2, . . . . Let be U and S the
sets of the possible units and states such that ∀𝑖, 𝑗 𝑢𝑖 ∈ U and 𝑠𝑗 ∈ S. We set z = 𝑧1, 𝑧2, . . .

3In this case, 𝑝(𝑢𝑡|𝑢𝑡−1) is simply 𝑝(𝑢𝑡).
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𝑣𝑖
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Stick-breaking
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𝛾

x1 x2 x3 . . . Observations

𝑐1 𝑐2 𝑐3 . . . GMM compo-
nents

𝑧1 𝑧2 𝑧3 . . .
Acoustic unit
labels + HMM
states

Figure 2.4: Bayesian network of the non-parametric acoustic unit clustering model re-
interpreted as a single HMM. Variable 𝑧 jointly encodes variables 𝑢 and 𝑠. This model is
equivalent to the Hierachical HMM model shown in Fig. 2.3 but allows inference of z given
X in linear time.

such that 𝑧𝑖 ∈ U×S is the concatenation of a particular unit and state. The new generative
process induced by the re-parameterization is shown in Fig. 2.4 The probability of sequence
z is given by 𝑝(z) = 𝑝(s,u). as 𝑝(s) is a Markov chain, so is 𝑝(z) whose graph is represented
in Figure 2.5. From this standpoint, the AUD model is equivalent to a non-parametric
Bayesian version of the traditional phone-loop4 model which has been applied in several
related speech task (Lee and Hon, 1989; Stolcke et al., 2005; Szöke et al., 2010). Also, in
the case where we model each acoustic unit by a single state HMM, the infinite phone-loop
model reduces to a special case of the infinite HMM (Beal et al., 2002) and of the infinite
GMM (Rasmussen, 2000).

Interestingly, merging the two variables has another benefit: it naturally takes into ac-
count the segmentation of the observations. Indeed, the variable 𝑧𝑛 encodes a unit label
for each time step making the state sequence z to encode the per-frame alignment between
the observations and the unit label sequence u. This observation significantly ease up the
inference of the model as: (i) it removes the necessity of having an extra boundary variable
for segmentation as in (Lee and Glass, 2012), (ii) it allows using dynamic programming to
sum over all possible sequences z.

2.2.5 Joint distribution

Finally, to conclude the description of the model, we present the complete joint distribution
of a sequence of features X = x1, . . . ,x𝑁 , latent variables c = 𝑐1, . . . , 𝑐𝑁 , z = 𝑧1, . . . , 𝑧𝑁
and parameters H = 𝜂1, . . . ,𝜂∞,v = 𝑣1, . . . , 𝑣∞, 𝛾. Recall that 𝑧𝑛 encodes an acoustic
unit index 𝑢𝑛 and a particular HMM state 𝑠𝑛. Consequently, we write 𝜂𝑧𝑛 = 𝜂𝑠𝑛𝑢𝑛

which
4Obviously, phone should be understood as acoustic unit
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Figure 2.5: Graphical representation of the latent Markov chain of the AUD model reinter-
preted as a 1-level HMM. The square nodes 0 and 1 are non-emitting states. The number
of phones (i.e. acoustic units), represented by a 3 states left-to-right sub-HMM, is infinite.

corresponds to the natural parameters of the 𝑠𝑛th HMM state of the acoustic unit with
index 𝑢. Furthermore, the sequence of 𝑁 units and states z = 𝑧1, . . . , 𝑧𝑁 can be equivalently
defined as a sequence of 𝐿 acoustic units u = 𝑢1, . . . , 𝑢𝐿 and 𝐿 sequences of HMM states
s𝑢𝑙 = 𝑠𝑢𝑙

1 , . . . , 𝑠
𝑢𝑙
𝑁𝑙

. Using these two equivalent formulations, the joint distribution can be
written as:

𝑝(X, c, z,H,v, 𝛾) = 𝑝(H)𝑝(𝛾)𝑝(v|𝛾)𝑝(X, c, z|H,v) (2.30)
𝑝(X, c, z|H,v) = 𝑝(z|v)𝑝(X, c|z,H) (2.31)

=
𝑁∏︁

𝑛=1

𝑝(𝑧𝑛|𝑧𝑛−1,v)𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛) (2.32)

=
𝐿∏︁
𝑙=1

𝑝(𝑢𝑙|v)

𝑁𝑙∏︁
𝑛=1

𝑝(𝑠𝑢𝑙
𝑛 |𝑠

𝑢𝑙
𝑛−1)⏟  ⏞  ∏︀𝑁

𝑛=1 𝑝(𝑧𝑛|𝑧𝑛−1,v)

𝑝(x𝑢𝑙
𝑛 , 𝑐

𝑢𝑙
𝑛 |𝜂𝑠𝑛𝑢𝑙

), (2.33)

where (2.32) is the likelihood expressed as a ”flat“ HMM and (2.33) is the likelihood ex-
pressed as a two-level hierarchical HMM. Note that we assume 𝑧0 to be a predefined non-
emitting starting state as depicted in Fig. 2.5. As explained in section 2.2.1, the per-state
emission likelihood (2.32) is a mixture of Normal distributions which is most easily expressed
in terms of the natural parameters 𝜔𝑠𝑛

𝑢𝑙
= 𝜔𝑧𝑛 and 𝜃𝑠𝑛,𝑐𝑛𝑢𝑙

= 𝜃𝑐𝑛𝑧𝑛 :

𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛) = 𝑝(x𝑛|𝜃,𝑐𝑛𝑧𝑛 )𝑝(𝑐𝑛|𝜔𝑧𝑛) (2.34)
𝑝(𝑐𝑛|𝜔𝑧𝑛) = exp{𝜔𝑇

𝑧𝑛𝑇 (𝑐𝑛)−𝐴(𝜔𝑧𝑛)} (2.35)
𝑝(x𝑛|𝜃𝑐𝑛𝑧𝑛) = exp{𝜃𝑐𝑛𝑇𝑧𝑛 (x𝑛)−𝐴(𝜃𝑐𝑛𝑧𝑛)} (2.36)

The transition probability 𝑝(𝑧𝑛|𝑧𝑛−1,v) is more conveniently expressed in terms of variables
𝑢𝑙 and 𝑠𝑢𝑙

𝑛 . The transition probability within a unit’s HMM is fixed: 𝑝(𝑠𝑛|𝑠𝑛−1) = const,
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so that all states are equiprobables. The probability of the unit index 𝑝(𝑢𝑙|v) is defined by
the stick-breaking process as defined in section 2.1.1:

𝑝(𝑢𝑙|v) = 𝑣𝑢𝑙

𝑢𝑙−1∏︁
𝑖=1

(1− 𝑣𝑖). (2.37)

The prior over the embeddings H is defined from the base measure:

𝑝(H) =

∞∏︁
𝑢=1

𝐺0(𝜂𝑢) (2.38)

𝐺0(𝜂𝑢) =

𝑆∏︁
𝑖=1

𝑝(𝜔𝑖
𝑢)

𝐶∏︁
𝑗=1

𝑝(𝜃𝑖,𝑗𝑢 ) (2.39)

= exp{
𝑆∑︁

𝑖=1

𝜉⊤0 𝑇 (𝜔𝑖
𝑢)−𝐴(𝜉0) +

𝐶∑︁
𝑗=1

𝜗⊤
0 𝑇 (𝜃𝑖,𝑗𝑢 )−𝐴(𝜗0)}. (2.40)

Finally, the prior over the stick-breaking process parameters v and the prior over the
concentration parameter 𝛾 are given by:

𝑝(v|𝛾) =

∞∏︁
𝑖=1

𝑝(𝑣𝑖|𝛾) (2.41)

𝑝(𝑣𝑖|𝛾) = ℬ(1, 𝛾) (2.42)
𝑝(𝛾) = 𝒢(𝑎0, 𝑏0). (2.43)

2.3 Inference
As described previously in Section 2.1, given an appropriate model, the AUD task can be
cast as inferring the posterior distribution of the model’s parameters given a set of data. In
the case of the phone-loop model described in this chapter, we aim to estimate the following
distribution:

𝑝(c, z,H,v, 𝛾|X) =
𝑝(X, c, z,H,v, 𝛾)

𝑝(X)
(2.44)

𝑝(X) =

∫︁
𝛾

∫︁
v

∫︁
H

∑︁
c,z

𝑝(X, c, z,H,v, 𝛾)dHdvd𝛾. (2.45)

As the denominator in (2.44) involves an intractable sum over all possible parameters, esti-
mating 𝑝(c, z,H,v, 𝛾|X) is infeasible. We use the Variational Bayes framework (appendix
A) to find an approximate posterior 𝑞(c, z,H,v, 𝛾). Practically, this amounts to optimize
the following lower-bound:

ln 𝑝(X) ≥ ⟨ln 𝑝(X, c, z,H,v, 𝛾)

𝑞(c, z,H,v, 𝛾)
⟩𝑞(c,z,H,v,𝛾) = ℒ, (2.46)
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where we write: ⟨𝑓(𝑥)⟩𝑞(𝑥) =
∫︀
𝑥 𝑓(𝑥)𝑞(𝑥)d𝑥. To be able to optimize our objective function

(2.46), we use the following structured mean-field factorization (appendix A.2.3):

𝑞(c, z,H,v, 𝛾) = 𝑞(c|z)𝑞(z)𝑞(H)𝑞(v)𝑞(𝛾) (2.47)

𝑞(H) =

∞∏︁
𝑖=1

𝑞(𝜂𝑖) (2.48)

𝑞(v) =

∞∏︁
𝑖=1

𝑞(v𝑖). (2.49)

From (2.46) and (2.47), it directly follows that the optimal factors are given by:

ln 𝑞*(c|z) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(H)𝑞(v)𝑞(𝛾) + const (2.50)

ln 𝑞*(z) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)

𝑞(c|z)
⟩𝑞(c|z)𝑞(H)𝑞(v)𝑞(𝛾) + const (2.51)

ln 𝑞*(H) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(c|z)𝑞(z)𝑞(v)𝑞(𝛾) + const (2.52)
ln 𝑞*(v) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(c|z)𝑞(z)𝑞(H)𝑞(𝛾) + const (2.53)
ln 𝑞*(𝛾) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(c|z)𝑞(z)𝑞(H)𝑞(v) + const . (2.54)

These equations lead to a training akin to the Expectation-Maximisation (EM) algorithm
(Dempster et al., 1977) where we alternately estimate 𝑞(c|z) and 𝑞(z) (E-step) and 𝑞(H),
𝑞(v) and 𝑞(𝛾) (M-step). Because of the conjugacy between the prior and the likelihood, we
readily see that the optimal factors 𝑞*(H), 𝑞*(v) and 𝑞*(𝛾) will have the same parametric
form as their corresponding priors. Also, note that 𝑞(H) and 𝑞(v) are distributions over an
infinite set of random variables and, therefore, cannot be used in any practical implemen-
tation. In sections 2.3.1 and 2.3.2, we derive the optimal factors given in (2.47) ignoring
this technical issue. In section 2.3.3, we address this issue by truncating the variational
posterior, leading to a tractable algorithm.

2.3.1 VB E-step

We assume 𝑞(H), 𝑞(v) and 𝑞(𝛾) are fixed and we estimate the variational posteriors 𝑞*(c|z)
and 𝑞*(z). We start by deriving the optimal variational posterior over the mixture compo-
nents:

ln 𝑞*(c|z) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(H)𝑞(v)𝑞(𝛾) + const (2.55)
= ⟨ln 𝑝(X, c|z,H)⟩𝑞(H) + const (2.56)

=

𝑁∑︁
𝑛=1

⟨ln 𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛)⟩𝑞(𝜂𝑧𝑛
) + const (2.57)

=

𝑁∑︁
𝑛=1

⟨ln 𝑝(x𝑛|𝜃𝑐𝑛𝑧𝑛)𝑝(𝑐𝑛|𝜔𝑧𝑛)⟩𝑞(𝜃𝑐𝑛
𝑧𝑛

)𝑞(𝜔𝑧𝑛 )
+ const (2.58)

=⇒ 𝑞*(c|z) =

𝑁∏︁
𝑛=1

𝑞*(𝑐𝑛|𝑧𝑛) (2.59)

𝑞*(𝑐𝑛|𝑧𝑛) =
exp{⟨ln 𝑝(x𝑛, 𝑐𝑛,H|𝑧𝑛)⟩𝑞(H)}∑︀𝐶

𝑗=1 exp{⟨ln 𝑝(x𝑛, 𝑐𝑛 = 𝑗,H|𝑧𝑛)⟩𝑞(H)

, (2.60)

23



where 𝐶 is the number of Normal components per state. The expected likelihood has the
following form:

⟨ln 𝑝(x𝑛|𝜃𝑐𝑛𝑧𝑛)𝑝(𝑐𝑛|𝜔𝑧𝑛)⟩𝑞(𝜃𝑐𝑛
𝑧𝑛

)𝑞(𝜔𝑧𝑛 )
= ⟨𝑇 (𝜔𝑧𝑛)⟩⊤𝑞(𝜔𝑧𝑛 )

[︂
𝑇 (𝑐𝑛)

1

]︂
} (2.61)

+ ⟨𝑇 (𝜃𝑐𝑛𝑧𝑛)⟩⊤𝑞(𝜃𝑐𝑛
𝑧𝑛

)

[︂
𝑇 (x𝑛)

1

]︂
, (2.62)

where 𝑇 (𝜔𝑧𝑛) = 𝑇 (𝜔𝑐𝑛
𝑢𝑙

) and 𝑇 (𝜃𝑐𝑛𝑧𝑛) = 𝑇 (𝜃𝑠𝑛,𝑐𝑛𝑢𝑙
) are defined in (2.24) and (2.27) respec-

tively. The expectations of these functions will be detailed when we derive the optimal
variational posterior of the parameters in section 2.3.2. Using (2.60), we can now find the
optimal posterior of the global HMM state sequence:

ln 𝑞*(z) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)

𝑞(c|z)
⟩𝑞(c|z)𝑞(H)𝑞(v)𝑞(𝛾) + const (2.63)

=

𝑁∑︁
𝑛=1

⟨ln
𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛)

𝑞(𝑐𝑛|𝑧𝑛)
⟩𝑞(𝑐𝑛|𝑧𝑛)𝑞(𝜂𝑧𝑛

) + ⟨ln 𝑝(𝑧𝑛|𝑧𝑛−1v)⟩𝑞(v) + const . (2.64)

For the sake of clarity, we define the following variables:

𝜑𝑛(𝑧𝑛) = ⟨ln
𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛)

𝑞(𝑐𝑛|𝑧𝑛)
⟩𝑞(𝑐𝑛|𝑧𝑛)𝑞(𝜂𝑧𝑛

) (2.65)

𝐴𝑧𝑛−1,𝑧𝑛 = ⟨ln 𝑝(𝑧𝑛|𝑧𝑛−1,v)⟩𝑞(v), (2.66)

which leads to the following formulation of the optimal factor:

ln 𝑞*(z) =
𝑁∑︁

𝑛=1

𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛 + const (2.67)

=⇒ 𝑞*(z) =
1

𝜁

𝑁∏︁
𝑛=1

exp{𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛} (2.68)

𝜁 =
∑︁
z

𝑁∏︁
𝑛=1

exp{𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛}. (2.69)

The normalization constant 𝜁 in (2.69) requires to sum over all possible state sequences z
which is impractical. Nevertheless, this large summation can be computed exactly and effi-
ciently by dynamic programming. Using the associativity and the distributivity properties
of the sum and product operations, we have:

𝜁 =
∑︁
𝑧𝑁

exp{𝜑𝑁 (𝑧𝑁 )}
∑︁
𝑧𝑁−1

exp{𝐴𝑧𝑁−1,𝑧𝑁 } (2.70)

×
𝑁−1∏︁
𝑛=1

∑︁
𝑧𝑛

exp{𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛} (2.71)

which can be re-written as a recursive “forward” function 𝛼𝑛(𝑧𝑛):

𝜁 =
∑︁
𝑧𝑁

𝛼𝑁 (𝑧𝑁 ) (2.72)

𝛼𝑛(𝑧𝑛) = exp{𝜑𝑛(𝑧𝑛)}
∑︁
𝑧𝑛−1

exp{𝐴𝑧𝑛−1,𝑧𝑛}𝛼𝑛−1(𝑧𝑛−1) (2.73)

𝛼0(𝑧0) = 1. (2.74)
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Alternately, one can derive a recursion flowing backward in time:

𝜁 =
∑︁
𝑧1

exp{𝜑1(𝑧1) +𝐴𝑧0,𝑧1}𝛽1(𝑧1) (2.75)

𝛽𝑛(𝑧𝑛) =
∑︁
𝑧𝑛+1

exp{𝜑𝑛+1(𝑧𝑛+1) +𝐴𝑧𝑛,𝑧𝑛+1}𝛽𝑛+1(𝑧𝑛+1) (2.76)

𝛽𝑁 (𝑧𝑁 ) = 1. (2.77)

In the context of HMM, the computation of (2.74) and (2.77) is known as the forward-
backward algorithm (Rabiner, 1989), or the Baum-Welch algorithm (Baum, 1972). The 𝛼𝑛

and 𝛽𝑛 recursive functions will proved to be useful to compute the VB M-step.

2.3.2 VB M-step

We now assume that 𝑞(c|z)and 𝑞(z) are fixed and derive the optimal distribution 𝑞*(H),
𝑞*(v) and 𝑞*(𝛾). Contrary to the VB E-step, the three variational posteriors are assumed
to be independent and, therefore, the order is irrelevant. We begin with the posterior over
the acoustic unit embeddings:

ln 𝑞*(H) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(c|z)𝑞(z)𝑞(v)𝑞(𝛾) + const (2.78)

=
[︁ 𝑁∑︁
𝑛=1

⟨ln 𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛)⟩𝑞(𝑐𝑛|𝑧𝑛)𝑞(𝑧𝑛)
]︁

+
∞∑︁
𝑘=1

ln𝐺0(𝜂𝑘) + const . (2.79)

Using the definition of the base measure in (2.18) and the notation 𝜔𝑠𝑛
𝑢𝑙

= 𝜔𝑧𝑛 and 𝜃𝑠𝑛,𝑐𝑛𝑢𝑙
=

𝜃𝑐𝑛𝑧𝑛 , we write:

ln 𝑞*(H) =
[︁ 𝑁∑︁
𝑛=1

⟨ln 𝑝(x𝑛|𝜃𝑧𝑛)𝑝(𝑐𝑛|𝜔𝑧𝑛)⟩𝑞(𝑐𝑛|𝑧𝑛)𝑞(𝑧𝑛)
]︁

+

∞∑︁
𝑖=1

ln 𝑝(𝜔𝑖) +

𝐶∑︁
𝑗=1

ln 𝑝(𝜃𝑗𝑖 ) + const

(2.80)

=⇒ 𝑞*(H) =

∞∏︁
𝑖=1

𝑞*(𝜔𝑖)

𝐶∏︁
𝑗=1

𝑞*(𝜃𝑗𝑖 ) (2.81)

𝑞*(𝜔𝑖) = exp{𝜉⊤𝑖 𝑇 (𝜔𝑖)−𝐴(𝜉𝑖)} (2.82)

𝜉𝑖 = 𝜉0 +
𝑁∑︁

𝑛=1

𝑞(𝑧𝑛 = 𝑖)

[︂
𝑇 (𝑐𝑛)

1

]︂
(2.83)

𝑞*(𝜃𝑗𝑖 ) = exp{𝜗𝑗⊤
𝑖 𝑇 (𝜃𝑗𝑖 )−𝐴(𝜗𝑗

𝑖 )} (2.84)

𝜗𝑗
𝑖 = 𝜗0 +

𝑁∑︁
𝑛=1

𝑞(𝑐𝑛 = 𝑗|𝑧𝑛 = 𝑖)𝑞(𝑧𝑛 = 𝑖)

[︂
𝑇 (x𝑛)

1

]︂
(2.85)

Where the distribution 𝑞(𝑧𝑛) is computed using the forward-backward algorithm:

𝑞(𝑧𝑛) =
𝛼𝑛(𝑧𝑛)𝛽𝑛(𝑧𝑛)

𝜁
. (2.86)

The optimal factors in (2.82) and (2.84) correspond to the natural form of the Dirichlet
and Normal-Wishart distributions. The expectations of sufficient statistics 𝑇 (𝜔𝑖) and 𝑇 (𝜃𝑗𝑖 )
needed in the E-step are given in appendices B.2.2 and B.2.5.
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We derive now the optimal variational posterior of the stick-breaking process:

ln 𝑞*(v) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(c|z)𝑞(c)𝑞(H)𝑞(𝛾) + const (2.87)
ln 𝑞*(v) = ⟨ln 𝑝(z|v)⟩𝑞(z) + ln 𝑝(v) + const . (2.88)

(2.89)

Using the fact that 𝑝(z|v) = 𝑝(s|u)𝑝(u|v) and (2.37) we have:

ln 𝑞*(v) = ⟨ln 𝑝(u|v)⟩𝑞(u) + ln 𝑝(v|𝛾) + const (2.90)

=

∞∑︁
𝑘=1

⟨︀ ∑︁
𝑢𝑖∈u

1[𝑢𝑖 > 𝑘] ln(1− 𝑣𝑘) + 1[𝑢𝑖 = 𝑘] ln 𝑣𝑘
⟩︀
𝑞(u)

(2.91)

+ (⟨𝛾⟩𝑞(𝛾) − 1) ln(1− 𝑣𝑘) + const

=⇒ 𝑞*(v) =
∞∏︁
𝑘=1

𝑞*(𝑣𝑘) (2.92)

𝑞*(𝑣𝑘) = ℬ(1 +
⟨︀ ∑︁
𝑢𝑖∈u

1[𝑢𝑖 = 𝑘]
⟩︀
𝑞(u)

, ⟨𝛾⟩𝑞(𝛾) +
⟨︀ ∑︁
𝑢𝑖∈u

1[𝑢𝑖 > 𝑘]
⟩︀
𝑞(u)

), (2.93)

where we have used the indicator operator defined as:

1[condition] =

{︃
1 if “condition” is true
0 otherwise.

(2.94)

The expectations in (2.93) requires summing over all the units of all possible sequences
u. Once again, this large summation can be calculated exactly with the forward-backward
recursion. Observing that

∑︀
𝑢𝑖∈u 1[𝑢𝑖 = 𝑘] =

∑︀
𝑧𝑖−1,𝑧𝑖∈z 1[𝑧𝑖−1 = 𝑎𝑢𝑖−1 , 𝑧𝑖 = 𝑏𝑢𝑖 ], where

𝑎𝑢𝑖−1 is the index of the last state of the HMM associated with the acoustic unit 𝑢𝑖−1 and
𝑏𝑘 is the index of the first state of the HMM associated with the acoustic unit with index
𝑘. Therefore we have:

⟨︀ ∑︁
𝑢𝑖∈u

1[𝑢𝑖 = 𝑘]
⟩︀
𝑞(u)

=
⟨︀ 𝑁∑︁
𝑛=1

1[𝑧𝑛−1 = 𝑎𝑢𝑖−1 , 𝑧𝑛 = 𝑏𝑘]
⟩︀
𝑞(z)

(2.95)

=
𝑁∑︁

𝑛=1

∑︁
𝑎𝑢𝑖−1

𝑞(𝑧𝑛−1 = 𝑎𝑢𝑖−1 , 𝑧𝑛 = 𝑏𝑘) (2.96)

⟨︀ ∑︁
𝑢𝑖∈u

1[𝑢𝑖 > 𝑘]
⟩︀
𝑞(u)

=
∞∑︁

𝑗=𝑘+1

⟨
∑︁
𝑢𝑖∈u

1[𝑢𝑖 = 𝑗]⟩𝑞(u) (2.97)

𝑞(𝑧𝑛−1, 𝑧𝑛) =
1

𝜁

𝑁∑︁
𝑛=1

𝛼𝑛−1(𝑧𝑛−1) exp{𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛}𝛽𝑛(𝑧𝑛). (2.98)
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Algorithm 2.1 Training of phone-loop model for acoustic unit discovery
1: function mstep(X, 𝑞*(c|z), 𝑞*(z), 𝑞*(𝛾))
2: ◁ Update defined in (2.80)
3: 𝑞*(H)← arg max𝑞(H) ℒ
4: ◁ Update defined in (2.92)
5: 𝑞*(v)← arg max𝑞(v) ℒ
6: ◁ Update defined in (2.102)
7: 𝑞*(𝛾)← arg max𝑞(𝛾) ℒ
8: return 𝑞*(H), 𝑞*(v), 𝑞*(𝛾)

9: function estep(X, 𝑞(H), 𝑞(v))
10: ◁ Update defined in (2.60)
11: 𝑞*(c|z)← arg max𝑞(c|z) ℒ
12: ◁ Update defined in (2.68)
13: 𝑞*(z)← arg max𝑞(z) ℒ
14: return 𝑞*(c|z), 𝑞*(z)

15: procedure train(X, 𝐸)
16: ◁ 𝐸: number of epochs (i.e. E-step + M-step)
17: ◁ initialization:
18: 𝑞*(H)← random initialization
19: 𝑞*(v)← 𝑝(v)
20: 𝑞*(𝛾)← 𝑝(𝛾)
21: for 𝑒← 1 to 𝐸 do
22: 𝑞*(c|z), 𝑞*(z)← estep(X, 𝑞*(H), 𝑞*(v))
23: 𝑞*(H), 𝑞*(v), 𝑞*(𝛾)← mstep(X, 𝑞*(c|z), 𝑞*(z), 𝑞*(𝛾))

Finally, we estimate the optimal variational posterior over the concentration of the Dirich-
let Process:

ln 𝑞*(𝛾) = ⟨ln 𝑝(X, c, z,H,v, 𝛾)⟩𝑞(c|z)𝑞(z)𝑞(H)𝑞(v) + const (2.99)
= ⟨ln 𝑝(v|𝛾)⟩𝑞(v) + ln 𝑝(𝛾) + const (2.100)

=

[︂ ∞∑︁
𝑘=1

ln 𝛾 + 𝛾⟨ln(1− 𝑣𝑘)⟩𝑞(𝑣𝑘)
]︂

+ (𝑎0 − 1) ln 𝛾 − 𝑏0𝛾 (2.101)

=⇒ 𝑞*(𝛾) = 𝒢(𝑎0 +

∞∑︁
𝑘=1

1, 𝑏0 −
∞∑︁
𝑘=1

⟨ln(1− 𝑣𝑘)⟩𝑞(𝑣𝑘)) (2.102)

2.3.3 Truncation

The optimal variational factors we have derived so far are impractical. Indeed, they involve
distributions over infinite set of outcomes (𝑧𝑛 ∈ {1, 2, ...,∞}), infinite-dimensional variables
(H, v) and infinite sums in (2.102). Following (Blei et al., 2006), we address this issue by
introducing a truncation parameter 𝜏 such that 𝑞(𝑣𝜏 = 1) = 1,∀𝑖. This approximation,
motivated by the almost sure truncation of the Dirichlet Process (Ishwaran and James,
2001), ensures that 𝑞(𝑢𝑖 > 𝜏) = 0 and, therefore, truncates all infinite sum in the solution

27



of the optimal factors. Consequently, even if our model theoretically assumes a potentially
infinite number of acoustic units, our variational approximation expects at most 𝜏 acoustic
units. It is important to note that the parameter 𝜏 does not define the total number of
units derived by the inference. Rather, it is an upper-bound of the maximal number of
acoustic units discovered by the model.

The whole training of the model is summarized in Alg. 2.1. Note that this algorithm may
converge to a local optimum and therefore needs to be carefully initialized. In practice, we
set our initial estimates as:

∙ 𝑞*(v) , 𝑝(v)

∙ 𝑞*(𝛾) , 𝑝(𝛾)

The posterior over the embeddings 𝑞*(H) is initialized such that the expected value of the
prior over the mean parameters of the mixture components is equal to the total data mean
plus some noise with small variance.

2.4 Experimental Setup

2.4.1 Data

Our first experimental data set is the TIMIT corpus (Garofolo et al., 1990; Zue et al., 1993).
It has a long history and played a key role in the development of acoustic models for speech
recognition (Lopes and Perdigao, 2011). Its data is unrealistic and artificial: very clean
recordings, no spontaneity, read speech,... However, the controlled quality of the recordings
and the manually created phonetic labels make it an ideal data set for developing and
testing new speech technologies. TMIT contains phonetically-balanced English read speech
recorded at 16kHz. The full corpus has 6300 utterances—about 5.3 hours—and is divided
into 438 male speakers and 192 female speakers. There are three groups of sentences:
the SA sentences that are read by every speaker to highlight the within-language phonetic
variability, and the SX and SI groups which contain phonetically-compact and phonetically-
diverse sentences respectively. Since the AUD task is a special case of clustering, there is no
need for neither a test set nor a held-out set. Therefore, we trained and evaluated our model
on the full corpus without the SA sentences. The choice of removing the SA utterances
is common in speech recognition (Lopes and Perdigao, 2011). The overall training data
had 4288 utterances (about 3.5 hours). Also, each utterance is provided with a phonetic
transcription based on 61 phones. We use these transcriptions as a reference to evaluate
the outcome of the AUD model. Contrary to what is usually done in ASR, the 61 phones
were not collapsed into a 48 or 39 phone set.

As second experimental data set, we used the MBOSHI corpus (Godard et al., 2017).
Contrary to TIMIT, the MOBSHI corpus is closer to a real scenario of documenting an
endangered language: it is a set of 16kHz recordings in Mboshi, a Bantu language spoken
in Congo-Brazzaville. Similarly to TIMIT, the recommended training and testing sets
were merged together forming a set of 5130 utterances from 3 male speakers. The word
transcription of the corpus is based on a non-standard graphemic system developed by
linguists. In addition, the MBOSHI corpus provides a phonetic time-aligned transcription
obtained by forced-alignments of an HMM-GMM based monophone system. This phonetic
transcription, based on 68 phones, was used in our evaluation.
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Language Language Family Hours of training data
Cantonese Sino-tibetan Chinese 65.0

Pashto Indo-European 64.7
Turkish Ural-Altaic 56.6
Tagalog Austronesian 44.1

Vietnamese Austroasiatic 53.2
Assamese Indo-Aryan 46.7
Bengali Indo-European 53.6

Haitian Creole French Creole 55.0
Lao Kra-Dai 71.6

Tamil Dravidian 72.7
Zulu Niger-Congo 57.8

Kurdish Indo-European 69.7
Tok Pisin English Creole 68.7
Cebuano Austronesian 70.8
Kazach Turkic 73.0
Telugu Dravidian 71.7

Lithuanian Indo-European 81.4

Table 2.1: List of languages used to train the MBN features extractor.

2.4.2 Features

Because AUD is an unsupervised learning problem, the type of observations given as input
to the model is of crucial importance. We considered two types of representation: spectral
based features and discriminatively trained features. For the spectral features, the signal is
converted into vectors of 12 Mel-Frequency Cepstral Coefficients (MFCCs) (Davis and Mer-
melstein, 1980) and the signal energy extracted from 25 ms long analysis window at 10 ms
rate. These 13-dimensional features are further expanded by adding their first and second
derivatives yielding a 39-dimensional feature vector for every 10 ms of speech. To reduce
the speaker variability, we applied per-utterance mean normalization. For the discrimina-
tive features, we used the Multilingual BottleNeck (MBN) features (Fér et al., 2017). The
MBN features are extracted at a 10 ms rate from a 80-dimensional bottleneck layer of a
feed-forward neural network trained to classify senones of multiple languages. The neural
network was trained on 17 languages listed in Table 2.1; none of them were English. As the
neural network is trained on 8kHz recorded speech data, the data was downsampled prior
to be presented to the neural network.

2.4.3 Metrics

Evaluating the derived acoustic units is particularly difficult for several reasons. First,
the acoustic units, represented as embedding vectors, are not easily interpretable. Second,
there is not a single representation of a language’s phonology: some representations are
compact with coarse level of details, others are more refined but requires more acoustic
units. Finally, it is difficult to assess whether the acoustic units capture only the phonetics
of the language or if they encode other information such as speaker of channel variability. To
cope with these difficulties, we used two metrics to evaluate (i) how closely the data driven
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segmentation of speech matches the one of the reference time-aligned transcription (ii) how
consistent is the clustering of segmented speech with respect to reference transcription.

Segmentation To evaluate how the phone-loop AUD model segments the speech signal,
we compare the segmentation of the most likely sequence of units u* (the Viterbi path) with
the segmentation of the reference transcription. Practically, we report the Recall, Precision
and F-score calculated using the time boundaries of reference labels and the acoustic unit
labels. We tolerated boundaries shifted by +- 20 ms. However, a time boundary of an
acoustic unit can only match at most one time boundary of the reference transcription.

Normalized Mutual Information To evaluate the quality of the clustering, we com-
puted the Normalized Mutual Information (NMI) between the most likely sequence of units
u* and the reference transcription r. The NMI is given by:

NMI = 2
𝐻(𝑢)−𝐻[𝑢|𝑟]
𝐻[𝑢] +𝐻[𝑟]

(2.103)

𝐻[𝑢] = −
𝜏∑︁

𝑘=1

𝑝(𝑢 = 𝑘) log2 𝑝(𝑢 = 𝑘) (2.104)

𝐻[𝑢|𝑟] = −
𝜏∑︁

𝑘=1

𝑅∑︁
𝑙=1

𝑝(𝑢 = 𝑘, 𝑟 = 𝑙) log2 𝑝(𝑢 = 𝑘|𝑟 = 𝑙) (2.105)

𝐻[𝑟] = −
𝑅∑︁

𝑘=1

𝑝(𝑟 = 𝑘) log2 𝑝(𝑟 = 𝑘) (2.106)

𝑝(𝑢 = 𝑘) =

∑︀𝐿
𝑢𝑖∈u* 1[𝑢𝑖 = 𝑘]

𝐿
(2.107)

𝑝(𝑟 = 𝑘) =

∑︀𝑀
𝑟𝑖∈r* 1[𝑟𝑖 = 𝑘]

𝑀
(2.108)

where 𝑅 is the number of unique phones in the reference transcription and 𝑀 is the length
of the reference transcription. The conditional probability 𝑝(𝑢|𝑟) was estimated by first,
mapping each element of sequence u* to the one of sequence r it overlaps the most with, and
then, by normalizing the counts of how many times a particular acoustic unit is mapped
to a phone of the reference transcription. The NMI is minimal (NMI = 0) when both
sequence u* and r are statistically unrelated, on the other hand, the NMI will be maximal
(NMI = 1) when there exists a one-to-one mapping between the acoustic units and the
reference phones. Importantly, the NMI penalizes AUD systems that uses more units than
necessary, or put in another way, when 𝐻[𝑟] < 𝐻[𝑢]. Therefore, we consider solutions that
have less acoustic units preferable. When the number of “active units” is lower than the
actual number of phones, i.e. 𝐻[𝑟] > 𝐻[𝑢], the mutual information between the reference
transcription and the data-driven transcription will be lower and the NMI will again be less
than 1.
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Inference Database Recall (%) Precision (%) F-score (%) NMI (%)
CRP TIMIT 74.98 56.43 64.40 33.87
VB TIMIT 68.47 58.36 63.01 34.81

CRP MBOSHI 68.91 38.26 49.20 34.41
VB MBOSHI 55.82 40.43 46.89 35.98

Table 2.2: Comparison between the Chinese Restaurant Process (CRP) and the Variational
Bayes (VB) inference.

2.5 Results and analysis

2.5.1 Settings

We describe here the configuration of our model used for all our experiments. As explained
previously, the base measure is a combination of Dirichlet and Normal-Wishart distribu-
tions. The Dirichlet distributions were initialized with all concentration parameters set to
1. The parameters of the Normal-Wishart prior were set as follows:

m0 = 𝜇 (2.109)
𝛽0 = 1 (2.110)

W0 = I (2.111)
𝜈0 = 𝐷 + 1 (2.112)

where 𝐷 is the dimension of the feature vectors and 𝜇 = 1
𝑁

∑︀
𝑛 x𝑛 is sample mean of the

whole data set. The Gamma prior over the concentration of the Dirichlet Process was
set to have a mean equal to half of the truncation parameter 𝜏 . We chose this particular
parameterization to encourage the model to use more units at the beginning of the training
and let the model prune the number of acoustic units by decreasing the concentration
parameter later on. The truncation parameter 𝜏 was set to 101. Among these 101 potential
units, we reserved one to be the “silence unit”. The HMM of the silence unit was configured
to have 5 emitting states instead of 3 emitting states for the other units and, furthermore,
we constrained the inference graph of the phone-loop to start and end an utterance by this
silence unit. Finally, each model was trained for 30 epochs, that is 30 VB E-steps and VB
M-steps.

2.5.2 Variational Bayes vs Gibbs Sampling

As a first step, we compare both versions of the AUD phone loop model: the one which
uses the Chinese restaurant process as inference scheme (Lee and Glass, 2012) (denoted
CRP in further references) and our model which uses the stick-breaking construction and
Variational Bayes (VB) inference. The results for the CRP model were obtained by using
the publicly available implementation5. Results, obtained on the MFCCs features, are
shown in Table 2.2. We observe that the results are not so different from each other which
is to be expected since the models are almost identical6 despite using different inference
schemes. On one hand, our model does not segment the speech as well as the CRP model

5https://github.com/jacquelineCelia/dphmm_silence
6The model introduced in (Lee and Glass, 2012) has an extra set of binary variables indicating, for each

frame, if it is the beginning of a new acoustic unit.
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Figure 2.6: Evolution of the number of discovered units during the inference.

but, on the other hand, it achieves a better clustering. However, the biggest different lies
in the efficiency of the inference. With our model, the computation of the VB E-step can
be parallelized which leads to a very fast training: with 30 parallel cores, the training was
finished in roughly 1.5 hours. With the CRP model, such parallelization is not possible,
which makes the inference quite slow. In this example, the 10000th update of the Gibbs
sampler was reached after 2 days of training.

Another important difference between the two models is the number of discovered acoustic
units, i.e. the number of unique labels in the final transcription. Whereas the CRP model
tends to use a large number of units, our model is much more parsimonious. Fig. 2.6 shows
the evolution of the number of discovered units during the inference for both models. It
is not clear why the two algorithms lead to such different number of units. As shown in
Fig. 2.7, the truncation parameter does not seem to be a limit as the maximum number
of units is never reached. A possible explanation may be with the nature of the mean-
field approximation: indeed, it is well known that the mean-field approximation tends to
underestimate the variance of the true posterior (Minka et al., 2005) which, in our case,
could lead to a solution with less acoustic units. Nevertheless, this feature is advantageous,
as, without reducing the quality of the clustering measured in term of NMI, it provides a
solution with less parameters.

In Fig. 2.8, we show an example of the output from both AUD systems on one randomly
picked utterance. One can see that both models over-segment the speech, especially at the
beginning of the utterance, before the actual speech starts. This is a caveat of generative
models as they may be sensitive to outliers.
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Figure 2.7: Effect of the truncation parameter on the number of discovered units evaluated
on the TIMIT data set.

Features Corpus Recall Precision F-score NMI (%)
MFCC TIMIT 68.47 58.36 63.01 34.81
MBN TIMIT 60.86 55.53 58.07 37.17

MFCC MBOSHI 55.82 40.43 46.89 35.98
MBN MBOSHI 55.14 36.73 44.09 32.13

Table 2.3: Comparison between MFCC and MBN features for acoustic unit discovery.

2.5.3 Variational Bayes objective for AUD

Variational Bayes objective is specific for each choice oflikelihood and prior: changing either
of those will affect the objective function. Nonetheless,the phone-loop model seems to be
a reasonable choice as the Variational Bayes inferenceleads to learning (part of) the pho-
netic informationOrganizing committeeOrganizing committeeVariational Bayes inference,
contrary to Gibbs sampling, optimizes a well defined objective function. This objective
function maximizes the expected log-likelihood regularized by a penalty term which forces
the posterior distribution to be close to the prior. Fig. 2.9 shows the evolution of the
metrics during the VB inference. Interestingly, even though the training is fully unsuper-
vised and does not use the reference transcription, it indirectly optimizes our metrics. This
observation is important as it shows that the AUD problem is amenable to an optimization
problem. Note that Variational Bayes objective is specific for each choice of likelihood and
prior: changing either of those will affect the objective function. Nonetheless, the phone-
loop model seems to be a reasonable choice as the Variational Bayes inference leads to
learning (part of) the phonetic information.

2.5.4 Discriminative features

The input features to the AUD model are of crucial importance. Indeed, since the AUD is
trained to fit the data, if the features carry non-phonetic information, then, the model will
use some of its modeling capacity (in our case create more units) to model it. Mainstream
ASR, has coped with this issue in several ways:
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Figure 2.9: Evolution of the clustering and segmentation metrics during the training for
the TIMIT database (Fig. 2.9a and Fig. 2.9b) and the MBOSHI database (Fig. 2.9c and
Fig. 2.9d).

∙ using smooth spectral representations such as MFCC, PLP,... (Davis and Mermel-
stein, 1980; Hermansky, 1990) to remove unwanted variability while preserving the
phonetic information. Our choice to utilize the MFCC features follows the same ra-
tionale, unfortunately, these representations are far from removing all unnecessary
information

∙ using speaker normalization techniques, that transform the features and/or the model
for each speaker (Wegmann et al., 1996; Gouvêa, 1998; Leggetter and Woodland,
1995). Model-based approaches, while effective, assume the identity of the speaker of
each utterance to be known. However, this assumption is not always met, especially
when dealing with low-resource languages

∙ using discriminative training to drive the model to ignore information not relevant
to the task. Unfortunately, discriminative training is not applicable to our problem
since we do not have the labels and try to discover them.
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To improve our AUD model without requiring extra annotations, we replace traditional
MFCC features by the Multi-Lingual Bottleneck (MBN) one. These features, being trained
in a discriminative fashion on several languages, act as a features-based speaker normaliza-
tion. The results for both features with the stick-breaking process based AUD model are
shown in Table 2.3. As one can see, the effect of the MBN features is mitigated. First, we
observe that these features are not performing well regarding the segmentation. This is to
be expected as discriminative models for speech are known to be inaccurate in the timing of
their response (Graves et al., 2006). On the other hand, regarding the clustering quality, the
MBN features perform significantly better on TIMIT and much worse on MBOSHI. This
illustrates the fact that the MBN features, despite being trained on multiple languages,
cannot be considered as robust universal features. In some cases, when the target data is
somewhat close to the training data of the MBN extractor, the MBN features provide a
good phonetic representation of speech and will help the AUD model. However, when the
target data is too different from the training data, the MBN features may provide a poor
representation of the speech signal. Unfortunately, it is difficult to know before hand if a
particular language will benefit of not from the MBN features, and therefore, the choice of
features for the AUD task remains an open problem which depends on the data.

2.5.5 Non-Parametric vs Parametric Phone-Loop

We have defined the phone-loop model using a non-parametric prior leading to an infinite
mixture of HMMs. It is possible to define a ”parametric version“ of this model by replac-
ing the Stick-Breaking Process prior with a Dirichlet distribution. This is easily done by
replacing 𝑝(𝑢𝑙|v)𝑝(v) in (2.33) by:

𝑝(𝜋) = 𝒟(𝜚0) (2.113)
𝑝(𝑢𝑙|𝜋) = 𝒞(𝜋), (2.114)

where 𝒟 and 𝒞 are the Dirichlet and Categorical distribution respectively. Assuming this
new model, it is easy to show that optimal variational posterior 𝑞(𝜋) is given by:

𝑞(𝜋) = 𝒟(𝜚) (2.115)

𝜚𝑘 = 𝜚0,𝑘 +
⟨︀ ∑︁
𝑢𝑖∈u

1[𝑢𝑖 = 𝑘]
⟩︀
𝑞(u)

. (2.116)

On one hand, the parametric version forces a specific number of element in the mixture and
does not let the model learns its complexity. However, the update equation are simpler as
one doesn’t need to deal with infinite prior/posterior and yet may remain a good approxi-
mation of the non-parametric version of the model. From table 2.4, we see that the choice
of having a non-parametric model does have a significant positive effect on the clustering
quality measured with the NMI. It also leads to a better segmentation on the TIMIT data
whereas the segmentation quality is slightly worse on the MBOSHI data.

2.6 Conclusion
In this chapter, we have revisited the model proposed in (Lee and Glass, 2012) by using the
Stick-Breaking construction of the Dirichlet process. Consequently, an approximation of the
posterior distribution of the model’s parameters can be derived using the Variational Bayes.
This new algorithm for AUD achieves a better clustering, measured with the NMI, while
being much faster and scalable to large database. The model has three main components:
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Model Features Corpus F-score NMI (%)
non-parametric MFCC TIMIT 63.01 34.81

parametric MFCC TIMIT 57.03 32.56
non-parametric MBN TIMIT 58.07 37.17

parametric MBN TIMIT 54.46 35.52
non-parametric MFCC MBOSHI 46.89 35.98

parametric MFCC MBOSHI 47.09 35.5
non-parametric MBN MBOSHI 44.09 32.13

parametric MBN MBOSHI 44.1 29.73

Table 2.4: Comparison of the non-parametric and parametric prior for the AUD model.

1. the per-unit likelihood model, which, in our case, is an HMM

2. the stick-breaking process, which is a prior over unigram phonotactic language model

3. the base measure which is a prior over the sounds likely to be chosen as acoustic unit.

A first difficulty is how to define a consistent base measure. Indeed, choosing the right
distribution is a non-trivial matter as the support of the base measure is defined over
a hardly interpretable high-dimensional space. So far, we have bypassed this problem by
using a vague prior which, roughly, allows any sound to be a candidate acoustic unit. While
mathematically convenient, this solution is highly unsatisfactory as restricting support of
the base measure to a small set of sounds would greatly reduce the searched space and
therefore help the algorithm to find better units. This problem will be addressed in chapter
3, where we used Generalized Subspace Model to learn a low-dimensional representation of
sounds from several languages to help the AUD task.

A second weakness is the assumption of the unigram phonotactic language model. As
the n-gram and other sophisticated language models have proven to be essential to achieve
accurate ASR, it is reasonable to believe that a more refined language model should be also
beneficial for the AUD task. In chapter 4, we extend the non-parametric phone-loop model
to incorporate a bigram phonotactic language model using Hierarchical Dirichlet Process.

Finally, the AUD model can also be improved by replacing the HMM by a more refined
acoustic model. While we do not explore any other acoustic unit model in this work, an
enhanced version of the non-parametric phone-loop based on Variational Auto-Encoder was
proposed in (Ebbers et al., 2017; Glarner et al., 2018).
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Chapter 3

Generalized Subspace Model
for Sound Representation

In chapter 2, we have described a non-parametric phone-loop model to discover acoustic
units from speech. This model represents each acoustic unit as a vector of parameters of
an HMM. This approach suffers from the fact that the HMM parameter space is high-
dimensional—more than a thousand dimensions for common settings—whereas the set of
possible acoustic units for a given language is confined to a “small” region of this space.
Therefore, a natural question is how we can reformulate our AUD model such that the search
space of the acoustic units is restrained to the subset of likely acoustic unit candidates. In
this chapter, we develop the theory and the tools to address this problem in a principled way.
In section 3.1, we introduce the concept of Generalized Subspace Model (GSM): a theoretical
framework to embed probabilistic models in arbitrary vector space. Equipped with this new
concept, we build in section 3.2 the Subspace Hidden Markov Model (SHMM) to represent
phones in a low-dimensional space. Finally, in section 3.3, we integrate the SHMM into the
non-parametric phone-loop model for acoustic unit discovery. Our integration is done in
two steps: first, we use the SHMM to learn the subspace of phone embeddings from several
languages. Loosely speaking, the model is learning what is a phone. In a second time the
AUD system will cluster the speech signal as described in chapter 2 but restraining the
search to acoustic unit embeddings living in the subspace of phone learned at the previous
step.

3.1 Generalized Subspace Model
A large part of the machine learning field is dedicated to representation of high-dimensional
data points using low-dimensional embeddings. The projection from high to low-dimensional
space ideally removes unwanted variability and allows for easy manipulation of the data.
Techniques to learn this mapping range from simple linear projections such as Principal
Component Analysis or Linear Discriminant Analysis (Bishop, 2006) to complex non-linear
functions such as t-distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hin-
ton, 2008). These techniques have also been generalized to build powerful density estimators
(Tipping and Bishop, 1999; Prince and Elder, 2007; Ioffe, 2006; Kingma and Welling, 2013;
Rezende and Mohamed, 2015). Yet, all these methods have in common that each data point
has its own low-dimensional embedding, or put in another way, they project the data onto
a low-dimensional manifold. In some cases, we would like the embeddings to represent not
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the data itself but rather an ensemble of observations modeled by a density. For instance,
one may want to have an embedding to represent a person identity whereas the observations
are a set of images of this person. In another example, closer to our application, we would
like to learn an embedding representing a phone from several utterances of this particular
phone. In this setting, the task is not to learn a manifold in the data space directly, rather,
each group of observations is represented by a probabilistic model and we aim to represent
the set of models in a low-dimensional space. In speech, joint factor analysis (Kenny et al.,
2007), i-vector (Dehak et al., 2009) and Subspace Gaussian Mixture Model (SGMM) (Povey
et al., 2011) are typical examples of such model applied to speaker identification and ASR
respectively.

Learning a subspace of probabilistic models is, however, quite complex. For instance,
an i-vector model only deals with the mean parameters of the mixture components of a
GMM to keep a closed form solution of the update equations. On the other hand, the
SGMM incorporates the mixture’s weights in the subspace but needs to introduce some
approximation for the training. Furthermore, subspace models trained in the maximum
likelihood fashion are prone to overfit which can significantly hamper the quality of the
embeddings. In the following of this section, we introduce the Generalized Subspace Model
(GSM) which:

∙ unifies traditional subspace models into a single framework

∙ is robust against overfitting by having a prior over the susbpace’s parameters.

Finally, we describe a stochastic Variational Bayes training which can be applied to any
possible subspace model.

3.1.1 Definition

Let’s have 𝐾 sets of observations X1, . . . ,X𝐾 where the 𝑖th set has 𝑁𝑖 observations: X𝑖 =
x𝑖1, . . . ,x𝑖𝑁𝑖 . Each set is associated to a class (e.g. phone) and has a specific distribution
parameterized by vector h𝑖. We assume that the likelihood of a set of observations is given
by a member of the exponential family of distributions (appendix B), eventually conditioned
by some latent variable:

𝑝(X𝑖|Z𝑖,𝜂𝑖) = exp{𝜂⊤𝑖 𝑇 (X𝑖,Z𝑖)−𝐴(𝜂𝑖,Z𝑖) +𝐵(X𝑖,Z𝑖)}, (3.1)

where 𝜂𝑖 ∈ ℋ is the 𝑃 -dimensional vector of natural parameters of the 𝑖th model, Z𝑖 is a
set of latent variables specific to the model1 and the functions 𝑇 , 𝐴 and 𝐵 are, respectively,
the sufficient statistics, the log-normalizer and the base measure2 specific to the likelihood
model. Then, the generative process of the GSM is:

1. W,b ∼ 𝑝(W,b)

2. h𝑖 ∼ 𝒩 (0, I) ∀𝑖 ∈ {1, 2, . . . ,𝐾}

3. 𝜂𝑖 = 𝑓(W⊤h𝑖 + b)

1For some models, this set can be empty.
2For members of the exponential family, the base measure is the part of the normalization constant

that does not depend on the natural parameters and should not be confused with the base measure of the
Dirichlet Process.
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Figure 3.1: Graphical model of the Generalized Subspace Model. Dashed edges pointing to
a square node represent a deterministic relation.

4. Z𝑖 ∼ 𝑝(Z)

5. X𝑖 ∼ 𝑝(X|Z𝑖,W,b,h𝑖),

where:

∙ W ∈ R𝑃×𝐷 and b ∈ R𝑃 are the subspace parameters

∙ h𝑖 ∈ R𝐷 is the embedding vector of a model

∙ 𝑓 : R𝑃 → ℋ is a differentiable function mapping a real vector into the natural
parameter space of the likelihood model.

Note that the set of natural parameters does not necessarily lie in R𝑃 . For instance, the
set of natural parameters for the Normal distribution, which is defined by all possible pairs
of real vector and positive definite matrix, is only a subset of R𝑃 . The graphical model
describing the generative process is shown in Fig 3.1.

3.1.2 Relation with the i-vector model

As its name indicates, GSM generalizes existing subspace models and casts them into a
single framework. To illustrate the connection between GSM and other subspace models
we show how the i-vector model can be seen as a special instance of a GSM. Let be X𝑖 =
x𝑖1, . . . ,x𝑖𝑁𝑖 where x𝑖𝑗 ∈ R𝑃 is the 𝑗th 𝑃 -dimensional feature vector of the 𝑖th utterance of
a speech corpus. The likelihood of the utterance conditioned on the i-vector h𝑖 is given by:

𝑝(X𝑖|h𝑖) =

𝑁𝑖∏︁
𝑗=1

[︁ 𝐶∑︁
𝑐=1

𝒩 (x𝑖𝑗 |W⊤
𝑐 h𝑖 + b𝑐,Σ𝑐)𝑝(𝑧𝑖𝑗 = 𝑐)

]︁
(3.2)

𝑝(𝑧𝑖𝑗 = 𝑐) = 𝒞(𝑧𝑖𝑗 = 𝑐|𝜋) = 𝜋𝑐, (3.3)

where 𝑧𝑛 is a latent variable indicating which mixture’s component is assigned to the
𝑛th feature vector and 𝐶 is the number of components in the mixture. From the prior over
𝑧𝑛 and the likelihood, the joint distribution of X𝑖 and 𝑧𝑖 is given by:

𝑝(X𝑖, z𝑖|h𝑖) =

𝑁𝑖∏︁
𝑗=1

𝐶∏︁
𝑐=1

[︁
𝒩 (x𝑖𝑗 |W⊤

𝑐 h𝑖 + b𝑐,Σ𝑐)
1[[𝑧𝑖𝑗=1]𝜋

1[[𝑧𝑖𝑗=1]
𝑐

]︁
. (3.4)
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For convenience, we use the following placeholder:

𝜇𝑖𝑐 = W⊤
𝑐 h𝑖 + b𝑐 (3.5)

(3.6)

and express Eq. (3.4) as an exponential function:

𝑝(X𝑖, z𝑖|h𝑖) = exp

{︂ 𝑁𝑖∑︁
𝑗=1

𝐶∑︁
𝑐=1

1[𝑧𝑖𝑗 = 𝑐]𝜇⊤
𝑖𝑐Σ

−1
𝑐 x𝑖𝑗 − 1[𝑧𝑖𝑗 = 𝑐]

(︁
𝑓

1

2
x⊤
𝑖𝑗Σ

−1
𝑐 x𝑖𝑗 (3.7)

+
1

2
𝜇⊤
𝑖𝑐Σ

−1
𝑐 𝜇𝑖𝑐 +

𝑃

2
ln 2𝜋 + ln |Σ𝑐|

)︁
+ 1[𝑧𝑖𝑗 = 𝑐] ln𝜋𝑐

}︂
= exp{𝜂⊤𝑖 𝑇 (X𝑖, z𝑖)−𝐴(𝜂𝑖, z𝑖) +𝐵(X𝑖, z𝑖)} (3.8)

where we have defined:

𝜂𝑖 =

⎡⎢⎣𝜇𝑖1
...
𝜇𝑖𝐶

⎤⎥⎦ (3.9)

𝑇 (X𝑖, z𝑖) =

𝑁𝑖∑︁
𝑗=1

⎡⎢⎣Σ−1
1 x𝑖𝑗 1[𝑧𝑖𝑗 = 1]

...
Σ−1

𝐶 x𝑖𝑗 1[𝑧𝑖𝑗 = 𝐶]

⎤⎥⎦ (3.10)

𝐴(𝜂𝑖, z𝑖) =

𝑁𝑖∑︁
𝑗=1

𝐶∑︁
𝑐=1

1[𝑧𝑖𝑗 = 𝑐]
(︀1

2
𝜇⊤
𝑖𝑐Σ

−1
𝑐 𝜇𝑖𝑐 +

𝑃

2
ln 2𝜋 + ln |Σ𝑐|

)︀
(3.11)

𝐵(X𝑖, z𝑖) =

𝑁𝑖∑︁
𝑗=1

𝐶∑︁
𝑐=1

1[𝑧𝑖𝑗 = 𝑐]
1

2
x⊤
𝑖𝑗Σ

−1
𝑐 x𝑖𝑗 + 1[𝑧𝑖𝑗 = 𝑐] ln𝜋𝑐. (3.12)

From (3.8) and (3.9), we see that the i-vector model is a special instance of the GSM where
𝑓 is the identity function.

3.1.3 Inference

We now present a generic training algorithm of the GSM which is applicable for a wide
class of models. As the exact posterior of the GSM’s parameters is not tractable, we use
one more time the Variational Bayes objective (appendix A.1):

ℒ[𝑞] =

[︂ 𝐾∑︁
𝑖=1

⟨︀
ln
𝑝(X𝑖, z𝑖|Θ)

𝑞(z𝑖)

⟩︀
𝑞(z𝑖)𝑞(Θ)

]︂
−DKL(𝑞(Θ)||𝑝(Θ)) (3.13)

Θ = {W,b,h1, . . . ,h𝐾} (3.14)

where we have grouped the parameters of the GSM into variable Θ and we have assumed the
following parametric mean-field factorization (appendices A.2.1 and A.2.2) of the variational
posterior:

𝑞(z1, . . . , z𝐾 ,Θ) = 𝑞(Θ;m,𝜆)
𝐾∏︁
𝑖=1

𝑞(z𝑖;𝜑𝑖) (3.15)

𝑞(Θ;m,𝜆) = 𝒩 (Θ|m,diag(exp{𝜆)), (3.16)
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where m and 𝜆 are, respectively, the mean and logarithm of the diagonal of the covariance
matrix of the Normal variational posterior. The type of 𝑞(z𝑖;𝜑𝑖) will depend on the nature
of the model. For instance, for the i-vector model, this will be the posterior distribution
of the frame-to-component assignment variable. In the general case, we do not consider
any particular distribution and we merely assume that the optimal parameter of variational
posterior 𝜑*

𝑖 can be estimated in closed form solution. For conciseness, we will write 𝑞(z𝑖)
and 𝑞(Θ) instead of 𝑞(z𝑖;𝜑𝑖) and 𝑞(Θ; ,m,𝜆).

With the factorization assumed in (3.15), the inference becomes an EM-like algorithm
where we re-estimate the optimal parameters of the variational posterior 𝜑*

1, . . . ,𝜑
*
𝐾 and

m*,𝜆* alternately using the following partial objective functions:

𝜑*
𝑖 = arg max

𝜑𝑖

⟨︀
ln
𝑝(X𝑖, z𝑖|Θ)

𝑞(z𝑖)

⟩︀
𝑞(z𝑖)𝑞(Θ)

(3.17)

= arg max
𝜑𝑖

ℒ𝜑(𝜑𝑖;X𝑖,m,𝜆) (3.18)

m*,𝜆* = arg max
m,𝜆

[︂ 𝐾∑︁
𝑖=1

⟨︀
ln
𝑝(X𝑖, z𝑖|Θ)

𝑞(z𝑖)

⟩︀
𝑞(z𝑖)𝑞(Θ)

]︂
−DKL(𝑞(Θ)||𝑝(Θ)) (3.19)

= arg max
m,𝜆

ℒ𝑚,𝜆(m,𝜆;X1, . . . ,X𝐾 ,𝜑1, . . . ,𝜑𝐾). (3.20)

(3.19) has no closed form solution but can be optimized through a stochastic gradient ascent
using the ”re-parameterization trick“ (Kingma and Welling, 2013):

ℒ𝑚,𝜆(m,𝜆; . . . ) ≈ 1

𝐿

[︂ 𝐿∑︁
𝑙=1

𝐾∑︁
𝑖=1

⟨︀
ln
𝑝(X𝑖, z𝑖|Θ𝑙)

𝑞(z𝑖)

⟩︀
𝑞(z𝑖)

]︂
−DKL(𝑞(Θ)||𝑝(Θ)) (3.21)

Θ𝑙 = m + exp{1

2
𝜆} ⊙ 𝜖 𝜖 ∼ 𝒩 (0, I), (3.22)

where ⊙ is the element-wise multiplication. The complete training algorithm is given in
Alg. 3.1. Note that, for simplicity, Alg. 3.1 is presented with a fixed learning rate. In
practice, the learning rate changes over time using some adaptive procedure (Duchi et al.,
2011; Kingma and Ba, 2014).

3.1.4 Example

To finish our presentation of the GSM, we revisit the Subspace Gaussian Mixture Model
(SGMM) on a toy example. The SGMM was originally presented in (Povey et al., 2011) as
a mean to improve the acoustic model in an ASR pipeline. We use the GSM framework to:

∙ give a Bayesian treatment of the model

∙ include all the parameters of the Gaussian3 while maintaining a tractable inference
thanks to Algorithm 3.1.

3In the original version of the SGMM, only the mean vectors and the mixing weights of the mixture’s
components were included in the subspace.
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Algorithm 3.1 Training of the Generalized Subspace Model
1: function mstep(X1:𝐾 ,𝜑1:𝐾 ,m,𝜆, 𝜌, 𝑆)
2: ◁ 𝜌: learning rate of the stochastic gradient ascent
3: ◁ 𝑆: number of updates of the stochastic gradient ascent
4: ◁ 𝜑1:𝐾 ,m,𝜆: current parameters of the variational posteriors
5: m(𝑛𝑒𝑤) ←m
6: 𝜆(𝑛𝑒𝑤) ← 𝜆
7: for 𝑠← 1 to 𝑆 do
8: m(𝑛𝑒𝑤) ←m(𝑛𝑒𝑤) + 𝜌∇(𝑛𝑒𝑤)

m ℒ𝑚,𝜆(m,𝜆(𝑛𝑒𝑤);X1:𝐾 ,𝜑1:𝐾)

9: 𝜆(𝑛𝑒𝑤) ← 𝜆(𝑛𝑒𝑤) + 𝜌∇𝜆ℒ𝑚,𝜆(m(𝑛𝑒𝑤),𝜆(𝑛𝑒𝑤);X1:𝐾 ,𝜑1:𝐾)

10: return m(𝑛𝑒𝑤),𝜆(𝑛𝑒𝑤)

11: function estep(X1:𝐾 ,m,𝜆)
12: ◁ The E-step is model dependent but is identical to the E-step of the unconstrained

model (i.e. no subspace).
13: for 𝑖← 1 to 𝐾 do
14: 𝜑

(𝑛𝑒𝑤)
𝑖 ← arg max𝜑𝑖

ℒ𝜑(𝜑𝑖;X𝑖,m,𝜆)

15: return 𝜑(𝑛𝑒𝑤)
1:𝐾

16: procedure train_gsm(X1:𝐾 , 𝐸, 𝜌, 𝑆)
17: ◁ 𝐸: number of epochs (i.e. E-step + M-step)
18: m* ← initialization
19: 𝜆* ← initialization
20: 𝜑*

1:𝐾 ← initialization
21: for 𝑒← 1 to 𝐸 do
22: 𝜑*

1:𝐾 ← estep(X1:𝐾 ,m
*,𝜆*)

23: m*,𝜆* ← mstep(X1:𝐾 ,𝜑
*
1:𝐾 ,m

*,𝜆*, 𝜌, 𝑆)

Let’s consider the dataset shown in Fig. 3.2: each point represents task-dependent
features and the color represents the class each point belongs to. For instance, the features
could be the per-frame MFCC features and the class is the identity of the speaker or,
alternately, each point could represent an image of a person and the class is the identity
of this person. Since we are concerned with modeling phones, let’s assume that each point
represents the features of a speech frame and the color indicates the phone associated to
this feature vector. Here, our goal is twofold: first, we wish to model the data using some
probabilistic model, second, we would like to learn a low-dimensional representation of a
phone, i.e. some kind of ”phone embedding“.

Let 𝐾 denote the number of phones in our data set. As previously, our data set of 𝑁
vectors is composed of 𝐾 sets of sizes 𝑁1, . . . , 𝑁𝐾 . We assume the 𝑁𝑖 observations of the
𝑖th phone to be modeled by a mixture of 𝐶 = 2 Normal densities, parameterized by:

∙ mixing weights: 𝜋𝑖 =

[︂
𝜋𝑖1
𝜋𝑖2

]︂
such that 𝜋𝑖1 + 𝜋𝑖2 = 1

∙ mean vectors 𝜇𝑖1 and 𝜇𝑖2
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Figure 3.2: Synthetic data for the Subspace Gaussian Mixture Model (SGMM). An artificial
representation of speech features where each phone (represented by one particular color)
has a bimodal distribution.

∙ precision matrices Σ𝑖1 and Σ𝑖2

resulting in a total of 11 free parameters4. Let 𝑧𝑖𝑗 be the latent variable encoding, for
the 𝑖th phone, to which mixture’s component the 𝑗th speech frame is assigned. The joint
distribution of the model is given by:

𝑝(X𝑖, z𝑖| . . . ) =

𝑁𝑖∏︁
𝑗=1

𝐶∏︁
𝑐=1

𝒩 (x𝑖𝑗 |𝜇𝑖𝑐,Σ𝑖𝑐)
1[𝑧𝑖𝑗=𝑐]𝜋

1[𝑧𝑖𝑗=𝑐]
𝑖 , (3.23)

which can be expressed as an exponential function:

𝑝(X𝑖, z𝑖| . . . ) = exp{𝜂⊤𝑖 𝑇 (X𝑖, z𝑖)−𝐴(𝜂𝑖, z𝑖) +𝐵(X𝑖, z𝑖)}, (3.24)
4The mixing weights have 1 free parameter, each of the mean vectors has 2 and each of the precision

matrices has 3, therefore: 2× (2 + 3) + 1 = 11
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where we have defined:

𝜂𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln 𝜋𝑖1

1−
∑︀𝐶−1

𝑐=1 𝜋𝑖𝑐

. . .
ln 𝜋𝑖𝐶

1−
∑︀𝐶−1

𝑐=1 𝜋𝑖𝑐

Σ−1
𝑖1 𝜇𝑖1

...
Σ−1

𝑖𝐶 𝜇𝑖𝐶

vec(Σ−1
𝑖1 )

...
vec(Σ−1

𝑖𝐶 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑇 (X𝑖, z𝑖) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1[𝑧𝑖𝑗 = 1]
. . .

1[𝑧𝑖𝑗 = 𝐶 − 1]
1[𝑧𝑖𝑗 = 1]x𝑖𝑗

. . .
1[𝑧𝑖𝑗 = 𝐶]x𝑖𝑗

−1[𝑧𝑖𝑗 = 1]12 vec(x𝑖𝑗x
⊤
𝑖𝑗)

. . .
−1[𝑧𝑖𝑗 = 𝐶]12 vec(x𝑖𝑗x

⊤
𝑖𝑗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.25)

𝐴(𝜂𝑖, z𝑖) = − ln(1−
𝐶−1∑︁
𝑐=1

𝜋𝑖𝑐) +
𝐶∑︁
𝑐=1

1[𝑧𝑖𝑗 = 𝑐]

[︂
𝜇⊤
𝑖𝑐Σ

−1
𝑖𝑐 𝜇𝑖𝑐 + ln |Σ𝑖𝑐|

]︂
(3.26)

𝐵(X𝑖, z𝑖) = −𝑁𝑖𝐷

2
ln 2𝜋. (3.27)

Now, we define the prior over the natural parameters 𝜂1, . . . ,𝜂𝐾 as follows:

vec(W) ∼ 𝒩 (0, I) (3.28)
b ∼ 𝒩 (0, I) (3.29)
h𝑖 ∼ 𝒩 (0, I) (3.30)
𝜂𝑖 = 𝑓(W⊤h𝑖 + b). (3.31)

The mapping function 𝑓 is defined such that:

𝜋𝑖𝑐 =
exp{W⊤

𝜋 h𝑖 + b𝜋}𝑐
1 +

∑︀𝐶−1
𝑙=1 exp{W⊤

𝜋 h𝑖 + b𝜋}𝑙
(3.32)

Σ𝑖𝑐 = (L𝑖𝑐L
⊤
𝑖𝑐)

−1 (3.33)
diag(L𝑖𝑐) = exp{W⊤

𝐿h𝑖 + b𝐿} (3.34)
ltri(L𝑖𝑐) = W⊤

𝐿′h𝑖 + b𝐿′ (3.35)
Σ−1

𝑖𝑐 𝜇𝑖𝑐 = W⊤
𝜇h𝑖 + b𝜇, (3.36)

where exp{. . . } is the element-wise exponential function, exp{. . . }𝑑 is the 𝑑th dimension
of the resulting vector and ltri is a function that returns the lower-triangular part (not
including the diagonal) of a square matrix arranged as a vector. Matrices W𝜋, W𝐿, W𝐿′

and W𝜇 are disjoint parts of the matrix W (b𝜋, b𝐿, ... are defined similarly). Importantly,
the parameters of the subspace W and b are shared across phones and only the embeddings
h1, . . . ,h𝐾 are phone-specific. In our example we choose h𝑖 to be a 2-dimensional vector,
hence reducing the original 11 free parameters of the GMM to only 2 dimensions.

In the case of the SGMM, 𝑧𝑖𝑗 ∈ {1, . . . , 𝐶} is a discrete variable and therefore the pa-
rameters 𝜑𝑖 = 𝜑𝑖1, . . . ,𝜑𝑖𝑁𝑖

, of the variational posteriors 𝑞(z𝑖) = 𝑞(z𝑖1), . . . , 𝑞(z𝑖𝑁𝑖) are
simply:

𝑞(𝑧𝑖𝑗 = 𝑐) = 𝜑𝑐𝑖𝑗 . (3.37)
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Figure 3.3: Evolution of the variational lower-bound during the training.

Because of the mean-field factorization assumed in (3.15), the variational posterior maxi-
mizing (3.18) is given by:

𝜑*
𝑖 = 𝑞*(z𝑖) = exp{⟨𝜂𝑖⟩⊤𝑞(Θ)𝑇 (X𝑖, z𝑖)− ⟨𝐴(𝜂𝑖, z𝑖)⟩𝑞(Θ) +𝐵(X𝑖, z𝑖)}. (3.38)

Because of the non-linear mapping 𝑓 , the expectations cannot be evaluated in closed form,
we approximate them by sampling several values of 𝜂𝑙𝑖 ∼ 𝑞(Θ) and taking the average. Once
the optimal parameters of the variational posteriors over the latent variables z𝑖 have been
estimated, we can update the variational posteriors over the subspace’s parameters W, b
and the embeddings h1, . . . ,h𝐾 . Plugging (3.24) in (3.21), we get the following objective
function:

ℒ𝑚,𝜆 =
1

𝐿

𝐿∑︁
𝑙=1

𝐾∑︁
𝑖=1

[︂
𝜂𝑙⊤𝑖 𝑇 (X𝑖, z𝑖)−𝐴(𝜂𝑙𝑖, z𝑖) +𝐵(X𝑖, z𝑖)

]︂
−DKL(𝑞(Θ)||𝑝(Θ)) (3.39)

W𝑙,b𝑙,h
𝑙
1, . . . ,h

𝑙
𝐾 ∼ 𝑞(Θ) (3.40)

𝜂𝑙𝑖 = 𝑓(W⊤
𝑙 h

𝑙
𝑖 + b𝑙). (3.41)

The optimal parameters m*,𝜆* of the variational posterior 𝑞(Θ) are obtained by optimizing
(3.39) with a gradient ascent. The gradient of the objective function ∇ℒ𝑚,𝜆 is easily
obtained by any common automatic differentiation software.

As the VB objective is subject to local optima5, it is important to properly initialize
the model, i.e. to provide for an initial guess of the variational posterior’s parameters 𝜑*

𝑖

and m*,𝜆*. One may be tempted to train a GMM for each phone independently and
then initialize the GSM so that it approximates the learned GMMs. This naive approach
is, however, inadequate. Indeed, for mixture models, the ordering of the components is
unidentifiable as reordering them will lead to the same exact density. From the stand-
point of the parameter space, this model equivalence under reordering implies some kind of
symmetry, that is, portions of the space that represent the same model but with different
ordering. Therefore, when trained independently, the GMMs will be spread across these
equivalent spaces making it hard to find a coherent initialization of the subspace. To avoid
this issue, we initialized our SGMM with the following procedure:

5More precisely, the local optima are a consequence of our (parametric) mean-field approximation.
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1. for each phone, fit the data with a single multivariate Normal density 𝒩 (�̂�, Λ̂
−1

)

2. initialize 𝜑*
𝑖 :

𝜑*
𝑖 = arg max

𝜑𝑖

⟨ln 𝑝(X𝑖, z𝑖|𝜂𝑖)
𝑞(z𝑖)

⟩𝑞(Z𝑖) (3.42)

where 𝜂𝑖 is the vector of natural parameters of the 𝑖th phone’s GMM such that each
component has mean and precision matrix set to �̂� and Σ̂ respectively. Note that
this initialization corresponds to a saddle point of the objective function with respect
to the parameters of the variational posteriors. Nevertheless, the noise introduced
by the ”re-parameterization trick“ in (3.21) will allow the model to escape from this
saddle point.

3. set:

m* = 0 (3.43)

𝜆* =
1

𝐷
1 (3.44)

and, using 𝑞*(z𝑖), optimize the objective function described in Eq. (3.19) until con-
vergence. The scaling 1

𝐷 reduces the noise at the beginning of the training when using
relatively large subspace dimensions.

After this initialization procedure, the training can be carried out as described in Section
3.1.3. For this example, we trained the model for 50 epochs. For each VB M-step, we
run a stochastic gradient ascent of 100 steps. The learning rate of the gradient ascent was
updated following ADAM (Kingma and Ba, 2014) with an initial learning rate of 0.1. The
evolution of the variational lower-bound over time is plotted in Fig. 3.3. At the early stage
of the training, one can observe big jumps of the lower-bound. This corresponds to the VB
E-step which drastically changes the accumulated statistics needed to retrain the subspace.
As the training continues, the statistics stabilize and the training converges.

Fig. 3.4 shows the outcome of the training. We see that, each phone’s data is properly
fit by a 2-components GMM (Fig. 3.4a) whose parameters are constrained to live in a 2-
dimensional space. Since we used (approximate) Bayesian inference, we do not learn point
estimate of the parameters but a posterior distribution which encodes our uncertainty about
the exact value of the parameters. The phones’ variational posteriors in the parameter
subspace are depicted in Fig. 3.4b. We see that the model has efficiently made use of
both of the dimensions of the subspace to extract the phone embeddings. Notice that
the posteriors are quite sharp as there is sufficient amount of data for each phone and,
therefore, there is little uncertainty about the values of the GMMs’ parameters. Finally,
Fig. 3.5 shows how the subspace encodes the GMM parameters: the 𝑥 axis controls mainly
the covariance matrices of the GMM’s components and the 𝑦 axis encodes the mean vectors
and the mixing weights.

3.2 Subspace Hidden Markov Model
In section 3.1, we have introduced the GSM: a theoretical framework to embed probabilistic
models into a low-dimensional subspace. A major benefit of the GSM is that it allows
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(a) GMM learned for each phone in the data
space. The 11 free parameters of the GMM
are encoded in the 2-dimensional latent space.
The mixing weights are represented by the trans-
parency of the components.

(b) Latent space of the GSM. The pink area
shows the Normal prior density and, similarly,
the small colored areas represent the posterior
distribution over h𝑖.

Figure 3.4: Outcome of fitting the Subspace Gaussian Mixture Model. Colors indicate a
particular ”phone“ class.

to build a subspace for a large class of models. For instance, it has been a common
practice in ASR to model a phone with an HMM. Using the GSM, it is easy to build
an embedding space for the HMM and, consequently, a phonetic subspace. We denote the
combination of the HMM and the GSM the Subspace Hidden Markov Model or SHMM for
short. The model closest to the SHMM is the already mentioned SGMM (Povey et al., 2011).
Still, it is important to emphasize that, in addition to the technical differences highlighted
in Section 3.1.4, both models serve different purposes. The SGMM was introduced to
increase the number of Gaussian per HMM state while keeping the number of parameters
to tune relatively low. Consequently, the SGMM was providing a more complex phone
model compared to the traditional HMM. On the other hand, our SHMM does not increase
the model complexity, rather, we use it for the sole purpose to extract a low-dimensional
phonetic subspace, having, therefore, a practical representation for phone and acoustic
units. To the best of our knowledge, the work closest to our SHMM is (Burget et al.,
2010) where the authors used the SGMM to derived low-dimensional embeddings for the
senones of an HMM-based ASR system. The SHMM generalizes (Burget et al., 2010) by (i)
modeling the whole phone rather than ”part-of-the-phone“ (e.g. the senone) (ii) including
the covariance matrices as part of the subspace (iii) using Bayesian inference preventing
potential overfitting. This section is made of three parts: first, we formally define the
concept of phonetic subspace as used in this work (Section 3.2.1), second we practically
define the SHMM (section 3.2.2) and finally, we demonstrate the potential of the SHMM
on the TIMIT dataset to learn an English phonetic subspace in section 3.2.3.
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(a) Data space (b) Latent space

(c) Data space (d) Latent space

Figure 3.5: How the subspace encodes the GMMs’ parameters. The 𝑥 axis controls mainly
the covariance matrices and the 𝑦 axis controls mainly the mean vectors and the mixing
weights.

3.2.1 Phonetic subspace

Traditionally, in speech recognition, a phone is modeled by an HMM with 3 states with a
left-to-right topology and each state has a GMM emission density. As seen previously in
chapter 2, one can represent an HMM, therefore a phone/acoustic unit, in a vector space by
concatenating the states’ parameters in a ”super vector“ 𝜂. The concept of “super-vector”
to represent probabilistic models in a vector space is directly borrowed from (Kenny et al.,
2007). Let’s consider that we fit an HMM to a set of recordings of the phone /aw/ resulting
in the super-vector 𝜂aw. Moving the vector 𝜂aw will change the parameters of the HMM
and, consequently, the phone it represents. For instance, a displacement may lead to change
the phone from /aw/ to /ow/. Then, moving the vector further will change the original
/aw/ phone more profoundly and yield, say the consonant /z/. The key idea is that there
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is a continuum between all phones, or expressed in another way, we can smoothly transition
from one phone to another. Following this reasoning, we can envision all the phones of a
language as vectors in a space, connected by a low-dimensional manifold which represents
this continuum. This is depicted by the blue line in Fig. 3.6. This manifold is what we call
the phonetic subspace. Importantly, this concept of phonetic subspace is independent of the
choice of the phone model: GMM, HMM, Linear Dynamical Model... However, the type of
model used will influence how well the continuity between phones is represented. We have
chosen to use the HMM for convenience and to help to reuse this concept with the AUD
task. Yet, it is likely that a more refined model, for instance the recurrent switching linear
dynamical systems (Linderman et al., 2017), would lead to a more meaningful phonetic
subspace.

When defining the phonetic subspace, we have only considered displacements of the vector
𝜂aw leading to a change of phone (/aw/ to /ow/). However, moving the vector away from
the phonetic subspace will not change the phone itself but its characteristics. For instance,
we can move 𝜂aw to make it more adapted to a female or a male speaker. Similarly to the
phonetic subspace, by assuming a continuum between different speaker adapted phones, we
can define the speaker subspace: a low-dimensional manifold, intersecting with the phonetic
subspace, which represents the continuum of all possible speaker-adapted versions of a
phone. This is shown by the red line if Fig. 3.6. Following the same reasoning, we can
imagine a subspace for many other factors: emotion, channel, speaker age... The main
advantage of subspace models is to extract from the high-dimensional parameter space of
a probabilistic model a low-dimensional manifold capturing only the information relevant
for a given task.

Finally, it is important to realize that the phonetic/speaker/... subspace is localized in
the parameter space. For instance, in the phonetic subspace, moving the embedding of the
phone /aw/ toward a certain direction will end up to a location where the embedding does
not represent a phone anymore. More formally, the phonetic subspace is bounded within
the parameter space. The GSM handles this localization with the bias parameter b and
the prior over the embeddings h𝑖 ∼ 𝒩 (0, I). These two elements define a “bounded” region
of the parameter space which concentrates most of the probability density. The bias vector
b represents the phone centroid which is the average of all the phones of a language.

3.2.2 Encoding the HMM parameters

We have described the phonetic subspace as a manifold in the parameter space of a proba-
bilistic model; in our case an HMM. We now make use of the GSM framework to define the
SHMM which will allow us to estimate the phonetic subspace. Similarly, to the AUD model,
each phone is modeled by a 3-state HMM with a left-to-right topology. Each state has a
GMM emission with 𝐾 Gaussian components. We limit ourselves to the case where the
Gaussian components have a diagonal covariance matrix. The extension to full covariance
matrix is straightforward using (3.35).
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0 1 2 3 4
1 0.5 0.5 0.5

0.5 0.5 0.5

𝜂1 𝜂2 𝜂3

𝜂

aw

ow

z

aw♀

aw{

𝜂1

𝜂 2

phonetic subspace
speaker subspace

Figure 3.6: Representation of the Subspace Hidden Markov Model (SHMM). Each phone is
represented a super-vector 𝜂 which encodes the parameters of an HMM. The model assumes
further that all the phones lie on a low-dimensional manifold (1-dimensional in this example)
living in the total parameter space. The SHMM can account for multiple subspaces, for
instance speaker, phonetic, emotion, ... In our case we are only interested in the phonetic
subspace. The parameters space is represented with 2 dimensions for visualization. In
practice, however, common settings lead to a parameter space with several thousands of
dimensions.

Recall from chapter 2 that the likelihood of the 𝑛th speech frame given the parameters
of an acoustic unit (or a phone in a supervised learning context) with index 𝑢 is given by:

𝑝(x𝑛, 𝑐𝑛|𝑠𝑛, . . . ) = 𝑝(x𝑛|𝜇𝑠𝑛,𝑐𝑛
𝑢 ,Σ𝑠𝑛,𝑐𝑛

𝑢 )𝑝(𝑐𝑛|𝜋𝑠𝑛
𝑢 ) (3.45)

𝑝(𝑐𝑛|𝜋𝑠𝑛
𝑢 ) = 𝑝(𝑐𝑛|𝜔𝑠𝑛

𝑢 ) = exp{𝜔𝑠𝑛⊤
𝑢 𝑇 (𝑐𝑛)−𝐴(𝜔𝑠𝑛

𝑢 )} (3.46)
𝑝(x𝑛|𝜇𝑠𝑛,𝑐𝑛

𝑢 ,Σ𝑠𝑛,𝑐𝑛
𝑢 ) = 𝑝(x𝑛|𝜃𝑠𝑛,𝑐𝑛𝑢 ) = exp{𝜃𝑠𝑛,𝑐𝑛⊤𝑢𝑙

𝑇 (x𝑛)−𝐴(𝜃𝑠𝑛,𝑐𝑛𝑢 )}, (3.47)

where 𝑐𝑛 is the index of the mixture’s component and 𝑠𝑛 is the index of the HMM state.
The natural parameters of the Categorical distribution 𝜔𝑠𝑛

𝑢 , the natural parameters of
the Normal distribution 𝜃𝑠𝑛,𝑐𝑛𝑢 and the sufficient statistics 𝑇 (𝑐𝑛), 𝑇 (x𝑛) are given by the
following equations:

𝜔𝑠𝑛
𝑢 =

⎡⎢⎢⎢⎢⎣
ln
(︁

𝜋𝑠𝑛
𝑢,1

1−
∑︀𝐶−1

𝑘=1 𝜋𝑠𝑛
𝑢,𝑘

)︁
...

ln
(︁

𝜋𝑠𝑛
𝑢,𝐶−1

1−
∑︀𝐶−1

𝑘=1 𝜋𝑠𝑛
𝑢,𝑘

)︁
⎤⎥⎥⎥⎥⎦ 𝑇 (𝑐𝑢𝑛) =

⎡⎣ 1[𝑐𝑛 = 1]
. . .

1[𝑐𝑛 = 𝐶 − 1]

⎤⎦ (3.48)

𝜃𝑠𝑛,𝑐𝑛𝑢 =

[︂
𝜃𝑠𝑛,𝑐𝑛𝑢,1

𝜃𝑠𝑛,𝑐𝑛𝑢,2

]︂
=

[︂
Σ𝑠𝑛,𝑐𝑛−1

𝑢 𝜇𝑠𝑛,𝑐𝑛
𝑢

−1
2 vec(Σ𝑠𝑛,𝑐𝑛,−1

𝑢 )

]︂
𝑇 (x𝑛) =

[︂
x𝑛

vec(x𝑛x
⊤
𝑛 )

]︂
, (3.49)

The final super-vector embedding of an acoustic-unit is given by the concatenation of the
natural parameters of the Normal and Categorical distributions composing the likelihood
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function:

𝜂𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂1𝑢
...

𝜂𝑖𝑢 =

⎡⎢⎢⎢⎣
𝜔𝑖

𝑢

𝜃𝑖,1𝑢
...
𝜃𝑖,𝐶𝑢

⎤⎥⎥⎥⎦
...
𝜂𝑆𝑢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.50)

where 𝑖 is the index of the HMM state.

From the GSM formalism, the natural parameter vector of the 𝑢th phone is given by
𝜂𝑢 = 𝑓(W𝑇h𝑢 + b). We set the mapping function 𝑓 such that standard parameters are
given by the following relation:

𝜋𝑖𝑢𝑐 =
exp{W𝑖⊤

𝜋 h𝑢 + b𝑖
𝜋}𝑐

1 +
∑︀𝐶−1

𝑙=1 exp{W⊤
𝜋 h𝑖 + b𝑖

𝜋}𝑙
(3.51)

diag(Σ𝑖,𝑗
𝑢 ) = exp{W𝑖,𝑗⊤

Σ h𝑢 + b𝑖,𝑗
Σ } (3.52)

Σ𝑖,𝑗−1
𝑢 𝜇𝑖,𝑗

𝑢 = W𝑖,𝑗⊤
𝜇 h𝑖 + b𝑖,𝑗

𝜇 , (3.53)
(3.54)

where exp{. . . } is the element-wise exponential function, exp{. . . }𝑑 is the 𝑑th dimension
of the resulting vector, 𝑖 is the index of the HMM state and 𝑗 is the index of the mixture’s
component of the 𝑢th acoustic unit. W𝑖

𝜋, W𝑖,𝑗
Σ and W𝑖,𝑗

𝜇 are disjoint parts of the matrix
W (and similarly for b𝑖

𝜋, ...).

Our choice for the function 𝑓 is somewhat arbitrary: we chose 𝑓 such that the subspace
is linear (log-linear for the diagonal of the covariance matrices) in the natural parameter
space of the HMM. Yet, beyond convenience, we have no motivation to favor one function
over another. In the extreme case, one could possibly define 𝑓 by a neural network with
parameters to learn. This solution, even though appealing, has the major drawback to re-
quire a large number of phones to properly estimate the phonetic subspace and the function
𝑓 . This situation is hardly met in our case as a usual language has around 50 - 100 phones
which is by far not enough to learn any reasonable size neural network.

Contrary to the SGMM presented in section 3.1.4, the SHMM has 2 latent variables:
the mixture’s component index 𝑐𝑛 and the HMM state index 𝑠𝑛. Furthermore, the exact
alignment between the feature frames and the sequence of acoustic units is unknown, the
acoustic unit index 𝑢 is also a latent variable. Following the same notation as in section
2.2.4, we encode, in a variable 𝑧𝑛, both the state 𝑠𝑛 and the acoustic unit index 𝑢. Therefore,
the parameters 𝜑 of the variational posteriors are given by:

𝑞(𝑐𝑛 = 𝑖, 𝑧𝑛 = 𝑗) = 𝜑𝑖,𝑗𝑛 . (3.55)

The optimal variational posterior 𝑞*(c, z) is obtained by the VB E-step of the HMM training
as described in section 2.3.1 where the expectation of the natural parameters of an acoustic
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unit/phone ⟨𝜂𝑢⟩𝑞(Θ) is obtained by sampling several values from the variational posterior
𝜂𝑙𝑢 ∼ 𝑞(Θ) and taking the average. Finally, the variational posterior over embeddings and
the parameters of the subspace of (3.18) is obtained by optimizing the following objective
function:

ℒ𝑚,𝜆(m,𝜆; . . . ) ≈ 1

𝐿

[︂ 𝐿∑︁
𝑙=1

⟨︀
ln
𝑝(X, c, z|H𝑙)

𝑞(z)

⟩︀
𝑞(z)

]︂
−DKL(𝑞(Θ)||𝑝(Θ)) (3.56)

W𝑙,b𝑙,h
𝑙
1,h

𝑙
2, · · · ∼ 𝑞(Θ) (3.57)

𝜂𝑙𝑢 = 𝑓(W⊤
𝑙 h

𝑙
𝑢 + 𝑏𝑙) (3.58)

H𝑙 =
[︀
𝜂𝑙1,𝜂

𝑙
2, . . .

]︀
. (3.59)

The likelihood function 𝑝(X, c, z|H) was described in depth in section 2.2.5. In practice,
we optimize this objective function with an adaptive gradient ascent (ADAM (Kingma and
Ba, 2014)) and we use automatic differentiation software to compute the gradients.

Finally, note that the description of the SHMM we have given can be applied to both
supervised or unsupervised tasks. In the supervised setting, the phonetic transcription is
given (i.e. the sequence of acoustic units 𝑢1, 𝑢2, . . . , 𝑢𝐿 is known) and defines the states’
transition probabilities of the global HMM (the HMM composed of the acoustic units/-
phones’ HMM). In the unsupervised setting, the transcription is unknown and, therefore,
the global HMM state transition probabilities are set to form a phone-loop as described in
chapter 2.

3.2.3 Example: learning the English phonetic space

We demonstrate now the potential of the SHMM by learning a phonetic subspace for the
English language. For this example, we used the TIMIT database as we did for the AUD
experiment (see section 2.4.1). However, since we are now dealing with a supervised learning
problem, we used the traditional training set (3696 utterances) and test set (412 utterances)
(Lopes and Perdigao, 2011). We experimented with the MFCC and MBN features as
described in section 2.4.2.

Similarly to the SGMM, the SHMM has some symmetries in its parameter space and
requires, therefore, a careful initialization prior training. We used the following scheme:

1. we trained a standard HMM with GMM emissions for each phone using the Baum-
Welch training and the provided phonetic transcription6. Each GMM has 𝐾 compo-
nents.

2. for each state of each phone’s HMM

(a) set the mixing weights 𝜋 such that 𝜋𝑘 = 1
𝐾

(b) compute the per-state global mean �̂� = 1
𝐾

∑︀𝐾
𝑘=1𝜇𝑘 and global diagonal covari-

ance matrix Σ̂ = 1
𝐾

∑︀𝐾
𝑘=1Σ𝑘

(c) set each Gaussian component to have mean �̂� and covariance matrix Σ̂.
6Practically speaking, this is equivalent to train an HMM based phone recognizer with a flat phonotactic

language model.
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3. using the HMM estimated in step 1, we initialize 𝑞*(𝑧𝑛 = 𝑗) using the Baum-Welch
algorithm and we set 𝑞*(𝑐𝑛 = 𝑖|𝑧𝑛 = 𝑗) = const

4. we set m* and 𝜆* as in (3.43) and (3.44), then, using 𝑞*(c, z), we optimize the objective
function defined in (3.56) for 10000 updates using ADAM with an initial learning rate
of 0.001.

After this initialization, we trained the SHMM for 30 epochs as described in section 3.1.3
with the standard VB E-step for HMM as detailed in section 2.3.1. During the training,
for each VB M-step we run a stochastic gradient ascent of 1000 steps. Once again, the
learning rate of the gradient ascent was updated following ADAM. The state of the ADAM
optimizer was preserved from the initialization till the end of the training.

For our first experiment, we trained an SHMM with 4 Normal components per state
and a 2-dimensional subspace for visualization purposes. The learned phone embeddings
haa,hm, . . . are shown in Fig. 3.7. We observe that phones belonging to the same broad
phonetic group tend to be closer to each other than phones from different groups. It confirms
that the SHMM is able to learn a consistent phonetic subspace in the sense that distance
between phone embeddings correlate with the phone clustering as done by linguists. The
embeddings extracted with the MBN features (Fig. 3.7b) are a bit more noisy than the
ones extracted with the MFCC features (Fig. 3.7a): closure, weak fricative and stop phones
overlap each other. This observation confirms that discriminatively trained features, even
though efficient for classification or related tasks, are not ideal for modeling the data.
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3.3 Dirichlet Process Subspace Hidden Markov Model
In section 3.2, we have defined the SHMM which, among other benefits, allows us to extract
a low-dimensional subspace representing the phonetic continuum of a language. Now, we
show how the SHMM and the Dirichlet Process can be combined to form the Dirichlet
Process Subspace Hidden Markov Model (DP-SHMM). This new model is very similar to
the phone-loop AUD model defined in section 2.2, however, by incorporating the phonetic
subspace, it allows for significantly more accurate clustering of the acoustic units.

3.3.1 Revisiting the base measure

The base measure of the non-parametric phone-loop model defines a priori which sound
is likely to be an acoustic unit. Practically, the base measure is a multivariate density
over a HMM parameter vector 𝜂 denoted 𝐺0(𝜂). However, as the parameter space is high-
dimensional and hardly interpretable, we have so far set the base measure to be a 11vague
prior” which allows virtually any sound to become an acoustic unit. This choice has negative
consequences as it allows the model to discover units that may not be relevant, for instance,
the model may learn strongly speaker-dependent units. This problem can be resolved if
we assume that we are given the phonetic subspace of the target language. Remember,
from section 3.2.1, that the phonetic subspace describe a region in the total parameter
space containing the phones of the language. With this piece of information, the AUD
problem is easier as we only have to search for the low-dimensional embeddings h1,h2, . . .
in the phonetic subspace rather than the high-dimensional embeddings 𝜂1,𝜂2, . . . in the
full parameter space. This approach can be implemented by setting the base measure over
the low-dimensional embeddings: 𝐺0 ≡ 𝑝(h). By doing so, we limit the prior over the
acoustic units to the set of HMM parameters that are phonetically relevant. The modified
base measure of the Dirichlet Process of the AUD model is depicted in Fig. 3.8.

Constraining the base measure also changes the generative process which can now be
described in the following way:

1. draw 𝛾 ∼ 𝒢(𝑎0, 𝑏0)

2. draw 𝑣𝑖 ∼ ℬ(1, 𝛾), 𝑖 = {1, 2, . . . }

3. draw h𝑖 ∼ 𝐺0 𝑖 ∈ {1, 2, . . . }

0 1 2 3 4
1 0.5 0.5 0.5

0.5 0.5 0.5

η(s1) η(s2) η(s3)

η

η1 η2

G
0
(η

)

phonetic subspace
speaker subspace

Figure 3.8: Base measure of the SHMM Dirichlet Process Mixture model.
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4. map the unit embedding to the HMM parameter space 𝜂𝑖 = 𝑓(W𝑇h𝑖 + b)

5. 𝜓𝑖 = 𝑣𝑖
∏︀𝑖−1

𝑗=1(1− 𝑣𝑗)

6. Draw a sequence of units u, 𝑢𝑗 ∼ 𝒞(𝜓)

7. For each 𝑢𝑗 in u

(a) Draw a state path s = 𝑠1, . . . , 𝑠𝑙 from the HMM transition probability distribu-
tion

(b) for each state 𝑠𝑘 in s:
i. Draw a component 𝑐𝑘 ∼ 𝒞(𝜋𝑠𝑘

𝑢𝑗
) from the state’s mixture weights

ii. Draw a data point x𝑘 ∼ 𝒩 (𝜇𝑠𝑘,𝑐𝑘
𝑢𝑗 ,Σ𝑠𝑘,𝑐𝑘

𝑢𝑗
)

From step 5., the generative process is the same as the original AUD model described in
section 2.2.3 and the function 𝑓 is the SHMM mapping function defined in (3.51), (3.52) and
(3.53). We call this new model the Dirichlet Process Hidden Markov Model (DP-SHMM)
and its graphical representation is shown in Fig. 3.9. Interestingly, the base measure is
not a proper density function in the 𝜂 space, however, a sample from the Dirichlet Process,
𝐺 ∼ 𝐺0, is indeed a discrete probability distribution over the atoms h1,h2, . . . :

𝐺(h) =
∞∑︁
𝑖=1

𝜓𝑖𝛿h𝑖
(h). (3.60)

The training of the DP-SHMM is the same as the SHMM with the two following modi-
fications:

∙ the VB E-step is replaced with the one of the standard AUD phone-loop model

∙ during the VB M-step, the parameters of the susbpace W and b are assumed to be
known, therefore, we only optimize the variational posteriors 𝑞(h1), 𝑞(h2), . . .

3.3.2 Approximating the phonetic subspace of the target language

We have assumed that we had at our disposal the phonetic subspace of the language on
which we would like to discover the acoustic units. Of course, this is not true in practice since
to learn a phonetic subspace with an SHMM, one needs to have phonetic transcriptions of
the audio recordings. Even though the actual phonetic subspace is unavailable, we can still
approximate it using other languages. For instance, consider we wish to discover acoustic
units from the Czech language. Czech has similar phonetics as other Slavic languages plus
some extra typical phones such as the one denoted by the grapheme /ř/. In practice, /ř/ is
well approximated by the combination of /r/ and /ž/ and, therefore, any phonetic subspace
learned on a language having both /r/ and /ž/ would help to discover the /ř/ sound. From
a more general perspective, despite the fact that each language has its own unique set
of phones, there is a large overlap among languages of the same family. Consequently, a
phonetic subspace from a given language can still be used to help discovering units from
another language. Furthermore, we can also build a ”universal“ phonetic subspace by
learning the subspace on several languages together. This approach allows the subspace
to cover a broader phonetic range, giving more flexibility to the AUD model to fit typical
phones of the target language.
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Figure 3.9: Bayesian network of the Dirichlet Process Subspace Hidden Markov Model (DP-
SHMM). The atoms of the Dirichlet process are constrained to live in a low-dimensional
subspace parameterized by W and b.

3.4 Results
We now evaluate the DP-SHMM model on the AUD task. Our analysis focuses on the
effect of the subspace dimension (section 3.4.2), the ”goodness“ of the approximate phonetic
subspace (section 3.4.3) and the comparison with the AUD phone-loop model (section 3.4.4).

3.4.1 Experimental setup

We used the same experimental setup as described in chapter 2: we attempt to discover
acoustic units from the TIMIT and MBOSHI database using either MFCC or MBN features.
To learn the approximate phonetic subspace for the DP-SHMM, which requires phoneti-
cally transcribed data (from languages different from the target one), we used a subset of
GLOBALPHONE (Schultz, 2002). The GLOBALPHONE corpus is made of 16kHz record-
ings of read speech utterances of the most widespread languages in the world. Practically,
we used 1500 utterances from the French (FR), Spanish (SP), German (GE) and Polish
(PO) subsets of the corpus. Altogether, the 6000 utterances amount to roughly 14.6 hours
of data. The exact duration for each language subset is shown in Table 3.1. For conve-
nience we refer to this combination of the French, German, Polish and Spanish subset as
the ”Combined“ set, or CB for short. Note that, for the CB set, similar phones present
in different languages are considered to be different. For example, the French /a/ and the
Polish /a/ are assumed to be two different phones when training the phonetic subspace.
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Figure 3.10: Performance of SHMM phone recognizer on TIMIT as a function the subspace
dimension. When the dimension of the subspace reaches the number of phones, the model
becomes unconstrained and have similar performance to a HMM phone recognizer.

3.4.2 Optimal subspace dimension

With the AUD phone-loop model introduced in chapter 2, the size of an acoustic unit
embedding 𝜂 is defined by number of parameters of the corresponding probabilistic model.
However, for the DP-SHMM, the dimension of an acoustic unit embedding h depends on
the dimension of the subspace 𝐷 which is a meta-parameter. From Figure 3.10, we see
that, when the phonetic subspace is learned using the actual phones of the language, a
40-dimensional subspace is sufficient to encode all the phonetic variability of the language.
However, in the AUD task, we cannot learn the exact phonetic subspace and therefore,
the optimal subspace dimension may be radically different. A low-dimensional subspace
heavily constrains the AUD search whereas a large number of dimensions allows fine-grained
acoustic units modeling potentially non-phonetic information.

For our first experiment, we trained DP-SHMM based AUD models with 50-, 75- and
100-dimensional subspace. The phonetic subspace was learned on the CB set. The results
in terms of NMI are shown in Table 3.2. We see that, for TIMIT and MBOSHI, the higher
the dimension of the subspace, the better the NMI. From this result, we fixed the subspace
dimension to 100 for all subsequent experiments. It is of course possible to set the dimension
of the subspace to a higher value but due to limited computational resources, we did not
investigate further.

GLOBALPHONE subset GE PO FR SP CB
# utterances 1500 1500 1500 1500 6000
amount of data (hours) 2.72 3.41 3.83 4.67 14.63
# phones 41 45 38 40 164

Table 3.1: Statistics of the data to estimate the universal phonetic subspace of the DP-
SHMM.
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Corpus Subspace dimension NMI (%)
TIMIT 50 38.38
TIMIT 75 39.00
TIMIT 100 39.94

MBOSHI 50 38.38
MBOSHI 75 39.55
MBOSHI 100 39.98

Table 3.2: Results in terms of NMI of the DP-SHMM model on the AUD task with different
subspace dimensions and using the MFCC features. In all the cases, the phonetic subspace
was estimated with the CB set.

3.4.3 Benefits of the universal phonetic subspace

In Section 3.3.2, we have proposed to approximate the phonetic subspace of the target
language using labeled data from one or several languages. We now assess experimentally
the benefits of this approach. In this experiment, we have trained and evaluated the DP-
SHMM on the AUD task with the phonetic subspace estimated from:

∙ each individual language from our GLOBALPHONE subset, that is French (FR set),
Spanish (SP set), German (GE set) and Polish (PO set)

∙ all the languages together (CB set)

∙ the same data set as the target data for the AUD (TIMIT or MBOSHI).

When using the same data as for the AUD task, this is of course a “cheating” experiment
as we use the actual labels of the corpus. Nonetheless, it provides an upper bound on the
best achievable results with the DP-SHMM. Results, measured with the NMI metric, are
shown in Table 3.3. On TIMIT, learning the phonetic subspace from the combination of
the 4 languages (CB set) yields a significant improvement to using only one language to
estimate the subspace. However, for the MBOSHI corpus, the subspace learned from the
CB set is as good as the subspace learn from the FR set or the GE set. In both cases, there
is a large difference when using the optimal subspace (learned from the target data) and
any other subspace.

3.4.4 Comparison with the DP-HMM

Finally, we compare the DP-SHMM against the previous phone-loop model presented in
chapter 2 on the AUD task with no subspace modeling. For the sake of brevity, we refer to
this model as the Dirichlet Process Hidden Markov Model (DP-HMM). For this experiment,
the 100 dimensional phonetic subspace of the DP-SHMM was estimated on the 14.6 hours
of the CB set. We ran our experiments on the TIMIT and MBOSHI corpora with both
the MFCC and MBN features. The results are shown in Table 3.4. Results show that the
DP-SHMM gives a significant improvement over the DP-HMM both in terms of segmenta-
tion (F-score metric) and clustering (NMI metric). Also, it experimentally confirms that
the base measure is a key element of the non-parametric phone-loop model. An impor-
tant observation is that the DP-SHMM trained with MFCC features performs better than
the DP-HMM trained with MBN features on both corpora. This suggests that the GSM
framework offers a more efficient way to implement knowledge transfer across languages.
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Features Subspace Corpus Target Corpus NMI (%)
MFCC GE TIMIT 36.35
MFCC PO TIMIT 38.00
MFCC FR TIMIT 37.66
MFCC SP TIMIT 37.54
MFCC CB TIMIT 39.94
MFCC same TIMIT 43.52
MFCC GE MBOSHI 40.01
MFCC PO MBOSHI 39.29
MFCC FR MBOSHI 40.29
MFCC SP MBOSHI 39.00
MFCC CB MBOSHI 39.98
MFCC same MBOSHI 50.87

Table 3.3: Results in terms of NMI of the DP-SHMM model, on the AUD task using
MFCC features with phonetic subspace estimated on various data sets. The category

”same“ indicates that the phonetic subspace and the AUD task were run on the same data
set.

Finally we plotted in Fig. 3.11 the data-driven segmentation for one utterance given the
DP-HMM and the DP-SHMM. We observed that, as shown by the F-Score metric in table
3.4, the DP-SHMM provides a much more accurate segmentation and drastically reduces
the number of spurious boundaries.

3.5 Conclusion
In chapter 2, we have introduced non-parametric HMM-based model to discover acoustic
units from unlabeled audio recordings. This model depends on a base measure: a probabil-
ity density function setting a priori which sound is likely to be an acoustic unit candidate.
A common setting for this base measure is a vague prior letting, therefore, all the sounds as
possible acoustic units. In this chapter, we have proposed a new method to design a more
accurate base measure. First, we have introduced the Generalized Subspace Model (GSM),
a unified framework to derive embeddings representing probabilistic models. Then, we have
applied the GSM to a set of HMMs representing the phones of a language in order to learn a
phonetic subspace: a smooth low-dimensional manifold in the HMM parameters space cap-

Model Features Corpus F-score NMI (%)
DP-HMM MFCC TIMIT 63.01 34.81
DP-SHMM MFCC TIMIT 77.24 39.94
DP-HMM MBN TIMIT 58.07 37.17
DP-SHMM MBN TIMIT 66.40 40.17
DP-HMM MFCC MBOSHI 46.89 35.98
DP-SHMM MFCC MBOSHI 57.65 39.98
DP-HMM MBN MBOSHI 44.09 32.13
DP-SHMM MBN MBOSHI 56.24 36.52

Table 3.4: Comparison of the DP-HMM and the DP-SHMM on the AUD task.
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turing the phonetic variability of the language. Finally, we used this phonetic subspace to
constrain the base measure of the AUD phone-loop model giving rise to a new AUD model:
the Dirichlet Process Subspace Hidden Markov Model (DP-SHMM). This new model re-
quires labeled data from languages (other than the target one) to estimate a ”universal
phonetic subspace“. Then, the new AUD model discovers acoustic units constrained to
live in this phonetic subspace. Experimental results have shown that this approach pro-
vides a significant gain in terms of both NMI and F-score. Also, we have observed that
our ”universal phonetic subspace“ is by far not optimal compared to the ”true“ phonetic
subspace of the target language. A better approximation of the phonetic subspace remains
an open problem and could lead to significant improvement on the AUD task.

In addition to defining a better base measure, this approach also proposes a formal way
to include knowledge extracted form other languages. This can be viewed from a Bayesian
perspective where the learned phonetic subspace is used to define an ”educated prior“.
Importantly, this approach is not limited to the HMM model. Indeed, since it relies on the
newly introduced GSM framework, it can be applied to a vast collection of models and to
other tasks than AUD.

As a concluding remark, note that the final acoustic unit embeddings h1,h2, . . . live in
the same space as the phone embeddings of the languages used to estimate the phonetic
subspace. From this observation, it is relatively straightforward to interpret the derived
acoustic units by comparing their distance to other known phones. For instance, if an
acoustic unit emebedding lives close to several nasal phones, it is reasonable to believe that
this unit is also a nasal sounds itself. By repeating this process for each acoustic unit, one
could obtain a data-driven human-interpretable phone set.
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Chapter 4

Phonotactic Language Model

As established in chapter 2, our Bayesian formulation of the AUD problem relies upon
three major components: the acoustic unit model, the base measure and the prior over the
acoustic unit language model (the phonotactic language model). The designs of the two
first elements—the acoustic unit model and the base measure—were addressed in chapter
2 and chapter 3 respectively. We now focus our attention on the prior over the phonotactic
language model. So far, we have used the Dirichlet Process Mixture Model as the back-bone
of our AUD model. Implicitly, this assumes that each unit label is independent of the other
labels from the sequence. This assumption is, however, very unrealistic as each language
has very specific phonotactic constraints. To overcome this issue, we revisit the phone-loop
AUD to incorporate a bigram phonotactic language model to capture these phonotactic
constraints. In section 4.1, we define this new model through the use of a hierarchical non-
parametric prior: the Hierarchical Dirichlet Process. The corresponding Variational Bayes
inference algorithm is described in section 4.2. In section 4.3, we propose a ”corrected“
version of the bigram AUD model to control how the acoustic and language model affects
the learning. Finally, results are shown and commented in section 4.4.

4.1 Non-Parametric Bigram Phone-Loop Model
Our Bayesian approach to the AUD task depends on the definition of the prior distribution
𝑝(u,H) where u = 𝑢1, . . . , 𝑢𝐿 is a sequence of 𝐿 labels and H = (𝜂1,𝜂2, . . . ) is a countably
infinite set of acoustic unit embeddings. Recall from chapter 2 that setting 𝒫 to be a
Dirichlet Process leads to the following construction of the prior:

𝐺(𝜂) ∼ 𝒟𝒫(𝛾,𝐺0) (4.1)

𝑝(u,H) =

[︂ 𝐿∏︁
𝑛=1

𝐺(𝜂𝑢𝑛
)⏟  ⏞  

𝑝(𝑢𝑛|H)

]︂
⏟  ⏞  

𝑝(u|H)

[︂ ∞∏︁
𝑘=1

𝐺0(𝜂𝑘)

]︂
⏟  ⏞  

𝑝(H)

, (4.2)

where 𝒟𝒫(𝛾,𝐺0) is a Dirichlet Process with concentration 𝛾 and base measure 𝐺0. Impor-
tantly, we assume 𝐺0 to be a continuous density function. The sampled measure 𝐺(𝜂) is a
discrete distribution given by:

𝐺(𝜂) =
∞∑︁
𝑖=1

𝜓𝑖𝛿𝜂𝑖
(𝜂), (4.3)
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where 𝜓𝑖 is defined by step 3 of the stick-breaking process described in section 2.1.1. From
(4.2), we see that, regardless of the sampled measure 𝐺, the probability of the label sequence
is always given by an unigram language model. To overcome this limitation, one has to
consider a non-parametric prior which can sample more complex probability distributions.
In this work, we shall focus on the Hierarchical Dirichlet Process (HDP) that will allow us
to construct a prior over bigram phonotactic language model. The HDP was introduced in
(Teh et al., 2004) and applied to language modeling and word segmentation in (Goldwater
et al., 2009). These works can be seen as the non-parametric extensions of the Hierarchical
Dirichlet distribution for language model introduced in (MacKay and Peto, 1995). Note
that the HDP is not the only choice of non-parametric prior able to capture phonotactic
constraints, for instance, the Hierarchical Pitman-Yor Process (Teh, 2006) is another non-
parametric prior best suited for long tail distributions.

4.1.1 Hierarchical Dirichlet Process

A HDP of order 𝑀 is a sequence of 𝑀 Dirichlet Processes where the base measure of the
𝑛th process is given by a sample of the 𝑛−1 process in the sequence. Formally, it is defined
as:

𝐺1 ∼ 𝒟𝒫(𝛾0, 𝐺0) (4.4)
𝐺2 ∼ 𝒟𝒫(𝛾1, 𝐺1) (4.5)

. . . (4.6)
𝐺𝑀 ∼ 𝒟𝒫(𝛾𝑀 , 𝐺𝑀−1). (4.7)

The HDP is fully defined by the 𝑀 concentration parameters 𝛾1, . . . , 𝛾𝑀 and the initial base
measure 𝐺0(𝜂). Note that 𝐺1, 𝐺2, . . . are discrete distributions over the atoms generated
from the base measure 𝐺0 at the first step of the process. Using this definition, we can
extend the DP mixture model to an HDP mixture model to build a infinite phone-loop AUD
model having n-gram phonotactic language model. In this work, we will limit ourselves to
bigram language model (using a HDP with order 𝑀 = 2) but the extension to arbitrary
n-grams is straightforward. The construction of phone-loop prior 𝑝(u,H) is given by:

𝐺1 ∼ 𝒟𝒫(𝛾0, 𝐺0) (4.8)
𝐺2,𝑖 ∼ 𝒟𝒫(𝛾1, 𝐺1) ∀𝑖 ∈ {0, 1, 2, ...} (4.9)

𝑝(u,H) =

[︂ 𝐿∏︁
𝑛=1

𝐺2,𝑢𝑛−1(𝜂𝑢𝑛
)⏟  ⏞  

𝑝(𝑢𝑛|𝑢𝑛−1,H)⏟  ⏞  
𝑝(u|H)

]︂ [︂ ∞∏︁
𝑘=1

𝐺0(𝜂𝑘)

]︂
⏟  ⏞  

𝑝(H)

(4.10)

In (4.10), the probability of the sequence of labels u is defined through an infinite set of
distributions 𝐺2,1, 𝐺2,2, . . . 𝐺2,∞ where the 𝑖th distribution 𝐺2,𝑖 is the probability over the
labels 1, 2, ... given that the previous label of the sequence was 𝑖. For convenience, we set
𝐺2,0 to be the probability over the first label of the sequence. We see that it differs from the
DP mixture model which uses a single distribution 𝐺 to define the probability of a sequence
of units. Inference for the HPD mixture model can be done by sampling using an extension
of the Chinese Restaurant Process: the Chinese Restaurant Franchise (Teh et al., 2004).
However since we have observed in chapter 2 that Variational Bayes inference is more suited
to our problem, we will focus on a variational treatement of this model. Similarly to the
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DP mixture model, we will first derive a stick-breaking construction (section 4.1.2) of the
HDP and then apply the mean-field approximation (section 4.2).

4.1.2 Stick-Breaking constructions

A simple stick-breaking construction of the HDP is to iterate the Sethuraman’s stick-
breaking construction of the Dirichlet Process:

1. Draw 𝑣1,𝑖 ∼ ℬ(1, 𝛾0), 𝑖 = {1, 2, . . . }

2. Draw 𝜂1,𝑖 ∼ 𝐺0, 𝑖 = {1, 2, . . . }

3. 𝜓1,𝑖 = 𝑣1,𝑖
∏︀𝑖−1

𝑘=1(1− 𝑣1,𝑘) 𝑖 = {1, 2, . . . }

4. 𝐺1(𝜂) =
∑︀∞

𝑖=1 𝜓1,𝑖𝛿𝜂1,𝑖
(𝜂)

5. For 𝑖 in {1, 2, ...}:

(a) Draw 𝑣2,𝑖,𝑗 ∼ ℬ(1, 𝛾1), 𝑗 = {1, 2, . . . }
(b) Draw 𝜂2,𝑖,𝑗 ∼ 𝐺1, 𝑗 = {1, 2, . . . }

(c) 𝜓2,𝑖,𝑗 = 𝑣2,𝑖,𝑗
∏︀𝑗−1

𝑘=1(1− 𝑣2,𝑖,𝑘) 𝑗 = {1, 2, . . . }
(d) 𝐺2,𝑖(𝜂) =

∑︀∞
𝑗=1 𝜓2,𝑖,𝑗𝛿𝜂2,𝑖,𝑗

(𝜂).

The use of this stick-breaking construction for variational inference of the HDP was pro-
posed in (Wang et al., 2011) and applied to the task of topic modeling. However, in our
setting, this approach is not ideal because of its high memory requirements. To under-
stand this, observe that the sample distribution 𝐺1 is discrete and, therefore, there is a
non-zero probability that 𝜂2,𝑖,𝑗 = 𝜂2,𝑖,𝑙 for 𝑗 ̸= 𝑙. Consequently, the conditional probability
of observing the label 𝑢𝑛 given the previous label 𝑢𝑛−1 is:

𝑝(𝑢𝑛|𝑢𝑛−1,H) =
∞∑︁
𝑗=1

𝜓2,𝑢𝑛−1,𝑗𝛿𝜂2,𝑢𝑛−1,𝑗
(𝜂𝑢𝑛

). (4.11)

Since the value of 𝜂2,𝑖,𝑗 is hidden, it implies that the inference needs to learn a (probabilistic)
mapping between 𝜂2,𝑖,𝑗 and 𝜂1,𝑖. If we assume that we truncate the stick-breaking process
at each level at the index 𝜏 , then posterior distribution of the bigram language model will
need 𝑂(𝜏3) parameters (𝜏 root-level atoms which can be mapped to 𝜏 bottom-level atoms
and each of them has a distribution over 𝜏 possible next units).

An alternative to the Sethurman’s stick-breaking construction is the Teh’s stick-breaking
construction (Teh et al., 2004) of the HDP given by:

1. Draw 𝑣1,𝑖 ∼ ℬ(1, 𝛾0), 𝑖 = {1, 2, . . . }

2. Draw 𝜂1,𝑖 ∼ 𝐺0, 𝑖 = {1, 2, . . . }

3. 𝜓1,𝑖 = 𝑣1,𝑖
∏︀𝑖−1

𝑘=1(1− 𝑣1,𝑘)

4. 𝐺1(𝜂) =
∑︀∞

𝑖=1 𝜓1,𝑖𝛿𝜂1,𝑖
(𝜂), 𝑖 = {1, 2, . . . }

5. For 𝑗 in {1, 2, ...}:
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(a) Draw 𝑣2,𝑖,𝑗 ∼ ℬ(𝛾1𝜓1𝑗 , 𝛾1(1−
∑︀𝑗

𝑘=1 𝜓1,𝑘), 𝑙 = {1, 2, . . . }

(b) 𝜓2,𝑖,𝑗 = 𝑣2,𝑖,𝑗
∏︀𝑖−1

𝑘=11(1− 𝑣2,𝑖,𝑘), 𝑙 = {1, 2, . . . }
(c) 𝐺2,𝑖(𝜂) =

∑︀∞
𝑗=1 𝜓2,𝑖,𝑗𝛿𝜂1,𝑗

(𝜂).

We see that the final measure 𝐺2,𝑐(𝜂) is directly defined with the atoms sampled from the
root measure 𝐺0. As 𝐺0 is a density, each atom is unique and therefore the bigram language
model is given by:

𝑝(𝑢𝑛|𝑢𝑛−1,v2,𝑢𝑛−1) = 𝜓2,𝑢𝑛−1,𝑢𝑛 . (4.12)

In this case, since we do not need to keep some extra mapping, the (approximate) posterior
will need only 𝑂(𝜏2) parameters. Teh’s construction is more parsimonious and allows faster
inference but it has also a drawback: by using the samples 𝑣1,1, 𝑣1,2, . . . as parameters of the
Beta distribution (step 5a) the factors 𝑝(v2|v1)𝑝(v1) are not any more conjugate (appendix
B.1.2) which makes inference of distribution over v1 more difficult. Nevertheless, we chose
to use the Teh’s stick-breaking construction of the HDP in our model for practical reasons.

4.1.3 Complete Model

So far, we have only focused on the construction of the non-parametric prior 𝑝(u,H) using
a 2-level HDP. We now connect the HDP prior with the remaining part of the AUD model
described in chapter 2. Assuming the Teh’s stick-breaking construction, the graphical
representation of the complete model is shown in Fig. 4.1. We call this new model the
HDP-HMM model. Note that extending this model to use Subspace HMM (leading to
the HDP-SHMM model) is trivial. A few important observations from Fig. 4.1 can be
made: first, the introduction of the HDP prior leads to bigram connections between the
label sequence 𝑢1, 𝑢2, . . . as desired. Despite these new connections, the model can still
be easily turned into a 1-level HMM (see chapter 2). Therefore, inferring the most likely
sequence of labels given some observations will have the same time complexity as in our
previous model. Another important observation is that, thanks to the Teh’s stick-breaking
construction, the relation between the atoms of the HDP 𝜂1,𝜂2, . . . and the acoustic model
(the HMM states, the GMM components and the observations) remains unchanged. Finally,
notice that, for simplicity reasons, we have a prior over the concentration of the top level
stick-breaking process (𝛾0) but not on the one of the second level stick-breaking process.
Therefore, the concentration parameter 𝛾1 is considered fixed in this work and is set to half
of the truncation parameter: 𝛾1 = 𝜏

2 .

4.1.4 Joint distribution

Finally, to conclude the presentation of the model, we present the complete joint distribution
of a sequence of features X = x1, . . . ,x𝑁 , the latent variables c = 𝑐1, . . . , 𝑐𝑁 , z = 𝑧1, . . . , 𝑧𝑁
and the parameters H = 𝜂1, . . . ,𝜂∞,v1 = 𝑣1,1, . . . , 𝑣1,∞, 𝛾0, V2 = v2,1, . . . ,v2,∞. The joint
distribution can be written as:

𝑝(X, c, z,H,V2,v1, 𝛾0) = 𝑝(H)𝑝(𝛾0)𝑝(v1|𝛾0)𝑝(V2|v1)𝑝(X, c, z|H,V2). (4.13)

Note that the variable 𝛾1 is not included as it is considered as a fixed constant. The terms
𝑝(H), 𝑝(𝛾0), 𝑝(v1|𝛾0) and 𝑝(X, c|z,H) are the same as defined in section 2.2.5. The prior

67
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𝑣1,𝑖

𝑣2,𝑖,𝑗

𝜂𝑖

∞

∞

𝛾0

x1
1 x1

2
. . . x1

𝑙 x2
1 x2

2
. . . Observations

𝑐11 𝑐12 . . . 𝑐1𝑙 𝑐21 𝑐22 . . . GMM compo-
nents

𝑠11 𝑠12 . . . 𝑠1𝑙 𝑠21 𝑠22 . . . HMM states

𝑢1 𝑢2 . . . Acoustic unit
labels

Figure 4.1: Graphical representation of the HDP-HMM with the Teh’s stick-breaking con-
struction of the HDP. Contrary to the DP-HMM model, the 𝑛th unit label only depends
on the 𝑛− 1st labels.

over the second level stick-breaking parameters is given by:

𝑝(V2|v1) =

∞∏︁
𝑖=1

∞∏︁
𝑗=1

𝑝(𝑣2,𝑖,𝑗 |v1) (4.14)

𝑝(𝑣2,𝑖,𝑗 |v1) ≡ ℬ
(︀
𝛾1𝜓1,𝑗 , 𝛾1(1−

𝑗∑︁
𝑘=1

𝜓1,𝑘)
)︀

(4.15)

𝜓1,𝑖 = 𝑣1,𝑖

𝑖−1∏︁
𝑘=1

(1− 𝑣1,𝑘), (4.16)

and the likelihood of the data and the latent variables is given by:

𝑝(X, c, z|H,V2) = 𝑝(z|V2)𝑝(X, c|z,H) (4.17)

=

𝑁∏︁
𝑛=1

𝑝(𝑧𝑛|𝑧𝑛−1,V2)𝑝(x𝑛, 𝑐𝑛|𝜂𝑧𝑛). (4.18)

Recall that 𝑧𝑛 encodes an acoustic unit index 𝑢𝑛 and a particular HMM state 𝑠𝑛, therefore,
the sequence of 𝑁 units and states z = 𝑧1, . . . , 𝑧𝑁 can be equivalently defined as a sequence
of 𝐿 acoustic units u = 𝑢1, . . . , 𝑢𝐿 and 𝐿 sequences of HMM states s𝑢𝑙 = 𝑠𝑢𝑙

1 , . . . , 𝑠
𝑢𝑙
𝑁𝑙

. Using
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this notation, (4.18) can be equivalently expressed as:

𝑝(X, c, z|H,V2) =

𝐿∏︁
𝑙=1

𝑝(𝑢𝑙|v2,𝑢𝑙−1
)

𝑁𝑙∏︁
𝑛=1

𝑝(𝑠𝑢𝑙
𝑛 |𝑠

𝑢𝑙
𝑛−1)⏟  ⏞  ∏︀𝑁

𝑛=1 𝑝(𝑧𝑛|𝑧𝑛−1,V2)

𝑝(x𝑢𝑙
𝑛 , 𝑐

𝑢𝑙
𝑛 |𝜂𝑠𝑛𝑢𝑙

). (4.19)

𝑝(𝑢𝑙|𝑢𝑙−1,v2,𝑢𝑙−1
) = 𝑣2,𝑢𝑙−1,𝑢𝑙

𝑢𝑙−1∏︁
𝑘=1

(1− 𝑣2,𝑢𝑙−1,𝑘), (4.20)

where 𝑁𝑙 is the length of the 𝑙th segment of the unit with index 𝑢𝑙.

4.2 Inference
Previously, we have described the HDP-HMM from the generative point of view. We
now address the problem of estimating the posterior over the latent variables given some
observations:

𝑝(c, z,H,V2,v1, 𝛾0|X) ∝ 𝑝(X, c, z,H,V2,v1, 𝛾0), (4.21)

where V2 = (v2,1,v2,2, . . . ). Recall from section 2.2.4 that variable z encodes the sequence
of unit labels u and HMM states s. Since normalizing (4.21) is intractable, we aim to find
an approximate variational posterior (appendix A) with the following structured mean-field
factorization (appendix A.2.3):

𝑞(c, z,H,V2,v1, 𝛾0) = 𝑞(c|z)𝑞(z)𝑞(H)𝑞(V2)𝑞(v1)𝑞(𝛾0), (4.22)

Our factorized posterior is identical to (2.47) with the addition of factor 𝑞(V2), therefore,
the training of the HDP-HMM model will also be a VB-EM algorithm. Notice that for
tractability reasons, it is necessary to assume the posterior over the parameters of the
stick-breaking processes at each level of the hierarchy are independent. The optimal factors
𝑞*(c|z), 𝑞*(z), 𝑞*(H) are easily found using (2.60), (2.68), (2.82) and (2.84) and replacing
the prior over the phone-loop state 𝑝(z|v) by the one obtained from the HDP 𝑝(z|V2).

4.2.1 VB-M step for the HDP

As already mentioned, 𝑝(v1) and 𝑝(V2|v1) are not conjugate and, therefore, the factor-
ization in (4.22) is not sufficient to get analytical solutions for the optimal factors 𝑞*(V2)
and 𝑞*(v1). We tackle this issue by first training a DP-HMM phone-loop AUD model and
then setting 𝑞*(v1) ≡ 𝑞*DP-HMM(v) and 𝑞(𝛾0) ≡ 𝑞*DP-HMM(𝛾)1. In (Hughes et al., 2015), the
author proposed to learn the parameters of the root stick-breaking process with numerical
optimization but we didn’t observe any benefit in our case and consequently opted for a
more straightforward solution.

We derive now the optimal variational posterior of the 2-level stick-breaking process of
the HDP:

ln 𝑞*(V2) = ⟨ln 𝑝(X, c, z,H,V2,v1, 𝛾0)⟩𝑞(c|z)𝑞(c)𝑞(H)𝑞(v1)𝑞(𝛾0) + const (4.23)
ln 𝑞*(V2) = ⟨ln 𝑝(z|V2)⟩𝑞(z) + ln⟨𝑝(V2|v1)⟩𝑞(v1)) + const (4.24)

1For consistency reasons, we also initialize variational posteriors of the other parameters with the optimal
variational posteriors of the DP-HMM model.
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Using the fact that 𝑝(z|V2) = 𝑝(s|u)𝑝(u|V2) (and consequently 𝑞(z) = 𝑞(s|u)𝑞(u)), we
have:

ln 𝑞*(V2) = ⟨ln 𝑝(u|V2)⟩𝑞(u) + ⟨ln 𝑝(V2|v1)⟩𝑞(v1) + const (4.25)

= ⟨ln
|u|∏︁
𝑛=1

𝑝(𝑢𝑛|𝑢𝑛−1,v2,𝑢𝑛−1)⟩𝑞(u) + ⟨ln
∞∏︁
𝑘=1

∞∏︁
𝑙=1

𝑝(𝑣2,𝑘,𝑙|v1, 𝛾0)⟩𝑞(v1) + const

(4.26)

=

∞∑︁
𝑘=1

∞∑︁
𝑙=1

⟨
𝐿∑︁

𝑛=1

1[𝑢𝑛 = 𝑙, 𝑢𝑛−1 = 𝑘] ln 𝑝(𝑢𝑛|𝑢𝑛−1,v2,𝑢𝑛−1)⟩𝑞(u)

+ ⟨ln 𝑝(𝑣2,𝑘,𝑙|v1)⟩𝑞(v1) + const . (4.27)

where 𝐿 is the length of sequence u. Using (4.12) we have:

ln 𝑞*(V2) =
∞∑︁
𝑘=1

∞∑︁
𝑙=1

⟨︀ 𝐿∑︁
𝑛=1

1[𝑢𝑛 > 𝑙, 𝑢𝑛−1 = 𝑘] ln(1− 𝑣2,𝑘,𝑙)

+ 1[𝑢𝑛 = 𝑙, 𝑢𝑛−1 = 𝑘] ln 𝑣2,𝑘,𝑙
⟩︀
𝑞(u)

+ ⟨ln 𝑝(𝑣2,𝑘,𝑙|v1)⟩. (4.28)

From (4.28), we observe that the variational posterior factorizes in the following way:

𝑞*(V2) =

∞∏︁
𝑘=1

∞∏︁
𝑙=1

𝑞(𝑣2,𝑘,𝑙). (4.29)

To cope with the infinite product, we truncate the variational posterior by keeping only the
𝜏 first posteriors such that 𝑞(𝑣2,𝑘,𝑙 = 1) = 1 if 𝑘 > 𝜏 or 𝑙 > 𝜏 . Notice that this factorization
is not assumed explicitly but is a consequence of our original mean-field factorization in
(4.22). Replacing ln 𝑝(𝑣2,𝑘,𝑙|v1) by the Beta distribution formula, we express each factor as:

ln 𝑞*(𝑣2,𝑘,𝑙) = (⟨𝑏𝑙⟩𝑞(v1) + 𝜎1 − 1) ln(1− 𝑣2,𝑘,𝑙)
+ (⟨𝑎𝑙⟩𝑞(v1) + 𝜎2 − 1) ln 𝑣2,𝑘,𝑙 + const, (4.30)

(4.31)

where:

𝑎𝑙 = 𝛾1𝜓1,𝑙 (4.32)

𝑏𝑙 = 𝛾1(1−
𝑙∑︁

𝑖=1

𝜓1,𝑖) (4.33)

𝜎1 = ⟨
𝐿∑︁

𝑛=1

1[𝑢𝑛 > 𝑙, 𝑢𝑛−1 = 𝑘]⟩𝑞(u) (4.34)

𝜎2 = ⟨
𝐿∑︁

𝑛=1

1[𝑢𝑛 = 𝑙, 𝑢𝑛−1 = 𝑘]⟩𝑞(u). (4.35)

(4.30) is the parametric form of a unnormalized log Beta distribution which leads to the
final solution of our variational posterior:

𝑞*(𝑣2,𝑘,𝑙) = ℬ(𝑎
′
𝑘,𝑙, 𝑏

′
𝑘,𝑙) (4.36)

𝑎
′
𝑘,𝑙 = ⟨𝑎𝑙⟩𝑞(v1) + 𝜎2 (4.37)

𝑏
′
𝑘,𝑙 = ⟨𝑏𝑙⟩𝑞(v1) + 𝜎1. (4.38)
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Algorithm 4.1 Training of bigram phone-loop model for acoustic unit discovery
1: function mstep(X, 𝑞*(c|z), 𝑞*(z), 𝑞*(v1))
2: ◁ Update defined in (2.80)
3: 𝑞*(H)← arg max𝑞(H) ℒ
4: ◁ Update defined in (4.29) and (4.30)
5: 𝑞*(V2)← arg max𝑞(V2) ℒ

6: function estep(X, 𝑞(H), 𝑞(V2))
7: ◁ For both updates, we use 𝑞(V2) to estimate the transition probability of the HMM:
8: ◁ Update defined in (2.60)
9: 𝑞*(c|z)← arg max𝑞(c|z) ℒ

10: ◁ Update defined in (2.68)
11: 𝑞*(z)← arg max𝑞(z) ℒ
12: return 𝑞*(c|z), 𝑞*(z)

13: procedure train(X, 𝐸)
14: ◁ 𝐸: number of epochs (i.e. E-step + M-step)
15: ◁ initialization: we assume that we have already trained a DP-HMM
16: 𝑞*(H)← 𝑞*DP-HMM(H)
17: ◁ 𝑞*(v1) will remain fixed throughout the training
18: 𝑞*(v1)← 𝑞*DP-HMM(v)
19: 𝑞*(V2)← 𝑝(V2|v1)
20: for 𝑒← 1 to 𝐸 do
21: 𝑞*(c|z), 𝑞*(z)← estep(X, 𝑞*(H), 𝑞*(V2))
22: 𝑞*(H), 𝑞*(V2)← mstep(X, 𝑞*(c|z), 𝑞*(z), 𝑞*(v1))

Observing that 𝑞*(v1) = 𝑞*DP-HMM(v) =
∏︀𝜏

𝑙=1 ℬ(𝜑1,𝑙, 𝜑2,𝑙) as defined in (2.93), the expecta-
tions are thus given by:

⟨𝑎𝑙⟩𝑞(v1) = 𝛾1
𝜑1,𝑙

𝜑1,𝑙 + 𝜑2,𝑙

𝑙−1∏︁
𝑖=1

(1− 𝜑1,𝑖
𝜑1,𝑖 + 𝜑2,𝑖

) (4.39)

⟨𝑏𝑙⟩𝑞(v1) = 𝛾1
(︀
1−

𝑙∑︁
𝑖=1

𝜑1,𝑖
𝜑1,𝑖 + 𝜑2,𝑖

𝑖−1∏︁
𝑗=1

(1− 𝜑1,𝑗
𝜑1,𝑗 + 𝜑2,𝑗

)
)︀
. (4.40)

(4.41)

The complete training of the HDP-HMM is presented in Algorithm 4.1.

4.3 Improper Variational Bayes Inference
The bigram phone-loop model we have described in this chapter is a non-parametric
Bayesian treatment of the traditional HMM-GMM used in speech recognition before the
advent of deep learning techniques. The HMM-GMM for ASR, although theoretically con-
venient, has been known to be a rather crude generative model of speech. Particularly, the
assumption that the features are independent given the sequence of HMM states is very
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unrealistic. Consequently, it was common during the decoding to correct the model with a
balancing factor 𝛼, 𝛼 ∈ R+, which controls the preponderance of the acoustic model:

w* = arg max
w

𝑝(X|w)𝛼𝑝(w), (4.42)

where w = 𝑤1, 𝑤2, . . . is a sequence of words. If 𝛼 = 0, the acoustic model 𝑝(X|w) becomes
constant and the most likely decoded sequence of words w* is simply the most probable
sequence of words from the language model 𝑝(w). On the other hand, for 𝛼 sufficiently
large, the role of the language model 𝑝(w) becomes negligible. In practice, 𝛼 is usually set
below one as the HMM acoustic model, due to the independence assumption, tends to be
underestimated the probability of the sequence of features.

Unfortunately, our infinite HMM phone-loop makes the same assumption and, therefore,
suffers from the same caveat. We will now focus on how to balance the acoustic and
phonotactic language in our model. Note however that our problem is slightly different: in
(4.42), the problem is to correct the model at decoding time whereas we wish to take into
account the correction while doing the inference in order to achieve better clustering. Note
that a similar technique has been applied for an HMM-based speaker diarization system
(Diez et al., 2019).

To begin, we consider the following simplified version of our model:

𝑝(X, z,H) = 𝑝(X|z,H)𝑝(z|H)𝑝(H) (4.43)

where we have omitted the parameters of the model which will not be affected by any
correction factors. 𝑝(X|z,H) is the acoustic model and 𝑝(z|H) is the phonotactic language
model. We now define a “corrected” version of this model by introducing two balancing
factors, 𝛼 and 𝛽, controlling respectively the roles of the acoustic and the language models:

𝑝(X, z,H) ∝ 𝑝(X|H, z)𝛼𝑝(z)𝛽𝑝(H) = 𝑓(X, z,H) (4.44)

where 𝛼, 𝛽 ∈ R+. When 𝛼 ̸= 1 and 𝛽 ̸= 1, the corrected model 𝑓(X, z,H) is an improper
or energy based model (LeCun et al., 2006) in the sense that it does not define a normalized
distribution. An important consequence of working with an improper model is that the
variational objective function is not a lower-bound any more of the log marignal ln 𝑝(X):

ln 𝑝(X) � ℒ = ⟨ln 𝑓(X, z,H)

𝑞(z,H)
⟩𝑞(z,H). (4.45)

However, this is a minor concern as optimizing the right-hand side of (4.45) with respect
to 𝑞 leads to finding the variational posterior 𝑞(z,H) the closest (in KL divergence sense)
to the true posterior 𝑝(z,H|X) defined as

𝑝(z,H|X) =
𝑓(X, z,H)∑︀

z

∫︀
H 𝑓(X, z,H)dH

. (4.46)

To see this, let’s consider the KL divergence between the variational and the true posteriors:

DKL(𝑞(z,H) || 𝑝(z,H|X)) = ⟨ln 𝑞(z,H)− ln 𝑝(z,H|X)⟩𝑞(z,H). (4.47)

72



Injecting (4.46) in (4.47) and using the non-negativity of the KL divergence, we obtain the
following lower-bound:

ln
(︁∑︁

z

∫︁
H
𝑓(X, z,H)dH

)︁
≥ ℒ = ⟨ln 𝑓(X, z,H)

𝑞(z,H)
⟩𝑞(z,H), (4.48)

Where the right-hand side is identical to that of (4.45). Therefore, optimizing ℒ minimizes
the KL divergence in (4.47) which lead to a consistent estimate of the posterior of the
energy based model.

If we now restrain our variational posterior to the following mean-field factorization
(appendix A.2.2): 𝑞(z,H) = 𝑞(z)𝑞(H) it is trivial to show that the optimal variational
factors of the corrected model are given by:

ln 𝑞*(z) =
𝛼

𝛽
⟨ln 𝑝(X|z,H)⟩𝑞(H) + ln 𝑝(z|H) (4.49)

ln 𝑞*(H) = 𝛼⟨ln 𝑝(X|z,H)⟩𝑞(z) + ln 𝑝(H) (4.50)

The exact update equations are easily obtained by scaling the sufficient statistics in (2.68),
(2.84) and (2.82) yielding:

ln 𝑞*(z) =

𝑁∑︁
𝑛=1

𝛼

𝛽
𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛 + const (4.51)

=⇒ 𝑞*(z) =
1

𝜁

𝑁∏︁
𝑛=1

exp{𝛼
𝛽
𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛} (4.52)

𝜁 =
∑︁
z

𝑁∏︁
𝑛=1

exp{𝛼
𝛽
𝜑𝑛(𝑧𝑛) +𝐴𝑧𝑛−1,𝑧𝑛}, (4.53)

and

ln 𝑞*(H) =
[︁ 𝑁∑︁
𝑛=1

⟨𝛼 ln 𝑝(x𝑛|𝜃𝑧𝑛)𝑝(𝑐𝑛|𝜔𝑧𝑛)⟩𝑞(𝑐𝑛|𝑧𝑛)𝑞(𝑧𝑛)
]︁

(4.54)

+
∞∑︁
𝑖=1

ln 𝑝(𝜔𝑖) +
𝐶∑︁

𝑗=1

ln 𝑝(𝜃𝑗𝑖 ) + const

=⇒ 𝑞*(H) =
∞∏︁
𝑖=1

𝑞*(𝜔𝑖)
𝐶∏︁

𝑗=1

𝑞*(𝜃𝑗𝑖 ) (4.55)

𝑞*(𝜔𝑖) = exp{𝜉⊤𝑖 𝑇 (𝜔𝑖)−𝐴(𝜉𝑖)} (4.56)

𝜉𝑖 = 𝜉0 +

𝑁∑︁
𝑛=1

𝛼𝑞(𝑧𝑛 = 𝑖)

[︂
𝑇 (𝑐𝑛)

1

]︂
(4.57)

𝑞*(𝜃𝑗𝑖 ) = exp{𝜗𝑗𝑇
𝑖 𝑇 (𝜃𝑗𝑖 )−𝐴(𝜗𝑗

𝑖 )} (4.58)

𝜗𝑗
𝑖 = 𝜗0 +

𝑁∑︁
𝑛=1

𝛼𝑞(𝑐𝑛 = 𝑗|𝑧𝑛 = 𝑖)𝑞(𝑧𝑛 = 𝑖)

[︂
𝑇 (x𝑛)

1

]︂
. (4.59)

Informally, the coefficients 𝛼 and 𝛼
𝛽 weigh how much each observation should be “trusted”.

When the coefficients are lower than 1, the model will need more data to converge to the
same posterior as the uncorrected model and vice versa.
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Model Features Corpus F-score NMI (%)
DP-HMM MFCC TIMIT 63.25 35.11

HDP-HMM MFCC TIMIT 64.08 35.82
DP-SHMM MFCC TIMIT 75.56 39.14

HDP-SHMM MFCC TIMIT 75.42 39.62
DP-HMM MFCC MBOSHI 64.14 36.21

HDP-HMM MFCC MBOSHI 65.47 36.53
DP-SHMM MFCC MBOSHI 57.65 39.98

HDP-SHMM MFCC MBOSHI 58.01 40.67

Table 4.1: Comparison of the DP-(S)HMM and the HDP-(S)HMM on the AUD task.

4.4 Results
We now evaluate the HDP-HMM on the AUD task. In section 4.4.2, we measure the benefit
of introducing a bigram phonotactic language model using the ”natural“, i.e. uncorrected,
model and in section 4.4.3, we analyze the effect of the correction factors using the corrected
model.

4.4.1 Experimental Setup

Our experimental setup is similar to the one used in the previous chapters: we experimented
on both the TIMIT and MBOSHI data sets using the MFCC features. Since we have shown
in chapter 3 that the MBN features bring little to no improvement over the MFCCs, we did
not use them in these experiments. The HDP based AUD system can be used either with
HMM or SHMM as acoustic unit model. We refer to these variants as the HDP-HMM and
HDP-SHMM respectively. As described in section 4.2, the HDP-(S)HMM requires a DP-
(S)HMM to approximate the variational posterior of the root stick-breaking process and to
initialize the variational posterior of the other parameters. For the HDP-SHMM, we used
the DP-SHMM system pre-trained on the combination of 4 GLOBALPHONE languages
(the ”CB“ set described in chapter 3) and with a phonetic subspace of 100 dimensions.
For both variants, we truncated the Dirichlet process to 100 acoustic units plus one extra

”silence unit“.

4.4.2 Bigram vs unigram phonotactic language model

For our first experiment, we compared the performance of the DP-(S)HMM against the
HDP-(S)HMM based AUD system. Results on the TIMIT and MBOSHI corpora are re-
ported in Table 4.1. We observe the HDP prior provides a small but consistent improvement
over the DP-(S)HMM in terms of clustering quality (measured with the NMI). The quality
of the segmentation (F-score) slightly improves as well except for the case of the HDP-
SHMM on TIMIT where we observe a slight degradation of the F-score. Overall, we see
that the HDP prior improves the AUD task even without any correction factors.

4.4.3 Effect of the correction factors

We now analyze the effect of the acoustic and language model correction factors 𝛼 and 𝛽.
We have restricted our analysis on the HDP-(S)HMM on the TIMIT corpus. The NMI as
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Figure 4.2: NMI as a function of the acoustic (𝛼) and language model (𝛽) scaling factors
for the corrected HDP-HMM on the TIMIT corpus. The blue dot indicates the maximum
value.

a function of 𝛼 and 𝛽 is depicted in Fig. 4.2 for the DP-HMM and in Fig. 4.3 for the DP-
SHMM. For both models, we observe the same behavior: increasing both the acoustic and
language model scaling factors improves the clustering quality. Note that to achieve better
results, the language model scaling factor should remain greater than the acoustic scaling
factor. This behavior is rather expected: when 𝛽 is greater than 𝛼, the ratio in (4.49) will
be lower than one and, consequently, will decrease the effect of the acoustic model and give
more importance to the language model.

Finally, the comparison between the corrected and uncorrected DP-(S)HMM models is
shown in Table 4.2. The correction factors provide a significant gain and help to fully
benefit from the bigram phonotactic language model. This experiment somewhat biased
as we have used the reference transcription to tune the scaling factors to achieve better
results. Nevertheless, we see that the optimal factors are the same for both models and—as
was observed in ASR—once these factors are tuned on a data set, they generalize well on
other corpora.
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Figure 4.3: NMI as a function of the acoustic (𝛼) and language model (𝛽) scaling factors
for the corrected HDP-SHMM on the TIMIT corpus. The blue dot indicates the maximum
value.

4.5 Conclusion
In this chapter, we have empowered our AUD system with a bigram phonotactic language
model. Our approach relies on the Hierarchical Dirichlet Process: a non-parametric prior
over conditional distributions. Replacing the Dirichlet Process by a Hierarchical Dirichlet
Process only affects the language model and, therefore, the HDP prior can be used with
either the HMM or SHMM based AUD system. We have studied the case of a bigram
language model but it is theoretically possible to extend this work to arbitrary n-gram
language models. Similarly to the original DP-HMM, this model is trained with a VB-EM
algorithm. This is possible thanks to the Teh’s construction of the HDP, a hierarchical stick-
breaking process. Unfortunately, the Teh’s stick-breaking process is not fully conjugate
and, therefore, it is difficult to derive the optimal posterior of the parameters of HDP’s
root level. We bypass this issue by approximating this posterior with the posterior of an
unigram DP-HMM. This approximation is very convenient but can also trap our model in
a local optimum. This issue could be solved using the Sethuraman stick-breaking process
but would considerably increase the computational cost. Experimental results show that
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Model Features Corpus 𝛼 𝛽 NMI (%)
DP-HMM MFCC TIMIT - - 35.11

HDP-HMM MFCC TIMIT 1.0 1.0 35.82
HDP-HMM MFCC TIMIT 3.0 11.0 36.38
DP-SHMM MFCC TIMIT - - 39.14

HDP-SHMM MFCC TIMIT 1.0 1.0 39.62
HDP-SHMM MFCC TIMIT 3.0 11.0 40.58

Table 4.2: Comparison of the best corrected HDP-(S)HMM model against the uncorrected
HDP-(S)HMM (𝛼 = 1 and 𝛽 = 1) and the DP-(S)HMM.

the HDP prior gives a small but consistent improvement for the HMM and SHMM based
AUD system on both TIMIT and MBOSHI corpora.

Furthermore, we have shown that the HDP-HMM model can be augmented with acoustic
and language model factors that weigh the importance of acoustic and language model in
the likelihood function. These factors turn the AUD phone-loop model into an energy
based model. Nevertheless, we show that optimizing the variational lower-bound of this
energy-based model still leads to a consistent estimate of the variational posterior. Our
experiments show that, for suitable choice of correction factors, the ”corrected“ HDP-HMM
achieves better clustering measured in terms of NMI. The segmentation quality however
does not seem to benefit from such model correction.
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Chapter 5

Conclusion

In the previous chapters, we have proposed several models to address the problem of learning
a phonological system from speech. All these models rely upon a Bayesian formulation of
the task. With the use of Variational Bayes framework, we have seen that learning the
acoustic units, i.e. the phonological system, can be achieved through the optimization
of a well-defined objective function. Before summarizing the contributions of this thesis,
we briefly discuss potential extensions and promising trends for the unsupervised speech
learning research, including new phonetic acoustic model and non-parametric Bayesian
neural network.

5.1 Future work
Let us discuss what are, in my opinion, the promising research directions emerging from
this thesis. We have seen that the Bayesian formulation of the AUD task leads to the
definition of four essential elements:

∙ acoustic model

∙ language model

∙ prior over the language model

∙ prior over the acoustic model parameter (the base measure in the context of the
Dirichlet Process)

Importantly, this formulation is very generic and does not imply any specific model. The
choice to use the HMM and the Dirichlet Process was mostly driven by historical reasons
and mathematical convenience rather than by a strong belief that they are ideal tools for
the task. I believe that significant progress can be made in the field of unsupervised learning
of speech by revisiting these “old” models in light of the recent development of the research
on Bayesian generative models. In the following, I propose alternative models which could
lead to significant improvements.

5.1.1 Acoustic Modeling

The 3-state HMM model remains de facto the state-of-the-art generative model for a pho-
netic unit in speech technologies. Yet, it is widely accepted that the observations inde-
pendence assumption following from this model is unrealistic and leads to poor modeling
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capability. This issue is not dramatic in speech recognition since the language model can
compensate for an inaccurate acoustic model. However, in the case of AUD, proper segmen-
tation and clustering of the speech largely depends on the quality of the acoustic model.

A simple way to improve the HMM is by making an observation to depend on the hidden
state and on previous observations. This model, called an autoregressive HMM, was recently
introduced in Bryan and Levinson (2015). The time dependency between observations does
have a cost: the inference requires to compute the autocorrelation function of the input
signal. Nevertheless, modern hardware largely allows to perform this computation. Note
that in Bryan and Levinson (2015), the authors model raw speech signal which is perhaps
unsuited for tAUD. Applying the ARHMM directly on the short term (Mel) spectrum
would be, in my opinion, more practical. Interestingly, doing so would lead to model the
amplitude and frequency modulations of the speech signal which would be consistent with
psychoacoutics studies Elhilali et al. (2003).

Alternatively, rather than changing the HMM, one could transform the features such that
they fit better the HMM assumption. This paradigm was the core idea of a recent model:
the VAE-HMM Ebbers et al. (2017); Glarner et al. (2018). It is a promising approach as it
makes use of neural network to define the generative model. However, the introduction of
arbitrarily complex model comes with a downside: whereas it is fairly easy to use gradient
ascent to train such a model, it is much more difficult to prevent the model from falling in
a local optimum. Also, increasing the model’s complexity increases the necessary amount
of data which may be problematic when dealing with low-resources languages. Having a
neural network-based AUD system is a compelling idea but it remains currently an open
problem.

This work has also shown the importance of the acoustic model prior for the outcome
of the AUD sytem. The GSM defined in chapter 3 is general enough to accommodate a
large family of acoustic models, including the ones mentioned above, but can be extended
in several ways. For instance, the SHMM is based on an affine and non-linear transfor-
mation. We can envision a deep SHMM where the non-linearity would be learned by a
neural network. Another potential improvement of the GSM is the introduction of multiple
subspaces. These extra subspaces could either:

∙ include non-phonetic factors such as speaker variability

∙ decompose the phonetic subspace to better model linguistic features (for instance
there could be separated subspaces for vowels and consonants).

Lastly, let me mention a recent work on the factorization of subspace model Novotny et al.
(2019). This line or work is particularly interesting as it could be used in the SHMM to
model the language variability.

5.1.2 Language Modeling

A large par of the progress in unsupervised speech learning, including this thesis, is due to
the development of Bayesian non-parametric priors. The Dirichlet process and its natural
extension the Pitman-Yor process offer a well-grounded framework to define probability
distributions over countably infinite sets. But after almost two decades of research, these
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tools have also shown their limits. Even though the construction of hierarchical Dirichlet or
Pitman-Yor processes is theoretically straightforward, variational inference in such models
is nearly intractable for any hierarchy having more than 2 levels. On the other hand,
samplers like the Chinese restaurant process can work with arbitrary deep models at the
cost of very slow inference and exponential growth of the parameters. Finally, empirical
experience has shown that neural network-based language models are far superior to n-gram
based language models. All these issues, clearly call for an extension of the non-parametric
priors to a much broader class of models.

Defining non-parametric Bayesian priors for neural network based language model may
seem a rather difficult task but recent advances in machine learning lean toward this direc-
tion. A promising step is the newly introduced Logistic Stick-Breaking Process Ren et al.
(2011). This non-parametric prior is defined a spatial stick-breaking process whose param-
eters are Euclidean embeddings. This is particularly interesting as such embeddings could
be the output of a neural network. Another work worth mentioning is Gal (2016) where the
authors show how the dropout technique can be reinterpreted as an approximate Bayesian
inference. Importantly, they also show how one could get an uncertainty estimate without
any significant change in the neural network. Combining both the Logistic Stick-Breaking
Process with a Bayesian neural network is a very compelling idea and could pave the way
to more powerful non-parametric priors useful for unsupervised speech learning and many
other fields.

5.2 Summary of contributions
The aim of this thesis has been to develop a Bayesian approach to the problem of learning
a phonological system, i.e. an ensemble of acoustic units, used to communicate in a lan-
guage, from unlabeled speech recordings. This work can be seen as the extension and the
continuation of previous works on non-parametric Bayesian learning applied to language
modeling Goldwater and Johnson (2007) and acoustic unit discovery Lee (2014).

In Lee and Glass (2012) the authors proposed a non-parametric Bayesian HMM to cluster
unlabeled speech into phone-like units; they used the Chinese Restaurant Process to sample
the parameters from the posterior distribution. In chapter 2, we derived a new inference
scheme based on the Variational Bayes framework. It allows to cast the problem of discov-
ering acoustic units into an optimization problem with a well-defined objective function.
Our approach relies upon Sethuraman stick-breaking construction of the Dirichlet Process
which, combined with a suitable structured mean-field factorization of the variational pos-
terior, leads to an analytical VB-EM algorithm. Moreover, this new approach allows for
the reinterpretation of the original model as an infinite phone-loop model capable of fast
and parallelized inference. The computational benefits from this approach are important as
they allow learning phonological units from a large speech corpus. We found experimentally
that Variational Bayes training leads to sparser solution, i.e. the model uses less acoustic
units to explain the data, and yet achieves better clustering quality in terms of NMI.

In chapter 3, we addressed the issue of how to design a proper prior distribution over
the possible acoustic unit embeddings. We first introduced the Generalized Subspace Model
(GSM): a theoretical framework which allows learning low-dimensional embeddings rep-
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resenting probability distributions. The GSM is a natural extension of several existing
models, such as the i-vector model or the Subspace Multinomial model, to any condition-
ally conjugate exponential models (GMM, HMM, PCA, ...). In a controlled experiment, we
have shown that the GSM is able to learn a coherent phonetic subspace where the phones,
modeled by an HMM, are encoded as 100-dimensional embeddings. Finally, we used the
GSM framework to learn a universal phonetic subspace from a multilingual labeled speech
corpus. This universal phonetic subspace is then used as the base measure of the Dirichlet
Process of our acoustic unit discovery system. By estimating the prior over acoustic units
from other languages, we are effectively changing the learning procedure: informally, in-
stead of directly clustering unlabeled speech, we first use supervision from other languages
to teach the model the notion of “phone” and then, the model clusters speech from a target
language into patterns similar to the phones from other languages. Experimental results
have shown the merit of this new approach: the GSM based AUD model achieved much
better segmentation and clustering quality than the original non-parametric HMM model.
The results also show that the GSM approach is more robust than using multilingual fea-
tures as an input to the AUD system. This is a strong indication that the GSM is a more
principled way to transfer phonetic knowledge from a language to another.

In chapter 4, we developed a new AUD model based on the Hierarchical Dirichlet Process
(HDP). We coined this new model the HDP-HMM. The HDP is a non-parametric prior
which defines a probability over an infinite set of conditional distributions. Thanks to this
feature, we built an AUD model based on a bigram phonotactic language model. This is a
substantial change compared to the DP-HMM, which can have only a unigram phonotactic
language model. To infer the parameters of this new model we derived a VB-EM algorithm
based on the Teh’s stick-breaking construction of the HDP. As the HDP prior only affects
the distribution of the units’ labels, the training of the acoustic model is nearly identical
to the VB-EM of the DP-HMM model. This key feature allows us to use the HDP prior
seamlessly with the HMM or SHMM acoustic models. Teh’s stick-breaking construction
is particularly convenient since it expresses the sampled conditional distributions directly
with the atoms generated by the root base measure and therefore avoids any ordering issue.
However, it has the downside that it is not fully conditionally conjugate. Consequently, our
training requires first to train a DP-HMM AUD model to estimate the variational posterior
of the root stick-breaking process. Experimental results show that the HDP-HMM model
applied to the AUD task provides a small but consistent gain over the DP-HMM in terms
of clustering quality and segmentation. Moreover, we show that the model can be corrected
using two factors weighing the contrinution of the acoustic and language models in the joint
probability distribution of the model. We observed empirically that giving more importance
to the language model (increasing the language model factor) results in a better NMI.

To conclude, we hope that this thesis has provided an accessible study of Bayesian ap-
proaches to the problem of learning a phonological system from speech. We have developed
a probabilistic formulation of the task and proposed several models to fulfill it. Altogether,
this forms a well-grounded framework, which paves the way to many more models than the
ones investigated in the previous chapters. We hope that this thesis will stimulate future
research on the challenging problem of unsupervised speech learning.
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Appendix A

Variational Bayes

In this appendix, we give a brief introduction to the Variational Bayes framework for
inference. First, we define the variational objective function and then we summarize the
main approaches to optimize this objective.

A.1 Variational Bayes objective
Let X = (x1, . . . ,x𝑁 ) be observed data, 𝑝(X|𝜃) a parametric likelihood distribution and
𝑝(𝜃) a prior. We aim to find a variational objective function whose optimum is given by
the posterior distribution:

𝑝(𝜃|X) =
𝑝(X|𝜃)𝑝(𝜃)

𝑝(X)
, (A.1)

where 𝑝(X) =
∫︀
𝜃 𝑝(X|𝜃)𝑝(𝜃). Let 𝑞(𝜃) be any distribution over 𝜃. Estimating the posterior

in (A.1) amounts to solve the following minimization problem:

𝑝(X|𝜃) = 𝑞*(𝜃) = arg min
𝑞

DKL(𝑞(𝜃)||𝑝(𝜃|X)). (A.2)

Expanding the right hand side of (A.2) and using the fact that DKL(𝑞(𝜃)||𝑝(𝜃|X)) ≥ 0, we
have:

DKL(𝑞(𝜃)||𝑝(𝜃|X)) = ⟨ln 𝑞(𝜃)

𝑝(𝜃|X)
⟩𝑞 (A.3)

= ⟨ln 𝑞(𝜃)− ln 𝑝(X|𝜃)𝑝(𝜃)⟩𝑞 + ln 𝑝(X) (A.4)

=⇒ ln 𝑝(𝑋) ≥ ⟨ln 𝑝(X|𝜃)𝑝(𝜃)

𝑞(𝜃)
⟩𝑞 = ℒ[𝑞]. (A.5)

ℒ[𝑞] is the variational objective function and it is often referred to as Evidence Lower-BOund
(ELBO).

To conclude this brief definition of the variational objective, we show that the distribution
𝑞*(𝜃) which maximizes ℒ[𝑞] is the posterior distribution 𝑝(𝜃|X).

Proof. Our proof is done in 2 steps: first we show that ℒ[𝑞] is concave in 𝑞, then we show
that 𝑝(𝜃|X) is a critical point of the objective function.
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ℒ[𝑞] is concave in 𝑞: ∀𝜆 ∈ (0, 1), ∀𝑓(𝜃) we have:

ℒ[𝜆𝑞 + (1− 𝜆)𝑓 ] =
⟨︀

ln 𝑝(X|𝜃) + ln 𝑝(𝜃)
⟩︀
𝜆𝑞+(1−𝜆)𝑓

(A.6)

−
⟨︀

ln
(︀
𝜆𝑞(𝜃) + (1− 𝜆)𝑓(𝜃)

)︀⟩︀
𝜆𝑞+(1−𝜆)𝑓

(A.7)

𝜆ℒ[𝑞] + (1− 𝜆)ℒ[𝑓 ] =
⟨︀

ln 𝑝(X|𝜃) + ln 𝑝(𝜃)
⟩︀
𝜆𝑞+(1−𝜆)𝑓

(A.8)

−
(︁⟨︀
𝜆 ln 𝑞(𝜃)

⟩︀
𝑞

+
⟨︀
(1− 𝜆) ln 𝑓(𝜃)

⟩︀
𝑓

)︁
. (A.9)

Since 𝑥 ln𝑥 is a convex function, we have:⟨︀
𝜆 ln 𝑞(𝜃)

⟩︀
𝑞

+
⟨︀
(1− 𝜆) ln 𝑓(𝜃)

⟩︀
𝑓
≥

⟨︀
ln
(︀
𝜆𝑞(𝜃) + (1− 𝜆)𝑓(𝜃)

)︀⟩︀
𝜆𝑞+(1−𝜆)𝑓

(A.10)

=⇒ ℒ[𝜆𝑞 + (1− 𝜆)𝑓 ] ≥ 𝜆ℒ[𝑞] + (1− 𝜆)ℒ[𝑓 ], (A.11)

which proves that ℒ is concave in 𝑞.

Critical point of ℒ[𝑞]: We now find the critical points of ℒ[𝑞] subject to the constraint∫︀
𝑞(𝜃)𝑑𝜃 − 1 = 0. To do so, we define the Lagrangian:

ℒ′[𝑞] = ℒ[𝑞] + 𝜈
(︀ ∫︁

𝑞(𝜃)𝑑𝜃 − 1
)︀
, (A.12)

where 𝜈 is the Lagrange multiplier. Its functional derivative is given by:

𝛿ℒ′[𝑞] =

∫︁
𝛿(𝜃)

(︀
ln 𝑝(X|𝜃) + ln 𝑝(𝜃)− ln 𝑞(𝜃)− 1 + 𝜈

)︀
𝑑𝜃 (A.13)

Using the fundamental lemma of calculus:∫︁
𝛿(𝑥)𝑓(𝑥)𝑑𝑥 = 0 (A.14)

=⇒ 𝑓(𝑥) = 0 ∀𝑥 (A.15)

we get:

𝛿ℒ′[𝑞] = 0 (A.16)
=⇒ ln 𝑞*(𝜃) = ln 𝑝(X|𝜃) + ln 𝑝(𝜃)− 1− 𝜈 (A.17)

=⇒ 𝑞*(𝜃) =
𝑝(X|𝜃)𝑝(𝜃)

𝑍
(A.18)

𝑍 = exp{1 + 𝜈} =

∫︁
𝑝(X|𝜃)𝑝(𝜃)𝑑𝜃 (A.19)

which, together with (A.11), proves that 𝑝(𝜃|X) is the distribution which maximizes the
variational lower-bound.

A.2 Approximating posterior distributions
In most applications, the optimal 𝑞*(𝜃) cannot be calculated as the integral in (A.19) is
intractable. Nevertheless, the Variational Bayes can be used to find an approximate poste-
rior distribution which is the ”best approximation“ of the true posterior distribution in the
KL divergence sense. To do so, one performs a constrained optimization of the variational
lower-bound ℒ[𝑞] where the constraints are chosen to allow for a close form estimation of
the approximate posterior. We review the main strategies used with Variational Bayes.
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A.2.1 Parametric approximation

The simplest approximation is to constrain the variational posterior to be of a known
parametric type. For instance, we can set:

𝑞(𝜃) = 𝒩 (𝜃|𝜇,Σ). (A.20)

Then, maximizing the variational lower-bound reduces to standard calculus ℒ[𝑞] = ℒ(𝜇,Σ)
and can be done with (stochastic) gradient ascent.

A.2.2 Mean-Field approximation

An alternative to the parametric approximation is to assume a specific factorization of the
variational posterior. The mean-field approximation corresponds to a fully factorized pos-
terior. Let 𝜃 = {𝜃1, . . . ,𝜃𝐾}, under the mean-field approximation the variational posterior
can be expressed as:

𝑞(𝜃) =

𝐾∏︁
𝑘=1

𝑞(𝜃𝑘). (A.21)

In this case, optimizing ℒ[𝑞] amounts to iteratively solve 𝐾 sub-objective functions given
by:

ℒ𝑘[𝑞] = ⟨ln 𝑝(X|𝜃)𝑝(𝜃)

𝑞(𝜃𝑘)
⟩𝑞(𝜃𝑘) (A.22)

Using calculus of variations, the optimal variational posterior 𝑞*𝑘 is given by:

𝑞*(𝜃) = arg max
𝑞

ℒ𝑘[𝑞] (A.23)

=⇒ 𝑞*(𝜃𝑘) ∝ exp{⟨ln 𝑝(X|𝜃)𝑝(𝜃)⟩𝑞(𝜃∖𝑘)} (A.24)

where 𝑞(𝜃∖𝑘) is the product of all the variational factor but 𝑞(𝜃𝑘).

A.2.3 Structured mean-field approximation

The mean-field approximation considerably simplifies the optimization of the variational
lower-bound but it fails to capture any correlations between the sets of parameters. The
structured mean-field approximation is a variant of the mean-field approximation which
preserves some dependencies in the variational posterior. For instance, if 𝜃 = {𝜃1,𝜃2,𝜃3},
a possible structured mean-field factorization is:

𝑞(𝜃) = 𝑞(𝜃1)𝑞(𝜃2|𝜃3)𝑞(𝜃3), (A.25)

where the dependency between 𝜃2 and 𝜃3 is preserved. In the general case, when we have
s dependency 𝑞(𝜃𝑖|𝜃𝑗)𝑞(𝜃𝑗), the optimal variational posteriors are given by:

𝑞*(𝜃𝑖|𝜃𝑗) ∝ exp{⟨ln 𝑝(X|𝜃)𝑝(𝜃)⟩𝑞(𝜃∖𝑖,𝑗)} (A.26)

𝑞*(𝜃𝑗) ∝ exp{⟨ln 𝑝(X|𝜃)𝑝(𝜃)

𝑞(𝜃𝑖|𝜃𝑗)
⟩𝑞(𝜃∖𝑖,𝑗)} (A.27)

(A.28)

where 𝑞(𝜃∖𝑖,𝑗) is the product of all the variational posterior but 𝑞(𝜃𝑖|𝜃𝑗) and 𝑞(𝜃𝑗).
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Appendix B

Exponential Family of
Distributions

In this appendix, we present the main probability distributions used throughout this thesis.
We first start to give a brief introduction of the exponential family of distribution and then
we provide the list of its principal members.

B.1 Exponential family of distribution
The exponential family of distribution is a set of parametric distributions which can be
expressed as follows:

𝑝(x) = exp{𝜂⊤𝑇 (x)−𝐴(𝜂) +𝐵(x)}, (B.1)

where 𝜂 is the vector of natural (or canonical) parameters, 𝑇 (x) is the vector of sufficient
statistics and 𝐴(𝜂) = ln

∫︀
x exp{𝜂𝑇𝑇 (x)}dx is the log-normalizer. The type of the distribu-

tion (Normal, Dirichlet, ...) depends on the domain of the natural parameters and on how
the vector of sufficient statistics is computed. 𝐵(x) is the base measure of the distribution
and does not depends on the parameters 𝜂.

B.1.1 Partial derivative of the log-normalizer

An important property which is heavily used in Variational Bayes inference, is the relation
between the log-normalizer and the expectation of the sufficient statistics, namely:

𝜕𝐴(𝜂)

𝜕𝜂
= ⟨𝑇 (x)⟩𝑝(x). (B.2)

This is easily verified by taking the partial derivative of the log-normalizer:

𝜕𝐴(𝜂)

𝜕𝜂
=

𝜕

𝜕𝜂
ln

∫︁
x

exp{𝜂⊤𝑇 (x)}dx (B.3)

=
1∫︀

x exp{𝜂⊤𝑇 (x)}dx

∫︁
x
𝑇 (x) exp{𝜂⊤𝑇 (x)}dx (B.4)

=

∫︁
x
𝑇 (x) exp{𝜂⊤𝑇 (x)−𝐴(𝜂)}dx = ⟨𝑇 (x)⟩𝑝(x). (B.5)
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B.1.2 Conjugate Prior

In Bayesian inference, we say that the prior 𝑝(𝜂) is conjugate to the likelihood distribution
𝑝(x|𝜂) if the posterior 𝑝(𝜂|x) is of the same type as the prior. For instance, if both 𝑝(𝜂)
and 𝑝(𝜂|x) are Dirichlet distribution then 𝑝(𝜂) is conjugate to the likelihood 𝑝(x|𝜂). When
the likelihood is a member of the exponential distribution:

𝑝(x|𝜂) = exp{𝜂⊤𝑇𝑥(x)−𝐴𝜂(𝜂)}, (B.6)

where 𝜉0 and 𝐴𝜉(𝜉0) are, respectively, the natural parameters and the log-normalizer of the
distribution 𝑝(𝜂). there exists a conjugate prior member of the exponential family defined
as:

𝑝(𝜂) = exp{𝜉⊤0 𝑇𝜂(𝜂)−𝐴𝜉(𝜉0)} (B.7)

𝑇𝜂(𝜂) =

[︂
𝜂

−𝐴𝜂(𝜂)

]︂
(B.8)

We can verify that 𝑝(x|𝜂) and 𝑝(𝜂) are indeed conjugate by taking the product of the
likelihood and the prior:

𝑝(𝜂|x) ∝ 𝑝(x|𝜂)𝑝(𝜂) (B.9)
∝ exp{𝜂⊤𝑇𝑥(𝑥)−𝐴𝜂(𝜂) + 𝜉⊤0 𝑇𝜂(𝜂)} (B.10)

∝ exp{(𝜉0 +

[︂
𝑇𝑥(x)

1

]︂
)⊤𝑇𝜂(𝜂).} (B.11)

Re-normalizing (B.11) to get the proper posterior distribution:

𝑝(𝜂|x) = exp{𝜉⊤𝑇𝜂(𝜂)−𝐴𝜉(𝜉)} (B.12)

𝜉 = 𝜉0 +

[︂
𝑇𝑥(x)

1

]︂
(B.13)

proves that (B.7) is the conjugate prior of 𝑝(x|𝜂).

B.2 Distributions
We now describe the members of the exponential family of distributions used in this thesis.
For each distribution we provide:

∙ the standard parametric form

∙ the vector of natural parameters 𝜂

∙ the vector of sufficient statistics 𝑇 (x)

∙ the log-normalizer 𝐴(𝜂)

∙ the gradient of the log-normalizer which is also the expectation of the sufficient statis-
tics.
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B.2.1 Categorical

The categorical distribution is a probability distribution over a random variable which has
𝐾 possible outcomes: 𝑥 ∈ {1, . . . ,𝐾}. It is parameterized by a vector of probabilities 𝜇
where 0 < 𝜇𝑘 < 1 and

∑︀𝐾
𝑘=1 𝜇𝑘 = 1. Note that the natural parameters and the sufficient

statistics of the categorical distribution are 𝐾 − 1 dimensional vectors.

𝑝(𝑥|𝜇) =
𝐾∏︁
𝑘=1

𝜇
1[𝑥=𝑘]
𝑘 (B.14)

𝜂𝑘 = ln
(︁ 𝜇𝑘

1−
∑︀𝐾−1

𝑗=1 𝜇𝑗

)︁
(B.15)

𝑇 (x) =

⎡⎢⎢⎢⎣
1[𝑥 = 1]
1[𝑥 = 2]

...
1[𝑥 = 𝐾 − 1]

⎤⎥⎥⎥⎦ (B.16)

𝐴(𝜂) = ln
(︁

1 +
𝐾−1∑︁
𝑘=1

exp{𝜂𝑘}
)︁

(B.17)

𝜕𝐴(𝜂)

𝜕𝜂𝑘
= 𝜇𝑘 (B.18)

B.2.2 Dirichlet

The Dirichlet distribution is a continuous probability distribution over 𝐾 random variables
𝜇1, 𝜇2, . . . , 𝜇𝐾 such that 0 < 𝜇𝑘 < 1 and

∑︀𝐾
𝑘=1 𝜇𝑘 = 1. The distribution is parameterized

by a vector of 𝐾 concentration parameters 𝛼 = (𝛼1, . . . , 𝛼𝐾). It is the conjugate prior
of the categorical distribution. When 𝐾 = 2, the Dirichlet distribution reduces to a Beta
distribution.

𝑝(𝜇|𝛼) =
Γ(

∑︀𝐾
𝑘=1 𝛼𝑘)∏︀𝐾

𝑘=1 Γ(𝛼𝑘)

𝐾∏︁
𝑘=1

𝜇
(𝛼𝑘−1)
𝑘 (B.19)

𝜂 =

⎡⎢⎣ 𝜂1...
𝜂𝐾

⎤⎥⎦ =

⎡⎢⎣𝛼1 − 1
...

𝛼𝐾 − 1

⎤⎥⎦ (B.20)

𝑇 (𝜇) =

⎡⎢⎢⎢⎣
ln𝜇1
ln𝜇2

...
ln𝜇𝐾

⎤⎥⎥⎥⎦ (B.21)

𝐴(𝜂) =
(︁ 𝐾∑︁

𝑘=1

ln Γ(𝜂𝑘 + 1)
)︁
− ln Γ(

𝐾∑︁
𝑘=1

𝜂𝑘 + 1) (B.22)

𝜕𝐴(𝜂)

𝜕𝜂𝑘
= ln𝜓(𝛼𝑘)− ln𝜓(

𝐾∑︁
𝑘=1

𝛼𝑘) (B.23)

where Γ and 𝜓 are the gamma and digamma function respectively.

96



B.2.3 Gamma

The Gamma distribution is a continuous probability distribution over positive random
variable 𝑥 > 0. The distribution is governed by a shape parameter 𝑎 > 0 and a rate
parameter 𝑏 > 0.

𝑝(𝑥|𝑎, 𝑏) =
𝑏𝑎

Γ(𝑎)
𝑥𝑎−1 exp{−𝑏𝑥} (B.24)

𝜂 =

[︂
𝜂1
𝜂2

]︂
=

[︂
−𝑏
𝑎− 1

]︂
(B.25)

𝑇 (𝑥) =

[︂
𝑥

ln𝑥

]︂
(B.26)

𝐴(𝜂) = ln Γ(𝜂2 + 1) + (𝜂2 + 1) ln(−𝜂1) (B.27)
𝜕𝐴(𝜂)

𝜕𝜂
=

[︂
𝑎
𝑏

𝜓(𝑎)− ln 𝑏

]︂
, (B.28)

where Γ and 𝜓 are the gamma and digamma function respectively.

B.2.4 Normal

The Normal distribution is a widely used continuous probability distribution over real
vectors x ∈ R𝐷. It has two parameters: mean 𝜇 ∈ R𝐷 and a covariance matrix Σ. Σ is
constrained to be a positive definite matrix. The distribution can also be expressed with
the precision matrix Λ = Σ−1.

𝑝(x|𝜇,Σ) =
1

(2𝜋)
𝐷
2 |Σ|

1
2

exp
{︁
− 1

2
(x− 𝜇)⊤Σ−1(x− 𝜇)

}︁
(B.29)

𝜂 =

[︂
𝜂1
𝜂2

]︂
=

[︂
Σ−1𝜇

−1
2 vec(Σ−1)

]︂
(B.30)

𝑇 (x) =

[︂
x

vec(xx⊤)

]︂
(B.31)

𝐴(𝜂) = −1

4
𝜂⊤1 mat(𝜂2)

−1𝜂1 −
1

2
ln | − 2 mat(𝜂2)|+

𝐷

2
ln 2𝜋 (B.32)

𝜕𝐴(𝜂)

𝜕𝜂1
= 𝜇 (B.33)

𝜕𝐴(𝜂)

𝜕𝜂2
= vec

(︁
Σ + 𝜇𝜇⊤

)︁
(B.34)

where “vec‘ is the vectorization operation and “mat” is its inverse.

B.2.5 Normal-Wishart

The Normal-Whisart is a continuous probability distribution over a pair of real vector
and positive definite matrix 𝜇 ∈ R𝐷,Λ ∈ R𝐷×𝐷. It is the conjugate prior of the normal
distribution with unknown mean and precision matrix. It is paremeterized by a mean m,
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a scaling factor 𝛽, a positive definite matrix W and a degree of freedom 𝜈:

𝑝(𝜇,Λ|m, 𝛽,W, 𝜈) = 𝐵 exp{𝜈 −𝐷
2

ln |Λ| − 𝛽

2
tr(ΛM)} (B.35)

M = 𝛽(𝜇−m)(𝜇−m)⊤ + W−1 (B.36)

𝐵 = 𝛽
𝐷
2 |W|−

𝜈
2

(︁
2

(𝜈+1)𝐷
2 𝜋

𝐷(𝐷+1)
4

𝐷∏︁
𝑑=1

Γ(
𝜈 + 1− 𝑑

2
)
)︁−1

(B.37)

𝜂 =

⎡⎢⎢⎣
𝜂1
𝜂2
𝜂3
𝜂4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝛽m

−𝛽
2

−1
2 vec(𝛽mm⊤ + W−1)

𝜈−𝐷
2

⎤⎥⎥⎦ (B.38)

𝑇 (𝜇,Λ) =

⎡⎢⎢⎣
Λ𝜇
𝜇⊤Λ𝜇
vec(Λ)
ln |Λ|

⎤⎥⎥⎦ (B.39)

𝐴(𝜂) = − ln𝐵 (B.40)
𝜕𝐴(𝜂)

𝜕𝜂1
= 𝜈Wm (B.41)

𝜕𝐴(𝜂)

𝜕𝜂2
= tr

(︁ 1

𝛽
I + 𝜈Wmm⊤

)︁
(B.42)

𝜕𝐴(𝜂)

𝜕𝜂3
= 𝜈 vec(W) (B.43)

𝜕𝐴(𝜂)

𝜕𝜂4
=

∑︁
𝑑=1

𝜓(
𝜈 + 1− 𝑑

2
) +𝐷 ln 2 + ln |𝑙𝑛𝑙𝑛W|. (B.44)
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