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A b s t r a c t 

Prom an early age, infants show an innate abi l i ty to infer l inguistic structures from 
the speech signal long before they learn to read and write. In contrast, modern speech 
recognition systems require large collections of transcribed data to achieve a low error rate. 
The relatively recent field of Unsupervised Speech Learning has been dedicated to endow 
machines wi th a similar ability. A s a part of this ongoing effort, this thesis focuses on the 
problem of discovering a set of acoustic units from a language given untranscribed audio 
recordings. Part icular ly, we explore the potential of Bayesian inference to address this 
problem. 

Firs t , we revisit the state-of-the-art non-parametric Bayesian model for the task of acous­
tic unit discovery and derive a fast and efficient Var ia t iona l Bayes inference algori thm. Our 
approach relies on the stick-breaking construction of the Dir ichlet Process which allows 
expressing the model as a Hidden Markov Model-based phone-loop. W i t h this model and a 
suitable mean-field approximat ion of the variat ional posterior, the inference is made wi th an 
efficient iterative a lgori thm similar to the Expec ta t ion-Maximiza t ion scheme. Experiments 
show that this approach performs a better clustering than the original model while being 
orders of magnitude faster. 

Secondly, we address the problem of defining a meaningful a pr ior i d is t r ibut ion over 
the potential acoustic units. To do so, we introduce the Generalized Subspace Model, a 
theoretical framework that allows defining distributions over low-dimensional manifolds 
in high-dimensional parameter space. Us ing this tool , we learn a phonetic subspace— 
a cont inuum of phone embeddings—from several languages w i t h transcribed recordings. 
Then , this phonetic subspace is used to constrain our system to discover acoustic units that 
are s imilar to phones from other languages. Exper imenta l results show that this approach 
significantly improves the clustering quali ty as well as the segmentation accuracy of the 
acoustic unit discovery system. 

Final ly , we enhance our acoustic units discovery model by using a Hierarchical Dirichlet 
Process prior instead of the simple Dir ichlet Process. B y doing so, we introduce a Bayesian 
bigram phonotactic language model to the acoustic unit discovery system. This approach 
captures more accurately the phonetic structure of the target language and consequently 
helps the clustering of the speech signal. A l so , to fully exploit the benefits of the phonotactic 
language model, we derive a modified Var ia t iona l Bayes a lgori thm that can balance the 
preponderance of the role of the acoustic and language model during inference. 



A b s t r a k t 

Dět i maj í již od ú t l é h o věku vrozenou schopnost vyvozovat j azykové znalosti z m l u v e n é 
řeči - dlouho p ř e d t í m , než se n a u č í číst a p s á t . M o d e r n í s y s t é m y pro rozpoznáván í řeči 
oproti tomu p o t ř e b u j í k dosažen í nízké chybovosti z n a č n á m n o ž s t v í p ř e p s a n ý c h řečových 
dat. Teprve n e d á v n o za ložená vědecká oblast "učení řeči bez supervize" se věnuje p ř e n o s u 
p o p s a n ý c h l idských schopnos t í do s t ro jového učení . V r á m c i t é t o oblasti se na še p ráce 
zaměřu je na p r o b l é m u rčen í sady akus t i ckých jednotek z jazyka , kde jsou k disposici pouze 
n e p ř e p s a n é zvukové nah rávky . P r o řešení tohoto p r o b l é m u z k o u m á m e ze jména po tenc i á l 
bayesovské inference. 

V p rác i nejprve pro ú lohu u rčován í akus t i ckých jednotek revidujeme využ i t í state-of-
the-art n e p a r a m e t r i c k é h o bayesovského modelu, pro k t e r ý jsme odvodi l i rychlý a efek­
t i vn í algoritmus var iačn í bayesovské inference. N á š p ř í s t u p se op í rá o konstrukci Dir ichle-
tova procesu p o m o c í " l á m á n í h ů l k y " (stick breaking) umožňuj íc í vy jád řen í modelu jako 
fonémové smyčky za ložené na s k r y t é m Markovově modelu. S t í m t o modelem a vhod­
nou s t ř e d o p o l n í (mean-field) a p r o x i m a c í var iačn í pos t e r io rn í p r a v d ě p o d o b n o s t i je infer­
ence rea l izována p o m o c í efekt ivního i t e r ačn ího algori tmu, p o d o b n é h o z n á m é m u s c h é m a t u 
Expec ta t ion-Maximiza t ion ( E M ) . Exper imenty ukazuj í , že tento p ř í s t u p zajišťuje lepší 
sh lukování než p ů v o d n í model, p ř i čemž je ř ádově rychlejší . 

D r u h ý m p ř í n o s e m p r á c e je řešení p r o b l é m u definice smys lup lného a p r i o r n í h o rozdě len í na 
po tenc i á ln í akus t ické jednotky. Za t í m t o úče lem p ř e d s t a v u j e m e zobecněný p o d - p r o s t o r o v ý 
model (Generalized Subspace Model) - t eo re t i cký r á m e c umožňuj íc í definovat p r a v d ě p o d o b ­
nos tn í rozdě len í v n ízkod imenz ioná ln ích n a d p l o c h á c h (manifoldech) ve v y s o k o r o z m ě r n é m 
prostoru p a r a m e t r ů . P o m o c í tohoto n á s t r o j e u č íme fonet ický podprostor — kont inuum vek­
to rových r ep rezen tac í ( e m b e d d i n g ů ) fonémů — z někol ika j a z y k ů s p ř e p s a n ý m i n a h r á v k a m i . 
Pak je tento fonet ický podprostor použ i t k omezen í n a š e h o s y s t é m u tak, aby u rčené aku­
stické jednotky byly p o d o b n é f o n é m ů m z o s t a t n í c h j a z y k ů . E x p e r i m e n t á l n í výs ledky ukazuj í , 
že tento p ř í s t u p v ý z n a m n ě zlepšuje kval i tu sh lukování i p ře snos t segmentace s y s t é m u pro 
určování akus t i ckých jednotek. 

3 



K e y w o r d s 

Unsupervised Speech Learning, Acoust ic U n i t Discovery, Bayesian inference, Generalized 
Subspace M o d e l . 

K l í č o v á s l o v a 

Učen í řeči bez supervize, u rčován í akus t i ckých jednotek, bayesovská inference, zobecněný 
p o d - p r o s t o r o v ý model . 

R e f e r e n c e 

O N D E L , Lucas . Discovering Acoustic Units from Speech: 
a Bayesian Approach. Brno , 2020. P h D thesis. Brno Univers i ty of Technology, Facul ty of 
Information Technology. Supervisor Lukas B ü r g e t 

4 



D i s c o v e r i n g A c o u s t i c U n i t s f r o m Speech: 
a Bayes ian A p p r o a c h 

D e c l a r a t i o n 

Hereby I declare that this doctoral thesis was prepared as an original author's work under 
the supervision of D r . Lukas Burget . A l l the relevant information sources, which were used 
during preparation of this thesis, are properly cited and included in the list of references. 

Lucas Ondel 
August 4, 2020 

A c k n o w l e d g e m e n t s 

A long t ime ago, in what seems to be another life, I decided to spend a few months in 
Brno , Czech Republ ic . . . Months have turned to years and, to my bewilderment, here I am, 
submit t ing a doctoral thesis. It is sometimes difficult to foresee the consequences of small 
decisions. 

Fi rs t and foremost, I would like to express my sincere gratitude to L u k á š Burget who 
successfully tame me and led me a l l along my studies. I can only hope someday of reaching 
his skills and knowledge. I would like also to thanks Jan "Honza" Cernocký, the benevolent 
dictator of the Brno speech group, who has been a constant support dur ing a l l these years. 

I would like also to deeply thanks my parents, Henr i Onde l and El i sabe th Mar in ie r who 
have raised the l i t t le devi l I was and, probably, s t i l l am. M y two brothers, Quent in and 
Renaud, also deserve some credits for a l l the joys, adventures, and sometimes fights we had 
together... A s Regis Loise l have wri t ten: "Perhaps the purpose of ageing is to remember 
we were once a child". 

These years i n the Czech Republ ic wouldn' t have been the same had I not met M i c h a l 
and Jana Jurka . Thei r kindness and friendship are invaluable to me and I shall never forget 
the t ime I spend wi th them. M i c h a l , Jana, words are lacking to express my feelings so let 
me just say: J á V á m děkuji . 

Final ly , I would like to address a very special thanks to J i n y i Y a n g for her support and 
love during this long journey. J i ny i , my next adventure w i l l be wi th you. 



Contents 

Mathemat ica l notation 4 

1 Introduction 5 
1.1 Mot ivat ions 5 
1.2 Related works 6 
1.3 Thesis Contr ibut ions 8 

2 Non-Parametr ic Bayesian Phone-Loop M o d e l 10 
2.1 Bayesian formulation of the A U D problem 10 

2.1.1 Non-parametric Bayesian A U D 11 
2.2 M o d e l 14 

2.2.1 Acoust ic M o d e l 14 
2.2.2 Base measure 16 
2.2.3 Generative Process 18 
2.2.4 Phone-loop interpretation 19 
2.2.5 Joint dis t r ibut ion 20 

2.3 Inference 22 
2.3.1 V B E-step 23 
2.3.2 V B M-step 25 
2.3.3 Truncat ion 27 

2.4 Exper imenta l Setup 28 
2.4.1 D a t a 28 
2.4.2 Features 29 
2.4.3 Metr ics 29 

2.5 Results and analysis 31 
2.5.1 Settings 31 
2.5.2 Var ia t ional Bayes vs Gibbs Sampl ing 31 
2.5.3 Var ia t iona l Bayes objective for A U D 33 
2.5.4 Discr iminat ive features 33 
2.5.5 Non-Parametr ic vs Parametr ic Phone-Loop 36 

2.6 Conclusion 36 

3 Generalized Subspace M o d e l for Sound Representation 38 
3.1 Generalized Subspace M o d e l 38 

3.1.1 Defini t ion 39 
3.1.2 Rela t ion w i t h the i-vector model 40 
3.1.3 Inference 41 
3.1.4 Example 42 

1 



3.2 Subspace Hidden Markov M o d e l 47 
3.2.1 Phonetic subspace 49 
3.2.2 Encod ing the H M M parameters 50 
3.2.3 Example : learning the Engl i sh phonetic space 53 

3.3 Dirichlet Process Subspace Hidden Markov M o d e l 56 
3.3.1 Revis i t ing the base measure 56 
3.3.2 Approx ima t ing the phonetic subspace of the target language . . . . 57 

3.4 Results 58 
3.4.1 Exper imenta l setup 58 
3.4.2 O p t i m a l subspace dimension 59 
3.4.3 Benefits of the universal phonetic subspace 60 
3.4.4 Compar ison wi th the D P - H M M 60 

3.5 Conclusion 61 

4 Phonotactic Language M o d e l 64 
4.1 Non-Parametr ic B i g r a m Phone-Loop M o d e l 64 

4.1.1 Hierarchical Dirichlet Process 65 
4.1.2 St ick-Breaking constructions 66 
4.1.3 Complete M o d e l 67 
4.1.4 Joint dis t r ibut ion 67 

4.2 Inference 69 
4.2.1 V B - M step for the H D P 69 

4.3 Improper Var ia t iona l Bayes Inference 71 
4.4 Results 74 

4.4.1 Exper imenta l Setup 74 
4.4.2 B ig ram vs unigram phonotactic language model 74 
4.4.3 Effect of the correction factors 74 

4.5 Conclusion 76 

5 Conclusion 78 
5.1 Future work 78 

5.1.1 Acoust ic Mode l ing 78 
5.1.2 Language Mode l ing 79 

5.2 Summary of contributions 80 

A Variat ional Bayes 91 
A . l Var ia t iona l Bayes objective 91 
A . 2 Approx ima t ing posterior distributions 92 

A.2.1 Parametr ic approximation 93 
A.2 .2 Mean-F ie ld approximation 93 
A . 2.3 Structured mean-field approximat ion 93 

B Exponent ia l Family of Distributions 94 
B . l Exponent ia l family of dis tr ibut ion 94 

B . l . l Pa r t i a l derivative of the log-normalizer 94 
B.1.2 Conjugate P r io r 95 

B.2 Distr ibut ions 95 
B.2.1 Categorical 96 
B.2.2 Dirichlet 96 

2 



B.2.3 G a m m a 97 
B.2.4 N o r m a l 97 
B.2.5 Normal -Wishar t 97 

3 



Mathematical notation 

Vectors are denoted by lower-case bo ld R o m a n or Greek letters such as x or A; they are 
assumed to be column vectors. Uppercase bo ld R o m a n or Greek letters, such as X or A , 
denote matrices. A superscript T denote the transpose of a mat r ix or a vector. The list of 
mathematical notations used in this thesis are shown in the following table: 

Nota t ion Name Descript ion 
t r (M) trace Sum of the diagonal elements of the 

square mat r ix M . 
vec(M) vectorize Returns a l l the columns of the ma­

t r ix M as a vector. 
mat (m) inverse vectorize Returns a D x D square mat r ix M 

from a Z? 2 -dimensional vector m. 
The mat r ix is created column-wise. 

diag(M) diagonal Returns the diagonal elements of a 
square mat r ix M . 

l t r i (M) lower triangular Returns the lower tr iangular part of 
a mat r ix (not including the diago­
nal) as a vector. 

1 [condition] indicator Returns 1 i f "condi t ion" is true, 0 
otherwise. 

<Jx(y) Dirac delta function Returns +oo if y = x, 0 otherwise, 
and /^<5 x(y)dy = 1. 

(a)p(x) expectation Expecta t ion of a w i th respect to (a)p(x) 
p(x): J ap(x)dx. 

BKL(q(x)\\p(x)) Kul lback-Leib le r divergence Divergence between two distr ibu­
tions defined as: Jx q(x) In | | ^ y d x . 

B(a,0) Beta dis t r ibut ion See appendix B . 2 . 2 . 
C(TT) Categorical dis t r ibut ion See appendix B . 2 . 1 . 
25(a) Dirichlet d is t r ibut ion See appendix B . 2 . 2 . 
a(a) G a m m a dis t r ibut ion See appendix B . 2 . 3 . 
J V ( / * , £ ) N o r m a l dis t r ibut ion See appendix B . 2 . 4 . 
A/"yV(m, j3, W , v) Normal -Wishar t dis t r ibut ion See appendix B . 2 . 5 . 
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C h a p t e r 1 

Introduction 

Speech is a highly structured signal which serves as the pr imary mean of communicat ion 
among humans. The easiness and apparent s impl ic i ty w i th which we extract information 
hide the profound complexity of the speech signal and the human hearing apparatus. In 
acoustically challenging conditions, human listeners effortlessly decode phones, syllables, 
words composing the message. Remarkably, infants learn to recognize speech long before 
to know to read or write (Dupoux, 2018). They learn from a very l imi ted set of speakers 
(mostly their caregivers) and generalizes very well to other speakers and new acoustic 
conditions. O n the contrary, computers use an extremely large amount of data w i th high 
diversity i n terms of speakers and recording conditions to achieve similar performance to 
human listeners (Xiong et a l . , 2016; Stolcke and Droppo , 2017). The difference between 
humans and machines is par t icular ly s t r iking as the latter requires very strong supervision 
whereas humans can learn to hear and speak w i t h l i t t le guidance. The field of Unsupervised 
Speech Learning ( U S L ) (Glass, 2012; Goldwater and Johnson, 2007; Lee, 2014; Drexler, 
2016; K a m p e r et a l . , 2017a) has been dedicated to endow machines wi th a s imilar capabil i ty: 
to learn to recognize the speech signal w i t h l i t t le or no supervision. This thesis is our 
contr ibution to the U S L research field and proposes a Bayesian approach to discover a 
phonological system—the set of basic sounds called acoustic units used to communicate in 
a language—from a collection of unlabeled audio recordings. 

This introductory chapter is organized as follows: first we motivate the research interest 
of this thesis in section 1.1. Then , we survey related works in section 1.2 and summarize 
the contributions of this work in section 1.3. 

1.1 M o t i v a t i o n s 

Automat ic Speech Recognit ion ( A S R ) and related fields have made tremendous progress 
over the last 50 years. F r o m the single-speaker digit recognition system proposed by Bel l ' s 
lab (Davis et a l . , 1952) to recent large vocabulary continuous speech recognition systems 
(Sak et a l . , 2014, 2015; Sercu et a l . , 2016; B i et a l . , 2015; Q i a n et a l . , 2016; Y u et a l . , 
2016), the A S R technology has matured to the point where, i n certain conditions, it shows 
similar performance to human listeners (Xiong et a l . , 2016; Stolcke and Droppo, 2017). 
The growth of computat ional resources paired wi th advanced machine learning techniques 
has yielded an almost continuous reduction of the error rates over t ime. Whereas early 
systems relied on expert-designed rules (David and Selfridge, 1962), the field has gradually 
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moved to statist ical methods extracting empir ical statistics from large collections of data. 
The amount of necessary expert knowledge has decreased to the extent that a state-of-
the-art system can be buil t w i t h solely audio recordings and their corresponding textual 
transcriptions. However, the reduction of expert knowledge has been succeeded by a drastic 
increase i n the amount of data. Nowadays, commercial systems rely on thousands of hours 
of transcribed data (Saon et a l . , 2015; H a n et a l . , 2017; X i o n g et a l . , 2018). These algorithms 
are so data-hungry that the appl icabi l i ty of A S R systems is l imi ted to the very smal l set 
of languages in the world for which there is a sufficient amount of transcribed data and 
commercial interest. Out of the 7000 languages spoken worldwide (Eberhard, D a v i d M . , 
Ga ry F . Simons, and Charles D . Fennig, 2020), only about a hundred of them are covered 
by A S R wi th varying degrees of accuracy 1 . Th is l imi ta t ion is problematic as language 
diversity is d iminishing worldwide at an alarming pace. Data-driven methods to discover 
a phonological system would be a strong help for on-field linguists to quickly document 
endangered languages. Moreover, for languages having low amount of transcribed data, 
the data-driven phonetic transcript ion of speech corpus can bootstrap a wide range of 
downstream applications such as word discovery (Lee et a l . , 2015), language identification 
(Shum et al . , 2016), topic identification ( L i u et a l . , 2017; Kes i ra ju et a l . , 2017) or text-to-
speech (Dunbar et a l . , 2019). 

A s already mentioned, infants learn to recognize speech long before they learn to read 
and write (Dupoux, 2018). The inner details of this process remain largely unknown. 
Yet , a better understanding of the human speech learning mechanism would have a great 
impact on our knowledge of the brain and how to help children affected by neurological 
disorders. Investigation on this matter is complicated for ethical and pract ical reasons. It 
is impossible to constantly monitor children from their b i r th i n a non-invasive way and 
designing experiments w i th toddlers is par t icular ly difficult due to their l imi ted attention 
and undeveloped verbal communicat ion skills. A n unsupervised machine learning model 
simulating the acquisit ion of the phonology—and recognizing speech in general—would be 
a precious tool to psycho-linguists to better understand the cognitive processes underlying 
speech acquisit ion by humans. 

Final ly , the recent success of machine learning i n a wide range of areas has heightened 
the hope and the interest of our modern societies into bui ld ing more intelligent systems. 
However, the t radi t ional approach based on training a deep neural network to discriminate 
an input into a l imi ted number of classes is very restrictive and severely narrows the range 
of applications. Indeed, the assumption that we can collect a sufficient amount of labeled 
data i n a l l situations of interest is unrealistic. Conversely, the whole biosphere shows an 
incredible capacity to learn and to adapt from its sole sensory data. We believe that 
the development of unsupervised learning of such a complex signal as speech would be a 
significant breakthrough i n direction of a true—or at least a practical—artif icial intelligence. 

1.2 R e l a t e d w o r k s 

The task of discovering a phonological system from only speech data amounts to solve three 
sub-problems: 

• decomposing the speech into variable-length segments 

x h t t p s : / / c l o u d . g o o g l e . c o m / s p e e c h - t o - t e x t / d o c s / l a n g u a g e s 

l.i 

http://google.com/speech-to-text/docs/languages


• clustering each of these segments, these clusters are often referred to as acoustic units 

• finding an appropriate model complexity, that is choosing the appropriate number of 
clusters necessary to describe the language. 

These three sub-tasks have been addressed, jo int ly or independently i n numerous works. 
In the following, we attempt to give a general overview of the prior work on discovering 
acoustic units. 

E a r l y approaches to discovering acoustic units have treated the segmentation and clus­
tering problem separately: (Cohen, 1981) proposes a dynamic programming based speech 
segmentation algori thm, (Lee et a l . , 1988) uses two distinct and independent statist ical 
models to segment and cluster the segments respectively, (Cernocky, 1998) decompose the 
speech signal into quasi-stationary sub-signal before quantizing them, (Garc ia and G i s h , 
2006) uses segmental Gaussian M i x t u r e M o d e l to cluster variable-length sequence of fea­
tures. These approaches have a l l i n common that the number of acoustic units, i.e. clusters, 
is a user-defined parameter and cannot be inferred from the data. 

Another line of work relies on the Segmental D y n a m i c T ime Warp ing ( S - D T W ) algori thm 
(Park and Glass, 2005; Jansen et a l . , 2010; Jansen and V a n Durme, 2011; K a m p e r et a l . , 
2017b) In these works, the S - D T W algori thm is used to spot re-occurring pattern i n a 
signal. Th is approach differs from other works as it tries to direct ly identify words or 
syllables rather than phone-like units. The rationale is the following: since words last 
much longer than phones, they are more easily discovered. W h i l e this may seem to be a 
compell ing idea, it has, nevertheless, a severe drawback: the number of words i n a language 
being l i teral ly infinite, it is clear that we w i l l never have enough data to discover a l l possible 
words. Moreover, clustering word-like units is more difficult as they have low occurrence 
frequency compared to phones. 

More recently, various Bayesian Generative Models ( B G M ) has been proposed to discover 
acoustic units (Lee and Glass, 2012; Onde l et a l . , 2016, 2017; Varadarajan et a l . , 2008; 
K a m p e r et a l . , 2016, 2017a; Kamper , 2017). These models improve over early approaches 
such as (Lee et a l . , 1988) by using a single model to segment and cluster speech together. 
Moreover, the use of non-parametric Bayesian modeling (Orbanz and Teh, 2010; Teh and 
Jordan, 2010) allows these models to also infer the number of acoustic units from the 
data itself. Whereas in i t i a l models were trained w i t h Gibbs Sampling, the development of 
variat ional methods for non-parametric models (Blei , 2004; B l e i et a l . , 2006) has enabled 
more efficient and scalable t ra ining approaches (Ondel et a l . , 2016). W h i l e B G M s have 
shown to be more efficient than D T W based methods (Ondel et a l . , 2018), they have 
relatively weak modeling power—compared to neural network based models—to preserve 
the t ractabi l i ty of the training. 

Neura l networks based generative models have been successfully applied to learn a pow­
erful latent representation of speech (Dunbar et al . ; K a m p e r et a l . , 2015; H s u and Glass, 
2018; H s u et a l . , 2017; M i l d e and Biemann, 2018; Chorowski et a l . , 2019). W h i l e most of 
these models are t rained in an unsupervised fashion, other works replace the t radi t ional 
t ranscript ion w i t h a different modal i ty such as images or videos (Holzenberger et a l . , 2019; 
M e r k x et a l . , 2019; Harwath et a l . , 2016, 2018). W h i l e these models have generally more 
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modeling capabil i ty compared to B G M s , they cannot easily cluster the speech signal as the 
use of discrete latent variables precludes the back-propagation of gradients. Several works 
have been proposed to incorporate layers w i th discrete output either by relaxing discrete 
distributions (Jang et a l . , 2016; Maddison et a l . , 2017) or using some gradient approxima­
t ion (van den O o r d et a l . , 2017), nevertheless, clustering w i t h neural network remains a 
difficult issue. F ina l ly , recent works have shown than B G M s can be combined in a pr in­
cipled way w i t h neural networks (Johnson et a l . , 2016). Th i s line of work is par t icular ly 
interesting as it yields models that can learn jo in t ly continuous and discrete hierarchical 
representations of the signals. 

1.3 T h e s i s C o n t r i b u t i o n s 

This thesis has three major contributions; each of them is presented in a distinct chapter: 

Non-Parametr ic Bayesian Phone-Loop M o d e l In chapter 2, we revisit a non-parametric 
Bayesian model for acoustic unit discovery proposed i n (Lee and Glass, 2012). Whereas 
the authors originally used the Chinese Restaurant Process to sample from the dis t r ibut ion 
of the model's parameters, we propose to approximate this posterior dis t r ibut ion wi th the 
Variational Bayes framework. To achieve this, we describe the generative process of the 
model w i th the Sethuraman stick-breaking construction of the Dir ichlet Process. Then , 
by choosing an adequately structured mean-field factorization of the variat ional posterior 
we show that the t ra ining of the model is amenable to a Var ia t iona l Bayes Expecta t ion-
M ax imiza t i on ( V B - E M ) algori thm. This new inference scheme is beneficial as it consider­
ably speeds up the t ra ining and allows us to discover acoustic units from a larger amount 
of data. 

Generalized Subspace M o d e l for Sound Representation Bayesian approaches for 
acoustic unit discovery rely on, among other components, a prior dis t r ibut ion over sounds. 
This prior dis t r ibut ion weighs which sounds are l ikely to be retained as acoustic units when 
clustering the speech. In general, this dis t r ibut ion is chosen to be non-informative, that is, 
it allows potential ly any possible sounds to be an acoustic unit . In chapter 3, we propose to 
bu i ld a more refined prior which gives higher weights to a subset of sounds similar to phones 
from other languages. To do so, we introduce a new theoretical framework: the Generalized 
Subspace Model ( G S M ) . The G S M allows learning low-dimensional embeddings representing 
probabil i ty dis t r ibut ion. In our case, we use the G S M in the following manner: 

• given a set of phonetically transcribed speech data (from a different language than 
the target one), we learn a Hidden Markov M o d e l ( H M M ) model for each phone. 

• using the G S M framework we learn a subspace in the total parameter space of the 
H M M capturing the phonetic variabi l i ty 

• finally, we set the prior dis t r ibut ion over sounds of the acoustic unit discovery model 
to be non-zero only on the subspace previously learned. 

The G S M is a principle way to incorporate prior information into a model . For the task of 
acoustic units discovery, we use the G S M to teach the model "what is a phone" (by using 
transcribed data from other languages) before clustering the speech in the target language. 
In addi t ion to significantly improve the discovery of acoustic units, the G S M is very flexible 
and can be applied to a wide family of models. 
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Phonotactic Language M o d e l Most of the Bayesian models for acoustic units dis­
covery rely on the Dir ichlet Process prior. W h i l e mathematical ly convenient, this prior 
assumes the probabil i ty of sequence of acoustic units to be given by an unigram distr i­
but ion. In chapter 4, we propose to address this l imi ta t ion by developing a model based 
on the Hierarchical Dirichlet Process ( H D P ) . The H D P is a non-parametric prior which 
defines a probabil i ty over an infinite set of condit ional distributions. We use a two-level 
H D P to bu i ld a non-parametric A U D model w i th bigram transi t ion probabilites between 
acoustic units. B y using Teh's stick-breaking construction of the H D P , we derive a V B - E M 
t ra ining algori thm almost identical to the one used for the Dir ichlet Process based model. 
Addi t ional ly , to reduce the effect of the features; independence assumption of the H M M , 
we propose a corrected version of the model by introducing language and acoustic scaling 
factors. We show that these factors can be easily integrated i n the V B - E M tra ining and 
help to control the preponderance of the acoustic and language models for clustering speech 
data. 

Final ly , for the sake of reproducibili ty, a pract ical implementat ion of a l l the models and 
experiments presented i n this thesis can be found at: h t t p s : / / g i t h u b . c o m / b e e r - a s r / 
beer . 
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C h a p t e r 2 

Non-Parametric Bayesian 
Phone-Loop Model 

This chapter describes a non-parametric Bayesian phone-loop model for A U D . It w i l l serve 
as a basis for more refined models presented i n chapters 3 and 4. It is derived from the 
combination of the Hidden Markov M o d e l ( H M M ) (Rabiner, 1989) and non-parametric 
Bayesian methods (Ferguson, 1973; Rasmussen, 2000; Teh, 2010). Whereas the H M M 
has been used since the early days of statist ical speech recognition (Jelinek, 1976), non-
parametric Bayesian methods were introduced more recently in the field of speech and 
language processing. The i r capacity to assign probabil i ty to infinite sets has found impor­
tant applications i n language modeling (Teh, 2006; Goldwater et a l . , 2006), unsupervised 
text segmentation (Mochihashi et a l . , 2009), and speaker diar izat ion (Fox et a l . , 2011). 
Drawing inspirat ion from (Goldwater et a l . , 2009; Fox et a l . , 2011), the first version of 
the non-parametric phone-loop model for A U D was proposed in (Lee and Glass, 2012) and 
paved the way to a Bayesian approach to A U D . Our model revisit the model proposed 
(Lee and Glass, 2012) by replacing the Chinese Restaurant Process w i th the stick-breaking 
representation of the Dir ichlet Process. Th is seemingly minor modification has, however, 
major consequences: 

• it allows the use of the Var ia t iona l Bayes framework as inference instead of Gibbs 
Sampling. Therefore, it re-formulates the problem of A U D as an opt imizat ion of an 
objective function. 

• it allows to reinterpret the model as a phone-loop model making possible, by means of 
dynamic programming, to consider a l l possible sequences of units for a given sequence 
of speech features 

• it allows the parallel ization of the t ra ining allowing use of bigger corpora. 

2.1 B a y e s i a n f o r m u l a t i o n o f t h e A U D p r o b l e m 

We now give a formal definition of the A U D problem wi th in the Bayesian framework. Let 
IE be a vector space, and r? £ IE a finite dimensional representation of sounds, i.e. 77 is 
a sound embedding. G iven a sequence of N observations X = ( x i , . . . , xjy) of forming a 
speech utterance, we a im to find: 
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• A collection of P acoustic units H = (rjl,... ,rjP) best describing the observations. 
We denote the selected sounds acoustic units as they represent the basic elements of 
speech. For now, we assume P to be known. 

• The sequence of indices u = m,..., U L , L < N where u% £ { 1 , . . . , P} is the index of 
an acoustic unit . Thereafter, we w i l l denote u as the label sequence. Note that, in 
practice, L is unknown. 

Using Bayes' rule, we can formulate the search of the best set of units H * and the best 
label sequence u* i n probabil ist ic terms: 

H * , u * = a r g m a x p ( H , u | X ) (2.1) 
H , u 

/TT „ i x l p ( X | H , u ) p ( H , u )  
P ( H ' U | X ) " / H £ u p ( X | H , u ) p ( H , u ) d H <2"2) 

Because of the complexity of the task and the mult iple way of describing a language phonet­
ical ly (phonetic features, phones, tri-phones, syllables, ...), the notion of „best solution" is 
somewhat tedious. We w i l l therefore focus our attention on the quantity p (H, u | X ) rather 
than just the most l ikely solution given by H * and u*. 

The Bayesian statement of A U D given i n (2.1) and (2.2) is reminiscent of the statistical 
formulation of A S R advocated by Frederick Jelinek (Jelinek, 1976). However, in the case of 
A U D , the inventory of units is unknown and needs to be inferred from the data along wi th 
the acoustic description of the units encoded i n the embeddings rjl,rj2, • • • • Conversely, 
there is no need for these embeddings i n A S R since the acoustic description of the words 
is assumed to be known or is unnecessary for the so-called end-to-end approach to A S R 
(Graves and Ja i t ly , 2014). 

2.1.1 N o n - p a r a m e t r i c B a y e s i a n A U D 

U n t i l now, we have assumed the number of acoustic units P to be fixed. Choosing a good 
value for P is, however, non- t r iv ia l as we don't know beforehand the type of acoustic units 
which w i l l be chosen by the A U D algori thm. If the units represent phones, then, P might 
be between 50 or 100 depending on the language. O n the other hand, i f the units represent 
phones i n context (di-phone, tri-phone, ...), we need to choose a much larger value for P 
(several thousand at least). We see that any choice of P implies some assumption and, 
consequently, w i l l affect the type of acoustic units derived from the algori thm. Rather 
than making a hard decision, we prefer to let the A U D algori thm to choose an adequate 
P depending on the given data. Pract ical ly, this can be achieved by let t ing P —>• oo and 
adding a dis t r ibut ion V over the parameters of p(u, H ) 1 . This approach, referred to as 
non-parametric Bayesian (Orbanz and Teh, 2010), does not put any l imi t on the model 
complexity a priori. Rather, the model complexity is part of the inference process and, 
therefore, should be chosen i n light of the data. In our case, we set V to be a Dirichlet 
Process (Orbanz and Teh, 2010). 

1Loosely speaking, the distribution V is a hyper-prior, i.e. a prior over the (parameters of the) prior 
distribution p(u, H) 
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The Dir ichlet process, denoted DP(7, Go) , is a stochastic process for which each realiza­
t ion G{rj) is a discrete probabil i ty dis t r ibut ion over infinitely many outcomes. Informally, 
it can be seen has an infinite-dimensional Dir ichlet dis t r ibut ion. It is parameterized by 
a probabil i ty dis t r ibut ion Go(rj) called a base measure and a concentration parameter 7. 
The base measure defines the expectation of the Dir ichlet process whereas the concentration 
controls the spread of the probabil i ty mass across the dimensions of the sampled probabil i ty 
distributions. W h e n the concentration is close to 0 , most of the probabil i ty mass is dis­
t r ibuted in a few dimensions and conversely, when the concentration is high, the probabil i ty 
mass w i l l be spread in many dimensions. 

M a n y Dir ichlet process-based models use the Chinese restaurant process as inference 
scheme (Lee and Glass, 2012; Bea l et a l . , 2002). The Chinese restaurant process is a 
sampling scheme that draws, in the l imi t , samples from the posterior dis t r ibut ion over the 
model's parameters marginalized over a l l possible dis t r ibut ion G sampled from a Dirichlet 
process (Rasmussen, 2000). Whereas this approach theoretically guarantees to draw sample 
from the exact posterior, it also has several issues: 

• the theoretical convergence is rarely met i n practice as in many cases it involves 
infinitely long sampling time 

• samples are not independent of each other and therefore the t ra ining is not easily 
parallelizable 

These drawbacks make the Chinese restaurant process unadapted to speech techonologies 
which usually require large amounts of data. To address these issues, it is convenient 
to express the Dir ichlet process in terms of the Sethuraman's stick-breaking construction 
(Sethuraman, 1994): 

1. D raw v; ~ ,8(1,7), i = {l ,2, . . . } 
2. D raw r]i ~ G0, i = {1,2,...} 

3. tpi = Ui I15=iÍ1 - vi) 

4- G(V) = j:Zi^vÁV), 

where B is a 2-dimensional Dir ichlet dis t r ibut ion (appendix B.2.2) usually called the Beta 
dis tr ibut ion. The samples from the base measure rj1,rj2, • • • are referred to as the atoms 
of the sampled probabi l i ty dis t r ibut ion G{rj). O n one hand, this constructive definition of 
the Dir ichlet process introduces the new latent variables v\, V2,... which are not needed 
when using the Chinese restaurant process. O n the other hand, as it w i l l be described in 
section 2.3, these new variables make possible to use Var ia t iona l Bayes to approximate the 
posterior dis t r ibut ion of the model . The resulting inference algori thm is easily parallelizable 
and allows to process much larger collection of data. 
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(a) Stick-Breaking Process (b) Gamma Stick-Breaking Process 

Figure 2.1: Difference between the standard stick-breaking process w i th various concentra­
t ion parameters and the stick-breaking process w i th a G a m m a prior. The abscissa repre­
sents the indices of the portions of the stick and the ordinate represents the logar i thm of 
these portions (i.e. the log-probabilities of the infinite mixture components). In F i g . 2.1a 
each line is a draw from the stick-breaking process w i th a specific concentration; there are 
10 draws for each concentration setting (1, 10, 100). In F i g . 2.1b each line is a draw from 
the stick-breaking process w i t h concentration parameter sampled from the G a m m a prior. 
The G a m m a dis t r ibut ion was parameterized by ao = 1 (shape) and bo = 10 (rate). The 
G a m m a prior increases the uncertainty of the stick-breaking and let the model choose an 
adequate value for the concentration 7 from the data. 

In the context of our A U D model, we use a Dir ichlet process to construct the prior 
p(u, H) in the following way: 

G f a ) ~ Win, Go) 
L 

p (u ,H) 
n=l 

p(u„|H) fe=l 

(2.3) 

(2.4) 

p ( u | H ) 
p ( H ) 

where L is the length of the sequence of labels u. Note that since we assume P —> 00, the 
matr ix of embeddings H = {rji, T72, • • •) has an infinite number of columns. It is important 
to understand the different roles played by the two terms in (2.4). O n one hand, Go(rj) is 
a continuous density over the embedding space: it defines which embeddings are l ikely to 
be selected as acoustic units. O n the other hand, G(rjUn) is a discrete dis t r ibut ion over an 
infinite set of atoms and it defines how frequently a unit occurs i n speech. In other words, 
G is a (unigram) language model of the units. 

Even though the Dir ichlet process assumes a potential ly infinite number of classes, it 
may favour solution wi th smal l or large number of units depending on its concentration 
parameter 7. A s can be observed from Figure 2.1a, the concentration parameter 7 strongly 
constrains samples from the Dir ichlet process. This constraint can be relaxed by augmenting 
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the stick-breaking process w i th a G a m m a prior (appendix B.2.3) over the concentration 
parameter 7 ~ G(ao, 60)2 leading to a modified stick-breaking process: 

1. Draw 7 ~ G(ao, bo) 

2. Draw V i ~ 5(1,7), i = { l , 2 , . . . } 

3. ... 

A s seen from F i g . 2.1b, the G a m m a prior increases the variance of the standard stick-
breaking process. Therefore, this avoids the issue of choosing a specific concentration 
parameter as we can infer it from the data directly. Note that the inference is part icu­
larly simple as the G a m m a dis t r ibut ion is conjugate (appendix B.1.2) to the stick-breaking 
process. 

2 . 2 M o d e l 

The Bayesian formulation of the A U D problem given i n section 2.1 does not specify a 
concrete model . More precisely, one needs to define the acoustic model p ( X | H , u ) and 
the base measure Go(rj) i n order to estimate the posterior p ( H , u | X ) . In this section, 
we describe both elements and connect them wi th the stick-breaking representation of the 
Dirichlet process completing the definition of the non-parametric Bayesian phone-loop A U D 
model. 

2.2.1 A c o u s t i c M o d e l 

We define the acoustic model assuming that, given a sequence of iV observations X = 
( x i , . . . , XJV) and a sequence of L units, the l ikel ihood factorizes as: 

L L 

p ( X | H , u ) = I J P ( X U ' | H , « , ) = Hp(XUi\vUl), (2-5) 
1=1 1=1 

where X"' is the sequence of observations associated to the Ith. unit such that X = 
X " 1 , . . . , X M i . We assume this segmentation to be known even though this is not true 
in practice. This issue w i l l natural ly disappear when we reinterpret the full A U D model 
as a large H M M in section 2.2.4. Fol lowing (Lee and Glass, 2012), we set the l ikelihood 
p(X.Ul\r)u.) to be modeled by an H M M wi th S hidden states and G M M state's emission 
density wi th C components: 

p(Xu<K() = E E P&UL>cUl > * U l \ < > • • • ' <> »n > • • • > K f > S i ; 1 , . . . , Hs

uf) (2.6) 
sul cul 

Ni 

= E E I T P W . C K I . M : ; ' 1 , • • • , / 4 r c , K r \ • • • , K T c ) P « I K i - i ) m 
sul cul n=l 

where iV/ is the length of the sequence of observations X"' and P(S^1\SQ1) = p(s\l) is the 
probabil i ty of the in i t i a l state. The parameters and the latent variables introduced i n (2.6) 
correspond to the t radi t ional parameterization of an H M M : 

2We use the shape/rate parameterization of the Gamma distribution. 
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• s III s" ! , . . . , is the sequence of indices of the H M M states for acoustic unit u\ 

-\ > • • • > °AT, is the sequence of indices of the mixture components for the acoustic 

unit u\ 

• 7Tl are the mix ing weights of the G M M associated to the i t h state of the H M M of 
the acoustic unit ui 

• [iui is the mean of the j t h N o r m a l component of the G M M associated to the i t h state 
of the H M M of acoustic unit u\ 

• is the covariance mat r ix of the j t h component of the G M M associated to the i t h 
state of the H M M of acoustic unit u\ 

Notice that we have not included any parameters of the transi t ion probabilities l s n - i ) 
as it has been empir ical ly observed that they play no significant role when modeling speech 
(Bourlard, 1996). Consequently, we assume the transi t ion probabilities are fixed parameters 
such that the probabil i ty to go to any state given the current state is the same. 

We specify now the relation between the embedding rj of the acoustic unit w i th index 
ui and the corresponding H M M parameters. F i r s t , observe that the joint d is t r ibut ion of 

P « l M M is a product of N o r m a l and Categorical distributions and each of them is 
a member of the exponential family of dis t r ibut ion (appendix B ) . Therefore we have: 

P( 
n(TCUl \,.sn,Cn 

^ « 1 

P ( C n | < ) = P ( C „ K " ) e x p { < T T ( C ; 

e x p { e < c » T r « ) - ^ ( e ' c " ) } 

(2.8) 

(2.9) 

(2.10) 

where CJ*™, T ( c ^ ) and A(u^) are the natural parameters, the sufficient statistics and 
the log-normalizer of the Categorical dis t r ibut ion of the state wi th index . Similarly, 
#*™'c™, T ( x n ) and A{6s™,Cn) are the natural parameters, the sufficient statistics and the log-
normalizer of the N o r m a l dis t r ibut ion associated wi th state s™1 and mixture 's component 
c^ !. Note that to keep the notat ion uncluttered we write T ( x ) , T ( c ) , A(LJ), A{9) instead 
of Tj;(x), T c (c ) , ^4 w (CJ) , AQ(9). For both distr ibutions, the natural parameters and the 
sufficient statistics can be derived from their respective definition (appendices B.2.4 B.2.1): 

ui 

In 

In 

i - E k — 1 ui ,k 

i y - C - 1 sn 

" « , , 2 \ v e c ( £ " 

1K = 1] 

i[C = c - i \ 

x 7 

vec(x" ;x 

(2.11) 

(2.12) 

where „vec" is the vectorization operation. Note that OJ is a ( C — 1)-dimensional vector 
whereas 7r is a C-dimensional vector. Th i s difference comes from the fact that the weights 
7 T i , T T C are constrained such that 0 < 7Tj < 1 and YlfLi 7Ti = 1- F ina l ly , the log-normalizers 
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are defined as: 

A « ) = In (5>xp{< T T(C)} 
Cn 

C - l 
= l n ( i + E e x p i < J ) 

fe=i 

l n ( / e x p { o ^ r

c » T ( x « 0 } d x 

(2.13) 

(2.14) 

(2.15) 

= —0 m ^ e ^ ) - 1 ^ - - l n \ 
D 

2 m a t f c c " ) | + - l n 2 7 r , (2.16) 

where „ m a t " is the inverse of the vectorization operator, that is it takes as input a D2-
dimensional vector and returns a D x D square matr ix . We define the embedding rjU[ to be 
the concatenation of the natural parameters of the N o r m a l and Categorical distributions 
of a l l S states of the H M M modeling the acoustic unit w i th index u\. Formally, rjUi can be 
seen as the „super -vec tor" of a l l the parameters of acoustic unit u\ and its layout is defined 
as: 

Vi 
Ill 

(2.17) 

where rfu is the concatenation of the natural parameters of the N o r m a l and Categorical 
distributions for the i t h state of the H M M modeling the acoustic unit w i th index ui. 

2.2.2 Base measure 

A s discussed previously, the base measure is the dis t r ibut ion describing a pr ior i which 
sounds (represented as embeddings) are l ikely to be retained as an acoustic unit . In our 
case, we have defined an embedding r/ to be the vector of natural parameters of an H M M . 
We set Go to be the conjugate prior (appendix B.1.2) of the condit ional H M M likelihood: 

c 

i=l 3=1 
C 

(2.18) 

(2.19) 
i=l 

Practical ly, this implies that the prior over the mixture weights 7r is Dir ichlet dis t r ibut ion 
(appendix B.2.2) and the prior over mean vector fi and the (inverse) covariance matr ix 
is a Normal -Wishar t d is t r ibut ion (appendix B.2.5) . (2.18) can be equivalently expressed as 
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a prior over the standard parameters as: 

s c 

i=l 3=1 

P ( T * ) = V(a0) 

p(^, S^-1) = AAW(m0, fa, W0, iso) 

(2.20) 

(2.21) 

(2.22) 

Where T> and A ^ W are the Dir ichlet and Normal -Wishar t (see the appendices B.2.2 and 
B.2.5 for details about their parameters). Th is choice is convenient since, due to the conju-
gacy, it greatly simplifies the inference, however, it is difficult to control precisely which type 
of sounds the base measure w i l l emphasize. This issue w i l l be addressed i n chapter 3. The 
natural parameters £ 0 , ^o> the sufficient statistics T(u>1), T(0l'J) and the log-normalizing 
functions A(£0), A(&o) of the base measure Go(r]) can be derived from the definition of the 
Dirichlet and Normal -Wishar t distributions: 

£o 

I V ) 

T{el'j) 

A(9^) 

«o,i - 1 

«0,(7-1 - 1 

. ( £ ? = i «cu ) - c 
U7 

- ^ ( C J * 

C - l 
( i n r ( & , c + c ) + ^ ^r(e 0 , i + 1 ) ) - inr(e 0 , i + c ) 

i=l 
/30m0 

2 

-5 v e c ^ o m o m j + W 0

_ 1 ) 
2 

In 5 

S = / 3 0

2 | W 0 | > 2 TT 4 n r( UQ + 1 - d \ - i 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

d=l 

To summarize, an acoustic unit w i th index u is modeled by an H M M wi th natural pa­
rameters rju. The prior probabi l i ty over each acoustic unit embedding is the conjugate of 
the H M M likel ihood conditioned on its latent variable (sn and cn). The relation between 
the H M M and the base measure is i l lustrated in F i g . 2.2. A l l together, the A U D model can 
be understood as a mixture of H M M wi th an infinite number of components. Intuitively, 
inference wi th such model amounts to cluster segments of the speech signal into temporal 
patterns. 
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Figure 2.2: M o d e l of an acoustic unit and its relation wi th the base measure. Each acoustic 
unit is parameterized by a vector of natural parameters r? corresponding to the concate­
nat ion of a l l the H M M states' parameters. The base measure, Go, is a density over the 
acoustic (natural) parameter space. Therefore, it defines a pr ior i which sounds are likely 
to be selected as acoustic units. The topology of the H M M and the transi t ion probabil i ­
ties are the same for each acoustic unit . The square nodes 0 and 4 are the non-emitt ing 
start and end states respectively. Here, we have represented the embedding space as a 
2-dimensional space (dimensions r/i and 772) but i n practice, the embeddings live i n a much 
higher dimensional space (several thousands of dimensions at least). 

2.2.3 G e n e r a t i v e Process 

We have introduced the different elements of the A U D model separately. We assemble them 
now to present the full generative process using the stick-breaking process and a H M M for 
each acoustic unit: 

1. Draw 7 ~ G(ao, bo) 

2. Draw ~ 73(1,7), « = { 1 , 2 , . . . } 

3. Draw rji ~ Go, i = {1, 2 , . . . } 

4. ipi = «i I15=iC1 - VJ) 

5. Draw a sequence of units u, Uj ~ C(ip) 

6. For each Uj in u 

(a) Draw a state path s = s\,..., si from the H M M transi t ion probabi l i ty distr ibu­
t ion 

(b) for each state Sk i n s: 

i . D raw a component Ck ~ C(7r„*.) from the state's mixture weights 

i i . D raw a data point x f c ~ M(fJ,s

u

k

j'Ck, S ^ A ) 

Note that 7r„*, ' C f c and £„*.' C f c are obtained from the natural parameters rjUj. The 
graphical representation of the generative process is shown in Figure 2.3. The model is 
essentially composed of several layers of latent variables, each of them capturing some 
specific aspect of the speech signal. The first layer (c) quantizes the continuous features 
space x, the second layer, (s) captures the temporal dynamic of the signal and finally, the 
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Figure 2.3: Bayesian network of the non-parametric acoustic unit clustering model for a 
given segmentation. a\ refers to the variable a associated to the i t h segment of the j t h unit . 
I is the durat ion of the first unit u\. Note that i n practice the segmentation is unknown 
and the inference needs to evaluate a l l possible segmentations. 

last layer (u) captures the phonetic information. Final ly , despite the fact that the model 
has many parameters and latent variables, the whole generative process is fully controlled 
by the following hyper-parameters: 

• ao and 60: the parameters of the G a m m a dis t r ibut ion control the range of l ikely values 
for the concentration of the Dir ichlet process. 

• £g (or equivalently CXQ): the parameters of the prior over the G M M mix ing weights 

• $0 (or equivalently /?o, mo, W o , 0̂): the parameters of the prior over the mean and 
precision mat r ix of each mixture component of the G M M s . 

2.2.4 P h o n e - l o o p in terpre ta t ion 

The A U D model is a special case of a Hierarchical H M M (Fine et a l . , 1998) where p(s|u)p(u) 
can be interpreted as two nested Markov processes 3. Es t imat ing the posterior over the 
latent variable s and u given the observations X = x i , . . . ,xy takes 0 ( T 3 ) time, making 
the inference impract ical . To alleviate this problem, we follow (Murphy and Paskin , 2002) 
and re-interpret our model as a single level H M M which, consequently, reduces the inference 
t ime to O ( T ) . 

Convert ing the 2-level H H M to a flat 1-level H M M requires to merge the sequence of 
units u and states s into a sequence of a single variable z = z\, zi,.... Let be U and § the 
sets of the possible units and states such that V i , j Ui G U and Sj G S. We set z = zi, Z2, • • • 

3 In this case, p(ut\ut-i) is simply p(ut). 
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Figure 2.4: Bayesian network of the non-parametric acoustic unit clustering model re­
interpreted as a single H M M . Variable z jo in t ly encodes variables u and s. Th is model is 
equivalent to the Hierachical H M M model shown i n F i g . 2.3 but allows inference of z given 
X in linear time. 

such that Zi £ U x § is the concatenation of a part icular unit and state. The new generative 
process induced by the re-parameterization is shown in F i g . 2.4 The probabil i ty of sequence 
z is given by p(z) = p(s, u). as p(s) is a Markov chain, so is p(z) whose graph is represented 
in Figure 2.5. F r o m this standpoint, the A U D model is equivalent to a non-parametric 
Bayesian version of the t radi t ional phone-loop'1 model which has been applied i n several 
related speech task (Lee and Hon , 1989; Stolcke et a l . , 2005; Szoke et a l . , 2010). A l so , in 
the case where we model each acoustic unit by a single state H M M , the infinite phone-loop 
model reduces to a special case of the infinite H M M (Beal et a l . , 2002) and of the infinite 
G M M (Rasmussen, 2000). 

Interestingly, merging the two variables has another benefit: it natural ly takes into ac­
count the segmentation of the observations. Indeed, the variable zn encodes a unit label 
for each t ime step making the state sequence z to encode the per-frame alignment between 
the observations and the unit label sequence u. Th is observation significantly ease up the 
inference of the model as: (i) it removes the necessity of having an extra boundary variable 
for segmentation as i n (Lee and Glass, 2012), (ii) it allows using dynamic programming to 
sum over a l l possible sequences z. 

2.2.5 J o i n t d i s t r i b u t i o n 

Final ly , to conclude the description of the model, we present the complete joint dis t r ibut ion 
of a sequence of features X = x i , . . . , , latent variables c = c\,..., CN , z = z\,..., ZN 
and parameters H = rjl,..., r ?^ , v = vi,..., Voo> 7- Reca l l that zn encodes an acoustic 
unit index un and a part icular H M M state sn. Consequently, we write rjZn = 77*™ which 

4Obviously, phone should be understood as acoustic unit 
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Figure 2.5: Graph ica l representation of the latent Markov chain of the A U D model reinter­
preted as a 1-level H M M . The square nodes 0 and 1 are non-emitt ing states. The number 
of phones (i.e. acoustic units), represented by a 3 states left-to-right s u b - H M M , is infinite. 

corresponds to the natural parameters of the snth H M M state of the acoustic unit w i th 
index u. Furthermore, the sequence of N units and states z = zi,..., ZN can be equivalently 
defined as a sequence of L acoustic units u = m,..., UL and L sequences of H M M states 
sUl = , . . . , . Us ing these two equivalent formulations, the joint d is t r ibut ion can be 
wri t ten as: 

p ( X , c , z , H , v , 7 ) 

p ( X , c , z | H , v ) 
p(H)p(7)p(v|7)p(X, c, z | H , v) 

•p(z|v)p(X,c|z,H) 
N 

Yl p{zn\zn-i,\ 
n=l 

L 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
i=i n=l 

Un=lP(Zn\zn-l,v) 

where (2.32) is the l ikel ihood expressed as a „ha t" H M M and (2.33) is the l ikel ihood ex­
pressed as a two-level hierarchical H M M . Note that we assume ZQ to be a predefined non-
emit t ing start ing state as depicted in F i g . 2.5. A s explained i n section 2.2.1, the per-state 
emission l ikel ihood (2.32) is a mixture of N o r m a l distributions which is most easily expressed 
in terms of the natural parameters cjf™ = u z and öf"'c™ = 0tn-

p(xn,cn\r]Zn) 

P{Cn\uZn) 

P(*n\9£:)p(cn\uZn) 

e x p { ^ T ( c n ) - ^ K „ ) } 

e x p { ö c » T ( x „ ) - ^ ) } 

(2.34) 

(2.35) 

(2.36) 

The transi t ion probabil i ty p(zn\zn-i, v) is more conveniently expressed in terms of variables 
ui and s^1. The transi t ion probabil i ty wi th in a unit 's H M M is fixed: p(sn\sn-i) = const, 
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so that a l l states are equiprobables. The probabil i ty of the unit index p{u\\v) is defined by 
the stick-breaking process as defined in section 2.1.1: 

Ul-l 

p{ul\w)=vUl\[{l-vi). (2.37) 
i=l 

The prior over the embeddings H is defined from the base measure: 

oo 
p ( H ) = J j G 0 ( » ? u ) (2-38) 

«=i 
s c 

Go{Vu) = X[v{OX[v{OV) (2-39) 
i=l j=l 

s c 
= e x p { ^ 0

T T « ) - A{iQ) + J2^T(0tlJ) ~ A(0o)}- (2-40) 
i=l j=l 

Final ly , the prior over the stick-breaking 
concentration parameter 7 are given by: 

process parameters v and the prior over the 

(2.41) 

(2.42) 

(2.43) 

00 

i=l 

P{vi\l) = ^(1,7) 
P ( T ) = G(a0,b0). 

2 . 3 I n f e r e n c e 

A s described previously in Section 2.1, given an appropriate model, the A U D task can be 
cast as inferring the posterior dis t r ibut ion of the model's parameters given a set of data. In 
the case of the phone-loop model described i n this chapter, we a im to estimate the following 
distr ibution: 

( tr i v \ P ( x > c , z , H , v , 7 ) . . p(c, z, H , v , 7|X) = — — (2.44) 

p(X) = J j f j f c ' z ' H ' v ' 7 ) d H d v d 7 . (2.45) 

A s the denominator in (2.44) involves an intractable sum over a l l possible parameters, esti­
mat ing p(c, z , H , v , 7JX) is infeasible. We use the Var ia t iona l Bayes framework (appendix 
A ) to find an approximate posterior q(c, z , H , v , 7). Pract ical ly , this amounts to optimize 
the following lower-bound: 

l n p ( X ) - ( l n

 g ( c , z , H , v , 7 ) > ^ H ^ ) = A ( 2 - 4 6 ) 
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where we write: {f(x))qM = Jx f(x)q(x)dx. To be able to optimize our objective function 
(2.46), we use the following structured mean-field factorization (appendix A.2.3) : 

q(c, z , H , v , 7 ) = ? ( c | z ) g ( z ) g ( H ) g ( v ) g ( 7 ) (2.47) 
oo 

9(H) = n^) (2-48) 
i=l 

oo 

g (v ) = n 9 ( v O . (2.49) 
i=l 

F r o m (2.46) and (2.47), it directly follows that the op t imal factors are given by: 

In q*(c\z) = ( l n p ( X , c, z, H , v , 7 ) > g ( H ) g ( v ) g ( 7 ) + const ( 2 - 5 0 ) 

i *t \ n P ( X , c , z , H , v , 7 ) , . 
In g (z) = (In — — }g(c|z)g(H)q(v)g( 7 ) + C O I 1 S t ( 2 - 5 1 ) 

q{c\z) 

ln<f (H) = ( l n p ( X , c , z , H , v , 7 ) ) G ( C | Z ) 3 ( Z ) G ( V ) G ( 7 ) + const (2.52) 

In q * ( v ) = ( l n p ( X , c, z, H , v , 7 ) ) 9 ( c | z ) g ( z ) g ( H ) g ( 7 ) + const (2.53) 

b i g * ( 7 ) = ( l n p ( X , c , z , H , v , 7 ) ) g ( c | z ) 9 ( z ) 9 ( H ) 9 ( v ) + const . (2.54) 
These equations lead to a t ra ining akin to the Expec ta t ion-Maximisa t ion ( E M ) algori thm 
(Dempster et a l . , 1977) where we alternately estimate g (c | z ) and q{z) (E-step) and g ( H ) , 
g (v ) and 5 (7 ) (M-step). Because of the conjugacy between the prior and the l ikel ihood, we 
readily see that the op t imal factors g * ( H ) , g*(v) and q*(j) w i l l have the same parametric 
form as their corresponding priors. A l so , note that g ( H ) and q(v) are distributions over an 
infinite set of random variables and, therefore, cannot be used i n any pract ical implemen­
tat ion. In sections 2.3.1 and 2.3.2, we derive the op t imal factors given in (2.47) ignoring 
this technical issue. In section 2.3.3, we address this issue by t runcat ing the variat ional 
posterior, leading to a tractable algori thm. 

2.3.1 V B E - s t e p 

We assume g ( H ) , q(\) and 9 (7 ) are fixed and we estimate the variat ional posteriors g*(c|z) 
and q*{z). We start by deriving the op t imal variat ional posterior over the mixture compo­
nents: 

ln<f (c|z) = ( l n p ( X , c , z , H , v , 7 ) ) g ( H ) 9 ( v ) 5 ( 7 ) + const (2.55) 

= ( l n p ( X , c |z , H ) ) g ( H ) + const (2.56) 
N 

J2{\np(xn,cn\riZn))q{ri2j + const (2.57) 
n=l 

N 

^(\np(xn\Oll)p(cn\uzJ}q{0c„)q{u,zn) + const (2.58) 

n=l 

q*(c\z)=l\q*(cn\zn) (2.59) 
n=l 

e x p { ( l n p ( x „ , Cn, H | z n ) ) g ( H ) } 

E j = i e x p { ( l n p ( x n , c„ = j , H | « n ) ) g ( H ) 
q {Cn\Zn) = ~ ' . „ , \ v , (2-60) 
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where C is the number of N o r m a l components per state. The expected l ikel ihood has the 
following form: 

(lnp(xn\9ll)P{cn\uzJ)qiecnjq{ui2n) = ( T ( W O ) J W S B ) l } 

n) 1 

(2.61) 

(2.62) 

where T(u)Zn) = and T(0%) = T(0s

u^Cn) are defined in (2.24) and (2.27) respec­
tively. The expectations of these functions w i l l be detailed when we derive the op t imal 
variat ional posterior of the parameters in section 2.3.2. Us ing (2.60), we can now find the 
opt imal posterior of the global H M M state sequence: 

, */ x /, P ( X , c , z , H , v , 7 ) 
Inq (z) = (In Z7^iZ~\ )g(c|z) 9(H) 9(v) 9( 7) + const q(c\z) 

X 
( l n Mr Ir \ ) ^ M < ? ( ^ J + ( l n p ( ^ k n - i v ) ) g ( v ) + const . 

For the sake of clarity, we define the following variables: 

i I \ n ^ ( X ™' cn\rlzn) \ 
M*n) = (m

 n(r \7 \ h{cn\zn)q{vZn) H\'sn\'cn) 

A Z n _ u Z n = (\np(zn\zn-i,v))g{v), 

which leads to the following formulation of the opt imal factor: 
TV 

ln<f (z) = ^2 4>n(zn) + A Z n _ u Z n + const 
n=l 

X 

^ n=l 
X 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) C = Yl I I e x P { ^ n ( 2 n ) 
z n=l 

The normalizat ion constant £ in (2.69) requires to sum over a l l possible state sequences z 
which is impract ica l . Nevertheless, this large summation can be computed exactly and effi­
ciently by dynamic programming. Us ing the associativity and the dis t r ibut iv i ty properties 
of the sum and product operations, we have: 

C = J2^v{<Px(zN)} e x P { ^ i v - i , 2 i v } 

N-l 

n=l zn 

which can be re-written as a recursive "forward" function an(zn): 

C = ^2aN(zN) 

an(zn) = exp{0.„(2: N )} ^ exp{AZn_l!Zn}an-i(zn-i) 
Zn-l 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

(2.74) 
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Alternately, one can derive a recursion flowing backward in time: 

C = Y,exP{Mzi)+AZ0,z1}Pi{z1) (2.75) 
Zl 

Pn(zn) = X ] e x p { 0 n + i ( z n + i ) + AZn:Zn+1}f3n+1(zn+1) (2.76) 
Zn+l 

PN(ZN) = 1. (2.77) 

In the context of H M M , the computat ion of (2.74) and (2.77) is known as the forward-
backward a lgori thm (Rabiner, 1989), or the Baum-Welch a lgori thm (Baum, 1972). The an 

and j3n recursive functions w i l l proved to be useful to compute the V B M-step. 

2.3.2 V B M - s t e p 

We now assume that g(c|z)and q(z) are fixed and derive the op t imal dis t r ibut ion q*(H), 
q*(v) and g*(7). Contrary to the V B E-step, the three variat ional posteriors are assumed 
to be independent and, therefore, the order is irrelevant. We begin wi th the posterior over 
the acoustic unit embeddings: 

ln(7*(H) = < l n p ( X , c , z , H , v , 7 ) ) , ( c | z)q(z)q(v)q(~f) + COnSt (2.78) 

N oo 

{^2(lnp(xn,Cn\Vzn))q(cn\zn)q(zn)] + ^ InG 0 (r) k ) + const . (2.79) 
n=l k=l 

Using the definition of the base measure i n (2.18) and the notat ion CJ*™ = u Z n and #^™'Cn 

91n, we write: 

n=l i=l 

C 

l n g * ( H ) = [^{lnp(xn\OzJp(cn\u>zJ)q{CnlZn)q{Zn^ + ^ l n p ( w i ) + ^ l n p ( ^ ) + const 
3=1 

(2.80) 

c 

i=l j=l 

q*(ui) = eM£T("i)-MZi)} 
N 

6 = ^0 + E «(* 
n=l 

T{cn) 
1 

q*(Oi) = exptd{TT(Oi)-A(0i)} 
N 

"df = #0 + X ] q ( ° n = J\Zn = i)q(Zn = i) 
n=l 

T ( x n ) 
1 

Where the dis t r ibut ion q(zn) is computed using the forward-backward algori thm: 

&n(,Zn) Pn{Zn) 
l(Zn 

c 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

The op t imal factors i n (2.82) and (2.84) correspond to the natural form of the Dirichlet 
and Normal -Wishar t distributions. The expectations of sufficient statistics T{u)i) and T(0l) 
needed in the E-step are given i n appendices B.2.2 and B.2.5. 
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We derive now the opt imal variat ional posterior of the stick-breaking process: 

hi<f (v) = ( l n p ( X , c , z , H , v , 7 ) ) g ( c | z ) g ( c ) g ( H ) g ( 7 ) + const (2.87) 

ln<7*(v) = ( lnp(z |v ) ) g ( z ) + In p(v) + const . (2.88) 

(2.89) 

Using the fact that p (z | v ) = p(s |u)p(u |v) and (2.37) we have: 

ln<7*(v) = ( lnp (u |v ) ) g ( u ) + l n p ( v | 7 ) + const (2.90) 
oo 

= J2(J2l[ui>k] l n ( l - vk) + l[Ui = k] lnvk)q(u) (2.91) 
fc=l «i£u 

+ ((7)9(7) - 1) M l - vk) + const 
00 

?*(v) = I I ( Z * K ) (2.92) 
fe=i 

q*(vk) =B(1 + (YJ I K = k])q{u), <7),(7) + ( ] T > fc]),(u))' ( 2 - 9 3 ) 

where we have used the indicator operator defined as: 

I 1 i f "condit ion" is true 
1 [condition] = < (2.94) 

I 0 otherwise. 

The expectations i n (2.93) requires summing over a l l the units of a l l possible sequences 
u. Once again, this large summation can be calculated exactly wi th the forward-backward 
recursion. Observing that X ) U i e u l K = k] = ^2Zi_liZi&z I f ^ i - i = aUi_x,Zi = bUi], where 
aUi_1 is the index of the last state of the H M M associated wi th the acoustic unit and 
bk is the index of the first state of the H M M associated wi th the acoustic unit w i th index 
k. Therefore we have: 

N 

( ] T I K = fc]>,(u) = ( E l ^ = am-i^n = bk])q(z) (2.95) 
UiSu n=l 

N 

= ^ E l(zn-i = a U i _ i , ^ n = bk) (2.96) 
n=l 

00 

( £ I K > fc])g(u) = E ( E = J]>,(») ( 2-97) 

1 ^ 
g ( z n - i , Zn) = 7 E a " - i ( z « - i ) e x p { 0 „ ( z „ ) + AZn_ljZn}pn(zn). (2.98) 

^ n=l 
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A l g o r i t h m 2.1 Tra ining of phone-loop model for acoustic unit discovery 

1: function M S T E P ( X , q*(c\z), q*(z), q*(j)) 
2: > Update defined in (2.80) 
3: <7*(H) <— a r g m a x g ( H ) £ 
4: > Update defined i n (2.92) 
5: <7*(v) « - a r g m a x g ( v ) £ 
6: > Upda te defined i n (2.102) 
7: q*(j) <r- a r g m a x g ( 7 ) £ 
8: return q*(H),q*(v), q*^) 

9: function E S T E P ( X , g ( H ) , g(v)) 
10: > Update defined in (2.60) 
11: <f(c|z) <- arg m a x g ( c | z ) £ 
12: > Upda te defined i n (2.68) 
13: <Z*(z) arg max g( z-) £ 
14: return q*(c\z), q*(z) 

15: procedure T R A I N ( X , E) 
16: o £7: number of epochs (i.e. E-step + M-step) 
17: > ini t ia l izat ion: 
18: <7*(H) <— random ini t ia l iza t ion 
19: 9*(v) <- p(v) 
20: q*W)^p(l) 
21: for e <- 1 to E do 
22: q*(c\z),q*(z) <- E S T E P ( X , g*(H),g*(v)) 
23: 9*(H), <f(v), 9 * ( 7 ) <- M S T E P ( X , <f(c|z), <f (z), 9*(7)) 

Final ly , we estimate the opt imal variat ional posterior over the concentration of the Di r i ch -
let Process: 

In Q* (7) = ( l n p ( X , c , z , H , v , 7 ) ) , ( c | , ) g ( , ) g ( H ) , ( v ) + const 

= ( l n p ( v | 7 ) ) G ( V ) + l n p ( 7 ) + const 

J ^ l n 7 + 7 ( l n ( l - vk))q{vk) 

fe=i 
+ (a 0 - 1) In 7 - 6Q7 

9*(7) = G(a0 + ! . 6 0 - 5 Z ( l n ( l - i > f c ) ) g K ) ) 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

fc=i fe=i 

2.3.3 T r u n c a t i o n 

The op t imal variat ional factors we have derived so far are impract ical . Indeed, they involve 
distributions over infinite set of outcomes (zn G { 1 , 2 , 0 0 } ) , infinite-dimensional variables 
( H , v ) and infinite sums i n (2.102). Fol lowing (Ble i et a l . , 2006), we address this issue by 
introducing a t runcat ion parameter r such that q(vT = 1) = l , V z . Th i s approximation, 
motivated by the almost sure t runcat ion of the Dir ichlet Process (Ishwaran and James, 
2001), ensures that q(ui > r ) = 0 and, therefore, truncates a l l infinite sum i n the solution 
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of the op t imal factors. Consequently, even i f our model theoretically assumes a potential ly 
infinite number of acoustic units, our variat ional approximat ion expects at most r acoustic 
units. It is important to note that the parameter r does not define the to ta l number of 
units derived by the inference. Rather, it is an upper-bound of the max ima l number of 
acoustic units discovered by the model. 

The whole t raining of the model is summarized i n A l g . 2.1. Note that this a lgori thm may 
converge to a local op t imum and therefore needs to be carefully ini t ia l ized. In practice, we 
set our in i t i a l estimates as: 

• ?*(v) = p ( v ) 

• 9* (7 ) - P ( l ) 

The posterior over the embeddings <?*(H) is ini t ia l ized such that the expected value of the 
prior over the mean parameters of the mixture components is equal to the total data mean 
plus some noise wi th smal l variance. 

2 . 4 E x p e r i m e n t a l S e t u p 

2.4.1 D a t a 

Our first experimental data set is the T I M I T corpus (Garofolo et a l . , 1990; Zue et a l . , 1993). 
It has a long history and played a key role i n the development of acoustic models for speech 
recognition (Lopes and Perdigao, 2011). Its data is unrealistic and artificial: very clean 
recordings, no spontaneity, read speech,... However, the controlled quali ty of the recordings 
and the manual ly created phonetic labels make it an ideal data set for developing and 
testing new speech technologies. T M I T contains phonetically-balanced Eng l i sh read speech 
recorded at 16kHz. The full corpus has 6300 utterances—about 5.3 hours—and is divided 
into 438 male speakers and 192 female speakers. There are three groups of sentences: 
the S A sentences that are read by every speaker to highlight the within-language phonetic 
variability, and the S X and SI groups which contain phonetically-compact and phonetically-
diverse sentences respectively. Since the A U D task is a special case of clustering, there is no 
need for neither a test set nor a held-out set. Therefore, we trained and evaluated our model 
on the full corpus without the S A sentences. The choice of removing the S A utterances 
is common i n speech recognition (Lopes and Perdigao, 2011). The overall t ra ining data 
had 4288 utterances (about 3.5 hours). A l so , each utterance is provided wi th a phonetic 
transcript ion based on 61 phones. We use these transcriptions as a reference to evaluate 
the outcome of the A U D model . Cont ra ry to what is usually done in A S R , the 61 phones 
were not collapsed into a 48 or 39 phone set. 

A s second experimental data set, we used the M B O S H I corpus (Godard et a l . , 2017). 
Contrary to T I M I T , the M O B S H I corpus is closer to a real scenario of documenting an 
endangered language: it is a set of 16kHz recordings i n Mbosh i , a B a n t u language spoken 
i n Congo-Brazzavi l le . S imi lar ly to T I M I T , the recommended t ra ining and testing sets 
were merged together forming a set of 5130 utterances from 3 male speakers. The word 
transcript ion of the corpus is based on a non-standard graphemic system developed by 
linguists. In addit ion, the M B O S H I corpus provides a phonetic time-aligned transcript ion 
obtained by forced-alignments of an H M M - G M M based monophone system. This phonetic 
transcription, based on 68 phones, was used in our evaluation. 
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Language Language Fami ly Hours of t ra ining data 
Cantonese Sino-tibetan Chinese 65.0 

Pashto Indo-European 64.7 
Turkish Ura l -A l t a i c 56.6 
Tagalog Austronesian 44.1 

Vietnamese Austroasiat ic 53.2 
Assamese Indo-Aryan 46.7 

Bengali Indo-European 53.6 
Ha i t i an Creole French Creole 55.0 

Lao K r a - D a i 71.6 
T a m i l Drav id ian 72.7 
Zu lu Niger-Congo 57.8 

K u r d i s h Indo-European 69.7 
Tok P i s i n Engl i sh Creole 68.7 
Cebuano Austronesian 70.8 
Kazach Turkic 73.0 
Telugu Drav id ian 71.7 

L i thuan ian Indo-European 81.4 

Table 2.1: L is t of languages used to t ra in the M B N features extractor. 

2.4.2 Features 

Because A U D is an unsupervised learning problem, the type of observations given as input 
to the model is of crucial importance. We considered two types of representation: spectral 
based features and discriminat ively trained features. For the spectral features, the signal is 
converted into vectors of 12 Mel-Frequency Cepstra l Coefficients ( M F C C s ) (Davis and Mer-
melstein, 1980) and the signal energy extracted from 25 ms long analysis window at 10 ms 
rate. These 13-dimensional features are further expanded by adding their first and second 
derivatives yielding a 39-dimensional feature vector for every 10 ms of speech. To reduce 
the speaker variability, we applied per-utterance mean normalizat ion. For the discrimina­
tive features, we used the M u l t i l i n g u a l Bot t leNeck ( M B N ) features (Fér et a l . , 2017). The 
M B N features are extracted at a 10 ms rate from a 80-dimensional bottleneck layer of a 
feed-forward neural network trained to classify senones of mult iple languages. The neural 
network was trained on 17 languages listed i n Table 2.1; none of them were Engl i sh . A s the 
neural network is trained on 8kHz recorded speech data, the data was downsampled prior 
to be presented to the neural network. 

2.4.3 M e t r i c s 

Evaluat ing the derived acoustic units is par t icular ly difficult for several reasons. F i r s t , 
the acoustic units, represented as embedding vectors, are not easily interpretable. Second, 
there is not a single representation of a language's phonology: some representations are 
compact w i th coarse level of details, others are more refined but requires more acoustic 
units. F ina l ly , it is difficult to assess whether the acoustic units capture only the phonetics 
of the language or i f they encode other information such as speaker of channel variabili ty. To 
cope wi th these difficulties, we used two metrics to evaluate (i) how closely the data driven 
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segmentation of speech matches the one of the reference time-aligned transcript ion (ii) how 
consistent is the clustering of segmented speech wi th respect to reference transcription. 

Segmentation To evaluate how the phone-loop A U D model segments the speech signal, 
we compare the segmentation of the most l ikely sequence of units u* (the V i t e r b i path) w i th 
the segmentation of the reference transcription. Pract ical ly , we report the Recal l , Precis ion 
and F-score calculated using the time boundaries of reference labels and the acoustic unit 
labels. We tolerated boundaries shifted by +- 20 ms. However, a t ime boundary of an 
acoustic unit can only match at most one time boundary of the reference transcription. 

Normal ized M u t u a l Information To evaluate the quali ty of the clustering, we com­
puted the Normal ized M u t u a l Information ( N M I ) between the most l ikely sequence of units 
u* and the reference transcript ion r. The N M I is given by: 

N M I = 2 H ^ \ - H ^ ; ] (2.103) 
H[u] + H[r] 

H[u] = -^2p(u = k)log2p(u = k) (2.104) 
k=i 

T R 

H[u\r] = — 's^2/p~(u = k,r = I) \og2p{u = k\r = I) (2.105) 
k=l 1=1 

R 

H[r] = -^2p(r = k)\og2p{r = k) (2.106) 
k=l 

p(u = k) = Z " " ' e u 1 (2.107) 

P(r = k) = g e r ' ^ = k ] (2.108) 

where R is the number of unique phones in the reference transcript ion and M is the length 
of the reference transcription. The condit ional probabil i ty p(u\r) was estimated by first, 
mapping each element of sequence u* to the one of sequence r it overlaps the most wi th , and 
then, by normalizing the counts of how many times a part icular acoustic unit is mapped 
to a phone of the reference transcript ion. The N M I is min ima l ( N M I = 0) when both 
sequence u* and r are statist ically unrelated, on the other hand, the N M I w i l l be max ima l 
( N M I = 1) when there exists a one-to-one mapping between the acoustic units and the 
reference phones. Importantly, the N M I penalizes A U D systems that uses more units than 
necessary, or put i n another way, when H[r] < H[u]. Therefore, we consider solutions that 
have less acoustic units preferable. W h e n the number of "active units" is lower than the 
actual number of phones, i.e. H[r] > H[u], the mutual information between the reference 
transcript ion and the data-driven transcript ion w i l l be lower and the N M I w i l l again be less 
than 1. 
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Inference Database Reca l l (%) Precis ion (%) F-score (%) N M I (%) 
C R P T I M I T 74.98 56.43 64.40 33.87 
V B T I M I T 68.47 58.36 63.01 34.81 

C R P M B O S H I 68.91 38.26 49.20 34.41 
V B M B O S H I 55.82 40.43 46.89 35.98 

Table 2.2: Compar ison between the Chinese Restaurant Process ( C R P ) and the Var ia t ional 
Bayes ( V B ) inference. 

2 . 5 R e s u l t s a n d a n a l y s i s 

2.5.1 Sett ings 

We describe here the configuration of our model used for a l l our experiments. A s explained 
previously, the base measure is a combination of Dir ichlet and Normal -Wishar t distr ibu­
tions. The Dirichlet distributions were ini t ia l ized w i t h a l l concentration parameters set to 
1. The parameters of the Normal -Wishar t prior were set as follows: 

m 0 = /x (2.109) 

A) = 1 (2 .H0) 

W 0 = I (2 .1H) 

VQ = D + 1 (2.112) 

where D is the dimension of the feature vectors and [i = ^ n

 x « ^ s s a m p l e mean of the 
whole data set. The G a m m a prior over the concentration of the Dir ichlet Process was 
set to have a mean equal to half of the truncat ion parameter r. We chose this part icular 
parameterization to encourage the model to use more units at the beginning of the training 
and let the model prune the number of acoustic units by decreasing the concentration 
parameter later on. The t runcat ion parameter r was set to 101. A m o n g these 101 potential 
units, we reserved one to be the "silence unit". The H M M of the silence unit was configured 
to have 5 emit t ing states instead of 3 emit t ing states for the other units and, furthermore, 
we constrained the inference graph of the phone-loop to start and end an utterance by this 
silence unit . F ina l ly , each model was trained for 30 epochs, that is 30 V B E-steps and V B 
M-steps. 

2.5.2 V a r i a t i o n a l Bayes vs G i b b s S a m p l i n g 

A s a first step, we compare both versions of the A U D phone loop model: the one which 
uses the Chinese restaurant process as inference scheme (Lee and Glass, 2012) (denoted 
C R P in further references) and our model which uses the stick-breaking construction and 
Var ia t iona l Bayes ( V B ) inference. The results for the C R P model were obtained by using 
the publ ic ly available implementa t ion 5 . Results, obtained on the M F C C s features, are 
shown i n Table 2.2. We observe that the results are not so different from each other which 
is to be expected since the models are almost identical despite using different inference 
schemes. O n one hand, our model does not segment the speech as well as the C R P model 

5 https: / / github. com/jacquelineCelia / dphmm silence 
6The model introduced in (Lee and Glass, 2012) has an extra set of binary variables indicating, for each 

frame, if it is the beginning of a new acoustic unit. 
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Figure 2.6: Evo lu t ion of the number of discovered units dur ing the inference. 

but, on the other hand, it achieves a better clustering. However, the biggest different lies 
in the efficiency of the inference. W i t h our model , the computat ion of the V B E-step can 
be parallelized which leads to a very fast t raining: w i th 30 parallel cores, the t ra ining was 
finished i n roughly 1.5 hours. W i t h the C R P model, such parallel ization is not possible, 
which makes the inference quite slow. In this example, the 10000th update of the Gibbs 
sampler was reached after 2 days of t raining. 

Another important difference between the two models is the number of discovered acoustic 
units, i.e. the number of unique labels in the final t ranscript ion. Whereas the C R P model 
tends to use a large number of units, our model is much more parsimonious. F i g . 2.6 shows 
the evolution of the number of discovered units dur ing the inference for both models. It 
is not clear why the two algorithms lead to such different number of units. A s shown in 
F i g . 2.7, the truncation parameter does not seem to be a l imi t as the m a x i m u m number 
of units is never reached. A possible explanation may be wi th the nature of the mean-
field approximation: indeed, it is well known that the mean-field approximat ion tends to 
underestimate the variance of the true posterior ( M i n k a et a l . , 2005) which, in our case, 
could lead to a solution w i t h less acoustic units. Nevertheless, this feature is advantageous, 
as, without reducing the quali ty of the clustering measured i n term of N M I , it provides a 
solution wi th less parameters. 

In F i g . 2.8, we show an example of the output from both A U D systems on one randomly 
picked utterance. One can see that both models over-segment the speech, especially at the 
beginning of the utterance, before the actual speech starts. Th is is a caveat of generative 
models as they may be sensitive to outliers. 

32 



I i i i I o 1 1 1 1 1 

0 50 100 150 200 0 5 10 15 20 
T VB update 

(a) Number of discovered units as a function ( b ) Evolution of the number of discovered 
of the truncation parameter. u n i t s during the training. 

Figure 2.7: Effect of the t runcat ion parameter on the number of discovered units evaluated 
on the T I M I T data set. 

Features Corpus Recal l Precision F-score N M I (%) 
M F C C T I M I T 68.47 58.36 63.01 34.81 
M B N T I M I T 60.86 55.53 58.07 37.17 

M F C C M B O S H I 55.82 40.43 46.89 35.98 
M B N M B O S H I 55.14 36.73 44.09 32.13 

Table 2.3: Compar ison between M F C C and M B N features for acoustic unit discovery. 

2.5.3 V a r i a t i o n a l Bayes object ive for A U D 

Varia t iona l Bayes objective is specific for each choice oflikelihood and prior: changing either 
of those w i l l affect the objective function. Nonetheless,the phone-loop model seems to be 
a reasonable choice as the Var ia t iona l Bayes inferenceleads to learning (part of) the pho­
netic informationOrganizing committeeOrganizing committeeVariat ional Bayes inference, 
contrary to Gibbs sampling, optimizes a well defined objective function. Th is objective 
function maximizes the expected log-likelihood regularized by a penalty term which forces 
the posterior dis t r ibut ion to be close to the prior. F i g . 2.9 shows the evolution of the 
metrics during the V B inference. Interestingly, even though the t ra ining is fully unsuper­
vised and does not use the reference transcription, it indirect ly optimizes our metrics. This 
observation is important as it shows that the A U D problem is amenable to an opt imizat ion 
problem. Note that Var ia t iona l Bayes objective is specific for each choice of l ikel ihood and 
prior: changing either of those w i l l affect the objective function. Nonetheless, the phone-
loop model seems to be a reasonable choice as the Var ia t iona l Bayes inference leads to 
learning (part of) the phonetic information. 

2.5.4 D i s c r i m i n a t i v e features 

The input features to the A U D model are of crucial importance. Indeed, since the A U D is 
trained to fit the data, i f the features carry non-phonetic information, then, the model w i l l 
use some of its modeling capacity ( in our case create more units) to model i t . Mains t ream 
A S R , has coped wi th this issue in several ways: 
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Figure 2.8: Example of segmentation of utterance "Wha t outfit does she drive for?" by the model trained w i t h the Chinese Restaurant 
Process ( C R P ) and Var ia t ional Bayes ( V B ) . Black lines represent the reference boundaries and white dashed lines are the boundaries of 
the A U D model . T h e bot tom and top sequences of labels are the t ime aligned reference and proposed transcript ion respectively, " s i l " 
corresponds to the silence unit of the model trained w i t h Var ia t ional Bayes. 
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Figure 2.9: Evo lu t ion of the clustering and segmentation metrics during the t ra ining for 
the T I M I T database (F ig . 2.9a and F i g . 2.9b) and the M B O S H I database (F ig . 2.9c and 
F i g . 2.9d). 

• using smooth spectral representations such as M F C C , P L P , . . . (Davis and Mermel -
stein, 1980; Hermansky, 1990) to remove unwanted variabi l i ty while preserving the 
phonetic information. O u r choice to uti l ize the M F C C features follows the same ra­
tionale, unfortunately, these representations are far from removing a l l unnecessary 
information 

• using speaker normalizat ion techniques, that transform the features and/or the model 
for each speaker (Wegmann et a l . , 1996; Gouvea, 1998; Leggetter and Woodland , 
1995). Model-based approaches, while effective, assume the identity of the speaker of 
each utterance to be known. However, this assumption is not always met, especially 
when dealing wi th low-resource languages 

• using discriminative t ra ining to drive the model to ignore information not relevant 
to the task. Unfortunately, discriminative t ra ining is not applicable to our problem 
since we do not have the labels and t ry to discover them. 
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To improve our A U D model without requiring extra annotations, we replace t radi t ional 
M F C C features by the M u l t i - L i n g u a l Bottleneck ( M B N ) one. These features, being trained 
in a discriminative fashion on several languages, act as a features-based speaker normaliza­
t ion. The results for both features w i th the stick-breaking process based A U D model are 
shown i n Table 2.3. A s one can see, the effect of the M B N features is mit igated. F i rs t , we 
observe that these features are not performing well regarding the segmentation. Th is is to 
be expected as discriminative models for speech are known to be inaccurate in the t iming of 
their response (Graves et a l . , 2006). O n the other hand, regarding the clustering quality, the 
M B N features perform significantly better on T I M I T and much worse on M B O S H I . This 
illustrates the fact that the M B N features, despite being trained on mult iple languages, 
cannot be considered as robust universal features. In some cases, when the target data is 
somewhat close to the t ra ining data of the M B N extractor, the M B N features provide a 
good phonetic representation of speech and w i l l help the A U D model . However, when the 
target data is too different from the t ra ining data, the M B N features may provide a poor 
representation of the speech signal. Unfortunately, it is difficult to know before hand i f a 
part icular language w i l l benefit of not from the M B N features, and therefore, the choice of 
features for the A U D task remains an open problem which depends on the data. 

2.5.5 N o n - P a r a m e t r i c vs P a r a m e t r i c P h o n e - L o o p 

We have defined the phone-loop model using a non-parametric prior leading to an infinite 
mixture of H M M s . It is possible to define a „ p a r a m e t r i c version" of this model by replac­
ing the St ick-Breaking Process prior w i th a Dirichlet dis t r ibut ion. Th is is easily done by 
replacing p(ui\v)p(v) i n (2.33) by: 

where T> and C are the Dirichlet and Categorical dis t r ibut ion respectively. Assuming this 
new model , it is easy to show that op t imal variat ional posterior q(ir) is given by: 

O n one hand, the parametric version forces a specific number of element i n the mixture and 
does not let the model learns its complexity. However, the update equation are simpler as 
one doesn't need to deal w i th infinite prior/poster ior and yet may remain a good approxi­
mat ion of the non-parametric version of the model . F r o m table 2.4, we see that the choice 
of having a non-parametric model does have a significant positive effect on the clustering 
quali ty measured wi th the N M I . It also leads to a better segmentation on the T I M I T data 
whereas the segmentation quali ty is slightly worse on the M B O S H I data. 

2 . 6 C o n c l u s i o n 

In this chapter, we have revisited the model proposed i n (Lee and Glass, 2012) by using the 
St ick-Breaking construction of the Dir ichlet process. Consequently, an approximation of the 
posterior dis t r ibut ion of the model's parameters can be derived using the Var ia t iona l Bayes. 
Th is new algori thm for A U D achieves a better clustering, measured wi th the N M I , while 
being much faster and scalable to large database. The model has three main components: 

p(TT) = V{QQ) 

p(ui\n) = C ( T T ) , 

(2.113) 

(2.114) 

q{ir)=V{Q) (2.115) 

(2.116) 
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M o d e l Features Corpus F-score N M I (%) 
non-parametric M F C C T I M I T 63.01 34.81 

parametric M F C C T I M I T 57.03 32.56 
non-parametric M B N T I M I T 58.07 37.17 

parametric M B N T I M I T 54.46 35.52 
non-parametric M F C C M B O S H I 46.89 35.98 

parametric M F C C M B O S H I 47.09 35.5 
non-parametric M B N M B O S H I 44.09 32.13 

parametric M B N M B O S H I 44.1 29.73 

Table 2.4: Compar ison of the non-parametric and parametric prior for the A U D model. 

1. the per-unit l ikel ihood model, which, in our case, is an H M M 

2. the stick-breaking process, which is a prior over unigram phonotactic language model 

3. the base measure which is a prior over the sounds l ikely to be chosen as acoustic unit . 

A first difficulty is how to define a consistent base measure. Indeed, choosing the right 
dis tr ibut ion is a non- t r iv ia l matter as the support of the base measure is defined over 
a hardly interpretable high-dimensional space. So far, we have bypassed this problem by 
using a vague prior which, roughly, allows any sound to be a candidate acoustic unit . Whi l e 
mathematical ly convenient, this solution is highly unsatisfactory as restricting support of 
the base measure to a smal l set of sounds would greatly reduce the searched space and 
therefore help the algori thm to find better units. Th is problem w i l l be addressed i n chapter 
3, where we used Generalized Subspace Model to learn a low-dimensional representation of 
sounds from several languages to help the A U D task. 

A second weakness is the assumption of the unigram phonotactic language model . A s 
the n-gram and other sophisticated language models have proven to be essential to achieve 
accurate A S R , it is reasonable to believe that a more refined language model should be also 
beneficial for the A U D task. In chapter 4, we extend the non-parametric phone-loop model 
to incorporate a bigram phonotactic language model using Hierarchical Dir ichlet Process. 

Final ly , the A U D model can also be improved by replacing the H M M by a more refined 
acoustic model . W h i l e we do not explore any other acoustic unit model i n this work, an 
enhanced version of the non-parametric phone-loop based on Var ia t iona l Auto-Encoder was 
proposed in (Ebbers et a l . , 2017; Glarner et a l . , 2018). 
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C h a p t e r 3 

Generalized Subspace Model 
for Sound Representation 

In chapter 2, we have described a non-parametric phone-loop model to discover acoustic 
units from speech. This model represents each acoustic unit as a vector of parameters of 
an H M M . This approach suffers from the fact that the H M M parameter space is high-
dimensional—more than a thousand dimensions for common settings—whereas the set of 
possible acoustic units for a given language is confined to a "smal l" region of this space. 
Therefore, a natural question is how we can reformulate our A U D model such that the search 
space of the acoustic units is restrained to the subset of l ikely acoustic unit candidates. In 
this chapter, we develop the theory and the tools to address this problem i n a pr incipled way. 
In section 3.1, we introduce the concept of Generalized Subspace Model ( G S M ) : a theoretical 
framework to embed probabil ist ic models i n arbi trary vector space. Equ ipped wi th this new 
concept, we bu i ld i n section 3.2 the Subspace Hidden Markov Model ( S H M M ) to represent 
phones i n a low-dimensional space. F ina l ly , in section 3.3, we integrate the S H M M into the 
non-parametric phone-loop model for acoustic unit discovery. O u r integration is done in 
two steps: first, we use the S H M M to learn the subspace of phone embeddings from several 
languages. Loosely speaking, the model is learning what is a phone. In a second time the 
A U D system w i l l cluster the speech signal as described in chapter 2 but restraining the 
search to acoustic unit embeddings l iv ing i n the subspace of phone learned at the previous 
step. 

3.1 G e n e r a l i z e d S u b s p a c e M o d e l 

A large part of the machine learning field is dedicated to representation of high-dimensional 
data points using low-dimensional embeddings. The projection from high to low-dimensional 
space ideally removes unwanted variabi l i ty and allows for easy manipulat ion of the data. 
Techniques to learn this mapping range from simple linear projections such as P r inc ipa l 
Component Analys is or Linear Discr iminant Analys is (Bishop, 2006) to complex non-linear 
functions such as t-distr ibuted Stochastic Neighbor Embedd ing ( t -SNE) (Maaten and H i n -
ton, 2008). These techniques have also been generalized to bu i ld powerful density estimators 
(T ipp ing and Bishop, 1999; Pr ince and Elder , 2007; Ioffe, 2006; K i n g m a and Wel l ing , 2013; 
Rezende and Mohamed , 2015). Yet , a l l these methods have i n common that each data point 
has its own low-dimensional embedding, or put in another way, they project the data onto 
a low-dimensional manifold. In some cases, we would like the embeddings to represent not 
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the data itself but rather an ensemble of observations modeled by a density. For instance, 
one may want to have an embedding to represent a person identity whereas the observations 
are a set of images of this person. In another example, closer to our applicat ion, we would 
like to learn an embedding representing a phone from several utterances of this part icular 
phone. In this setting, the task is not to learn a manifold in the data space directly, rather, 
each group of observations is represented by a probabil ist ic model and we a i m to represent 
the set of models i n a low-dimensional space. In speech, joint factor analysis (Kenny et a l . , 
2007), i-vector (Dehak et a l . , 2009) and Subspace Gaussian M i x t u r e M o d e l ( S G M M ) (Povey 
et a l . , 2011) are typica l examples of such model applied to speaker identification and A S R 
respectively. 

Learning a subspace of probabil ist ic models is, however, quite complex. For instance, 
an i-vector model only deals w i t h the mean parameters of the mixture components of a 
G M M to keep a closed form solution of the update equations. O n the other hand, the 
S G M M incorporates the mixture 's weights in the subspace but needs to introduce some 
approximation for the t ra ining. Furthermore, subspace models trained i n the max imum 
likel ihood fashion are prone to overfit which can significantly hamper the quali ty of the 
embeddings. In the following of this section, we introduce the Generalized Subspace Model 
( G S M ) which: 

• unifies t radi t ional subspace models into a single framework 

• is robust against overfitting by having a prior over the susbpace's parameters. 

Final ly , we describe a stochastic Var ia t iona l Bayes t ra ining which can be applied to any 
possible subspace model. 

3.1.1 De f in i t i on 

Let 's have K sets of observations X i , . . . , where the i t h set has iVj observations: X j = 
X J I , . . . , XjjVj- Each set is associated to a class (e.g. phone) and has a specific dis t r ibut ion 
parameterized by vector h j . We assume that the l ikel ihood of a set of observations is given 
by a member of the exponential family of distributions (appendix B ) , eventually conditioned 
by some latent variable: 

piXilZi, Vi) = e x p { r ? 7 T ( X i , Z i ) - A(Vi, Zt) + S ( X i , Z i ) } , (3.1) 

where r]i £ % is the P-dimensional vector of natural parameters of the i t h model, Z j is a 
set of latent variables specific to the m o d e l 1 and the functions T, A and B are, respectively, 
the sufficient statistics, the log-normalizer and the base measure 2 specific to the l ikelihood 
model. Then, the generative process of the G S M is: 

1. W , b ~ p ( W , b ) 

2. hi~AA(0,I) V i G { 1 , 2 , . ..,K} 

3. V i = f(WThi + b) 

1For some models, this set can be empty. 
2For members of the exponential family, the base measure is the part of the normalization constant 

that does not depend on the natural parameters and should not be confused with the base measure of the 
Dirichlet Process. 
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Figure 3.1: Graph ica l model of the Generalized Subspace M o d e l . Dashed edges point ing to 
a square node represent a deterministic relation. 

4. Z i ~ p ( Z ) 

5. X i ~ p ( X | Z i , W , b , h i ) , 

where: 

• W e R P x D and b e K p are the subspace parameters 

• hi £ M>D is the embedding vector of a model 

• / : M P —>• % is a differentiable function mapping a real vector into the natural 
parameter space of the l ikel ihood model. 

Note that the set of natural parameters does not necessarily lie i n M P . For instance, the 
set of natural parameters for the N o r m a l dis t r ibut ion, which is defined by a l l possible pairs 
of real vector and positive definite matr ix , is only a subset of M P . The graphical model 
describing the generative process is shown i n F i g 3.1. 

3.1.2 R e l a t i o n w i t h the i -vector m o d e l 

A s its name indicates, G S M generalizes existing subspace models and casts them into a 
single framework. To illustrate the connection between G S M and other subspace models 
we show how the i-vector model can be seen as a special instance of a G S M . Let be X j = 
X J I , . . . , XJAT. where XJJ £ M P is the jth P-dimensional feature vector of the i t h utterance of 
a speech corpus. The l ikel ihood of the utterance conditioned on the i-vector hj is given by: 

Ni C 

p ( X i | h i ) = J ] [ j 2 M ^ \ W ^ h i + b c ' S C ) K % = c)] (3.2) 
j=l c =l 

p(zij = c) = C(zij = c\ir) = 7r c, (3.3) 

where latent variable indicat ing which mixture 's component is assigned to the 
n th feature vector and C is the number of components i n the mixture. F r o m the prior over 
zn and the l ikel ihood, the joint d is t r ibut ion of X j and Zi is given by: 

Ni C 

P(Xi, Z l | h , ) = n n [^(x^-iwjh,+bC ) ^ c ) i ^ = % i [ [ z i j = i ] ] . (3.4) 
7 = 1 C=l 
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For convenience, we use the following placeholder: 

Vic = W j h i + b c 

and express E q . (3.4) as an exponential function: 

p (Xj, Zj|hj) = exp I Y Y = c ] / i ^ E c - = c] ( / - x ^ £ c ^ 

^ J = l c=l 

+ ^ / - f e ' V i c + I ln2vr + In | £ c | ) + l[Zij = c] l n v r c | 

= exp{T7 l

T T (X i , Zi) - Airji, z;) + 5 ( X i ; z;)} 

where we have defined: 

V, ^ 1 l x * i -"-[̂ «i — 1] 

r (x i , z i ) = J ] 

^(»7i> z*) = Y, 1 N = c l ( ö / * f c S c V i c + ^ In 2vr + In |SC|) 

j=l c=l 
/Vi C 

S ( X j , Zj) = ^ ^ = c J - x ^ E ^ X y + l[zij = c] In TT,. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

3=1 c=l 
From (3.8) and (3.9), we see that the i-vector model is a special instance of the G S M where 
/ is the identity function. 

3.1.3 Inference 

We now present a generic t ra ining algori thm of the G S M which is applicable for a wide 
class of models. A s the exact posterior of the G S M ' s parameters is not tractable, we use 
one more t ime the Var ia t iona l Bayes objective (appendix A . l ) : 

A 

£ 0 * 
i=l 

p(Xi,Zi\&) 
D K L ( 9 ( © ) | | P ( © ) ) 

0 = { W , b , h ! , . . . , h X } 

(3.13) 

(3.14) 

where we have grouped the parameters of the G S M into variable 0 and we have assumed the 
following parametric mean-field factorization (appendices A.2 .1 and A.2.2) of the variational 
posterior: 

A' 
g ( z i , . . . , z K , 0 ) = q(&; m, A) g(zjj fa 

i=l 

q(&; m, A) = A/"(0|m, diag(exp{A)), 

(3.15) 

(3.16) 
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where m and A are, respectively, the mean and logar i thm of the diagonal of the covariance 
matr ix of the N o r m a l variat ional posterior. The type of q(z>i\ 4>i) w m depend on the nature 
of the model . For instance, for the i-vector model, this w i l l be the posterior dis t r ibut ion 
of the frame-to-component assignment variable. In the general case, we do not consider 
any part icular d is t r ibut ion and we merely assume that the opt imal parameter of variational 
posterior <j>* can be estimated in closed form solution. For conciseness, we w i l l write q{zi) 
and q(&) instead of q(z,f, 4>i) and q(&;, m, A). 

W i t h the factorization assumed in (3.15), the inference becomes an E M - l i k e a lgori thm 
where we re-estimate the opt imal parameters of the variat ional posterior <f>\,..., cf)*K and 
m*, A* alternately using the following par t ia l objective functions: 

0* = a rgmax ( In P ( ^ | Q ) ) q { z i ) q { & ) (3.17) 

= aigmaxC(f>(4>i;X.i,m, X) (3.18) 

y ^ l n P ( X i , Z j | 0 ) . 
m*, A* = arg max 

m. A DKL(<z(e)||p(e)) (3. i9) 

= a r g m a x £ m j A ( m , A ; X i , . . . ,^K,<Pi, • • -,<PK)- ( 3-20) 
m. A 

(3.19) has no closed form solution but can be opt imized through a stochastic gradient ascent 
using the „ r e -pa rame te r i za t i on tr ick" ( K i n g m a and Wel l ing , 2013): 

^ r L A 
£ m , A ( m , A ; . . . ) « -

l=i i=i HK lJ 

1 

D K L ( 9 ( © ) | | P ( © ) ) (3.21) 

0 Z = m + e x p { - A } 0 e e~AA(0,I), (3.22) 

where 0 is the element-wise mul t ip l ica t ion. The complete t ra ining algori thm is given in 
A l g . 3.1. Note that, for simplicity, A l g . 3.1 is presented wi th a fixed learning rate. In 
practice, the learning rate changes over t ime using some adaptive procedure (Duchi et a l . , 
2011; K i n g m a and B a , 2014). 

3.1.4 E x a m p l e 

To finish our presentation of the G S M , we revisit the Subspace Gaussian M i x t u r e M o d e l 
( S G M M ) on a toy example. The S G M M was originally presented i n (Povey et al . , 2011) as 
a mean to improve the acoustic model i n an A S R pipeline. We use the G S M framework to: 

• give a Bayesian treatment of the model 

• include a l l the parameters of the Gauss ian 3 while maintaining a tractable inference 
thanks to A l g o r i t h m 3.1. 

3 In the original version of the SGMM, only the mean vectors and the mixing weights of the mixture's 
components were included in the subspace. 
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A l g o r i t h m 3.1 Tra in ing of the Generalized Subspace M o d e l 

1: function M S T E P ( X i : x , (f>\-Ki m > \ P> 
2: > p: learning rate of the stochastic gradient ascent 
3: > S: number of updates of the stochastic gradient ascent 
4: > 4>I-K, m 5 A: current parameters of the variat ional posteriors 
5 : m(new) ^_ m 

6: A(" e w) <- A 
7: for s <- 1 to 5 do 

8: m ( " e » ) <- m ( « e - ) + p V ^ e w ) / : m , A ( m , A ^ ; X 1 : X , 01 : X) 

9 : ^ A ( " e w ) + p V A / : m , A ( m ( " e - ) , A ( n e w ) ; X 1 : X , 0 1 : X ) 
10: return m ( n e w ) , A ( n e w ) 

11: function E S T E P ( X i : x , m, A) 
12: > The E-step is model dependent but is identical to the E-step of the unconstrained 

model (i.e. no subspace). 
13: for i <— 1 to K do 
14: § f e w ) <- arg max^. C^fc, X J , m, A) 

i , (new) 
15: return <p̂ .̂ -

16: procedure T R A I N G S M ( X I : X , - E , p, 5) 
17: > .E: number of epochs (i.e. E-step + M-step) 
18: m* <— ini t ia l iza t ion 
19: A* in i t ia l izat ion 
20: 4>IK in i t ia l izat ion 
21: for e <- 1 to £ do 
22: <f)\.K 4r- E S T E P ( X i : A - , m * , A*) 

23: HI*, A* <- M S T E P ( X i : x , <j>\.K, HI* , A*, /9, 5 ) 

Let 's consider the dataset shown in F i g . 3.2: each point represents task-dependent 
features and the color represents the class each point belongs to. For instance, the features 
could be the per-frame M F C C features and the class is the identity of the speaker or, 
alternately, each point could represent an image of a person and the class is the identity 
of this person. Since we are concerned w i t h modeling phones, let's assume that each point 
represents the features of a speech frame and the color indicates the phone associated to 
this feature vector. Here, our goal is twofold: first, we wish to model the data using some 
probabilist ic model, second, we would like to learn a low-dimensional representation of a 
phone, i.e. some k ind of „phone embedding". 

Let K denote the number of phones i n our data set. A s previously, our data set of N 
vectors is composed of K sets of sizes Ni,..., NK- We assume the Nj observations of the 
i t h phone to be modeled by a mixture of C = 2 N o r m a l densities, parameterized by: 

mix ing weights: 7Tj 

mean vectors f i a and fii2 

SUCh that 7Tjl + 7Tj2 = 1 
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Figure 3 .2: Synthetic data for the Subspace Gaussian M i x t u r e M o d e l ( S G M M ) . A n artificial 
representation of speech features where each phone (represented by one part icular color) 
has a b imoda l dis t r ibut ion. 

• precision matrices S j i and £ j2 

resulting i n a total of 11 free parameters 4 . Let Zij be the latent variable encoding, for 
the i t h phone, to which mixture 's component the j t h speech frame is assigned. The joint 
dis tr ibut ion of the model is given by: 

Ni C 

P (x„ Zi\...)=nn%>.c ^icf^=c^i[zij=c\ (3.23) 

j=lc=l 
which can be expressed as an exponential function: 

p ( X i , Zj| . . . ) = e x p { T 7 l

T T ( X i , Zi) - Afa, z*) + 5 ( X i ; z*)}, (3.24) 

4The mixing weights have 1 free parameter, each of the mean vectors has 2 and each of the precision 
matrices has 3, therefore: 2 x (2+ 3)+ 1 = 11 
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where we have defined: 

Tin 

In 

Vi 

1-Z^C=1 nic 

1 Y ^ C - 1 - ^ 1-Zjc=l îc 
S i l M i l 

v e c ( £ - 1

1 ) 

S ( X i , Z i 

v e c ( S ^ 

l n ( l 
C - l 

£ 
c=l 

r(Xj,Zj 

1 [ % = 1] 

l b 
I k ; , 

I k 

C - 1] 

C]x i . 
= 1]\vec(xyxly 

= C ] i vec(x^-x. 

TT,-, 
c=l 

In 2vr. 

Now, we define the prior over the natural parameters rjl,..., 77 ̂  as follows: 

v e c ( W ) 

b 

Vi 

AA(0,I) 
AA(0,I) 
A/-(0,I) 

/ ( W T h i + b ) . 

The mapping function / is defined such that: 

£ j c 

diag(Ljc) 
ltri(LjC) 

l + E S i ' e x p l W ^ h i + W}; 
( L ^ ) " 1 

e x p l W j h i + b L } 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

where e x p { . . . } is the element-wise exponential function, e x p { . . . }^ is the <ith dimension 
of the resulting vector and l t r i is a function that returns the lower-triangular part (not 
including the diagonal) of a square matr ix arranged as a vector. Matr ices W ^ , W ^ , W / v 
and are disjoint parts of the mat r ix W (b^, b ^ , ... are defined s imi lar ly) . Importantly, 
the parameters of the subspace W and b are shared across phones and only the embeddings 
hi,..., hx are phone-specific. In our example we choose hj to be a 2-dimensional vector, 
hence reducing the original 11 free parameters of the G M M to only 2 dimensions. 

In the case of the S G M M , Zij £ { 1 , . . . , C } is a discrete variable and therefore the pa­
rameters 4>i = 4>a,..., 4>ipf., of the variat ional posteriors q(zi) = q(zn),..., q(znyi) are 
simply: 

q(Zij = c) = 4>: (3.37) 
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0 10 20 30 40 50 
epoch 

Figure 3.3: Evo lu t ion of the variat ional lower-bound during the training. 

Because of the mean-field factorization assumed i n (3.15), the variat ional posterior maxi ­
miz ing (3.18) is given by: 

<P* = Q*(zi) = e x p { ( t ? i > J e ) T ( X i , z i ) - (A(Vi, Z i ) ) q { & ) + S ( X i , z * ) } . (3.38) 

Because of the non-linear mapping / , the expectations cannot be evaluated in closed form, 
we approximate them by sampling several values of r}\ ~ q(@) and taking the average. Once 
the op t imal parameters of the variat ional posteriors over the latent variables Zj have been 
estimated, we can update the variat ional posteriors over the subspace's parameters W , b 
and the embeddings h i , . . . , h x - P lugging (3.24) i n (3.21), we get the following objective 
function: 

j L K 

L £-m,\ — j y , y , 
1=1 i=l 

^ T T ( X i , Zi) - A{r,\, z i ) + B(Xi, z { D K L ( 9 ( © ) | | P ( © ) ) (3.39) 

W , , b „ h i , - - - , h k ~ < z ( e ) (3.40) 

^ = / ( W z

T h ^ + b z). (3.41) 
The op t imal parameters m*, A* of the variat ional posterior q(&) are obtained by opt imizing 
(3.39) w i th a gradient ascent. The gradient of the objective function VCm,x is easily 
obtained by any common automatic differentiation software. 

A s the V B objective is subject to local optima' ' , it is important to properly init ial ize 
the model, i.e. to provide for an in i t i a l guess of the variat ional posterior's parameters <f>* 

and m*, A*. One may be tempted to t ra in a G M M for each phone independently and 
then ini t ial ize the G S M so that it approximates the learned G M M s . This naive approach 
is, however, inadequate. Indeed, for mixture models, the ordering of the components is 
unidentifiable as reordering them w i l l lead to the same exact density. F r o m the stand­
point of the parameter space, this model equivalence under reordering implies some k ind of 
symmetry, that is, portions of the space that represent the same model but wi th different 
ordering. Therefore, when trained independently, the G M M s w i l l be spread across these 
equivalent spaces making it hard to find a coherent in i t ia l iza t ion of the subspace. To avoid 
this issue, we ini t ia l ized our S G M M wi th the following procedure: 

3 More precisely, the local optima are a consequence of our (parametric) mean-field approximation. 
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1. for each phone, fit the data w i th a single multivariate N o r m a l density A ) 

2. ini t ial ize cf)*: 

4>* = a rgmax( ln 
<t>i 

p ( X j , Z j | ^ ) 
(3.42) 

where Tjj is the vector of natural parameters of the i t h phone's G M M such that each 
component has mean and precision mat r ix set to jl and XI respectively. Note that 
this in i t ia l izat ion corresponds to a saddle point of the objective function wi th respect 
to the parameters of the variat ional posteriors. Nevertheless, the noise introduced 
by the „ r e -pa rame te r i za t i on tr ick" i n (3.21) w i l l allow the model to escape from this 
saddle point. 

and, using g*(zj), optimize the objective function described i n E q . (3.19) un t i l con­
vergence. The scaling jj reduces the noise at the beginning of the t ra ining when using 
relatively large subspace dimensions. 

After this in i t ia l iza t ion procedure, the t ra ining can be carried out as described i n Section 
3.1.3. For this example, we trained the model for 50 epochs. For each V B M-step, we 
run a stochastic gradient ascent of 100 steps. The learning rate of the gradient ascent was 
updated following A D A M ( K i n g m a and B a , 2014) w i t h an in i t i a l learning rate of 0.1. The 
evolution of the variat ional lower-bound over t ime is plotted i n F i g . 3.3. A t the early stage 
of the training, one can observe big jumps of the lower-bound. This corresponds to the V B 
E-step which drast ically changes the accumulated statistics needed to retrain the subspace. 
A s the t ra ining continues, the statistics stabilize and the t ra ining converges. 

F i g . 3.4 shows the outcome of the training. We see that, each phone's data is properly 
fit by a 2-components G M M (Fig . 3.4a) whose parameters are constrained to live i n a 2-
dimensional space. Since we used (approximate) Bayesian inference, we do not learn point 
estimate of the parameters but a posterior dis t r ibut ion which encodes our uncertainty about 
the exact value of the parameters. The phones' variat ional posteriors i n the parameter 
subspace are depicted i n F i g . 3.4b. We see that the model has efficiently made use of 
both of the dimensions of the subspace to extract the phone embeddings. Notice that 
the posteriors are quite sharp as there is sufficient amount of data for each phone and, 
therefore, there is l i t t le uncertainty about the values of the G M M s ' parameters. F ina l ly , 
F i g . 3.5 shows how the subspace encodes the G M M parameters: the x axis controls main ly 
the covariance matrices of the G M M ' s components and the y axis encodes the mean vectors 
and the mix ing weights. 

In section 3.1, we have introduced the G S M : a theoretical framework to embed probabilist ic 
models into a low-dimensional subspace. A major benefit of the G S M is that it allows 

3. set: 

(3.43) 

(3.44) 

3 . 2 S u b s p a c e H i d d e n M a r k o v M o d e l 

47 



(a) G M M learned for each phone in the data 
space. The 11 free parameters of the G M M 
are encoded in the 2-dimensional latent space. 
The mixing weights are represented by the trans­
parency of the components. 

(b) Latent space of the G S M . The pink area 
shows the Normal prior density and, similarly, 
the small colored areas represent the posterior 
distribution over h .̂ 

Figure 3.4: Outcome of fitting the Subspace Gaussian M i x t u r e M o d e l . Colors indicate a 
part icular „phone" class. 

to bu i ld a subspace for a large class of models. For instance, it has been a common 
practice i n A S R to model a phone wi th an H M M . Using the G S M , it is easy to bui ld 
an embedding space for the H M M and, consequently, a phonetic subspace. We denote the 
combination of the H M M and the G S M the Subspace Hidden Markov Model or S H M M for 
short. The model closest to the S H M M is the already mentioned S G M M (Povey et a l . , 2011). 
S t i l l , it is important to emphasize that, i n addi t ion to the technical differences highlighted 
in Section 3.1.4, both models serve different purposes. The S G M M was introduced to 
increase the number of Gaussian per H M M state while keeping the number of parameters 
to tune relatively low. Consequently, the S G M M was providing a more complex phone 
model compared to the t radi t ional H M M . O n the other hand, our S H M M does not increase 
the model complexity, rather, we use it for the sole purpose to extract a low-dimensional 
phonetic subspace, having, therefore, a pract ical representation for phone and acoustic 
units. To the best of our knowledge, the work closest to our S H M M is (Burget et a l . , 
2010) where the authors used the S G M M to derived low-dimensional embeddings for the 
senones of an H M M - b a s e d A S R system. The S H M M generalizes (Burget et a l . , 2010) by (i) 
modeling the whole phone rather than „pa r t -o f - the -phone" (e.g. the senone) (ii) including 
the covariance matrices as part of the subspace (iii) using Bayesian inference preventing 
potential overfitting. This section is made of three parts: first, we formally define the 
concept of phonetic subspace as used in this work (Section 3.2.1), second we pract ical ly 
define the S H M M (section 3.2.2) and finally, we demonstrate the potential of the S H M M 
on the T I M I T dataset to learn an Engl i sh phonetic subspace in section 3.2.3. 
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(a) Data space (b) Latent space 

(c) Data space (d) Latent space 

Figure 3.5: How the subspace encodes the G M M s ' parameters. The x axis controls main ly 
the covariance matrices and the y axis controls mainly the mean vectors and the mix ing 
weights. 

3.2.1 P h o n e t i c subspace 

Tradit ionally, in speech recognition, a phone is modeled by an H M M w i t h 3 states w i t h a 
left-to-right topology and each state has a G M M emission density. A s seen previously in 
chapter 2, one can represent an H M M , therefore a phone/acoustic unit , in a vector space by 
concatenating the states' parameters i n a „super vector" rj. The concept of "super-vector" 
to represent probabil ist ic models in a vector space is directly borrowed from (Kenny et a l . , 
2007). Let ' s consider that we fit an H M M to a set of recordings of the phone / a w / resulting 
in the super-vector r / a w . M o v i n g the vector r / a w w i l l change the parameters of the H M M 
and, consequently, the phone it represents. For instance, a displacement may lead to change 
the phone from / a w / to / o w / . Then , moving the vector further w i l l change the original 
/ a w / phone more profoundly and yield, say the consonant / z / . The key idea is that there 
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is a cont inuum between a l l phones, or expressed in another way, we can smoothly transi t ion 
from one phone to another. Fol lowing this reasoning, we can envision a l l the phones of a 
language as vectors i n a space, connected by a low-dimensional manifold which represents 
this continuum. This is depicted by the blue line i n F i g . 3.6. Th is manifold is what we cal l 
the phonetic subspace. Importantly, this concept of phonetic subspace is independent of the 
choice of the phone model: G M M , H M M , Linear Dynamica l Mode l . . . However, the type of 
model used w i l l influence how well the continuity between phones is represented. We have 
chosen to use the H M M for convenience and to help to reuse this concept w i t h the A U D 
task. Yet , it is l ikely that a more refined model, for instance the recurrent switching linear 
dynamical systems (Linderman et a l . , 2017), would lead to a more meaningful phonetic 
subspace. 

W h e n defining the phonetic subspace, we have only considered displacements of the vector 
?7 a w leading to a change of phone ( /aw/ to / o w / ) . However, moving the vector away from 
the phonetic subspace w i l l not change the phone itself but its characteristics. For instance, 
we can move r ? a w to make it more adapted to a female or a male speaker. S imi lar ly to the 
phonetic subspace, by assuming a cont inuum between different speaker adapted phones, we 
can define the speaker subspace: a low-dimensional manifold, intersecting wi th the phonetic 
subspace, which represents the cont inuum of a l l possible speaker-adapted versions of a 
phone. This is shown by the red line if F i g . 3.6. Fol lowing the same reasoning, we can 
imagine a subspace for many other factors: emotion, channel, speaker age... The main 
advantage of subspace models is to extract from the high-dimensional parameter space of 
a probabil ist ic model a low-dimensional manifold capturing only the information relevant 
for a given task. 

Final ly , it is important to realize that the phonetic/speaker/ . . . subspace is localized in 
the parameter space. For instance, i n the phonetic subspace, moving the embedding of the 
phone / a w / toward a certain direction w i l l end up to a location where the embedding does 
not represent a phone anymore. More formally, the phonetic subspace is bounded wi th in 
the parameter space. The G S M handles this local izat ion w i t h the bias parameter b and 
the prior over the embeddings hj ~ A/"(0,1). These two elements define a "bounded" region 
of the parameter space which concentrates most of the probabil i ty density. The bias vector 
b represents the phone centroid which is the average of a l l the phones of a language. 

3.2.2 E n c o d i n g the H M M parameters 

We have described the phonetic subspace as a manifold in the parameter space of a proba­
bilist ic model; i n our case an H M M . We now make use of the G S M framework to define the 
S H M M which w i l l allow us to estimate the phonetic subspace. Similarly, to the A U D model, 
each phone is modeled by a 3-state H M M wi th a left-to-right topology. E a c h state has a 
G M M emission wi th K Gaussian components. We l imi t ourselves to the case where the 
Gaussian components have a diagonal covariance matr ix . The extension to full covariance 
matr ix is straightforward using (3.35). 
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"aw" 

Figure 3.6: Representation of the Subspace Hidden Markov M o d e l ( S H M M ) . E a c h phone is 
represented a super-vector 77 which encodes the parameters of an H M M . The model assumes 
further that a l l the phones lie on a low-dimensional manifold (1-dimensional in this example) 
l iv ing i n the tota l parameter space. The S H M M can account for mult iple subspaces, for 
instance speaker, phonetic, emotion, ... In our case we are only interested i n the phonetic 
subspace. The parameters space is represented wi th 2 dimensions for visualizat ion. In 
practice, however, common settings lead to a parameter space wi th several thousands of 
dimensions. 

Recal l from chapter 2 that the l ikel ihood of the n t h speech frame given the parameters 
of an acoustic unit (or a phone i n a supervised learning context) w i th index u is given by: 

p ( X n , C n \ S n , . . . ) = p(xn|/4"'C", E ^ M C n K " ) 

p(cn\Kn) = P(cn\<n) = exp {c<" T T(c n ) -

p (x n | /<»< c » , ^ » < c » ) = p(x„K»<c») = e x p { ^ r

c » T T ( x n ) - A(9S

U^)}, 

(3.45) 

(3.46) 

(3.47) 

where cn is the index of the mixture 's component and sn is the index of the H M M state. 
The natural parameters of the Categorical d is t r ibut ion CJ*™, the natural parameters of 
the N o r m a l dis t r ibut ion #*™'c™ and the sufficient statistics T ( c n ) , T ( x n ) are given by the 
following equations: 

In 

In 

1 - T C _ 1
 7TS™ 

i-E 
u,l 

OS n -(-'n 
. u,2 - \ vec(5]*"' c" " 

T(x, 

l [ c „ = l] 

i [ c = c -1] 

xr, 
vec (x n x 

(3.48) 

(3.49) 

The final super-vector embedding of an acoustic-unit is given by the concatenation of the 
natural parameters of the N o r m a l and Categorical distributions composing the l ikelihood 
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function: 

'vi 

Vu Vu (3.50) 

e 

IVu 

where i is the index of the H M M state. 

F rom the G S M formalism, the natural parameter vector of the uth. phone is given by 
Vu = / ( W T h u + b). We set the mapping function / such that standard parameters are 
given by the following relation: 

_i _ e x p { W t T h u + bt} c 

l + E f ^ e x p l W ^ + H h 

d i a g ( S ^ ) = e x p { W ^ T h u + b^'} (3.52) 

KJ '/';;•' = w ; ; - ' - i . , • i>;/ . (3 .53) 

(3.54) 

where e x p { . . . } is the element-wise exponential function, e x p { . . . }^ is the <ith dimension 
of the resulting vector, i is the index of the H M M state and j is the index of the mixture 's 

,.u , L U I , . » » 

W (and s imilar ly for hl

n, ...) 

component of the uth acoustic unit . W ^ , and are disjoint parts of the mat r ix 

Our choice for the function / is somewhat arbitrary: we chose / such that the subspace 
is linear (log-linear for the diagonal of the covariance matrices) i n the natural parameter 
space of the H M M . Yet , beyond convenience, we have no motivat ion to favor one function 
over another. In the extreme case, one could possibly define / by a neural network wi th 
parameters to learn. Th is solution, even though appealing, has the major drawback to re­
quire a large number of phones to properly estimate the phonetic subspace and the function 
/ . This si tuation is hardly met in our case as a usual language has around 50 - 100 phones 
which is by far not enough to learn any reasonable size neural network. 

Contrary to the S G M M presented in section 3.1.4, the S H M M has 2 latent variables: 
the mixture 's component index cn and the H M M state index sn. Furthermore, the exact 
alignment between the feature frames and the sequence of acoustic units is unknown, the 
acoustic unit index u is also a latent variable. Fol lowing the same notat ion as i n section 
2.2.4, we encode, in a variable zn, bo th the state sn and the acoustic unit index u. Therefore, 
the parameters cf) of the variat ional posteriors are given by: 

q{cn = i,zn = j) = 4>n3- (3-55) 

The opt imal variat ional posterior q*(c, z) is obtained by the V B E-step of the H M M training 
as described in section 2.3.1 where the expectation of the natural parameters of an acoustic 
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uni t /phone (T}U)Q(&) is obtained by sampling several values from the variat ional posterior 
Vu ~ ? ( © ) a n d taking the average. Final ly , the variat ional posterior over embeddings and 
the parameters of the subspace of (3.18) is obtained by opt imiz ing the following objective 
function: 

£ m , \ ( m , A ; . . . 
1 

L 

L 

1=1 
In 

p ( X , c , z | H j 

(») 
l,Di, n 1 ; n 2 , • • • 9 ( e ) 

H z = b W s , . . . ] . 

D K L ( 9 ( © ) | | p ( © ) ) (3.56) 

(3.57) 

(3.58) 

(3.59) 

The l ikel ihood function p (X, c , z | H ) was described i n depth i n section 2.2.5. In practice, 
we optimize this objective function wi th an adaptive gradient ascent ( A D A M ( K i n g m a and 
B a , 2014)) and we use automatic differentiation software to compute the gradients. 

Final ly , note that the description of the S H M M we have given can be applied to both 
supervised or unsupervised tasks. In the supervised setting, the phonetic transcript ion is 
given (i.e. the sequence of acoustic units ui,U2, • • • ,UL is known) and defines the states' 
t ransi t ion probabilities of the global H M M (the H M M composed of the acoustic uni ts / -
phones' H M M ) . In the unsupervised setting, the transcript ion is unknown and, therefore, 
the global H M M state transit ion probabilities are set to form a phone-loop as described in 
chapter 2. 

3.2.3 E x a m p l e : l earn ing the E n g l i s h phonet ic space 

We demonstrate now the potential of the S H M M by learning a phonetic subspace for the 
Engl i sh language. For this example, we used the T I M I T database as we d id for the A U D 
experiment (see section 2.4.1). However, since we are now dealing wi th a supervised learning 
problem, we used the t radi t ional t ra ining set (3696 utterances) and test set (412 utterances) 
(Lopes and Perdigao, 2011). We experimented w i t h the M F C C and M B N features as 
described i n section 2.4.2. 

Simi lar ly to the S G M M , the S H M M has some symmetries i n its parameter space and 
requires, therefore, a careful in i t ia l izat ion prior t raining. We used the following scheme: 

1. we trained a standard H M M wi th G M M emissions for each phone using the B a u m -
Welch t raining and the provided phonetic t ranscr ip t ion 6 . E a c h G M M has K compo­
nents. 

2. for each state of each phone's H M M 

(a) set the mix ing weights 7r such that irk = ^ 

(b) compute the per-state global mean jx = Ylk=i A*fc a n d global diagonal covari-

ance mat r ix S = Ylk=i ^k 

(c) set each Gaussian component to have mean fi and covariance mat r ix S . 
6Practically speaking, this is equivalent to train an H M M based phone recognizer with a flat phonotactic 

language model. 
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3. using the H M M estimated in step 1, we ini t ial ize q*(zn = j) using the Baum-Welch 
algori thm and we set q*(cn = i\zn = j) = const 

4. we set m* and A* as in (3.43) and (3.44), then, using q*(c, z), we optimize the objective 
function defined in (3.56) for 10000 updates using A D A M wi th an in i t i a l learning rate 
of 0.001. 

After this ini t ia l izat ion, we trained the S H M M for 30 epochs as described i n section 3.1.3 
wi th the standard V B E-step for H M M as detailed i n section 2.3.1. Dur ing the training, 
for each V B M-step we run a stochastic gradient ascent of 1000 steps. Once again, the 
learning rate of the gradient ascent was updated following A D A M . The state of the A D A M 
optimizer was preserved from the in i t ia l iza t ion t i l l the end of the training. 

For our first experiment, we trained an S H M M wi th 4 N o r m a l components per state 
and a 2-dimensional subspace for visualizat ion purposes. The learned phone embeddings 
h a a ) h m , . . . are shown i n F i g . 3.7. We observe that phones belonging to the same broad 
phonetic group tend to be closer to each other than phones from different groups. It confirms 
that the S H M M is able to learn a consistent phonetic subspace in the sense that distance 
between phone embeddings correlate w i th the phone clustering as done by linguists. The 
embeddings extracted wi th the M B N features (F ig . 3.7b) are a bit more noisy than the 
ones extracted wi th the M F C C features (F ig . 3.7a): closure, weak fricative and stop phones 
overlap each other. Th is observation confirms that discriminatively trained features, even 
though efficient for classification or related tasks, are not ideal for modeling the data. 

54 



vowel/semivowel 
stop 
strong fricative 
closure 
weak fricative 
nasal 

t 

-0.5 

V 

dh 

hh dx erf 

iy 

l a -rtxM -

uw 
oy er 

h pw • 

0.5 

(a) 

vcl 

0.5 

-0.5 

vowel/semivowel 
stop 
strong fricative 
closure 
weak fricative 
nasal 

I-
• 

oy 

-1.5 

ow • ao 

sh 
c V 

F . 7 H 

• J 

th 
d* 

vcl I hh 

dx 

-0.5 

(b) 

0.5 

Figure 3.7: Posteriors of the phone embeddings learned by the S H M M on T I M E T using (a) M F C C features and (b) M B N features. Colors 
indicate the broad phonetic groups defined i n (Lopes and Perdigao, 2011). 



3 . 3 D i r i c h l e t P r o c e s s S u b s p a c e H i d d e n M a r k o v M o d e l 

In section 3.2, we have defined the S H M M which, among other benefits, allows us to extract 
a low-dimensional subspace representing the phonetic cont inuum of a language. Now, we 
show how the S H M M and the Dir ichlet Process can be combined to form the Dirichlet 
Process Subspace Hidden Markov M o d e l ( D P - S H M M ) . This new model is very similar to 
the phone-loop A U D model defined i n section 2.2, however, by incorporating the phonetic 
subspace, it allows for significantly more accurate clustering of the acoustic units. 

3.3.1 R e v i s i t i n g the base measure 

The base measure of the non-parametric phone-loop model defines a pr ior i which sound 
is l ikely to be an acoustic unit . Pract ical ly, the base measure is a multivariate density 
over a H M M parameter vector r/ denoted Go(r)). However, as the parameter space is high-
dimensional and hardly interpretable, we have so far set the base measure to be a 1 1 vague 
prior" which allows v i r tua l ly any sound to become an acoustic unit . This choice has negative 
consequences as it allows the model to discover units that may not be relevant, for instance, 
the model may learn strongly speaker-dependent units. Th is problem can be resolved i f 
we assume that we are given the phonetic subspace of the target language. Remember, 
from section 3.2.1, that the phonetic subspace describe a region i n the to ta l parameter 
space containing the phones of the language. W i t h this piece of information, the A U D 
problem is easier as we only have to search for the low-dimensional embeddings h i , I 1 2 , . . . 
in the phonetic subspace rather than the high-dimensional embeddings rj1,rj2,... in the 
full parameter space. This approach can be implemented by setting the base measure over 
the low-dimensional embeddings: Go = p(h) . B y doing so, we l imi t the prior over the 
acoustic units to the set of H M M parameters that are phonetically relevant. The modified 
base measure of the Dir ichlet Process of the A U D model is depicted i n F i g . 3.8. 

Constraining the base measure also changes the generative process which can now be 
described i n the following way: 

1. draw 7 ~ G(ao, bo) 

2. draw vt ~ B(l, 7 ) , i = { 1 , 2 , . . . } 

3. draw hj ~ Go i € { 1 , 2 , . . . } 

Figure 3.8: Base measure of the S H M M Dirichlet Process M i x t u r e model. 
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4 map the unit embedding to the H M M parameter space r]i = / ( W T h j + b) 

5 V»i = vi UjJiO- ~ Vj) 

6. Draw a sequence of units u, Uj ~ C(ip) 

7. For each Uj in u 

(a) Draw a state path s = s i , . . . , si from the H M M transi t ion probabi l i ty distr ibu­
t ion 

(b) for each state Sk i n s: 

i . D raw a component ~ C(7r^.) from the state's mixture weights 

i i . D raw a data point x f c ~ A/"( /x^ ' C f e , S^. ' C f c ) 

F rom step 5., the generative process is the same as the original A U D model described in 
section 2.2.3 and the function / is the S H M M mapping function defined in (3.51), (3.52) and 
(3.53). We cal l this new model the Dirichlet Process Hidden Markov Model ( D P - S H M M ) 
and its graphical representation is shown i n F i g . 3.9. Interestingly, the base measure is 
not a proper density function i n the r/ space, however, a sample from the Dir ichlet Process, 
G ~ G Q , is indeed a discrete probabil i ty dis t r ibut ion over the atoms h i , I 1 2 , . . . : 

The t ra ining of the D P - S H M M is the same as the S H M M wi th the two following modi­
fications: 

• the V B E-step is replaced wi th the one of the standard A U D phone-loop model 

• dur ing the V B M-step, the parameters of the susbpace W and b are assumed to be 
known, therefore, we only optimize the variat ional posteriors (/(hi), q(h.2), • • • 

3.3.2 A p p r o x i m a t i n g the phonet i c subspace of the target language 

We have assumed that we had at our disposal the phonetic subspace of the language on 
which we would like to discover the acoustic units. O f course, this is not true i n practice since 
to learn a phonetic subspace wi th an S H M M , one needs to have phonetic transcriptions of 
the audio recordings. Even though the actual phonetic subspace is unavailable, we can s t i l l 
approximate it using other languages. For instance, consider we wish to discover acoustic 
units from the Czech language. Czech has similar phonetics as other Slavic languages plus 
some extra typica l phones such as the one denoted by the grapheme / f / . In practice, / f / is 
well approximated by the combination of / r / and / z / and, therefore, any phonetic subspace 
learned on a language having bo th / r / and / z / would help to discover the / f / sound. F r o m 
a more general perspective, despite the fact that each language has its own unique set 
of phones, there is a large overlap among languages of the same family. Consequently, a 
phonetic subspace from a given language can s t i l l be used to help discovering units from 
another language. Furthermore, we can also bu i ld a „universa l" phonetic subspace by 
learning the subspace on several languages together. Th is approach allows the subspace 
to cover a broader phonetic range, giving more flexibili ty to the A U D model to fit typical 
phones of the target language. 

00 
(3.60) 

i=l 
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Figure 3.9: Bayesian network of the Dir ichlet Process Subspace Hidden Markov M o d e l ( D P -
S H M M ) . The atoms of the Dir ichlet process are constrained to live in a low-dimensional 
subspace parameterized by W and b. 

3 . 4 R e s u l t s 

We now evaluate the D P - S H M M model on the A U D task. O u r analysis focuses on the 
effect of the subspace dimension (section 3.4.2), the „goodness" of the approximate phonetic 
subspace (section 3.4.3) and the comparison wi th the A U D phone-loop model (section 3.4.4). 

3.4.1 E x p e r i m e n t a l setup 

We used the same experimental setup as described i n chapter 2: we attempt to discover 
acoustic units from the T I M I T and M B O S H I database using either M F C C or M B N features. 
To learn the approximate phonetic subspace for the D P - S H M M , which requires phoneti­
cally transcribed data (from languages different from the target one), we used a subset of 
G L O B A L P H O N E (Schultz, 2002). The G L O B A L P H O N E corpus is made of 16kHz record­
ings of read speech utterances of the most widespread languages i n the world. Pract ical ly, 
we used 1500 utterances from the French ( F R ) , Spanish (SP) , German ( G E ) and Pol i sh 
(PO) subsets of the corpus. Altogether, the 6000 utterances amount to roughly 14.6 hours 
of data. The exact durat ion for each language subset is shown in Table 3.1. For conve­
nience we refer to this combination of the French, German, Pol i sh and Spanish subset as 
the „Combined" set, or C B for short. Note that, for the C B set, s imilar phones present 
in different languages are considered to be different. For example, the French / a / and the 
Pol i sh / a / are assumed to be two different phones when t ra ining the phonetic subspace. 
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Figure 3.10: Performance of S H M M phone recognizer on T I M I T as a function the subspace 
dimension. W h e n the dimension of the subspace reaches the number of phones, the model 
becomes unconstrained and have similar performance to a H M M phone recognizer. 

3.4.2 O p t i m a l subspace d imens ion 

W i t h the A U D phone-loop model introduced i n chapter 2, the size of an acoustic unit 
embedding 77 is defined by number of parameters of the corresponding probabil ist ic model. 
However, for the D P - S H M M , the dimension of an acoustic unit embedding h depends on 
the dimension of the subspace D which is a meta-parameter. F r o m Figure 3.10, we see 
that, when the phonetic subspace is learned using the actual phones of the language, a 
40-dimensional subspace is sufficient to encode a l l the phonetic variabi l i ty of the language. 
However, in the A U D task, we cannot learn the exact phonetic subspace and therefore, 
the op t imal subspace dimension may be radically different. A low-dimensional subspace 
heavily constrains the A U D search whereas a large number of dimensions allows fine-grained 
acoustic units modeling potential ly non-phonetic information. 

For our first experiment, we trained D P - S H M M based A U D models w i th 50-, 75- and 
100-dimensional subspace. The phonetic subspace was learned on the C B set. The results 
in terms of N M I are shown i n Table 3.2. We see that, for T I M I T and M B O S H I , the higher 
the dimension of the subspace, the better the N M I . F r o m this result, we fixed the subspace 
dimension to 100 for a l l subsequent experiments. It is of course possible to set the dimension 
of the subspace to a higher value but due to l imi ted computat ional resources, we d id not 
investigate further. 

G L O B A L P H O N E subset G E P O F R S P C B 
# utterances 1500 1500 1500 1500 6000 
amount of data (hours) 2.72 3.41 3.83 4.67 14.63 
# phones 41 45 38 40 164 

Table 3.1: Statistics of the data to estimate the universal phonetic subspace of the D P -
S H M M . 
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Corpus Subspace dimension N M I (%) 
T I M I T 50 38.38 
T I M I T 75 39.00 
T I M I T 100 39.94 

M B O S H I 50 38.38 
M B O S H I 75 39.55 
M B O S H I 100 39.98 

Table 3.2: Results i n terms of N M I of the D P - S H M M model on the A U D task wi th different 
subspace dimensions and using the M F C C features. In a l l the cases, the phonetic subspace 
was estimated w i t h the C B set. 

3.4.3 Benefits of the universa l phonet ic subspace 

In Section 3.3.2, we have proposed to approximate the phonetic subspace of the target 
language using labeled data from one or several languages. We now assess experimentally 
the benefits of this approach. In this experiment, we have trained and evaluated the D P -
S H M M on the A U D task wi th the phonetic subspace estimated from: 

• each ind iv idua l language from our G L O B A L P H O N E subset, that is French ( F R set), 
Spanish (SP set), German ( G E set) and Pol i sh ( P O set) 

• a l l the languages together ( C B set) 

• the same data set as the target data for the A U D ( T I M I T or M B O S H I ) . 

W h e n using the same data as for the A U D task, this is of course a "cheating" experiment 
as we use the actual labels of the corpus. Nonetheless, it provides an upper bound on the 
best achievable results w i th the D P - S H M M . Results, measured wi th the N M I metric, are 
shown i n Table 3.3. O n T I M I T , learning the phonetic subspace from the combinat ion of 
the 4 languages ( C B set) yields a significant improvement to using only one language to 
estimate the subspace. However, for the M B O S H I corpus, the subspace learned from the 
C B set is as good as the subspace learn from the F R set or the G E set. In both cases, there 
is a large difference when using the opt imal subspace (learned from the target data) and 
any other subspace. 

3.4.4 C o m p a r i s o n w i t h the D P - H M M 

Final ly , we compare the D P - S H M M against the previous phone-loop model presented in 
chapter 2 on the A U D task wi th no subspace modeling. For the sake of brevity, we refer to 
this model as the Dirichlet Process Hidden Markov Model ( D P - H M M ) . For this experiment, 
the 100 dimensional phonetic subspace of the D P - S H M M was estimated on the 14.6 hours 
of the C B set. We ran our experiments on the T I M I T and M B O S H I corpora wi th both 
the M F C C and M B N features. The results are shown in Table 3.4. Results show that the 
D P - S H M M gives a significant improvement over the D P - H M M both in terms of segmenta­
t ion (F-score metric) and clustering ( N M I metric) . Also , it experimentally confirms that 
the base measure is a key element of the non-parametric phone-loop model . A n impor­
tant observation is that the D P - S H M M trained wi th M F C C features performs better than 
the D P - H M M trained wi th M B N features on both corpora. This suggests that the G S M 
framework offers a more efficient way to implement knowledge transfer across languages. 
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Features Subspace Corpus Target Corpus N M I (%) 
M F C C G E T I M I T 36.35 
M F C C P O T I M E T 38.00 
M F C C F R T I M I T 37.66 
M F C C S P T I M I T 37.54 
M F C C C B T I M I T 39.94 
M F C C same T I M I T 43.52 
M F C C G E M B O S H I 40.01 
M F C C P O M B O S H I 39.29 
M F C C F R M B O S H I 40.29 
M F C C S P M B O S H I 39.00 
M F C C C B M B O S H I 39.98 
M F C C same M B O S H I 50.87 

Table 3.3: Results in terms of N M I of the D P - S H M M model, on the A U D task using 
M F C C features w i th phonetic subspace estimated on various data sets. The category 
„same" indicates that the phonetic subspace and the A U D task were run on the same data 
set. 

F ina l ly we plotted i n F i g . 3.11 the data-driven segmentation for one utterance given the 
D P - H M M and the D P - S H M M . We observed that, as shown by the F-Score metric i n table 
3.4, the D P - S H M M provides a much more accurate segmentation and drastically reduces 
the number of spurious boundaries. 

3 . 5 C o n c l u s i o n 

In chapter 2, we have introduced non-parametric H M M - b a s e d model to discover acoustic 
units from unlabeled audio recordings. This model depends on a base measure: a probabil­
i ty density function setting a priori which sound is likely to be an acoustic unit candidate. 
A common setting for this base measure is a vague prior letting, therefore, a l l the sounds as 
possible acoustic units. In this chapter, we have proposed a new method to design a more 
accurate base measure. Fi rs t , we have introduced the Generalized Subspace Model ( G S M ) , 
a unified framework to derive embeddings representing probabil ist ic models. Then, we have 
applied the G S M to a set of H M M s representing the phones of a language i n order to learn a 
phonetic subspace: a smooth low-dimensional manifold i n the H M M parameters space cap-

M o d e l Features Corpus F-score N M I (%) 
D P - H M M M F C C T I M I T 63.01 34.81 

D P - S H M M M F C C T I M I T 77.24 39.94 
D P - H M M M B N T I M I T 58.07 37.17 

D P - S H M M M B N T I M I T 66.40 40.17 
D P - H M M M F C C M B O S H I 46.89 35.98 

D P - S H M M M F C C M B O S H I 57.65 39.98 
D P - H M M M B N M B O S H I 44.09 32.13 

D P - S H M M M B N M B O S H I 56.24 36.52 

Table 3.4: Compar ison of the D P - H M M and the D P - S H M M on the A U D task. 
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Figure 3.11: Example of segmentation of utterance "Wha t outfit does she drive for?" by the D P - H M M and the D P - S H M M models. Black 
lines represent the reference boundaries and white dashed lines are the boundaries of the A U D model . The bot tom and top sequences of 
labels are the t ime aligned reference and proposed transcript ion respectively, 'yes, put it i n read and write „ass igned" . ' s i l " corresponds 
to the special silence unit . 



tur ing the phonetic variabi l i ty of the language. F ina l ly , we used this phonetic subspace to 
constrain the base measure of the A U D phone-loop model giving rise to a new A U D model: 
the Dirichlet Process Subspace Hidden Markov Model ( D P - S H M M ) . Th is new model re­
quires labeled data from languages (other than the target one) to estimate a „universal 
phonetic subspace". Then, the new A U D model discovers acoustic units constrained to 
live in this phonetic subspace. Exper imenta l results have shown that this approach pro­
vides a significant gain i n terms of both N M I and F-score. Also , we have observed that 
our „universal phonetic subspace" is by far not opt imal compared to the „ t rue" phonetic 
subspace of the target language. A better approximat ion of the phonetic subspace remains 
an open problem and could lead to significant improvement on the A U D task. 

In addi t ion to defining a better base measure, this approach also proposes a formal way 
to include knowledge extracted form other languages. Th i s can be viewed from a Bayesian 
perspective where the learned phonetic subspace is used to define an „educa ted prior". 
Importantly, this approach is not l imi ted to the H M M model . Indeed, since it relies on the 
newly introduced G S M framework, it can be applied to a vast collection of models and to 
other tasks than A U D . 

A s a concluding remark, note that the final acoustic unit embeddings h i , I 1 2 , . . . live in 
the same space as the phone embeddings of the languages used to estimate the phonetic 
subspace. F r o m this observation, it is relatively straightforward to interpret the derived 
acoustic units by comparing their distance to other known phones. For instance, i f an 
acoustic unit emebedding lives close to several nasal phones, it is reasonable to believe that 
this unit is also a nasal sounds itself. B y repeating this process for each acoustic unit , one 
could obtain a data-driven human-interpretable phone set. 
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C h a p t e r 4 

Phonotactic Language Model 

A s established i n chapter 2, our Bayesian formulation of the A U D problem relies upon 
three major components: the acoustic unit model, the base measure and the prior over the 
acoustic unit language model (the phonotactic language model) . The designs of the two 
first elements—the acoustic unit model and the base measure—were addressed i n chapter 
2 and chapter 3 respectively. We now focus our attention on the prior over the phonotactic 
language model . So far, we have used the Dir ichlet Process M i x t u r e M o d e l as the back-bone 
of our A U D model . Implici t ly, this assumes that each unit label is independent of the other 
labels from the sequence. Th is assumption is, however, very unrealistic as each language 
has very specific phonotactic constraints. To overcome this issue, we revisit the phone-loop 
A U D to incorporate a b igram phonotactic language model to capture these phonotactic 
constraints. In section 4.1, we define this new model through the use of a hierarchical non-
parametric prior: the Hierarchical Dir ichlet Process. The corresponding Var ia t iona l Bayes 
inference algori thm is described in section 4.2. In section 4.3, we propose a „corrected" 
version of the bigram A U D model to control how the acoustic and language model affects 
the learning. F ina l ly , results are shown and commented i n section 4.4. 

4.1 N o n - P a r a m e t r i c B i g r a m P h o n e - L o o p M o d e l 

Our Bayesian approach to the A U D task depends on the definition of the prior dis t r ibut ion 
p(u, H) where u = ui,..., UL is a sequence of L labels and H = (rjl,rj2, • • •) is a countably 
infinite set of acoustic unit embeddings. Reca l l from chapter 2 that setting V to be a 
Dirichlet Process leads to the following construction of the prior: 

0(7]) ~ VV(i, G0) 
L 

p ( u , H ) Y[G(Vun) l\G0(v 

n=l 
p ( u „ | H ) 

k=l 

(4.1) 

(4.2) 

p ( u | H ) 
P ( H ) 

where T>V(pi, Go) is a Dirichlet Process w i th concentration 7 and base measure Go- Impor­
tantly, we assume Go to be a continuous density function. The sampled measure G{rj) is a 
discrete dis t r ibut ion given by: 

G(V) = J2^m(V), (4.3) 
i=l 
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where tpi is defined by step 3 of the stick-breaking process described i n section 2.1.1. F r o m 
(4.2), we see that, regardless of the sampled measure G, the probabil i ty of the label sequence 
is always given by an unigram language model . To overcome this l imi ta t ion , one has to 
consider a non-parametric prior which can sample more complex probabil i ty distributions. 
In this work, we shall focus on the Hierarchical Dir ichlet Process ( H D P ) that w i l l allow us 
to construct a prior over bigram phonotactic language model . The H D P was introduced in 
(Teh et a l . , 2004) and applied to language modeling and word segmentation i n (Goldwater 
et a l . , 2009). These works can be seen as the non-parametric extensions of the Hierarchical 
Dirichlet dis t r ibut ion for language model introduced i n ( M a c K a y and Peto, 1995). Note 
that the H D P is not the only choice of non-parametric prior able to capture phonotactic 
constraints, for instance, the Hierarchical P i t m a n - Y o r Process (Teh, 2006) is another non-
parametric prior best suited for long ta i l distributions. 

4.1.1 H i e r a r c h i c a l D i r i c h l e t Process 

A H D P of order M is a sequence of M Dir ichlet Processes where the base measure of the 
n th process is given by a sample of the n — 1 process i n the sequence. Formally, it is defined 
as: 

G i ~ VV(jo,G0) 

G 2 ~ W ( j i , G L ) 

GM ~ TypiiM, GM-I)-

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The H D P is fully defined by the M concentration parameters 71,..., 7M and the in i t i a l base 
measure Go(rj). Note that Gi, G2, • • • are discrete distr ibutions over the atoms generated 
from the base measure Go at the first step of the process. Using this definition, we can 
extend the D P mixture model to an H D P mixture model to bu i ld a infinite phone-loop A U D 
model having n-gram phonotactic language model . In this work, we w i l l l imi t ourselves to 
bigram language model (using a H D P wi th order M = 2) but the extension to arbi t rary 
n-grams is straightforward. The construction of phone-loop prior p(u, H) is given by: 

G i ~ W(jo,G0) 

G2,i~W(ji,G1) Mi e {0 ,1 ,2 , . . .} 
L 

p ( u , H ) 
n=l p(Un|«ra-l,H) 

p ( u | H ) 

fe=l 

(4.8) 

(4.9) 

(4.10) 

p ( H ) 

In (4.10), the probabil i ty of the sequence of labels u is defined through an infinite set of 
distributions G ^ i , £2,2, • • • <J2,OO where the i t h dis t r ibut ion G2,i is the probabil i ty over the 
labels 1,2,... given that the previous label of the sequence was i. For convenience, we set 
2̂,0 to be the probabil i ty over the first label of the sequence. We see that it differs from the 

D P mixture model which uses a single dis t r ibut ion G to define the probabil i ty of a sequence 
of units. Inference for the H P D mixture model can be done by sampling using an extension 
of the Chinese Restaurant Process: the Chinese Restaurant Franchise (Teh et a l . , 2004). 
However since we have observed i n chapter 2 that Var ia t iona l Bayes inference is more suited 
to our problem, we w i l l focus on a variat ional treatement of this model . S imi lar ly to the 
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D P mixture model, we w i l l first derive a stick-breaking construction (section 4.1.2) of the 
H D P and then apply the mean-field approximat ion (section 4.2). 

4.1.2 S t i c k - B r e a k i n g construct ions 

A simple stick-breaking construction of the H D P is to iterate the Sethuraman's stick-
breaking construction of the Dir ichlet Process: 

1. Draw viti ~ B(l, 70), i = {1,2,...} 

2. Draw ~ Go, i = {1,2,...} 

3. = vl!iHl

k~J1(l - v1>k) i = {l,2,...} 

4- G1{V) = Y ? = 1 ^ r l l M 

5. For * i n {1 ,2 , . . .} : 

(a) Draw v2,ij ~ B(l, 71), j = {1,2,...} 

(b) Draw r i 2 t i J ~ d , j = {1,2,...} 

(c) tfa,ij = v2,i,j I l C i C 1 - v2,i,k) j = {1,2,...} 

(d) G 2,«(rj) = S f = 1 f e J ^ , l J ( r / ) . 

The use of this stick-breaking construction for variat ional inference of the H D P was pro­
posed i n (Wang et a l . , 2011) and applied to the task of topic modeling. However, i n our 
setting, this approach is not ideal because of its high memory requirements. To under­
stand this, observe that the sample dis t r ibut ion G\ is discrete and, therefore, there is a 
non-zero probabil i ty that V2,i,j = r?2,j,z f ° r 3 Consequently, the condit ional probabil i ty 
of observing the label un given the previous label un-\ is: 

00 

p(«n|«n-l,H) = Y^Un-ujSrj^^jiVuJ- ( 4 -H) 

i=i 
Since the value of r)2ij is hidden, it implies that the inference needs to learn a (probabilistic) 
mapping between rj2ij and rjlti. If we assume that we truncate the stick-breaking process 
at each level at the index r , then posterior dis t r ibut ion of the bigram language model w i l l 
need 0 ( r 3 ) parameters ( r root-level atoms which can be mapped to r bottom-level atoms 
and each of them has a dis t r ibut ion over r possible next units). 

A n alternative to the Sethurman's stick-breaking construction is the Teh's stick-breaking 
construction (Teh et a l . , 2004) of the H D P given by: 

1. Draw viti ~ B(l, 70), i = {1,2,...} 

2. Draw ~ Go, i = {1,2,...} 

3. = I I A — I C 1 ~ vl,k) 

4- G1(V) = J2Zl^,i6r)Jv), i = {l,2,...} 

5. F o r j in {1 ,2 , . . .} : 

66 



(a) Draw u 2 , i j ~ B ( 7 i V ' i j , 7 i ( 1 - Efe=i V'l.fe); ' = { 1 , 2 , . . . } 

(b) ^2,1,3 = V2,i,j I l f c ^ i i C 1 - v2,i,k), ' = { 1 , 2 , . . . } 

(c) G2,i(v) = T,7=i^J6mAv)-

We see that the final measure G2iC(?7) is directly defined wi th the atoms sampled from the 
root measure Go. A s Go is a density, each a tom is unique and therefore the bigram language 
model is given by: 

p(un\un-!, V 2 , „ „ _ 1 ) = ^2,un-x,un- (4.12) 

In this case, since we do not need to keep some extra mapping, the (approximate) posterior 
w i l l need only 0 ( r 2 ) parameters. Teh's construction is more parsimonious and allows faster 
inference but it has also a drawback: by using the samples ^1,1,^1,2,... as parameters of the 
Be ta dis t r ibut ion (step 5a) the factors p ( v 2 | v i ) p ( v i ) are not any more conjugate (appendix 
B.1.2) which makes inference of dis t r ibut ion over v i more difficult. Nevertheless, we chose 
to use the Teh's stick-breaking construction of the H D P i n our model for pract ical reasons. 

4.1.3 C o m p l e t e M o d e l 

So far, we have only focused on the construction of the non-parametric prior p(u, H ) using 
a 2-level H D P . We now connect the H D P prior w i th the remaining part of the A U D model 
described i n chapter 2. Assuming the Teh's stick-breaking construction, the graphical 
representation of the complete model is shown in F i g . 4.1. We cal l this new model the 
H D P - H M M model . Note that extending this model to use Subspace H M M (leading to 
the H D P - S H M M model) is t r iv ia l . A few important observations from F i g . 4.1 can be 
made: first, the introduct ion of the H D P prior leads to bigram connections between the 
label sequence ui,U2,... as desired. Despite these new connections, the model can s t i l l 
be easily turned into a 1-level H M M (see chapter 2). Therefore, inferring the most l ikely 
sequence of labels given some observations w i l l have the same time complexity as in our 
previous model . Another important observation is that, thanks to the Teh's stick-breaking 
construction, the relation between the atoms of the H D P rjl,rj2, • • • and the acoustic model 
(the H M M states, the G M M components and the observations) remains unchanged. F ina l ly , 
notice that, for s implic i ty reasons, we have a prior over the concentration of the top level 
stick-breaking process (70) but not on the one of the second level stick-breaking process. 
Therefore, the concentration parameter 71 is considered fixed i n this work and is set to half 
of the t runcat ion parameter: 71 = | . 

4.1.4 J o i n t d i s t r i b u t i o n 

Final ly , to conclude the presentation of the model, we present the complete joint dis t r ibut ion 
of a sequence of features X = x i , . . . , x ^ , the latent variables c = c\,..., CN , z = z\,..., ZN 
and the parameters H = r]l,..., 77^, v i = v^i,.. .,vij00, 70, V 2 = v 2 , i , . . . , v 2 j 0 0 . The joint 
dis tr ibut ion can be wri t ten as: 

p ( X , c, z, H , V 2 , v i , 70) = p ( H ) p ( 7 o ) p ( v i | 7 o ) p ( V 2 | v i ) p ( X , c, z | H , V 2 ) . (4.13) 

Note that the variable 71 is not included as it is considered as a fixed constant. The terms 
p ( H ) , p(7o), p(vi|7o) and p ( X , c | z , H ) are the same as defined i n section 2.2.5. The prior 
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7o 

Teh's stick-
breaking pro­
cess 

Acoustic unit 
labels 

H M M states 

G M M compo­
nents 

Observations 

Figure 4.1: Graph ica l representation of the H D P - H M M wi th the Teh's stick-breaking con­
struction of the H D P . Contrary to the D P - H M M model, the nth unit label only depends 
on the n — 1st labels. 

over the second level stick-breaking parameters is given by: 

oo oo 

P ( V 2 | V I ) = n n ^ 2 « i v i ) ( 4 i 4 ) 
z=ij=i 

P ( ^ 2 , i j | v i ) = 6 (71^1 j , 7 i ( ! - £ ^ i , f c ) ) (4.15) 
fc=i 

/-1 

^i,i = v i , i ] l ( l - v l i k ) , (4.16) 
fc=i 

and the l ikel ihood of the data and the latent variables is given by: 

p ( X , c, z | H , V 2 ) = p ( z | V 2 ) p ( X , c |z , H ) (4.17) 
v 

= J J p ( 2 ; n k n - l , V 2 ) p ( x n , C n | » 7 ; Z n ) . (4.18) 
n=l 

Reca l l that z n encodes an acoustic unit index un and a part icular H M M state sn, therefore, 
the sequence of iV units and states z = z\,..., ZN can be equivalently defined as a sequence 
of L acoustic units u = « 1 , . . . ,UL and L sequences of H M M states sUl = s^1,..., s^. Us ing 
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this notation, (4.18) can be equivalently expressed as: 

L Ni 

p (X, c, z | H , V 2 ) = n P ( « j | v 2 , « « _ 1 ) I f P^n I C - I ) P W , C | < ) . (4.19) 
«=1 n=l 

V v ' 

n£=iP(*»l*»-i.Va) 
U ( - l 

p ( u i | u i _ i , V 2 , U ( _ 1 ) = V2,Ul_uui J\(l-V2,ul-1,k), (4.20) 
fc=l 

where iV/ is the length of the Ith segment of the unit w i th index ui. 

4 . 2 I n f e r e n c e 

Previously, we have described the H D P - H M M from the generative point of view. We 
now address the problem of estimating the posterior over the latent variables given some 
observations: 

p ( c , z , H , V 2 , v i , 7 o | X ) o c p ( X , c , z , H , V 2 , v i , 7 o ) , (4.21) 

where V 2 = (v 2 ] i , v 2 ] 2 , . . . ) . Reca l l from section 2.2.4 that variable z encodes the sequence 
of unit labels u and H M M states s. Since normal iz ing (4.21) is intractable, we a im to find 
an approximate variat ional posterior (appendix A ) wi th the following structured mean-field 
factorization (appendix A.2 .3) : 

q(c, z , H , V 2 , v i , 70) = q(c\z)q(z)q(H)q(V2)q(vl)q(7o), (4.22) 

Our factorized posterior is identical to (2.47) w i th the addi t ion of factor g(V 2 ) , therefore, 
the t ra ining of the H D P - H M M model w i l l also be a V B - E M algori thm. Notice that for 
t ractabi l i ty reasons, it is necessary to assume the posterior over the parameters of the 
stick-breaking processes at each level of the hierarchy are independent. The opt imal factors 
q*(c\z), q*(z), <z*(H) are easily found using (2.60), (2.68), (2.82) and (2.84) and replacing 
the prior over the phone-loop state p(z|v) by the one obtained from the H D P p ( z | V 2 ) . 

4.2.1 V B - M step for the H D P 

A s already mentioned, p(v\) and p ( V 2 | v i ) are not conjugate and, therefore, the factor­
izat ion i n (4.22) is not sufficient to get analyt ical solutions for the op t imal factors <?*(V2) 
and g*(vi). We tackle this issue by first t ra ining a D P - H M M phone-loop A U D model and 
then setting g*(vi) = <?DP-HMM( V ) A N D ?(7o) = ^ D P - H M M C ^ ) 1 - I n (Hughes et a l . , 2015), the 
author proposed to learn the parameters of the root stick-breaking process w i th numerical 
opt imizat ion but we didn ' t observe any benefit in our case and consequently opted for a 
more straightforward solution. 

We derive now the op t imal variat ional posterior of the 2-level stick-breaking process of 
the H D P : 

In <f ( V 2 ) = ( lnp (X, C, Z, H , V 2 , V l , 7o))g(c|z)g(c)g(H)g(vi)g(7o) + C O n s t ( 4 - 2 3 ) 

lnq*(V2) = < l n p ( z | V 2 ) ) , ( B ) + l n ( p ( V 2 | v i ) ) , ( v i ) ) + const (4.24) 

1For consistency reasons, we also initialize variational posteriors of the other parameters with the optimal 
variational posteriors of the D P - H M M model. 
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Using the fact that p(z|V~2) = p(s|u)p(u|V~2) (and consequently q(z) = q(s\u)q(u)), we 
have: 

lnq*(V2) = ( l n p ( u | V 2 ) ) , ( u ) + < l n p ( V 2 | v i ) ) , ( v i ) + const (4.25) 

|u| oo oo 

= (In Y[p(Un\Un-l,V2,un-1))q(u) + ( l n J } Y\P(V2,k,l|Vi, 7 o ) ) g ( v i ) + Const 
n=l k=ll=l 

(4.26) 

oo oo L 

= 5IX^X] = = fc] LNP(Un\Un-l, V 2 , « „ _ 1 ) ) ? ( u ) 

fe=lZ=l n =l 

+ (lnp(w 2 ,fc,zl vi))<?(vi) + const . (4.27) 

where L is the length of sequence u . Us ing (4.12) we have: 

oo oo L 

In q*{\2) =^2^2(^2l[un> I, u „ _ i = k] l n ( l - v2,k,i) 
k=l 1=1 n=l 

+ t[un = l,un-i = k) lnw 2,fc,z) g( u) + (lnp(w 2,fc,zl vi))- ( 4 - 2 8 ) 

F rom (4.28), we observe that the variat ional posterior factorizes i n the following way: 
oo oo 

? ' ( V 2 ) = n n « N ) ' 
k=l 1=1 

To cope wi th the infinite product, we truncate the variat ional posterior by keeping only the 
r first posteriors such that q(v2,k,l = 1) = 1 i f A: > r or / > r . Notice that this factorization 
is not assumed expl ici t ly but is a consequence of our original mean-field factorization in 
(4.22). Replacing ha.p(v2,k,lWi) by the Be ta dis t r ibut ion formula, we express each factor as: 

lnq*(v2,k,l) = ({k)q(Vl) + C T 1 - 1 ) l n ( l - v2,k,l) 

+ ({ai)q(Vl) + cr2 - 1) lnw2,fc,z + const, (4.30) 

(4.31) 

where: 

ai = 7iV>i,z (4.32) 
l 

6j = 7 i ( l - X ) ^ M ) ( 4 - 3 3 ) 
i=l 

L 

<J\ = l [ « n > I, Un-1 = fc]),(u) (4-34) 
n=l 

L 

0"2 = = l,Un-l = k])q(u)- (4.35) 
n=l 

(4.30) is the parametric form of a unnormalized log Be ta dis t r ibut ion which leads to the 
final solution of our variat ional posterior: 

qf{v2,k,l)=B{aKl,b'Kl) (4.36) 

a'k,i = {ai)q(Vl) + 0-2 (4.37) 

*>'k,l = {1>i)q(vi)+<ri- (4-38) 
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A l g o r i t h m 4.1 Tra in ing of bigram phone-loop model for acoustic unit discovery 

1: function M S T E P ( X , q*(c\z), q*(z), q*(vi)) 

2: > Update defined i n (2.80) 
3: ?*(H) «— a r g m a x g ( H ) C 

4: o Update defined in (4.29) and (4.30) 
5: <f (V 2 ) <- a r g m a x g ( V 2 ) C 

6: function ESTEP(X,<7(H),(3 ,(V2)) 
7: > For both updates, we use q(V2) to estimate the transit ion probabil i ty of the H M M : 
8: > Upda te defined i n (2.60) 
9: q*(c\z) <- arg m a x g ( c | z ) C 

10: > Upda te defined i n (2.68) 

11: <Z*(Z) a r g m a x

g ( z ) £ 
12: return g*(c|z), c?*(z) 

procedure T R A I N ( X , E) 
> £7: number of epochs (i.e. E-step + M-step) 

> ini t ia l izat ion: we assume that we have already trained a D P - H M M 

9*(H) ^ < 7 D P - H M M ( H ) 
> q*(vi) w i l l remain fixed throughout the training 

9*(vi) ^ 9 D P - H M M ( V ) 
<Z*(V2) < - p ( V 2 | v i ) 
for e <- 1 to £ do 

g*(c|z),«jf*(z) <- E S T E P ( X , g * ( H ) , g * ( V 2 ) ) 

g *(H),g*(V 2 ) <- MSTEP(X ,g*(c |z ) ,g*(z) , g *(v 1 ) ) 

Observing that g*(vi) = 9 D P - H M M ( V ) = Y\J=i B{<l>i,h 4>2,l) as defined in (2.93), the expecta­
tions are thus given by: 

<Pl,i + <?2,Z A i 01,» + 02,» 
' ' 1 = 1 

^ W o = - E x4^r ft1 - ( 4 - 4 ° ) 
f - f 01,1 + 02,» • L J ; 91,3+92,3 1=1 ' ' 3=1 ,J " 

(4.41) 

The complete t ra ining of the H D P - H M M is presented in A l g o r i t h m 4.1. 

4 . 3 I m p r o p e r V a r i a t i o n a l B a y e s I n f e r e n c e 

The b igram phone-loop model we have described in this chapter is a non-parametric 
Bayesian treatment of the t radi t ional H M M - G M M used in speech recognition before the 
advent of deep learning techniques. The H M M - G M M for A S R , al though theoretically con­
venient, has been known to be a rather crude generative model of speech. Part icular ly, the 
assumption that the features are independent given the sequence of H M M states is very 
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unrealistic. Consequently, it was common during the decoding to correct the model w i th a 
balancing factor a, a £ M + , which controls the preponderance of the acoustic model: 

w* = a r g m a x p ( X | w ) Q p ( w ) , (4.42) 
w 

where w = u>i, u > 2 , . . . is a sequence of words. If a = 0, the acoustic model p ( X | w ) becomes 
constant and the most l ikely decoded sequence of words w* is s imply the most probable 
sequence of words from the language model p (w) . O n the other hand, for a sufficiently 
large, the role of the language model p(w) becomes negligible. In practice, a is usually set 
below one as the H M M acoustic model , due to the independence assumption, tends to be 
underestimated the probabil i ty of the sequence of features. 

Unfortunately, our infinite H M M phone-loop makes the same assumption and, therefore, 
suffers from the same caveat. We w i l l now focus on how to balance the acoustic and 
phonotactic language i n our model . Note however that our problem is sl ightly different: in 
(4.42), the problem is to correct the model at decoding t ime whereas we wish to take into 
account the correction while doing the inference i n order to achieve better clustering. Note 
that a similar technique has been applied for an H M M - b a s e d speaker diar izat ion system 
(Diez et a l . , 2019). 

To begin, we consider the following simplified version of our model: 

p ( X , z, H ) = p ( X | z , H ) p ( z | H ) p ( H ) (4.43) 

where we have omit ted the parameters of the model which w i l l not be affected by any 
correction factors. p ( X | z , H ) is the acoustic model and p ( z | H ) is the phonotactic language 
model. We now define a "corrected" version of this model by introducing two balancing 
factors, a and /?, controll ing respectively the roles of the acoustic and the language models: 

p ( X , z, H ) oc p ( X | H , z ) > ( z ) ^ ( H ) = / ( X , z, H ) (4.44) 

where a,/3 € M + . W h e n a / 1 and (3^1, the corrected model / ( X , z , H ) is an improper 
or energy based model ( L e C u n et a l . , 2006) in the sense that it does not define a normalized 
dis tr ibut ion. A n important consequence of working wi th an improper model is that the 
variat ional objective function is not a lower-bound any more of the log marignal l n p ( X ) : 

l n p ( X ) ^ £ = (In / ( f ' Z „ f ) ) g ( z , H ) - (4.45) 

However, this is a minor concern as opt imiz ing the right-hand side of (4.45) w i t h respect 
to q leads to finding the variat ional posterior q(z, H ) the closest (in K L divergence sense) 
to the true posterior p(z, H | X ) defined as 

H > X ) = V / ( % r Z ' H L m - ( 4 - 4 6 ) 

E z J H / ( x ' z ' H ) d H 

To see this, let's consider the K L divergence between the variat ional and the true posteriors: 

D K L ( g ( z , H ) || p ( z , H | X ) ) = ( l n g ( z , H ) - l n p ( z , H | X ) ) g ( z ! H ) . (4.47) 
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Injecting (4.46) i n (4.47) and using the non-negativity of the K L divergence, we obtain the 
following lower-bound: 

l n ( j ] ^ / ( X , z , H ) d H ) > £ = ( l n f f i ^ ) ( ? ( Z i H ) , (4.48) 

Where the right-hand side is identical to that of (4.45). Therefore, opt imiz ing C minimizes 
the K L divergence in (4.47) which lead to a consistent estimate of the posterior of the 
energy based model. 

If we now restrain our variat ional posterior to the following mean-field factorization 
(appendix A.2.2) : q(z,H) = q(z)q(H) it is t r iv i a l to show that the opt imal variational 
factors of the corrected model are given by: 

lnq*(z) = - < l n p ( X | z , H ) ) , ( H ) + b i p ( z | H ) (4.49) 

(4.50) l i i ( 7 * ( H ) = a < l n p ( X | z , H ) ) , ( B ) + l n p ( H ) 

The exact update equations are easily obtained by scaling the sufficient statistics in (2.68), 
(2.84) and (2.82) yielding: 

N 

ln<f (z) = ^2 -4>n(zn) + AZn_UZn + const 
n=l P 

N 

Q*(z) = £ I I exp{-0„(2:„) +AZn_UZn} 
n=l 

N 

C = Yl I I exp {^0„(z„) + AZn_UZn}, 
z n=l 

and 
N 

lnq*(U) = [Y(alnp(xn\9Zn)p(cn\uZn))q(CnlZn)q{Zn) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 
n=l 

oo a 
+ lnp(cjj) + lnp(0] ) + const 

i=l 3=1 
C 

i=l j=l 

q*(u>i)=exp{tjT(u>i)-A(Zi)} 
N 

T(cn) 
1 £i = £o + Yl aq^Zn = 

n=l 

q*(ei)=eM4TT(0i)-M4)} 
N 

•&1 = •dp + aq(cn = j\zn = i)q{zn = i) 
n=l 

T ( X r i 

l 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

Informally, the coefficients a and % weigh how much each observation should be "trusted". 
W h e n the coefficients are lower than 1, the model w i l l need more data to converge to the 
same posterior as the uncorrected model and vice versa. 
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M o d e l Features Corpus F-score N M I (%) 
D P - H M M M F C C T I M I T 63.25 35.11 

H D P - H M M M F C C T I M I T 64.08 35.82 
D P - S H M M M F C C T I M I T 75.56 39.14 

H D P - S H M M M F C C T I M I T 75.42 39.62 
D P - H M M M F C C M B O S H I 64.14 36.21 

H D P - H M M M F C C M B O S H I 65.47 36.53 
D P - S H M M M F C C M B O S H I 57.65 39.98 

H D P - S H M M M F C C M B O S H I 58.01 40.67 

Table 4.1: Compar ison of the D P - ( S ) H M M and the H D P - ( S ) H M M on the A U D task. 

4 . 4 R e s u l t s 

We now evaluate the H D P - H M M on the A U D task. In section 4.4.2, we measure the benefit 
of introducing a b igram phonotactic language model using the „ n a t u r a l " , i.e. uncorrected, 
model and i n section 4.4.3, we analyze the effect of the correction factors using the corrected 
model. 

4.4.1 E x p e r i m e n t a l Se tup 

Our experimental setup is similar to the one used in the previous chapters: we experimented 
on both the T I M I T and M B O S H I data sets using the M F C C features. Since we have shown 
in chapter 3 that the M B N features br ing l i t t le to no improvement over the M F C C s , we d id 
not use them i n these experiments. The H D P based A U D system can be used either w i th 
H M M or S H M M as acoustic unit model . We refer to these variants as the H D P - H M M and 
H D P - S H M M respectively. A s described i n section 4.2, the H D P - ( S ) H M M requires a D P -
( S ) H M M to approximate the variat ional posterior of the root stick-breaking process and to 
init ial ize the variat ional posterior of the other parameters. For the H D P - S H M M , we used 
the D P - S H M M system pre-trained on the combinat ion of 4 G L O B A L P H O N E languages 
(the „ C B " set described i n chapter 3) and wi th a phonetic subspace of 100 dimensions. 
For both variants, we truncated the Dir ichlet process to 100 acoustic units plus one extra 
„silence unit". 

4.4.2 B i g r a m vs u n i g r a m phonotac t i c language m o d e l 

For our first experiment, we compared the performance of the D P - ( S ) H M M against the 
H D P - ( S ) H M M based A U D system. Results on the T I M I T and M B O S H I corpora are re­
ported i n Table 4.1. We observe the H D P prior provides a smal l but consistent improvement 
over the D P - ( S ) H M M in terms of clustering quali ty (measured wi th the N M I ) . The quali ty 
of the segmentation (F-score) slightly improves as well except for the case of the H D P -
S H M M on T I M I T where we observe a slight degradation of the F-score. Overal l , we see 
that the H D P prior improves the A U D task even without any correction factors. 

4.4.3 Effect of the correc t ion factors 

We now analyze the effect of the acoustic and language model correction factors a and f3. 
We have restricted our analysis on the H D P - ( S ) H M M on the T I M I T corpus. The N M I as 

74 



1 2 3 4 5 6 7 8 
a 

Figure 4.2: N M I as a function of the acoustic (a) and language model (/?) scaling factors 
for the corrected H D P - H M M on the T I M I T corpus. The blue dot indicates the max imum 
value. 

a function of a and (3 is depicted i n F i g . 4.2 for the D P - H M M and i n F i g . 4.3 for the D P -
S H M M . For both models, we observe the same behavior: increasing both the acoustic and 
language model scaling factors improves the clustering quality. Note that to achieve better 
results, the language model scaling factor should remain greater than the acoustic scaling 
factor. Th is behavior is rather expected: when j5 is greater than a, the ratio i n (4.49) w i l l 
be lower than one and, consequently, w i l l decrease the effect of the acoustic model and give 
more importance to the language model. 

Final ly , the comparison between the corrected and uncorrected D P - ( S ) H M M models is 
shown i n Table 4.2. The correction factors provide a significant gain and help to fully 
benefit from the bigram phonotactic language model . This experiment somewhat biased 
as we have used the reference transcript ion to tune the scaling factors to achieve better 
results. Nevertheless, we see that the opt imal factors are the same for both models and—as 
was observed in A S R — o n c e these factors are tuned on a data set, they generalize well on 
other corpora. 
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Figure 4.3: N M I as a function of the acoustic (a) and language model (/?) scaling factors 
for the corrected H D P - S H M M on the T I M I T corpus. The blue dot indicates the max imum 
value. 

4 . 5 C o n c l u s i o n 

In this chapter, we have empowered our A U D system wi th a b igram phonotactic language 
model. O u r approach relies on the Hierarchical Dirichlet Process: a non-parametric prior 
over condit ional distr ibutions. Replacing the Dir ichlet Process by a Hierarchical Dirichlet 
Process only affects the language model and, therefore, the H D P prior can be used wi th 
either the H M M or S H M M based A U D system. We have studied the case of a b igram 
language model but it is theoretically possible to extend this work to arbi trary n-gram 
language models. S imi lar ly to the original D P - H M M , this model is t rained wi th a V B - E M 
algori thm. This is possible thanks to the Teh's construction of the H D P , a hierarchical stick-
breaking process. Unfortunately, the Teh's stick-breaking process is not fully conjugate 
and, therefore, it is difficult to derive the op t imal posterior of the parameters of H D P ' s 
root level. We bypass this issue by approximating this posterior w i th the posterior of an 
unigram D P - H M M . This approximation is very convenient but can also trap our model in 
a local op t imum. This issue could be solved using the Sethuraman stick-breaking process 
but would considerably increase the computat ional cost. Exper imenta l results show that 
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M o d e l Features Corpus a N M I (%) 
D P - H M M M F C C T I M I T - - 35.11 

H D P - H M M M F C C T I M I T 1.0 1.0 35.82 
H D P - H M M M F C C T I M I T 3.0 11.0 36.38 
D P - S H M M M F C C T I M I T - - 39.14 

H D P - S H M M M F C C T I M I T 1.0 1.0 39.62 
H D P - S H M M M F C C T I M I T 3.0 11.0 40.58 

Table 4.2: Compar ison of the best corrected H D P - ( S ) H M M model against the uncorrected 
H D P - ( S ) H M M (a = 1 and /3 = 1) and the D P - ( S ) H M M . 

the H D P prior gives a smal l but consistent improvement for the H M M and S H M M based 
A U D system on both T I M I T and M B O S H I corpora. 

Furthermore, we have shown that the H D P - H M M model can be augmented wi th acoustic 
and language model factors that weigh the importance of acoustic and language model in 
the l ikel ihood function. These factors tu rn the A U D phone-loop model into an energy 
based model . Nevertheless, we show that opt imizing the variat ional lower-bound of this 
energy-based model s t i l l leads to a consistent estimate of the variat ional posterior. Our 
experiments show that, for suitable choice of correction factors, the „correc ted" H D P - H M M 
achieves better clustering measured i n terms of N M I . The segmentation quali ty however 
does not seem to benefit from such model correction. 
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Chapter 5 

Conclusion 

In the previous chapters, we have proposed several models to address the problem of learning 
a phonological system from speech. A l l these models rely upon a Bayesian formulation of 
the task. W i t h the use of Var ia t iona l Bayes framework, we have seen that learning the 
acoustic units, i.e. the phonological system, can be achieved through the opt imizat ion 
of a well-defined objective function. Before summarizing the contributions of this thesis, 
we briefly discuss potential extensions and promising trends for the unsupervised speech 
learning research, including new phonetic acoustic model and non-parametric Bayesian 
neural network. 

5.1 F u t u r e w o r k 

Let us discuss what are, i n my opinion, the promising research directions emerging from 
this thesis. We have seen that the Bayesian formulation of the A U D task leads to the 
definition of four essential elements: 

• acoustic model 

• language model 

• prior over the language model 

• prior over the acoustic model parameter (the base measure i n the context of the 
Dirichlet Process) 

Importantly, this formulation is very generic and does not imply any specific model . The 
choice to use the H M M and the Dir ichlet Process was mostly driven by historical reasons 
and mathematical convenience rather than by a strong belief that they are ideal tools for 
the task. I believe that significant progress can be made i n the field of unsupervised learning 
of speech by revisi t ing these "o ld" models i n light of the recent development of the research 
on Bayesian generative models. In the following, I propose alternative models which could 
lead to significant improvements. 

5.1.1 A c o u s t i c M o d e l i n g 

The 3-state H M M model remains de facto the state-of-the-art generative model for a pho­
netic unit i n speech technologies. Yet , it is widely accepted that the observations inde­
pendence assumption following from this model is unrealistic and leads to poor modeling 
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capability. This issue is not dramatic i n speech recognition since the language model can 
compensate for an inaccurate acoustic model. However, i n the case of A U D , proper segmen­
tat ion and clustering of the speech largely depends on the quali ty of the acoustic model. 

A simple way to improve the H M M is by making an observation to depend on the hidden 
state and on previous observations. Th is model, called an autoregressive H M M , was recently 
introduced in B r y a n and Levinson (2015). The t ime dependency between observations does 
have a cost: the inference requires to compute the autocorrelation function of the input 
signal. Nevertheless, modern hardware largely allows to perform this computat ion. Note 
that in B r y a n and Levinson (2015), the authors model raw speech signal which is perhaps 
unsuited for t A U D . A p p l y i n g the A R H M M directly on the short term (Mel) spectrum 
would be, i n my opinion, more pract ical . Interestingly, doing so would lead to model the 
amplitude and frequency modulations of the speech signal which would be consistent w i th 
psychoacoutics studies E l h i l a l i et a l . (2003). 

Alternatively, rather than changing the H M M , one could transform the features such that 
they fit better the H M M assumption. This paradigm was the core idea of a recent model: 
the V A E - H M M Ebbers et a l . (2017); Glarner et a l . (2018). It is a promising approach as it 
makes use of neural network to define the generative model . However, the in t roduct ion of 
arbi t rar i ly complex model comes wi th a downside: whereas it is fairly easy to use gradient 
ascent to t r a in such a model, it is much more difficult to prevent the model from falling in 
a local op t imum. Al so , increasing the model's complexity increases the necessary amount 
of data which may be problematic when dealing wi th low-resources languages. Hav ing a 
neural network-based A U D system is a compell ing idea but it remains currently an open 
problem. 

This work has also shown the importance of the acoustic model prior for the outcome 
of the A U D sytem. The G S M defined in chapter 3 is general enough to accommodate a 
large family of acoustic models, including the ones mentioned above, but can be extended 
in several ways. For instance, the S H M M is based on an affine and non-linear transfor­
mation. We can envision a deep S H M M where the non-linearity would be learned by a 
neural network. Another potential improvement of the G S M is the introduct ion of multiple 
subspaces. These extra subspaces could either: 

• include non-phonetic factors such as speaker variabi l i ty 

• decompose the phonetic subspace to better model l inguistic features (for instance 
there could be separated subspaces for vowels and consonants). 

Lastly, let me mention a recent work on the factorization of subspace model Novotny et a l . 
(2019). This line or work is par t icular ly interesting as it could be used i n the S H M M to 
model the language variability. 

5.1.2 L a n g u a g e M o d e l i n g 

A large par of the progress i n unsupervised speech learning, including this thesis, is due to 
the development of Bayesian non-parametric priors. The Dirichlet process and its natural 
extension the P i t m a n - Y o r process offer a well-grounded framework to define probabil i ty 
distributions over countably infinite sets. B u t after almost two decades of research, these 
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tools have also shown their l imi ts . Even though the construction of hierarchical Dir ichlet or 
P i tman -Yor processes is theoretically straightforward, variat ional inference i n such models 
is nearly intractable for any hierarchy having more than 2 levels. O n the other hand, 
samplers like the Chinese restaurant process can work w i t h arbi trary deep models at the 
cost of very slow inference and exponential growth of the parameters. F ina l ly , empirical 
experience has shown that neural network-based language models are far superior to n-gram 
based language models. A l l these issues, clearly ca l l for an extension of the non-parametric 
priors to a much broader class of models. 

Defining non-parametric Bayesian priors for neural network based language model may 
seem a rather difficult task but recent advances i n machine learning lean toward this direc­
t ion. A promising step is the newly introduced Logist ic St ick-Breaking Process R e n et a l . 
(2011). This non-parametric prior is defined a spatial stick-breaking process whose param­
eters are Eucl idean embeddings. This is par t icular ly interesting as such embeddings could 
be the output of a neural network. Another work worth mentioning is G a l (2016) where the 
authors show how the dropout technique can be reinterpreted as an approximate Bayesian 
inference. Importantly, they also show how one could get an uncertainty estimate without 
any significant change i n the neural network. Combin ing both the Logist ic St ick-Breaking 
Process w i th a Bayesian neural network is a very compell ing idea and could pave the way 
to more powerful non-parametric priors useful for unsupervised speech learning and many 
other fields. 

5 . 2 S u m m a r y o f c o n t r i b u t i o n s 

The a im of this thesis has been to develop a Bayesian approach to the problem of learning 
a phonological system, i.e. an ensemble of acoustic units, used to communicate in a lan­
guage, from unlabeled speech recordings. Th i s work can be seen as the extension and the 
continuation of previous works on non-parametric Bayesian learning applied to language 
modeling Goldwater and Johnson (2007) and acoustic unit discovery Lee (2014). 

In Lee and Glass (2012) the authors proposed a non-parametric Bayesian H M M to cluster 
unlabeled speech into phone-like units; they used the Chinese Restaurant Process to sample 
the parameters from the posterior dis t r ibut ion. In chapter 2, we derived a new inference 
scheme based on the Var ia t iona l Bayes framework. It allows to cast the problem of discov­
ering acoustic units into an opt imizat ion problem wi th a well-defined objective function. 
Our approach relies upon Sethuraman stick-breaking construction of the Dir ichlet Process 
which, combined wi th a suitable structured mean-field factorization of the variat ional pos­
terior, leads to an analyt ical V B - E M algori thm. Moreover, this new approach allows for 
the reinterpretation of the original model as an infinite phone-loop model capable of fast 
and parallelized inference. The computat ional benefits from this approach are important as 
they allow learning phonological units from a large speech corpus. We found experimentally 
that Var ia t iona l Bayes t ra ining leads to sparser solution, i.e. the model uses less acoustic 
units to explain the data, and yet achieves better clustering quali ty i n terms of N M I . 

In chapter 3, we addressed the issue of how to design a proper prior dis t r ibut ion over 
the possible acoustic unit embeddings. We first introduced the Generalized Subspace Model 
( G S M ) : a theoretical framework which allows learning low-dimensional embeddings rep-
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resenting probabi l i ty distributions. The G S M is a natural extension of several existing 
models, such as the i-vector model or the Subspace M u l t i n o m i a l model , to any condition­
ally conjugate exponential models ( G M M , H M M , P C A , ...). In a controlled experiment, we 
have shown that the G S M is able to learn a coherent phonetic subspace where the phones, 
modeled by an H M M , are encoded as 100-dimensional embeddings. F ina l ly , we used the 
G S M framework to learn a universal phonetic subspace from a mul t i l ingual labeled speech 
corpus. Th is universal phonetic subspace is then used as the base measure of the Dirichlet 
Process of our acoustic unit discovery system. B y estimating the prior over acoustic units 
from other languages, we are effectively changing the learning procedure: informally, in ­
stead of directly clustering unlabeled speech, we first use supervision from other languages 
to teach the model the notion of "phone" and then, the model clusters speech from a target 
language into patterns similar to the phones from other languages. Exper imenta l results 
have shown the merit of this new approach: the G S M based A U D model achieved much 
better segmentation and clustering quali ty than the original non-parametric H M M model. 
The results also show that the G S M approach is more robust than using mul t i l ingual fea­
tures as an input to the A U D system. This is a strong indicat ion that the G S M is a more 
principled way to transfer phonetic knowledge from a language to another. 

In chapter 4, we developed a new A U D model based on the Hierarchical Dirichlet Process 
( H D P ) . We coined this new model the H D P - H M M . The H D P is a non-parametric prior 
which defines a probabil i ty over an infinite set of condit ional distr ibutions. Thanks to this 
feature, we buil t an A U D model based on a bigram phonotactic language model . Th is is a 
substantial change compared to the D P - H M M , which can have only a unigram phonotactic 
language model . To infer the parameters of this new model we derived a V B - E M algori thm 
based on the Teh's stick-breaking construction of the H D P . A s the H D P prior only affects 
the dis t r ibut ion of the units ' labels, the t ra ining of the acoustic model is nearly identical 
to the V B - E M of the D P - H M M model. Th is key feature allows us to use the H D P prior 
seamlessly w i th the H M M or S H M M acoustic models. Teh's stick-breaking construction 
is par t icular ly convenient since it expresses the sampled condit ional distributions directly 
wi th the atoms generated by the root base measure and therefore avoids any ordering issue. 
However, it has the downside that it is not fully condit ionally conjugate. Consequently, our 
t ra ining requires first to t ra in a D P - H M M A U D model to estimate the variat ional posterior 
of the root stick-breaking process. Exper imenta l results show that the H D P - H M M model 
applied to the A U D task provides a smal l but consistent gain over the D P - H M M in terms 
of clustering quali ty and segmentation. Moreover, we show that the model can be corrected 
using two factors weighing the contrinution of the acoustic and language models i n the joint 
probabil i ty dis t r ibut ion of the model . We observed empirical ly that giving more importance 
to the language model (increasing the language model factor) results i n a better N M I . 

To conclude, we hope that this thesis has provided an accessible study of Bayesian ap­
proaches to the problem of learning a phonological system from speech. We have developed 
a probabil ist ic formulation of the task and proposed several models to fulfill i t . Altogether, 
this forms a well-grounded framework, which paves the way to many more models than the 
ones investigated i n the previous chapters. We hope that this thesis w i l l stimulate future 
research on the challenging problem of unsupervised speech learning. 
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Appendix A 

Variational Bayes 

In this appendix, we give a brief introduct ion to the Var ia t iona l Bayes framework for 
inference. F i rs t , we define the variat ional objective function and then we summarize the 
main approaches to optimize this objective. 

A . l V a r i a t i o n a l B a y e s o b j e c t i v e 

Let X = ( x i , . . . , xjy) be observed data, p ( X | 0 ) a parametric l ikel ihood dis t r ibut ion and 
p{9) a prior. We a im to find a variat ional objective function whose op t imum is given by 
the posterior dis tr ibut ion: 

K « | x ) = ( A . i ) 

where p ( X ) = jg p(X.\9)p(9). Let q{9) be any dis t r ibut ion over 9. Es t imat ing the posterior 
i n ( A . l ) amounts to solve the following min imiza t ion problem: 

p(X|0) = q*(9) = a r g m i n D K L ( ( / ( 0 ) | | p ( 0 | X ) ) . (A.2) 

Expand ing the right hand side of (A .2 ) and using the fact that DKL(<?(#) | |P (0 |X)) > 0, we 
have: 

DKL(q(9)\\p(9\X)) = ( l n ^ L ) q (A.3) 

= (Inq{9) - In p(X\9)p(9))q + lnp (X) (A.4) 

= , l n p ( J 0 > ( l n ^ W ) g = £ M . (A.5) 

C[q] is the variat ional objective function and it is often referred to as Evidence L o w e r - B O u n d 
( E L B O ) . 

To conclude this brief definition of the variat ional objective, we show that the dis t r ibut ion 
q*{9) which maximizes C[q] is the posterior dis t r ibut ion p ( ö | X ) . 

Proof. O u r proof is done in 2 steps: first we show that C[q] is concave i n q, then we show 
that p ( ö | X ) is a cr i t ical point of the objective function. 
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C[q] is concave in q: VA G (0,1), V / (0) we have: 

C[\q + (1 - A ) / ] = ( l n p ( X | 0 ) + lnp(0))Xq+{1_x)f (A.6) 

-(ln(Xq(9) + (l-X)f(9)))Xq+(1_x)f (A.7) 

A£[g] + (1 - \)C[f] = (lnp(X|0) + Inp(0)) X q + ( 1 _ x ) f (A.8) 

(A In + < ( 1 - A ) In / (* )> , ) • (A.9) 

Since x l n x is a convex function, we have: 

(\lnq(0))q + ((1 - A) lnf(0))f > ( In (A<?(0) + (1 - X)f(9)))Xq+(1_x)f (A.10) 

£[Ag + ( l - A ) / ] > A £ [ g ] + ( l - A ) £ [ / ] , ( A . l l ) 

which proves that /J is concave i n q. 

Crit ica l point of C[q\: We now find the cr i t ica l points of C[q] subject to the constraint 
j q{9)d9 — 1 = 0. To do so, we define the Lagrangian: 

C'[q]=C[q}+v{ J q(0)dO-l), (A.12) 

where is the Lagrange mult ipl ier . Its functional derivative is given by: 

5C'[q]= J6(9) (In p(X|6>)+ In p{9) - In q{0)-\ + v)dJB (A.13) 

Us ing the fundamental lemma of calculus: 

5(x)f(x)dx = 0 (A.14) 

= 0 Vx (A.15) 

we get: 

<J£'[g] = 0 (A.16) 

=^ lnq*(9) = l n p ( X | 0 ) +lnp(9) - 1 - v (A.17) 

^ _ j g i M g ) ( A . 1 8 ) 

ZJ 

Z = exp{l + v} = J p(X\9)p{9)d9 (A.19) 

which, together w i th ( A . l l ) , proves that p (0 |X) is the dis t r ibut ion which maximizes the 
variat ional lower-bound. • 

A . 2 A p p r o x i m a t i n g p o s t e r i o r d i s t r i b u t i o n s 

In most applications, the opt imal q*{9) cannot be calculated as the integral in (A.19) is 
intractable. Nevertheless, the Var ia t iona l Bayes can be used to find an approximate poste­
rior dis t r ibut ion which is the „best approximation" of the true posterior dis t r ibut ion in the 
K L divergence sense. To do so, one performs a constrained opt imizat ion of the variational 
lower-bound C[q] where the constraints are chosen to allow for a close form estimation of 
the approximate posterior. We review the main strategies used wi th Var ia t iona l Bayes. 
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A . 2 . 1 P a r a m e t r i c a p p r o x i m a t i o n 

The simplest approximation is to constrain the variat ional posterior to be of a known 
parametric type. For instance, we can set: 

g ( 0 ) = j V ( 0 | / * , E ) . (A.20) 

Then , maximiz ing the variat ional lower-bound reduces to standard calculus C[q] = C(fi, S ) 
and can be done w i t h (stochastic) gradient ascent. 

A . 2 . 2 M e a n - F i e l d a p p r o x i m a t i o n 

A n alternative to the parametric approximation is to assume a specific factorization of the 
variat ional posterior. The mean-field approximat ion corresponds to a fully factorized pos­
terior. Let 9 = {9\,..., 9K}, under the mean-field approximat ion the variat ional posterior 
can be expressed as: 

K 

q(9) = l\q(9k). (A.21) 

fe=i 

In this case, opt imizing C[q] amounts to iteratively solve K sub-objective functions given 
by: 

A M = On ( A , 2 ) 

Using calculus of variations, the op t imal variat ional posterior is given by: 

q*{9) = a r g m a x £ f c [ g ] (A.23) 
q 

=> q*(9k)<xexp{(lnp(X\9)p(9)}q(eXk)} (A.24) 

where q(9\k) is the product of a l l the variat ional factor but q(9k)-

A . 2 . 3 S t r u c t u r e d mean-f ie ld a p p r o x i m a t i o n 

The mean-field approximat ion considerably simplifies the opt imizat ion of the variational 
lower-bound but it fails to capture any correlations between the sets of parameters. The 
structured mean-field approximat ion is a variant of the mean-field approximat ion which 
preserves some dependencies i n the variat ional posterior. For instance, i f 9 = {9\, 92, 9%}, 
a possible structured mean-field factorization is: 

q(9)=q(9l)q(92\93)q(93), (A.25) 

where the dependency between 92 and #3 is preserved. In the general case, when we have 
s dependency q(9i\9j)q(9j), the op t imal variat ional posteriors are given by: 

q*(9i\9J) oc exP{(lnp(X\9)p(9))q(evj)} (A.26) 

^ ^ K e x P ^ ^ ^ > ^ ) > ( A - 2 7 ) 

(A.28) 

where q(9\ij) is the product of a l l the variat ional posterior but q(9i\9j) and q(Oj). 
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Appendix B 

Exponential Family of 
Distributions 

In this appendix, we present the main probabil i ty distributions used throughout this thesis. 
We first start to give a brief introduct ion of the exponential family of dis t r ibut ion and then 
we provide the list of its pr inc ipal members. 

B . l E x p o n e n t i a l f a m i l y o f d i s t r i b u t i o n 

The exponential family of dis t r ibut ion is a set of parametric distributions which can be 
expressed as follows: 

p(x) = exp{T7 T T(x) - A(V) + S ( x ) } , ( B . l ) 

where 77 is the vector of natural (or canonical) parameters, T ( x ) is the vector of sufficient 
statistics and A(rj) = In JX exp{j7TT(x)}dx is the log-normalizer. The type of the distr ibu­
t ion (Normal , Dir ichlet , ...) depends on the domain of the natural parameters and on how 
the vector of sufficient statistics is computed. -B(x) is the base measure of the dis t r ibut ion 
and does not depends on the parameters rj. 

B . l . l P a r t i a l der ivat ive of the log-normal izer 

A n important property which is heavily used i n Var ia t iona l Bayes inference, is the relation 
between the log-normalizer and the expectation of the sufficient statistics, namely: 

^ = ( T ( x ) ) p ( x , (B.2) 

This is easily verified by taking the par t ia l derivative of the log-normalizer: 

= | _ i n f e x p { r ?

T T ( x ) } d x (B.3) 

= J , e x p { „ ' r ( x ) } d x / T ( X ) » P < " T r M } < * <B") 

= I T ( x ) e x p j ^ T f x ) - ,4(17)}dx = ( T ( x ) ) „ w . (B.5) 
J X 
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B . 1 . 2 C o n j u g a t e P r i o r 

In Bayesian inference, we say that the prior p{rj) is conjugate to the l ikel ihood dis t r ibut ion 
p(x\rf) i f the posterior p(r)\x) is of the same type as the prior. For instance, if bo th p{rj) 
and p(r/ |x) are Dir ichlet dis t r ibut ion then p{rj) is conjugate to the l ikel ihood p(x\rf). W h e n 
the l ikel ihood is a member of the exponential distr ibution: 

p(x|T7) = e x p { r ?

T T ; c ( x ) - An(rj)}, (B.6) 

where £ 0

 a n d A ; ( £ o ) a r e ' respectively, the natural parameters and the log-normalizer of the 
dis tr ibut ion p{rj). there exists a conjugate prior member of the exponential family defined 

as: 

V 
-Mv) 

(B.7) 

(B.8) 

We can verify that p(x-\rj) and p(rj) are indeed conjugate by taking the product of the 
l ikel ihood and the prior: 

p(r/ |x) oc p{*\rj)p(rj) 

oc exp{r,TTx(x) - An(V) + ^TV(V)} 

T x ( x ) 
1 

oc e x p { ( | 0 + 

Re-normalizing ( B . l l ) to get the proper posterior dis tr ibut ion: 

p(V\x) = eMfTv(v)-MZ)} 

r x ( x ) 
l 

(B.9) 

(B.10) 

( B . l l ) 

(B.12) 

(B.13) 

proves that (B.7) is the conjugate prior of p(x|r /) . 

B.2 Distributions 

We now describe the members of the exponential family of distributions used i n this thesis. 
For each dis t r ibut ion we provide: 

• the standard parametric form 

• the vector of natural parameters 77 

• the vector of sufficient statistics T ( x ) 

• the log-normalizer A{rj) 

• the gradient of the log-normalizer which is also the expectation of the sufficient statis­
tics. 
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B.2 .1 C a t e g o r i c a l 

The categorical dis t r ibut ion is a probabil i ty dis t r ibut ion over a random variable which has 
K possible outcomes: x € { 1 , . . . , K}. It is parameterized by a vector of probabilities fi 
where 0 < \x\. < 1 and J2k=i Wfc = 1- Note that the natural parameters and the sufficient 
statistics of the categorical d is t r ibut ion are K — 1 dimensional vectors. 

A' 

fe=i 

% = In 

l[s=fc] 

/'A; 

1 " £ , = 1 /*j 

r(x) 

l [ x = 1] 
l [ x = 2] 

= A - - 1] 
A - l 

A f a ) = In ( l + ^ exp{r? f c} 

dA(ri) 
~a = ^ k 

or]k 

k=l 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

B.2 .2 D i r i c h l e t 

The Dirichlet d is t r ibut ion is a continuous probabil i ty dis t r ibut ion over K random variables 
/ i i , / i 2 , • • •, A*A such that 0 < /x^ < 1 and X]fcLi ^fc = 1- ^he dis t r ibut ion is parameterized 
by a vector of A concentration parameters a = (ai , . . . , ax)- It is the conjugate prior 
of the categorical dis t r ibut ion. W h e n K = 2, the Dir ichlet dis t r ibut ion reduces to a Beta 
distr ibut ion. 

r ( £ f = i « f c ) p(/*|a) 

A(V) 

dA(V) 

dvk 

A 

n f = i r ( « f c ; fe=i 

m"1 

I M (« f e -i) 

rjK 

In/ i i 
l n / i 2 

- 1" 

_ « A - 1 

In \xK_ 
A 

^ l n r ( % + l ) ) - l n r ( ^ % + l ) 
A 

k=l k=l 
A 

lnV'(afc) - lnip(y^ak) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

fe=i 

where T and i/> are the gamma and digamma function respectively. 
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B.2 .3 G a m m a 

The G a m m a dis t r ibut ion is a continuous probabil i ty dis t r ibut ion over positive random 
variable x > 0. The dis t r ibut ion is governed by a shape parameter a > 0 and a rate 
parameter b > 0. 

p(x\a, b) 

T(x) 

° xa~ 
T{a)X 

1 exp{ —bx] 

V " -b ' 

m a - 1 

X 
Inx 

A(ri) = lnF(m + 1) + (r/2 + 1) ln(-m) 

dA(ri) 

Or] tp(a) — In b 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

where T and ip are the gamma and digamma function respectively. 

B.2 .4 N o r m a l 

The N o r m a l dis t r ibut ion is a widely used continuous probabi l i ty dis t r ibut ion over real 
vectors x G M.D. It has two parameters: mean /x G M 1 5 and a covariance mat r ix S . S is 
constrained to be a positive definite matr ix . The dis t r ibut ion can also be expressed wi th 
the precision mat r ix A = S _ 1 . 

p(x|/x, S ) = exp 

T ( x ) 

dA(r,) 

dr}2 

(2TT)^|£|2 

VI 

x 
v e c ( x x T 

{ - ^ ( X - ^ E - H X - M ) } 

E " V 
i v e c C S " 1 ; 

•^?77mat(r72) ^ - ^ l n | - 2 mat(?7 2)| + ^ ln27r 

vec I E + /j/j 

(B.29) 

(B.30) 

(B.31) 

(B.32) 

(B.33) 

(B.34) 

where "vec' is the vectorization operation and "mat" is its inverse. 

B.2 .5 N o r m a l - W i s h a r t 

The Normal -Whisar t is a continuous probabil i ty dis t r ibut ion over a pair of real vector 
and positive definite mat r ix /x G WLD, A G H D x D . It is the conjugate prior of the normal 
dis tr ibut ion wi th unknown mean and precision matr ix . It is paremeterized by a mean m, 
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a scaling factor j3, a positive definite matr ix W and a degree of freedom u: 

P p(n, A | m , / 3 , W , i / ) 

I V , A ) 

A(V) 

dA(rj) 

dVi 
dAjrf) 

dm 
dA(rj) 

dAjrj) 

dm 

£ e x p { ^ - ^ l n | A | - ^ t r ( A M ) } 

M = P(n- m) ( / j - m ) T + W " 1 

D , v f (v+l)D DjD+l) 
B = /3T W "a ( 2 ^ ^ 7 T ^ ^ -

z/ + 1 - d. 

d=l 
/3 m 
_ £ 

2 
v e c ( / 3 m m T + W " 

v-D 

m 
m 

A/ix 
/ j T A / x 
vec(A) 
l n | A | 

- I n B 

z / W m 

n | - I + i / W m m T 

v v e c ( W ) 

5Z^(l/ + 2 ~ d ) + ̂ l n 2 + H ^ w l -

(B.35) 

(B.36) 

(B.37) 

(B.38) 

(B.39) 

(B.40) 

(B.41) 

(B.42) 

(B.43) 

(B.44) 
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