
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF RADIO ELECTRONICS

KLASIFIKACE VZORŮ POMOCÍ FUZZY NEURONOVÝCH
SÍTÍ
FUZZY NEURAL NETWORKS FOR PATTERN CLASSIFICATION

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. Tamás Ollé
AUTHOR

VEDOUCÍ PRÁCE Ing. Jitka Svobodová
SUPERVISOR

BRNO, 2012

VYSOKÉ UČENÍ
TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

Ústav radioelektroniky

Diplomová práce
magisterský navazující studijní obor
Elektronika a sdělovací technika

Student: Bc. Tamás Ollé ID: 83398
Ročník: 2 Akademický rok: 2011/2012

NÁZEV TÉMATU:

Klasifikace vzorů pomocí fuzzy neuronových sítí

POKYNY PRO VYPRACOVÁNÍ:

Prostudujte principy fuzzy logiky a umělých neuronových sítí. Navrhněte neuronovou síť, která je
kombinací fuzzy systému a zvoleného typu neuronové sítě.

Vytvořte učební množinu pro neuronovou síť. Navržený systém naprogramujte v prostředí MATLAB s
použitím toolboxu Parallel Computing Toolbox a otestujte na úloze klasifikace vzorů.

Získané výsledky porovnejte s výsledky získanými pomocí vybraných typů neuronových sítí bez použití
fuzzy logiky.

DOPORUČENÁ LITERATURA:

[1] VASILIC, S. Fuzzy neural network pattern recognition algorithm for classification of the events in
power system networks [online]. Texas A&M University, 2004 – [cit. 18.12.2009]. Dostupné na www:
http://handle.tamu.edu/1969.1/436.

[2] DRÁBEK, O., SEIDL, P., TAUFER, I. Umělé neuronové sítě – základy teorie a aplikace.
Chemagazín. 2005 (4) s. 32-34

Termín zadání: 6.2.2012 Termín odevzdání: 18.5.2012

Vedoucí práce: Ing. Jitka Svobodová
Konzultanti diplomové práce:

prof. Dr. Ing. Zbyněk Raida
Předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí
zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků
porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

LICENČNÍ SMLOUVA
POSKYTOVANÁ K VÝKONU PRÁVA UŽÍT ŠKOLNÍ DÍLO

uzavřená mezi smluvními stranami:

1. Pan/paní

Jméno a příjmení: Bc. Tamás Ollé
Bytem: Tajovského 9, Komárno, 945 01, Slovenská Republika
Narozen/a (datum a místo): 7. května 1986 v Komárne

(dále jen „autor“)
a

2. Vysoké učení technické v Brně

Fakulta elektrotechniky a komunikačních technologií
se sídlem Technická 3058/10, Brno, 616 00
jejímž jménem jedná na základě písemného pověření děkanem fakulty:
prof. Dr. Ing. Zbyněk Raida, předseda rady oboru Elektronika a sdělovací technika
(dále jen „nabyvatel“)

Čl. 1

Specifikace školního díla

1. Předmětem této smlouvy je vysokoškolská kvalifikační práce (VŠKP):

 disertační práce
 diplomová práce
 bakalářská práce
 jiná práce, jejíž druh je specifikován jako ..

(dále jen VŠKP nebo dílo)

Název VŠKP: Klasifikace vzorů pomocí fuzzy neuronových sítí
Vedoucí/ školitel VŠKP: Ing. Jitka Svobodová
Ústav: Ústav radioelektroniky
Datum obhajoby VŠKP: __________________

VŠKP odevzdal autor nabyvateli*:

 v tištěné formě – počet exemplářů: 2
 v elektronické formě – počet exemplářů: 2

2. Autor prohlašuje, že vytvořil samostatnou vlastní tvůrčí činností dílo shora popsané a specifikované. Autor dále
prohlašuje, že při zpracovávání díla se sám nedostal do rozporu s autorským zákonem a předpisy souvisejícími a že
je dílo dílem původním.

3. Dílo je chráněno jako dílo dle autorského zákona v platném znění.

4. Autor potvrzuje, že listinná a elektronická verze díla je identická.

* hodící se zaškrtněte

Článek 2

Udělení licenčního oprávnění

1. Autor touto smlouvou poskytuje nabyvateli oprávnění (licenci) k výkonu práva uvedené dílo nevýdělečně užít,
archivovat a zpřístupnit ke studijním, výukovým a výzkumným účelům včetně pořizovaní výpisů, opisů a
rozmnoženin.

2. Licence je poskytována celosvětově, pro celou dobu trvání autorských a majetkových práv k dílu.

3. Autor souhlasí se zveřejněním díla v databázi přístupné v mezinárodní síti

 ihned po uzavření této smlouvy
 1 rok po uzavření této smlouvy
 3 roky po uzavření této smlouvy
 5 let po uzavření této smlouvy
 10 let po uzavření této smlouvy

(z důvodu utajení v něm obsažených informací)

4. Nevýdělečné zveřejňování díla nabyvatelem v souladu s ustanovením § 47b zákona č. 111/ 1998 Sb., v platném
znění, nevyžaduje licenci a nabyvatel je k němu povinen a oprávněn ze zákona.

Článek 3

Závěrečná ustanovení

1. Smlouva je sepsána ve třech vyhotoveních s platností originálu, přičemž po jednom vyhotovení obdrží autor a
nabyvatel, další vyhotovení je vloženo do VŠKP.

2. Vztahy mezi smluvními stranami vzniklé a neupravené touto smlouvou se řídí autorským zákonem, občanským
zákoníkem, vysokoškolským zákonem, zákonem o archivnictví, v platném znění a popř. dalšími právními předpisy.

3. Licenční smlouva byla uzavřena na základě svobodné a pravé vůle smluvních stran, s plným porozuměním jejímu
textu i důsledkům, nikoliv v tísni a za nápadně nevýhodných podmínek.

4. Licenční smlouva nabývá platnosti a účinnosti dnem jejího podpisu oběma smluvními stranami.

V Brně dne: 18. května 2012

……………………………………….. …………………………………………
Nabyvatel Autor

ABSTRAKT
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde
důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení
neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány.
Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém.
Tyto techniky poskytují efektivní způsoby učení neuronových sítí.

KLÍČOVÁ SLOVA
neuron, umělé neuronové sítě, akční potenciál, algoritmus zpětného šíření chyb, fuzzy logika,
fuzzy-neuronová síť, adaptivní neuro-fuzzy inferenční systém

ABSTRACT
This work describes the principle of operation of neurons and how they form artificial neural
networks. The structure and the operation of neurons are thoroughly described and the most widely
used algorithm for neuron training is shown as well as the basics of fuzzy logic including its
advantages and disadvantages. This work fully describes the backpropagation algorithm and the
adaptive neuro-fuzzy inference system. These techniques provide effective methods of neural
network learning.

KEYWORDS
neuron, artificial neural networks, action potential, backpropagation algorithm, fuzzy logic, fuzzy
neural network, adaptive neuro-fuzzy inference system

OLLÉ, T. Klasifikace vzorů pomocí fuzzy neuronových sítí. Brno: Vysoké učení technické v Brně,
Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky, 2012. 46 s., 6 s.
příloh. Diplomová práce. Vedoucí práce: Ing. Jitka Svobodová

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma Klasifikace vzorů pomocí fuzzy neuronových
sítí jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím
odborné literatury a dalších informačních zdrojů, které jsou všechny uvedeny v seznamu
literatury na konci práce.

V Brně dne

(podpis autora)

PODĚKOVÁNÍ

Děkuji vedoucímu diplomové práce Ing. Jitky Svobodové za účinnou metodickou,
pedagogickou a odbornou pomoc a další cenné rady při zpracování mé diplomové práce.

V Brně dne

(podpis autora)

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1. INTRODUCTION ...1

2. NEURAL NETWORKS..2
2.1 Real brains ...2
2.2 Operation of neurons..4
2.3 Learning ...5
2.4 Artificial neural networks ..5

2.4.1 The basic Artificial Neuron...6

3. BACKPROPAGATION ALGORITHM ...9
3.1 The algorithm ...9

3.1.1 Description of the backpropagation algorithm..13
3.2 Running the algorithm ..14
3.3 Stop the training ...15

4. FUZZY SYSTEMS ...17
4.1 Fuzzy Neural Networks ..17

5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM...22
5.1 Learning algorithm of ANFIS ..22

5.1.1 Forward pass ...24
5.1.2 Backward pass ..26

6. DATA ACQUISITION ..28

7. THE REALIZATION OF THE PROGRAM...31

8. RUNNING THE SIMULATION...37
8.1 The ANFIS network ..37

8.1.1 Network parameters ..37
8.1.2 Simulation results ..37

8.2 The 'NN' network ..39
8.2.1 Network parameters ..40
8.2.2 Simulation results ..40

8.3 The 'NNV' network..41
8.3.1 Network parameters ..41
8.3.2 Simulation results ..42

9. CONCLUSION...44

REFERENCES ..45

LIST OF SYMBOLS, ABBREVIATIONS AND VARIABLES ..46

LIST OF INSERTS ..47

LIST OF FIGURES

Fig. 2.1 A biological neuron ([2])..2

Fig. 2.2 Body function control by neurons ([2]) ..3

Fig. 2.3 The action potential ([2])...4

Fig. 2.4 The synapse ([2])..5

Fig. 2.5 A neural net with simple processors connected together ([2])6

Fig. 2.6 A basic artificial neuron ([3]) ...6

Fig. 2.7 Threshold and Sigmoid function ([3])..7

Fig. 3.1 Neural network with one inner neural layer ([9]) ...10

Fig. 3.2 Gradient method ([4]) ...12

Fig. 3.3 The first four letters of the alphabet ([4])...15

Fig. 3.4 The first correctly working algorithm ([4])..15

Fig. 3.5 Total error for network ([4]) ...16

Fig. 4.1 The first model of fuzzy neural network ([8])...19

Fig. 4.2 The second model of fuzzy neural network ([8]) ...20

Fig. 4.3 Berenji´s ARIC architecture ([8])...20

Fig. 5.1 A two-input first-order Sugeno fuzzy model ([10])...23

Fig. 5.2 A standard ANFIS architecture ([10])..23

Fig. 5.3 The forward pass (based on [10])...24

Fig. 5.4 The backward pass ([10]) ...26

Fig. 6.1 Sound wave of the word ‘strawberry’ ..29

Fig. 6.2 Sound wave of the word ‘jahoda’..29

Fig. 6.3 Sound wave of the word ‘eper’ ...30

Fig. 7.1 The test words ..32

Fig. 7.2 The fast Fourier transformation (FFT) ..33

Fig. 7.3 Flow chart of ANFIS ...35

Fig. 7.4 Flow chart of the Neural Network ...36

Fig. 8.1 Example of the simulation results in ANFIS..38

Fig. 8.2 Example of the simulation results in 'NN'..40

Fig. 8.3 Example of the simulation results in 'NNV' ...42

LIST OF TABLES

Table 4.1 Properties of fuzzy systems and neural networks (based on [6]).......................18

Table 6.1 List of recorded words ...28

Table 8.1 List of the test words..38

Table 8.2 The results of the simulation of ANFIS in numbers..39

Table 8.3 The results of the simulation of 'NN' in numbers..41

Table 8.4 The results of the simulation of 'NNV' in numbers ...43

1

1. INTRODUCTION

A fuzzy system is an alternative to traditional concepts of set membership and
logic. Although its basics originate from the ancient Greek philosophy, it is a relatively
new field, and as such, leaves much room for development and applications at the
leading edge of artificial intelligence. Within this work, I try to present the foundations
of neural networks along with some of the more remarkable difficulties to its use with
examples from the field of artificial intelligence.

Modern techniques of artificial intelligence can be found in almost all fields of
the human science, however, the biggest usage is in engineering field. The “neuro-
fuzzy” approach was born as a combination of artificial neural networks and fuzzy
logic. These two techniques are often used together for solving engineering
problems, where classic methods are not able to provide a straightforward or correct
solution. Generally, the neuro-fuzzy term means a type of system characterized for a
similar structure of a fuzzy controller where the fuzzy sets and rules are adjusted
using neural networks’ tuning techniques in an iterative way with data vectors (input
and output system data) [1].

Two different processes take place in such systems. The first is called the
learning phase, where neural networks adjust their internal parameters. The second,
implementation phase behaves like a fuzzy logic system. The combination of these
two techniques is likely to produce better results than the two techniques applied
separately.

Within this work, an own neural network will be built in Matlab, using the
presented techniques. A neural network for voice recognition will be programmed.
The goal of the project is to apply these specific techniques on particular examples,
and to analyze and present the differences between them.

2

2. NEURAL NETWORKS

The basic conception behind the neural net is to simulate the biological
functions of the human brain. The human brain consists of about 100 billion
processing units connected together in just such a network. These processing units
are called “brain cells” or “neurons” and each one is a living cell [2]. The main
characteristic of the neural network is the fact, that these structures can learn with
examples (training vectors, input and output samples of the system). The neural
networks modifies its internal structure and the weights of the connections between
its artificial neurons to make the mapping, with a level of acceptable error for the
application of the relation input/output that represent the behavior of the modeled
system [1].

The advantages of the neural networks are:
 learning capacity
 generalization capacity
 robustness in relation to disturbances

The disadvantages of the neural networks are:
 impossible interpretation of the functionality
 difficulty in determining the number of layers and number of neurons

2.1 Real brains

Real neurons are much too small to see directly, but we can have a look at it
under a microscope (Figure 2.1).

Fig. 2.1 A biological neuron ([2])

3

The main component parts of the biological neuron are:

 Dendrites – short tips of the neuron with centripetal type, which receives
information from the outside world (if the neuron is a sensory one)

 Cell body – the bulbous end of a neuron, which contains the cell nucleus
(mechanism that keep the cell alive)

 Axon – conducts electrical signals to other neurons, or to muscles or glands

The input information to the body is processed by neurons. The light sensors
in our eyes (called rods and cones) are neurons in which the dendrites are stimulated
by light. Under our skin, there are pressure sensing neurons, heat sensors, pain
sensors and a bunch of other neurons, which help us to detect the outside world
around us. The moving of our muscles is also stimulated by motor neurons. By
looking at the Figure 2.2 you can get a closer look at the process.

Fig. 2.2 Body function control by neurons ([2])

4

The input information goes through the long axons of the sensory neurons into
the spinal cord and brain. There they are connected to other neurons (called
interneurons). Finally, the result of the processing is passed to the output neurons
which stimulate muscles or glands to affect the outside world. This mechanism is
responsible for all our actions from simple reflexes to consciousness itself [2].

2.2 Operation of neurons

After reviewing how the neurons form a network, we need to understand the
function of each individual neuron. When a neuron is stimulated by another neuron
(or by outside influences in case of sensory neurons), it produces pulses, called
“action potentials”.

Before a neuron becomes stimulated (at its poise), it is polarized. This means
that, neuron is charged up and ready to produce electrical pulse. Each neuron has
associated with it a level of stimulus, above which a nerve pulse or action potential
will be generated. Only when it receives enough stimulation, from one or more
sources it will initiate a pulse – which travels a couple of hundred meters per second
[2].

Fig. 2.3 The action potential ([2])

With the help of an oscilloscope, we are able to monitor these pulses. Each
pulse is only a couple of milliseconds wide. By increasing the stimulation, the density
of impulses will increase as well. It means more pulses per second.

5

2.3 Learning

Spot where the end of the axon meets the dendrites of the next neuron is
called the Synapse, and it is important to the functioning of the neuron and to
learning [2]. The enlargement of this area is illustrated in Figure 2.4.

Fig. 2.4 The synapse ([2])

The end of the axon is called the synaptic bulb. Between this and the next cell
is a few tens of nanometers wide gap, called the synaptic cleft. When the action
potential reaches the end of the axon, it stimulates the release of chemicals called
neurotransmitters, which are present in the synaptic bulb. These cross the cleft and
stimulate the next cell [2]. As more often the synapse is used, the stronger it gets.

2.4 Artificial neural networks

The history of artificial neural networks goes back to 1943, when Warren
McCulloch and Walter Pitts designed a simple artificial model of neuron. Most of the
artificial neural networks are based on their model up to this day.

The Artificial Neural Network (neural net or ANN) is a collection of simple
processors connected together [2]. It is actually a simplified mathematical model of
brain-like systems. Each processor can only perform a very simple mathematical
function by its own, but with a large network of them, we can achieve much greater
capabilities and do many things. The basic conception is presented in Figure 2.5.

6

Fig. 2.5 A neural net with simple processors connected together ([2])

The most important advantage of neural networks is probably their adaptivity,
which allows to perform well even at situations when the system or the environment
being controlled varies over time.

2.4.1 The basic Artificial Neuron

A basic artificial neuron is shown in Figure 2.6. Individual markings have the
following meaning:

i …inputs to the neuron
w …represents the strength of the synaptic connection of its dendrite
S …activity or activation of the neuron (sum of the inputs and their

weights)

Fig. 2.6 A basic artificial neuron ([3])

Mathematical expression of artificial neuron is the following:

44332211 wiwiwiwiS  (2.1)

7

After the summary, a threshold (set at 0.5) is applied in a simple binary level:

if S > 0.5 then O = 1
if S < 0.5 then O = 0 (2.2)

Described in words: the neuron takes its inputs and weights them according to
the strength of connection. If the total sum of the weighted inputs is more than the
previously defined threshold, the neuron produces a pulse (just like the biological
one).

Artificial Neural Networks used simple binary outputs at an early stage, but
later than switched to continuous output function, because it was more flexible. One
example is the Sigmoid function:

Se
O 


1

1 (2.3)
This function always produces an output between 0 and 1 that is why it is often

called activation function. Other activation functions (linear, logarithmic, and
tangential) are also used sometimes; however, the Sigmoid function is probably the
most common. The biggest difference between threshold and Sigmoid function is that
in the threshold case, the output changes suddenly from 0 to 1. In sigmoid case, the
change from 0 to 1 happens gently – this helps the neuron to express uncertainty.
Figure 2.7 compares the difference.

Fig. 2.7 Threshold and Sigmoid function ([3])

Earlier formula (2.1) may be formalized for a neuron of n inputs:

nn wiwiwiS  ...2211 (2.4)
Generally:







nx

x
xxiwS

1
(2.5)

8

Or, if the inputs are considered as forming a vector I , and the weights a vector or
matrix W [3]:

WIS  (2.6)

9

3. BACKPROPAGATION ALGORITHM

After overviewing the basics of neural networks in the previous chapters, let´s
have a look at some practical networks, their applications and how they are trained.

Many hundreds of neural network types have been suggested over the years;
however, there are only a small group of widely uses, so-called “classic” networks, on
which many others are based. These networks are: backpropagation, Hopfield
networks, competitive networks and networks using spiky neurons. There are even
more variations on these themes. This chapter will deal with the algorithm called
backpropagation.

3.1 The algorithm

Probably the most common way to connect neurons with sigmoid activation
function are multilayer nets. Multilayer neural network with one inner neural layer
(neurons are marked Zj, j = 1,...,p) is shown in Figure 3.1. Output neurons (neurons
are marked Yk, k = 1,...,m). Neurons in output and inside layers must have a defined
bias. Typical marking of the bias of the kth neuron (Yk) in the output layer is w0k and
typical marking of bias of the jth neuron (Zj) in the inside layer is v0j. Bias (e.g. jth
neuron) matches weighted value of the assigned connection between the given and
fictional neuron, whose activation is always 1. From the displayed picture then ensue,
that a multilayer neural network is created minimally by three layers of neurons: input,
output and at least one inside layer. Between two neighbour layers can always be
found a so called complete neural connection, so each neuron of lower layer is
connected with each neurons of higher layer.

10

Fig. 3.1 Neural network with one inner neural layer ([9])

Backpropagation algorithm is used in approximately 80% of all neural network
applications. Algorithm itself includes three periods: feedforward spreading of the
input signal of training pattern, backward spreading of errors and actualization of
weighted values on connections.

During feedforward signal spreading, each neuron in the input layer (Xi, i =
1,...,n) receives input signal (xi) and mediates its transfer to all neurons in the inner
layer (Z1..., Zp). Each neuron in the inner layer calculates its activation (zj) and sends
this signal to all the neurons in the output layer. Each neuron in the output layer
calculates its activation (yk), which matches its real output (kth neuron) after
submission of the input sample.

In principle, in this way, we obtain the response of neural net on the input
stimulus given by excitation of input layer neuron. Signal spreading in biological
system proceeds in such a way too, where input layer can be created e.g. with visual
cells and in the output layer of the brain are then identified individual objects of
watching. The question then will be, how synaptic weights leading to correct
response on the input signal are defined. The process of determining the synaptic
weights is linked again with the concept of learning the neural networks.

Another issue is the ability of generalization over the learned material, in other
words, how the neural network is able to deduce on the basis of learned phenomea
that were not part of the learning process, but can somehow be deduced from the
learned.

What is needed for learning the neural network? It is both the training set
containing elements describing the solved problem and then a method that can fix

11

these samples in the form of neural network synaptic weight values, including the
already mentioned ability to generalize, if possible. Stop first at the training set. Each
training set pattern describes, how neurons are excited in the input and output layers.
Formally, for the training set T we can consider set of elements (patterns) that are
arranged in pairs defined as follows:

(3.1)
where q number of training set patterns

Si excitation vector of the input layer consisting of n neurons
Ti excitation vector of the output layer consisting of m neurons
sj, tj excitation of the jth neuron of the input, respectively the output

layer

The method that allows the adaptation of the neural network training set is
called backpropagation. This method is an adaptation in the opposite direction of the
spread of information from higher layers to lower layers.

During the neural network adaptation with backpropagation method, calculated
activation yk with defined output values tk for each neuron in the output layer and for
each training pattern are compared. Based on this comparison, the neural network
error is defined, for which factor δk (k = 1, ..., m) is calculated. δk is, as it was already
mentioned, the part of error that spreads back from the neuron Yk to all the neurons
of previous layers which are defined with neuron connections. Factor δj (j = 1, ..., p)
can be defined similarly, which is a part of errors spreads back from neuron Zj to all
the input layer neurons, which are defined with the neuron connections.

Weight value adjustment wjk on the connections between neurons in the inner
and output layers depends on factor δk and the activation of Zj neuron in the inner
layer. Weight value adjustment vij on the connections between neurons in the input
and inner layers depends on factor δj and the activation of Xi neuron in the input
layer.

The activation function for neural neworks with adaptive backpropogation
method must have the following characteristics: it must be continuous, differentiable
and monotonically nondecreasing. The most commonly used activation function is
therefore standard (logical) sigmoid and hyperbolic tangent. Network error E(w) is
due to the training set defined as the sum of the partial network error E l(w) due to
individual training patterns and depends on the network confugiration w:

(3.2)

12

Partial network error El(w) for the lth training pattern (l=1, ...,q) is proportional to
the sum of squared deviations of actual output values of the network input for l-
training pattern from the required output values for this example:

(3.3)
The aim of adaptation is to minimize network errors in the weight space. Since

the fault of the network directly depends on a complicated nonlinear complex function
of a multilayer network, the goal presents a non-trivial optimalization problem. For its
solution, the basic model uses the simplest version of gradient method, which
requires differentiability of the error function. Geometric conception will help us in
better understanding.

The error function E(w) is schematically shown in Figure 3.2 – configuration,
which is a multidimensional vector of weights w, is projected on the axis of x. Error
function determines the network error due to fixed training set, depending on network
configuration. During the network adaptation, we are looking for a configuration, for
which the error function is minimal. We start with a randomly chosen configuration
w(0), where the corresponding network error from the desired network will probably be
large. In analogy with human learning, it corresponds to the initial settings of synaptic
weights of the newborn, who instead of the desired behaviors such as walking,
talking, etc. performs random movements and makes vague noises. During the
adaptation, we frame at this point w(0) tangent vector (gradient) and move in
the direction of this vector down by Ԑ. For sufficiently small Ԑ then we obtain the new
configuration w(1) = w(0) + Δw(1), for which the error function is smaller than for the
original configuration w(0), i.e. E(w(0)) ≥ E(w (1)). The entire process is repeated for w(1)

and so we get w(2) such that E(w(1)) ≥ E(w(2)) etc., until we get to the local minimum of
the error function. In a multidimensional weighted space, this procedure exceeds our
imagination. Although with appropriate choice of the learning rate (α) this method
always converges to some local minimum from any initial configuration, there is no
guarantee that this happens in real time. Usually this process is very time-consuming
(several days of calculation with PC) for small multilayer networks (tens of neurons)
as well.

Fig. 3.2 Gradient method ([4])

13

The main problem with gradient method is that when it finds a local minimum,
then this minimum does not need to be the global minimum (see Figure 3.2).
Presented adaptation process stops at this low level (zero gradient) and the network
error does not decrease further.

There are a number of solutions to solve this problem. The simplest and most
effective (can also solve several other problems) is to reset the weights to different
random numbers and try training again. Another solution is to add „momentum“ to the
weight change. This means that the weight change this interpretation depends not
just on the current error, but also on previous changes. For example W+ = W +
Current change + (change on previous iteration*constant), where constant is < 1 [4].

3.1.1 Description of the backpropagation algorithm

Step 0. The weighting values and the bias are initialized by small random
numbers. Assigning the initialization values of the learning coeficient α.

Step 1. Repeat steps (2 to 9) until the condition of calculation termination is not
executed.

Step 2. Perform steps (3 to 8) for each (bipolar) training pair s:t.

Feedforward:

Step 3. Activate the input neurons (Xi, i=1, ...,n)
xi = si

Step 4. Calculate the input values of internal neurons
(Zj, j=1, ...,p):

(3.4)
Determintation of internal neuron output values (3.5)

Step 5. Determination of the actual output values of neural
network signal (Yk, k=1, ...,m):

(3.6)(3.7)

14

Backpropagation:

Step 6. Value of the expected output for the input training pattern
is assigned to each neuron in the output layer (Yk, k=1,
...,m). Furthermore is calculated,
which is a part of the weight correction and
bias correction .

Step 7. A summation of its delta inputs (i.e. from neurons located
in the following layer),) is assigned to
each neuron in the inner layer (Zj, j=1, ...,p). By multiplying
the obtained values with derivation of activation function,
we get , which is a part of the weight
correction and bias correction .

Update weights and thresholds:

Step 8. Each neuron in the output layer (Yk, k=1, ...,m) updates on
their connections weight values including its bias (j=0,
...,p):

. (3.8)
Each neuron in the inner layer (Zj, j=1, ...,p) updates on
their connections weight values including its bias (i=0,
...,n):

. (3.9)
Step 9. Termination condition:

if any changes in weight values do not occur, or if there was performed
maximally defined amount of weight changes, stop; otherwise continue.

Although the description of backpropagation learning algorithm is formulated
for classic von Neumann computer model, despite it is clear that it can be implement
in the distributed way. For each training pattern, the active mode for its input runs
firstly so that the information in the neural network spreads from the input to its
output. Then based on external information about the required output, i.e. the error of
individual inputs, partial derivation of error function are calculated so that the signal
spreads back from the output to the input. Network calculation at reverse run
proceeds sequentially in layers, while in one layer can proceed paralelly.

3.2 Running the algorithm

Now, after we have reviewed the algorithm in detail, let´s take a look how it
works with a large data set. We will trying to teach a network to recognise the first
four letters of the alphabet on a 5x7 grid, see below.

15

Fig. 3.3 The first four letters of the alphabet ([4])

The first step to train the network is to apply the first letter and change all the
weights on the network once. Next do the same for the second letter, then the third,
etc. After you have done this for all four letters, return to the first one, and repeat the
whole process until the error becomes small (see Figure 3.4).

Fig. 3.4 The first correctly working algorithm ([4])

Beginners often make a mistake by reducing the errors for each letters
individually (apply the first letter to the network, run the algorithm and then repeat it
until the error reduces, then apply the second letter, do the same, and so on). In such
a way, the network learns to recognize the first letter, then forget it and learn the
second letter, etc. and at the end the network would remember only the last letter.

3.3 Stop the training

An important question is: when do we need to stop the training? In practice, it
is usual to let the error fall to a lower value, then wait until the network recognizes all
the letters successfully. In this case, the network keeps training all the patterns

16

repeatedly until the total error falls to some pre-determined low target value and then
it stops [4]. Let´s not forget that we need to make all errors positive. Figure 3.5 shows
us the calculation method.

Fig. 3.5 Total error for network ([4])

A trained network can recognize not just the perfect patterns, but also the
corrupted or noisy ones. Using a validation set is a better way of working out when to
stop network training – this helps us to eliminate network overtraining. The idea
behind this method is to have a second set of patterns – noisy versions of the training
set. Validation set is used to calculate the error, after the network has trained. In case
of a fully trained network, the validation set error reaches a minimum, in case of
overtraining this error starts rising.

17

4. FUZZY SYSTEMS

Fuzzy logic was first developed in 1965 by Lotfi Zadeh. It provides an
approximate but effective means of describing behavior of systems that are too
complex, ill-defined or not easily analyzed mathematically. Its development was
motivated by the need for a conceptual framework, which can help in addressing the
issue of uncertainty and lexical imprecision. With the help of fuzzy logic we can
mathematically express the uncertainties of human cognitive processes like thinking
and reasoning. Fuzzy logic uses graded statements rather than ones that are strictly
true or false. Some significant characteristics of the fuzzy logic are:

 In fuzzy logic, exact reasoning is viewed as a limiting case of approximate
reasoning [6]

 In fuzzy logic, everything is a matter of degree [6]
 In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently,

fuzzy constrain on a collection of variables [6]
 Inference is viewed as a process of propagation of elastic constraints [6]
 Any logical system can be fuzzified [6]

The function of such systems can be described by a set of fuzzy rules, like ‘if-
then’ (premise-consequent). If-then rules use linguistics variables with symbolic
terms. Each term represents a fuzzy set. The terms of the input space (typically 5-7
for each linguistic variable) compose the fuzzy partition [1]. The fuzzy interference
mechanism consists of three stages:
1. stage – conversion a numerical input value to a fuzzy value – fuzzyfication
2. stage – definition of the rules according to the firing strengths of the inputs
3. stage – retransformation of the resultant fuzzy values into numerical values -

defuzzyfication

Main advantages of the fuzzy systems:
 ability to represent uncertainties of the human knowledge with linguistic

variables
 easy interpretation of the results
 easy expansion of the base of knowledge by addition of new rules
 robustness in relation of the possible disorders in the system

Main disadvantages are:
 unable to universalize, only answers to what is written in its rule base
 topological changes of the system would demand alternation in the rule base
 definition of the inference logical rules needs expert

4.1 Fuzzy Neural Networks

A marriage between fuzzy logic and neural networks can attenuate the
problems of these technologies. Neural net technology can be used to learn system

18

behavior based on system input-output data. This learned knowledge can be used to
generate fuzzy logic rules and membership functions, significantly reducing the
development time. This provides a more cost effective solution as fuzzy
implementation is typically a less expensive alternative than neural nets for
embedded control applications. Expressing the weights of the neural net using fuzzy
rules helps to provide greater insights into the neural nets, thus leading to a design of
better neural nets [5].

Every intelligent technique has some computational qualities (explanation of
decisions, learning ability, etc.) making them suited for individual problems. For
example, while neural networks are good at recognizing patterns, they are not good
at explaining how they reach their decisions [6]. Fuzzy logic systems are good in
decision explanations but the rules they use to make those decisions they cannot
acquire automatically.

The main reason behind the creation of intelligent hybrid systems have been
these limitations. With the combination of two or more techniques, we are able to
overcome the limitations of individual techniques. If there is a complex application
with two different sub-problems, then a neural network and an expert system can be
used separately for solving these individual tasks. A short comparison between the
operation of fuzzy systems and neural networks is presented in the following table:

Skills Fuzzy Systems Neural Nets
Knowledge
acquisition

Inputs Human experts Sample sets
Tools Interaction Algorithms

Uncertainty
Information Quantitive and Qualitive Quantitive
Cognition Decision making Perception

Reasoning
Mechanism Heuristic search Parallel computat.
Speed Low High

Adaptation
Fault-tolerance Low Very high
Learning Induction Adjusting weights

Natural
language

Implementation Explicit Implicit
Flexibility High Low

Table 4.1 Properties of fuzzy systems and neural networks
(based on [6])

Neural network learning techniques can automate the process of design and
tune of the membership functions and reduce the development time and cost in
a large measure. The behavior of fuzzy systems can be explained with the help of
fuzzy rules and their performance can be adjusted by tuning the rules. However,
fuzzy system applications are limited to the fields where expert knowledge is
available and the number of input variables is small.

To overcome the problem of knowledge acquisition, neural networks are
extended to automatically extract fuzzy rules from numerical data [6]. The

19

computational process for fuzzy neural systems starts with the development of fuzzy
neuron, based on the understanding of biological neuron and the learning
mechanisms. This leads to the following steps:

 development of fuzzy neural models motivated by biological neurons [6]
 models of synaptic connections which incorporates fuzziness into neural

network [6]
 development of learning algorithms (that is the method of adjusting the

synaptic weights) [6]

Two possible models of fuzzy neural networks are:

 In response to linguistic statements, the fuzzy interface block provides an input
vector to a multi-layer neural network. The neural network can be adapted
(trained) to yield desired command outputs or decisions [8].

Fig. 4.1 The first model of fuzzy neural network ([8])

 A multi-layered neural network drives the fuzzy inference mechanism [8].

20

Fig. 4.2 The second model of fuzzy neural network ([8])

A typical fuzzy neural network is Barenji´s ARIC (Approximate Reasoning
Based Intelligent Control) architecture. It is a neural network model of a fuzzy
controller and learns by updating its prediction of the physical system´s behavior and
fine tunes a predefined control knowledge base [8].

Fig. 4.3 Berenji´s ARIC architecture ([8])

21

With this architecture we have the opportunity to combine the advantages of
both neural networks and fuzzy controllers. By predefining the fuzzy IF-THEN rules
the system learns faster than a standard neural control system, because it has not to
learn from scratch. ARIC is made up of feedforward neural networks, the Action-State
Evaluation Network (AEN) and the Action Selection Network (ASN).

ASN is a multilayer neural network representation of a fuzzy controller. In fact,
it consists of two separated nets, where the first one is the fuzzy inference part and
the second one is a neural network that calculates p[t, t + 1], a measure of
confidence associated with the fuzzy inference value u(t + 1), using the weights of
time t and the system state of time t + 1. A stochastic modifier combines the
recommended control value u(t) of the fuzzy inference part and the so called
„probability“ value p and determines the final output value of the ASN [8]: (4.1)

The hidden unit zi of the fuzzy inference network represent the fuzzy rules, the
input units xj the rule antecedents, and the output unit u represents the control action,
that is the defuzzified combination of the conclusions of all rules (output of hidden
units). In the input layer, the system state variables are fuzzified [8]. ARIC uses
monotonic membership functions only. The fuzzy labels of control rules are set for
each rule locally. The membership values are then multiplied by weights attached to
the connection of the input unit to the hidden unit. The minimum of those values is its
final input [8].

A special monotonic membership function which represents the conclusion of
the rule is stored in each hidden unit. The crisp output value belonging to the
minimum membership value can be easily calculated by the inverse function (thanks
to the monotonicity of this function). This value is multiplied with the connection
weight between the hidden unit and the output unit. The output value is then
calculated as a weighted avarage of all rule conclusions [8].

The AEN tries to forecast the behavior of the system. It is a feedforward neural
network with one hidden layer, which receives the system state as its input and an
error signal r from the physical system as additional information [8]. The network
output v[t, t´] is viewed as a prediction of future reinforcement that depends of the
weights of time t and the system state of time t´ (which can be t or t+1). Better state
have characteristically higher reinforcements.

The weight changes are determined by a reinforcement procedure that uses
the output of the ASN and the AEN. The ARIC architecture was applied to cart-pole
balancing and it was shown that the system is able to solve this task [8].

22

5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Adaptive Neuro Fuzzy Inference System (ANFIS) as developed by Jang et al.
(1997) is a class of adaptive networks that are functionally equivalent to fuzzy
inference systems (FIS), where the parameters of fuzzy inference systems are
updated by neural networks from a set of training data. An adaptive network, as its
name implies, is a network structure consisting of nodes and directional links through
which the nodes are connected. Moreover, part of all of the nodes are adaptive,
which means their outputs depend on the parameters pertaining to these nodes, and
the learning rule specifies how these parameters should be changed to minimize
a prescribed error measure. ANFIS enjoys many of the advantages claimed by neural
networks (NNs) and the linguistic interpretability of fuzzy inference systems, wherein
both NNs and FIS play active roles in an effort to reach specific goals [10], [11].

Thanks to its capability and because it can perform the same function, almost
any neural network can be replaced by ANFIS. Its primary advantages are non-
linearity and structural knowledge representation.

ANFIS consists of a self-tuning Sugeno-type inference system and calculates
its outputs as a weighted linear combination of the consequents. The hybrid learning
algorithm includes two stages, which are:

 forward pass – identifies the consequent parameters with the help of FIS
learning mechanism and least-squares estimator (LSE)

 backward pass – propagates backward the error rates (error backpropagation)
and updates the premise parameters by the gradient descent method

In ANFIS, the membership functions (gaussian functions) are expected to map
all inputs by changing their parameters. It is desired that all inputs can be mapped to
produce the desired outputs. Unfortunately, in the case that there occur variations in
the inputs, the desired outputs will be poorly approximated by the actual outputs
because of limitations in finding the parameters of the fixed finite number of fuzzy
membership functions [10].

The fuzzy membership function is the basic block of fuzzy logic systems and
has many possible interpretations [10]. It can define the richness of the extracted
information from the given data in case of highly nonlinear systems and the form of
the membership functions can be extended to cover this richness.

5.1 Learning algorithm of ANFIS

The standard ANFIS uses the Sugeno-type fuzzy model to generate fuzzy
rules from a given input-output data set. For easy understanding, let's take a simple
version of fuzzy inference system with two inputs x, y and one output f. A rule set for

23

a typical first-order Sugeno fuzzy with two fuzzy if-then rules has the following form
(based on [10]):

Rule 1: If x is A1 and y is B1, then 1111 ryqpf  (5.1)
Rule 2: If x is A2 and y is B2, then 2222 ryqpf  (5.2)
Figure 5.1 shows the reasoning mechanism for the Sugeno model. The

corresponding standard ANFIS architecture where nodes in the same layer have
similar functions is shown in Figure 5.2. The important part of the presented ANFIS is
the modification of the error correction rules of error backpropagation (EBP) by using
a mapping function to replace the membership function in the standard ANFIS [10].

Fig. 5.1 A two-input first-order Sugeno fuzzy model ([10])

Fig. 5.2 A standard ANFIS architecture ([10])

24

5.1.1 Forward pass

The forward pass is based on the architecture presented in Figure 5.2. It uses
two inputs and one output. For convenience, a different notation is introduces as
shown in Figure 5.3 [10].

Fig. 5.3 The forward pass (based on [10])

The functions of the individual layers are the following:

Layer 1:
This layer is the so-called fuzzification layer. The bell activation function is used as
the membership function, which has a regular bell shape and is specified as

ib

i

i

a
cx

xA 2

1

1)(




 (5.3)
The membership function has parameters {ai, bi, ci}, i = 1, 2, 3, 4 which are
predetermined by selecting parameter values. Each output of this node is labeled by
a. Accordingly, the outputs are denoted by n1a, n2a, n3a, and n4a. The symbol a is
used in order to differentiate with new symbol b (after the correction) that will be used
later in the backward pass [10].

Layer 2:
This layer is the rule layer, where fuzzy logic AND is used in the node function. The
output of this layer can be obtained as

25

)3,1min(5 ananan 
)4,2min(6 ananan  (5.4)

Layer 3:
This layer is the normalization layer. Let ntot_a = n5a + n6a, then the normalization is
given by [10]

antotanan _/57 
antotanan _/68  (5.5)

Layer 4:
This layer is the deffuzification layer. By arranging the incoming signals, matrix A can
be obtained which has the form

 anyanxananyanxanA 8)8()8(7)7()7( (5.6)
By means of the LSE method, we obtain the consequent parameter P = [p1, q1, r1, p2,
q2, r2] by using the following equation

  UAAAP TT 1
 (5.7)

where U is the desired output of the controller. The consequent parameter P is then
used to compute f1 and f2 by using the following equation

1111 ryqxpf 

2222 ryqxpf  (5.8)
After that, the output of the node n9 and n10 are calculated by the equation [3]

179 fanan 

2810 fanan  (5.9)
Layer 5:
This layer is represented by a single summation neuron. This layer produces the
overall ANFIS output with a simple summation of the layer input signals given by

ananan 10911  (5.10)

26

5.1.2 Backward pass

After running the forward pass, we get the resulted error. Within the backward
pass, this error is propagated back to the system by using error correction rule of the
modified error back propagation (EBP), see Figure 5.4.

Fig. 5.4 The backward pass ([10])

Symbol ԑ11 defines the error between the desired output dk and the actual output.
The sum of the squared error is given by [10]





)(

1

2
,)(

lN

k

p
kl

p
kp xdE (5.11)

In our case the sum of the squared error defines the difference between the desired
and the actual output, Ep = ԑ11. The value xl in this layer is given by n11 and dk =
U, then the error is defined as [10]

)11(211 anU  (5.12)
Next, d11 is defined as follows [10]

anUd 112/1111   (5.13)
The output of the node n11 then becomes [10]

111111 danbn  (5.14)
According to formula 5.10, we have

bnbnbn 10911 

27

Based on formula 5.14, we can define

999 danbn 

101010 danbn 

then we can appoint

10911 ddd  (5.15)
Multiplying the left side of formula 5.15 by (f1 + f2)/(f1 + f2) leads to [10]

109
21

211

21

111 dd
ff

fd
ff

fd






(5.16)

Since n9a = n7a f1 and n10a = n8a f2 , after correction we have n9b = n7b f1 and
n10b = n8b f2 . As a result, we obtain [10]

179)7(9 fdandan 

2810)8(10 fdandan 

Next, from the ntot_a of the forward pass, we write the new ntot_b as follows [10]

totdantotbntot ___  (5.17)
where d_tot is arbitrary and obtained from the experiment data. Suppose d_tot = 0,
this implies ntot_b = ntot_a. Then the output nods in Layer 2 has the form [10]

bntotdanbn _)7(15 7
bntotdanbn _)8(16 8 (5.18)

In this layer, the minimum value of input signals are selected - the logic AND
function is applied to process the outputs of Layer 1. As in Layer 2, we already have
n5a1 and n6b1, it is important that the outputs of this node must satisfy n5b = n5b1
and n6b = n6b1. A simple way is to split n5b1 and n6b1 into two parts. We then add
an arbitrary value to the one part, so that it has higher value than the other part. As a
result, this part will not be chosen in Layer 2 [10]. After adding the arbitrary value
which belongs to the output node in Layer 1, as a result we get the original value of
n1b, n2b, n3b and n4b. The next step is mapping all the inputs to the corrected
output of Layer 1. The mapping function then becomes the membership function of
the learning mechanism of the modified ANFIS.

28

6. DATA ACQUISITION

After overviewing the basic theory of neural networks and the theory of
backpropagation algorithm and fuzzy systems, the next step is to acquire the
necessary data for further processing – the speech signal.

Speech/voice recognition is a difficult task to be performed by a computer
system [12]. Although a wide range of commercial products were launched in the last
decade, an absolute solution has not been found out yet, and many research areas
have still remained opened in the field.

Speech is a sequence of waves which are transmitted through a medium and
are characterized by some features, including characteristic frequencies and
corresponding intensities [13]. The vibrations of sound waves are perceived by
eardrums in the inner ear, and these oscillations are forwarded to a specific part of
brain for further processing.

The three deciding factors when talking about human-like perception of
speech are loudness, pitch and quality. Loudness represents the energy (intensity) of
the sound. The greater the amplitude is, the louder the sound appears. Pitch is
responsible for the tone of the sound. Higher pitch issues higher tone and against,
lower pitches lower tone. The quality of sound is a perceptual correlate of its spectral
content related to the fundamental frequency of the vocal vibration of the speaker
organ [13].

The most important factor of the recording is the clarity of the recorded signal.
It should be as clear and noise free as possible. For this reason, the recording took
place in a quite environment using a Tascam DR-40 portable digital recorder for the
best possible sound quality. The recorded continuous signal was then split into
separate words with WavePad Sound Editor software.

Five words in three languages (English, Czech and Hungarian) were created
for further neural network training purposes, i.e. a total of 60 words (every single
word 4 times) and another 15 words for testing the system. Each signal has been
converted into mono and was saved uncompressed with a bit depth of 16 bits and a
sample rate of 44.1 kHz. The recorded words are listed in the table below.

Language
English Czech Hungarian

W
or

ds

Andrew Ondřej András
apple jablko alma
grape hrozno szőlő
orange pomeranč narancs
strawberry jahoda eper

Table 6.1 List of recorded words

29

The next pictures show the differences between individual words with the
same meaning in different languages. Axis X represents the time in seconds, while
axis Y the amplitude of the signal.

Fig. 6.1 Sound wave of the word ‘strawberry’

Fig. 6.2 Sound wave of the word ‘jahoda’

30

Fig. 6.3 Sound wave of the word ‘eper’

Each spelled character has its very own composition, which can be described
with pairs of parameters:

 frequencies – the rate at which the sound wave passes a given point
 amplitudes – represents the amount of energy of a given frequency in a

sound wave
 wavelength – distance between the crest of one wave to another

By taking a closer look at the signals, we can easily count the number of
syllables and one of the most important phonetic characteristic – where the word is
emphasized (accented). While the words ‘strawberry’ and ‘jahoda’ consists of three
syllables (straw-be-rry, ja-ho-da), the word ‘eper’ consists of only two syllables (e-
per). Words ‘jahoda’ and ‘eper’ reaches its maximum amplitude right at the near
beginning, while the word ‘strawberry’ somewhere around the letter ‘a’. These are the
places where the given words are emphasized.

31

7. THE REALIZATION OF THE PROGRAM

This chapter serves to demonstrate the program built in Matlab. The program
itself can be separated into 3 parts: ANFIS using the Matlab's Fuzzy Logic Toolbox
('anfis'), neural network using Matlab's Neural Network Toolbox ('nn') and the
individually built neural network based on the backpropagation algorithm presented in
Chapter 3 ('nnv').

The main program is the script file spust.m. Its listing is included in Appendix.
The purpose of the first part is to read the parameters of the test voice recordings.
This program serves for probing ANFIS as well as neural networks. For the selection
of the operation mode, the variable mode has to be set to 'anfis', 'nn' or 'nnv' by
commenting and uncommenting the individual lines.

mode='anfis';
%mode='nn';
%mode='nnv';

The data reading is implemented in the wavload function, which receives as
input parameters the path to the directory containing training files and the number of
output parameters. At the beginning of this script, the parallel processing toolbox is
initialized by the command matlabpool open. The usage of this toolbox greatly
increases the processing speed in case of the processor is multi-cored or there are
more computers available.The next part of the code brings into effect the actual
learning of the network.

In the case of the mode is set to 'anfis', the parfor cycle is used for the creation
and learning of three ANFIS networks, each for one output variable. Parfor is part of
the parallel processing toolbox. Its iterations are run in parallel increasing the
computing speed. Firstly, the given network has to be created. For the purpose of this
work, the practical usage of ANFIS is heavily limited by its high demands on
processing power for the case of higher number of inputs and second level neurons.
The basic task of network creation takes into account all combinations of inputs and
membership functions. In this case it means a very high number of created
membership functions and second level neurons. Therefore, a special function was
used for the creation of these functions and network nodes which analyses the input
data and searches for existing clusters in it. These clusters are used for simplification
of the input side of the network. This approach significantly increases the maximal
number of usable inputs of the system.

The function genfis2 creates a Sugeno-type FIS structure. For the creation of
input rules, the subtractive cluster analysis method is used. This method tries to
make use of existing patterns to simplify the input part of the network. The subtractive
clustering initially assumes all data points as clusters. Subsequently, some clusters
are merged together based on preset distance criterion, then the new cluster centers
are calculated.

32

The learning itself is realized by the function anfis that executes the learning
algorithm individually for each network. The number of ANFIS networks equals to the
number of output variables (columns in matrix tgt). It utilizes a hybrid learning
technique, what is a combination of the least-squares estimator (LSE) method and
the error backpropagation (EBP) algorithm. Afterwards, the network is tested for
correctness with the same data as used for training using the function evalfis. The
result of each network is saved to the corresponding column in matrix res. For the
case of usage of neural network, the function feedforwardnet is used, which
creates a neural network suitable for classification tasks. The number of neurons in
each layer is also set here. The function train trains the network for the given
training data.

In the case, the mode is set to 'nnv', the neural network functions created
within the frame of Semestral Project MM2E (netinit, netlearn and neteval) are in use.
These functions can create a simple neural network structure, and are able to train
and evaluate it.

Loading of audio files – wavload.m

This function is used for audio file loading and parameter calculation (see
Appendix). Firstly, the file names are determined in the given directory that has the
wav extension. After that, all files are processed sequentially, as is described herein.
At the beginning, the given file is read into a vector and is normalized to have
maximal amplitude of 1. Subsequently, the parameters are calculated using the
fftparams function. The file names are prepared to contain information about the
language of the recording. The first letter of it corresponds to the first letter of the
used languages (i.e. 'c' means Czech, 'e' means English and the prefix 'h' is for
Hungarian). This information is used for creating the target matrix (tgt) that is used
for training the network. The target matrix and the matrix of FFT parameters are
returned as return variables of the function.

Fig. 7.1 The test words

33

Analysis parameters – fftparams.m

The signals in their raw form are not suitable as inputs to a network because
these contain extremely large amount of information. However, parameters can be
used instead of the original signals that describe the signal shape at an appropriate
level. The signal is divided into a constant number of sections. In our case the
lengths of these sections are set to approximately 50 ms (depending on the length of
the actual signal, each one is split into 14 pieces). For each section, the spectral
composition is calculated using the fast Fourier transformation (FFT). In each of
these spectra, the five highest spectral components are determined. The frequencies
and amplitudes of these components are used as the analyzed signal parameters.
Before use, signals are filtered by a bandpass filter of boundaries 100 and 2000 Hz.
The Fourier transformation is also smoothed to limit the influence of noise. This
function is also listed in Appendix. Figure 7.2 displays the process. The top of the
figure shows the portion of the signal wave, the second one is the signal after the
Fourier transformation process and the last one illustrates the peak points of the
transformed signal that were used as input parameters.

Fig. 7.2 The fast Fourier transformation (FFT)

34

Neural network creation – netinit.m

This function creates a simple structure that contains the necessary
information and weights of each neuron input. The weights are initialized with small
random numbers. This structure variable is returned by the function.

Neural network training – netlearn.m

This function implements the classical backpropagation algorithm for training
the neural network. The network coefficients are updated on each run as many times
as the number of input-target pairs. The number of runs (training epochs) has to be
set manually. The function returns the trained network.

Neural network simulation – neteval.m

This function calculates the output of each neuron gradually in each layer and,
finally, the output of the whole network for the given input sets. The result is returned
as a matrix, where the corresponding outputs are organized in rows. Each row
corresponds to one input set.

The following figures (Fig. 7.3 and Fig. 7.4) show the workflow of the program
where the first four blocks represents the training, while the last three parts the
testing/evaluation part.

35

Fig. 7.3 Flow chart of ANFIS

36

Fig. 7.4 Flow chart of the Neural Network

37

8. RUNNING THE SIMULATION

After the program was made and its adequate functioning was tested, the next
step is experimenting with it and fine tuning the simulation parameters for optimal
results. A number of input values are created for every network the following way:
each input signal is cut up into 14 pieces and 10 parameters are calculated from
each segment for a total number of 140 input values per input file.

8.1 The ANFIS network

The ANFIS is a very complex structure; its implementation is extremely time-
consuming. The ANFIS network created by the Fuzzy Logic toolbox has clearly the
same advantages over an own implementation and have the Neural Network toolbox
over the implemented simple network. These include flexibility and wide range of
possibilities of configuration.

The membership function for the ANFIS network is calculated by the genfis2
function. This function generates the structure of the Fuzzy Inference System from
data using subtractive clustering.

The subtractive clustering is a one-pass algorithm for estimating the number of
clusters and the cluster centers through the training data. This method partitions the
training data into groups called clusters and generates the cluster centers until the
maximum potential value in the current iteration is equal to or less than the threshold
δ. By the end of the clustering process, a set of fuzzy rules are obtained [2].

8.1.1 Network parameters

For the training and the testing process the following parameters were set
within the ANFIS network:

Number of layers: 5
Output function of the neuron: see Chapter 7
Training function: combination of the least-squares method and the

backpropagation gradient descent
Number of epochs: 3
Threshold: the biggest output of the three networks indicates

the recognized language
Number of outputs: 1 for each network (for a total amount of 3)

The training is done by the function anfis while the testing is done by evalfis.

8.1.2 Simulation results

A total number of 5 simulations were run to determine approximately the
average error. The result of the program is very stable, which means that just slight
differences can be seen in the simulation results (if any). Average time of simulation

38

is around 450 seconds. The memory demand is very high. The simulation needs
approximately 6 GB of RAM to run „smoothly“. The simulation result of the ANFIS
network is shown in Figure 8.1.

Fig. 8.1 Example of the simulation results in ANFIS

The next table shows the actual meaning assigned to numbers. This table is valid for
every single figure with simulation results hereafter.

Table 8.1 List of the test words

LIST OF THE TEST WORDS
No. Word

H
un

ga
ri

an

15 szőlő
14 narancs
13 eper
12 András
11 alma

E
ng

lis
h

10 strawberry
9 orange
8 grape
7 apple
6 Andrew

C
ze

ch

5 pomeranč
4 Ondřej
3 jahoda
2 jablko
1 hrozno

39

The average simulation results for ANFIS network are listed in Table 8.2. Each
row contains three outputs of the neural network. These values can be considered as
an approximate “probability”. Since their sum can be different than one, they cannot
represent real probabilities.

Czech Hungarian English
hrozno 0.9835 0.0000 0.0000
jablko 1.1189 0.0000 0.0000
jahoda 1.0003 0.0000 0.0000
Ondřej 0.5000 0.5000 0.5000

pomeranč 0.8924 0.0000 0.0000
Andrew 0.0000 0.0000 0.8268
apple 0.0000 0.0093 0.9459
grape 0.0000 0.0000 1.0149

orange 0.0000 0.0000 1.0405
strawberry 0.5000 0.5000 0.5000

alma 0.0000 0.9523 0.0000
András 0.0000 0.8743 0.0000

eper 0.0000 1.2376 0.0000
narancs 0.0000 1.0792 0.0000

szőlő 0.0000 1.1724 0.0000

Table 8.2 The results of the simulation of ANFIS in numbers

As the table shows, the network is unable to decide the language of two words.
These words are “Ondřej” and the word “strawberry” (both 0.5000). The most
precisely allocated word is “eper” (1.2376) while the least precisely allocated word is
“Andrew” (0.8268).

8.2 The 'NN' network

This section was created using the Matlab’s Neural Network Toolbox by the
following commands:

nnet = feedforwardnet([10 10 8 8]);
nnet = configure(nnet, inp', tgt');

The input parameter of the feedforwardnet function determines the number of
neurons in each hidden layer and implicitly the number of hidden layers. The
configure function sets the network input and output sizes and ranges and
initializes the weights.

40

8.2.1 Network parameters

For the training and the testing process the following parameters were set within the
NN network:

Number of layers: 5
Output function of the neuron: hyperbolic tangent sigmoid transfer function
Training function: Levenberg-Marquardt
Number of epochs: 50, however, the training might be finished by

additional criteria
Threshold: the biggest output of the network corresponds to

the recognized language
Number of outputs: 3

As soon as one of the progress bars (each representing a criterion) reaches its
maximum, the training stops.

8.2.2 Simulation results

A total number of 5 simulations were run to determine the average error. The
result of this method is very unstable, which means that the simulation results vary
unacceptably by each simulation. Average time of simulation is approximately 10
seconds. A better result of the simulations is illustrated in Figure 8.2.

Fig. 8.2 Example of the simulation results in 'NN'

41

The average of the 5 simulation results for 'NN' network is listed in Table 8.3.

Czech Hungarian English
hrozno 0,8197 0,1170 0,0779
jablko 1,0296 0,0012 0,0136
jahoda 0,9488 0,0305 0,0456
Ondřej 0,9730 0,0150 0,0541

pomeranč 0,6045 0,3666 0,0588
Andrew 0,0088 0,1829 0,8350
apple 0,0935 0,1437 0,7977
grape 0,1073 0,1172 0,7927

orange 0,0508 0,0757 0,9078
strawberry 0,2427 0,3560 0,4233

alma 0,0105 0,9734 0,0116
András 0,2058 0,7902 0,0202

eper 0,0618 0,8912 0,1093
narancs 0,0771 0,7836 0,1383

szőlő 0,1062 0,7893 0,1357

Table 8.3 The results of the simulation of 'NN' in numbers

As the table shows, the network is able to recognize the language of all words,
however, it cannot allocate the words as precisely as the above presented ANFIS
network. The most precisely allocated word is “jablko” (1.0296) which has almost
zero chance to be determined as a Hungarian word (0,0012), while the least
precisely allocated word this time is “strawberry” (0.4233).

8.3 The 'NNV' network

This section was created using the mentioned algorithms in Chapter 3.

8.3.1 Network parameters

For the training and the testing process the following parameters were set within the
NNV network:

Number of layers: 3
Output function of the neuron: sigmoid function
Training function: error backpropagation
Number of epochs: 2000
Threshold: the biggest output of the three networks indicates

the recognized language
Number of outputs: 3

42

The training was done by the function netlearn while the testing is done by
neteval.

8.3.2 Simulation results

A total number of 5 simulations were run to allocate the average error rate.
The result of the program is mostly stable. The average time of simulation is
approximately 30 seconds. The simulation results of the 'NNV' network are shown in
Figure 8.3.

Fig. 8.3 Example of the simulation results in 'NNV'

The average simulation results for 'NN' network are listed in Table 8.4.

43

Czech Hungarian English
hrozno 0,9798 0,0174 0,0085
jablko 0,9916 0,0064 0,0072
jahoda 0,9885 0,0136 0,0047
Ondřej 0,9869 0,0043 0,0157

pomeranč 0,9777 0,0090 0,0123
Andrew 0,0078 0,0069 0,9914
apple 0,0224 0,0860 0,7960
grape 0,0052 0,0180 0,9846

orange 0,0120 0,0171 0,9711
strawberry 0,0553 0,3941 0,1727

alma 0,0235 0,9682 0,0230
András 0,0044 0,9709 0,0246

eper 0,5571 0,8879 0,0003
narancs 0,0025 0,9967 0,0044

szőlő 0,0049 0,9921 0,0049

Table 8.4 The results of the simulation of 'NNV' in numbers

As the table shows, the network is able to recognize the language of all words except
the word “strawberry”, which is identified as a Hungarian word. The most precisely
recognized word is “narancs” (0.9967) while the least precise result had the already
mentioned “strawberry” (0.1727). The word “eper” has the smallest possibility to be
identified as an English word (0,0003).

44

9. CONCLUSION

Within the scope of this master´s thesis, I tried to give a deep insight into the
function of neural networks, starting with the base of the whole concept – real
neurons. The first half of this paper describes the structure and the operation of real
and artificial neurons including the description of the learning process and the
manner and topology of their interconnections. The backpropagation algorithm is also
described which is one of the basic types of neural network training. A detailed
insight is given into fuzzy systems and fuzzy neural networks including the main
advantages and disadvantages of fuzzy systems and the properties of both systems
and clearly describes the problems which can be solved by combining these two
techniques. The model of Fuzzy Neural Network and Barenji’s ARIC (Approximate
Reasoning Based Intelligent Control) architecture is also presented.

After introducing the Fuzzy Systems and Fuzzy Neural Networks, the Adaptive
Neuro-Fuzzy Inference System (ANFIS) was presented which effectively combines
both neural networks and fuzzy logic reasoning in order to achieve the best possible
results. This type of network can be exceptionally suitable for the language
recognition task too.

A prerequisite of network training is to acquire training data. In our case these
were recordings of individual words. Five different words in three languages (English,
Czech and Hungarian) were recorded for further network training and testing
purposes for a total of 15 acquired words. For the training method, 60 words were
used (every single word 4 times) and another 15 words for testing the system. In the
framework of Matlab, a language recognition software was built, which has three
separate network that can be used – the ANFIS network and a neural network based
on toolbox functions and an own implementation of neural network trained by the
backpropagation algorithm. Each network was fine-tuned for optimal functionality.

The goal of the work was to train the networks with the training words to gain
the ability of recognizing the language of the words and, subsequently, test these
trained networks. Each network was able to recognize all the languages. The best
results were obtained using the ANFIS network. This network uses a hybrid learning
algorithm, an effective combination of neural networks and fuzzy inference system
while the other two networks are simple neural networks without the benefits of fuzzy
logic reasoning. The ANFIS network was not able to decide two words; nevertheless,
the recognition results of other words were superior to these ones. The ANFIS
network has especially high demands on processing power and memory size.

The second network ('NN') produced very unsteady results. It was able to
recognize all languages, however, the results have to be selected and averaged to
achieve good recognition. The results of recognition were not as clear as in the other
cases. On the other side, this method was the less time-consuming.

The third network was a custom-built neural network ('NNV') which utilized the
error backpropagation learning algorithm. The network is able to decide the language
of all words except of one. On the other hand it produces fairly good results
comparable to ANFIS.

45

REFERENCES

[1] VIERA, J., DIAS, F.M. a MOTA, A. Neuro-Fuzzy Systems: A Survey. WSEAS
TRANSACTIONS on SYSTEMS. April 2004, vol. 3, issue 2, s. 414-419. ISSN
1109-2777.

[2] MACLEOD, Christopher. An Introduction to Practical Neural Networks and
Genetic Algorithms For Engineers and Scientists, 2004. Chapter 1, An
introduction to Neural Networks, s. 1-5.

[3] MACLEOD, Christopher. An Introduction to Practical Neural Networks and
Genetic Algorithms For Engineers and Scientists, 2004. Chapter 2, Artificial
Neural Networks, s. 6-15.

[4] MACLEOD, Christopher. An Introduction to Practical Neural Networks and
Genetic Algorithms For Engineers and Scientists, 2004. Chapter 3, The Back
Propagation Algorithm, s. 16-27.

[5] JAIN, L.C.; MARTIN, N.M. Fusion of Neural Networks, Fuzzy Systems and
Genetic Algorithms: Industrial Applications. CRC Press, CRC Press LLC, 1998.,
368 s. ISBN 0849398045.

[6] FULLÉR, Robert. Introduction to Neuro-Fuzzy Systems. Advances in Soft
Computing Series, Springer-Verlag, Berlin/Heildelberg, 2000., 289 s. ISBN 3-
7908-1256-0.

[7] LIU, Puyin; LI, Hongxing. Fuzzy Neural Network Theory and Application. Series
in Machine Perception and Artificial Intelligence – Vol. 59, World Scientific
Publishing Co. Pte. Ltd., 2004., 376 s. ISBN 981-238-786-2.

[8] FULLÉR, Robert. Neural Fuzzy Systems. Åbo Akademis tryckeri, Åbo, ESF
Series A:443, 1995., 249 s. ISBN 951-650-624-0, ISSN 0358-5654.

[9] VOLNÁ, Eva. Neuronové sítě 1. Ostrava, 2002. Studijní materiály pro distanční
kurz: Neuronové sítě 1. Ostravská univerzita v Ostravě, Přírodovědecká fakulta.

[10] RAHMAT, Basuki; JOELIANTO, Endra. Adaptive Neuro Fuzzy Inference System
(ANFIS) with Error Backpropagation Algorithm using Mapping Function.
International Journal of Artificial Intelligence. Autumn 2008, Vol. 1, Number A08,
s. 3-8. ISSN 0974-0635.

[11] KASABOV, Nikola K. Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering. The MIT Press, 1996. ISBN 0-262-11212-4.

[12] ELWAKDY, A. M., ELSEHELY, B. E., ELTOKHY, C. M., ELHENNAWY, D. A.
Speech Recognition using a Wavelet Transform to Establish Fuzzy Inference
System through Substractive Clustering and Neural Network (ANFIS).
INTERNATIONAL JOURNAL of CIRCUITS, SYSTEMS and SIGNAL
PROCESSING [online]. 2008, vol. 2, issue 1 [cit. 2012-04-11]. ISSN 1998-4464.
Dostupný z: http://www.naun.org/journals/circuitssystemssignal/2008.htm

[13] JANG, Jyh-Shing R. ANFIS: Adaptive-Network-Based Fuzzy Inference System.
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS [online].
1993, vol. 23, no. 3 [cit. 2012-04-15].
Dostupný z: http://ece.ut.ac.ir/Classpages/S86/ECE406/Papers/ANFIS.pdf

46

LIST OF SYMBOLS, ABBREVIATIONS AND VARIABLES

ANN Artificial Neural Net

MPL Multi-Layer Perceptron

ARIC Approximate Reasoning Based Intelligent Control

AEN Action-State Evaluation Network

ASN Action Selection Network

FIS Fuzzy Inference System

ANFIS Adaptive Neuro Fuzzy Inference System

LSE Least-Squares Estimator

EBP Error Backpropagation

FFT Fast Fourier Transformation

47

LIST OF INSERTS

A MATLAB PROGRAMS ... 48
A.1 spust.m ... 48
A.2 wavload.m .. 49
A.3 fftparams.m ... 50
A.4 netinit.m .. 51
A.5 netlearn.m ... 51
A.6 neteval.m .. 52

48

A MATLAB PROGRAMS

A.1 spust.m

clear; clc;
if (matlabpool('size')==0)

matlabpool open;
end;

num_anfis_inputs=140;

mode='anfis';
%mode='nn';^
%mode='nnv';

tic;
fprintf('Load train data...\n');
traindir = 'train1'; %nacita treningove vzorky do traindir

[inp,tgt]=wavload(traindir,num_anfis_inputs);

%% train
fprintf('Train...\n');

switch mode
case 'anfis'

epoch_n = 3;
parfor i=1:size(tgt,2)

fprintf(' %d...\n',i);
in_fis(i) = genfis2(inp,tgt(:,i),.20);
%in_fis(i) = genfis2(inp,tgt(:,i),.3);
out_fis(i) = anfis([inp

tgt(:,i)],in_fis(i),epoch_n,zeros(1,4));
res(:,i) = evalfis(inp,out_fis(i));

end
case 'nn'

nnet = feedforwardnet([10 10 8 8]);
nnet = configure(nnet, inp', tgt');
nnet.trainParam.epochs = 50;
nnet.trainParam.goal = 0.0005;
nnet.trainParam.min_grad=1e-10;
nnet.trainParam.max_fail=10;
nnet = train(nnet,inp',tgt');
res = sim(nnet, inp')';

case 'nnv'
nnet = netinit(size(inp,2), size(tgt,2));
nnet = netlearn(nnet, inp, tgt, 2000);
res = neteval(nnet, inp);

end
%% test data

fprintf('Eval. test data...\n');
testdir = 'test1'; %nacita treningove vzorky do traindir

[tinp,ttgt]=wavload(testdir,num_anfis_inputs);

49

switch mode
case 'anfis'

warning('off', 'Fuzzy:evalfis:InputOutOfRange');
tres=[];
for i=1:size(tgt,2)

fprintf(' %d...\n',i);
tres(:,i)=evalfis(tinp,out_fis(i));

end
case 'nn'

tres = sim(nnet', tinp')';
case 'nnv'

tres = neteval(nnet, tinp);
end

figure(1);
colormap(summer);
tres(tres<0)=0;
barh(tres./(sum(tres,2)*[1 1 1]),'stacked','DisplayName','tres ratios');
xlim([0 1]);
legend('czech','hungarian','english');
%%
toc;
fprintf('End.\n');

A.2 wavload.m

function [inp, tgt] = wavload(traindir, num_anfis_input_params)
% load wavs from a dir and convert to parameters
% Detailed explanation goes here

files = dir([traindir '*.wav']);

inp=[]; %vstupni signaly v radcich
tgt=[]; %nastavi jazyky (podle predpony 'c,h,e') - target
for i=1:length(files) %nacita kazdy soubor

[inp_tmp,Fs]=wavread([traindir '\' files(i).name]);

inp_tmp = inp_tmp ./ max(max(abs(inp_tmp)));
%inp = [inp; inp_tmp(round(linspace(1, length(inp_tmp),

num_anfis_input_params)),1)']; %vybira 100 prvek z prvniho sloupce / vlozi
do radku

inp = [inp; fftparams(inp_tmp, 14, Fs)];

lang=files(i).name(1);
if (lang == 'c')

tgt = [tgt; 1 0 0];
elseif (lang == 'h')

tgt = [tgt; 0 1 0];
elseif (lang == 'e')

tgt = [tgt; 0 0 1];
else

tgt = [tgt; 0 0 0];
end

end
end

50

A.3 fftparams.m

function [params] = fftparams(sa, nsecs, Fs)
%fft parameters, sa: input signal, tsec: sectioning time,
% Detailed explanation goes here
params=[];

bandpassfilter_struct =...
design(fdesign.bandpass('n,f3dB1,f3dB2',8,100,2000,Fs),'butter');

fftfilter=[.25 .5 .25];
fmax=3000;

sa= filter(bandpassfilter_struct, sa);

salen = length(sa);
slen = floor(salen/nsecs);

for i=0:nsecs-1

sbgn = i*slen+1;
send = (i+1)*slen;
s = sa(sbgn:send);

f = 0 : Fs/(length(s)-1) : fmax;
sfft = abs(fft(s));
fsfft=filter(fftfilter,1,sfft);

[pks, locs] = findpeaks(fsfft(1:length(f)), 'SORTSTR',
'descend','minpeakdistance',3);

try
locs = locs(1:5);
pks = pks(1:5);

catch
locs = [0 0 0 0 0];
pks = [0 0 0 0 0];

end

params = [params reshape([locs;pks],1,[])];
%params = [params locs'];

end

51

A.4 netinit.m

function [network] = netinit(inputs, outputs) %vstupy, vystupy

%krok 0

n=struct; %struktura, obsahuje celou sit

n.numin=inputs;
n.numout=outputs;
n.numz=inputs;

n.v=(rand(n.numin,n.numz)-0.5)/1000;
n.w=(rand(n.numz,n.numout)-0.5)/1000;

n.v0 = (rand(n.numz,1)-0.5)/1000;
n.w0 = (rand(n.numout,1)-0.5)/1000;

n.alfa = 0.0001;

network=n;

end

A.5 netlearn.m

function [onet] = netlearn(net, input, target, runs)

%input - vstupni signaly ve radcich

f = @(x) sigmf(x, [10 .5]); %sigmoid funkce
fa = @(x) (f(x)-f(x-0.001))/0.001; %derivace funkci sigmoid

%krok 1
while (1)

%krok 2
for i = 1:size(input,1)

%krok 3
x = input(i,:)';
t = target(i,:)';

%krok 4
z_in = net.v'*x + net.v0;
z = f(z_in);

%krok 5
y_in = net.w0 + net.w'*z;
y = f(y_in);

%krok 6
delta = (t-y).*fa(y_in);

52

deltaw = net.alfa.*(z*delta');
deltaw0 = net.alfa.*delta;

%krok7
delta_in = net.w*delta;
delta = delta_in.*fa(z_in);
deltav = net.alfa.*(x*delta');
deltav0 = net.alfa.*delta;

%krok8
net.w = net.w + deltaw;
net.v = net.v + deltav;
net.w0 = net.w0 + deltaw0;
net.v0 = net.v0 + deltav0;

end
runs=runs-1;
if (runs<=0)

break;
end

end

onet=net;
end

A.6 neteval.m

function [out] = neteval(network, input)

%input - vstupni signaly ve radcich

f = @(x) sigmf(x, [10 .5]);
fa = @(x) (f(x)-f(x-0.001))/0.001;

out=[];
%krok 2
for i = 1:size(input,1)

%krok 3
x = input(i,:)';

%krok 4
z_in = network.v'*x + network.v0;
z = f(z_in);

%krok 5
y_in = network.w0 + network.w'*z;
y = f(y_in);

out = [out; y'];
end

