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A B S T R A K T 

Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde 
důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení 
neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. 
Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. 
Tyto techniky poskytují efektivní způsoby učení neuronových sítí. 

K L I C O V A S L O V A 

neuron, umělé neuronové sítě, akční potenciál, algoritmus zpětného šíření chyb, fuzzy logika, 
fuzzy-neuronová síť, adaptivní neuro-fuzzy inferenční systém 

A B S T R A C T 

This work describes the principle of operation of neurons and how they form artificial neural 
networks. The structure and the operation of neurons are thoroughly described and the most widely 
used algorithm for neuron training is shown as well as the basics of fuzzy logic including its 
advantages and disadvantages. This work fully describes the backpropagation algorithm and the 
adaptive neuro-fuzzy inference system. These techniques provide effective methods of neural 
network learning. 
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neuron, artificial neural networks, action potential, backpropagation algorithm, fuzzy logic, fuzzy 
neural network, adaptive neuro-fuzzy inference system 
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1. INTRODUCTION 

A fuzzy system is an alternative to traditional concepts of set membership and 
logic. Although its basics originate from the ancient Greek philosophy, it is a relatively 
new field, and as such, leaves much room for development and applications at the 
leading edge of artificial intelligence. Within this work, I try to present the foundations 
of neural networks along with some of the more remarkable difficulties to its use with 
examples from the field of artificial intelligence. 

Modern techniques of artificial intelligence can be found in almost all fields of 
the human science, however, the biggest usage is in engineering field. The "neuro-
fuzzy" approach was born as a combination of artificial neural networks and fuzzy 
logic. These two techniques are often used together for solving engineering 
problems, where classic methods are not able to provide a straightforward or correct 
solution. Generally, the neuro-fuzzy term means a type of system characterized for a 
similar structure of a fuzzy controller where the fuzzy sets and rules are adjusted 
using neural networks' tuning techniques in an iterative way with data vectors (input 
and output system data) [1]. 

Two different processes take place in such systems. The first is called the 
learning phase, where neural networks adjust their internal parameters. The second, 
implementation phase behaves like a fuzzy logic system. The combination of these 
two techniques is likely to produce better results than the two techniques applied 
separately. 

Within this work, an own neural network will be built in Matlab, using the 
presented techniques. A neural network for voice recognition will be programmed. 
The goal of the project is to apply these specific techniques on particular examples, 
and to analyze and present the differences between them. 
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2. NEURAL NETWORKS 

The basic conception behind the neural net is to simulate the biological 
functions of the human brain. The human brain consists of about 100 billion 
processing units connected together in just such a network. These processing units 
are called "brain cells" or "neurons" and each one is a living cell [2]. The main 
characteristic of the neural network is the fact, that these structures can learn with 
examples (training vectors, input and output samples of the system). The neural 
networks modifies its internal structure and the weights of the connections between 
its artificial neurons to make the mapping, with a level of acceptable error for the 
application of the relation input/output that represent the behavior of the modeled 
system [1]. 

The advantages of the neural networks are: 
• learning capacity 
• generalization capacity 
• robustness in relation to disturbances 

The disadvantages of the neural networks are: 
• impossible interpretation of the functionality 
• difficulty in determining the number of layers and number of neurons 

2.1 Real brains 

Real neurons are much too small to see directly, but we can have a look at it 
under a microscope (Figure 2.1). 

Synapses 

Fig. 2.1 A biological neuron ([2]) 
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The main component parts of the biological neuron are: 

• Dendrites - short tips of the neuron with centripetal type, which receives 
information from the outside world (if the neuron is a sensory one) 

• Cell body - the bulbous end of a neuron, which contains the cell nucleus 
(mechanism that keep the cell alive) 

• Axon - conducts electrical signals to other neurons, or to muscles or glands 

The input information to the body is processed by neurons. The light sensors 
in our eyes (called rods and cones) are neurons in which the dendrites are stimulated 
by light. Under our skin, there are pressure sensing neurons, heat sensors, pain 
sensors and a bunch of other neurons, which help us to detect the outside world 
around us. The moving of our muscles is also stimulated by motor neurons. By 
looking at the Figure 2.2 you can get a closer look at the process. 

Fig. 2.2 Body function control by neurons ([2]) 
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The input information goes through the long axons of the sensory neurons into 
the spinal cord and brain. There they are connected to other neurons (called 
interneurons). Finally, the result of the processing is passed to the output neurons 
which stimulate muscles or glands to affect the outside world. This mechanism is 
responsible for all our actions from simple reflexes to consciousness itself [2]. 

2.2 Operation of neurons 

After reviewing how the neurons form a network, we need to understand the 
function of each individual neuron. When a neuron is stimulated by another neuron 
(or by outside influences in case of sensory neurons), it produces pulses, called 
"action potentials". 

Before a neuron becomes stimulated (at its poise), it is polarized. This means 
that, neuron is charged up and ready to produce electrical pulse. Each neuron has 
associated with it a level of stimulus, above which a nerve pulse or action potential 
will be generated. Only when it receives enough stimulation, from one or more 
sources it will initiate a pulse - which travels a couple of hundred meters per second 
[2]. 

Membrane 
Potential (mV) 

Time (ms) 
1 2 3 4 

Fig. 2.3 The action potential ([2]) 

With the help of an oscilloscope, we are able to monitor these pulses. Each 
pulse is only a couple of milliseconds wide. By increasing the stimulation, the density 
of impulses will increase as well. It means more pulses per second. 
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2.3 Learning 

Spot where the end of the axon meets the dendrites of the next neuron is 
called the Synapse, and it is important to the functioning of the neuron and to 
learning [2]. The enlargement of this area is illustrated in Figure 2.4. 

The end of the axon is called the synaptic bulb. Between this and the next cell 
is a few tens of nanometers wide gap, called the synaptic cleft. When the action 
potential reaches the end of the axon, it stimulates the release of chemicals called 
neurotransmitters, which are present in the synaptic bulb. These cross the cleft and 
stimulate the next cell [2]. As more often the synapse is used, the stronger it gets. 

2.4 Artificial neural networks 

The history of artificial neural networks goes back to 1943, when Warren 
McCulloch and Walter Pitts designed a simple artificial model of neuron. Most of the 
artificial neural networks are based on their model up to this day. 

The Artificial Neural Network (neural net or ANN) is a collection of simple 
processors connected together [2]. It is actually a simplified mathematical model of 
brain-like systems. Each processor can only perform a very simple mathematical 
function by its own, but with a large network of them, we can achieve much greater 
capabilities and do many things. The basic conception is presented in Figure 2.5. 

Bubble? of Neuro
transmitter 

Dendrite of 
next neuron 

Fig. 2.4 The synapse ([2]) 
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Simple proceiiing 
unit (neuron) 

iNeuroiii are connected Together ro 
form a network 

Fig. 2.5 A neural net with simple processors connected together ([2]) 

The most important advantage of neural networks is probably their adaptivity, 
which allows to perform well even at situations when the system or the environment 
being controlled varies over time. 

2.4.1 The basic Artificial Neuron 

A basic artificial neuron is shown in Figure 2.6. Individual markings have the 
following meaning: 

i ...inputs to the neuron 
w ...represents the strength of the synaptic connection of its dendrite 
S ...activity or activation of the neuron (sum of the inputs and their 

weights) 

i-

Fig. 2.6 A basic artificial neuron ([3]) 

Mathematical expression of artificial neuron is the following: 

S = ilwl + i2w2 + i3w3 + i4w4 (2-1) 
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After the summary, a threshold (set at 0.5) is applied in a simple binary level: 

if S> 0.5 then 0= 1 
if S< 0.5 then O = 0 (2.2) 

Described in words: the neuron takes its inputs and weights them according to 
the strength of connection. If the total sum of the weighted inputs is more than the 
previously defined threshold, the neuron produces a pulse (just like the biological 
one). 

Artificial Neural Networks used simple binary outputs at an early stage, but 
later than switched to continuous output function, because it was more flexible. One 
example is the Sigmoid function: 

O 
1 

l + e~ 
(2.3) 

This function always produces an output between 0 and 1 that is why it is often 
called activation function. Other activation functions (linear, logarithmic, and 
tangential) are also used sometimes; however, the Sigmoid function is probably the 
most common. The biggest difference between threshold and Sigmoid function is that 
in the threshold case, the output changes suddenly from 0 to 1. In sigmoid case, the 
change from 0 to 1 happens gently - this helps the neuron to express uncertainty. 
Figure 2.7 compares the difference. 

Output 

Threshold function 

Input Input 

Fig. 2.7 Threshold and Sigmoid function ([3]) 

Earlier formula (2.1) may be formalized for a neuron of n inputs: 

5 = / 1 W 1 + i > 2 + . . . + ! > „ (2.4) 

Generally: 

s = £ - (2.S) 



Or, if the inputs are considered as forming a vector / , and the weights a vector or 
matrix W [3]: 

S = l-W (2.6) 
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3. BACKPROPAGATION ALGORITHM 

After overviewing the basics of neural networks in the previous chapters, let's 
have a look at some practical networks, their applications and how they are trained. 

Many hundreds of neural network types have been suggested over the years; 
however, there are only a small group of widely uses, so-called "classic" networks, on 
which many others are based. These networks are: backpropagation, Hopfield 
networks, competitive networks and networks using spiky neurons. There are even 
more variations on these themes. This chapter will deal with the algorithm called 
backpropagation. 

3.1 The algorithm 

Probably the most common way to connect neurons with sigmoid activation 
function are multilayer nets. Multilayer neural network with one inner neural layer 
(neurons are marked Zj, j = 1,...,p) is shown in Figure 3.1. Output neurons (neurons 
are marked Y k , k = 1 ,...,m). Neurons in output and inside layers must have a defined 
bias. Typical marking of the bias of the k t h neuron (Yk) in the output layer is wok and 
typical marking of bias of the j t h neuron (Zj) in the inside layer is v0j. Bias (e.g. j t h 

neuron) matches weighted value of the assigned connection between the given and 
fictional neuron, whose activation is always 1. From the displayed picture then ensue, 
that a multilayer neural network is created minimally by three layers of neurons: input, 
output and at least one inside layer. Between two neighbour layers can always be 
found a so called complete neural connection, so each neuron of lower layer is 
connected with each neurons of higher layer. 

9 



OUTPUT LAYER 

INPUT LAYER 

Fig. 3.1 Neural network with one inner neural layer ([9]) 

Backpropagation algorithm is used in approximately 80% of all neural network 
applications. Algorithm itself includes three periods: feedforward spreading of the 
input signal of training pattern, backward spreading of errors and actualization of 
weighted values on connections. 

During feedforward signal spreading, each neuron in the input layer (Xj, i = 
1,...,n) receives input signal (Xj) and mediates its transfer to all neurons in the inner 
layer {Z<\..., Z p ) . Each neuron in the inner layer calculates its activation (zj) and sends 
this signal to all the neurons in the output layer. Each neuron in the output layer 
calculates its activation (yk), which matches its real output (k th neuron) after 
submission of the input sample. 

In principle, in this way, we obtain the response of neural net on the input 
stimulus given by excitation of input layer neuron. Signal spreading in biological 
system proceeds in such a way too, where input layer can be created e.g. with visual 
cells and in the output layer of the brain are then identified individual objects of 
watching. The question then will be, how synaptic weights leading to correct 
response on the input signal are defined. The process of determining the synaptic 
weights is linked again with the concept of learning the neural networks. 

Another issue is the ability of generalization over the learned material, in other 
words, how the neural network is able to deduce on the basis of learned phenomea 
that were not part of the learning process, but can somehow be deduced from the 
learned. 

What is needed for learning the neural network? It is both the training set 
containing elements describing the solved problem and then a method that can fix 
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these samples in the form of neural network synaptic weight values, including the 
already mentioned ability to generalize, if possible. Stop first at the training set. Each 
training set pattern describes, how neurons are excited in the input and output layers. 
Formally, for the training set T we can consider set of elements (patterns) that are 
arranged in pairs defined as follows: 

r = [{5 1,r 1}{5^r 2}... {S^TJ} 

St = [ S l s 2 . . . S n ] S j G <0,1> (3.1) 

7; = [tt t2... £ m ] tj G (0,1) 

where q number of training set patterns 
Si excitation vector of the input layer consisting of n neurons 
Tj excitation vector of the output layer consisting of m neurons 
Sj, tj excitation of the j t h neuron of the input, respectively the output 

layer 

The method that allows the adaptation of the neural network training set is 
called backpropagation. This method is an adaptation in the opposite direction of the 
spread of information from higher layers to lower layers. 

During the neural network adaptation with backpropagation method, calculated 
activation yk with defined output values tk for each neuron in the output layer and for 
each training pattern are compared. Based on this comparison, the neural network 
error is defined, for which factor 5k (k = 1, m) is calculated. 5k is, as it was already 
mentioned, the part of error that spreads back from the neuron Y k to all the neurons 
of previous layers which are defined with neuron connections. Factor 5j (j = 1, p) 
can be defined similarly, which is a part of errors spreads back from neuron Zj to all 
the input layer neurons, which are defined with the neuron connections. 

Weight value adjustment Wjk on the connections between neurons in the inner 
and output layers depends on factor 5k and the activation of Zj neuron in the inner 
layer. Weight value adjustment vy on the connections between neurons in the input 
and inner layers depends on factor 5j and the activation of Xj neuron in the input 
layer. 

The activation function for neural neworks with adaptive backpropogation 
method must have the following characteristics: it must be continuous, differentiable 
and monotonically nondecreasing. The most commonly used activation function is 
therefore standard (logical) sigmoid and hyperbolic tangent. Network error E(w) is 
due to the training set defined as the sum of the partial network error E|(w) due to 
individual training patterns and depends on the network confugiration w: 

I 
1=1 (3.2) 
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Partial network error Ei(w) for the I training pattern (1=1, ...,q) is proportional to 
the sum of squared deviations of actual output values of the network input for I-
training pattern from the required output values for this example: 

The aim of adaptation is to minimize network errors in the weight space. Since 
the fault of the network directly depends on a complicated nonlinear complex function 
of a multilayer network, the goal presents a non-trivial optimalization problem. For its 
solution, the basic model uses the simplest version of gradient method, which 
requires differentiability of the error function. Geometric conception will help us in 
better understanding. 

The error function E(w) is schematically shown in Figure 3.2 - configuration, 
which is a multidimensional vector of weights w, is projected on the axis of x. Error 
function determines the network error due to fixed training set, depending on network 
configuration. During the network adaptation, we are looking for a configuration, for 
which the error function is minimal. We start with a randomly chosen configuration 
w ( 0 ) , where the corresponding network error from the desired network will probably be 
large. In analogy with human learning, it corresponds to the initial settings of synaptic 
weights of the newborn, who instead of the desired behaviors such as walking, 
talking, etc. performs random movements and makes vague noises. During the 
adaptation, we frame at this point w ( 0 ) tangent vector (gradient) ," (wm ;and move in 
the direction of this vector down by £. For sufficiently small S then we obtain the new 
configuration w ( 1 ) = w ( 0 ) + w ( 1 ) , for which the error function is smaller than for the 
original configuration w ( 0 ) , i.e. E(w ( 0 )) > E(w ( 1 ) ) . The entire process is repeated for w ( 1 ) 

and so we get w ( 2 ) such that E(w ( 1 )) > E(w ( 2 )) etc., until we get to the local minimum of 
the error function. In a multidimensional weighted space, this procedure exceeds our 
imagination. Although with appropriate choice of the learning rate (a) this method 
always converges to some local minimum from any initial configuration, there is no 
guarantee that this happens in real time. Usually this process is very time-consuming 
(several days of calculation with PC) for small multilayer networks (tens of neurons) 
as well. 

(3.3) 

Netnimk 
Global Minima - the 
Lowest error (this weLEht 

Weigjit 

Fig. 3.2 Gradient method ([4]) 
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The main problem with gradient method is that when it finds a local minimum, 
then this minimum does not need to be the global minimum (see Figure 3.2). 
Presented adaptation process stops at this low level (zero gradient) and the network 
error does not decrease further. 

There are a number of solutions to solve this problem. The simplest and most 
effective (can also solve several other problems) is to reset the weights to different 
random numbers and try training again. Another solution is to add ..momentum" to the 
weight change. This means that the weight change this interpretation depends not 
just on the current error, but also on previous changes. For example W + = W + 
Current change + (change on previous iteration*constant), where constant is < 1 [4]. 

3.1.1 Description of the backpropagation algorithm 

Step 0. The weighting values and the bias are initialized by small random 
numbers. Assigning the initialization values of the learning coeficient a. 

Step 1. Repeat steps (2 to 9) until the condition of calculation termination is not 
executed. 

Step 2. Perform steps (3 to 8) for each (bipolar) training pair s:t. 

Feedforward: 

Step 3. Activate the input neurons (X,, i=1, ...,n) 
Xj = Si 

Step 4. Calculate the input values of internal neurons 
{Zj,j=1, ...,p): 

t=T (3.4) 

Determintation of internal neuron output values 

zj = f(z_hij) ( 3 5 ) 

Step 5. Determination of the actual output values of neural 
network signal {Yk, k=1, ...,m): 

7^1 (3.6) 

yk = f(yJ^) (3.7) 
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Backpropagation: 

Value of the expected output for the input training pattern 
is assigned to each neuron in the output layer (Yk, k=1, 
...,m). Furthermore Sk = (tk — y k ) / ' ( y _ » i k ) is calculated, 
which is a part of the weight correction &w£k = aSkZj and 
bias correction Aw0k = aSk. 

A summation of its delta inputs (i.e. from neurons located 
in the following layer), S_in} = E^-=iSkwjk ) is assigned to 
each neuron in the inner layer {Zj,j=1, ...,p). By multiplying 
the obtained values with derivation of activation function, 
we get Sj = Sjnj'fzjrij), which is a part of the weight 
correction Avtj = aSjxi and bias correction Av0j = aSjm 

Update weights and thresholds: 

Step 8. Each neuron in the output layer (Yk, k=1, ...,m) updates on 
their connections weight values including its bias (j=0, 
...,p): 

= "v>'"" '"3: (3.8) 

Each neuron in the inner layer (Zj, j=1, ...,p) updates on 
their connections weight values including its bias (i=0, 
...,n): 
•J- -J'-") ! (3.9) 

Step 9. Termination condition: 
if any changes in weight values do not occur, or if there was performed 
maximally defined amount of weight changes, stop; otherwise continue. 

Although the description of backpropagation learning algorithm is formulated 
for classic von Neumann computer model, despite it is clear that it can be implement 
in the distributed way. For each training pattern, the active mode for its input runs 
firstly so that the information in the neural network spreads from the input to its 
output. Then based on external information about the required output, i.e. the error of 
individual inputs, partial derivation of error function are calculated so that the signal 
spreads back from the output to the input. Network calculation at reverse run 
proceeds sequentially in layers, while in one layer can proceed paralelly. 

3.2 Running the algorithm 

Now, after we have reviewed the algorithm in detail, let's take a look how it 
works with a large data set. We will trying to teach a network to recognise the first 
four letters of the alphabet on a 5x7 grid, see below. 

Step 6. 

Step 7. 
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I I I I 
Fig. 3.3 The first four letters of the alphabet ([4]) 

The first step to train the network is to apply the first letter and change all the 
weights on the network once. Next do the same for the second letter, then the third, 
etc. After you have done this for all four letters, return to the first one, and repeat the 
whole process until the error becomes small (see Figure 3.4). 

§ 
Calculate the error and Change all the 
change all the weights weights again 
in the network once. i I 

Apply this Apply this. Apply this 
latter first. letter next letter 3 r d 

Change 
weights and 

start again at A § 
Finally apply 

this letter. 

Fig. 3.4 The first correctly working algorithm ([4]) 

Beginners often make a mistake by reducing the errors for each letters 
individually (apply the first letter to the network, run the algorithm and then repeat it 
until the error reduces, then apply the second letter, do the same, and so on). In such 
a way, the network learns to recognize the first letter, then forget it and learn the 
second letter, etc. and at the end the network would remember only the last letter. 

3.3 Stop the training 

An important question is: when do we need to stop the training? In practice, it 
is usual to let the error fall to a lower value, then wait until the network recognizes all 
the letters successfully. In this case, the network keeps training all the patterns 
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repeatedly until the total error falls to some pre-determined low target value and then 
it stops [4]. Let's not forget that we need to make all errors positive. Figure 3.5 shows 
us the calculation method. 

Mate total 
error =0 

Apply first 
pattern and tram 

i 
Gel error for each 
output neuron in 
network, make 

positive, and add to 
total error. 

Stop 

No. last 
pattern 
has not 
trained 

Fig. 3.5 Total error for network ([4]) 

A trained network can recognize not just the perfect patterns, but also the 
corrupted or noisy ones. Using a validation set is a better way of working out when to 
stop network training - this helps us to eliminate network overtraining. The idea 
behind this method is to have a second set of patterns - noisy versions of the training 
set. Validation set is used to calculate the error, after the network has trained. In case 
of a fully trained network, the validation set error reaches a minimum, in case of 
overtraining this error starts rising. 

16 



4. FUZZY SYSTEMS 

Fuzzy logic was first developed in 1965 by Lotfi Zadeh. It provides an 
approximate but effective means of describing behavior of systems that are too 
complex, ill-defined or not easily analyzed mathematically. Its development was 
motivated by the need for a conceptual framework, which can help in addressing the 
issue of uncertainty and lexical imprecision. With the help of fuzzy logic we can 
mathematically express the uncertainties of human cognitive processes like thinking 
and reasoning. Fuzzy logic uses graded statements rather than ones that are strictly 
true or false. Some significant characteristics of the fuzzy logic are: 

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate 
reasoning [6] 

• In fuzzy logic, everything is a matter of degree [6] 
• In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently, 

fuzzy constrain on a collection of variables [6] 
• Inference is viewed as a process of propagation of elastic constraints [6] 
• Any logical system can be fuzzified [6] 

The function of such systems can be described by a set of fuzzy rules, like 'if-
then' (premise-consequent). If-then rules use linguistics variables with symbolic 
terms. Each term represents a fuzzy set. The terms of the input space (typically 5-7 
for each linguistic variable) compose the fuzzy partition [1]. The fuzzy interference 
mechanism consists of three stages: 
1. stage - conversion a numerical input value to a fuzzy value - fuzzyfication 
2. stage - definition of the rules according to the firing strengths of the inputs 
3. stage - retransformation of the resultant fuzzy values into numerical values -

defuzzyfication 

Main advantages of the fuzzy systems: 
• ability to represent uncertainties of the human knowledge with linguistic 

variables 
• easy interpretation of the results 
• easy expansion of the base of knowledge by addition of new rules 
• robustness in relation of the possible disorders in the system 

Main disadvantages are: 
• unable to universalize, only answers to what is written in its rule base 
• topological changes of the system would demand alternation in the rule base 
• definition of the inference logical rules needs expert 

4.1 Fuzzy Neural Networks 

A marriage between fuzzy logic and neural networks can attenuate the 
problems of these technologies. Neural net technology can be used to learn system 
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behavior based on system input-output data. This learned knowledge can be used to 
generate fuzzy logic rules and membership functions, significantly reducing the 
development time. This provides a more cost effective solution as fuzzy 
implementation is typically a less expensive alternative than neural nets for 
embedded control applications. Expressing the weights of the neural net using fuzzy 
rules helps to provide greater insights into the neural nets, thus leading to a design of 
better neural nets [5]. 

Every intelligent technique has some computational qualities (explanation of 
decisions, learning ability, etc.) making them suited for individual problems. For 
example, while neural networks are good at recognizing patterns, they are not good 
at explaining how they reach their decisions [6]. Fuzzy logic systems are good in 
decision explanations but the rules they use to make those decisions they cannot 
acquire automatically. 

The main reason behind the creation of intelligent hybrid systems have been 
these limitations. With the combination of two or more techniques, we are able to 
overcome the limitations of individual techniques. If there is a complex application 
with two different sub-problems, then a neural network and an expert system can be 
used separately for solving these individual tasks. A short comparison between the 
operation of fuzzy systems and neural networks is presented in the following table: 

Skills Fuzzy Systems Neural Nets 
Knowledge 
acquisition 

Inputs Human experts Sample sets Knowledge 
acquisition Tools Interaction Algorithms 

Uncertainty 
Information Quantitive and Qualitive Quantitive 

Uncertainty 
Cognition Decision making Perception 

Reasoning 
Mechanism Heuristic search Parallel computat. 

Reasoning 
Speed Low High 

Adaptation 
Fault-tolerance Low Very high 

Adaptation 
Learning Induction Adjusting weights 

Natural 
language 

Implementation Explicit Implicit Natural 
language Flexibility High Low 

Table 4.1 Properties of fuzzy systems and neural networks 
(based on [6]) 

Neural network learning techniques can automate the process of design and 
tune of the membership functions and reduce the development time and cost in 
a large measure. The behavior of fuzzy systems can be explained with the help of 
fuzzy rules and their performance can be adjusted by tuning the rules. However, 
fuzzy system applications are limited to the fields where expert knowledge is 
available and the number of input variables is small. 

To overcome the problem of knowledge acquisition, neural networks are 
extended to automatically extract fuzzy rules from numerical data [6]. The 

18 



computational process for fuzzy neural systems starts with the development of fuzzy 
neuron, based on the understanding of biological neuron and the learning 
mechanisms. This leads to the following steps: 

• development of fuzzy neural models motivated by biological neurons [6] 
• models of synaptic connections which incorporates fuzziness into neural 

network [6] 
• development of learning algorithms (that is the method of adjusting the 

synaptic weights) [6] 

Two possible models of fuzzy neural networks are: 

• In response to linguistic statements, the fuzzy interface block provides an input 
vector to a multi-layer neural network. The neural network can be adapted 
(trained) to yield desired command outputs or decisions [8]. 

Linguistic 
statements 

Fuzzy 
Interface Perception as 

neural inputs 

Neural 
Network 

D ecisioiis 

(Neural 
outputs) 

Learning 
alooritluii 

Fig. 4.1 The first model of fuzzy neural network ([8]) 

• A multi-layered neural network drives the fuzzy inference mechanism [8]. 
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Neural 
Inputs Neural 

Network 

I 

Neural outputs ions 

Learning 
algorithm 

Fig. 4.2 The second model of fuzzy neural network ([8]) 

A typical fuzzy neural network is Barenji's ARIC (Approximate Reasoning 
Based Intelligent Control) architecture. It is a neural network model of a fuzzy 
controller and learns by updating its prediction of the physical system's behavior and 
fine tunes a predefined control knowledge base [8]. 

r (error signal) 

^ Updating weights ^ 

Fuzzy inference network 
ASN 

u(t) 

1 
Stochastic 
Action 
Modifier 

Neural network 

u(t) Physical 
System 

System state 

Fig. 4.3 Berenji's ARIC architecture ([8]) 
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With this architecture we have the opportunity to combine the advantages of 
both neural networks and fuzzy controllers. By predefining the fuzzy IF-THEN rules 
the system learns faster than a standard neural control system, because it has not to 
learn from scratch. ARIC is made up of feedforward neural networks, the Action-State 
Evaluation Network (AEN) and the Action Selection Network (ASN). 

A S N is a multilayer neural network representation of a fuzzy controller. In fact, 
it consists of two separated nets, where the first one is the fuzzy inference part and 
the second one is a neural network that calculates p[t, t + 1], a measure of 
confidence associated with the fuzzy inference value u(t + 1), using the weights of 
time t and the system state of time t + 1. A stochastic modifier combines the 
recommended control value u(t) of the fuzzy inference part and the so called 
„probability" value p and determines the final output value of the A S N [8]: 

u'(t) = oC«0),p[t, t + 1]) (4.1) 

The hidden unit Zi of the fuzzy inference network represent the fuzzy rules, the 
input units Xj the rule antecedents, and the output unit u represents the control action, 
that is the defuzzified combination of the conclusions of all rules (output of hidden 
units). In the input layer, the system state variables are fuzzified [8]. ARIC uses 
monotonie membership functions only. The fuzzy labels of control rules are set for 
each rule locally. The membership values are then multiplied by weights attached to 
the connection of the input unit to the hidden unit. The minimum of those values is its 
final input [8]. 

A special monotonie membership function which represents the conclusion of 
the rule is stored in each hidden unit. The crisp output value belonging to the 
minimum membership value can be easily calculated by the inverse function (thanks 
to the monotonicity of this function). This value is multiplied with the connection 
weight between the hidden unit and the output unit. The output value is then 
calculated as a weighted avarage of all rule conclusions [8]. 

The AEN tries to forecast the behavior of the system. It is a feedforward neural 
network with one hidden layer, which receives the system state as its input and an 
error signal r from the physical system as additional information [8]. The network 
output v[t, ť ] is viewed as a prediction of future reinforcement that depends of the 
weights of time t and the system state of time ť (which can be t or t+1). Better state 
have characteristically higher reinforcements. 

The weight changes are determined by a reinforcement procedure that uses 
the output of the A S N and the A E N . The ARIC architecture was applied to cart-pole 
balancing and it was shown that the system is able to solve this task [8]. 
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5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 

Adaptive Neuro Fuzzy Inference System (ANFIS) as developed by Jang et al. 
(1997) is a class of adaptive networks that are functionally equivalent to fuzzy 
inference systems (FIS), where the parameters of fuzzy inference systems are 
updated by neural networks from a set of training data. An adaptive network, as its 
name implies, is a network structure consisting of nodes and directional links through 
which the nodes are connected. Moreover, part of all of the nodes are adaptive, 
which means their outputs depend on the parameters pertaining to these nodes, and 
the learning rule specifies how these parameters should be changed to minimize 
a prescribed error measure. ANFIS enjoys many of the advantages claimed by neural 
networks (NNs) and the linguistic interpretability of fuzzy inference systems, wherein 
both NNs and FIS play active roles in an effort to reach specific goals [10], [11]. 

Thanks to its capability and because it can perform the same function, almost 
any neural network can be replaced by ANFIS. Its primary advantages are non-
linearity and structural knowledge representation. 

ANFIS consists of a self-tuning Sugeno-type inference system and calculates 
its outputs as a weighted linear combination of the consequents. The hybrid learning 
algorithm includes two stages, which are: 

• forward pass - identifies the consequent parameters with the help of FIS 
learning mechanism and least-squares estimator (LSE) 

• backward pass - propagates backward the error rates (error backpropagation) 
and updates the premise parameters by the gradient descent method 

In ANFIS, the membership functions (gaussian functions) are expected to map 
all inputs by changing their parameters. It is desired that all inputs can be mapped to 
produce the desired outputs. Unfortunately, in the case that there occur variations in 
the inputs, the desired outputs will be poorly approximated by the actual outputs 
because of limitations in finding the parameters of the fixed finite number of fuzzy 
membership functions [10]. 

The fuzzy membership function is the basic block of fuzzy logic systems and 
has many possible interpretations [10]. It can define the richness of the extracted 
information from the given data in case of highly nonlinear systems and the form of 
the membership functions can be extended to cover this richness. 

5.1 Learning algorithm of ANFIS 

The standard ANFIS uses the Sugeno-type fuzzy model to generate fuzzy 
rules from a given input-output data set. For easy understanding, let's take a simple 
version of fuzzy inference system with two inputs x, y and one output /. A rule set for 
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a typical first-order Sugeno fuzzy with two fuzzy if-then rules has the following form 
(based on [10]): 

Rule 1: If x i s Ai and y is By, then fx = p1 + q1y + r1 (5.1) 
Rule 2: If x is A? and y is 62, then f2 = p2 +q2y + r2 (5.2) 

Figure 5.1 shows the reasoning mechanism for the Sugeno model. The 
corresponding standard ANFIS architecture where nodes in the same layer have 
similar functions is shown in Figure 5.2. The important part of the presented ANFIS is 
the modification of the error correction rules of error backpropagation (EBP) by using 
a mapping function to replace the membership function in the standard ANFIS [10]. 

A? 

w1 fi=PiX+q 1y+r 1 

IV- f 2 = p 2 x + q 2 y + r 2 

^ _ W<| f 1 + W 2 + f2 
W-j + w 2 

= w i f| + w 2 f2 

Fig. 5.1 A two-input first-order Sugeno fuzzy model ([10]) 
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5.1.1 Forward pass 

The forward pass is based on the architecture presented in Figure 5.2. It uses 
two inputs and one output. For convenience, a different notation is introduces as 
shown in Figure 5.3 [10]. 

Layer 1 

i Layer 2 Layer 3 

Fig. 5.3 The forward pass (based on [10]) 

The functions of the individual layers are the following: 

Layer 1: 
This layer is the so-called fuzzification layer. The bell activation function is used as 
the membership function, which has a regular bell shape and is specified as 

\iA(x) = • 

1 + X-C; 
Ik; 

(5.3) 

The membership function has parameters {ah b\, c], i = 1, 2, 3, 4 which are 
predetermined by selecting parameter values. Each output of this node is labeled by 
a. Accordingly, the outputs are denoted by n1a, n2a, n3a, and n4a. The symbol a is 
used in order to differentiate with new symbol b (after the correction) that will be used 
later in the backward pass [10]. 

Layer 2: 
This layer is the rule layer, where fuzzy logic AND is used in the node function. The 
output of this layer can be obtained as 
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n5a = min(nla, ribd) 

n6a = mm(nla, nAa) (5.4) 

Layer 3: 
This layer is the normalization layer. Let ntot_a = n5a + n6a, then the normalization is 
given by [10] 

nla = n5a I ntot _ a 

nSa = n6a/ ntot _a (5-5) 

Layer 4: 
This layer is the deffuzification layer. By arranging the incoming signals, matrix A can 
be obtained which has the form 

A = [(nla x) (nla y) nla (nSa x) (nSa y) n8a] (5-6) 

By means of the LSE method, we obtain the consequent parameter P = [pi, q i , n, p 2, 
q2, r2] by using the following equation 

P = [ATA\1AtU (5.7) 

where U is the desired output of the controller. The consequent parameter P is then 
used to compute U and by using the following equation 

fx = Px^+Qxy + rx 

f2 = p2x + q2y + r2 (5.8) 

After that, the output of the node n9 and n10 are calculated by the equation [3] 
n9a = nla /, 

nlOa = nHa f2 (5.9) 

Layer 5: 
This layer is represented by a single summation neuron. This layer produces the 
overall ANFIS output with a simple summation of the layer input signals given by 

nl la = n9a + nlOa (5.10) 
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5.1.2 Backward pass 

After running the forward pass, we get the resulted error. Within the backward 
pass, this error is propagated back to the system by using error correction rule of the 
modified error back propagation (EBP), see Figure 5.4. 

Fig. 5.4 The backward pass ([10]) 

Symbol En defines the error between the desired output dk and the actual output. 
The sum of the squared error is given by [10] 

N(l) 
Ep="L(dp

k-x[kf (5.11) 

In our case the sum of the squared error defines the difference between the desired 
and the actual output, Ep = £u. The value xi in this layer is given by n11 and dk = 
U, then the error is defined as [10] 

e n =-2{U-n\\a) (5.12) 

Next, dn is defined as follows [10] 

dn =-en/2 = U-nlla (5.13) 

The output of the node n11 then becomes [10] 

n\\b = n\\a + dn (5.14) 

According to formula 5.10, we have 

n\\b = n9b + n\0b 
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Based on formula 5.14, we can define 

n9b = n9a + dg 

nlOb = nlOa + d 10 

then we can appoint 

10 (5.15) 

Multiplying the left side of formula 5.15 by (fi + f2)/(fi + h) leads to [10] 

= d9+d 10 (5.16) 
A+fi fi+fi 

Since n9a = n7a U and n10a = n8a h , after correction we have n9b = n7b U and 
n10b = n8b I2 • As a result, we obtain [10] 

Next, from the ntot_a of the forward pass, we write the new ntot_b as follows [10] 

where d_tot\s arbitrary and obtained from the experiment data. Suppose d_tot = 0, 
this implies ntot_b = ntot_a. Then the output nods in Layer 2 has the form [10] 

In this layer, the minimum value of input signals are selected - the logic AND 
function is applied to process the outputs of Layer 1. As in Layer 2, we already have 
n5a1 and n6b1, it is important that the outputs of this node must satisfy n5b = n5b1 
and n6b = n6b1. A simple way is to split n5b1 and n6b1 into two parts. We then add 
an arbitrary value to the one part, so that it has higher value than the other part. As a 
result, this part will not be chosen in Layer 2 [10]. After adding the arbitrary value 
which belongs to the output node in Layer 1, as a result we get the original value of 
nib, n2b, n3b and n4b. The next step is mapping all the inputs to the corrected 
output of Layer 1. The mapping function then becomes the membership function of 
the learning mechanism of the modified ANFIS. 

n9a + d9 = {nla + d1 )fx 

nlOa + d10 = (n8a + ds )f2 

ntot b = ntot a + d tot (5.17) 

n5bl = (nla + d-, )ntot _ b 

n6bl = (n8a + ds )ntot _ b (5.18) 
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6. DATA ACQUISITION 

After overviewing the basic theory of neural networks and the theory of 
backpropagation algorithm and fuzzy systems, the next step is to acquire the 
necessary data for further processing - the speech signal. 

Speech/voice recognition is a difficult task to be performed by a computer 
system [12]. Although a wide range of commercial products were launched in the last 
decade, an absolute solution has not been found out yet, and many research areas 
have still remained opened in the field. 

Speech is a sequence of waves which are transmitted through a medium and 
are characterized by some features, including characteristic frequencies and 
corresponding intensities [13]. The vibrations of sound waves are perceived by 
eardrums in the inner ear, and these oscillations are forwarded to a specific part of 
brain for further processing. 

The three deciding factors when talking about human-like perception of 
speech are loudness, pitch and quality. Loudness represents the energy (intensity) of 
the sound. The greater the amplitude is, the louder the sound appears. Pitch is 
responsible for the tone of the sound. Higher pitch issues higher tone and against, 
lower pitches lower tone. The quality of sound is a perceptual correlate of its spectral 
content related to the fundamental frequency of the vocal vibration of the speaker 
organ [13]. 

The most important factor of the recording is the clarity of the recorded signal. 
It should be as clear and noise free as possible. For this reason, the recording took 
place in a quite environment using a Tascam DR-40 portable digital recorder for the 
best possible sound quality. The recorded continuous signal was then split into 
separate words with WavePad Sound Editor software. 

Five words in three languages (English, Czech and Hungarian) were created 
for further neural network training purposes, i.e. a total of 60 words (every single 
word 4 times) and another 15 words for testing the system. Each signal has been 
converted into mono and was saved uncompressed with a bit depth of 16 bits and a 
sample rate of 44.1 kHz. The recorded words are listed in the table below. 

Language 
English Czech Hungarian 

Andrew Ondřej Andres 
apple jablko alma 

I— 

o grape hrozno szölö 
orange pomeranč narancs 
strawberry jahoda eper 

Table 6.1 List of recorded words 

28 



The next pictures show the differences between individual words with the 
same meaning in different languages. Axis X represents the time in seconds, while 
axis Y the amplitude of the signal. 

Fig. 6.1 Sound wave of the word 'strawberry' 

Fig. 6.2 Sound wave of the word 'jahoda' 
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Fig. 6.3 Sound wave of the word 'eper' 

Each spelled character has its very own composition, which can be described 
with pairs of parameters: 

• frequencies - the rate at which the sound wave passes a given point 
• amplitudes - represents the amount of energy of a given frequency in a 

sound wave 
• wavelength - distance between the crest of one wave to another 

By taking a closer look at the signals, we can easily count the number of 
syllables and one of the most important phonetic characteristic - where the word is 
emphasized (accented). While the words 'strawberry' and 'jahoda' consists of three 
syllables (straw-be-rry, ja-ho-da), the word 'eper' consists of only two syllables (e-
per). Words 'jahoda' and 'eper' reaches its maximum amplitude right at the near 
beginning, while the word 'strawberry' somewhere around the letter 'a ' . These are the 
places where the given words are emphasized. 
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7. THE REALIZATION OF THE PROGRAM 

This chapter serves to demonstrate the program built in Matlab. The program 
itself can be separated into 3 parts: ANFIS using the Matlab's Fuzzy Logic Toolbox 
fanfis'), neural network using Matlab's Neural Network Toolbox fnn') and the 
individually built neural network based on the backpropagation algorithm presented in 
Chapter 3 fnnv'). 

The main program is the script file spust.m. Its listing is included in Appendix. 
The purpose of the first part is to read the parameters of the test voice recordings. 
This program serves for probing ANFIS as well as neural networks. For the selection 
of the operation mode, the variable mode has to be set to 'anfis', 'nn' or 'nnv' by 
commenting and uncommenting the individual lines. 

mode= 'an f i s ' j 
%mode='nn'; 
%mode='nnv'; 

The data reading is implemented in the wavload function, which receives as 
input parameters the path to the directory containing training files and the number of 
output parameters. At the beginning of this script, the parallel processing toolbox is 
initialized by the command mat labpool open. The usage of this toolbox greatly 
increases the processing speed in case of the processor is multi-cored or there are 
more computers available. The next part of the code brings into effect the actual 
learning of the network. 

In the case of the mode is set to 'anfis', the parfor cycle is used for the creation 
and learning of three ANFIS networks, each for one output variable. Parfor is part of 
the parallel processing toolbox. Its iterations are run in parallel increasing the 
computing speed. Firstly, the given network has to be created. For the purpose of this 
work, the practical usage of ANFIS is heavily limited by its high demands on 
processing power for the case of higher number of inputs and second level neurons. 
The basic task of network creation takes into account all combinations of inputs and 
membership functions. In this case it means a very high number of created 
membership functions and second level neurons. Therefore, a special function was 
used for the creation of these functions and network nodes which analyses the input 
data and searches for existing clusters in it. These clusters are used for simplification 
of the input side of the network. This approach significantly increases the maximal 
number of usable inputs of the system. 

The function genf i s 2 creates a Sugeno-type FIS structure. For the creation of 
input rules, the subtractive cluster analysis method is used. This method tries to 
make use of existing patterns to simplify the input part of the network. The subtractive 
clustering initially assumes all data points as clusters. Subsequently, some clusters 
are merged together based on preset distance criterion, then the new cluster centers 
are calculated. 
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The learning itself is realized by the function anf i s that executes the learning 
algorithm individually for each network. The number of ANFIS networks equals to the 
number of output variables (columns in matrix tg t ) . It utilizes a hybrid learning 
technique, what is a combination of the least-squares estimator (LSE) method and 
the error backpropagation (EBP) algorithm. Afterwards, the network is tested for 
correctness with the same data as used for training using the function e v a l f i s . The 
result of each network is saved to the corresponding column in matrix res . For the 
case of usage of neural network, the function feedforwardnet is used, which 
creates a neural network suitable for classification tasks. The number of neurons in 
each layer is also set here. The function t r a i n trains the network for the given 
training data. 

In the case, the mode is set to 'nnv', the neural network functions created 
within the frame of Semestral Project MM2E (netinit, netlearn and neteval) are in use. 
These functions can create a simple neural network structure, and are able to train 
and evaluate it. 

Loading of audio files - wavload. m 

This function is used for audio file loading and parameter calculation (see 
Appendix). Firstly, the file names are determined in the given directory that has the 
wav extension. After that, all files are processed sequentially, as is described herein. 
At the beginning, the given file is read into a vector and is normalized to have 
maximal amplitude of 1. Subsequently, the parameters are calculated using the 
f f tparams function. The file names are prepared to contain information about the 
language of the recording. The first letter of it corresponds to the first letter of the 
used languages (i.e. 'c' means Czech, 'e' means English and the prefix 'h' is for 
Hungarian). This information is used for creating the target matrix (tgt) that is used 
for training the network. The target matrix and the matrix of FFT parameters are 
returned as return variables of the function. 
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Analysis parameters - f ftparams. m 

The signals in their raw form are not suitable as inputs to a network because 
these contain extremely large amount of information. However, parameters can be 
used instead of the original signals that describe the signal shape at an appropriate 
level. The signal is divided into a constant number of sections. In our case the 
lengths of these sections are set to approximately 50 ms (depending on the length of 
the actual signal, each one is split into 14 pieces). For each section, the spectral 
composition is calculated using the fast Fourier transformation (FFT). In each of 
these spectra, the five highest spectral components are determined. The frequencies 
and amplitudes of these components are used as the analyzed signal parameters. 
Before use, signals are filtered by a bandpass filter of boundaries 100 and 2000 Hz. 
The Fourier transformation is also smoothed to limit the influence of noise. This 
function is also listed in Appendix. Figure 7.2 displays the process. The top of the 
figure shows the portion of the signal wave, the second one is the signal after the 
Fourier transformation process and the last one illustrates the peak points of the 
transformed signal that were used as input parameters. 

0.1 

f[Hz] 

Fig. 7.2 The fast Fourier transformation (FFT) 
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Neural network creation - n e t i n i t . m 

This function creates a simple structure that contains the necessary 
information and weights of each neuron input. The weights are initialized with small 
random numbers. This structure variable is returned by the function. 

Neural network training - net l e a r n . m 

This function implements the classical backpropagation algorithm for training 
the neural network. The network coefficients are updated on each run as many times 
as the number of input-target pairs. The number of runs (training epochs) has to be 
set manually. The function returns the trained network. 

Neural network simulation - net e v a l . m 

This function calculates the output of each neuron gradually in each layer and, 
finally, the output of the whole network for the given input sets. The result is returned 
as a matrix, where the corresponding outputs are organized in rows. Each row 
corresponds to one input set. 

The following figures (Fig. 7.3 and Fig. 7.4) show the workflow of the program 
where the first four blocks represents the training, while the last three parts the 
testing/evaluation part. 
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Fig. 7.3 Flow chart of ANFIS 
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8. RUNNING THE SIMULATION 

After the program was made and its adequate functioning was tested, the next 
step is experimenting with it and fine tuning the simulation parameters for optimal 
results. A number of input values are created for every network the following way: 
each input signal is cut up into 14 pieces and 10 parameters are calculated from 
each segment for a total number of 140 input values per input file. 

8.1 The ANFIS network 

The ANFIS is a very complex structure; its implementation is extremely time-
consuming. The ANFIS network created by the Fuzzy Logic toolbox has clearly the 
same advantages over an own implementation and have the Neural Network toolbox 
over the implemented simple network. These include flexibility and wide range of 
possibilities of configuration. 

The membership function for the ANFIS network is calculated by the genf i s 2 
function. This function generates the structure of the Fuzzy Inference System from 
data using subtractive clustering. 

The subtractive clustering is a one-pass algorithm for estimating the number of 
clusters and the cluster centers through the training data. This method partitions the 
training data into groups called clusters and generates the cluster centers until the 
maximum potential value in the current iteration is equal to or less than the threshold 
5. By the end of the clustering process, a set of fuzzy rules are obtained [2]. 

8.1.1 Network parameters 

For the training and the testing process the following parameters were set 
within the ANFIS network: 

Number of layers: 
Output function of the neuron: 
Training function: 

Number of epochs: 
Threshold: 

Number of outputs: 

see Chapter 7 
combination of the least-squares method and the 
backpropagation gradient descent 
3 
the biggest output of the three networks indicates 
the recognized language 
1 for each network (for a total amount of 3) 

The training is done by the function anf i s while the testing is done by e v a l f i s . 

8.1.2 Simulation results 

A total number of 5 simulations were run to determine approximately the 
average error. The result of the program is very stable, which means that just slight 
differences can be seen in the simulation results (if any). Average time of simulation 
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is around 450 seconds. The memory demand is very high. The simulation needs 
approximately 6 G B of RAM to run „smoothly". The simulation result of the ANFIS 
network is shown in Figure 8.1. 

Fig. 8.1 Example of the simulation results in ANFIS 

The next table shows the actual meaning assigned to numbers. This table is valid for 
every single figure with simulation results hereafter. 
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6 Andrew 
5 pomeranč 
4 Ondřej 
3 jahoda 
2 jablko 
1 hrozno 

Table 8.1 List of the test words 
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The average simulation results for ANFIS network are listed in Table 8.2. Each 
row contains three outputs of the neural network. These values can be considered as 
an approximate "probability". Since their sum can be different than one, they cannot 
represent real probabilities. 

Czech Hungarian English 
hrozno 0.9835 0.0000 0.0000 
jablko 1.1189 0.0000 0.0000 

jahoda 1.0003 0.0000 0.0000 

Ondřej 0.5000 0.5000 0.5000 

pomeranč 0.8924 0.0000 0.0000 
Andrew 0.0000 0.0000 0.8268 

apple 0.0000 0.0093 0.9459 

grape 0.0000 0.0000 1.0149 
orange 0.0000 0.0000 1.0405 

strawberry 0.5000 0.5000 0.5000 

alma 0.0000 0.9523 0.0000 

András 0.0000 0.8743 0.0000 
eper 0.0000 1.2376 0.0000 

narancs 0.0000 1.0792 0.0000 

szolo 0.0000 1.1724 0.0000 

Table 8.2 The results of the simulation of ANFIS in numbers 

As the table shows, the network is unable to decide the language of two words. 
These words are "Ondrej" and the word "strawberry" (both 0.5000). The most 
precisely allocated word is "eper" (1.2376) while the least precisely allocated word is 
"Andrew" (0.8268). 

8.2 The'NN'network 

This section was created using the Matlab's Neural Network Toolbox by the 
following commands: 

nnet = feedforwardnet ( [10 10 8 8 ] ) j 
nnet = con f i gu re (nne t , i n p ' , t g f ) ; 

The input parameter of the feed forward net function determines the number of 
neurons in each hidden layer and implicitly the number of hidden layers. The 
con f igu re function sets the network input and output sizes and ranges and 
initializes the weights. 
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8.2.1 Network parameters 

For the training and the testing process the following parameters were set within the 
NN network: 

Number of layers: 
Output function of the neuron: 
Training function: 
Number of epochs: 

Threshold: 

Number of outputs: 

hyperbolic tangent sigmoid transfer function 
Levenberg-Marquardt 
50, however, the training might be finished by 
additional criteria 
the biggest output of the network corresponds to 
the recognized language 
3 

As soon as one of the progress bars (each representing a criterion) reaches its 
maximum, the training stops. 

8.2.2 Simulation results 

A total number of 5 simulations were run to determine the average error. The 
result of this method is very unstable, which means that the simulation results vary 
unacceptably by each simulation. Average time of simulation is approximately 10 
seconds. A better result of the simulations is illustrated in Figure 8.2. 
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Fig. 8.2 Example of the simulation results in 'NN' 
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The average of the 5 simulation results for 'NN' network is listed in Table 8.3. 

Czech Hungarian English 
hrozno 0,8197 0,1170 0,0779 

jablko 1,0296 0,0012 0,0136 

jahoda 0,9488 0,0305 0,0456 
Ondřej 0,9730 0,0150 0,0541 

pomeranč 0,6045 0,3666 0,0588 

Andrew 0,0088 0,1829 0,8350 

apple 0,0935 0,1437 0,7977 
grape 0,1073 0,1172 0,7927 

orange 0,0508 0,0757 0,9078 
strawberry 0,2427 0,3560 0,4233 

alma 0,0105 0,9734 0,0116 

András 0,2058 0,7902 0,0202 

eper 0,0618 0,8912 0,1093 

narancs 0,0771 0,7836 0,1383 
szolo 0,1062 0,7893 0,1357 

Table 8.3 The results of the simulation of 'NN' in numbers 

As the table shows, the network is able to recognize the language of all words, 
however, it cannot allocate the words as precisely as the above presented ANFIS 
network. The most precisely allocated word is "jablko" (1.0296) which has almost 
zero chance to be determined as a Hungarian word (0,0012), while the least 
precisely allocated word this time is "strawberry" (0.4233). 

8.3 The'NNV network 

This section was created using the mentioned algorithms in Chapter 3. 

8.3.1 Network parameters 

For the training and the testing process the following parameters were set within the 
NNV network: 

Number of layers: 
Output function of the neuron: 
Training function: 
Number of epochs: 
Threshold: 

Number of outputs: 

sigmoid function 
error backpropagation 
2000 
the biggest output of the three networks indicates 
the recognized language 
3 
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The training was done by the function ne t l ea rn while the testing is done by 
ne teva l . 

8.3.2 Simulation results 

A total number of 5 simulations were run to allocate the average error rate. 
The result of the program is mostly stable. The average time of simulation is 
approximately 30 seconds. The simulation results of the 'NNV network are shown in 
Figure 8.3. 
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Fig. 8.3 Example of the simulation results in 'NNV 

The average simulation results for 'NN' network are listed in Table 8.4. 
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Czech Hungarian English 
hrozno 0,9798 0,0174 0,0085 
jablko 0,9916 0,0064 0,0072 
jahoda 0,9885 0,0136 0,0047 
Ondřej 0,9869 0,0043 0,0157 

pomeranč 0,9777 0,0090 0,0123 
Andrew 0,0078 0,0069 0,9914 

apple 0,0224 0,0860 0,7960 
grape 0,0052 0,0180 0,9846 
orange 0,0120 0,0171 0,9711 

strawberry 0,0553 0,3941 0,1727 
alma 0,0235 0,9682 0,0230 

András 0,0044 0,9709 0,0246 
eper 0,5571 0,8879 0,0003 

narancs 0,0025 0,9967 0,0044 
szolo 0,0049 0,9921 0,0049 

Table 8.4 The results of the simulation of 'NNV in numbers 

As the table shows, the network is able to recognize the language of all words except 
the word "strawberry", which is identified as a Hungarian word. The most precisely 
recognized word is "narancs" (0.9967) while the least precise result had the already 
mentioned "strawberry" (0.1727). The word "eper" has the smallest possibility to be 
identified as an English word (0,0003). 
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9. CONCLUSION 

Within the scope of this master's thesis, I tried to give a deep insight into the 
function of neural networks, starting with the base of the whole concept - real 
neurons. The first half of this paper describes the structure and the operation of real 
and artificial neurons including the description of the learning process and the 
manner and topology of their interconnections. The backpropagation algorithm is also 
described which is one of the basic types of neural network training. A detailed 
insight is given into fuzzy systems and fuzzy neural networks including the main 
advantages and disadvantages of fuzzy systems and the properties of both systems 
and clearly describes the problems which can be solved by combining these two 
techniques. The model of Fuzzy Neural Network and Barenji's ARIC (Approximate 
Reasoning Based Intelligent Control) architecture is also presented. 

After introducing the Fuzzy Systems and Fuzzy Neural Networks, the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) was presented which effectively combines 
both neural networks and fuzzy logic reasoning in order to achieve the best possible 
results. This type of network can be exceptionally suitable for the language 
recognition task too. 

A prerequisite of network training is to acquire training data. In our case these 
were recordings of individual words. Five different words in three languages (English, 
Czech and Hungarian) were recorded for further network training and testing 
purposes for a total of 15 acquired words. For the training method, 60 words were 
used (every single word 4 times) and another 15 words for testing the system. In the 
framework of Matlab, a language recognition software was built, which has three 
separate network that can be used - the ANFIS network and a neural network based 
on toolbox functions and an own implementation of neural network trained by the 
backpropagation algorithm. Each network was fine-tuned for optimal functionality. 

The goal of the work was to train the networks with the training words to gain 
the ability of recognizing the language of the words and, subsequently, test these 
trained networks. Each network was able to recognize all the languages. The best 
results were obtained using the ANFIS network. This network uses a hybrid learning 
algorithm, an effective combination of neural networks and fuzzy inference system 
while the other two networks are simple neural networks without the benefits of fuzzy 
logic reasoning. The ANFIS network was not able to decide two words; nevertheless, 
the recognition results of other words were superior to these ones. The ANFIS 
network has especially high demands on processing power and memory size. 

The second network ('NN') produced very unsteady results. It was able to 
recognize all languages, however, the results have to be selected and averaged to 
achieve good recognition. The results of recognition were not as clear as in the other 
cases. On the other side, this method was the less time-consuming. 

The third network was a custom-built neural network ('NNV') which utilized the 
error backpropagation learning algorithm. The network is able to decide the language 
of all words except of one. On the other hand it produces fairly good results 
comparable to ANFIS. 
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A MATLAB PROGRAMS 

A. 1 spust.m 

c l e a r ; c l c ; 
i f ( m a t l a b p o o l ( ' s i z e ' ) = = 0 ) 

m a t l a b p o o l open; 
end; 

n u m _ a n f i s _ i n p u t s = 1 4 0; 

mode='anfis'; 
%mode= 1nn' ; A 

%mode='nnv'; 

t i c ; 
f p r i n t f ( ' L o a d t r a i n d a t a . . . \ n ' ) ; 

t r a i n d i r = ' t r a i n l ' ; % n a c i t a t r e n i n g o v e v z o r k y do t r a i n d i r 

[ i n p , t g t ] = w a v l o a d ( t r a i n d i r , n u m _ a n f i s _ i n p u t s ) ; 

%% t r a i n 
f p r i n t f ( ' T r a i n . . . \ n ' ) ; 
s w i t c h mode 

case ' a n f i s ' 
epoch_n = 3; 
p a r f o r i = l : s i z e ( t g t , 2) 

f p r i n t f ( ' % d . . . \ n ' , i ) ; 
i n _ f i s ( i ) = g e n f i s 2 ( i n p , t g t ( : , i ) , .20) ; 
% i n _ f i s ( i ) = g e n f i s 2 ( i n p , t g t ( : , i ) , .3) ; 
o u t _ f i s ( i ) = a n f i s ( [ i n p 

t g t ( : , i ) ] , i n _ f i s ( i ) , e p o c h _ n , z e r o s ( 1 , 4 ) ) ; 
r e s ( : , i ) = e v a l f i s ( i n p , o u t _ f i s ( i ) ) ; 

end 
case 'nn' 

nnet = f e e d f o r w a r d n e t ( [ 1 0 10 8 8 ] ) ; 
nnet = c o n f i g u r e ( n n e t , i n p ' , t g t ' ) ; 
n n e t . t r a i n P a r a m . e p o c h s = 50; 
n n e t . t r a i n P a r a m . g o a l = 0.0005; 
n n e t . t r a i n P a r a m . m i n _ g r a d = l e - 1 0 ; 
n n e t . t r a i n P a r a m . m a x _ f a i l = 1 0 ; 
nnet = t r a i n ( n n e t , i n p ' , t g t ' ) ; 
r e s = s i m ( n n e t , i n p ' ) ' ; 

case 'nnv' 
nnet = n e t i n i t ( s i z e ( i n p , 2) , s i z e ( t g t , 2 ) ) ; 
nnet = n e t l e a r n ( n n e t , i n p , t g t , 2000); 
r e s = n e t e v a l ( n n e t , i n p ) ; 

end 
%% t e s t d a t a 

f p r i n t f ( ' E v a l . t e s t d a t a . . . \ n ' ) ; 

t e s t d i r = ' t e s t l ' ; % n a c i t a t r e n i n g o v e v z o r k y do t r a i n d i r 

[ t i n p , t t g t ] = w a v l o a d ( t e s t d i r , n u m _ a n f i s _ i n p u t s ) ; 
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s w i t c h mode 
case ' a n f i s ' 

w a r n i n g ( ' o f f ' , ' F u z z y : e v a l f i s : I n p u t O u t O f R a n g e ' ) ; 
t r e s = [ ] ; 
f o r i = l : s i z e ( t g t , 2 ) 

f p r i n t f C %d. . . \ n ' , i ) ; 
t r e s ( : , i ) = e v a l f i s ( t i n p , o u t _ f i s ( i ) ) ; 

end 
case 'nn' 

t r e s = s i m ( n n e t ' , t i n p ' ) ' ; 
case 'nnv' 

t r e s = n e t e v a l ( n n e t , t i n p ) ; 
end 

f i g u r e ( 1 ) ; 
colormap(summer) ; 
t r e s ( t r e s < 0 ) = 0 ; 
b a r h ( t r e s . / ( s u m ( t r e s , 2 ) * [ 1 1 1 ] ) , ' s t a c k e d ' , ' D i s p l a y N a m e ' , ' t r e s r a t i o s ' ) ; 
x l i m ( [ 0 1 ] ) ; 
l e g e n d ( ' c z e c h ' , ' h u n g a r i a n ' , ' e n g l i s h ' ) ; 
Q. Q. 
O O 

t o e ; 
f p r i n t f ( ' E n d . \ n ' ) ; 

A.2 wavload.m 

f u n c t i o n [ i n p , t g t ] = wavload( t r a i n d i r , n u m _ a n f i s _ i n p u t _ p a r a m s ) 
% l o a d wavs from a d i r and c o n v e r t t o p arameters 
% D e t a i l e d e x p l a n a t i o n goes here 

f i l e s = d i r ( [ t r a i n d i r '\*.wav']); 

i n p = [ ] ; % v s t u p n i s i g n a l y v r a d c i c h 
t g t = [ ] ; % n a s t a v i j a z y k y (podle predpony 'c,h,e') - t a r g e t 
f o r i = l : l e n g t h ( f i l e s ) % n a c i t a kazdy soubor 

[ i n p _ t m p , F s ] = w a v r e a d ( [ t r a i n d i r '\' f i l e s ( i ) . n a m e ] ) ; 

inp_tmp = inp_tmp ./ max(max(abs(inp_tmp))) ; 
% i n p = [ i n p ; i n p _ t m p ( r o u n d ( l i n s p a c e ( 1 , l e n g t h ( i n p _ t m p ) , 

n u m _ a n f i s _ i n p u t _ p a r a m s ) ) , 1) ' ] ; % v y b i r a 100 p r v e k z p r v n i h o s l o u p c e / v l o z i 
do r a d k u 

i n p = [ i n p ; f f t p a r a m s ( inp_tmp, 14, Fs ) ]; 

l a n g = f i l e s ( i ) . n a m e ( 1 ) ; 
i f ( l a n g == 'c') 

t g t = [ t g t ; 1 0 0 ] ; 
e l s e i f ( l a n g == 'h') 

t g t = [ t g t ; 0 1 0 ] ; 
e l s e i f ( l a n g == 'e') 

t g t = [ t g t ; 0 0 1 ] ; 
e l s e 

t g t = [ t g t ; 0 0 0 ] ; 
end 

end 
end 
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A.3 fftparams.m 

f u n c t i o n [ params ] = f f t p a r a m s ( s a , n s e c s , Fs ) 
% f f t p a r a m e t e r s , s a : i n p u t s i g n a l , t s e c : s e c t i o n i n g t i m e , 
% D e t a i l e d e x p l a n a t i o n goes here 
params=[] ; 

b a n d p a s s f i l t e r _ s t r u c t =... 
d e s i g n ( f d e s i g n . b a n d p a s s ( ' n , f 3 d B l , f 3 d B 2 ' , 8 , 1 0 0 , 2 0 0 0 , F s ) , ' b u t t e r ' ) ; 

f f t f i l t e r = [ . 2 5 .5 .25]; 
fmax=3000; 

sa= f i l t e r ( b a n d p a s s f i l t e r _ s t r u c t , sa) ; 

s a l e n = l e n g t h ( s a ) ; 
s l e n = f l o o r ( s a l e n / n s e c s ) ; 

f o r i = 0 : n s e c s - l 

sbgn = i * s l e n + l ; 
send = ( i + l ) * s l e n ; 
s = sa(sbgn:send) ; 

f = 0 : F s / ( l e n g t h (s)-1) : fmax; 
s f f t = a b s ( f f t ( s ) ) ; 
f s f f t = f i l t e r ( f f t f i l t e r , 1 , s f f t ) ; 

[pks, I o c s ] = f i n d p e a k s ( f s f f t ( 1 : l e n g t h ( f ) ) , 'SORTSTR', 
'descend', ' m i n p e a k d i s t a n c e ' , 3) ; 

t r y 
I o c s = I o c s ( 1 : 5 ) ; 
pks = p k s ( 1 : 5 ) ; 

c a t c h 
I o c s = [ 0 0 0 0 0 ] ; 
pks = [ 0 0 0 0 0 ] ; 

end 

params = [params r e s h a p e ( [ I o c s ; p k s ] , 1 , [ ] ) ]; 
%params = [params I o c s ' ] ; 

end 
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A.4 netinit.m 

f u n c t i o n [ network ] = n e t i n i t ( i n p u t s , o u t p u t s ) % v s t u p y , výstupy 

%k r o k 0 

n = s t r u c t ; % s t r u k t u r a , o b s a h uje c e l o u s i t 

n.numin=inputs; 
n.numout=outputs; 
n.numz=inputs; 

n.v=(rand(n.numin,n.numz)-0.5)/1000; 
n.w=(rand(n.numz,n.numout)-0.5)/1000; 

n.vO = (rand(n.numz,1)-0.5)/1000; 
n.wO = (rand(n.numout,1)-0.5)/1000; 

n . a l f a = 0.0001; 

network=n; 

end 

A.5 netlearn.m 

f u n c t i o n [ onet ] = n e t l e a r n ( n e t , i n p u t , t a r g e t , runs ) 

% i n p u t - v s t u p n i signály ve r a d c i c h 

f = @(x) s i g m f ( x , [10 . 5 ] ) ; % s i g m o i d f u n k c e 
f a = @(x) ( f ( x ) - f ( x - 0 . 0 0 1 ) ) / 0 . 0 0 1 ; % d e r i v a c e f u n k c i s i g m o i d 

% k r o k 1 
w h i l e (1) 

%k r o k 2 
f o r i = 1 : s i z e ( i n p u t , 1 ) 

% k r o k 3 
x = i n p u t ( i , :) ' ; 
t = t a r g e t ( i , : ) ' ; 

% k r o k 4 
z _ i n = n e t . v ' * x + net.vO; 
z = f ( z _ i n ) ; 

% k r o k 5 
y _ i n = net.wO + net.w'*z; 
y = f ( y _ i n ) ; 

% k r o k 6 
d e l t a = ( t - y ) . * f a ( y _ i n ) ; 
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d e l t a w = n e t . a l f a . * ( z * d e l t a ' ) ; 
deltawO = n e t . a l f a . * d e l t a ; 

%krok7 
d e l t a _ i n = n e t . w * d e l t a ; 
d e l t a = d e l t a _ i n . * f a ( z _ i n ) ; 
d e l t a v = n e t . a l f a . * ( x * d e l t a ' ) ; 
d e l t a v O = n e t . a l f a . * d e l t a ; 

%krok8 
net.w = net.w + d e l t a w ; 
n e t . v = n e t . v + d e l t a v ; 
net.wO = net.wO + deltawO; 
net.vO = net.vO + d e l t a v O ; 

end 
r u n s = r u n s - l ; 
i f (runs<=0) 

break; 
end 

end 

onet=net; 
end 

A.6 neteval.m 

f u n c t i o n [ out ] = n e t e v a l ( n e t w o r k , i n p u t ) 

% i n p u t - v s t u p n i signály ve r a d c i c h 

f = @(x) s i g m f ( x , [10 .5]) ; 
f a = @(x) ( f ( x ) - f ( x - 0 . 0 0 1 ) ) / 0 . 0 0 1 ; 

out= [ ]; 
% k r o k 2 
f o r i = 1 : s i z e ( i n p u t , 1 ) 

% k r o k 3 
x = i n p u t ( i , : ) ' ; 

% k r o k 4 
z _ i n = network.v'*x + network.vO; 
z = f ( z _ i n ) ; 

% k r o k 5 
y _ i n = network.wO + network.w'*z; 
y = f ( y _ i n ) ; 

out = [out; y ' ] ; 
end 
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