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Abstrakt 
Vestavěné systémy se staly nepostradatelnými pro náš každodenní život. Jsou to obvykle 
úzce zaměřená, vysoce optimalizovaná, jednoúčelová zařízení. Jádro vestavěných zařízení 
obvykle tvoří jeden nebo více aplikačně specifických instrukčních procesorů. Tato diser­
tační práce se zaměřuje na problematiku testování nástrojů pro návrh aplikačně specifických 
procesorů a následně i samotných aplikačne specifických procesorů. Snahou bylo vytvořit 
systém, ve kterém bude možné otestovat jednotlivé nástroje, jako například překladač, as­
sembler, disassembler, debugger. Nicméně vyvstává také potřeba provádět složitější testy, 
například integrační, které zaručí, že mezi jednotlivými nástroji nevzniká nekompatibilita. 
Autor vytvořil s podporou průběžně integračního serveru prostředí, které napomáhá odhalování 
a odstraňování chyb při návrhu aplikačně specifických procesorů a které je navíc do značné 
míry automatizované. 

Abstract 
Embedded systems have become essential for our everyday lives. They are usually highly 
specialized and optimized single purpose devices. The cores of these devices are usually 
composed of one or more application specific instruction-set processors. This dissertation 
thesis focuses on testing of tools for design of application specific instruction set processors 
(ASIP) and ASIPs themselves. The aim is to create a system which allows testing of tools, 
such as a compiler, an assembler, a disassembler or a debugger. Nevertheless, there is 
also need for more complex tests, for example, integration tests which ensure there is no 
incompatibility between the tools. The author created, with the support of a continuous 
integration server, an environment that helps to reveal and fix errors during the design 
of application specific processors and, moreover, this environment is automatized up to a 
certain point. 
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Chapter 1 

Introduction 

1 . 1 Motivation 

This thesis is going to deal with the area of hardware software codesign and will mainly 
focus on testing and stability of such tools. Every piece of software contains errors and tools 
for hardware software codesign are not an exception. It is a well-known fact that the later 
the error is discovered in the software, the more expensive the process of fixing it is. This 
fact is shown in Fig. 1.1. 

Costs 

Development Unit Tests QA Testing Production 

Figure 1.1: The cost of a bug at various stages of development, source Dark Views [101] 

In order to uncover bugs in the early stages of development, tools have to be tested. 
Usually the better the coverage of the environment, the more bugs are triggered and can be 
fixed. To uncover the bugs, quality assurance teams and teams that focus on development 
of internal tools put a lot of effort into the design of new testing approaches. Nowadays, the 
majority of testing is performed automatically by advanced continuous integration systems 
(CI systems). However, there are still testing scenarios that cannot be automatically tested. 
The human element cannot be omitted in the process of testing. 

Closely related to the problems of testing are the problems of releases and release cycles. 
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Because automatic testing can be triggered only once a build is finished. Nevertheless, there 
can be unit tests which, for example, can be triggered during the build itself. 

It is quite expectable that the pressure for a short time to launch a product on the 
market is increasing. This also means that the time for the build and automatic tests must 
be kept short in order to give a developer more time for design and implementation and 
to keep the time needed for testing as short as possible. This trend has been confirmed by 
a study carried out at Sauce Labs [56]. The results are presented in the form of a white 
paper, which brings to light several interesting facts. Fig. 1.2 shows the frequency of build 
deployment. 
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Figure 1.2: Frequency of build deployment, source Sauce Labs [56] 

Only 10% of users are able to deploy the build hourly, but nearly 20% of them would like 
to deploy as often as hourly. The majority of users, nearly 35%, are able to deploy the build 
daily. Nevertheless, the percentage of people who would like to deploy it is nearly 40%. 
This proves that the need for a fast building system in the development cycle is crucial. CI 
systems play a very important part in the build automation and speeding up of the whole 
delivery process. 

Closely related to the speed of the delivery process is the testing automation. Because, 
in cases when a developer has to wait for a long time for a build creation, it is usually 
faster to do the testing by hand, especially in cases where the testing scenario is not long 
or difficult. Some unit tests usually fall into this category. 

A testing system, especially one for a complicated integrated development environment, 
such as a tool for hardware software codesign [24], must be capable of testing the separated 
parts, but also must be able to perform integration tests. In the last few years, an enormous 
amount of effort was invested into the testing environments. A l l the main development 
languages have advanced testing frameworks. To mention some of the biggest ones, I should 
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name Selenium [88], Arquilianfll], Cucumber[21] and Autotest[13]. 
However, according to Sauce Labs, the majority of testing still has to be performed 

manually, or with a small amount of automation as is demonstrated in the following Fig. 1.3. 
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Figure 1.3: The portion of automated testing, source Sauce Labs [56] 

There is a pending question of what lies behind such a small percentage of fully auto­
mated and mostly automated testing. Because only 26% of automated testing in total is 
definitely not an encouraging number. One of the reasons can also be the time pressure. 

1 . 2 Problem statement 

The current extremely competitive market of electronics of all kinds is very sensitive to the 
time it takes to introduce new products. Errors in design and implementation of a product, 
not only increase the cost of the final solution, but also cause delays that, in the end, mean 
a financial loss. 

This drives the demand for fast and efficient testing systems. These testing systems 
must tackle several challenges: 

• to provide a high level of automation of the testing procedure, 

• to restrict the time needed to discover an error, this includes a fast rebuild of all tools 
that are needed for testing, 

• to clearly identify an error and provide adequate information about the error, 

• to define clear metrics to measure the progress of the testing process. 

There are various types of errors. The types of errors that are usually discovered in 
the tools are logic and functional errors. Very often the developer misses a declaration or 
wrongly spells a name. Fortunately, this kind of error can be easily discovered. Also it 
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is very simple to define the metrics for a successful build. The first two points are more 
challenging. 

1 . 3 Tools for hardware software codesign 

This thesis is going to discuss the area of testing hardware software codesign [25]. The 
hardware software codesign deals with the design of new embedded systems. Such a kind 
of systems can be found in a wide variety of devices, such as network routers or printers. 

Embedded systems consist of one or more application specific processors (ASIPs). Each 
processor usually takes care of a single specific task and is, therefore, highly optimized for 
this task. The optimization is also the main difference from general purpose processors, 
such as the x86 family, which have to take care of various tasks. 

The production of ASIPs in 2015 formed over 98% of the overall processor production. 
Therefore, this area is extremely important. Technology used for the creation of any ASIP 
is called System on the Chip (SoC) [87]. Such a technology allows integration of several 
ASIPs on one chip together with peripherals, such as memories, busses and others. 

The development of current ASIPs must be done in a very short period of time [99]. In 
order to do so, it is common to use tools for the hardware software codesign. A hardware 
description language (HDL) is allways in the core of such tools. The development is done in 
a modern integrated development environment (IDE) that allows the designer to generate all 
the necessary tools, such as a compiler, an assembler or a simulator [83]. Then it is common 
that the application can be compiled in the same environment and simulated. These tools 
enable the Electronic Design Automation (EDA) and sometimes are also called the E D A 
tools [102]. Into the category of E D A tools falls, for example, the Processor Designer [97]. 

This kind of development environment shortens the development time significantly. How­
ever, each piece of software contains errors, and environments for the hardware software 
codesign are not an exception. Some of the tools are more error prone than others. From 
my point of view, the most critical is the compiler. Because if there is an error in the com­
piler, the compiled program might not work properly. Nevertheless, there are other parts, 
mainly the SDK tools, which are also critical. 

1 . 4 Testing of tools for hardware software codesign 

Each part of software needs to be tested. In the case of such a complex tool as the hardware 
software codesing environment, the testing techniques should be very advanced and ensure 
thorough tests of separate components as well as integration tests. In this thesis I will focus 
mainly on testing of the toolchain and particularly on tests of the compiler, as the compiler 
plays a key role in programming of an ASIP. 

Because the compiler is partly generated, I will also look at the process of generation. 
Errors that may occur during the generation process may in certain cases also affect the 
quality of the compiler and its backend. 

The compiler is also used from various environments. Therefore, integration tests are also 
needed to ensure that the compiler will work correctly and independently of the environment 
from which it was triggered. Also the compiler plays an important role in other areas, such 
as verification or during the tuning of the design and so on. Overall it can be said that the 
role of the compiler is unique during the development of an ASIP. If we take into account 
these wider consequences, it can lead to a higher stability of the compiler. 
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1 . 5 The structure of the thesis 

The thesis is divided into nine chapters. The chapters are organized in the following way. 
The second chapter is called State of art and gives an overview of architecture description 

languages, as they are used for the description of the core, and from this description the 
tools are generated. It also describes retargetable compilers, together with the testsuites 
and generators that are used for compiler testing. The continuous integration systems are 
also part of this chapter. 

The third chapter describes the Lissom project. It is targeted at the description of the 
toolchain, the software development kit (SDK), the way it is generated from the description 
in the A D L . 

Chapter four bears the name Goals of the thesis and there are outlined the results I would 
like to achieve in the thesis. The following four chapters are dedicated to the solution. 

The fifth chapter is devoted to the porting of the library. It describes the role of the 
library in the toolchain, the process of porting and also automation of the porting process. 

The sixth chapter discusses the problems connected to the scheme of test selection. 
As I use tests from a large number of sources, I need to deploy an efficient test selection 
mechanism. In the chapter I describe such a method and also the way how to automatically 
generate files that take care of test selection. 

Chapter seven focuses on the area of testing via a continuous integration server and also 
acceleration of such testing. This chapter introduces an improvement in the flow of testing 
jobs that brings significant time and space savings. 

Chapter number eight is the last of the sections that are focused on the solution of testing 
problems. It deals with problems connected to the generation of testing jobs, describes the 
design and implementation of the generator of the jobs. 

Chapter nine concludes the thesis. It gives the summary of the results, describes the 
utilization in the industry, the advantages and disadvantages of the chosen solution. At the 
very end of the thesis, the future work is also discussed. 
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Chapter 2 

State of art 

Nowadays, demands for applications are very high. For example, network routers have to 
process a very high number of packets every second. General purpose processors (GPP) 
cannot handle such demands. Moreover, there are often restrictions regarding the area that 
can be occupied and power consumption is also usually limited. GPPs cannot meet such 
restrictions. 

2 . 1 Application specific instruction set processors 

However, there is a group of processors that can meet such demands. Application specific 
instruction set processors are designed especially for these purposes. These processors are 
optimized for one specific task, so they can perform it faster, consume less energy and cover 
a smaller area. The cost of this is the inability to perform general tasks. Such systems are 
used, for example, in hand held devices. Such devices are issued every year. Therefore, 
there is a strong need for the ASIPs to be designed easily so that the time to market it is 
very short. However, this pressure results in shortening of the design time, as well as the 
testing phase. One of the goals of this thesis is to design a new approach to the testing of 
the tools that are used for the design of new ASIPs as well as testing of the tools that are 
used for programming of ASIPs. 

2.2 Application specific instruction set processors design tools 

There are two basic approaches to the deployment of a new core in embedded systems. 
Either it is possible to try to customize an existing design, so the designer uses the existing 
core and adds some accelerators to reach the desired performance or they try to develop 
their own solution. The second attitude has been more and more common in recent years, 
as the usage of the existing core is often subject to a charge. Modern complex integrated 
development environments are usually used for the development of a core from scratch. 
A n architecture description language is very often in the core of such IDE. Some of the 
environments offer design tools together with verification, such as the product from Ca­
dence. The ASIP designer from Synopsys is more focused on the architecture and toolchain 
development, but offers a hardware generator and verification as well. 
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2.3 Description languages 

Description languages are closely related to the ASIP design. As some of the tools that are 
going to be tested will be generated from the description in the languages, it is necessary to 
have at least basic knowledge of them. There are two basic approaches to the description 
of the ASIP. One has a lower level of abstraction and the other one higher. 

2.3.1 Hardware description languages 

The first category are the hardware description languages (HDL). Languages such as VHDL[100] ; 

[12] or Verilog [33] can be put into this group. These languages have the capability to de­
scribe the processor, but on a very low level (the abstraction is very low). This set of 
languages requires the designer to have deep knowledge of the given area and to go to the 
very details of the design. Changes in the later stages of the design are very time consuming 
and the development also takes a lot of time. Moreover, these languages are suitable only 
for description of the hardware. These languages do not contain information for generation 
of an assembler or a compiler. Partly because of this drawback, another family of languages 
appeared and it is becoming very popular. 

2.3.2 Architecture description languages 

This group is called the Architecture Description Languages (ADLs) [78]. The A D L s use 
a higher level of abstraction and so they allow faster modification of the microarchitecture 
at all stages of the development. From a description in the A D L , the majority of tools can 
be generated. The A D L s do not usually contain such details as the H D L . There are two 
basic approaches to this problem. Either the details are computed automatically or the 
A D L s have constructions for a higher level of abstraction[82]. The Architecture Description 
Languages can be divided into three categories. 

1. ADLs focused on processor architecture - This type of description languages usually 
offers a lower level of abstraction. This is caused by the fact that we need to de­
scribe various characteristics of a wide range of processors. A processor is typically 
represented as a set of functional units. A hardware description can be very easily 
generated from a description in this kind of languages. The problem in this case is with 
the instruction set representation. The information about it is not explicitly contained 
in the description. So the tools needed for the programming of the processor, such as 
an assembler or a compiler, cannot be automatically generated. Into this category fall 
languages, such as M I M O L A or M E S C A L [69]. 

2. ADLs focused on instruction set - This family of languages is mainly focused on the 
description of the instruction set. It usually has a higher level of abstraction as we 
describe the instructions. The processor microarchitecture is not described at all. 
This means that the hardware description cannot be generated from such languages. 
Therefore, a designer chooses such languages in the case when he or she targets the 
software development. To mention just some of them, we can name n M L [75], ISDL or 
CSDL[37]. For example, n M L has very nice formalism for the instruction set design. 

3. Mixed ADLs - The category of mixed architecture description languages is a mix 
of the two previous categories. This group of languages allows a description of the 
instruction set as well as a description of the microarchitecture. The description of the 
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microarchitecture is usually optional. The design typically starts by the description of 
the instruction set and later on, once the design is stable enough, the microarchitecture 
is described. If a model contains both descriptions, it is possible to generate the 
programming toolchain as well as the hardware representation. The representatives 
of these languages are, for example, R A D L [92], EXPRESSION[42], LISA [44], ISAC 
[70] or CodAL [19]. 

2.4 Retargetable compilers 

In this section, I will have a closer look at compilers, as the testing of compilers is going to 
play a substantial role in my thesis. First, I should explain what a compiler is. The compiler 
is a tool that takes a program in one language, in my case in a higher programming language 
such as C, and transforms it into another language, such as the machine code. There is a 
special class of compilers that are called retargetable compilers. The retarget ability means 
that the compiler is able to generate from the source language code the target code for more 
than one target architecture. The compiler possesses this ability when it is able to do so 
either without modifications or only with slight modifications. 

According to the [60], a compiler can be classified as one of the following: 

1. parametrizable compiler - in this case the machine description consists only of numer­
ical parameters and subtarget settings, 

2. user-retargetable compiler - in this case the external machine description is given in 
a dedicated language, which contains retargeting information, the specification does 
not require in-depth compiler knowledge, 

3. developer-retargetable compiler - in this case the target architecture description is also 
mostly in external files, but its specification requires extensive compiler expertise. 

Compilers of the first category, parametrizable compilers, usually enable the user to 
choose between subtargets, such as various descriptions of the instruction set of a single 
processor. 

The second category, user-retargetable compilers, are those generated from the A D L . 
A generated compiler falls into this category. The compiler generator is able to parse the 
description in the A D L , usually after some preprocessing, and with minimal user interaction 
generate the desired compiler that is able to produce the code for given target architecture. 

The last category are the developer-retargetable compilers. These compilers are the most 
common ones. The Low Level Vitual Machine (LLVM) and the GNU Compiler Collection 
(GCC) belong into this category. Although most compilers fall into this category, compilers 
are delivered by a third party, because the modifications that are required for changing the 
target are massive and, in most cases, the end user is not able to make them. 

I am interested only in C / C + + compilers as it is still the most popular programming 
language for embedded systems. The G C C and the L L V M are definitely amongst widely 
used compilers. I will also have a look at other compilers that are available as open source 
projects and also at the commercial ones. A l l modern compilers have a common scheme of 
processing the code. The scheme is shown in Fig. 2.1. 

As is apparent from figure 2.1, only the backend is platform dependent. The rest of 
the compiler deals either with the source code or with the internal representation of the 
program that are both independent from the target platform. This means that if the user 
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Figure 2.1: Scheme of a compiler 

wants to create or modify the retargetable compiler, it is necessary to focus mainly on the 
compiler backend. 

2.4.1 L L V M 

First, let us have a look at the Low Level Virtual Machine, known as the L L V M [65]. The 
automatically generated compilers I am going to test will be based on this project, so I 
will describe it in a more detailed way. This, nowadays widely used, compiler started as a 
research project at the University of Illinois. The goal of the project was to deliver a modern 
compiler with a strong support for optimizations. It should also be capable of Single Static 
Assignment (SSA) based compilation [95] [47]. 

Since the beginning, the L L V M has gone a long way and nowadays it is a very large 
project that covers several subprojects. The most important one is the Clang, which has 
the role of the compiler driver and frontend of the L L V M . The L L V M project offers frontends 
for nearly all frequently used languages, such as Objective-C, D, Python, Ruby, C, C++ 
and so on. 

The compilation scheme is shown in Fig. 2.2. 
At the beginning, the input program is processed by the Clang frontend and in the 

intermediate form passed to the optimizer. After that comes the part which is unique for 
the L L V M . The L L V M compiler is able to link the modules in its intermediate form, and 
that is what makes it unique. This step is very useful for the testing as it enables the tester 
to give the author of the code the whole linked program in its intermediate form. After the 
linking, another optimization can be performed. The second optimization step is called the 
whole program optimization (WPO). After the W P O stage, the resulting program is either 
executed by the virtual machine or is passed to the assembler and later to the linker. This 
process produces the binary code, which can be executed on the target processor. Now I 
will have a closer look at the most important phases of compilation. 
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Figure 2.2: L L V M scheme 

Clang 

At the beginning, the input program is processed by the Clang. After this phase, the 
output program is in the form of the abstract syntax tree (AST) and has the suffix .be. 
Several other phases work over this representation. Semantics checks and also static analysis 
are such phases. The static analysis can detect the first bugs in the source program. The 
semantic checks transform the input program into the LLVM internal representation ( L L V M 
IR). 

According to [55], the Clang is able to generate the code that is very similar to the one 
that was parsed. This ability makes the Clang usable for the source to source transforma­
tions. 

It should be mentioned that the Clang project is quite a new part of the L L V M . As 
was mentioned above, one of the roles that Clang plays is the role of the compiler driver. 
Before the Clang took this position, another L L V M project was used, the project was called 
llvmc [66]. The llvmc offered a very basic configuration of the compiler driver, based on 
the suffixes of the source files. Each suffix was a node in a graph and by the edges the 
connections between the two nodes were created. There the llvmc has a special syntax for 
defining the behaviour of nodes and for interconnections. 

The Clang project replaced the llvmc in the version 3.0. It offers far more sophisticated 
ways of defining how the compiler driver should behave. The solution is based on the C 
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language. The Clang needs to know the so called target architecture triple. The Clang 
contains the table of the supported architectures that keeps the information about the data 
type sizes, endianess and alignment. 

The Clang and the whole L L V M is a younger project than the GNU Compiler Collection 
(GCC). Before the Clang was added to the project, the role of the frontend was played by 
the llvm-gcc that generated the internal representation of the 11 vm. Majority of the projects 
that are compiled by the L L V M today were originally designed for the compilation by the 
G C C . This leads to the fact that the frontend tries hard to have a fully compatible command 
line interface with all the parameters. Nevertheless, the dominance of the G C C in this field 
is apparent and the L L V M project is always one step behind. 

Optimizer 

After the Clang phase, the code is optimized for the first time by the optimizer. The 
optimizer has the form of a pass manager. The manager schedules the sequence of passes 
based on the dependencies of each pass. The manager contains the dependency scheduler 
that does not always work perfectly. On the other hand, addition and removing of the 
passes is very easy and can also be tied to a command line option. 

The optimizer works over the internal representation. The optimizer works with a target 
data layout [64]. The example of the data layout is shown below: 

E-p:32:32: 32 -S64-n32-i32:32:32 -f32:32:32 -i64:32:32 -f64 : 32:32 

From this description, it is easy to get the endianess, the size of the pointer and registers 
and so on. It is the numerical description of the architecture. The first E specifies endian-
ness, in this case the endianess, is big. The p:32:32:32 denotes that the pointer is 32 bits 
wide. The S64 means that the alignment on a stack is 64 bits. The following n32 says that 
the native integers are 32 bits wide. The following triples specify A B I and the preferred 
alignment for specific data types, such as int32. 

Backend 

The backend is the part of the compiler that is most heavily modified in our project. In 
the case of our project, the input of the backend is the program in the form of the L L V M IR 
and the output is the assembler. It is also the part of the compiler that mostly generates the 
errors. Because the output of the backend is the assembler, it is the most target dependent 
part of the compiler. The most important transformations, which are performed in the 
backend, are the following: 

• Lowering - The key task is the transformation of the L L V M IR into the direct acyclic 
graph (DAG) [8]. 

• Legalization - The main role of the legalization phase is to replace the operations, 
which are unsupported at the target architecture by the equivalent sequence of the 
supported operations and, in certain cases, use a call of the runtime library, such as 
compiler-rt. 

• Instruction selection - This phase works over the D A G , that keeps the L L V M op­
erations and transforms it into another D A G , which contains the target architecture 
instructions. It can be said that it must map the instructions of the target architecture 
to the L L V M operations. 
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• Register allocation - So far the L L V M has worked with virtual registers. In this phase, 
virtual registers must be replaced by physical ones. 

• Prologue/epilogue insertion and frame finalization - In this phase, the prologue and 
epilogue are inserted and the frame is finalized. 

• Scheduling - This pass is quite simple and serves as the linearization of the D A G . 

• Assembly printing - The final phase is the assembly printing. The IR is printed into 
the assembly file with all the necessary data definitions and other information. 

The the most important phases that are computed in the backend are mentioned above. 

Internal representation of the L L V M 

I have mentioned several times the internal representation of the llvm called L L V M IR. 
Now we shall have a closer look at it. 

First, I should mention that L L V M IR is based on the Single Static Assignement (SSA) 
[22]. The SSA denotes that each variable must be assigned only once. Various analyses and 
transformations use the SSA form. Thanks to the SSA the description is very straighforward 
and easy to read. 

The L L V M IR is used through the whole compilation process. Thanks to the SSA form, 
it is type safe and is able to represent clearly the high level languages. It is also flexible and 
provides all the necessary operations. It is quite unique that L L V M IR supports integers of 
arbitrary bit width. No other internal representation allows this. 

It also supports an unlimited number of virtual registers. This is given by the fact 
that it uses the SSA form. However, this can be a double-edged knife. I have experienced 
several times, during the testing of the generated compiler, that the architecture ran out 
of physical registers as the register allocator was unable to map the unlimited number of 
virtual registers to the physical ones. 

The L L V M IR contains the following operations: 

• logical operations over integer and float, 

• arithmetical operation over integer and float, 

• conversions between the data types, 

• comparisons, 

• memory access operations, 

• address computations, 

• memory synchronisation, 

• control flow handling. 

There are also possibilities for debugging in form of directives. What quite surprised 
me, is the support for the exception handling and special operations for garbage collection. 
On the other hand, it is not that surprising when I take into account that the architecture 
is virtual. 
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L L V M conclusion 

I tried to sketch the infrastructure of the L L V M as the generated compilers are going to 
be based on the L L V M . The project is very well documented and together with the test-suite 
and related projects developed into one of the leaders of the open source compilers. 

The fact that it is written in C++, makes the modifications easy. The majority of the 
codes are well structured and commented. The IR of the L L V M also contains a large amount 
of documentation. Thanks to this, a lot of companies are founding their solutions on the 
L L V M . 

The project has usually two minor releases a year and this makes the migration of the 
user changes easily manageable, though not easy to perform. 

2.4.2 G C C 

The most widely used retargetable compiler these days is the GNU Compiler Collection 
(GCC) [103]. The project started in 1985 and the first release came in 1987. Nevertheless, 
the first stable version 1.x was produced four years later, in 1991. Currently, the latest 
version is 5.2. Nowadays, the G C C supports more than 40 architectures and is the leader 
in the field of retargetable compilers. 

When I look at the G C C compiler I will find out that it roughly corresponds to the 
scheme 2.2. I can have a look at some of its parts. As it is not in the centre of my interest, 
I will not go into such details as in the case of the L L V M . 

G C C frontend 

The frontend of the G C C is in fact a collection of several different frontends. There 
are frontends for the majority of mainstream languages. To mention just some of them C, 
C++, Objective C, Java, Fortran and many others. The output of all frontends is the same 
intermediate language, which is called G E N E R I C . The reason for the intermediate language 
is simply to have language independent representation. 

The representation looks very similar to the C language. In the following example, there 
is the C code and its representation in G E N E R I C without some details: 

int res ; 

void sub(int a,int b){ 

res = a-b ; 

} 

{ 

res = a-b ; 

} 

G E N E R I C creates an interface between the frontend and the optimizer. 

G C C optimizer 

G E N E R I C description, which is used as an interface, is taken by the optimizer and 
transformed to the new internal representation called G I M P L E . G I M P L E is in fact the 
three-address representation of G E N E R I C . G I M P L E consists of tuples of exactly three 
operands. There are, of course, exceptions, such as function calls. It is possible to see here 
a correspondence to the L L V M IR, because G I M P L E is also SSA based. 
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The optimizer works over G I M P L E and performs target and language independent op­
timizations. G I M P L E is similar to G E N E R I C but it is more restrictive and simpler. It does 
not contain control flow structures, it is SSA based and three-address. For the example 
above, the G I M P L E representation is as follows: 

sub(int a,int b) 

gimple_bind < 

int x.0; 

gimple_as s ign <minus_expr ,x.0,a,b,NULL > 

gimple_assign <var_decl ,x,x.O,NULL,NULL > 

Once the optimization phase is finished, the code is passed to the last part of the G C C , 
to the backend. As the G E N E R I C IR was the interface between the frontend and the opti­
mizer, G I M P L E is used as the interface between the optimizer and the backend. 

G C C backend 

The backend is the last main part of the G C C compiler. It works over the Register 
Transfer Language (RTL), which is the internal representation for this G C C part. The R T L 
is used through all the passes that are incorporated in the G C C backend. The form has 
been inspired by the Lisp language. The most typical features are nested parentheses that 
are used to indicate the pointers in the internal form in this case. There are two main blocks 
in the G C C backend: 

• Expand pass - This is the first pass, the main aim of the pass is to create the R T L 
description from the G E N E R I C description. I can say that this pass generates the 
instruction list in the form of the R T L . 

• Target dependent optimizations - Once the instructions are generated, the optimiza­
tions, which can be performed only over the target machine code, are performed. Into 
this category fall the peephole optimizations and so on. 

The output of the backend is typically the assembler optimized file, which can be further 
processed. 

G C C conclusion 

Over the years, the G C C has grown into a very mature compiler. It is always at the 
fringe of development. It is an implicit compiler for the (Berkeley Software Distribution 
BSD system and is widely used in Linux distributions. Its frontend and libraries are up to 
date with the latest standards of C++[48], OpenMP [17] and so on. It also has the largest 
user base and the development is very active. 

On the other hand, due to the extension of the project, it is difficult to maintain and 
modify it. The forms of the intermediate code are hard to read and the G C C also has a 
more restrictive license. 

2.4.3 Other compilers 

Apart from the two main open source projects, there are also other retargetable compilers 
that should be mentioned. 
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• There is a Target [96] project Chess/Checkers. The goal of this project is to enable 
the generation of the C compiler from the description in the nMl . [74]. There are 
articles about the backend generation from the nMl , but they are not precise enough. 

• Another project is called Machine SUIF [94], [14]. SUIF is a research platform aimed 
at high performance compilers. The main focus is on loop transformations, scalar 
transformations and software pipe-lining. The platform consists of a small kernel and 
a tool kit for various analysis and optimizations. The main purpose of the core is to 
gather all necessary information needed for the other optimizations, to provide support 
for the IR manipulation and the provide the interface for other compilation phases. 

• Very similar to SUIF is the Trimaran project. It is an extensible compiler framework 
by HP, which focuses on code optimization techniques. It supports mainly V L I W 
processors [59]. 

• CoSy compiler is a retargetable compiler developed by the Associated Compiler Ex­
perts [5]. The CoSy supports a very broad range of backends, from 8-bit controllers to 
the 256-bit V L I W architectures. The compiler consists of the frontend, the optimizer, 
which is architecture independent, and the retargetable backend. The backend can 
also be generated from the LISA language. 

• CompCert is a very interesting compiler project. The main difference from the other 
mentioned compilers is the fact that it has a certified core. 

Now after I have gained the idea about the compilers, I can move to another part that 
is closely related to compiler testing, the standard libraries. 

2.4.4 Standard library 

The language, whose compiler is generated, is based on the grammar that defines the syntax 
of the language. But the compiler itself is difficult to use. What makes the compiler really 
useful is the standard library of the language, whose compiler is generated. 

That is true for majority of programming language. Because I am interested in the 
C programming language, I will have a look at the library of the C. The library for the C 
language is specified in the standard [9]. It is the subset of the C library POSIX specification. 
It is also called ISO C library. 

In comparison to standard libraries of other languages, such as Python, the standard 
library of C is small. It provides only the basic sets of mathematical functions, functions 
for the conversion of types, basic manipulation for strings and file and console-based I /O. 

When I compare the library with other language libraries, such as C++, Java or even 
Python, I find that it really holds just the minimum of functionality. Other language 
libraries provide, for example, containers, GUI tool kits or networking tools. The exact 
opposite of the C standard library is the Python standard library. The Python standard 
library provides, for example, clients and even servers for the common network services or 
multimedia services. 

However, there is one big advantage of the small standard C library. It is the fact that 
in order to provide a working version of the library for a new platform, the amount of effort 
I need to expend is relatively small. 

The main parts of the standard C library are the following: 
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• Data types - The data types provide the declaration of how the data are stored and 
what operations are permitted over the data. 

• Character classification - In this section there are declared functions that are used for 
the test of the character membership, for example i s d i g i t O . 

• Strings - A set of functions that implements operations over the character or byte 
strings, such as a concatenation or a copy. 

• Mathematics - A n implementation of the basic mathematical functions for integer, 
float and other data types. 

• File input/output - A n implementation of many functions for the standard input and 
output. The function forms the main part of the s td io .h . 

• Date/time - Functions that provide conversions between the date and time formats, a 
time acquisition. 

• Localization - A n implementation of the basic localization routines. 

• Memory allocation - Dynamic memory allocation, the heart of the library, functions 
l ikemal loc , r e a l l o c . 

• Process control - A very important part of the library, basic functions for starting and 
termination of the process. 

• Signals - Closely related to the process control, definition of the program behaviour 
when it receives the signal. 

Some parts of the library are more error prone than others. There are certain parts 
of the library that are well known for overflows, such as g e t s O , and some of them are 
deprecated. Other functions are considered thread unsafe. None of these are crucial for the 
developers as there are always ways how to overcome such problems. 

Even though there are several different standard C library implementations, the above 
mentioned parts are common for all of them. I will now have a closer look at the Newlib 
library as it plays an important role in the thesis. 

Newlib Library 

The Newlib library [77] is a collection of several parts that are all distributed under free 
licenses. It is the C standard library implementation that is intended for use in embedded 
systems. 

The library is currently maintained by the Red Hat corporation [43]. The Newlib project 
is currently used in the majority of commercial and also non commercial embedded systems. 
It is particularly popular for the ones without an operating system. 

The library has a strong support for porting (an addition to the new platform) and 
because of its popularity, there is a lot of documentation about the porting, for example 
[39], [15]. 

It is very well prepared for the addition of a new platform. It is divided into two parts. 
The first one is the newlib directory. It contains the majority of the code for the two 
main libraries l i b c (the core of C library) and l ibm (the mathematical library). Some 
architecture specific code might be found here. 
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The other part is the libgloss directory, called also Board Support Package (bsp), 
contains the platform dependent code. Therefore, during the porting mainly, the libgloss 
directory has to be targeted. 

I will devote more space to the description of the porting in the next sections. 

2.5 Brief history of compilers and testing 

In this section, I would like to describe several important phases of the computer languages 
development and compiler testing. It is important to know the history of the compiler 
testing as it can give us clues that will help us in the current situation. The phases of the 
compiler testing are very closely connected to the evolution of the compilers itself. 

2.5.1 First languages 

The first programming languages were developed around 1950 together with the first elec­
trically powered computers. The computers had limited speed and memory capacity. These 
computers were programmed in the assembly language. This required an enormous intel­
lectual effort and was extremely error prone. 

Therefore, there was a need for higher level programming languages. One of the first 
languages with real compiler was Fortran. The name was derived from Formula Translation. 
It dominated the area of scientific and engineering application for over 40 years. Another 
language introduced in this era was the LISP language. 

At the very beginning, testing was performed manually, because computer time was 
extremely expensive. Nevertheless, even in those days, I can expect that there were first 
primitive test-suites. A great change came with the language ALGOrithmic Language A L ­
G O L . This language introduced several innovations, such as blocks with begin, end and 
nested functions, which are still used in majority of modern languages. It was also one of 
the first languages that attracted attention to the formal definition of the language. 

2.5.2 High level languages 

At the end of the 1960s and the beginning of the 1970s, languages that are still in use today 
appeared. Most notably it was the C language. The language was developed in the Bell 
Labs as an imperative general-purpose programming language. For this type of languages, 
it is typical that they have test-suites. The most famous C compiler, the G C C project, 
started in the late 1980s and from the beginning it has had a set of testing programs. From 
a certain point of view, languages, such as C, are simple to understand and use. They are 
not object-oriented and do not contain other components that would make the testing more 
difficult. 

The C language in the first version was very simple. The feature can be demonstrated 
also on the A C E test-suite. The tests for the later standards of the language form over 80% 
of the test-suite. 

In that period, the test-suites were the main testing tool. The Smalltalk language was 
introduced in the same year as the C language. 

2.5.3 Object-oriented programming 

Smalltalk together with Simula were the leaders of the object-oriented programming. The 
C++ (also called C with classes) appeared later. Regardless of the object-oriented language. 
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once the programmer could create the classes and their instances, i.e. the objects, there 
appeared a need for new kinds of testing. 

Unit testing methods are focused on testing the classes internals. In the object-oriented 
programming, unit testing means testing of a certain class or the interface to identify whether 
they are fit for use. In unit testing, each test case should be independent from others. If the 
class needs to interact with other classes, mock objects or method stubs can be used. The 
unit testing should ensure that the objects behave as expected by the programmer. This 
area is very large. More information can be found in [104], [46], [68]. 

For example, in the article by Tao Xie [104], the authors propose a framework for 
differential unit testing. The main aim is to reduce the amount of manual work. The 
framework called Diffut uses the Java Modeling Language ( JML). The Diffut generates 
the wrapper classes and automatically inserts annotations into the classes under test. The 
annotations invoke the corresponding method in the other version of the class and compare 
the return values. 

The integration testing is aimed at testing of an interaction of the classes. It can also be 
understood as testing of various modules that are combined together and the modules are 
tested as a group. This kind of tests is usually performed after the unit testing is finished. 
The purpose of this test is to ensure that the modules can co-operate in the expected way 
and that they have the desired reliability and performance. More information can be found 
in [16], [35]. 

Manual Tests 

Acceptance Tests 

Integration Tests 

Unit Tests 

Figure 2.3: Scheme of testing 

So far I have described only two types of testing that are usually mentioned. The 
common testing scheme deploys the following types of testing: 
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• unit testing, 

• integration testing, 

• acceptance testing, 

• manual testing. 

The acceptance testing [23] is usually performed by the customer. This type of testing 
is conducted by the customer to decide whether the requirements of the specification or 
contract are met. It should provide an answer to the question if the speed, area, power 
consumption of the provided chip are in line with the specification, when I talk, for example, 
about the ASIPs. 

Manual testing is the last of the testing methods. Even though we posses the most 
advanced technology, some of the bugs can be uncovered only by human intervention. 

Viewed from the other perspective, I can say that all of these types of testing are not 
specific for software development. It is possible to find variations of this attitude also in 
other industrial branches, from mechanical engineering to the pharmeceutical industry. 

For a very long time, development of new programs was performed without the Integrated 
Development Environment (IDE). The first IDEs came to life in the 1970s. During the 1980s 
the leader in this field was Maestro. The most widespread IDEs of today are Eclipse [36] 
and Visual Studio [73]. The first release of Visual Studio took place in 1997 and the first 
released Eclipse appeared in 2001. Eclipse is a plugin based solution. Nowadays Eclipse 
provides a plugin for all major languages. 

The current IDE usually provide support for the unit and also integration testing. Both 
types of testing are triggered via different components, but it can be done from the envi­
ronment. 

Today developers have good experience with so called Continuous Integration (CI) 
servers. The main idea of the continuous integration [38] is to avoid integration prob­
lems in the later stages of development. Developers are encouraged to merge with the main 
development line several times a day and execute tests over the result and keep an eye on 
the integration continually. 

The technique was first suggested by Grady Booch and was called the Booch method. 
Later, it was adopted in the extreme programming and resulted in integrating once or more 
times a day. 

By certain groups, the continuous integration is not accepted as an improvement over 
the frequent integration. However, I would say, that the majority of the great software 
houses use the continuous integration servers in the development cycle. The CI servers can 
be easily integrated with version control systems and allow automated builds via various 
hooks. Therefore, the build automation is at a very high level. 

Also the deployment of the builds is highly automated, when using the CI server. Because 
the servers allow running the scripts, the release can be automatically linked to the customer. 

2.6 Compiler testing methods 

Compilers play a crucial role in the development of any software project. However, the 
emphasis placed on the quality assurance is not high enough. Authors of the mainstream 
compilers very often prefer testing by users in the field. This approach is not necessarily 
bad. The advantages of such an approach are clear. The authors of the compilers can 
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outsource the testing to the user. However, fixing of the issues must be done in-house and 
the resolution of the bug in the production phase is far more time consuming than doing so 
in the earlier stages of the development. 

Although there are modern ways of a formal verification of the compiler, they are not 
very common. For example, the CompCert compiler disposes of the formally verified core 
[57]. The price for this approach is the fact that 3/4 of the code in the CompCert compiler 
are devoted to the verification techniques. 

But this approach is not suitable for the mainstream compilers, such as the G C C or 
L L V M . The developers of such projects still rely on test-suites. These test-suites are run 
continuously. One of the main disadvantages of such test-suites is the fact that they are 
very often composed of test cases that were reported by users. This brings the minimal 
regression, as we always test for occurrence of already known bugs, on the other hand, there 
are no methods how to detect new bugs. 

Uncovering of new bugs is targeted by another type of testing. The random generators 
are used at various levels for the detection of new bugs in compilers. Very common are 
generators of random programs for higher level languages, such as C or Haskell. But if we 
understand the compiler as a tool that takes a program written in a high level language, 
such as C, and creates the binary code, there is also a motivation for random testing in 
several sub-areas. One of these sub-areas is the assembly level. In our team, we use such a 
random assembler generator. 

In the sections below, I will give an overview of the current situation in both of the 
above mentioned areas. First, I will focus on test-suites and later I will devote some space 
to the random generation tools. 

2.6.1 Test-suites for the C compiler 

As my work deals mainly with the C compiler, I will focus on the sets of tests that are 
designed for the C / C + + compiler. The majority of the big compiler projects, such as G C C 
and L L V M , are distributed together with compiler test-suites. But there are commercial 
test-suites, such as the ACE test-suite or the Perennial test-suite. Companies developing 
such testing sets are very well aware of the fact that compiler testing is a growing area. The 
standard techniques are not able to cover the needs of the modern compiler development. 

The test-suites are mainly used for regression testing. The aim of regression testing is to 
ensure that the software does not contain bugs, which we have uncovered during the process 
of development. The G C C test-suite and also the L L V M regression tests are sets of tests 
written by the developers of the compilers. The bugs were either found by the authors or 
were reported by the users. By execution of this test set I ensure, that the already known 
errors do not reappear. But by this approach I am not able to discover new errors. Very 
seldom do the already written tests trigger a new unknown sequence that results in an error. 

G C C test-suite 

The G C C test-suite [40] is a part of the compiler from the early stages of the development. 
It is distributed under the same licence as the compiler and contains a vast number of tests, 
which is true for all the other test-suites as well. The G C C test-suite does not come with 
the infrastructure and has clear reports, once the testing is finished. 

The test-suite contains various types of tests. There are tests for C as well as for 
C++. As we do not support the full C++ in our project, I use mainly the C tests for 
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Figure 2.4: Scheme of the GCC directory structure 

the testing. There are very simple programs, as well as larger programs, such as SHA or 
Dhrystone algorithm. The tests are very well sorted into directories 2.4. One of the greatest 
disadvantages of the G C C test-suite is the fact that the tests are not sorted. There is a 
certain directory structure, but it is very vague. For example, if a user wants to filter the 
float tests or tests that use only integers, they must do it by themselves. 

The test-suite contains the torture part. These tests are meant to be compiled several 
times with different options. The torture test-suite is divided into several directories. Some 
tests are designed to be executed after the compilation but there are also tests that are 
designed only for compilation and should not be executed. 

The disadvantages of this test-suite are very similar to the disadvantages of the compiler. 
The project of the G C C compiler is quite old and so is the test-suite. Moreover, the tests 
are usually only added to the test-suite. There are test cases that once triggered an error 
in the original code, but the code is no longer part of the compiler. Another problem is the 
fact that tests are not properly sorted and the test-suite does not contain an infrastructure. 
Although this can be viewed as an advantage, as I do not have to modify the existing code. 

L L V M test-suite 

From the L L V M project [65] there also comes a test-suite. This test-suite has two major 
parts. There is a regression test-suite and the benchmarks. 

The regression test-suite is similar to the G C C one, which was described above. This 
part contains the test cases gathered during the development phases. The test cases are 
usually small pieces of code, which test a specific feature of the L L V M or trigger a specific 
bug. The language they are written in depends on what part of the L L V M is tested. The 
test-suite possesses a special driver for such tests, it is called lit. The directory, which 
contains the regression tests, is further broken into subdirectories that are named after the 
parts of the L L V M compiler that are tested by the cases contained in the given directory. 

The other part of the L L V M test-suite, which in this case means benchmarks, is very 
different from the G C C test-suite. The L L V M test-suite is in fact composed of various 
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benchmarks. The smaller programs meant for regression are kept separated. The rest of 
the test-suite, the benchmarks, are sorted into directories and thanks to the well designed 
makefile system the user can easily enable and disable the directories. In Fig. 2.5 is the 
directory structure of the L L V M test-suite. 

autoconf docs 

website 

tools 

External 

IntBenchmarks 

SingleSource MultiSource LNTBased LLVMSource 

Figure 2.5: Scheme of the L L V M directory structure 

The main directories, containing the tests, are named SingleSource, MultiSource, 
IntBenchmarks and External. The majority of the benchmarks lie in the directories 
SingleSource and MultiSource. The SingleSource benchmarks are usually smaller ones 
that are written in just one file and very often compute a certain value, and the MutliSource 
directory contains subdirectories with complex benchmarks and whole applications. The 
IntBenchmarks directory contains benchmarks that use only integer numbers and there is 
a special directory for benchmarks taken from external sources. 

The MultiSource benchmarks very often use input and output into the files. This may 
cause several problems because results of such tests are typically evaluated by a comparison. 
The referential output and the output from our tool-chain are compared. In the case of text 
output, it may introduce some issues as the text output may have different format due to 
the debugging. 

The format of results in the L L V M test-suite is very simple. The results show, where 
applicable, a comparison between the G C C and L L V M compiler. The basic metrics for the 
comparison is the runtime of the benchmark, and also the number of cycles that were needed 
for the execution, as can be seen in the following example. 

Program 1 GCC LLC FLAG 

IntBenchmarks/BenchmarkGame-fannkuch/fannkuch 10 . 0320 38 . 6000 ok 

IntBenchmarks/BenchmarkGame-recursive/recursive 10 . 0200 74 . 2480 ok 

I n t B e n c h m a r k s / B i t B e n c h - f i v e l l / f i v e l l 10 .0160 16 . 5960 ok 

IntBenchmarks/Dhrystone-dry/dry 10 . 0200 24 . 6960 ok 

IntBenchmarks/FreeBench-analyzer/analyzer 10 . 0280 70 . 6040 ok 

IntBenchmarks/FreeBench-f ourinarow/fourinarow 10 . 0000 20 . 2040 ok 

IntBenchmarks/McCat-01-qbsort/qbsort 10 .0160 22 . 6560 ok 

IntBenchmarks/McCat-03-testtrie/testtrie 10 . 0080 15 . 8400 ok 

IntBenchmarks/McGill-exptree/exptree 10 . 0000 0 .0880 ok 
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IntBenchmarks/McGill-queens/queens 1 0 0800 78 5160 ok 

IntBenchmarks/MiBench- consumer - j peg/consumer - j pg 1 0 0080 15 7000 ok 

IntBenchmarks/MiBench- security -sha/security-sha 1 0 0040 5 6520 ok 

IntBenchmarks/Shootout -ackermann/ackermann 1 0 0040 13 9400 ok 

IntBenchmarks/Shootout - f i b 2 / f i b 2 1 0 0080 17 8920 ok 

IntBenchmarks/Shootout - l i s t s / l i s t s 1 0 0240 50 4560 ok 

IntBenchmarks/Shootout -matrix/matrix 1 0 0160 58 4000 ok 

IntBenchmarks/Shootout -methcall/methcall 1 0 0120 21 6400 ok 

IntBenchmarks/Shootout -nestedloop/nestedloop 1 0 4920 20 4960 ok 

The example shows results of several programs from the IntBenchamrks directory. In 
the first column there is the name of the benchmark followed by the runtimes of the G C C 
and L L V M . The program compiled by the G C C was executed natively, while the program 
compiled by the L L V M was executed on a simulator. The last column, called FLAG, holds 
information about the result. The example is not complete, as some of the columns were 
deleted, otherwise the results would not fit the page formatting. 

Also in the case of a benchmark failure, the complete log files are kept in a specific 
directory. There are several logs which are kept from various stages of the compilation and 
also from the execution phase. The log files are very often quite large and it is not easy to 
identify where the problem is. 

The system for the benchmark compilation is hierarchical. There is a system of makefiles 
which control the compilation as well as the execution of the benchmarks. Each benchmark 
can, therefore, be compiled and executed separately. 

LEVEL = . 

PARALLEL_DIRS = SingleSource IntBenchmarks 

include $(LEVEL)/Makefile.programs 

b u i l d - f o r - l l v m - top: 

./configure --with-llvmsrc = $(LLVM_T0P)/llvm --with-llvmobj=$( 

LLVM_T0P)/llvm - - s r c d i r = $(LLVM_T0P)/test - suite --with-

llvmgccdir = $(LLVM_T0P)/install --with - externals = $(LLVM_T0P)/ 

externals 

$(MAKE) 

In the example above, I demonstrate how easy it can be to enable or disable the directo­
ries. It can be done by a simple addition of the directory name to the variable PARALLEL.-
DIRS. Below the variable there is the command for configuration and build of the bench­
marks. When I get to the lowest level of the directory structure, it is also possible to enable 
or disable any single benchmark. The system uses the standard configure scripts as well as 
a make program. 

The system enables a parallel compilation and execution of the benchmarks, which keeps 
the speed of the testing at a very good level. The system is able to detect the number of 
cores and run the compilation and execution on several cores. However, due to the number 
and complexity of the test and also the fact that the tests run on a simulator, the testing is 
slower then I would expect. 

When I look at the mechanism for the test selection, it gives the user a possibility to 
modify the compilation and execution of the benchmarks at will. But what is missing is the 
possibility to choose the benchmarks according to some predefined features. 
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Perennial test-suite 

Apart from test-suites that come with the compilers themselves, there are a lot of com­
mercial test-suites. The Perennial test-suite [81] is one of them. This test-suite contains its 
own system for the execution and compilation of tests. It also contains a special file that 
takes care of managing the input/output (I/O) subsystem. Thanks to this feature, it makes 
debugging of the failed tests a little bit more complicated as these files are linked to the test 
and one has to step through a large amount of instructions to get to the test itself. 

The test-suite contains single source tests as well as tests that are composed of multiple 
files. The tests are sorted into the folders according to the C standard. The folders make 
the testing well-arranged as the user can exactly see in what part of the compiler there is 
an error triggered. The test-suite is easy to configure and all the files which have to be 
configured have a good documentation. 

A n example of the configuration taken from the configuration file is shown below. The 
explanation forms a part of the example, which shows the phase of linking. The user can 
specify all the formats and necessary tools and can also specify the files that should be 
removed after this phase. This approach gives the user a large amount of freedom for 
specification of every single phase. On the other hand, the configuration file is quite long 
and certain passages occur several times without modification. 

# Compile-to - Executable (CX_) 

# =========================== 

# How to compile one C source f i l e to an executable. The f u l l f i l e 

name i s 

# 7,f . The base name i s °/,n. It must be link e d with the s c a f f o l d 

object 

# module which i s °/,o . 

CX_C = '/.(CC) '/.i 7.f 7,o __LINKED_FILES__ -o y.n.xexe 

# F i l e s to remove t h e r e a f t e r , executable f i l e not included. 

CX_C_RM = y.n.g 

The test-suite is delivered in the form of a source code, which allows the user to modify 
it in case of need. Before the use, I had to compile the driver and create the configuration 
file. I took the configuration file as a template. It was necessary to generate certain parts, 
such as paths to the toolchain and the name of the compiler. The testing was performed 
simply by running the driver with the given configuration file. 

./driver 

Nevertheless, the test-suite is not designed for an execution on simulator. I need to 
check more things than the return value of the simulator, and the test-suite does not allow 
this without modification of the source code. 

I used to use the Perennial test-suite and during the deployment I more often found 
failing tests in the G C C test-suite than in the Perennial test-suite. The problems, which 
were revealed thanks to the Perennial test-suite, were usually connected to the linker. On 
the other hand, the test-suite has a very nice system of notifications at its disposal and 
the user exactly knew which part of the compilation failed. The test-suite is also always 
up-to-date with the latest standards. 

Once the test-suite is executed, it gives the results summary similar to the example 
below. Each run of the test-suite has a unique number and the results are stored in a 
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directory, which bears a label with this number. The folder contains all the temporary files 
that were not deleted as set in the configuration file, the compilation and execution log 
for each test and file with name failures. The failures file contains names of all the failed 
tests together with the description of the failure. This is very useful for further parsing and 
sorting of the failed tests. I used this file to pack all the temporary files together with the 
source of the failed tests. The package with the temporary files helps the designer of the 
compiler significantly during the debugging phase. 

* * 

* TEST CYCLE COMPLETE * 

* * 

120 t o t a l test f i l e s : 

110 test f i l e s pass 

8 test f i l e s f a i l 

2 test f i l e s unresolved 

0 test f i l e s u n i n i t i a t e d 

0 test f i l e s untested 

0 warnings were issued 

The speed of the testing is very high. The speed in connection with the fact that all the 
temporary files are kept for further use makes the test-suite usable for debugging. On the 
other hand, the debugging is complicated by the fact that the tests are linked together with 
the internal code of the test-suite. What I personally consider to be the biggest weakness 
of this test-suite is the test selection mechanism. The tests are kept in simple lists. There 
is no possibility of dynamically changing the set of tests. 

SuperTest compiler test and validation suite 

The SuperTest compiler test and validation suite by A C E [6] is one of the market leaders 
in compiler validation. I will call this test-suite just the A C E test-suite to shorten the name. 
This test-suite offers tests sorted according to the C / C + + standards. There is a specific 
directory for the C89 and C99 tests and these directories are broken further down according 
to the paragraphs of the standard. So for example, the C89 standard has the following 
summary: 

Total number of files: 7 

Total number of tests: 7 

Paragraph Subject 
3 Language 
3.5 Declarations 
3.5.3 Type qualifiers 
3.5.4 Declarators 
3.5.4.5 Array declarators 

Each test case is contained in one file. The first character of the file name can be either t 
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or x. The files starting with t are positive tests. These tests contain the correct C programs 
and, therefore, should be compiled successfully. The files starting with x are negative tests. 
For these tests, a diagnostic is expected and a compilation is expected to fail. 

Moreover, this test-suite offers so called depth test-suites. These tests are focused on 
testing of the basic arithmetic. There are thousands of tests for various operations with 
data types. These tests are platform dependent as they depend on the size of the data types 
so the tests for 32 and 64 bits differ. There is a special naming convention for the depth 
test-suites. A n example of such a name follows: 

c24.148.f32.d64.tar.gpg 

The name encodes a data model [4]. It specifies the target with 24-bit characters, 48-bit 
longs, 32-bit I E E E floats and 64-bit I E E E doubles. The following list defines all types that 
can be used in the suite name: 

c char 

s short 

sfx short f i x e d 

l f x long f i x e d 

sac signed accum 

This list is very useful for me, as I will try to find a way to automatically match this 
pattern and select the corresponding depth test-suite automatically. 

The problem with this attitude is that when I am developing a new core, I may choose 
such a combination of data types that no depth test-suite is suitable for it. Also, there is a 
problem of an automatic detection of the data type of a new compiler, and when I have a 
larger number of cores, the time spent on the selection might be enormous. 

The test-suite uses a special driver for the execution of the tests. This driver is called 
valid. There are several modes of execution. A user can execute either a single test or 
all tests that are kept on special lists. The compiler driver takes the configuration file as 
a parameter. The configuration file is platform specific and keeps information about the 
position of the toolchain, parameters of the compilation and execution. The configuration 
file is not as detailed as in the case of the Perennial test-suite. There is also another tool 
called the leash which can be used for the execution of a certain test with limits. It allows 
the user to set a limit for a time as well as to limit the size of the output. Below there is an 
example of the execution of the leash, as well as the execution of the driver. 

v a l i d -e 'one 3 / 0 / 1 / t a l l . c ' d e f a u l t . c f g 

v a l i d default 

C o l l e c t i n g test s e t . . . 

Running n u l l t e s t . . . 

Creating l i b s t . . . 

C V a l i d a t i o n started 

I 

II 

f 

d 

Id 

l int 

long 

long long 

f l o a t 

double 

long double 

[ ] 1007, (2567/2567) 
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leash -t lm -o lk -e 512 a.out 

The execution of the valid means that only one file 3/0/1/tall. c will be compiled. The 
command valid default will execute the basic set of tests. The execution of the leash 
restricts the execution of the file a. out to one minute and the output is limited to 1 Kbyte 
on stdout and 512 bytes on the error output stderr. 

The program valid automatically detects the number of cores and performs a parallel 
compilation and execution. However, it compiles the source files in the directories named 
after the cores, so it does not keep temporary files from the compilation and execution. 

As far as the result reporting is concerned, there is a directory containing all the log 
files and the list of failed tests. There are separate log files from the compilation phase and 
from the execution phase of testing. There is a separate log for each clause of the standard. 
Below there is shown the compilation log of one of the tests. 

TESTING: suite 111 1/1/2/tO1.c 

New-line character with an immediately preceding backslash 

Compilation succeeded 

RESULT: 2/l / l / 2 / t 0 1 . c PASSED 

Scripts for the log separation are written in Perl and are part of the test-suite, so they 
are not difficult to modify. I deployed this test-suite for nearly a year in our project and 
the results were very positive. One of the drawbacks is the large number of tests, so the 
execution takes a long time, if not tested on a larger number of cores such as eight or more. 
The code coverage increased when the test-suite was used slightly. 

One of the drawbacks of this test-suite is the fact that the test selection mechanism is 
based on a simple list. Though it is not a list of tests but a list of directories that should 
be included in the testing. The driver detects whether the directory exists and if yes, it 
executes tests in the named directory and all subdirectories. This gives the user freedom to 
modify what tests will be placed in the testing directories. 

2.6.2 Test selection mechanism 

One of the most important criteria for use of the test-suite is the way of test case selection. 
A l l of the test-suites that were mentioned had serious drawbacks as far as the test selection 
is concerned. There are certain test-suites that do not possess any testing infrastructure 
and test selection mechanism at all. The rest of the test-suites gives just very basic options 
of the test selection. 

The test selection is usually based on a simple list of files. In certain cases, the list of 
files contains only the test name, but in other cases, it contains the whole path to the test 
from the given directory, which is typically the root directory of the test-suite. 

In the second case, when the list contains the full path to the test, I used this information 
when the test failed to pack it together with the temporary files that were created during 
the translation. 

Nevertheless, these simple methods of test selection cannot be used for my purpose. 
There is a large theory concerning test selection methods testing [34], [58] or [7]. The 
methods can be divided into three basic categories: 

• Coverage techniques: This approach takes into account the code coverage. The cov-
erable program parts are looked for and choosen. 
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• Minimization techniques: This approach is similar to the coverage one but a minimum 
set of test cases is chosen. 

• Safe techniques: This approach is not focused on coverage, instead all the test cases 
that produce different output are taken into account. 

Nevertheless, I need to focus on different aspects of the test selection mechanism. I do 
not need to keep the set minimal. A n important role here is played by the information 
about the instruction set that the compiler possesses. Very often the model from which 
the compiler is generated can dispose of a specific bit width. For example, I can create a 
compiler for the 16-bit model or for the 32-bit model. This characteristic influences the 
set of tests that can be compiled and executed. There are also other factors, such as the 
presence of the C compiler library and the presence of compiler-rt library and so on. A l l of 
these factors must be taken into account. 

M y test selection mechanism must be able to address such differences. I need to easily 
choose the test for each platform according to the bit width and the presence of certain 
libraries. And, in certain cases, also to specify directly that certain tests should not be 
executed on the given architecture. 

2.6.3 Random generators 

Another way of compiler testing are random tests generators. It is definitely not an easy 
task to create a random generator. The generated test programs must have the correct 
structure which is accepted by the compiler. The majority of today's compilers use multi­
stage processing. There might be even dozens of stages before the final compiled code is 
produced. 

For example, the L L V M is a framework that allows an easy insertion of compilation 
phases. It is common to add the optimization, or any other phases, into the L L V M processing 
chain. 

During the compilation, the earlier stages must be finished without errors. So in order 
to test the later phases, the generator must produce a code, which passes the earlier ones. 
The requirements for passing vary. It may be just lexical correctness of the program or the 
correct syntax. In later phases, where the semantics analysis is solved, the program must 
be type correct in the case of statically-typed languages. 

The generation of the valid sentences for the given language is usually based on a formal 
basis. Also the use of templates is very common, especially for the generation of more 
complex programs with specific semantics. 

As I focus primarily on the C language, I have picked mainly the generators that produce 
test cases in the C language. 

Csmith 

One of such projects is the Csmith [105]. The Csmith is a random generator of C 
programs that aim at hardening of all known compilers. The Csmith attempts to avoid the 
undefined and unspecified behaviour in the generated programs while the expressivity of the 
generated programs is at a very high level. 

To do so, the Csmith deploys relatively complex program generators. This program 
generator uses various techniques to produce safe programs. First of all, the generator uses 
structural constraint to avoid unsafe behaviour. Then, in cases where the constraints would 
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be too restrictive, it performs a static analysis of the already generated code fragments. By 
doing so, the Csmith determines whether the given operation is safe or not. Also it often 
inserts runtime safety checks into the generated code. 

The test evaluation is done by using differential testing with the use of different options 
of the same compiler, or by the use of different compilers, or a combination of both. The 
scheme of testing with the Csmith is shown in Fig. 2.6. 

C S m i t h 

C o m i l e r 1 C o m i l e r 2 

E x e c u t e 

C o m i l e r 3 

E x e c u t e E x e c u t e 

N o B u g C o m p a r e o u t p u t B u g 

Figure 2.6: Csmith scheme 

The evaluation of the test results is performed by the comparison of the checksums. 
The checksums are computed from the non-pointer global variables sampled at the end of 
each execution. The authors of the Csmith project used it for testing of various compilers. 
They tested frequently used projects, such as the G C C or L L V M , compilers with a certified 
core, such as the CompCert, and also commercial C compilers. The CSmith uncovered 325 
bugs in these compilers, most of them in the G C C and L L V M . The CompCert that uses the 
formally certified core contained several bugs. 

Test cases that expose a bug are usually not reduced as the reduction may introduce 
some undefined or unspecified behaviour that the authors try to reduce as much as possible. 
The programs that contain 8k-16k of tokens show the highest rate of bug triggering. The 
tests cases triggering errors are usually reduced by hand to get understandable test cases. 
One of such test cases is shown in the example below. 

int foo (void){ 

signed char x = 1; 

unsigned char y = 255; 

return x > y; 

} 

This test case comes from the Csmith database [20]. It uncovered a bug in the G C C 
compiler that was shipped with the Ubuntu 8.04.1. According to the database, at all 
optimization levels the compiled program returned 1, while the correct result is 0. The 
compiler for Ubuntu contained several patches. The base version without the patches worked 
correctly. This situation is very common. Nearly all major distributions have compilers 
modified to suit their needs. This procedure very often brings new errors into an already 
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stable product. 
It seems that the greatest development of this project was around 2010. The Csmith is 

distributed under the BSD-style licence. The generated programs can be used for any other 
C compiler. The latest version of these tools is 2.2 and comes from the very end of the year 
2014. 

McKeeman project 

McKeeman [71] has created a project that also uses a differential approach to the testing 
of the compiler but, unlike the Csmith, it uses inputs of various quality levels. This is 
something that was not possible with the Csmith. According to the article, the lowest 
quality level has a sequence of any ASCII characters, followed by a valid sequence of tokens 
and syntactically correct programs. The last level is presented by programs with well-defined 
semantics. 

This method has been proved as a very efficient one in uncovering bugs in different stages 
of the tested compilers since this method tests the compiler in a complex way. What is very 
well-designed in this tool is the way it generates new test cases. The user can choose the 
level of generation. Whatever level is chosen, new test cases are created from the actual one 
by introducing small changes into the test case. If the new test case causes the compiler to 
crash, it is easy to track the bug. 

Quite uncommon is the way which was chosen for the creation of the generator. The 
generator is represented by the Tel script which is based on the context free-grammar based 
generator. This solution is enhanced by support of the context sensitive features, such 
as defined variables tracking. Each grammar rule has a weight. The termination of the 
algorithm is ensured by assigning small weights to the recursive rules. 

The generated test cases are given to several compilers, as is usual for differential testing. 
If a test case causes an error, the process of shrinking is used for the reduction of its size. 
The test cases might have several hundreds or thousands of lines. As I have seen in the case 
of the Csmith, quite long tests have the highest rate of triggering of bugs. Very often the 
test cases can be shortened to several lines of code. Nevertheless, this can take up to tens 
of thousands of compilations. 

The discrepancies between two of the compiled versions are handled in the following 
way. A l l potentially dangerous operations are replaced by error checking variants. I can 
demonstrate this feature on the example below. For example, consider the generated case 
that might be potentially dangerous because of the violations: 

a << b 

This example is replaced upon regeneration by the following: 

i n t _ s h l _ i n t _ i n t ( a , b) 

The function checking function has the following syntax. It checks the integer shift out of 
range: 

int i n t _ s h l _ i n t _ i n t ( i n t v a l , int amt) { 

assert (amt >= 0 && amt < sizeof ( i n t ) *8) ; 

return val << amt; 

} 

The program is then re-executed. If the program execution fails, it means it contains an 
error, and the program is discarded. 
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I have already noted that the highest level of testing consists of programs that have 
well defined semantics. The programs are generated from specific templates at this level. 
These templates ensure that the generated programs have a certain high level structure and, 
therefore, keep certain semantic properties. However, I did not discover how difficult it can 
be to add such a template to widen the pool of the generated programs. The diversity of 
the generated programs is weighted against the semantics correctness. The generated test 
cases are very specific in comparison to the tests cases that have lower quality. 

Quest 

This project was created by Lindig [62]. The aim of this project is to create a simple 
tool for testing of the calling convention of the C functions in the C compilers. Random 
programs are generated containing C functions, which perform consistency checks to verify 
that the arguments were passed correctly. The types of functions are chosen randomly, and 
the body is then algorithmically generated. The generated cases are not usually very long, 
an example of a generated test case is below: 

1 #include <stdarg.h> 

2 #include <assert.h> 

3 union A { f l o a t a; double b;} 

4 c = { 52.54 }; 

5 struct B -[double d; int e;} 

6 h = { 78.01 , 834 >; 

7 union C {short int f; char g;} 

8 i = { 68 >; 

9 struct D {char j ; double k;} 

10 n = { 'c', 31.01 >; 

11 struct E {long long 1; double m;} 

12 o = { 167L, 17.2 >; 

13 union A 

14 c a l l e e ( s t r u c t D a, struct E b, ...) 

15 { 

16 v a _ l i s t ap; 

17 struct B x; 

18 union C y; 

19 va_start (ap, b); 

20 x = va_arg (ap, struct B); /* 3rd */ 

21 y = va_arg (ap, union C); /* 4th */ 

22 assert (y . f == i . f ) ; 

23 /* f a i l s */ 

24 va_end (ap); 

25 return c; 

26 > 

27 int main( int argc, char **arg ) { 

28 union A r ; 

29 r = c a l l e e (n, o, h, i ) ; 

30 return 0; 

31 > 

The G C C 3.3 compiler on MacOS X 10.3 passes union C incorrectly to the variadic 
function callee. The assertion in line 22 fails. This test case code was generated by the 
Quest tool. In any variadic function, extra arguments must be accessed using macro va 
arg, which receives the type of argument and returns its value. 
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The Quest generator found errors connected to the calling sequence in five different com­
pilers. Moreover, the bugs were triggered by a very simple code. One of the explanations 
can be that the test-suites, which are used and also very often written by the compiler 
writers, contain only a very limited subset of combinations of the arguments. 

Haskell generator 

In the thesis by Palka [79] the generator for Haskell compiler is described. The generator 
described in Palka's thesis is able to generate only a subset of the Haskell language. But 
even generation of this subset was able to find interesting bugs in the compiler. Once the 
test case uncovering a bug was uncovered, the shrinking mechanism was used to reduce the 
size of the test case into the form that is suitable for the bug reports. 

The example of the shrinking phase is in Fig. 2.7. 

Figure 2.7: Shrinking scheme 

The test cases that fail are marked as grey. The dotted test cases are not taken into 
account. 

The shrinking mechanism is simple. Test case a is the original test case. This test case 
is further shrunk. The first shrinking step considers a's shrinking candidates b, c, d and so 
on. These test cases are put under test. Test case b is considered first. Unfortunately it 
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succeeds and is discarded. Test case c fails, so it becomes the current shrunk test case. The 
shrinking candidates of c are tested in the next step. In this step, the candidate h is found 
to fail and the process continues with its shrinking candidates. The process terminates when 
all current shrinking candidates succeed, or when the test case does not have any, and the 
last failing test case is reported. 

In this case the differential testing is used to uncover bugs. The approach of compiling 
the test case by one compiler with different optimization levels is used here. Also the 
alternative way of the differential testing was used where equivalent programs are used and 
the behaviour is compared. The second attitude was able to uncover more bugs. 

However, in the case of the Haskell generator as well as in the majority of other examined 
random generators, the testing cannot be fully automatized. A lot of time is usually spent 
on reducing the test cases. This can be done automatically only for certain cases. When 
reporting a bug, the test case must be as clear as possible, and usually the automatically 
generated tests are not in the appropriate form. 

According to the author, effective testing is dependent on spending effort on creatively 
devising properties. Also, a lot of bugs were uncovered by properties that were originally 
developed for a completely different purpose. This finding correlates with the statement that 
was made about test-suites. To uncover new bugs it is necessary to think about problems 
from another perspective and also some functionality in a different way. 

But what is common for all the random generators is the fact that working with any of 
these tools gives the author, or even the user, a deeper understanding of how the compiler 
works internally. 

Other generators 

There has been one interesting bachelor thesis at the Faculty of Information Technol­
ogy, Brno University of Technology. In this thesis [76], the author suggested a method of 
generation of sentences for the C language. The system consists of three parts. See Fig. 2.8. 

The first and most important part is the generator called Spitter. Although the system 
is designed in a way that it can deploy any input, the generator is the heart of the whole 
system. The Spitter produces sentences of the C language. 

The sentences are easily compilable and also the runtime is usually short. The compila­
tion, as well as execution, are performed by a module named Builder. The Builder module 
not only keeps all the logs of the execution and compilation but it also keeps information 
about the way in which the program finished. 

The last module is called the Comparator. This module is responsible for deciding 
whether an anomaly has been discovered or not. If so, all the logs and temporary files are 
kept for further debugging. The project mentioned in the thesis was successful in finding 
bugs in the known compilers. 

Nevertheless, this project also suffers from serious problems. Although the generated 
programs do reveal problems in the compiler, the analysis of the test case is usually very 
difficult. What is even more disturbing is the fact that this dynamic method produces a lot 
of false positive test cases. This points to the fact that the Comparator module should be 
improved. 
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Figure 2.8: Spitter scheme 

2.7 Continuous integration 

As was mentioned above, the continuous integration servers are nowadays used for deploy­
ment and testing of new packages and releases. Before the continuous integration method 
was deployed, the development of software had had to deal with several serious disadvan­
tages. The teams of developers merged the code together via non systematic methods and 
they were very often forced to rewrite certain parts of the code. A process like this very 
often took weeks and sometimes even months. This very often led to inevitable delays in 
the process of development [67]. 

Nowadays, we use modern tools for the process of software development, these make 
the whole process faster and easier. Because today the software development is not only 
the coding but also continuous testing, version control of the code, quality assurance and 
observation of metrics. Continuous integration tools make this process faster, less error 
prone and they also help with automation of certain parts. It gives the programmer a 
powerful tool for error detection and also reporting of errors, and it also helps with the 
release management. 

However, the utilisation of the continuous integration processes Fig. 2.9 bring certain 
restrictions. The process of building must be automatic. This means that it should be 
reliable and without user interference. When a programmer saves the changes into the 
version control system they should be sure that the code is compilable. Also the fix of the 
broken code is a part of the development process and should be made as soon as possible. 
Testing is one of the fundamental parts of the development cycle, and the regular triggering 
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of the tests is necessary. Nevertheless, the developer must choose the right testing scenarios 
and keep the high standard of tests. 

The most widely used continuous integration and continuous deployment server is called 
Jenkins [51]. 

The development of the Jenkins project was started by Koshuke Kawaguchi in 2009, who 
worked for the Sun Microsystems. Nowadays the Jenkins project keeps more than 70% of 
the continuous integration market, which makes it by far the most widely used tool. In 2009 
the Oracle bought the Syn Microsystems. This step led to conflicts between the founders of 
the project and the developers from the Oracle company. The Oracle developers fought for a 
longer development cycle with heavier testing, while the founders led by Koshuke Kawaguchi 
stuck to the concept of the open source together with flexibility and swift development. In 
2011 the project was renamed. The Hudson was renamed to the Jenkins and it was separated 
from the Oracle. Majority of users are faithful to the newly developed project. However, 
the Oracle still continues with its own development. 

The Jenkins is an open source continuous integration server. It is implemented in the 
Java language. It has a very simple interface, which can be easily customised by a large 
number of plugins. The plugins can be divided into several categories: 

• Version control system plugins - plugins that provide interface to the most common 
Version Control Systems (VCS), 

• Executor plugins - plugins that allow execution of certain scripts, such as Python, 

• Interaction plugins - plugins that allow an interconnection between jobs, for example 
Join plugin, 

Metrics and visualisation plugins - this group of plugins allows a visualisation and 
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provides support for various kinds of results. 

One of the biggest advantages of the Jenkins project is the speed of development. There 
are updates and bug fixes available every week. There is also a more stable version that 
is released three times a year. This version contains only packages and bug fixes that are 
considered stable. 

There is no other tool that can match Jenkins in the number of installations or available 
plugins. However, the swift development and high number of plugins has its drawbacks. 
Very often the plugins are not compatible and it is not uncommon that development of 
certain plugins is dropped in favour of a plugin with similar functionality. There are usually 
several plugins that can bring similar functionality and it can be quite difficult to find one's 
bearings in them. 

The continuous integration server can be understood as a system that maps the set of 
jobs on the set of nodes. To make this clear a bit, the continuous integration server contains 
a set of defined jobs that should be executed. At the same time, it keeps the nodes. Each 
node possesses a defined number of executors. One executor can run one job at a time. 

2.7.1 Node control system 

The node in the Jenkins environment is controlled by the master computer. The master is 
the computer where the Jenkins server is installed. The newer versions also support multi-
master settings. The master node keeps track of all jobs which are currently configured inside 
the Jenkins installation and it also keeps track of all the nodes. It controls the execution of 
all the jobs and it sends the jobs to the slave nodes and, once the job is finished, it tracks 
the results. It can be seen as the master-slave architecture. 

The nodes are controlled by the Java application called slave. The slave agent is 
executed at the node and works over T C P / I P . Once the node is configured it is shown in 
the Jenkins server as up and running. The jobs can be configured to run on a specific node 
or group of nodes. If the user chooses a group, one of the nodes is selected by a ballot. The 
multi-configuration jobs keep the matrix with nodes and this way it is possible to create a 
single job that will be executed across all supported systems. 

Apart from the parallel run of a single job on multiple nodes, there is also a possibility to 
run multiple jobs on one node at the same time. Each job has its own workspace directory, 
which means that the jobs are independent. The number of parallel jobs can be set by the 
number of executors. By default each node has one executor. 

2.7.2 Jenkins as a build environment 

The Jenkins is nowadays widely used as a tool which performs nightly builds and tests. 
In Fig. 2.10 I depict a build pipeline. The whole process starts with the building of tools 

[67]. The Jenkins environment provides special types of jobs, for example a maven job for 
the Java projects. One of the biggest advantages of the Jenkins is the selection of the nodes 
where the job will be performed. 

Let me introduce the most important steps of the build. The build is a job in the 
Jenkins that is configured in an appropriate way. I use two kinds of job for the build, the 
multi-configuration job and the maven job. The jobs differ just in the execution step, 
otherwise they are very similar. 

The first important feature that can be configured is the job security. The job can be 
configured in a way that other users can just watch it or control it, etc. There are several 
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Build Pipeline 

Figure 2.10: The build pipeline 

plugins that modify the basic functionality of the Jenkins in this area. One of them is 
Matrix Authorization Strategy Plugin [52] and also very popular is a combination of the 
Folders Plugin [49] and the Role Strategy plugin [53]. A l l variants have advantages and 
disadvantages, but for a larger company a combination of folders and a role based access is 
more useful, although it is harder to configure it properly. 

A user can also set the names of the jobs that will be able to copy the artefacts in the 
configuration if the job stores any. Moreover, the job parameters can also be configured. 
In the Jenkins, there are basic kinds of parameters, such as boolean, string, text and new 
kinds are added by the various plugins. I can mention, for example, the B u i l d selector 

for Copy Artefacts or the Choice Parameter. It is also possible to use global parameters 
and parameters can be also passed from an upstream job. In this case, the local parameters 
are overwritten. 

Another extremely important part in the job configuration is the Source Code Manage­
ment. A l l version control systems can be added into the Jenkins environment via plugins. 
Let us have a closer look at the git possibilities in Jenkins. There are plugins for integration 
with git [41], such as Gitlab, Github and also GitBucket. There is also a possibility to 
utilize the git change log. However, the majority of functionality suitable for the majority 
of clients is in the Git plugin [50]. The plugins offer possibilites for advanced checkout and 
clone behaviour, have cleaning and polling routines and also offer possibility to checkout 
into a specific directory. However, I have experienced on Windows systems, that it has 
limitations when checking the various branches of the same repository. The git executable 
and permissions are configured in the global Jenkins configuration. 

Then there are the sections Build Triggers and Build Environment. In these sections, 
the user can configure a periodical build. This is useful especially for nightly builds and 
tests. Also the polling can be configured there as well as other actions, such as execution. 
What is extremely useful is the build abortion. There are several possibilities, such as the 
absolute timeout or the conditional timeout. Also the environment variables can be set for 
injection into the job. 

A very important part in the multi-configuration project is the Configuration Matrix. 
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The most frequently used axis is the one containing nodes. The user can define what slaves 
will the build be performed on. It is possible to choose Labels or Individual nodes. Also 
another axis can be added, such as an axis based on a version of the Java language. 

A l l the above mentioned sections can be considered a configuration. After these steps 
comes the build. The build is divided into the Build and the Post-build actions. 

In the Build section, the user can configure an execution or a conditional step. From my 
experience, it is better to configure the execution and do the conditional steps inside the 
scripts. There is also a possibility of executing other projects before the execution starts. 
The kind of the offered executors is affected by the installed plugins. 

The last part is called the Post-build actions. The possibilities offered here are wider 
than the ones in the Buid Step. It is possible to execute some clean up procedures and 
also wait for other projects until they finish the build. Very often, the job archives some 
artefacts and they can also be configured in this step, as well as the trigger of other jobs. 
Another wide area of the post build actions is the publication of test results. The Jenkins 
offers a support for all major formats, such as JUnit and others. There is also the Editable 
Email configuration that enables sending emails with various features. 

The job is stored in the xml format in the Jenkins. The extensions just bring the new 
marks into the existing jobs. 

Using the functionality provided by Jenkins, it is simple to automate the building pro­
cess. However, for large companies, it can be quite difficult to maintain all the jobs by 
hand. 

Especially in cases when the development of new features that need to be tested, it can 
be difficult to create new jobs that are needed for testing manually. So I will have a look at 
the possibilities of the job generation. 

2.7.3 Current possibilities of the job generation 

Let us have a look at the current development in the field of job generation. I can distinguish 
between two types of solutions. There are tools in the Jenkins that were designed for this 
purpose and then there are several works that try to deal with the problem of job generation 
outside of the Jenkins environment. 

First I will have a look at the solutions inside the Jenkins. One of them is the Template 
plugin [3]. V i a the template project plugin, the user can set up a template project, containing 
the settings the user wants to share. Is is possible to set, for example, V C S repositories that 
are common for the jobs or a script that should be executed and so on. Then it is possible to 
create another project from the created template inside the Jenkins. So the generation has 
to be performed manually by using the template several times. Therefore, the possibilities 
of the automation are quite limited. 

Another possibility provided by the Jenkins server itself is the Job generator plugin [2]. 
This plugin is based on the template, which is the job itself and the parameters, which can 
be global or local. This plugin is very powerful in combination with other plugins, such 
as plugin for the conditional resolution. However, it shows limitations in the form of what 
types of jobs can be generated and it cannot use time triggers. Moreover, it is very difficult 
to generate more complex jobs. The hierarchy and conditions can become very complex 
and the whole process is quite error prone. I also did not find a way how to set the desired 
nodes in the multi-configuration project. 

The most powerful solution from the Jenkins itself is the DSL plugin [1]. The dsl 
plugin offers the possibility of definition of the job, which will serve as a template. From 
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this template the Jenkins is able to generate other jobs. This is done via a special build 
step called Process Job DSLs. The build step executes the script in the Groovy language. 
This solution allows the user to perform basically any customization over the template. The 
Groovy language is very powerful. On the other hand, this solution is still within the Jenkins 
environment and can be affected by other plugins, which can cause problems. Moreover, 
the Groovy language is not very common and may require complicated settings. 

Now I will introduce several approaches that try to deal with job generation outside 
the Jenkins environment. Interesting ideas were proposed in the article at the Jenkins User 
Conference [61]. The article deals with the automation of testing in the area of robotics. 
The author uses combination of various Jenkins plugins for packaging and a static analy­
sis. Nevertheless, the process of the building and testing is very complicated and hardly 
maintainable. The author of the article proposes the use of the Domain Specific Language 
(DSL) for the specification of information and then generation of the Jenkins jobs. It seems 
that the author just uses the Jenkins for the building. However, the system seems to be 
slow and problematic as far as the synchronisation of the jobs is concerned. Also there are 
problems with the graphical side of the solution. 

Quite interesting ideas connected to the job generation are described in the Shaw article 
[89]. The article also introduces the possibility of job generation from templates and usage of 
the Jenkins command line interface. Nevertheless, the article does not provide any examples 
of the templates or the scheme how the system works. 

Above I have introduced several possibilities in the area of job generation. None of 
the approaches that were mentioned suit my needs. In our project, I need to generate all 
kinds of jobs, as it is crucial to test various aspects of the newly developed core. These 
aspects include the tests of various features that can be tied to very specific kinds of jobs. 
The approach mentioned in [61] seems to be interesting. For use in our research project 
it appears to be too cumbersome. A lightweight solution with the command line interface 
would suit my needs better. 

2.8 Disadvantages of the current state 

The area of the hardware software codesign is under rapid development and many solutions 
used in this field are unique. Currently, there is no suitable solution that would even remotely 
meet my requirements for a complex testing system for the automatically generated compiler. 

In the case of test-suites, I need to add the test selection mechanism because compilers 
have various restrictions. This very often leads to a large number of false negative errors. 
The designed compiler very often should not be able to compile certain tests. The test-suites 
are very often hard to scale. By scaling in this context, I mean the ability of the test-suite 
to execute a set of tests for a given platform that has certain properties. A very common 
test case is to execute a set of texts that are suitable only for 16-bit architectures. 

Also the different types of reports cause problems during the evaluation of tests. Each 
test-suite, except for the gcc one, has its own system of reporting errors and storing tests. In 
some cases, there is a possibility of storing temporary files but sometimes it is complicated. 

In the case of random generators, the usage is also complicated, as they usually provide 
test cases, which are very difficult to debug. I came across several solutions in this area, and I 
did not discover any way how to instrument the generators to focus on certain constructions. 
Also the development in this area is slowly dying out. Overall I can say that they are not 
meant for use in the area of embedded systems. 
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Due to the situation described above, companies in this field have to develop their own 
solutions. They usually do not publish the testing methods they have developed and use 
them internally. In the thesis, I will try to sketch the practices that help to improve testing 
of an automatically generated compiler and also give comparison where possible. 

As far as compilers themselves are concerned, we saw that a modern compiler consists of 
many interconnected parts, which are very error prone. Thanks to the study of the compiler 
internals, I now have a very good insight into compilers and can focus on testing. From 
the research it is clear that the testing approach must be very easy to modify because the 
release cycle of the L L V M is quite swift and I will very often need to test various versions 
of the compiler in the shortest possible time. 

To perform the testing, I will use a continuous integration server. I have chosen the 
Jenkins environment as it suites my needs the best. It provides the ability for various 
builds. There are also other solutions that provide better functionality in certain areas, but 
in this case the whole is more than a sum of its parts. No other environment provides all 
the desired functionality. 

The user must have the support of the C compiler library. Without it, the number 
of constructions that can be tested is very limited. So far, there has been no automatic 
or semi-automatic process of porting of the library that would be suitable for the area of 
hardware software codesign. 

Nevertheless, the techniques themselves are not sufficient enough. There also has to be a 
correct release cycle that has to be adhered to. Because the technique can be exceptional but 
when we do not have enough time for practising the technique, it is useless. In companies 
there usually is not enough time for the testing of the software. This thesis will also take 
into account the model of the release cycle, sketch what the key milestones in keeping the 
quality of the compiler are. I believe that only by combining the proper techniques with 
the correct model of the life cycle, we can reach the desired results. 
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Chapter 3 

Lissom project 

In this section, I will describe the Lissom research project [63], which creates the background 
for the testing methods that are described in this thesis. The Lissom project started in 2004 
and is located at the Brno University of Technology, Faculty of Information Technology, 
Czech Republic. 

The Lissom project has two main areas of interest. The first one is the A D L called 
CodAL, for the ASIP description. The description of the language can be found in detail 
here [70]. 

The second scope of the project is the generation of the full toolchain from the description 
in the A D L CodAL language. The generated toolchain contains the C compiler, assembler, 
linker, disassembler, two types of simulators (instruction and cycle accurate), the debugger 
and a few other tools. As the language is designed for description of the ASIP, the scale of 
processors that can be described without modifications made to the language is vast. 

However, there is also another way how to utilise such a language. It is the use for 
description of architectures that already exist. Therefore, I can model architectures, such as 
MIPS [98], A R M [10], RISC-V [86] and many others, in the CodAL language. The generated 
toolchain or just separate tools can be used as a replacement of the existing tools when they 
are not in a good shape. This fact offers large possibilities when the core is upgraded and a 
new toolchain is needed. Also for certain cores, some of the tools might be missing and by 
designing the given architecture in the A D L , the missing tool can be easily generated. 

3 . 1 C o d A L Language 

The CodAL language falls into the category of mixed A D L s . This means that the language 
is able to describe the architectural information needed for the generation of the C compiler 
and, at the same time, to provide information about micro-architecture, which is needed for 
the generation of the hardware. 

The CodAL language is special for the fact that the description of the core is created in 
two levels of abstraction. 

• instruction accurate, 

• cycle accurate. 

The first one, the instruction accurate, is on a higher level of abstraction. This descrip­
tion is very simple and it is written in a C-like code. It describes the instructions. The 
addition of the instructions is very straightforward and for an experienced user, it takes 
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only several minutes to create the first version of the core with few instructions for which 
the basic tools, such as an assembler and simulator, can be created. The designer can fully 
focus on the instruction set without considering the complicated micro-architecture. From 
this level of description, the user is also able to generate the C compiler and the profiler. 

The cycle accurate model is more complicated. On this level, the micro-architecture 
is described. Things, such as pipeline, hazards, etc. must be taken into account. This 
description is taken as a base for the synthesis. This level of abstraction gives the user a 
possibility to generate the description in the hardware description language, the functional 
verification environment, the simulator, the assembler and the profiler. 

There is a large number of files that are common for both descriptions and these files 
are shared between the descriptions. There might be several equivalent descriptions on the 
cycle accurate level that correspond with one instruction accurate model. This is logical, as 
the instruction set must be the same, but there might be several hardware variants that are 
optimized for the speed or power consumption. 

The system of two descriptions is also suitable for the automatic equivalence checking. 
Nowadays, advanced verification techniques are used for this task. The instruction accurate 
description is used as the golden model and compared to the cycle accurate one. The sim­
ulator is generated from the golden model and the hardware description is generated from 
the cycle accurate model. After the execution, the content of the memory and registers is 
compared. The verification environment is in detail described in the paper on functional 
verification [91] and in the thesis [90]. I will not give a detailed description of the cycle and 
instruction accurate models in the thesis as it is not needed. 

3.2 Toolchain 

As I have mentioned before, the automatic generation of the full toolchain is one of the two 
main tasks of the Lissom project. The generated toolchain contains all tools known from 
other toolchains but it also contains specific tools. 

The toolchain that is described below creates an entry point into the testing of the 
compiler. The generation itself is very often also a part of the testing. Moreover, the 
toolchain stands as a prerequisite for the tests of the compiler. 

A l l the tools are generated from the description in the CodAL language. At the be­
ginning, the model in the CodAL language is validated and compiled. The result of the 
compilation is the X M L representation of the model. The X M L format was chosen inten­
tionally as there are other tools that use this form and there is also a large number of 
generators and parsers working over the X M L . 

Once the X M L is created, there are two tools working over it. These tools are the 
toolchain generator, called also toolsgen, and the semantics extractor or semextr. This 
approach is depicted in Fig. 3.1. Please note that the scheme was simplified and does not 
contain all the generated tools. 

The toolchain generator produces tools, such as the simulator, the assembler, the de­
bugger and so on. The tools that are generated by the toolchain generator consist of two 
types of files. Both types of files are compiled and linked together. 

1. The files that are platform independent are the same for all architectures. Into this 
category fall user interfaces with parsers of the command line arguments, or in the 
case of aprofiler, the generation of the graphical output. 
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2. The files that are automatically generated, such files contain platform dependent infor­
mation. Into this category fall the instruction decoders in the simulators or assembler 
printer in the C compiler. 

The second tool is the semantics extractor. This tool was thoroughly described in the 
dissertation thesis [47]. The semantics extractor is the prerequisite for the compiler gener­
ation and also decompiler that is described in the thesis [54]. 

The semantics extractor is used for the extraction of the semantics, assembler syntax and 
binary encoding of each instruction. It uses sections assembler, binary and semantics 
[47]. The information extracted from the section semantics is transformed into an L L V M -
IR like code that describes the behaviour. The information from the sections assembler 
and binary is used to get the assembler syntax and binary encoding. Below there is an 
example of the extracted semantics for the nop instruction. 

i n s t r i_nop_halt__opc8_nop__, ok (0), 

{ >, 
nop () ; 

"nop" , 

ObOOOOOOOOOOOOOOOO , 
II II 

) 
" e l : i _ n o p _ h a l t ( e l : o p c 8 _ n o p ) " , 

" c l a s s _ b a s i c " 

The extraction of the semantics is possible only from the instruction accurate model. 
The extraction from the cycle accurate model is not supported. The information for the 
semantics extractor is contained in the suitable form only in the instruction accurate model. 
Therefore, if the user wants to get the toolchain together with the hardware it is necessary 
to create instruction accurate as well as the cycle accurate model. 

Once the file with the extracted semantics is created, it is used by a tool called back-
end generator. This tool creates the only platform dependent part of the C-compiler, the 
backend. The rest of the compiler, the frontend in this case the Clang and middleend, the 
optimizer are platform independent. The backend part of the compiler uses the information 
from the semantics extraction for pattern based matching for the most suitable instruction. 

Also other tools can be generated. One of the basic tools is the assembler. In this case, 
the assembler is not special in any way. It takes the input in the assembly language of the 
given ASIP and produces the output in a form that is suitable for the standard linker Id. 
Nevertheless, the output format of the assembler, which is the input of the linker, contains 
non-standard enhancements. 

Also some of the tools can be generated from the cycle, as well as the instruction accurate, 
model and this fact is not reflected in the scheme. 

The tool that is inverse to the assembler is called the disassembler. The disassembler is 
used for the translation of the binary file back to the assembler representation. It is used 
when no description in the higher programming language is available. The code produced 
by the disassembler is more difficult to read than any code produced by the programmer, 
even in cases when the original code was also produced in assembler. The tool can be useful 
for the debugging. 

There is also an application which is called the randomgen. This tool works over the 
extracted semantics, but over a different kind. There are several types of extracted semantics 
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Figure 3.1: Scheme of the toolchain generation 

that are used for various generators. A random generator is able to generate valid random 
assembler applications. These applications are typically used for the functional verification. 
The programs can be simulated but it is not guaranteed that the exit code of the simulator 
will be correct. However, the content of the memory and registers must be identical, despite 
the used tool. The user can specify the number of lines of the generated programs. It is 
also possible to set how many applications should be generated. 

Three types of simulators can be generated, the instruction accurate one, the cycle 
accurate one and the Q E M U simulator [85]. Each of the simulators has a different area of use. 
They largely differ in speed. The fastest of them is the Q E M U simulator. The instruction 
and cycle simulators are generated from corresponding models. The Q E M U simulator is 
the fast instruction accurate simulator and needs information from the instruction accurate 
model. 

The Q E M U is in fact a virtual platform. In our simulator we use just a fraction of the 
Q E M U functionality. The Q E M U creates a virtual machine in the computer that emulates 
the C P U . 

The slowest of the simulators is the cycle accurate one. However, the cycle accurate 
simulator is as close to the hardware as a simulator can be and, therefore, it can provide 
information that cannot be obtained from any other simulator. The use of the simulators is 
given by the characteristics. The QEMU simulator and the instruction accurate simulators 
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are used for benchmarking and larger software programs. In the cycle accurate simulator, 
it is possible to get the number of cycles and other characteristics that are needed when the 
design is going to be put into real hardware. 

The instruction and cycle accurate simulators can be configured to generate profiling 
information. The Q E M U simulator does not have this ability. There are two levels of 
profiling. The higher level of profiling information can be gathered from the instruction and 
cycle accurate simulators. When I want to get low level profiling information, I need to use 
the cycle accurate simulator. The information is saved into a file and can be processed by 
the profiler. 

A l l the tools I have described above can be generated with various optimizations and 
the verbosity can be set from 0 to 3. The zero level is the silent mode. When the user 
chooses level 3, it prints the maximum amount of information from generation and runs of 
the specific tool. 

Profiler is a tool that is used for the dynamic program analysis. It gathers information 
about the memory, complexity, usage of the particular instructions and the frequency and 
duration of function calls. The profiling information is used for the program optimization. 
In our case, the profiler is also generated and can be generated either from the cycle or an 
instruction accurate model. The information from the profiler is visualised in the special 
view of our tool. 

The exported libraries can also be part of the toolchain. Currently, it is possible to 
export compiler-rt for the 16 and 32-bit processors. The Newlib library can be exported 
only for the 32-bit processors because the support for the 16-bit is very limited. 

The structure of the exported toolchain is in the example below. 

t o o l c h a i n 

I -- bin 
I |-- urisc-assembler 

I | - - u r i s c - 11c 

I |-- u r i s c - c l a n g 

I |-- u r i s c - i s i m u l a t o r 

I +-- . . . 
I-- l i b 

I | -- clang 

I | +--include 

I | |-- l i m i t s . h 

I | |-- stdarg. h 

I I + - - . . . 
I |-- libcomp . a 

I -- newlib 

I |-- l i b 

I | |-- crtO.o 

I | |-- l i b c . a 

I | |-- libnosys . a 

I I + - - . . . 
I +-- include 

I -- contrib 

I -- l i b c . s o 

I - - l i b d l . s o 

I -- l i b z . s o 

+-- . . . 

The structure above is quite clear. A l l the binaries are in the directory bin. The 
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directory l i b contains the libraries, mainly the compiler-rt, which is called libcomp. a, which 
is optional, it does not have to be a part of the toolchain. The directory newlib contains 
the exported Newlib library, which also does not have to be included. Both directories, l i b 
and newlib, have the subdirectory include, which contains the header files. 

The directory contrib is also part of the toolchain. In this folder, I keep the files that 
are needed for the proper functionality of the toolchain. Typically the shared libraries are 
kept there. The libraries are taken from the system and this step helps to keep the toolchain 
partly system-independent. 

In our project, we have the IDE based on Eclipse. It is basically the client who is able to 
visualise and launch all the tools. It is a thin client that contains the editors, configurations 
and many other functionalities. There are editors for all the formats which are supported. 
This includes the CodAL language, the assembler, C language and several others. There 
are also various configuration tools and browsers for the help, which are embedded in the 
IDE. 

The environment also contains several perspectives, which help the user in various stages 
of the development. A perspective is a special kind of a window, which is customised for 
the display of a certain kind of information. There is the basic perspective used for editing 
of various files, the debugging perspective and profiling perspective. However, it contains 
minimum functionality as far as generation is concerned. 

As the generation of all the tools is concerned, it is the task for the command line. This 
division allows the user to work completely without the graphical interface. I can say that 
the IDE provides the subset of the command line functionality. 
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Chapter 4 

The goal of the thesis 

This thesis is focused on finding new attitudes to testing of the compiler and the whole 
toolchain for the hardware software codesign. The current ways of compiler and toolchain 
testing are not in many areas tailored to fit the rapid development of the ASIPs. Moreover, 
I need to keep in mind that this system will also be used in a commercial company so I need 
to pay special attention to the usability. The attention will be paid mainly to these areas: 

1. Raise the number of tests that can be used for testing. The number of constructions 
that can be used for the testing purposes is very limited. Without the standard C 
library a very limited subset of the C language can be used for testing. The author will 
try to increase the number of programs that can be used for the testing by choosing 
a suitable C library and by semi automatic porting on various cores. 

2. Develop a test selection mechanism. As I test various cores, which are not interchange­
able, I need to have a very good test selection mechanism. I need to have a simple 
form of enabling and disabling either tests or whole dictionaries. This approach should 
have a high level of automatism. Also the deployment of generator would be welcome. 

3. Accelerate the whole process of the testing. The testing, especially when I need to test 
for various operation systems, can be very time consuming. I need a way to speed-up 
the process of testing. I will examine the process of testing and try to find a way 
how to pre-build certain parts of the toolchain and, if possible, I will also inspect and 
speed-up the creation of the nightly builds. 

4. Develop a way of automatic generation of the jobs based on test parameters. The 
execution of tests is nowadays performed by continuous integration servers. Never­
theless, because I need fast and flexible management of the jobs, I need to provide an 
automatism for generation and upload of the new jobs to the continuous integration 
server. 

A l l the mentioned goals and techniques will be tested and evaluated for several cores, 
which will vary in size, power consumption and complexity. The experimental results will 
be taken from these cores where possible. The solution will be used on various operation 
systems at least on the Windows and Unix platform, so the implementation language will 
have to be chosen with respect to this condition. 
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4 . 1 Solution phases 

For the first point, I will try to find a suitable C compiler library that will enable the use of 
tests which are dependent on the calls of the library functions. I will also try to automatize 
the porting process as much as possible to keep the porting process for the new core to the 
minimal extension. 

As far as the second point is concerned, I have demonstrated that, while there are various 
sources of the testing programs, the mechanism that would help with the selection of the 
tests is missing. I will propose a test selection mechanism that will be lightweight and 
will allow simple addition of the new test. It should also support the generation in a way 
that, once the new platform needs to be added, the corresponding files which provide the 
functionality of selection can be generated. 

The third point deals with the speed of testing. From the presentation that was described 
at the beginning of the thesis, it is clear that developers are interested in deploying the new 
build several times a day. Hand in hand with build process goes the testing process. I 
will try to find a way of accelerating the testing process within the continuous integration 
environment by pre-generating the files that are needed for testing. V i a the generation, I 
should be able to achieve time, space and traffic savings. 

The last point is closely related to the continuous integration systems. In the section 
of the related work, I have discussed the current possibilities of the job generation. It is 
apparent that this area is not very popular as there is not much happening. Articles that 
discuss this area are very few. I will introduce the generator of the jobs that will work over 
a set of templates and will have the ability to generate a wide range of jobs. 
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Chapter 5 

Porting of the C library 

The first part, which is needed for automatic compiler testing of processors for embedded 
systems, is the support of the Newlib library [26], [32],[30]. The variety of programs that 
can be created without the support of the standard C library is very limited. Therefore, 
the availability of the library is crucial and its position in the process of testing is unsub-
stitutable. I have worked on the first version of the Newlib port that will be described 
here. 

5 . 1 Theory of Porting 

The main reason for porting the library on the new platform is the fact that I need to add 
support for the call of the C functions. To be precise, I want to use the libc functions, such 
as p r i n t f , malloc, free, etc. in programs that will be used for testing of the compiler. 
And because I do not possess the development kits for all the platforms, I use simulators 
instead. Therefore, I must add the new platform into the Newlib library and our simulators 
must know how to deal with the Newlib library calls. If one does not grant libc library 
support in the simulated environment, the number of constructions which can be used and 
tested is very limited. Consider the following simple example written in C: 

int main(int argc , char **argv) 

{ 

if(strcmp("alpha","beta")==0) 

{ return 1; } 

else 

{ return 0;} 

} 

Even this simple program can hardly be executed because it uses the function strcmp 
that is part of the standard C language library. This program cannot be compiled, unless 
the file of string.h is included and a possibly some other header files are included also. 

On the contrary, the main aim of the testing process is to cover as wide area as possible 
and also to try as many different combinations of the function calls as we can. However, this 
goes against the idea of embedded solutions, which are usually specialised in just one single 
area. Furthermore, because I focus especially on the embedded systems, I do not even try 
to cover all the functions provided by the standard C language library, which is in my case 
the Newlib. In fact I will use and therefore test only those functions that can run under the 
simulated environment and are useful for the programs that will be executed on the given 
platform. Moreover, the embedded systems are not designed for the use of the vast number 
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of constructions that the programming languages offer these days. Typically there is just 
one task, usually quite a complicated task, which is launched repeatedly. However, during 
the design of the chip it is often unclear what part of the library will be needed, so I will 
have to port the whole library and reduce the size later if it is necessary. There are certain 
areas that are more likely to be removed from the library than others, for example: 

• threads - I assume that in simple programs for embedded systems one will not use 
threads. 

• locales - A l l the locales were removed from the library. 

• inet module - Even though networking plays an important part in modern embedded 
systems, in some cases the module can be disabled. 

• files and operations with files - Certain simple application do not need interface for 
working with files. 

Now I will introduce important parts of the library. Simply said, all that really has to 
remain from the library are the sysdeps. The sysdeps are the core of the whole system 
(how to allocate more memory, etc.), then important modules, such as stdio, which takes 
care of the outputs and inputs, and other modules I wish to preserve. In this case, I wished 
to preserve the following parts of the Newlib library: 

• stdio - This is one of the main reasons for porting the library, which is to get in human 
readable form output from the simulator. 

• module for strings and memory - In many applications I would like to use functions, 
such as memcpy, strcpy, strcat, etc. 

• memory functions - For example malloc, free, realloc, 

• abort and exit. 

• wchar support - But without the support of different encodings. 

Some parts of the library could not be removed because of the dependencies. According 
to my estimations, nearly 40 percent of the library was disabled or removed, measured by 
the size of the library. 

Program Newlib Simulator Program Newlib p Simulator 

^= 
Operation System Hardware Operation System W Hardware 

Figure 5.1: Position of the Newlib 
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There are several ways of building the library and also different methods of using it. 
There is a possibility of building the Position Independent Code PIC. Even though this is 
an interesting solution, I decided against it. Instead of the PIC, I am going to compile the 
library into a single object and then link it to the program. The scheme of the position of 
the Newlib in testing is in Fig. 5.1. 

Now let us return to the functions that remain in the library. The functions can be 
divided into two groups. The first group consists of functions that are completely serviced 
within the simulated environment. For example, the function strcmp falls into this category. 
This function and its declaration remain unchanged within the simulator if they are written 
in the C language that does not require any changes. These functions are not tied to a 
kernel header files, so there is no need to change them. 

The second group of functions consists of functions that are translated to the call of 
system function. The function printf can be used as an example of this group of functions. 
The call of printf function can be divided into three phases that are illustrated in the 
following picture 5.2. 

printf — > Write 

> f 

Operation System 

Figure 5.2: Scheme of the printf function call 

At the beginning, the call of the printf function is translated to the call of a system 
function, with the highest probability it is going to be the call of the function write. Write is 
the function call, that is serviced by the operation system, and hence is system dependent. 
But as I want to use the simulator on the U N I X platform, as well as on the Windows 
systems, I have to get rid of these dependencies. To do so, I will use the special instruction 
principle. 

5.1.1 Use of ported library of U N I X and Windows systems 

Before I get to the principle of the special instruction method, I should explain why I need 
to use this method. The main reason why I should oust the dependencies on the kernel 
header files is the fact that I must be able to use the library under U N I X systems and also 
under Windows like operation systems. 

As long as I use the library under U N I X systems, everything should be all right. Though, 
even on U N I X systems there might be differences between the different versions of the header 
files. But once I use the Windows based system, I cannot use header file functions anymore. 
It would almost certainly result in a crash of the system. 

In our project, I currently support several U N I X distributions as well as the Windows. 
The use of other operating systems is not considered. 
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5.1.2 Special instruction principle 

The special instruction principle means that I will use an instruction with the OPeration 
CODE, opcode that is not used within the instruction set for a special purpose. So far all 
architectures that were modelled within our research project had several free opcodes. It is 
typical that the instruction sets do not use all operation codes which are provided. But in 
the case of no free opcode, this method cannot be used. The special instruction principle 
will be used for ousting the dependencies on the kernel header files. 

Functions provided by the operation system are triggered by the syscall mechanism. 
The system calls can be quite easily detected. Each library should have defined the syscall 
mechanism in a special source file. This syscall mechanism differs, as they usually are 
platform dependent. So i386 architecture will have a different syscall mechanism from the 
A R M [10]. 

I wish to preserve the mechanism. The syscalls will remain in the library, but with 
different meaning. The file containing syscall will be changed in the following way: at the 
beginning, the parameters of the syscall will be placed at the given addresses in the memory 
and I will also define where the syscall return value will be stored. Afterwards, the call 
of the chosen instruction will be performed. It is also possible to put the parameters into 
registers, but some platforms have a limited number of registers, therefore, this method 
could cause problems. 

The syscall mechanism is in fact a wrapper of the system call. The call will be passed 
to the simulator that will do the call and return the result. 

5.1.3 Simulators 

As was described above, all simulators are generated automatically. At the beginning, the 
source files are generated by specialized tools. When the generation phase is finished, the 
simulator is build by the Makefile from the automatically generated files and also from the 
static files. It will be necessary to add the following information into this process: 

• Information about which instruction calls the system function. 

• The simulator will have to know the convention for storing parameters. 

• The simulator will have to recognize which system function is going to be called. 

• The simulator will have to perform the call of the correct system function. 
The first three points will be solved within the model of an instruction set. The in­

struction with the opcode that is not used will be declared. The instruction behaviour will 
be defined in the following way: according to the parameters it will call the given system 
function. The simulator will have to recognize the system it runs under, and call the cor­
rect function. For example, on the U N I X system it will be the function write and in the 
Windows the WriteFile. This problem should be solved by the libc library of the given 
platform. The call of a special instruction is demonstrated in Fig. 5.3. 

The parameters that were placed at the given position at the simulated memory can 
remain unchanged. They will be later passed to the specific system call. One important 
issue is connected to the simulated memory. As I would like to correctly simulate the 
operations with memory, such as malloc, realloc, etc., I need to tell the simulator how 
much memory it can simulate. This will be done most probably by a special file that will be 
passed to the linker. This file will contain symbols, which will declare how much memory 
can be used. 
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Call of 
Special Instruction > System function 

identification 

> f 

Call of System 
fuction 

> f > t 

Windows Linux 

Figure 5.3: Scheme of the system call 

5.2 Process of porting 

In the early stages of the Lissom project, I had to use other than the automatically generated 
compiler for the building of the Newlib library. It was mainly because of the fact that the 
generated compiler was not stable enough. Nevertheless, in the latest releases it is possible 
to use the generated compiler. 

Several issues, which I faced during the process of porting, were closely related to the 
buildsystem of the library. The library contains a system of makefiles. This system is 
hierarchical and usually the makefiles from the upper levels are included. If, for example, 
I would like to compile any test examples that are included in the Newlib, I switch to the 
given directory and call make. This will call all the makefiles from the above directory. This 
is very effective because only the makefile in the root directory contains variables defining 
which the compiler, assembler and linker will be used. On the other hand, it is very difficult 
to modify this system when I want to build the different parts of the library using different 
tools. 

Currently, I am using the set of our tools containing the archiver, linker, assembler and 
compiler for the development. The currently used compiler is called the prefix-clang. The 
prefix stands for the given architecture. It is an automatically generated compiler from 
a model description. The linker and archiver are not generated automatically but were 
developed within our research project. 

I have spent quite a lot of time on tuning our toolchain. Our toolchain is based on 
tools from the L L V M framework and uses also the G N U binutils. It is consistent with the 
majority of flags that are accepted by the gcc. 

The system used for building of the library starts by parsing the configuration file and, 
according to the content of the file, different macros and variables are set. When doing 
manual changes to the system used for building, I have basically two possibilities: 

• to change the configuration file 

• or to do the changes later in the Makefiles. 
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The first possibility is cleaner but the Makefiles often check if the option is present in 
the configuration file and ends with an error when the option is missing, therefore, it is 
more convenient to do the necessary changes in the Makefiles. Thanks to the hierarchical 
structure, it is in most cases sufficient to do the change in just one place. 

In the beginning of this section, I have mentioned the need to link special file containing 
information how much memory can be used. The file will contain symbols defining the 
beginning and the end of the memory space that can be used. It will have the following 
syntax: 

# f i l e d e f i n i n g memory boundaries 

define s t a r t 256 

define stop 768 

Given that the numbers are in kB, the simulator can simulate up to 512 kB of memory. 
Character # used in the first line denotes comment. 

As far as the convention for storing parameters is concerned, I have chosen the following 
approach: the first parameter says which system function is going to be called. In the Newlib, 
there is a list of system functions for the U N I X systems and I have added also the names 
of the functions for Windows systems. The rest of the parameters (2-7) are parameters, 
which are passed to the function call. The parameters remain unchanged. They are passed 
to the system function in the exactly same state in which they were saved in the memory 
before calling the special instruction. The special instruction itself has no parameters. 
When the instruction is called, all the parameters have to be stored in the memory at the 
given addresses. The simulator takes the address that is passed as a parameter and has 
the knowledge of the structure so then it is easy to find the corresponding parameters and 
perform the call. 

5.2.1 First time porting 

As for the first time, all the steps were performed manually. In the future, I would like to 
automatize this process as much as possible. Without doubt I could remove the needless 
parts of the library automatically. The needless parts would be identified in the configuration 
file and also the special instruction principle could be highly automatic. If I have a spare 
instruction, I will choose it and compose it into the simulator. Unfortunately, there are 
steps that need to be performed manually. For example, I need to provide the runtime for 
the simulators and the corresponding sections need to be specified in the CodAL file. 

The runtime is also one of the files that are written manually in an assembly language. 
There are also other files written in the assembly language and are, therefore, platform 
dependent. In the case of the MIPS platform, there were eight files that contained the 
assembly language. For example, the syscalls or memcpy functions are all implemented 
in the assembly language. In order to minimize the number of files written by hand, I 
decided to provide as much files written in the portable C as possible. I managed to replace 
many files by the C implementations. A l l that has to be provided is the runtime and the 
syscall mechanism together with the supporting files. 

5.3 Automation of the porting process 

By default, the Newlib uses the system of make as was mentioned above. I have put quite a 
lot of effort into the automation of the whole process [27]. The Newlib library was modified, 
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so it now uses the CMake system. It was divided into two parts that are placed in separate 
directories. One part is common for all platforms. This part is placed in the directory called 
the newlib. The directories that contain platform dependent files are stored in the directory 
with the model. This is done in order to have all the platform dependent files in one place 
in the strictly given directory structure. 

Let us have a look at the platform dependent files. Strictly spoken, the directories 
do not contain only platform dependent files. There are also files that are the same for 
all the platforms but the division is done on the level of directories and not on the level 
of the files themselves. The directories that are kept together with the model are the 
directories libgloss and the directory newlib, this is the subdirectory of the directory 
newlib mentioned the paragraph above. 

While the directory newlib contains mainly header files with various settings and def­
inition of the setjmp.S, the directory libgloss takes care of the syscalls handling. The 
syscalls are very important for our project because this mechanism allows us to get the 
information in and out of the simulator. I will focus on the way how to automatize the 
process of syscalls creation. 

There are several ways how to cope with the syscalls porting. After I gathered all the 
necessary information about what syscalls are necessary for the simulation and tried several 
ways of implementation, I found out that only a very small part of the syscalls must be 
written in the assembly language. The rest can be written in the C language and that 
makes the code platform independent. The Newlib defines 20 syscalls but I need just 6 of 
them. 

Nevertheless, the rest of the syscalls could be implemented in the same way as the six 
supported ones. The syscalls are defined in the header file and have numbers from 1 to 
20. The first six are the supported ones and the rest of the numbers is assigned to the 
unsupported ones. 

For the syscalls themselves, I have defined the structure called params. This structure 
contains the parameters that are needed for each syscall. This structure slightly varies 
depending on the actual syscall. But it is written in the C, which makes it also platform 
independent. What is only written in the assembly language and is, therefore, platform 
dependent is the PERFORM_SYSCALL function. In fact it is not a function but a multiple line 
macro defined in the inline assembler. Let us assume that a multiple line macro can have 
the following form: 

define PERFORM_SYSCALL(ADDR) \ 
__asm__( "REGrl = add REGO.'/.O" : : " r " ( ADDR) ) ; \ 
__asm__( "syscall"); 

This macro is not taken from any existing processor. I have defined it just for the 
model purpose. Now let us have a closer look at the macro itself. This macro takes only one 
parameter. The ADDR parameter is the address of the structure that contains the parameters 
of the syscall as mentioned above. This address is assigned to the register that is used for 
passing of the parameters. This register can be specially marked as it is often used for passing 
of parameters. Then there is the special syscall instruction, in this case it has the name 
syscall. These two lines can be determined from the description of the core performed 
in the CodAL language. I will propose a way how to create the macro semi-automatically. 
Consider that the PERFORM_SYSCALL macro itself is a template. The necessary information 
can be filled into this generic template before the compilation time of the library. First let 
us have a look at the syscall instruction. I simply scan the model for the instruction that 
bears this name. If the instruction is not found, I search the model for the construction in 
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the following form: When this construction is found, I use this instruction in the second 
line of the multiple line macro. Please note that in this case, the instruction does not take 
any parameters. If this instruction was parameterized, I would determine the parameters 
from the syntax. Nevertheless, this instruction does not have to be found. In such a case, 
the template would be incomplete and an error should be reported. The process is shown 
in Fig. 5.4. 

Model description Extracted information Model description Extracted information 

> 1 

Template Newlib file Template W Newlib file 

Figure 5.4: Scheme of Newlib file generation 

As far as the first line of the macro is concerned, I need to assure that in the register, 
which is used for passing the parameters, I assign the address of the structure with the 
parameters. So I search the model for the instruction add or instruction with similar func­
tionality. In the syntax section of the instruction, I find the actual form. Then I find the 
register for passing parameters in the model that also bears special description. From these 
parts of the information, I should be able to put together the first line of the macro. This 
approach works for standard architectures. But there may occur architectures for which 
there might arise difficulties. The Newlib library, in the current version, supports only 
32-bit architectures. 

5.4 Experimental results and contribution 

For having a comparison with commercial compilers, I tested the automatically generated 
compiler with the commercial Perennial test-suite. The results described here were gained 
from the generated MIPS and Codasip uRISC compiler. The testing was performed on 
a complete toolchain. The tests were compiled by the generated compiler and afterwards 
executed the tests on the simulator which was also automatically generated by the tools 
from our project. I have only a part of the Perennial test-suite. I used only tests that 
examine the core of the compiler. I excluded some of the tests that cannot be compiled 
due to the header files dependencies, which I do not support. The tests in the test-suite 
are divided into groups according to the chapter of the standard that is tested. I use tests 
for the clauses 5 and 6. I have mainly tests for the standard C90 and several tests for C99 
standard. The results are summed up in Table 5.1. 

In Table 5.2, I present the testing results with and without the presence of the C 
library. It is apparent that not only the number of tests is lower without the library but 
also the number of failing tests is very small. The presence of the library provides a better 
opportunity for debugging of the code and triggers more errors. 

The solution also brings a higher level of automation into the testing of the automatically 
generated compiler. I have introduced methods that simplify the porting of the library to 
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Core Tests without C library Tests with C library 
MIPS 797 
Codasip uRISC 804 

1680 
1688 

Table 5.1. Comparison of number of tests. 

Core Failing Tests without C library Failin g Tests with C library 
MIPS 2 
Codasip uRISC 0 

19 
8 

Table 5.2. Comparison of failing ; tests. 

the newly developed cores. The porting of several files is no longer needed. Now I only 
need to write a few files in the assembler language, which is far less time consuming. This 
is demonstrated in Table 5.3. 

Core Number of files that must be ported 
MIPS with automation 2 
Manual porting without automation support 6 

Table 5.3. Comparison of number of ported files 

I have chosen the comparison based on a number of files. I could also compare porting 
times. But the porting time depends on the experience of the developer, complexity of the 
model and many other things. Nevertheless, the time needed for porting has been shortened 
from days to hours. 

Amongst the biggest contribution I can place the following things: 

• enlargement of the number of tests - Without the support of the C library, it is possible 
to test only a very limited set of tests, in my case the number of tests was increased 
three times. 

• speed-up of porting - The library was rewritten in a way that it enables far faster 
porting for new cores, the number of codes which have to be written by hand has been 
significantly reduced. 

• higher level of automation - The code that is common for the majority of the cores 
was introduced, as well as additional scripts for build automation and creation of the 
library, providing a higher level of automation than before. 

• larger number of failing tests - It is often very difficult to trigger bugs without the 
support of the library, so it enables better test coverage and triggers a larger amount 
of errors that help to keep the compiler in a good shape. 

The porting of the Newlib library and topics connected to the porting were published in 
the articles [26], [32],[30]. The articles describe the process of porting and its automation 
together with the results. 
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Chapter 6 

Tests selection 

As was mentioned in the section which discussed the test-suites, one of the weakest points, 
which does not suit my needs, is the test selection mechanism. I have decided to create a 
test selection mechanism that suits the needs of the testing system for the hardware software 
codesign [30]. It will form the content of the following chapter. 

6 . 1 Test selection scheme 

The test selection scheme that would be suitable for use in our project must fulfil several 
criteria. First of all, it must be independent of the source of the test, so it will be applicable 
for as large a number of tests as possible. It also must be robust enough and lightweight at 
the same time, so it should be simple to modify the tests I already have and addition of new 
tests must not be difficult. It should not only work for tests from the regression test-suites, 
but should also be applicable to tests from random generators. 

6.1.1 Test selection phase 

As I have a large amount of tests from different sources, I need a universal approach that 
will define which tests are suitable for compilation and execution on the given platform. 

I have created a system of files, which restricts the number of tests that can be compiled 
on the given platform, based on the libraries that are available. The libraries are just one 
of the test selection criteria. Other characteristics are also taken into account, for example, 
the size of the registers or the size of the stack. 

Currently supported features which can be used for the test or directory selection are: 

• architecture - Certain tests or directories can be disabled for the given architecture. 

• libraries - Tests can be disabled if a certain library is not present. 

• bit width - Test selection according to the bit width. 

• level of description - Often some tests, containing system calls, cannot be used for a 
cycle accurate model. 

• purpose of compilation - Some directories are disabled, for example, for functional 
verification. 

61 



The naming convention for the files, which are used for the test selection, is very simple. 
The file bears the same name as the test does but it has the suffix .x, instead of .c or 
any other. The system is a hierarchical one. It is possible to have a hierarchy because I 
support nesting of the directories and I keep the .x files not just for the tests, but also for 
the directories. In the case of directory, the selection file has the same name as the directory 
with the .x suffix. 

These files possess as minimal functionality as possible. I try to keep their size minimal. 
The typical functionality of the file is that, based on the value of the flags, the test is 
excluded from testing. I should say that implicitly all the directories and all the tests are 
selected for testing. So, if I want to exclude the tests, or whole directories from testing, I 
have to indicate this. 

As the size of the files is kept minimal, the functionality and flag settings must be done 
in another place. This functionality is kept in the main testing module. The functions that 
check the current state of the flags and control what libraries are accessible for the linking 
to the given platform are declared here. The centralization has a purely practical base in 
this case. The typical usage of the . x files is that I disable testing of the whole directories 
according to the libraries that are accessible. The . x files can also bear other functionality. 
It is possible, for example, to set different variables. I can specify flags that should be added 
to the compilation or add some files to the linker as in the following example. 

i f [ "$C_LIB" == "0" ] ; then 

FILE_DEPS+=crtO.o 

f i 

On the level of files, I most often use the .x files for filtering the tests that depend 
on compiler-rt library for the given platform. The compiler-rt library provides software 
implementation of the float and double operations. Usually only a few tests in the given 
directory depend on compiler-rt and the dependence does not have to be the same for all 
platforms, the best solution is to condition the test execution by the platform and compiler-
rt presence. This is demonstrated in the following example. 

i s _ a r c h "mips_basic" $1 

i f [ "$?" == "0" ] ; then 

i f [ "$RUNTIME_LIB" == "0" ] ; then 

RUN_TEST=0 

f i 

f i 

The biggest advantage of this approach, and also the main reason for introduction of this 
system, is its universality. I deploy the tests from the llvm test-suite [65], gcc test-suite[40], 
Mibench [72] set of tests and I also have tests that were created within our project, and 
I have also generated tests. The system of the .x files can be used for all these sources, 
as long as I use just the tests without the testing infrastructure that is provided in several 
cases. The only set of tests, which I tried to use together with the infrastructure that is 
provided together with the tests, is the Perennial test-suite [80]. After several iterations, I 
have also started to use the Perrenial tests with my infrastructure for the tests execution. 

6.1.2 Test compilation and execution 

The compilation of tests is performed in the central module. As I have the system of the . x 
files, I enter only those directories that I know are suitable for testing on the given platform. 
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So, before I enter a directory with tests, I check the .x file for the given source and consult 
the restrictions that are defined by the . x file and set all the variables denoted by the file. 

If the directory is feasible for testing, I cycle through the tests in the order denoted 
by the test list. The .x file is always checked first, and if nothing blocks the procedure of 
testing, the test is compiled. The presence of the .x files is not compulsory. As mentioned 
above, the default setting is to cycle through all the directories and execute all the tests. 
However, if the file is present, it will be checked. When the restrictions are not met, the file 
is skipped. The whole process is sketched in Fig. 6.1 

Yes 
S ^ Read directory 
/ w .x file 

Yes 
Read test .x 

file 

Execute 
test 

Finish T e s t i n g ^ 

Figure 6 .1. Scheme of the .x files invocation 

Should there be any problems during the test compilation, they are logged. I log the 
standard output as well as the error output. I keep a list of tests that were not compiled 
successfully together with the output of the compiler. The logs are kept for every platform 
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that is tested to avoid overwriting. It is also possible to create a unique log not just for each 
platform but for every run of the testing system. These logs could be, in the future, stored 
in the database to keep precise testing history. 

6.1.3 Logging information and test evaluation 

The test evaluation is kept decentralized. Because I deploy tests from different sources, I 
need to keep the scripts that provide the test evaluation together with the tests. Some tests 
are evaluated on the basis of the exit code, but there are tests that produce, for example, 
the text output and I have to compare the output with referential values. In these cases, 
the Newlib library is used. 

The decentralization in this case means that I keep for every directory a shell script that 
takes care of the test execution and evaluation. Nevertheless, I found out that this system 
is quite hard to maintain. It seems that the majority of tests is executed and evaluated 
in the exactly same way. So it makes sense to have one central point of the execution and 
evaluation and has special scripts just for the scenarios that are not common. 

As in the case of test compilation, I keep detailed logging information. I keep the output 
of the simulator and after the test evaluation I put it into the list of passed tests or failed 
tests according to the result of the evaluation. The logs are created for every tested platform 
and can bear the time reference. Below there is an example of an error log. 

v p r i n t f -1. c 

simulation error 

o p timization: 2 

return value: 1 

stdout: 

r[3] = 65092 [0xfe44] 

r[31] = 13512 [0x34c8] 

r[0] = 327832 [0x50098] 

warning(O): top_level.mips_basic@498: Unknown i n s t r u c t i o n 

s t d e r r : 

I n s t r u c t i o n decoding f a i l e d . Use simulator in debug mode with 

debugger for more d e t a i l s . 

expected output : 

h e l l o h e l l o h e l l o 

h e l l o 

a a h e l l o h e l l o h e l l o 

he l l o 

aaxxhello 

hell o 

0 

0 

exit 0 

We can see that the test exited with a non zero exit code. The test was meant to print 
text on the standard output, but this did not happen. Instead of printing, the instruction 
decoding failed. The log also contains information about values that were in certain registers, 
what the return value was, and optimization of the test. In the log files, I keep the complete 
output. So very often it is possible to find errors of the register allocator or any other phase 
of the code processing within the compiler. 
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The above example of the failed tests is just one of many during the process of the 
compiler testing. I log the successful and unsuccessful tests in two independent files. The 
files are created for every directory that is tested. Each file with the results has a special 
header, which stores data necessary for the test archiving as can be seen in the following 
example: 

arch:codasip_urisc 

opt : 2 

ca/ia:-ca 

sys:linux64 

distro:CentOS 6.7x86_64 

d i r : int 

version:6.2.0-0.j .1277.n.160728 

r e s u l t : f a i l e d 

f i l e _ o p e r a t i o n s 2 . c simulation error 

f i l e _ o p e r a t i o n s . c simulation error 

920113-4.c compiler error 

optargs-6.c assembler error 

pr41981-l.c l i n k e r error 

200897127-8.c compiler error 

In the example above there is shown the list of failing tests. For each test it has an 
identification of the exact phase where the test failed. It is a simulation error in two cases, 
a compiler error in two cases and one assembler and one linker error. For each of the failing 
tests a log is kept and also an archive containing all the temporary files and outputs. 

From the header it is clear that the testing was performed in the directory int and also 
what architecture was tested and the version of the testing tools. Moreover, the header 
contains information about the system of the testing and bit width. 

6.2 Generator of the test selection files 

The mechanism that is explained above has met the needs of our research project. However, 
as in our project we very often add new models and branches that need to be tested, we 
also need a way how to easily create a new file, that modifies the test usage, or to modify 
the files that already exist. 

The best way for doing so, is to create a generator of such files. The generator would 
need the information about the tested platform as well as about the tests themselves. It 
would also very nicely fit into my plans about the high level of automation of the testing 
process. In the following subsection I will introduce such a generator. 

6.2.1 Design of the generator of test selection files 

The main task of the generator will be the creation of new .x files and also update of the 
existing ones. The generator will need the information about the platform that includes 
mainly: 

• bit width - Is the platform 16/32-bit or does it have a different size? 

• availability of the libraries - Do we have a compiler-rt library or any other library for 
the given model? 
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• availability of instruction and cycle accurate description - What level of description 
do I possess? 

This is the main piece of information which I need to get about the platform. The 
majority of such information can be easily gathered. I will have a look at various possibilities 
in the implementation part of the generator. 

The knowledge that I need to have from the side of the tests is a little bit less complicated. 
I just need to know what header files the test includes. I can say that if the test includes 
any header file, such as the test below, I need to generate a corresponding file. The test 
below will require the presence of the Newlib, as well as the presence of the compiler-rt. 

#include <stdio.h> 

#include <math.h> 

#include <float.h> 

#include <double.h> 

double r e s ( f l o a t i , double j ) { 

double res ; 

res = M _ P I * i * i * j ; 

return res ; 

} 

int main ( ) { 

f l o a t i = 3.14159; 

double j = 4.9685; 

double res = m u l ( i , j ) ; 

p r i n t f ("7.d" , r e s ) ; 

exit(0) ; 

} 

But the situation is not that straightforward. Certain tests might rely on availability of 
the library and not include any header files. Moreover, modern compilers in such situations 
do not exit with the error code, but just emit a warning and compile the test if the header 
file is available. 

It seems that the only proper way how to find out if the test needs the support of any 
library for the given architecture is to compile the file and to find the necessary information 
from the temporary files. 

The information I need can be obtained from several sources. I can get it either from 
the assembler format or from the object file. It is also possible to link the object files and 
in the case of an unsuccessful link, I get a list of missing symbols. 

The last possibility is the least convenient one. It requires almost the whole process of 
compilation, that in the case of larger files can take several seconds. It also means that I 
have to compile the tests without the libraries to find out what symbols are needed and find 
the corresponding libraries. 

Another possibility is to compile the test into the assembler format by the 11c and to 
try to find the symbols in the assembler file. In the following lines, I can see the format of 
the assembler file. 

$tmp4: 

CALL $__addvdi3 
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LOAD RIO, RO + 40 // 4-byte Folded Reload 

LOAD R8, RO + 48 // 4-byte Folded Reload 

LOAD R9, RO + 44 // 4-byte Folded Reload 

We can see that there is a call of addvdiS function. However, this function can be from 
another source file or it can be even a call of function in the same file. This information 
cannot be obtained at this phase of compilation. Moreover, the processing of the assembler 
files is quite difficult as there are no other tools that could provide the necessary information 
in our project. 

The other possibility is to use the object file format. It is necessary to have the source 
file in the assembly language processed by the assembler and get the object file. This 
requires just one more compilation step in comparison to the previous case. However, the 
additional compilation step will give us a lot of useful information that was not available in 
the assembly language format. 

The most desired information is if there are undefined symbols in the currently compiled 
module. This information can be obtained via tools, such as objdump. Below there is an 
example of the object dump output with given parameters. 

addvdi3_test.o: f i l e format elf64-mips_basic 

SYMBOL TABLE: 

g_str 000000000000 i n f o _ s t r i n g l 0 _ a d d v d i 3 _ t e s t . s 

OOOOOOOOOOOOOOdO 1 .text 000000000000 tmpl5_addvdi3_test.s 

00000000000001ac 1 .text 000000000000 tmp27_addvdi3_test.s 

0000000000000208 1 .text 000000000000 tmp33_addvdi3_test.s 

0000000000000000 1 .debug_ranges 000000000000 

debug_ranges0_addvdi3_test.s 

000000000000031c 1 .text 000000000000 tmp53_addvdi3_test.s 

000000000000037c 1 .text 000000000000 tmp60_addvdi3_test.s 

0000000000000000 1 .debug_info 000000000000 

cu_begin0_addvdi3_test.s 

0000000000000000 1 .text 000000000000 

@debug_text_start_addvdi3_test.s_addvdi3_test.s 

0000000000000000 1 .text 000000000000 @csl_.text_addvdi3_test 

. s 

0000000000000000 1 .debug_frame 000000000000 

@debug_text_cie_pointer_addvdi3_test.s_0_addvdi3_test. s 

0000000000000000 1 .text 000000000000 

@debug_text_fde_start_addvdi3_test.s_l_addvdi3_test.s 

0000000000000040 1 .debug_frame 000000000000 

@debug_text_cie_pointer_addvdi3_test.s_2_addvdi3_test. s 

00000000000000c8 1 .text 000000000000 

@debug_text_fde_start_addvdi3_test.s_3_addvdi3_test.s 

0000000000000400 1 .text 000000000000 

© d w a r f _ r e t v a l _ e n d _ a d d v d i 3 _ t e s t . s _ 7 _ a d d v d i 3 _ t e s t . s 

0000000000000000 *UND* 000000000000 __addvdi3 

00000000000000c8 g F .text 000000000338 main 

0000000000000000 *UND* 000000000000 p r i n t f 

0000000000000000 g F .text 0000000000c8 test__addvdi3 

We can see from the example that there are many defined symbols. To mention just 
some of them I can name, for example main or _addvdi3_test. s. Moreover, we can see 
that the file contains . debug_ranges and .debug_info sections that are used by the debug 
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tools, such as debugger. 
Nevertheless, most importantly I can easily identify the undefined symbols, which in 

this case are addvdi3 and printf . This indicates that I will have to link the compiler-rt 
library together with the standard C language library. 

I have shortened the example as it was quite long and it would not fit the page. Some 
irrelevant symbols and information has been left out. 

Once I have the needed information about symbols and what libraries should be linked, 
I need to generate a new file or update the existing one. This should not be a difficult task. 
For the implementation I have chosen the Python language. 

I have called the tool for the generation of the .x file the Constraintgen. The imple­
mentation of the tool was performed in the Python language and the framework pytest 
[45]. 

One of the main advantages of the pytest is that it collects all the files with the prefix 
or suffix test and executes them. It also uses the system of fixtures [84], which is a system 
of dependencies. These dependencies create a hierarchy that is resolved by the pytest 
framework. 

For the implementation, I had to create a set of fixtures. The fixtures are responsible 
for the generation of the file, creation of the toolchain that is able to compile the source file 
and the compilation of the source file to the object format. 

Once a single test file is compiled, the object format generator fixture parses the object 
file and resolves dependencies. After the resolution is finished, the resulted constraint file 
is generated. There are also other fixtures, such as the reporter or the model, but these 
fixtures play a subsequent role. 

For the scheme of the system see Fig. 6.2. 

1 Log 

Repor ter 

Model — > 

Tests >• 
G e n e r a t o r Genera ted .x f i les 

Comp i le r 

Figure 6.2. Scheme of the constraint generator 
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The inputs of the system are the directory with the model in the A D L language CodAL 
and the directory which contains the test, for which the .x files should be generated. This 
offers a possibility to create yet another layer above the Constraintgen that would offer an 
even higher level of automation. 

6.3 Experimental results and contribution 

With the implementation of the test selection generator Constraintgen, I have performed 
several tests. In Table 6.1, I have summarised a number of generated files for the MIPS 
and the Codasip uRISC core. 

Core Number of tests Number of generated files 

MIPS 1644 392 
Codasip uRISC 1644 364 

Table 6 .1. Number of generated files 

From the table, it is apparent that the number of tests is equal for both cores and the 
number of generated .x files is also comparable. The difference in the number of generated 
files is given by the fact that, in some cases, the compiler generates the call of the compiler-rt 
function while for the other core the call in not necessary. In both cases the majority of 
the files was generated because of the compiler-rt. The number of tests that required the 
Newlib library was lower. 

The next Table 6.2 shows the speed of the generation. 

Core Number of generated files Number of folders with tests Time of generation 
MIPS 392 9 84.11s 
Codasip uRISC 364 9 77.64s 

Table 6.2. Speed of the generation 

From Table 6.2 we can see that the speed of the generation is very good. The speed 
of the generator is approximately 5 .x files per second, which I consider very good. Should 
the .x file be created by hand, it would take approximately 10 seconds for the creation of a 
single file. 

The graph depicting the results of the Constraintgen is shown in Fig. 6.3. 
The major contributions of the selected solution are as follows: 

• flexibility - The tests from various test-suites are supported, there is no dependency on 
the test source, so this system can be used for simple tests as well as for benchmarks. 

• higher level of automation - The files that are used during the test selection are gen­
erated fully automatically without a user interference. 

• scalability - The system can be used for any new core, the generator is able to gather 
all the necessary information from the compiler automatically. 

• acceleration of the testing - The tool is able to generate the files fast. 

69 



The system of the .x files, which can be used for the test selection was published in the 
journal article [30]. The article sketches the scheme of the files. 
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Chapter 7 

Acceleration of testing 

In this chapter, I will discuss the speed of the testing. As was mentioned at the beginning 
of the thesis, there is a big pressure for deployment of new builds more than once a day. I 
will focus mainly on the acceleration of the testing [28], [31] as the build acceleration was 
the focus of the thesis by Lukášova [67] that I supervised. 

7 . 1 Testing attitudes 

The testing of various parts of the project is very time consuming. I perform various types 
of tests that have different time demands. I have spent some time by reorganization of the 
tests and investigating whether I can utilize the results between the various tests. 

7.1.1 Testing oriented on tools 

In the tools oriented testing, we need to ensure that the generated tools as well as the 
generators themselves work properly. So both these parts need to be tested thoroughly. 
There are also interesting interconnections between the generators and the generated tools 
that can save a lot of computer time. 

Let us have a look at the generators first. The generators are in our case triggered via a 
command line interface. I have created a set of classes that enable us to perform full tests 
of the command line functionality in the Python language. This test-suite, in combination 
with various models, gives us a very strong tool for ensuring that our generators are stable. 
The test-suite is highly modifiable. I can also very easily enhance this test-suite with 
performance tests and stress tests. The test-suite can be executed in a mode which tests all 
combinations of the parameters that are legal. However, this is very time consuming and I 
often test only certain combinations of parameters. The results of the generators testing is 
one of the inputs into the testing of the generated tools. The scheme is pictured in Fig. 7.1 

When I get to testing of the specific generated tool, I first have a look at the tests of 
the generators. If I find out any problems during the generation, I either skip the tests as 
a whole or I need to pay more attention to the results of the testing. 

After testing of the generators is finished, tests of the generated tools are executed. 
At this phase, it is possible to use the results of the generators testing. Because I have 
the results from various platforms, I can schedule and perform a test of the given tool, for 
example, the assembler only on the working platforms. 

If there have been issues with generation on all platforms, I skip the whole process of 
testing. If the tool has been generated correctly, I put the generated binary under tests. 
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Nightly build 

Tests of generators 

Tests of assembler 
Tests of veri f icat ion 

Tests of compi ler 

Figure 7.1. Scheme of the tools generation tests 

In the case of the assembler, it is thoroughly tested by the randomgen. The randomgen 
program generates valid programs automatically from the processor description, which the 
assembler binary must be able to process. The randomgen application is also automatically 
generated so the paragraph above also applies to it. However, this is only one method 
of assembler testing. In this way I ensure that the valid constructions will be assembled 
without problems. Nevertheless, the assembler is also tested within the compiler driver. 

Now I will have a look at testing of the compiler backend. The input of the backend 
are the files that are in a certain kind of internal representation of the compiler driver and 
the output is the assembly code. Here it is possible to see the very close interconnection 
with the assembler, which is responsible for transformation of the assembly language to the 
object files. I have several ways of testing the compiler backend. The first line consists 
of simple tests taken from various test-suites, such as the G C C torture test-suite. These 
simple tests are meant for fast debugging of the backend. 

There I can also utilize the results of the generators testing. Not only that I have to 
check that the backend together with the compiler driver were generated, but I can also 
check if the necessary libraries, which are needed by the compiler, are available. If not, 
I can choose only the subset of tests and shorten the testing time. If I do not have the 
Newlib library compiled, I can save up to several hours of testing. The time savings are also 
achieved thanks to the test selection mechanism, which allows automatic detection of the 
libraries. 

The second line consists of benchmarks. The purpose of these tests is to tune the 
performance of the compiler. They can also be used for the debugging, but it is not as 
comfortable as in the case of the simple programs mentioned above. What is important in 
this case is the fact that I very closely observe the number of cycles that are needed for each 
benchmark. If I have a rapid growth in the number of cycles, it indicates severe issues in 
the compiler and can lead to increased power consumption, which is unwanted in the cores 
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for embedded systems. 
The last set of compiler tests are really complex tests, such as the Linux core. This 

category serves as the ultimate test that the compiler, as well as the model, contains the 
minimum of errors. The results of the generators testing comes to use in this case as well. 
In addition to all the tools that are required for the tests of simple programs, I also require 
the presence of the Newlib library. For execution of all three categories of the programs a 
simulator is used. 

I have introduced a scheme of the utilization of the tools generator results on the com­
piler. Nevertheless, I think that it will give us the biggest time savings in the case of 
verifications. The reason for this is the fact that there is a large number of verification tests 
and they are time consuming. 

7.1.2 Testing oriented on models 

Another point of view of the testing system is from the angle of the models. The model 
developer expects that the tools work without problems. They are interested in their pro­
cessor design and need to get the results of testing all in one place. Therefore, their use case 
is completely different. 

Errors in the model are very often revealed in the phase of tool generation. The tools 
contain various checks that ensure that the tool can be generated. For example, the compiler 
backend cannot be generated when the model does not contain certain instructions, for 
example jump and so on. Generally I can say that for the models oriented point of view, 
the generator testing is very important. The most model oriented tests, which I currently 
deploy, cover the area of functional verification. 

The role of functional verification is to verify the equivalence of the instruction accurate 
(IA) and cycle accurate (CA) model, which were described above. There are also formal 
methods [18], but they are not currently used in our project. The IA model describes the 
controller on the level of instructions, while the C A model is more precise. It describes a 
set of operations that represents the separate actions between the clock cycles. From each 
description a tool is generated. In the case of IA, I generate the simulator, and in the case 
of C A , I use the generated verification environment. I execute the same program on both 
and then I compare the results. Such tests are performed when both model descriptions 
are stable as it uses tools from the IA and C A description. These tests help us to discover 
differences in model descriptions. 

One of the drawbacks of this attitude is the time demand. The test environment, which 
is generated from the C A description, is very slow and the number of tests is vast. It is not 
uncommon for these tests to take more than 24 hours. 

Nevertheless, here I can also utilize the knowledge I have from the testing fo generators. 
Moreover, I need the results from the compiler testing as I use the compiled binaries for 
execution. 

7.2 Case study and experimental results 

I will demonstrate the whole process on the tools generator and tests of generated tools for 
one of the cores. The whole process is triggered by the nightly build, as demonstrated in 
Fig. 7.1. 

The job that is responsible for the nightly build is called simply Build-Framework. This 
job, once it is finished, triggers the job which is called Toolchain-generator-codasip_-
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urisc. This job is responsible for performing tests of the generators. It performs all the nec­
essary tests and produces a file with results in the form - test name: result. Should I have 
a set of tests with the names fu-systemc, fu-verilog, fve-vhdl, fve-systemverilog, 

the file with the results would have the following content: 

fu-systemc:pass 

f u - v e r i l o g : f a i l 

fve-vhdl:pass 

fve-systemverilog:pass 

Once this job is finished, it triggers a build of other jobs based on the result file of the 
Toolchain-generator-codasip_urisc. The job, which is responsible for that, is called 
Sorter. The role of this job is to process the result file from the generator job and trigger 
the corresponding downstream jobs. This is pictured in Fig. 7.2. 

The trigger of the job is connected to the checkout of repositories and the download 
of the saved artifacts from the previous jobs. The checkout and download of the artifacts 
can mean hundreds of megabytes. The jobs that are triggered as downstream jobs perform 
the functional verification. I trigger three jobs that perform the verification for the Verilog, 
V H D L and the SystemC language. 

Figure 7.2. Build pipeline with tools generator 

I will present the results of the testing which was performed within the Jenkins environ­
ment. The results were gained from the Jenkins server in version 1.652. 

I have made several experiments with the utilization of the tool generator results and 
without it. I have also tried various combinations of the successful and unsuccessful jobs. I 
will present them in several tables and graphs below. 

The results in the following Table 7.1 compare the time that was needed for tests of the 
functional verification with and without the use of the tools generation results. 

The times in Table 7.1 do not include the time needed for the Build-Framework job. 
It is just the time needed for the testing. From the times we can see that the acceleration 
is apparent in all cases. The speed-up is gained by the fact that in the case of unsuccessful 
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Use toolsgen results Number of fails Time 
Y E S 0 159m 
NO 0 165m 
Y E S 1 106m 
NO 1 113m 
Y E S 2 53m 
NO 2 62m 
Y E S 3 3m 
NO 3 12m 

Table 7 .1. Comparison of the testing times. 

generation of the environment, I do not have to download files from the git repository and 
also I do not have to copy large artefacts. The times, when the results of the generator tests 
were used, do include the time needed for performing the generator tests. 

In the case of success, I also significantly reduce the size of the artefacts I have to copy 
because I use pre-generated artefacts from the tests of generators. If I do not deploy the 
tools generator before the main tests, I have to generate a verification environment every 
time. A graph demonstrating the time savings is in Fig. 7.3. 

Comparison of testing times 

I toolsgen 

I without 

Figure 7.3. Comparison of the testing times 

Table 7.2 shows the amount of data that has to be downloaded either from the git 
repository or as an artefact in the form of an archive. The sizes are important as they have 
a close relation to the time that is needed for testing. The more data has to be downloaded, 
the bigger overhead at the beginning of the testing. 

From Table 7.2 it is clear that if jobs that do not use the results and the pre-generated 
environment, the amount of data is approximately 10 times bigger. What is even worse is 
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Use toolsgen results Number of fails Downloaded data 
Y E S 0 141 M B 
NO 0 1470 M B 
Y E S 1 96 M B 
NO 1 1470 M B 
Y E S 2 44 M B 
NO 2 1470 M B 
Y E S 3 0 M B 
NO 3 1470 M B 

T A B L E 7.2. C O M P A R I S O N OF T H E DATA DOWNLOADS. 

the fact that the data has to be downloaded every time, even when the test is going to fail. 
On the other hand, when I prepend the generator tests and utilize the results, the amount 
of data decrease rapidly. The graphical representation is in Fig. 7.4. 

Figure 7.4. Comparison of the data downloads 

7.3 M a i n contribution 

The main contributions of the chosen approach are the following: 

• speed up of testing - In the case of multiple failed jobs, the chosen approach can save 
a significant amount of time by not triggering the jobs that would fail, but even when 
the tests do not fail, the acceleration of tests is apparent. 

• traffic savings - In the case of a failed job, the approach saves traffic as it prevents the 
checkout of repositories and the download of artefacts. 
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• early notification - The chosen approach gives the developer early notification regard­
ing the state of the generators and generated tools, it presents in a clear form all 
features of the generator. 

• faster deployment - In case I use the build automation described by [67], I will be able 
to deploy and test the new build more often than once a day. 

• possible reduction of the number of the triggered tests - In the case of failed generator 
tests, the downstream jobs are not triggered. 

The issues connected to the testing process were described in the article [31]. The use 
of the results of the generators tests was introduced in the article [28]. 
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Chapter 8 

Continuous integration job generator 

In this chapter, I will address one of the greatest weaknesses of our project. I very often 
need to create a new set of tests for a new branch of a certain micro controller or create tests 
for a completely new core. In such situations, the user can create a whole new set of jobs 
by hand or find a way how to automatise such a task [29]. I have sketched the possibilities, 
which are provided by the plugins in the CI server Jenkins and also other solutions in the 
section State of art. 

8 . 1 Jenkins continuous integration server 

Continuous integration servers are a very popular solution for the automation of the tasks. 
The tasks usually fall into the categories of the build and the test automation. Nowadays 
there exists a wide range of solutions in the category of continuous integration servers. One 
of the most complete solutions is called the Jenkins. 

The Jenkins is a continuous integration server that is supported by the community. It 
has a very swift pace of development and nowadays there exists a large number of plugins. 
Thanks to the plugins it is possible to add various functionality into the basic Jenkins server. 
Jenkins is not focused on just one single domain. Wi th the correct choice of plugins, the 
user can build Java, C, Python and also other projects. 

As far as the testing automation is concerned, the Jenkins environment provides support 
for execution of scripts for all the major scripting languages. Once the testing is finished, 
the server is also able to parse and visualise all major formats of the results. 

The task that performs testing and is executed by the continuous integration server 
Jenkins is called the job. A l l the jobs are stored at the master server. Its configuration is 
stored in the form of the xml. Together with the xml, the server stores information about 
the latest builds. It keeps a history. The length of the history can be configured from within 
the Jenkins environment. The Jenkins server offers certain possibilities for automation of 
the job creation as was mentioned in the part called State of art. However, none of the 
possibilities suit my needs. 

As the configuration is stored in a simple xml form, I thought of creation of the generator 
of the tests. Every time I needed to test a new core, I would run the generator of the tests and 
create a new set of testing jobs for the specific core. The generator should be lightweight. 
The specification of the job must be very simple and the configuration should be stored 
together with the model which we want to test. 

Nevertheless, in order to create a generator of Jenkins jobs, I need to have good knowl-
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edge of the Jenkins job format. 

8.2 Jenkins job format 

Jenkins supports several types of jobs. The basic ones are the freestyle project and the 
multiconftguration project. The main difference between the two is the fact that a multi-
configuration project can be executed on multiple machines. There are also special types of 
jobs, which are tied to various plugins. There is the maven job, the external job or various 
views. 

Below I have listed the basic description of the multi-configuration job, as it is the job 
which I am most interested in. Although I need to work with the other job types as well, the 
configuration of the job displayed below will be sufficient for the demonstration purposes 
now. 

1 <?xml version='1.0' encoding='UTF-8'?> 

2 <matrix-project plugin="matrix-project@l.4"> 

3 <actions/> 

4 <description></description> 

5 <keepDependencies >false </keepDependencies > 

6 <properties > 

7 <com.sonyericsson.rebuild.RebuildSettings 

8 plugin="rebuildOl.22"> 

9 <autoRebuild >false </autoRebuild > 

10 </com.sonyericsson.rebuild.RebuildSettings > 

11 <hudson.model.Paramet ersDef i n i t i o n P r o p e r t y / > 

12 </properties> 

13 <scm class="hudson.scm.NullSCM"/> 

14 <canRoam>true</canRoam> 

15 <disabled>false</disabled> 

16 <blockBuildWhenDownstreamBuilding >false 

17 </blockBuildWhenDownstreamBuilding > 

18 <blockBuildWhenUpstreamBuilding >false 

19 </blockBuildWhenUpstreamBuilding > 

20 <triggers/> 

21 <concurrentBuild>false</concurrentBuild> 

22 <axes> 

23 <hudson.matrix.LabelAxis> 

24 <name>label</name> 

25 <values > 

26 < s t r i n g > Cent OS -6 . 5 -32 </ s t r i n g > 

27 </values> 

28 </hudson.matrix.LabelAxis> 

29 </axes> 

30 <builders> 

31 <hudson.tasks.Shell> 

32 <command>echo \$(pwd)</command> 

33 </hudson.tasks.Shell> 

34 </builders> 

35 <publishers/> 

36 <buildWrappers/> 

37 <executionStrategy class="hudson.matrix. 

38 DefaultMatrixExecut ionStrategyImpl"> 

39 <runSequentially >false </runSequentially > 
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40 </executionStrategy> 

41 </matrix-project> 

The whole configuration is in the xml format as was stated above. On the second line, 
we can see that it is the matrix project, which means that it can deploy multiple axes, and 
one of them is the configuration of the nodes. For simplicity, the job does not download any 
data from the Version Control Systems VCS. Another important tag is the one called axes, 
it is on line 22. This tells us that this job is built only on one node called CentOS-6.5-32 
on line 26. It is important to note that this job does not have parameters. If it had, the 
parameters would be visible at the top of the configuration. 

There are also sections builders, line 30, and publishers on line 35. The section 
builders says that there is the shell script executed and the only command it runs is 
the echo $(pwd). The job publishes no results, hence the part publishers is empty. The 
execution strategy is default. It is important to know what the configuration of the job 
looks like as I will work over the representation in the later sections. 

8.3 Job generation 

The main task that I need to deal with is the generation of the various jobs, which will ensure 
complex testing of the core. Mainly, I will generate the jobs which test the automatically 
generated tools. As I plan to control the whole system also from the command line, I wanted 
to avoid the graphical interface, at least in the first version of the project. I may add the 
graphical interface in the later versions, but I definitely need to keep the command line 
interface for the solution to be fully scriptable. This is also one of the reasons, why I cannot 
use the plugins provided by Jenkins. They have very poor documentation and are primary 
focused on usage via the web interface. 

The basic scheme of my system is demonstrated in Fig. 8.1. We can see, that the whole 
system consists of just a few steps. The first part of the system is the sniffer. In my case 
it works over the git repository. Once the generation is triggered, the job generator uses 
templates to generate corresponding jobs. I will now give a more detailed description of the 
aforementioned parts. 

8.3.1 Sniffer 

I have decided to call this part of the generation process the Sniffer as it sniffs in the git 
repository for new branches. The main role of the Sniffer is to detect the creation of a new 
branch in the given git repository and trigger the generation. The whole system is designed 
in the way that the sniffer can be replaced by a different component. In the future, I would 
like to add support for other VCS. It also does not have to be present at all and can be 
completely omitted. The generator can be started by a different tool if it sticks to the 
defined interface. 

Although currently the role of the Sniffer is to notify that a new branch has been created 
and deliver this information to the job generator. The Sniffer has no further intelligence 
and the whole system is designed in such a way that all decisions should be made in the 
generator itself. In the latest version, the Sniffer has a shape of the Unix script, which is 
executed repeatedly by the operation system. 
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Figure 8.1. Scheme of the system 

8.3.2 Templates 

The second input into the job generator are the templates. I have various kinds of templates 
as I need to test various parts of the newly developed core. The main areas which have to 
be covered by test job generation are: 

• compiler testing, 

• functional verification, 

• assembler testing, 

• tools generation. 

Please note that these are just the areas that need to be covered, not the jobs. Under 
each domain there is a variety of jobs which are generated and later on executed. There 
is usually just one template per domain, just in the case of functional verification I need 
to have several templates, as this area is very vast and I was not able to stick to just one 
template. 

As far as the templates themselves are concerned, they are very simple. The templates 
are in the X M L format, as are the jobs in the Jenkins, and the generated parts are in the 
form: 

<string>@N0DE_NAME@</string> 

8.3.3 Job generator 

Now when I have described the inputs of the generator, I will move to the generator itself. 
The job generator consists of several parts that are pictured in Fig. 8.2. 

I decided to implement the generator in the Python language, because it allows very 
fast development, the code is very easy to read and the modifications are simple. 

One of the first steps is the template selection. This part of the generator works over 
the configuration file that is present at the specific directory in the model branch which 
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Figure 8.2. Scheme of the generator 

should be tested. I have proposed a simple format of the configuration file that specifies the 
tested features. The other possibility I have is to automatically detect what features should 
be tested, but I have chosen the configuration file because some of the features cannot be 
automatically detected. From the specification file I am able to determine what templates 
should be used. The specification file has two major tasks: 

• to define features that should be tested, 

• to specify parameters for the generators. 

However, the automatic detection of the features that should be tested was not com­
pletely abandoned. The detection is present but plays only a supplementary part. 

Once the phase of the templates selection is finished, I need to generate the CMake files 
that will fill the desired information into the templates. CMake is a family of tools. These 
tools are designed for the build, testing and packaging of software. The generated CMake 
files are template specific as each template has different fields. Currently I generate one 
CMake file per template and I perform the generation in the separate directories. 

From the two above mentioned inputs I can generate the job. The job generation is in 
fact just insertion of data into templates. I have decided to do this via the CMake, because 
it is one of the cleanest ways for doing so. The most frequent facts that are generated are 
the following: 

• the branch used for testing, 

• the node where the job is executed, 

• the bash script and the parameters, 

• the job name and the view where the job is placed. 
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The above mentioned information can be determined in the subsequently described way. 
The branch is one of the input parameters. It is delivered by the Sniffer, but it can also be 
delivered in a different way, it can be, for example, specified by the user. 

The script, which is executed, could be a part of the template, however, this would 
increase the number of templates significantly. Therefore, I try to determine the name of 
the script. The name of the script can be determined from the information, which is given 
in the configuration file. Some of the scripts may have a variable number of parameters, 
but this I am able to determine from the directory structure of the model. Here I can see 
the supplementary part of the automatic detection. 

The job name and view where the job should be placed are also determined from the 
configuration file and repository name. In the future I also plan to use a directory plugin 
in my installation, nevertheless, this should not be a problematic step. 

The most complicated task is the selection of the correct node where the job should 
be executed. The management of the nodes is quite a complicated task and is described, 
for example, here [93]. There are certain jobs that can be executed only on specific sets of 
nodes. Typically, this is true for the jobs that perform tests of the functional verification or 
tests of the synthesis. 

I have special groups of nodes, for example, for the execution of the verification jobs. 
The verification jobs require a preconfigured environment, which is present only on certain 
nodes, because the environment is very complicated. For such jobs, I have special templates 
with the predefined sets of nodes. Nevertheless, for the majority of jobs I do not have to 
solve such issues. I keep a simple table of nodes which is divided into sections which define 
what nodes are used for the specific jobs. I choose the jobs with the smallest number of 
assigned jobs and optionally I modify the assignment manually. 

There is also other information that can be filled into the template. But the four above 
mentioned are the most common ones. I have the predefined default values for all the 
parameters that would suit most cases. 

Very often I generate the parameters of the given job into the templates. They are stored 
in the parameters section and later these parameters are used in the builders section. How­
ever, there are also parameters that are node dependent. The node dependent parameters 
are defined in the Jenkins environment. 

Frequently the generated job needs to use the artefacts from the other jobs. Nevertheless, 
I try to keep the generator as lightweight as possible and do not want to modify other jobs. 
The compatibility in this case is assured by the wild cards, and the name of the new job 
must fit into the wild card. 

Once I have generated the jobs, which are needed for the testing of the newly developed 
branch, I have to upload these jobs to the CI server. For this purpose I use the Jenkins 
command line interface that performs the job upload and also registers the job. 

When I create a job, which tests certain functionality, I also need to have a corresponding 
computer where the job will be executed. Some jobs require specially configured computers. 
For example, the jobs that test formal verification require the installation and configuration 
of special tools. However, the support for node management is very limited in the Jenkins 
environment. So I had to create a tool which helps me with this task. 

8.4 Nodes management 

One of the major problems I have faced in connection with the job generator was connected 
with the node selection and management. This problem became even more frustrating as I 
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found out that the node management support is very limited in Jenkins. There is a plugin 
for VirtualBox but it is over three years old and does not support new versions. So there is 
no way how to administer nodes from within the Jenkins environment. 

This is understandable when I take into account that Jenkins is the orchestrator and 
the nodes can be either physical machines or can be virtualized in any way. So it is left to 
the users of the environment to provide a solution that suits their needs. 

In our project we use the virtualization software VirtualBox. From my point of view 
it is safer, and also more user friendly, to use virtualization methods. Moreover, I need to 
support quite a lot of operation systems. The goal of supporting multiple operation systems 
could not be achieved without the support of virtualization. 

Therefore, I needed to design a solution that allows simple management of the virtual 
machines that I use for nightly builds and testing of the tools in our research project. I have 
cooperated on this part with Milan Skala, whose bachelor thesis [93] I supervised. 

8.4.1 Design of the nodes management tool 

Once the infrastructure for builds and tests has settled down and has been used for some 
time, I have identified the key tasks that the application for management should have. I try 
to summarise them in the following list: 

• support of the multiple platforms - The program must run at least on the Unix and 
the Windows systems. 

• support of the multiple servers - Where the virtual machines run. 

• grouping of machines - The program must allow grouping of virtual machines and run 
of commands on such a group. 

• support of interactive mode - Where the user can control the machine. 

There were also some minor requirements, such as the support of configuration files and 
so on. Nevertheless, one of the very frequent tasks is the restart or upgrade of a certain 
group of machines. For example, we would like to update the kernel and restart all machines 
which have the operation system Cent OS version 7. 

I also need to take into account the support of multiple servers. I have several servers 
that I use just for virtualization of the build and the test machines, but I also have a large 
number of virtual machines that run on the user computers and during the night are used 
for testing purposes. That is the main reason why support of multiple servers is essential. 

The main idea is to automatize the process of machines management as much as possible. 
Because of this, I do not need to have the graphical user interface in the first version of 
the tool. Management of the machines takes quite a lot of user time, so the pressure for 
automation is high. The tool must support the batch execution. The application must 
allow the definition of the tasks that should be performed on a given machine and leave the 
machine, once it is finished, without user interference. 

The tool should be easily configurable. The configuration should support the configura­
tion files with a given syntax and the parameters should also be passable via the command 
line interface. Thanks to this, the user will not be forced to perform the set up for every 
execution. 
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Once I have specified the requirements on the application, I can select the best method 
that will be used for implementation. The VirtualBox provides several possibilities. A l ­
though only one of the provided methods suits my needs. I must use the web service A P I 
as it is the only solution which supports virtual machines placed at different servers. On 
the other hand, it uses the X M L format serialisation that is quite slow and has a negative 
impact on the performance of the whole solution. 

The application contains three basic objects: 

• Group - This class contains one or more virtual machines that can be placed at more 
physical servers. 

• Environment - A class that contains information about the physical server. It keeps 
the information about the IP address and so on. 

• Interpreter - The main class of the program, it executes the statements and keeps 
information about the environments and groups of computers. 

One of the major requirements was batch execution without user interaction. In such a 
case the tool must be configured in such a way that it contains all the nodes which will be 
used during the batch file execution. The tool cannot ask the user for credentials that are 
needed for the connection to a certain node. The node can be stored in a configuration file 
where each line contains one node and the line has the following form: 

/Deb-8-64 group=debian,64bit user=taylor password=t0ps3cret 

The line means that the computer is at the server eva and has the name of Deb-8-64. It 
belongs to the groups debian and 64bit and has a given user and password. If the tool has 
the information from the configuration file, it does not have to ask the user. 

The commands, which will be passed to the interpret, will be saved in a batch file that 
can be executed once all the nodes are added. The batch file will contain the statements 
that are understood by the interpret. The statements will be executed sequentially. 

I can get into a situation when the batch file will contain unknown statements. For 
example, it will use virtual machines which are not configured or it will use the machines 
with an unknown user name or password. 

I need to have a reliable way how to deal with such a situation. There are two basic 
scenarios I can either skip the operation and continue with the next statement or stop the 
execution immediately. 

In this case, the best way is to inform the user about error via notification that is 
displayed on screen, create a log file with error detail and cease the execution. It is very 
probable that if any of the statements contained errors, it could affect the rest of the 
statements. 

The diagram for execution of the batch file is in Fig. 8.3. 
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Create error log 

Figure 8.3. Scheme of the batch file execution 

The implementation of the tools was performed in the Python language. Each class was 
implemented in a separate file. There are three main classes according to the basic objects. 
The class diagram of the solution is depicted in Fig. 8.4. 
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Figure 8.4. Class diagram for nodes management system 

From the diagram it is clear that the instance of the interpreter does not have to contain 
a group of machines. On the other hand, it must contain at least one environment for the 
execution to begin. 

With the tool for the management of the nodes, I can easily manage the machines which 
are used for the execution of the testing jobs. The tool is also used for the update of the 
file, which contains the nodes, which are used by the generator of the jobs. 

8.5 Experimental results and contribution 

With the current implementation of the simple job generator I have performed a number 
of tests. I have chosen two typical scenarios. The first case is the generation of a new 
testing set for the instruction accurate description of a new core. With the IA description 
corresponds the basic set consisting of tests which test the compiler and the assembler. When 
the complete description of the new core (instruction accurate, as well as cycle accurate) 
is created, the full set of tests is generated. The full set adds also tests for functional 
verification. 

The templates, which are needed for the generation of such tests, were added into the 
template pool. The basic set consists of 3 jobs and the full set consists of 12 jobs. I have 
set the polling time to 6 minutes, so every 6 minutes the VCS server is polled for the new 
branches. 

The times needed for the generation are summarised in Table 8.1. I have performed ten 
different runs, five for the basic set of tests and five for the full set of tests. The last row in 
the table shows the time which was needed for a run which was triggered manually. 

Run Basic set Full set 
1 84,1s 344,6s 
2 208,5s 352,9s 
3 154,9s 40,7s 
4 110,5s 142,0s 
5 51,3s 240,2s 
Manual run 0,99s 4,2s 

Table 8.1. Comparison of generation times. 

In Table 8.1 we can see that the generation of three jobs takes 0.99 seconds, which gives 
exactly 0.33 second per job. When I try to generate the full set of 12 jobs, it takes 4.2 
seconds. That is approximately 0.35 second per job. 
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A l l the jobs which I generate are multi-configuration jobs. The configuration of a multi-
configuration job was described at the beginning of this chapter. The generation times vary 
for the basic set from 51 to 208 seconds. That is perfectly accurate, as the delay caused 
by the frontend is up to 360 seconds. The generation of the full set is also affected by the 
frontend delay and should be from 4.2 seconds up to 365 seconds. M y measurements confirm 
that. I think that approximately 0.33 second is a very good generation speed. This time 
does not include the time needed for the upload of the new job to the Jenkins server via the 
command line interface. I have not included this time because it is largely affected by the 
position of the generating computer in the network and can also be heavily dependent on 
the network traffic. 

I and my colleague have also tried to create the jobs manually. The group that created 
the jobs consisted of two persons. We tried to create the basic set of testing jobs and then 
the full set of jobs. The basic set of tests includes the generation of three jobs and covers the 
compiler and the assembler. The full set of jobs contains also jobs for verification. Together 
this set contains 12 jobs. Therefore, the sets are the same as in the previous measurement. 
I have also tried to compare the generation speed with the other generators provided by the 
Jenkins. 

Method Basic set Full set 
Lissom Generator 0,99s 4,2s 
Jenkins job generator plugin 2,1s 8,5s 
Jenkins DSL plugin 1,3s 5,2s 
Manual creation 354s 1417s 

Table 8.2. Comparison of creation times. 

In Table 8.2 1 have summarized the results of the generation and the manual creation. 
The manual creation of the jobs was the slowest in both cases. 

The comparison with the most widely used generators provided by the Jenkins server 
was made at the following configuration. I used the Jenkins server in version 1.656. The 
Jenkins server was running on a server with 4 cores Intel i5 and has 8 G B of memory. 

It is clear that the Lissom generator is faster than the job generator plugin and the DSL 
plugin in both tested cases. However, in the case of generation of just three jobs, the times 
are comparable. I have used the times from the manual run of my generator as both Jenkins 
plugins are also triggered manually. 

In the case of generation of the big set, the Lissom generator has a clear advantage. It 
is Is faster in comparison to the DSL plugin and 4.3 seconds faster in comparison to the job 
generator plugin. 

The graphs depicting the generation times for the basic set and full set are in Fig. 8.5 
and Fig. 8.6. The times for manual creation are not included. 

The other advantage of the job generator is the fact that it is very lightweight and can 
be used for any kind of jobs. This largely depends on the templates that will be created. 
In theory we could completely abandon the creation of the jobs manually. If I provide the 
correct configuration of the jobs together with the set of templates, it is possible to generate 
the whole set of the testing jobs for any microcontroler. 

Among the main contribution there can be placed: 

• significant speed up of the job generation - As is clear from the results, the generation 
of the jobs is faster in comparison to any other generator. 
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• higher level of automation - With the correct configuration the job generation can be 
provided completely without user interference. 

• node management - The tool provides functionality for nodes management, it is pos­
sible to create a new node and configure it for the given job. 

• wide range of use - The job generator is dependent only on the xml format of the job, 
it can virtually generate any type of testing job. 

• no dependency on scripting language - There is no need to deploy any scripting lan­
guage, such as Groovy, the jobs are generated from the configuration file. 

Time of generation of the full set 

9 

Lissom generator Jenkins DSL plugin Jenkins job generator plugin 

Figure 8.5. Graph of the full set generation 

Time Df generation of the basic set 

2.5-, 

Lissom generator Jenkins DSL plugin Jenkins job generator plugin 

Figure 8.6. Graph of the basic set generation 

The topic of the continuous integration environment and the automatic generation of 
the jobs for such environment was described in the article [29]. 
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Chapter 9 

Conclusion 

In this thesis, I have addressed the testing of an automatically generated compiler. I have 
focused on four areas and introduced solutions that help to optimize and automatize the 
process of testing. 

The first area is support of the standard C language library and the process of porting. 
Due to a good choice of the library, I was able to significantly increase the number of 
tests that can be used for porting. The raised number of tests gives the developer of the 
micro controller better possibilities for tuning the compiler and the whole system. I have 
introduced the universal mechanism that can be used for porting to any platform if the 
platform is suitable for the C library. 

I have also worked on the process of porting with the aim to make it more automatic. I 
have introduced several ways that make the process of porting more automatic. The number 
of files that have to be manually changed has been significantly decreased and the whole 
process of porting is now faster and requires less knowledge. 

The second area I have investigated is focused on the test selection mechanism. As was 
demonstrated, there is currently no mechanism that would suit my needs for the efficient 
selection of the test cases. I have designed a system of special files that are used for the 
selection of tests. The scheme is lightweight and robust at the same time. It can be used 
for any kind of tests and is not platform dependent, so it can be used for any core. 

Moreover, I have created a generator of test selection files, which can be used for the 
generation of new files. The generator can be used once a new core, or just a new version 
of the existing core, is under development. The generator uses as an input the information 
contained in the model and the tests themselves that are compiled to the object form. The 
generation is fast and the accuracy of the results is good. 

The area number three is connected with the acceleration of tests which are executed 
by the continuous integration server Jenkins. I have looked for a way how to decrease the 
time and space requirements of the functional verification testing and other tests. I have 
utilised the new kind of tests in our project, the tests of generators. The generator tests 
are executed as first, and all other tests use the results of the generator tests and, therefore, 
save time via the pre-generation of the binaries if the tests are successful. If the generator 
tests fail, the downstream jobs performing the verification tests are not triggered at all and 
hence save time and space that would otherwise be spent on the checkout of files. 

Last but not least, I have sketched a simple generator of the Jenkins jobs that would 
suite our needs in the Lissom project. I need a generator that can be started by various 
ways, which is lightweight and can generate all kinds of jobs. This was one of the basic 
requirements, which was not met by any plugin that is currently available for the Jenkins. 
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I also wanted the tool to be at least partly independent of the Jenkins as it is not rare that 
the plugins do not cooperate well. 

The current implementation of the generator is dependent just on the internal repre­
sentation of the job. This is not a problem, as it is very simple to deploy new templates. 
At the same time, the internal job representation is not likely to change as it would imply 
changes in all plugins currently used by the Jenkins. 

I put the generator under tests and the gathered results are very positive. As far as 
the speed of the generator is concerned, it cannot be matched by any tool that is currently 
available. 

The implementation of the generators and other tools was performed in the Python 
language, so the solutions are easily extensible. 

9 . 1 Future work 

In the future, I would like to apply the use of the tool generator results also on other kinds 
of testing, such as the compiler or the assembler. I believe that I could gain some time 
savings in the case of application. V i a this approach it should be possible to achieve speed 
for every group of tests that is more complex. 

The implementation of generator of the testing jobs could also be extended. I could 
add support for the copy artefacts section and also support for the folders plugin that we 
currently use in our project. I would also like to find ways how to improve the speed of the 
generation. 

It would also make sense to introduce a code generator into the testing process. It could 
uncover interesting new bugs in the automatically generated compiler. 
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