
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION SYSTEMS

TESTING OF GENERATED C COMPILERS FOR
PROCESSORS IN EMBEDDED SYSTEMS

DISERTAČNÍ PRAČE
PHD THESIS

AUTOR PRÁCE Ing. LUDĚK DOLÍHAL
AUTHOR

BRNO 2016

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION SYSTEMS

TESTOVÁNÍ GENEROVANÝCH PŘEKLADAČŮ
JAZYKA C PRO PROCESORY VE VESTAVĚNÝCH
SYSTÉMECH

TESTING OF GENERATED C COMPILERS FOR PROCESSORS IN EMBEDDED SYSTEMS

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. LUDĚK DOLÍHAL
AUTHOR

VEDOUCÍ PRÁCE prof. Ing. TOMÁŠ HRUŠKA, CSc.
SUPERVISOR

BRNO 2016

Abstrakt
Vestavěné systémy se staly nepostradatelnými pro náš každodenní život. Jsou to obvykle
úzce zaměřená, vysoce optimalizovaná, jednoúčelová zařízení. Jádro vestavěných zařízení
obvykle tvoří jeden nebo více aplikačně specifických instrukčních procesorů. Tato diser­
tační práce se zaměřuje na problematiku testování nástrojů pro návrh aplikačně specifických
procesorů a následně i samotných aplikačne specifických procesorů. Snahou bylo vytvořit
systém, ve kterém bude možné otestovat jednotlivé nástroje, jako například překladač, as­
sembler, disassembler, debugger. Nicméně vyvstává také potřeba provádět složitější testy,
například integrační, které zaručí, že mezi jednotlivými nástroji nevzniká nekompatibilita.
Autor vytvořil s podporou průběžně integračního serveru prostředí, které napomáhá odhalování
a odstraňování chyb při návrhu aplikačně specifických procesorů a které je navíc do značné
míry automatizované.

Abstract
Embedded systems have become essential for our everyday lives. They are usually highly
specialized and optimized single purpose devices. The cores of these devices are usually
composed of one or more application specific instruction-set processors. This dissertation
thesis focuses on testing of tools for design of application specific instruction set processors
(ASIP) and ASIPs themselves. The aim is to create a system which allows testing of tools,
such as a compiler, an assembler, a disassembler or a debugger. Nevertheless, there is
also need for more complex tests, for example, integration tests which ensure there is no
incompatibility between the tools. The author created, with the support of a continuous
integration server, an environment that helps to reveal and fix errors during the design
of application specific processors and, moreover, this environment is automatized up to a
certain point.

Klíčová slova
Testování, překladače, průběžná integrace, hardware software codesign, procesory s ap­
likačně specifickou instrukční sadou, jazyky pro popis architektury, vestavěné systémy.

Keywords
Testing, compilers, continuous integration, hardware software codesign, application specific
instruction set processors, architecture description languages, embedded systems.

Citace
Luděk Dolíhal: Testing of generated C compilers for processors in embedded systems, dis­
ertační práce, Brno, FIT V U T v Brně, 2016

Testing of generated C compilers for processors in
embedded systems

Prohlášení
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením prof. Ing.
Tomáše Hrušky, CSc.

Luděk Dolíhal
November 23, 2016

Poděkování
Na tomto místě bych rád poděkoval svému školiteli profesoru Tomáši Hruškovi za jeho ve­
dení, čas, rady a velkou podporu, kterou mi poskytoval během mého studia. Dále bych
rád poděkoval kolegům, především Karlu Masaříkovi, Zdeňku Přikrylovi, Adamu Husárovi,
Ondřeji Učíkovi, Liboru Vašíčkovi, Robertu Baručákovi, Filipovi Matiovskému, Milanu
Skálovi a dalším členům Codasip týmu za jejich skvělou spolupráci a nápady.
V neposlední řadě také velmi děkuji svým rodičům Františkovi a Janě Dolíhalovým a své
přítelkyni Juliáně Krejčové bez nichž by tato práce nikdy nemohla vzniknout.

© Luděk Dolíhal, 2016.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě infor­
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4
1.1 Motivation 4
1.2 Problem statement 6
1.3 Tools for hardware software codesign 7
1.4 Testing of tools for hardware software codesign 7
1.5 The structure of the thesis 8

2 State of art 9
2.1 Application specific instruction set processors 9
2.2 Application specific instruction set processors design tools 9
2.3 Description languages 10

2.3.1 Hardware description languages 10
2.3.2 Architecture description languages 10

2.4 Retargetable compilers 11
2.4.1 L L V M 12
2.4.2 G C C 16
2.4.3 Other compilers 17
2.4.4 Standard library 18

2.5 Brief history of compilers and testing 20
2.5.1 First languages 20
2.5.2 High level languages 20
2.5.3 Object-oriented programming 20

2.6 Compiler testing methods 22
2.6.1 Test-suites for the C compiler 23
2.6.2 Test selection mechanism 30
2.6.3 Random generators 31

2.7 Continuous integration 37
2.7.1 Node control system 39
2.7.2 Jenkins as a build environment 39
2.7.3 Current possibilities of the job generation 41

2.8 Disadvantages of the current state 42

3 Lissom project 44
3.1 CodAL Language 44
3.2 Toolchain 45

4 The goal of the thesis 50
4.1 Solution phases 51

1

5 Porting of the C library 52
5.1 Theory of Porting 52

5.1.1 Use of ported library of U N I X and Windows systems 54
5.1.2 Special instruction principle 55
5.1.3 Simulators 55

5.2 Process of porting 56
5.2.1 First time porting 57

5.3 Automation of the porting process 57
5.4 Experimental results and contribution 59

6 Tests selection 61
6.1 Test selection scheme 61

6.1.1 Test selection phase 61
6.1.2 Test compilation and execution 62
6.1.3 Logging information and test evaluation 64

6.2 Generator of the test selection files 65
6.2.1 Design of the generator of test selection files 65

6.3 Experimental results and contribution 69

7 Acceleration of testing 71
7.1 Testing attitudes 71

7.1.1 Testing oriented on tools 71
7.1.2 Testing oriented on models 73

7.2 Case study and experimental results 73
7.3 Main contribution 76

8 Continuous integration job generator 78
8.1 Jenkins continuous integration server 78
8.2 Jenkins job format 79
8.3 Job generation 80

8.3.1 Sniffer 80
8.3.2 Templates 81
8.3.3 Job generator 81

8.4 Nodes management 83
8.4.1 Design of the nodes management tool 84

8.5 Experimental results and contribution 87

9 Conclusion 90
9.1 Future work 91

2

List of Figures

1.1 The cost of a bug at various stages of development, source Dark Views [101] 4
1.2 Frequency of build deployment, source Sauce Labs [56] 5
1.3 The portion of automated testing, source Sauce Labs [56] 6

2.1 Scheme of a compiler 12
2.2 L L V M scheme 13
2.3 Scheme of testing 21
2.4 Scheme of the G C C directory structure 24
2.5 Scheme of the L L V M directory structure 25
2.6 Csmith scheme 32
2.7 Shrinking scheme 35
2.8 Spitter scheme 37
2.9 Continuous integration 38
2.10 The build pipeline 40

3.1 Scheme of the toolchain generation 47

5.1 Position of the Newlib 53
5.2 Scheme of the printf function call 54
5.3 Scheme of the system call 56
5.4 Scheme of Newlib file generation 59

6.1 Scheme of the .x files invocation 63
6.2 Scheme of the constraint generator 68
6.3 Results of the constraint gen 70

7.1 Scheme of the tools generation tests 72
7.2 Build pipeline with tools generator 74
7.3 Comparison of the testing times 75
7.4 Comparison of the data downloads 76

8.1 Scheme of the system 81
8.2 Scheme of the generator 82
8.3 Scheme of the batch file execution 86
8.4 Class diagram for nodes management system 87
8.5 Graph of the full set generation 89
8.6 Graph of the basic set generation 89

3

Chapter 1

Introduction

1 . 1 Motivation

This thesis is going to deal with the area of hardware software codesign and will mainly
focus on testing and stability of such tools. Every piece of software contains errors and tools
for hardware software codesign are not an exception. It is a well-known fact that the later
the error is discovered in the software, the more expensive the process of fixing it is. This
fact is shown in Fig. 1.1.

Costs

Development Unit Tests QA Testing Production

Figure 1.1: The cost of a bug at various stages of development, source Dark Views [101]

In order to uncover bugs in the early stages of development, tools have to be tested.
Usually the better the coverage of the environment, the more bugs are triggered and can be
fixed. To uncover the bugs, quality assurance teams and teams that focus on development
of internal tools put a lot of effort into the design of new testing approaches. Nowadays, the
majority of testing is performed automatically by advanced continuous integration systems
(CI systems). However, there are still testing scenarios that cannot be automatically tested.
The human element cannot be omitted in the process of testing.

Closely related to the problems of testing are the problems of releases and release cycles.

4

Because automatic testing can be triggered only once a build is finished. Nevertheless, there
can be unit tests which, for example, can be triggered during the build itself.

It is quite expectable that the pressure for a short time to launch a product on the
market is increasing. This also means that the time for the build and automatic tests must
be kept short in order to give a developer more time for design and implementation and
to keep the time needed for testing as short as possible. This trend has been confirmed by
a study carried out at Sauce Labs [56]. The results are presented in the form of a white
paper, which brings to light several interesting facts. Fig. 1.2 shows the frequency of build
deployment.

_ H o w o f t e n d o e i y o u r t e a m

H TYPICALLY d e p l o y a n e w b u i l d ?

1 doa 1 ly. l ievv o f t e n u 1 d y o u r team

LIKE t o d e p l o y a n e w b u i l d ?

40%

•

_ H o w o f t e n d o e i y o u r t e a m

H TYPICALLY d e p l o y a n e w b u i l d ?

1 doa 1 ly. l ievv o f t e n u 1 d y o u r team

LIKE t o d e p l o y a n e w b u i l d ?

30%

2V&

20% la*

1 1
2 OS

L45S

13%

10% •
— 12% 1

• to%

1 1 1
0% 1 1 1 1" 0%

1 c u r l y Da i l y
L e s t o f t e n

W e e k l y B i w e e k l y M o n t h l y t n j n m o n t n l y

Figure 1.2: Frequency of build deployment, source Sauce Labs [56]

Only 10% of users are able to deploy the build hourly, but nearly 20% of them would like
to deploy as often as hourly. The majority of users, nearly 35%, are able to deploy the build
daily. Nevertheless, the percentage of people who would like to deploy it is nearly 40%.
This proves that the need for a fast building system in the development cycle is crucial. CI
systems play a very important part in the build automation and speeding up of the whole
delivery process.

Closely related to the speed of the delivery process is the testing automation. Because,
in cases when a developer has to wait for a long time for a build creation, it is usually
faster to do the testing by hand, especially in cases where the testing scenario is not long
or difficult. Some unit tests usually fall into this category.

A testing system, especially one for a complicated integrated development environment,
such as a tool for hardware software codesign [24], must be capable of testing the separated
parts, but also must be able to perform integration tests. In the last few years, an enormous
amount of effort was invested into the testing environments. A l l the main development
languages have advanced testing frameworks. To mention some of the biggest ones, I should

5

name Selenium [88], Arquilianfll], Cucumber[21] and Autotest[13].
However, according to Sauce Labs, the majority of testing still has to be performed

manually, or with a small amount of automation as is demonstrated in the following Fig. 1.3.

H O W W O U L D Y O U CHARACTERIZE THE A M O U N T OF EFFORT
THAT IS PUT I N T O A U T O M A T E D A N D M A N U A L TESTING?

4 0 «

ZIV.

WA < *

1VA

2 0 «

11Y.

26%]

SSS Li 1 _
t i m e a u l c f n a l i c f i Fairly eyen ne1w=en I M o s U y a u l c f r i a l e d . r ,,

Fully m a n u a l , r * Full au1cma1ed
nu1 m o s l l y m a n u a l m a n u a l it a u l o m a l e d • tau1 s o m e m a n u a l I

Figure 1.3: The portion of automated testing, source Sauce Labs [56]

There is a pending question of what lies behind such a small percentage of fully auto­
mated and mostly automated testing. Because only 26% of automated testing in total is
definitely not an encouraging number. One of the reasons can also be the time pressure.

1 . 2 Problem statement

The current extremely competitive market of electronics of all kinds is very sensitive to the
time it takes to introduce new products. Errors in design and implementation of a product,
not only increase the cost of the final solution, but also cause delays that, in the end, mean
a financial loss.

This drives the demand for fast and efficient testing systems. These testing systems
must tackle several challenges:

• to provide a high level of automation of the testing procedure,

• to restrict the time needed to discover an error, this includes a fast rebuild of all tools
that are needed for testing,

• to clearly identify an error and provide adequate information about the error,

• to define clear metrics to measure the progress of the testing process.

There are various types of errors. The types of errors that are usually discovered in
the tools are logic and functional errors. Very often the developer misses a declaration or
wrongly spells a name. Fortunately, this kind of error can be easily discovered. Also it

6

is very simple to define the metrics for a successful build. The first two points are more
challenging.

1 . 3 Tools for hardware software codesign

This thesis is going to discuss the area of testing hardware software codesign [25]. The
hardware software codesign deals with the design of new embedded systems. Such a kind
of systems can be found in a wide variety of devices, such as network routers or printers.

Embedded systems consist of one or more application specific processors (ASIPs). Each
processor usually takes care of a single specific task and is, therefore, highly optimized for
this task. The optimization is also the main difference from general purpose processors,
such as the x86 family, which have to take care of various tasks.

The production of ASIPs in 2015 formed over 98% of the overall processor production.
Therefore, this area is extremely important. Technology used for the creation of any ASIP
is called System on the Chip (SoC) [87]. Such a technology allows integration of several
ASIPs on one chip together with peripherals, such as memories, busses and others.

The development of current ASIPs must be done in a very short period of time [99]. In
order to do so, it is common to use tools for the hardware software codesign. A hardware
description language (HDL) is allways in the core of such tools. The development is done in
a modern integrated development environment (IDE) that allows the designer to generate all
the necessary tools, such as a compiler, an assembler or a simulator [83]. Then it is common
that the application can be compiled in the same environment and simulated. These tools
enable the Electronic Design Automation (EDA) and sometimes are also called the E D A
tools [102]. Into the category of E D A tools falls, for example, the Processor Designer [97].

This kind of development environment shortens the development time significantly. How­
ever, each piece of software contains errors, and environments for the hardware software
codesign are not an exception. Some of the tools are more error prone than others. From
my point of view, the most critical is the compiler. Because if there is an error in the com­
piler, the compiled program might not work properly. Nevertheless, there are other parts,
mainly the SDK tools, which are also critical.

1 . 4 Testing of tools for hardware software codesign

Each part of software needs to be tested. In the case of such a complex tool as the hardware
software codesing environment, the testing techniques should be very advanced and ensure
thorough tests of separate components as well as integration tests. In this thesis I will focus
mainly on testing of the toolchain and particularly on tests of the compiler, as the compiler
plays a key role in programming of an ASIP.

Because the compiler is partly generated, I will also look at the process of generation.
Errors that may occur during the generation process may in certain cases also affect the
quality of the compiler and its backend.

The compiler is also used from various environments. Therefore, integration tests are also
needed to ensure that the compiler will work correctly and independently of the environment
from which it was triggered. Also the compiler plays an important role in other areas, such
as verification or during the tuning of the design and so on. Overall it can be said that the
role of the compiler is unique during the development of an ASIP. If we take into account
these wider consequences, it can lead to a higher stability of the compiler.

7

1 . 5 The structure of the thesis

The thesis is divided into nine chapters. The chapters are organized in the following way.
The second chapter is called State of art and gives an overview of architecture description

languages, as they are used for the description of the core, and from this description the
tools are generated. It also describes retargetable compilers, together with the testsuites
and generators that are used for compiler testing. The continuous integration systems are
also part of this chapter.

The third chapter describes the Lissom project. It is targeted at the description of the
toolchain, the software development kit (SDK), the way it is generated from the description
in the A D L .

Chapter four bears the name Goals of the thesis and there are outlined the results I would
like to achieve in the thesis. The following four chapters are dedicated to the solution.

The fifth chapter is devoted to the porting of the library. It describes the role of the
library in the toolchain, the process of porting and also automation of the porting process.

The sixth chapter discusses the problems connected to the scheme of test selection.
As I use tests from a large number of sources, I need to deploy an efficient test selection
mechanism. In the chapter I describe such a method and also the way how to automatically
generate files that take care of test selection.

Chapter seven focuses on the area of testing via a continuous integration server and also
acceleration of such testing. This chapter introduces an improvement in the flow of testing
jobs that brings significant time and space savings.

Chapter number eight is the last of the sections that are focused on the solution of testing
problems. It deals with problems connected to the generation of testing jobs, describes the
design and implementation of the generator of the jobs.

Chapter nine concludes the thesis. It gives the summary of the results, describes the
utilization in the industry, the advantages and disadvantages of the chosen solution. At the
very end of the thesis, the future work is also discussed.

8

Chapter 2

State of art

Nowadays, demands for applications are very high. For example, network routers have to
process a very high number of packets every second. General purpose processors (GPP)
cannot handle such demands. Moreover, there are often restrictions regarding the area that
can be occupied and power consumption is also usually limited. GPPs cannot meet such
restrictions.

2 . 1 Application specific instruction set processors

However, there is a group of processors that can meet such demands. Application specific
instruction set processors are designed especially for these purposes. These processors are
optimized for one specific task, so they can perform it faster, consume less energy and cover
a smaller area. The cost of this is the inability to perform general tasks. Such systems are
used, for example, in hand held devices. Such devices are issued every year. Therefore,
there is a strong need for the ASIPs to be designed easily so that the time to market it is
very short. However, this pressure results in shortening of the design time, as well as the
testing phase. One of the goals of this thesis is to design a new approach to the testing of
the tools that are used for the design of new ASIPs as well as testing of the tools that are
used for programming of ASIPs.

2.2 Application specific instruction set processors design tools

There are two basic approaches to the deployment of a new core in embedded systems.
Either it is possible to try to customize an existing design, so the designer uses the existing
core and adds some accelerators to reach the desired performance or they try to develop
their own solution. The second attitude has been more and more common in recent years,
as the usage of the existing core is often subject to a charge. Modern complex integrated
development environments are usually used for the development of a core from scratch.
A n architecture description language is very often in the core of such IDE. Some of the
environments offer design tools together with verification, such as the product from Ca­
dence. The ASIP designer from Synopsys is more focused on the architecture and toolchain
development, but offers a hardware generator and verification as well.

9

2.3 Description languages

Description languages are closely related to the ASIP design. As some of the tools that are
going to be tested will be generated from the description in the languages, it is necessary to
have at least basic knowledge of them. There are two basic approaches to the description
of the ASIP. One has a lower level of abstraction and the other one higher.

2.3.1 Hardware description languages

The first category are the hardware description languages (HDL). Languages such as VHDL[100] ;

[12] or Verilog [33] can be put into this group. These languages have the capability to de­
scribe the processor, but on a very low level (the abstraction is very low). This set of
languages requires the designer to have deep knowledge of the given area and to go to the
very details of the design. Changes in the later stages of the design are very time consuming
and the development also takes a lot of time. Moreover, these languages are suitable only
for description of the hardware. These languages do not contain information for generation
of an assembler or a compiler. Partly because of this drawback, another family of languages
appeared and it is becoming very popular.

2.3.2 Architecture description languages

This group is called the Architecture Description Languages (ADLs) [78]. The A D L s use
a higher level of abstraction and so they allow faster modification of the microarchitecture
at all stages of the development. From a description in the A D L , the majority of tools can
be generated. The A D L s do not usually contain such details as the H D L . There are two
basic approaches to this problem. Either the details are computed automatically or the
A D L s have constructions for a higher level of abstraction[82]. The Architecture Description
Languages can be divided into three categories.

1. ADLs focused on processor architecture - This type of description languages usually
offers a lower level of abstraction. This is caused by the fact that we need to de­
scribe various characteristics of a wide range of processors. A processor is typically
represented as a set of functional units. A hardware description can be very easily
generated from a description in this kind of languages. The problem in this case is with
the instruction set representation. The information about it is not explicitly contained
in the description. So the tools needed for the programming of the processor, such as
an assembler or a compiler, cannot be automatically generated. Into this category fall
languages, such as M I M O L A or M E S C A L [69].

2. ADLs focused on instruction set - This family of languages is mainly focused on the
description of the instruction set. It usually has a higher level of abstraction as we
describe the instructions. The processor microarchitecture is not described at all.
This means that the hardware description cannot be generated from such languages.
Therefore, a designer chooses such languages in the case when he or she targets the
software development. To mention just some of them, we can name n M L [75], ISDL or
CSDL[37]. For example, n M L has very nice formalism for the instruction set design.

3. Mixed ADLs - The category of mixed architecture description languages is a mix
of the two previous categories. This group of languages allows a description of the
instruction set as well as a description of the microarchitecture. The description of the

10

microarchitecture is usually optional. The design typically starts by the description of
the instruction set and later on, once the design is stable enough, the microarchitecture
is described. If a model contains both descriptions, it is possible to generate the
programming toolchain as well as the hardware representation. The representatives
of these languages are, for example, R A D L [92], EXPRESSION[42], LISA [44], ISAC
[70] or CodAL [19].

2.4 Retargetable compilers

In this section, I will have a closer look at compilers, as the testing of compilers is going to
play a substantial role in my thesis. First, I should explain what a compiler is. The compiler
is a tool that takes a program in one language, in my case in a higher programming language
such as C, and transforms it into another language, such as the machine code. There is a
special class of compilers that are called retargetable compilers. The retarget ability means
that the compiler is able to generate from the source language code the target code for more
than one target architecture. The compiler possesses this ability when it is able to do so
either without modifications or only with slight modifications.

According to the [60], a compiler can be classified as one of the following:

1. parametrizable compiler - in this case the machine description consists only of numer­
ical parameters and subtarget settings,

2. user-retargetable compiler - in this case the external machine description is given in
a dedicated language, which contains retargeting information, the specification does
not require in-depth compiler knowledge,

3. developer-retargetable compiler - in this case the target architecture description is also
mostly in external files, but its specification requires extensive compiler expertise.

Compilers of the first category, parametrizable compilers, usually enable the user to
choose between subtargets, such as various descriptions of the instruction set of a single
processor.

The second category, user-retargetable compilers, are those generated from the A D L .
A generated compiler falls into this category. The compiler generator is able to parse the
description in the A D L , usually after some preprocessing, and with minimal user interaction
generate the desired compiler that is able to produce the code for given target architecture.

The last category are the developer-retargetable compilers. These compilers are the most
common ones. The Low Level Vitual Machine (LLVM) and the GNU Compiler Collection
(GCC) belong into this category. Although most compilers fall into this category, compilers
are delivered by a third party, because the modifications that are required for changing the
target are massive and, in most cases, the end user is not able to make them.

I am interested only in C / C + + compilers as it is still the most popular programming
language for embedded systems. The G C C and the L L V M are definitely amongst widely
used compilers. I will also have a look at other compilers that are available as open source
projects and also at the commercial ones. A l l modern compilers have a common scheme of
processing the code. The scheme is shown in Fig. 2.1.

As is apparent from figure 2.1, only the backend is platform dependent. The rest of
the compiler deals either with the source code or with the internal representation of the
program that are both independent from the target platform. This means that if the user

11

1

Input source

Frontend

1

Internal representation

Optimizer

>

Internal representation

Backend

>

Assembly code

Figure 2.1: Scheme of a compiler

wants to create or modify the retargetable compiler, it is necessary to focus mainly on the
compiler backend.

2.4.1 L L V M

First, let us have a look at the Low Level Virtual Machine, known as the L L V M [65]. The
automatically generated compilers I am going to test will be based on this project, so I
will describe it in a more detailed way. This, nowadays widely used, compiler started as a
research project at the University of Illinois. The goal of the project was to deliver a modern
compiler with a strong support for optimizations. It should also be capable of Single Static
Assignment (SSA) based compilation [95] [47].

Since the beginning, the L L V M has gone a long way and nowadays it is a very large
project that covers several subprojects. The most important one is the Clang, which has
the role of the compiler driver and frontend of the L L V M . The L L V M project offers frontends
for nearly all frequently used languages, such as Objective-C, D, Python, Ruby, C, C++
and so on.

The compilation scheme is shown in Fig. 2.2.
At the beginning, the input program is processed by the Clang frontend and in the

intermediate form passed to the optimizer. After that comes the part which is unique for
the L L V M . The L L V M compiler is able to link the modules in its intermediate form, and
that is what makes it unique. This step is very useful for the testing as it enables the tester
to give the author of the code the whole linked program in its intermediate form. After the
linking, another optimization can be performed. The second optimization step is called the
whole program optimization (WPO). After the W P O stage, the resulting program is either
executed by the virtual machine or is passed to the assembler and later to the linker. This
process produces the binary code, which can be executed on the target processor. Now I
will have a closer look at the most important phases of compilation.

12

main.c mod.c

Frontend - Clang

main.be mod.be

Optimizer - opt

main.opt. be mod.opt.be

Linker - l lvm-link

^ prog.bc"

Optimizer - opt

prog.opt.be

Code generator - lie

, prog.s

Assembler - llvm-as

>
f prog.o

System linker
GNU - Id

prog

Static compi lat ion for
nat ive execution

Virtual machine
with code

generator - Hi

Virtual machine
execution

Figure 2.2: L L V M scheme

Clang

At the beginning, the input program is processed by the Clang. After this phase, the
output program is in the form of the abstract syntax tree (AST) and has the suffix .be.
Several other phases work over this representation. Semantics checks and also static analysis
are such phases. The static analysis can detect the first bugs in the source program. The
semantic checks transform the input program into the LLVM internal representation (L L V M
IR).

According to [55], the Clang is able to generate the code that is very similar to the one
that was parsed. This ability makes the Clang usable for the source to source transforma­
tions.

It should be mentioned that the Clang project is quite a new part of the L L V M . As
was mentioned above, one of the roles that Clang plays is the role of the compiler driver.
Before the Clang took this position, another L L V M project was used, the project was called
llvmc [66]. The llvmc offered a very basic configuration of the compiler driver, based on
the suffixes of the source files. Each suffix was a node in a graph and by the edges the
connections between the two nodes were created. There the llvmc has a special syntax for
defining the behaviour of nodes and for interconnections.

The Clang project replaced the llvmc in the version 3.0. It offers far more sophisticated
ways of defining how the compiler driver should behave. The solution is based on the C

13

http://mod.be
http://mod.opt.be
http://prog.opt.be

language. The Clang needs to know the so called target architecture triple. The Clang
contains the table of the supported architectures that keeps the information about the data
type sizes, endianess and alignment.

The Clang and the whole L L V M is a younger project than the GNU Compiler Collection
(GCC). Before the Clang was added to the project, the role of the frontend was played by
the llvm-gcc that generated the internal representation of the 11 vm. Majority of the projects
that are compiled by the L L V M today were originally designed for the compilation by the
G C C . This leads to the fact that the frontend tries hard to have a fully compatible command
line interface with all the parameters. Nevertheless, the dominance of the G C C in this field
is apparent and the L L V M project is always one step behind.

Optimizer

After the Clang phase, the code is optimized for the first time by the optimizer. The
optimizer has the form of a pass manager. The manager schedules the sequence of passes
based on the dependencies of each pass. The manager contains the dependency scheduler
that does not always work perfectly. On the other hand, addition and removing of the
passes is very easy and can also be tied to a command line option.

The optimizer works over the internal representation. The optimizer works with a target
data layout [64]. The example of the data layout is shown below:

E-p:32:32: 32 -S64-n32-i32:32:32 -f32:32:32 -i64:32:32 -f64 : 32:32

From this description, it is easy to get the endianess, the size of the pointer and registers
and so on. It is the numerical description of the architecture. The first E specifies endian-
ness, in this case the endianess, is big. The p:32:32:32 denotes that the pointer is 32 bits
wide. The S64 means that the alignment on a stack is 64 bits. The following n32 says that
the native integers are 32 bits wide. The following triples specify A B I and the preferred
alignment for specific data types, such as int32.

Backend

The backend is the part of the compiler that is most heavily modified in our project. In
the case of our project, the input of the backend is the program in the form of the L L V M IR
and the output is the assembler. It is also the part of the compiler that mostly generates the
errors. Because the output of the backend is the assembler, it is the most target dependent
part of the compiler. The most important transformations, which are performed in the
backend, are the following:

• Lowering - The key task is the transformation of the L L V M IR into the direct acyclic
graph (DAG) [8].

• Legalization - The main role of the legalization phase is to replace the operations,
which are unsupported at the target architecture by the equivalent sequence of the
supported operations and, in certain cases, use a call of the runtime library, such as
compiler-rt.

• Instruction selection - This phase works over the D A G , that keeps the L L V M op­
erations and transforms it into another D A G , which contains the target architecture
instructions. It can be said that it must map the instructions of the target architecture
to the L L V M operations.

14

• Register allocation - So far the L L V M has worked with virtual registers. In this phase,
virtual registers must be replaced by physical ones.

• Prologue/epilogue insertion and frame finalization - In this phase, the prologue and
epilogue are inserted and the frame is finalized.

• Scheduling - This pass is quite simple and serves as the linearization of the D A G .

• Assembly printing - The final phase is the assembly printing. The IR is printed into
the assembly file with all the necessary data definitions and other information.

The the most important phases that are computed in the backend are mentioned above.

Internal representation of the L L V M

I have mentioned several times the internal representation of the llvm called L L V M IR.
Now we shall have a closer look at it.

First, I should mention that L L V M IR is based on the Single Static Assignement (SSA)
[22]. The SSA denotes that each variable must be assigned only once. Various analyses and
transformations use the SSA form. Thanks to the SSA the description is very straighforward
and easy to read.

The L L V M IR is used through the whole compilation process. Thanks to the SSA form,
it is type safe and is able to represent clearly the high level languages. It is also flexible and
provides all the necessary operations. It is quite unique that L L V M IR supports integers of
arbitrary bit width. No other internal representation allows this.

It also supports an unlimited number of virtual registers. This is given by the fact
that it uses the SSA form. However, this can be a double-edged knife. I have experienced
several times, during the testing of the generated compiler, that the architecture ran out
of physical registers as the register allocator was unable to map the unlimited number of
virtual registers to the physical ones.

The L L V M IR contains the following operations:

• logical operations over integer and float,

• arithmetical operation over integer and float,

• conversions between the data types,

• comparisons,

• memory access operations,

• address computations,

• memory synchronisation,

• control flow handling.

There are also possibilities for debugging in form of directives. What quite surprised
me, is the support for the exception handling and special operations for garbage collection.
On the other hand, it is not that surprising when I take into account that the architecture
is virtual.

15

L L V M conclusion

I tried to sketch the infrastructure of the L L V M as the generated compilers are going to
be based on the L L V M . The project is very well documented and together with the test-suite
and related projects developed into one of the leaders of the open source compilers.

The fact that it is written in C++, makes the modifications easy. The majority of the
codes are well structured and commented. The IR of the L L V M also contains a large amount
of documentation. Thanks to this, a lot of companies are founding their solutions on the
L L V M .

The project has usually two minor releases a year and this makes the migration of the
user changes easily manageable, though not easy to perform.

2.4.2 G C C

The most widely used retargetable compiler these days is the GNU Compiler Collection
(GCC) [103]. The project started in 1985 and the first release came in 1987. Nevertheless,
the first stable version 1.x was produced four years later, in 1991. Currently, the latest
version is 5.2. Nowadays, the G C C supports more than 40 architectures and is the leader
in the field of retargetable compilers.

When I look at the G C C compiler I will find out that it roughly corresponds to the
scheme 2.2. I can have a look at some of its parts. As it is not in the centre of my interest,
I will not go into such details as in the case of the L L V M .

G C C frontend

The frontend of the G C C is in fact a collection of several different frontends. There
are frontends for the majority of mainstream languages. To mention just some of them C,
C++, Objective C, Java, Fortran and many others. The output of all frontends is the same
intermediate language, which is called G E N E R I C . The reason for the intermediate language
is simply to have language independent representation.

The representation looks very similar to the C language. In the following example, there
is the C code and its representation in G E N E R I C without some details:

int res ;

void sub(int a,int b){

res = a-b ;

}

{

res = a-b ;

}

G E N E R I C creates an interface between the frontend and the optimizer.

G C C optimizer

G E N E R I C description, which is used as an interface, is taken by the optimizer and
transformed to the new internal representation called G I M P L E . G I M P L E is in fact the
three-address representation of G E N E R I C . G I M P L E consists of tuples of exactly three
operands. There are, of course, exceptions, such as function calls. It is possible to see here
a correspondence to the L L V M IR, because G I M P L E is also SSA based.

16

The optimizer works over G I M P L E and performs target and language independent op­
timizations. G I M P L E is similar to G E N E R I C but it is more restrictive and simpler. It does
not contain control flow structures, it is SSA based and three-address. For the example
above, the G I M P L E representation is as follows:

sub(int a,int b)

gimple_bind <

int x.0;

gimple_as s ign <minus_expr ,x.0,a,b,NULL >

gimple_assign <var_decl ,x,x.O,NULL,NULL >

Once the optimization phase is finished, the code is passed to the last part of the G C C ,
to the backend. As the G E N E R I C IR was the interface between the frontend and the opti­
mizer, G I M P L E is used as the interface between the optimizer and the backend.

G C C backend

The backend is the last main part of the G C C compiler. It works over the Register
Transfer Language (RTL), which is the internal representation for this G C C part. The R T L
is used through all the passes that are incorporated in the G C C backend. The form has
been inspired by the Lisp language. The most typical features are nested parentheses that
are used to indicate the pointers in the internal form in this case. There are two main blocks
in the G C C backend:

• Expand pass - This is the first pass, the main aim of the pass is to create the R T L
description from the G E N E R I C description. I can say that this pass generates the
instruction list in the form of the R T L .

• Target dependent optimizations - Once the instructions are generated, the optimiza­
tions, which can be performed only over the target machine code, are performed. Into
this category fall the peephole optimizations and so on.

The output of the backend is typically the assembler optimized file, which can be further
processed.

G C C conclusion

Over the years, the G C C has grown into a very mature compiler. It is always at the
fringe of development. It is an implicit compiler for the (Berkeley Software Distribution
BSD system and is widely used in Linux distributions. Its frontend and libraries are up to
date with the latest standards of C++[48], OpenMP [17] and so on. It also has the largest
user base and the development is very active.

On the other hand, due to the extension of the project, it is difficult to maintain and
modify it. The forms of the intermediate code are hard to read and the G C C also has a
more restrictive license.

2.4.3 Other compilers

Apart from the two main open source projects, there are also other retargetable compilers
that should be mentioned.

17

• There is a Target [96] project Chess/Checkers. The goal of this project is to enable
the generation of the C compiler from the description in the nMl . [74]. There are
articles about the backend generation from the nMl , but they are not precise enough.

• Another project is called Machine SUIF [94], [14]. SUIF is a research platform aimed
at high performance compilers. The main focus is on loop transformations, scalar
transformations and software pipe-lining. The platform consists of a small kernel and
a tool kit for various analysis and optimizations. The main purpose of the core is to
gather all necessary information needed for the other optimizations, to provide support
for the IR manipulation and the provide the interface for other compilation phases.

• Very similar to SUIF is the Trimaran project. It is an extensible compiler framework
by HP, which focuses on code optimization techniques. It supports mainly V L I W
processors [59].

• CoSy compiler is a retargetable compiler developed by the Associated Compiler Ex­
perts [5]. The CoSy supports a very broad range of backends, from 8-bit controllers to
the 256-bit V L I W architectures. The compiler consists of the frontend, the optimizer,
which is architecture independent, and the retargetable backend. The backend can
also be generated from the LISA language.

• CompCert is a very interesting compiler project. The main difference from the other
mentioned compilers is the fact that it has a certified core.

Now after I have gained the idea about the compilers, I can move to another part that
is closely related to compiler testing, the standard libraries.

2.4.4 Standard library

The language, whose compiler is generated, is based on the grammar that defines the syntax
of the language. But the compiler itself is difficult to use. What makes the compiler really
useful is the standard library of the language, whose compiler is generated.

That is true for majority of programming language. Because I am interested in the
C programming language, I will have a look at the library of the C. The library for the C
language is specified in the standard [9]. It is the subset of the C library POSIX specification.
It is also called ISO C library.

In comparison to standard libraries of other languages, such as Python, the standard
library of C is small. It provides only the basic sets of mathematical functions, functions
for the conversion of types, basic manipulation for strings and file and console-based I /O.

When I compare the library with other language libraries, such as C++, Java or even
Python, I find that it really holds just the minimum of functionality. Other language
libraries provide, for example, containers, GUI tool kits or networking tools. The exact
opposite of the C standard library is the Python standard library. The Python standard
library provides, for example, clients and even servers for the common network services or
multimedia services.

However, there is one big advantage of the small standard C library. It is the fact that
in order to provide a working version of the library for a new platform, the amount of effort
I need to expend is relatively small.

The main parts of the standard C library are the following:

18

• Data types - The data types provide the declaration of how the data are stored and
what operations are permitted over the data.

• Character classification - In this section there are declared functions that are used for
the test of the character membership, for example i s d i g i t O .

• Strings - A set of functions that implements operations over the character or byte
strings, such as a concatenation or a copy.

• Mathematics - A n implementation of the basic mathematical functions for integer,
float and other data types.

• File input/output - A n implementation of many functions for the standard input and
output. The function forms the main part of the s td io .h .

• Date/time - Functions that provide conversions between the date and time formats, a
time acquisition.

• Localization - A n implementation of the basic localization routines.

• Memory allocation - Dynamic memory allocation, the heart of the library, functions
l ikemal loc , r e a l l o c .

• Process control - A very important part of the library, basic functions for starting and
termination of the process.

• Signals - Closely related to the process control, definition of the program behaviour
when it receives the signal.

Some parts of the library are more error prone than others. There are certain parts
of the library that are well known for overflows, such as g e t s O , and some of them are
deprecated. Other functions are considered thread unsafe. None of these are crucial for the
developers as there are always ways how to overcome such problems.

Even though there are several different standard C library implementations, the above
mentioned parts are common for all of them. I will now have a closer look at the Newlib
library as it plays an important role in the thesis.

Newlib Library

The Newlib library [77] is a collection of several parts that are all distributed under free
licenses. It is the C standard library implementation that is intended for use in embedded
systems.

The library is currently maintained by the Red Hat corporation [43]. The Newlib project
is currently used in the majority of commercial and also non commercial embedded systems.
It is particularly popular for the ones without an operating system.

The library has a strong support for porting (an addition to the new platform) and
because of its popularity, there is a lot of documentation about the porting, for example
[39], [15].

It is very well prepared for the addition of a new platform. It is divided into two parts.
The first one is the newlib directory. It contains the majority of the code for the two
main libraries l i b c (the core of C library) and l ibm (the mathematical library). Some
architecture specific code might be found here.

19

The other part is the libgloss directory, called also Board Support Package (bsp),
contains the platform dependent code. Therefore, during the porting mainly, the libgloss
directory has to be targeted.

I will devote more space to the description of the porting in the next sections.

2.5 Brief history of compilers and testing

In this section, I would like to describe several important phases of the computer languages
development and compiler testing. It is important to know the history of the compiler
testing as it can give us clues that will help us in the current situation. The phases of the
compiler testing are very closely connected to the evolution of the compilers itself.

2.5.1 First languages

The first programming languages were developed around 1950 together with the first elec­
trically powered computers. The computers had limited speed and memory capacity. These
computers were programmed in the assembly language. This required an enormous intel­
lectual effort and was extremely error prone.

Therefore, there was a need for higher level programming languages. One of the first
languages with real compiler was Fortran. The name was derived from Formula Translation.
It dominated the area of scientific and engineering application for over 40 years. Another
language introduced in this era was the LISP language.

At the very beginning, testing was performed manually, because computer time was
extremely expensive. Nevertheless, even in those days, I can expect that there were first
primitive test-suites. A great change came with the language ALGOrithmic Language A L ­
G O L . This language introduced several innovations, such as blocks with begin, end and
nested functions, which are still used in majority of modern languages. It was also one of
the first languages that attracted attention to the formal definition of the language.

2.5.2 High level languages

At the end of the 1960s and the beginning of the 1970s, languages that are still in use today
appeared. Most notably it was the C language. The language was developed in the Bell
Labs as an imperative general-purpose programming language. For this type of languages,
it is typical that they have test-suites. The most famous C compiler, the G C C project,
started in the late 1980s and from the beginning it has had a set of testing programs. From
a certain point of view, languages, such as C, are simple to understand and use. They are
not object-oriented and do not contain other components that would make the testing more
difficult.

The C language in the first version was very simple. The feature can be demonstrated
also on the A C E test-suite. The tests for the later standards of the language form over 80%
of the test-suite.

In that period, the test-suites were the main testing tool. The Smalltalk language was
introduced in the same year as the C language.

2.5.3 Object-oriented programming

Smalltalk together with Simula were the leaders of the object-oriented programming. The
C++ (also called C with classes) appeared later. Regardless of the object-oriented language.

20

once the programmer could create the classes and their instances, i.e. the objects, there
appeared a need for new kinds of testing.

Unit testing methods are focused on testing the classes internals. In the object-oriented
programming, unit testing means testing of a certain class or the interface to identify whether
they are fit for use. In unit testing, each test case should be independent from others. If the
class needs to interact with other classes, mock objects or method stubs can be used. The
unit testing should ensure that the objects behave as expected by the programmer. This
area is very large. More information can be found in [104], [46], [68].

For example, in the article by Tao Xie [104], the authors propose a framework for
differential unit testing. The main aim is to reduce the amount of manual work. The
framework called Diffut uses the Java Modeling Language (JML). The Diffut generates
the wrapper classes and automatically inserts annotations into the classes under test. The
annotations invoke the corresponding method in the other version of the class and compare
the return values.

The integration testing is aimed at testing of an interaction of the classes. It can also be
understood as testing of various modules that are combined together and the modules are
tested as a group. This kind of tests is usually performed after the unit testing is finished.
The purpose of this test is to ensure that the modules can co-operate in the expected way
and that they have the desired reliability and performance. More information can be found
in [16], [35].

Manual Tests

Acceptance Tests

Integration Tests

Unit Tests

Figure 2.3: Scheme of testing

So far I have described only two types of testing that are usually mentioned. The
common testing scheme deploys the following types of testing:

21

• unit testing,

• integration testing,

• acceptance testing,

• manual testing.

The acceptance testing [23] is usually performed by the customer. This type of testing
is conducted by the customer to decide whether the requirements of the specification or
contract are met. It should provide an answer to the question if the speed, area, power
consumption of the provided chip are in line with the specification, when I talk, for example,
about the ASIPs.

Manual testing is the last of the testing methods. Even though we posses the most
advanced technology, some of the bugs can be uncovered only by human intervention.

Viewed from the other perspective, I can say that all of these types of testing are not
specific for software development. It is possible to find variations of this attitude also in
other industrial branches, from mechanical engineering to the pharmeceutical industry.

For a very long time, development of new programs was performed without the Integrated
Development Environment (IDE). The first IDEs came to life in the 1970s. During the 1980s
the leader in this field was Maestro. The most widespread IDEs of today are Eclipse [36]
and Visual Studio [73]. The first release of Visual Studio took place in 1997 and the first
released Eclipse appeared in 2001. Eclipse is a plugin based solution. Nowadays Eclipse
provides a plugin for all major languages.

The current IDE usually provide support for the unit and also integration testing. Both
types of testing are triggered via different components, but it can be done from the envi­
ronment.

Today developers have good experience with so called Continuous Integration (CI)
servers. The main idea of the continuous integration [38] is to avoid integration prob­
lems in the later stages of development. Developers are encouraged to merge with the main
development line several times a day and execute tests over the result and keep an eye on
the integration continually.

The technique was first suggested by Grady Booch and was called the Booch method.
Later, it was adopted in the extreme programming and resulted in integrating once or more
times a day.

By certain groups, the continuous integration is not accepted as an improvement over
the frequent integration. However, I would say, that the majority of the great software
houses use the continuous integration servers in the development cycle. The CI servers can
be easily integrated with version control systems and allow automated builds via various
hooks. Therefore, the build automation is at a very high level.

Also the deployment of the builds is highly automated, when using the CI server. Because
the servers allow running the scripts, the release can be automatically linked to the customer.

2.6 Compiler testing methods

Compilers play a crucial role in the development of any software project. However, the
emphasis placed on the quality assurance is not high enough. Authors of the mainstream
compilers very often prefer testing by users in the field. This approach is not necessarily
bad. The advantages of such an approach are clear. The authors of the compilers can

22

outsource the testing to the user. However, fixing of the issues must be done in-house and
the resolution of the bug in the production phase is far more time consuming than doing so
in the earlier stages of the development.

Although there are modern ways of a formal verification of the compiler, they are not
very common. For example, the CompCert compiler disposes of the formally verified core
[57]. The price for this approach is the fact that 3/4 of the code in the CompCert compiler
are devoted to the verification techniques.

But this approach is not suitable for the mainstream compilers, such as the G C C or
L L V M . The developers of such projects still rely on test-suites. These test-suites are run
continuously. One of the main disadvantages of such test-suites is the fact that they are
very often composed of test cases that were reported by users. This brings the minimal
regression, as we always test for occurrence of already known bugs, on the other hand, there
are no methods how to detect new bugs.

Uncovering of new bugs is targeted by another type of testing. The random generators
are used at various levels for the detection of new bugs in compilers. Very common are
generators of random programs for higher level languages, such as C or Haskell. But if we
understand the compiler as a tool that takes a program written in a high level language,
such as C, and creates the binary code, there is also a motivation for random testing in
several sub-areas. One of these sub-areas is the assembly level. In our team, we use such a
random assembler generator.

In the sections below, I will give an overview of the current situation in both of the
above mentioned areas. First, I will focus on test-suites and later I will devote some space
to the random generation tools.

2.6.1 Test-suites for the C compiler

As my work deals mainly with the C compiler, I will focus on the sets of tests that are
designed for the C / C + + compiler. The majority of the big compiler projects, such as G C C
and L L V M , are distributed together with compiler test-suites. But there are commercial
test-suites, such as the ACE test-suite or the Perennial test-suite. Companies developing
such testing sets are very well aware of the fact that compiler testing is a growing area. The
standard techniques are not able to cover the needs of the modern compiler development.

The test-suites are mainly used for regression testing. The aim of regression testing is to
ensure that the software does not contain bugs, which we have uncovered during the process
of development. The G C C test-suite and also the L L V M regression tests are sets of tests
written by the developers of the compilers. The bugs were either found by the authors or
were reported by the users. By execution of this test set I ensure, that the already known
errors do not reappear. But by this approach I am not able to discover new errors. Very
seldom do the already written tests trigger a new unknown sequence that results in an error.

G C C test-suite

The G C C test-suite [40] is a part of the compiler from the early stages of the development.
It is distributed under the same licence as the compiler and contains a vast number of tests,
which is true for all the other test-suites as well. The G C C test-suite does not come with
the infrastructure and has clear reports, once the testing is finished.

The test-suite contains various types of tests. There are tests for C as well as for
C++. As we do not support the full C++ in our project, I use mainly the C tests for

23

asan

dfp

dwarf 2

ubsan

cilk-plus

cpp <

tsan

GCC Testsuite

goacc-gomp goacc

tor ture

tmp

simulate-thread

guali ty

gomp

Figure 2.4: Scheme of the GCC directory structure

the testing. There are very simple programs, as well as larger programs, such as SHA or
Dhrystone algorithm. The tests are very well sorted into directories 2.4. One of the greatest
disadvantages of the G C C test-suite is the fact that the tests are not sorted. There is a
certain directory structure, but it is very vague. For example, if a user wants to filter the
float tests or tests that use only integers, they must do it by themselves.

The test-suite contains the torture part. These tests are meant to be compiled several
times with different options. The torture test-suite is divided into several directories. Some
tests are designed to be executed after the compilation but there are also tests that are
designed only for compilation and should not be executed.

The disadvantages of this test-suite are very similar to the disadvantages of the compiler.
The project of the G C C compiler is quite old and so is the test-suite. Moreover, the tests
are usually only added to the test-suite. There are test cases that once triggered an error
in the original code, but the code is no longer part of the compiler. Another problem is the
fact that tests are not properly sorted and the test-suite does not contain an infrastructure.
Although this can be viewed as an advantage, as I do not have to modify the existing code.

L L V M test-suite

From the L L V M project [65] there also comes a test-suite. This test-suite has two major
parts. There is a regression test-suite and the benchmarks.

The regression test-suite is similar to the G C C one, which was described above. This
part contains the test cases gathered during the development phases. The test cases are
usually small pieces of code, which test a specific feature of the L L V M or trigger a specific
bug. The language they are written in depends on what part of the L L V M is tested. The
test-suite possesses a special driver for such tests, it is called lit. The directory, which
contains the regression tests, is further broken into subdirectories that are named after the
parts of the L L V M compiler that are tested by the cases contained in the given directory.

The other part of the L L V M test-suite, which in this case means benchmarks, is very
different from the G C C test-suite. The L L V M test-suite is in fact composed of various

24

benchmarks. The smaller programs meant for regression are kept separated. The rest of
the test-suite, the benchmarks, are sorted into directories and thanks to the well designed
makefile system the user can easily enable and disable the directories. In Fig. 2.5 is the
directory structure of the L L V M test-suite.

autoconf docs

website

tools

External

IntBenchmarks

SingleSource MultiSource LNTBased LLVMSource

Figure 2.5: Scheme of the L L V M directory structure

The main directories, containing the tests, are named SingleSource, MultiSource,
IntBenchmarks and External. The majority of the benchmarks lie in the directories
SingleSource and MultiSource. The SingleSource benchmarks are usually smaller ones
that are written in just one file and very often compute a certain value, and the MutliSource
directory contains subdirectories with complex benchmarks and whole applications. The
IntBenchmarks directory contains benchmarks that use only integer numbers and there is
a special directory for benchmarks taken from external sources.

The MultiSource benchmarks very often use input and output into the files. This may
cause several problems because results of such tests are typically evaluated by a comparison.
The referential output and the output from our tool-chain are compared. In the case of text
output, it may introduce some issues as the text output may have different format due to
the debugging.

The format of results in the L L V M test-suite is very simple. The results show, where
applicable, a comparison between the G C C and L L V M compiler. The basic metrics for the
comparison is the runtime of the benchmark, and also the number of cycles that were needed
for the execution, as can be seen in the following example.

Program 1 GCC LLC FLAG

IntBenchmarks/BenchmarkGame-fannkuch/fannkuch 10 . 0320 38 . 6000 ok

IntBenchmarks/BenchmarkGame-recursive/recursive 10 . 0200 74 . 2480 ok

I n t B e n c h m a r k s / B i t B e n c h - f i v e l l / f i v e l l 10 .0160 16 . 5960 ok

IntBenchmarks/Dhrystone-dry/dry 10 . 0200 24 . 6960 ok

IntBenchmarks/FreeBench-analyzer/analyzer 10 . 0280 70 . 6040 ok

IntBenchmarks/FreeBench-f ourinarow/fourinarow 10 . 0000 20 . 2040 ok

IntBenchmarks/McCat-01-qbsort/qbsort 10 .0160 22 . 6560 ok

IntBenchmarks/McCat-03-testtrie/testtrie 10 . 0080 15 . 8400 ok

IntBenchmarks/McGill-exptree/exptree 10 . 0000 0 .0880 ok

25

IntBenchmarks/McGill-queens/queens 1 0 0800 78 5160 ok

IntBenchmarks/MiBench- consumer - j peg/consumer - j pg 1 0 0080 15 7000 ok

IntBenchmarks/MiBench- security -sha/security-sha 1 0 0040 5 6520 ok

IntBenchmarks/Shootout -ackermann/ackermann 1 0 0040 13 9400 ok

IntBenchmarks/Shootout - f i b 2 / f i b 2 1 0 0080 17 8920 ok

IntBenchmarks/Shootout - l i s t s / l i s t s 1 0 0240 50 4560 ok

IntBenchmarks/Shootout -matrix/matrix 1 0 0160 58 4000 ok

IntBenchmarks/Shootout -methcall/methcall 1 0 0120 21 6400 ok

IntBenchmarks/Shootout -nestedloop/nestedloop 1 0 4920 20 4960 ok

The example shows results of several programs from the IntBenchamrks directory. In
the first column there is the name of the benchmark followed by the runtimes of the G C C
and L L V M . The program compiled by the G C C was executed natively, while the program
compiled by the L L V M was executed on a simulator. The last column, called FLAG, holds
information about the result. The example is not complete, as some of the columns were
deleted, otherwise the results would not fit the page formatting.

Also in the case of a benchmark failure, the complete log files are kept in a specific
directory. There are several logs which are kept from various stages of the compilation and
also from the execution phase. The log files are very often quite large and it is not easy to
identify where the problem is.

The system for the benchmark compilation is hierarchical. There is a system of makefiles
which control the compilation as well as the execution of the benchmarks. Each benchmark
can, therefore, be compiled and executed separately.

LEVEL = .

PARALLEL_DIRS = SingleSource IntBenchmarks

include $(LEVEL)/Makefile.programs

b u i l d - f o r - l l v m - top:

./configure --with-llvmsrc = $(LLVM_T0P)/llvm --with-llvmobj=$(

LLVM_T0P)/llvm - - s r c d i r = $(LLVM_T0P)/test - suite --with-

llvmgccdir = $(LLVM_T0P)/install --with - externals = $(LLVM_T0P)/

externals

$(MAKE)

In the example above, I demonstrate how easy it can be to enable or disable the directo­
ries. It can be done by a simple addition of the directory name to the variable PARALLEL.-
DIRS. Below the variable there is the command for configuration and build of the bench­
marks. When I get to the lowest level of the directory structure, it is also possible to enable
or disable any single benchmark. The system uses the standard configure scripts as well as
a make program.

The system enables a parallel compilation and execution of the benchmarks, which keeps
the speed of the testing at a very good level. The system is able to detect the number of
cores and run the compilation and execution on several cores. However, due to the number
and complexity of the test and also the fact that the tests run on a simulator, the testing is
slower then I would expect.

When I look at the mechanism for the test selection, it gives the user a possibility to
modify the compilation and execution of the benchmarks at will. But what is missing is the
possibility to choose the benchmarks according to some predefined features.

26

Perennial test-suite

Apart from test-suites that come with the compilers themselves, there are a lot of com­
mercial test-suites. The Perennial test-suite [81] is one of them. This test-suite contains its
own system for the execution and compilation of tests. It also contains a special file that
takes care of managing the input/output (I/O) subsystem. Thanks to this feature, it makes
debugging of the failed tests a little bit more complicated as these files are linked to the test
and one has to step through a large amount of instructions to get to the test itself.

The test-suite contains single source tests as well as tests that are composed of multiple
files. The tests are sorted into the folders according to the C standard. The folders make
the testing well-arranged as the user can exactly see in what part of the compiler there is
an error triggered. The test-suite is easy to configure and all the files which have to be
configured have a good documentation.

A n example of the configuration taken from the configuration file is shown below. The
explanation forms a part of the example, which shows the phase of linking. The user can
specify all the formats and necessary tools and can also specify the files that should be
removed after this phase. This approach gives the user a large amount of freedom for
specification of every single phase. On the other hand, the configuration file is quite long
and certain passages occur several times without modification.

Compile-to - Executable (CX_)

===========================

How to compile one C source f i l e to an executable. The f u l l f i l e

name i s

7,f . The base name i s °/,n. It must be link e d with the s c a f f o l d

object

module which i s °/,o .

CX_C = '/.(CC) '/.i 7.f 7,o __LINKED_FILES__ -o y.n.xexe

F i l e s to remove t h e r e a f t e r , executable f i l e not included.

CX_C_RM = y.n.g

The test-suite is delivered in the form of a source code, which allows the user to modify
it in case of need. Before the use, I had to compile the driver and create the configuration
file. I took the configuration file as a template. It was necessary to generate certain parts,
such as paths to the toolchain and the name of the compiler. The testing was performed
simply by running the driver with the given configuration file.

./driver

Nevertheless, the test-suite is not designed for an execution on simulator. I need to
check more things than the return value of the simulator, and the test-suite does not allow
this without modification of the source code.

I used to use the Perennial test-suite and during the deployment I more often found
failing tests in the G C C test-suite than in the Perennial test-suite. The problems, which
were revealed thanks to the Perennial test-suite, were usually connected to the linker. On
the other hand, the test-suite has a very nice system of notifications at its disposal and
the user exactly knew which part of the compilation failed. The test-suite is also always
up-to-date with the latest standards.

Once the test-suite is executed, it gives the results summary similar to the example
below. Each run of the test-suite has a unique number and the results are stored in a

27

directory, which bears a label with this number. The folder contains all the temporary files
that were not deleted as set in the configuration file, the compilation and execution log
for each test and file with name failures. The failures file contains names of all the failed
tests together with the description of the failure. This is very useful for further parsing and
sorting of the failed tests. I used this file to pack all the temporary files together with the
source of the failed tests. The package with the temporary files helps the designer of the
compiler significantly during the debugging phase.

* *

* TEST CYCLE COMPLETE *

* *

120 t o t a l test f i l e s :

110 test f i l e s pass

8 test f i l e s f a i l

2 test f i l e s unresolved

0 test f i l e s u n i n i t i a t e d

0 test f i l e s untested

0 warnings were issued

The speed of the testing is very high. The speed in connection with the fact that all the
temporary files are kept for further use makes the test-suite usable for debugging. On the
other hand, the debugging is complicated by the fact that the tests are linked together with
the internal code of the test-suite. What I personally consider to be the biggest weakness
of this test-suite is the test selection mechanism. The tests are kept in simple lists. There
is no possibility of dynamically changing the set of tests.

SuperTest compiler test and validation suite

The SuperTest compiler test and validation suite by A C E [6] is one of the market leaders
in compiler validation. I will call this test-suite just the A C E test-suite to shorten the name.
This test-suite offers tests sorted according to the C / C + + standards. There is a specific
directory for the C89 and C99 tests and these directories are broken further down according
to the paragraphs of the standard. So for example, the C89 standard has the following
summary:

Total number of files: 7

Total number of tests: 7

Paragraph Subject
3 Language
3.5 Declarations
3.5.3 Type qualifiers
3.5.4 Declarators
3.5.4.5 Array declarators

Each test case is contained in one file. The first character of the file name can be either t

28

or x. The files starting with t are positive tests. These tests contain the correct C programs
and, therefore, should be compiled successfully. The files starting with x are negative tests.
For these tests, a diagnostic is expected and a compilation is expected to fail.

Moreover, this test-suite offers so called depth test-suites. These tests are focused on
testing of the basic arithmetic. There are thousands of tests for various operations with
data types. These tests are platform dependent as they depend on the size of the data types
so the tests for 32 and 64 bits differ. There is a special naming convention for the depth
test-suites. A n example of such a name follows:

c24.148.f32.d64.tar.gpg

The name encodes a data model [4]. It specifies the target with 24-bit characters, 48-bit
longs, 32-bit I E E E floats and 64-bit I E E E doubles. The following list defines all types that
can be used in the suite name:

c char

s short

sfx short f i x e d

l f x long f i x e d

sac signed accum

This list is very useful for me, as I will try to find a way to automatically match this
pattern and select the corresponding depth test-suite automatically.

The problem with this attitude is that when I am developing a new core, I may choose
such a combination of data types that no depth test-suite is suitable for it. Also, there is a
problem of an automatic detection of the data type of a new compiler, and when I have a
larger number of cores, the time spent on the selection might be enormous.

The test-suite uses a special driver for the execution of the tests. This driver is called
valid. There are several modes of execution. A user can execute either a single test or
all tests that are kept on special lists. The compiler driver takes the configuration file as
a parameter. The configuration file is platform specific and keeps information about the
position of the toolchain, parameters of the compilation and execution. The configuration
file is not as detailed as in the case of the Perennial test-suite. There is also another tool
called the leash which can be used for the execution of a certain test with limits. It allows
the user to set a limit for a time as well as to limit the size of the output. Below there is an
example of the execution of the leash, as well as the execution of the driver.

v a l i d -e 'one 3 / 0 / 1 / t a l l . c ' d e f a u l t . c f g

v a l i d default

C o l l e c t i n g test s e t . . .

Running n u l l t e s t . . .

Creating l i b s t . . .

C V a l i d a t i o n started

I

II

f

d

Id

l int

long

long long

f l o a t

double

long double

[] 1007, (2567/2567)

29

leash -t lm -o lk -e 512 a.out

The execution of the valid means that only one file 3/0/1/tall. c will be compiled. The
command valid default will execute the basic set of tests. The execution of the leash
restricts the execution of the file a. out to one minute and the output is limited to 1 Kbyte
on stdout and 512 bytes on the error output stderr.

The program valid automatically detects the number of cores and performs a parallel
compilation and execution. However, it compiles the source files in the directories named
after the cores, so it does not keep temporary files from the compilation and execution.

As far as the result reporting is concerned, there is a directory containing all the log
files and the list of failed tests. There are separate log files from the compilation phase and
from the execution phase of testing. There is a separate log for each clause of the standard.
Below there is shown the compilation log of one of the tests.

TESTING: suite 111 1/1/2/tO1.c

New-line character with an immediately preceding backslash

Compilation succeeded

RESULT: 2/l / l / 2 / t 0 1 . c PASSED

Scripts for the log separation are written in Perl and are part of the test-suite, so they
are not difficult to modify. I deployed this test-suite for nearly a year in our project and
the results were very positive. One of the drawbacks is the large number of tests, so the
execution takes a long time, if not tested on a larger number of cores such as eight or more.
The code coverage increased when the test-suite was used slightly.

One of the drawbacks of this test-suite is the fact that the test selection mechanism is
based on a simple list. Though it is not a list of tests but a list of directories that should
be included in the testing. The driver detects whether the directory exists and if yes, it
executes tests in the named directory and all subdirectories. This gives the user freedom to
modify what tests will be placed in the testing directories.

2.6.2 Test selection mechanism

One of the most important criteria for use of the test-suite is the way of test case selection.
A l l of the test-suites that were mentioned had serious drawbacks as far as the test selection
is concerned. There are certain test-suites that do not possess any testing infrastructure
and test selection mechanism at all. The rest of the test-suites gives just very basic options
of the test selection.

The test selection is usually based on a simple list of files. In certain cases, the list of
files contains only the test name, but in other cases, it contains the whole path to the test
from the given directory, which is typically the root directory of the test-suite.

In the second case, when the list contains the full path to the test, I used this information
when the test failed to pack it together with the temporary files that were created during
the translation.

Nevertheless, these simple methods of test selection cannot be used for my purpose.
There is a large theory concerning test selection methods testing [34], [58] or [7]. The
methods can be divided into three basic categories:

• Coverage techniques: This approach takes into account the code coverage. The cov-
erable program parts are looked for and choosen.

30

• Minimization techniques: This approach is similar to the coverage one but a minimum
set of test cases is chosen.

• Safe techniques: This approach is not focused on coverage, instead all the test cases
that produce different output are taken into account.

Nevertheless, I need to focus on different aspects of the test selection mechanism. I do
not need to keep the set minimal. A n important role here is played by the information
about the instruction set that the compiler possesses. Very often the model from which
the compiler is generated can dispose of a specific bit width. For example, I can create a
compiler for the 16-bit model or for the 32-bit model. This characteristic influences the
set of tests that can be compiled and executed. There are also other factors, such as the
presence of the C compiler library and the presence of compiler-rt library and so on. A l l of
these factors must be taken into account.

M y test selection mechanism must be able to address such differences. I need to easily
choose the test for each platform according to the bit width and the presence of certain
libraries. And, in certain cases, also to specify directly that certain tests should not be
executed on the given architecture.

2.6.3 Random generators

Another way of compiler testing are random tests generators. It is definitely not an easy
task to create a random generator. The generated test programs must have the correct
structure which is accepted by the compiler. The majority of today's compilers use multi­
stage processing. There might be even dozens of stages before the final compiled code is
produced.

For example, the L L V M is a framework that allows an easy insertion of compilation
phases. It is common to add the optimization, or any other phases, into the L L V M processing
chain.

During the compilation, the earlier stages must be finished without errors. So in order
to test the later phases, the generator must produce a code, which passes the earlier ones.
The requirements for passing vary. It may be just lexical correctness of the program or the
correct syntax. In later phases, where the semantics analysis is solved, the program must
be type correct in the case of statically-typed languages.

The generation of the valid sentences for the given language is usually based on a formal
basis. Also the use of templates is very common, especially for the generation of more
complex programs with specific semantics.

As I focus primarily on the C language, I have picked mainly the generators that produce
test cases in the C language.

Csmith

One of such projects is the Csmith [105]. The Csmith is a random generator of C
programs that aim at hardening of all known compilers. The Csmith attempts to avoid the
undefined and unspecified behaviour in the generated programs while the expressivity of the
generated programs is at a very high level.

To do so, the Csmith deploys relatively complex program generators. This program
generator uses various techniques to produce safe programs. First of all, the generator uses
structural constraint to avoid unsafe behaviour. Then, in cases where the constraints would

31

be too restrictive, it performs a static analysis of the already generated code fragments. By
doing so, the Csmith determines whether the given operation is safe or not. Also it often
inserts runtime safety checks into the generated code.

The test evaluation is done by using differential testing with the use of different options
of the same compiler, or by the use of different compilers, or a combination of both. The
scheme of testing with the Csmith is shown in Fig. 2.6.

C S m i t h

C o m i l e r 1 C o m i l e r 2

E x e c u t e

C o m i l e r 3

E x e c u t e E x e c u t e

N o B u g C o m p a r e o u t p u t B u g

Figure 2.6: Csmith scheme

The evaluation of the test results is performed by the comparison of the checksums.
The checksums are computed from the non-pointer global variables sampled at the end of
each execution. The authors of the Csmith project used it for testing of various compilers.
They tested frequently used projects, such as the G C C or L L V M , compilers with a certified
core, such as the CompCert, and also commercial C compilers. The CSmith uncovered 325
bugs in these compilers, most of them in the G C C and L L V M . The CompCert that uses the
formally certified core contained several bugs.

Test cases that expose a bug are usually not reduced as the reduction may introduce
some undefined or unspecified behaviour that the authors try to reduce as much as possible.
The programs that contain 8k-16k of tokens show the highest rate of bug triggering. The
tests cases triggering errors are usually reduced by hand to get understandable test cases.
One of such test cases is shown in the example below.

int foo (void){

signed char x = 1;

unsigned char y = 255;

return x > y;

}

This test case comes from the Csmith database [20]. It uncovered a bug in the G C C
compiler that was shipped with the Ubuntu 8.04.1. According to the database, at all
optimization levels the compiled program returned 1, while the correct result is 0. The
compiler for Ubuntu contained several patches. The base version without the patches worked
correctly. This situation is very common. Nearly all major distributions have compilers
modified to suit their needs. This procedure very often brings new errors into an already

32

stable product.
It seems that the greatest development of this project was around 2010. The Csmith is

distributed under the BSD-style licence. The generated programs can be used for any other
C compiler. The latest version of these tools is 2.2 and comes from the very end of the year
2014.

McKeeman project

McKeeman [71] has created a project that also uses a differential approach to the testing
of the compiler but, unlike the Csmith, it uses inputs of various quality levels. This is
something that was not possible with the Csmith. According to the article, the lowest
quality level has a sequence of any ASCII characters, followed by a valid sequence of tokens
and syntactically correct programs. The last level is presented by programs with well-defined
semantics.

This method has been proved as a very efficient one in uncovering bugs in different stages
of the tested compilers since this method tests the compiler in a complex way. What is very
well-designed in this tool is the way it generates new test cases. The user can choose the
level of generation. Whatever level is chosen, new test cases are created from the actual one
by introducing small changes into the test case. If the new test case causes the compiler to
crash, it is easy to track the bug.

Quite uncommon is the way which was chosen for the creation of the generator. The
generator is represented by the Tel script which is based on the context free-grammar based
generator. This solution is enhanced by support of the context sensitive features, such
as defined variables tracking. Each grammar rule has a weight. The termination of the
algorithm is ensured by assigning small weights to the recursive rules.

The generated test cases are given to several compilers, as is usual for differential testing.
If a test case causes an error, the process of shrinking is used for the reduction of its size.
The test cases might have several hundreds or thousands of lines. As I have seen in the case
of the Csmith, quite long tests have the highest rate of triggering of bugs. Very often the
test cases can be shortened to several lines of code. Nevertheless, this can take up to tens
of thousands of compilations.

The discrepancies between two of the compiled versions are handled in the following
way. A l l potentially dangerous operations are replaced by error checking variants. I can
demonstrate this feature on the example below. For example, consider the generated case
that might be potentially dangerous because of the violations:

a << b

This example is replaced upon regeneration by the following:

i n t _ s h l _ i n t _ i n t (a , b)

The function checking function has the following syntax. It checks the integer shift out of
range:

int i n t _ s h l _ i n t _ i n t (i n t v a l , int amt) {

assert (amt >= 0 && amt < sizeof (i n t) *8) ;

return val << amt;

}

The program is then re-executed. If the program execution fails, it means it contains an
error, and the program is discarded.

33

I have already noted that the highest level of testing consists of programs that have
well defined semantics. The programs are generated from specific templates at this level.
These templates ensure that the generated programs have a certain high level structure and,
therefore, keep certain semantic properties. However, I did not discover how difficult it can
be to add such a template to widen the pool of the generated programs. The diversity of
the generated programs is weighted against the semantics correctness. The generated test
cases are very specific in comparison to the tests cases that have lower quality.

Quest

This project was created by Lindig [62]. The aim of this project is to create a simple
tool for testing of the calling convention of the C functions in the C compilers. Random
programs are generated containing C functions, which perform consistency checks to verify
that the arguments were passed correctly. The types of functions are chosen randomly, and
the body is then algorithmically generated. The generated cases are not usually very long,
an example of a generated test case is below:

1 #include <stdarg.h>

2 #include <assert.h>

3 union A { f l o a t a; double b;}

4 c = { 52.54 };

5 struct B -[double d; int e;}

6 h = { 78.01 , 834 >;

7 union C {short int f; char g;}

8 i = { 68 >;

9 struct D {char j ; double k;}

10 n = { 'c', 31.01 >;

11 struct E {long long 1; double m;}

12 o = { 167L, 17.2 >;

13 union A

14 c a l l e e (s t r u c t D a, struct E b, ...)

15 {

16 v a _ l i s t ap;

17 struct B x;

18 union C y;

19 va_start (ap, b);

20 x = va_arg (ap, struct B); /* 3rd */

21 y = va_arg (ap, union C); /* 4th */

22 assert (y . f == i . f) ;

23 /* f a i l s */

24 va_end (ap);

25 return c;

26 >

27 int main(int argc, char **arg) {

28 union A r ;

29 r = c a l l e e (n, o, h, i) ;

30 return 0;

31 >

The G C C 3.3 compiler on MacOS X 10.3 passes union C incorrectly to the variadic
function callee. The assertion in line 22 fails. This test case code was generated by the
Quest tool. In any variadic function, extra arguments must be accessed using macro va
arg, which receives the type of argument and returns its value.

34

The Quest generator found errors connected to the calling sequence in five different com­
pilers. Moreover, the bugs were triggered by a very simple code. One of the explanations
can be that the test-suites, which are used and also very often written by the compiler
writers, contain only a very limited subset of combinations of the arguments.

Haskell generator

In the thesis by Palka [79] the generator for Haskell compiler is described. The generator
described in Palka's thesis is able to generate only a subset of the Haskell language. But
even generation of this subset was able to find interesting bugs in the compiler. Once the
test case uncovering a bug was uncovered, the shrinking mechanism was used to reduce the
size of the test case into the form that is suitable for the bug reports.

The example of the shrinking phase is in Fig. 2.7.

Figure 2.7: Shrinking scheme

The test cases that fail are marked as grey. The dotted test cases are not taken into
account.

The shrinking mechanism is simple. Test case a is the original test case. This test case
is further shrunk. The first shrinking step considers a's shrinking candidates b, c, d and so
on. These test cases are put under test. Test case b is considered first. Unfortunately it

35

succeeds and is discarded. Test case c fails, so it becomes the current shrunk test case. The
shrinking candidates of c are tested in the next step. In this step, the candidate h is found
to fail and the process continues with its shrinking candidates. The process terminates when
all current shrinking candidates succeed, or when the test case does not have any, and the
last failing test case is reported.

In this case the differential testing is used to uncover bugs. The approach of compiling
the test case by one compiler with different optimization levels is used here. Also the
alternative way of the differential testing was used where equivalent programs are used and
the behaviour is compared. The second attitude was able to uncover more bugs.

However, in the case of the Haskell generator as well as in the majority of other examined
random generators, the testing cannot be fully automatized. A lot of time is usually spent
on reducing the test cases. This can be done automatically only for certain cases. When
reporting a bug, the test case must be as clear as possible, and usually the automatically
generated tests are not in the appropriate form.

According to the author, effective testing is dependent on spending effort on creatively
devising properties. Also, a lot of bugs were uncovered by properties that were originally
developed for a completely different purpose. This finding correlates with the statement that
was made about test-suites. To uncover new bugs it is necessary to think about problems
from another perspective and also some functionality in a different way.

But what is common for all the random generators is the fact that working with any of
these tools gives the author, or even the user, a deeper understanding of how the compiler
works internally.

Other generators

There has been one interesting bachelor thesis at the Faculty of Information Technol­
ogy, Brno University of Technology. In this thesis [76], the author suggested a method of
generation of sentences for the C language. The system consists of three parts. See Fig. 2.8.

The first and most important part is the generator called Spitter. Although the system
is designed in a way that it can deploy any input, the generator is the heart of the whole
system. The Spitter produces sentences of the C language.

The sentences are easily compilable and also the runtime is usually short. The compila­
tion, as well as execution, are performed by a module named Builder. The Builder module
not only keeps all the logs of the execution and compilation but it also keeps information
about the way in which the program finished.

The last module is called the Comparator. This module is responsible for deciding
whether an anomaly has been discovered or not. If so, all the logs and temporary files are
kept for further debugging. The project mentioned in the thesis was successful in finding
bugs in the known compilers.

Nevertheless, this project also suffers from serious problems. Although the generated
programs do reveal problems in the compiler, the analysis of the test case is usually very
difficult. What is even more disturbing is the fact that this dynamic method produces a lot
of false positive test cases. This points to the fact that the Comparator module should be
improved.

36

Spitter
generator

Generated
program

> f

Builder

>

Comparator

Pass Fall

Figure 2.8: Spitter scheme

2.7 Continuous integration

As was mentioned above, the continuous integration servers are nowadays used for deploy­
ment and testing of new packages and releases. Before the continuous integration method
was deployed, the development of software had had to deal with several serious disadvan­
tages. The teams of developers merged the code together via non systematic methods and
they were very often forced to rewrite certain parts of the code. A process like this very
often took weeks and sometimes even months. This very often led to inevitable delays in
the process of development [67].

Nowadays, we use modern tools for the process of software development, these make
the whole process faster and easier. Because today the software development is not only
the coding but also continuous testing, version control of the code, quality assurance and
observation of metrics. Continuous integration tools make this process faster, less error
prone and they also help with automation of certain parts. It gives the programmer a
powerful tool for error detection and also reporting of errors, and it also helps with the
release management.

However, the utilisation of the continuous integration processes Fig. 2.9 bring certain
restrictions. The process of building must be automatic. This means that it should be
reliable and without user interference. When a programmer saves the changes into the
version control system they should be sure that the code is compilable. Also the fix of the
broken code is a part of the development process and should be made as soon as possible.
Testing is one of the fundamental parts of the development cycle, and the regular triggering

37

Integration

Compilation Database integration

Tests execution Software deployment

Results Checking

Higher quality and lower risk
Figure 2.9: Continuous integration

of the tests is necessary. Nevertheless, the developer must choose the right testing scenarios
and keep the high standard of tests.

The most widely used continuous integration and continuous deployment server is called
Jenkins [51].

The development of the Jenkins project was started by Koshuke Kawaguchi in 2009, who
worked for the Sun Microsystems. Nowadays the Jenkins project keeps more than 70% of
the continuous integration market, which makes it by far the most widely used tool. In 2009
the Oracle bought the Syn Microsystems. This step led to conflicts between the founders of
the project and the developers from the Oracle company. The Oracle developers fought for a
longer development cycle with heavier testing, while the founders led by Koshuke Kawaguchi
stuck to the concept of the open source together with flexibility and swift development. In
2011 the project was renamed. The Hudson was renamed to the Jenkins and it was separated
from the Oracle. Majority of users are faithful to the newly developed project. However,
the Oracle still continues with its own development.

The Jenkins is an open source continuous integration server. It is implemented in the
Java language. It has a very simple interface, which can be easily customised by a large
number of plugins. The plugins can be divided into several categories:

• Version control system plugins - plugins that provide interface to the most common
Version Control Systems (VCS),

• Executor plugins - plugins that allow execution of certain scripts, such as Python,

• Interaction plugins - plugins that allow an interconnection between jobs, for example
Join plugin,

Metrics and visualisation plugins - this group of plugins allows a visualisation and

38

provides support for various kinds of results.

One of the biggest advantages of the Jenkins project is the speed of development. There
are updates and bug fixes available every week. There is also a more stable version that
is released three times a year. This version contains only packages and bug fixes that are
considered stable.

There is no other tool that can match Jenkins in the number of installations or available
plugins. However, the swift development and high number of plugins has its drawbacks.
Very often the plugins are not compatible and it is not uncommon that development of
certain plugins is dropped in favour of a plugin with similar functionality. There are usually
several plugins that can bring similar functionality and it can be quite difficult to find one's
bearings in them.

The continuous integration server can be understood as a system that maps the set of
jobs on the set of nodes. To make this clear a bit, the continuous integration server contains
a set of defined jobs that should be executed. At the same time, it keeps the nodes. Each
node possesses a defined number of executors. One executor can run one job at a time.

2.7.1 Node control system

The node in the Jenkins environment is controlled by the master computer. The master is
the computer where the Jenkins server is installed. The newer versions also support multi-
master settings. The master node keeps track of all jobs which are currently configured inside
the Jenkins installation and it also keeps track of all the nodes. It controls the execution of
all the jobs and it sends the jobs to the slave nodes and, once the job is finished, it tracks
the results. It can be seen as the master-slave architecture.

The nodes are controlled by the Java application called slave. The slave agent is
executed at the node and works over T C P / I P . Once the node is configured it is shown in
the Jenkins server as up and running. The jobs can be configured to run on a specific node
or group of nodes. If the user chooses a group, one of the nodes is selected by a ballot. The
multi-configuration jobs keep the matrix with nodes and this way it is possible to create a
single job that will be executed across all supported systems.

Apart from the parallel run of a single job on multiple nodes, there is also a possibility to
run multiple jobs on one node at the same time. Each job has its own workspace directory,
which means that the jobs are independent. The number of parallel jobs can be set by the
number of executors. By default each node has one executor.

2.7.2 Jenkins as a build environment

The Jenkins is nowadays widely used as a tool which performs nightly builds and tests.
In Fig. 2.10 I depict a build pipeline. The whole process starts with the building of tools

[67]. The Jenkins environment provides special types of jobs, for example a maven job for
the Java projects. One of the biggest advantages of the Jenkins is the selection of the nodes
where the job will be performed.

Let me introduce the most important steps of the build. The build is a job in the
Jenkins that is configured in an appropriate way. I use two kinds of job for the build, the
multi-configuration job and the maven job. The jobs differ just in the execution step,
otherwise they are very similar.

The first important feature that can be configured is the job security. The job can be
configured in a way that other users can just watch it or control it, etc. There are several

39

Build Pipeline

Figure 2.10: The build pipeline

plugins that modify the basic functionality of the Jenkins in this area. One of them is
Matrix Authorization Strategy Plugin [52] and also very popular is a combination of the
Folders Plugin [49] and the Role Strategy plugin [53]. A l l variants have advantages and
disadvantages, but for a larger company a combination of folders and a role based access is
more useful, although it is harder to configure it properly.

A user can also set the names of the jobs that will be able to copy the artefacts in the
configuration if the job stores any. Moreover, the job parameters can also be configured.
In the Jenkins, there are basic kinds of parameters, such as boolean, string, text and new
kinds are added by the various plugins. I can mention, for example, the B u i l d selector

for Copy Artefacts or the Choice Parameter. It is also possible to use global parameters
and parameters can be also passed from an upstream job. In this case, the local parameters
are overwritten.

Another extremely important part in the job configuration is the Source Code Manage­
ment. A l l version control systems can be added into the Jenkins environment via plugins.
Let us have a closer look at the git possibilities in Jenkins. There are plugins for integration
with git [41], such as Gitlab, Github and also GitBucket. There is also a possibility to
utilize the git change log. However, the majority of functionality suitable for the majority
of clients is in the Git plugin [50]. The plugins offer possibilites for advanced checkout and
clone behaviour, have cleaning and polling routines and also offer possibility to checkout
into a specific directory. However, I have experienced on Windows systems, that it has
limitations when checking the various branches of the same repository. The git executable
and permissions are configured in the global Jenkins configuration.

Then there are the sections Build Triggers and Build Environment. In these sections,
the user can configure a periodical build. This is useful especially for nightly builds and
tests. Also the polling can be configured there as well as other actions, such as execution.
What is extremely useful is the build abortion. There are several possibilities, such as the
absolute timeout or the conditional timeout. Also the environment variables can be set for
injection into the job.

A very important part in the multi-configuration project is the Configuration Matrix.

40

The most frequently used axis is the one containing nodes. The user can define what slaves
will the build be performed on. It is possible to choose Labels or Individual nodes. Also
another axis can be added, such as an axis based on a version of the Java language.

A l l the above mentioned sections can be considered a configuration. After these steps
comes the build. The build is divided into the Build and the Post-build actions.

In the Build section, the user can configure an execution or a conditional step. From my
experience, it is better to configure the execution and do the conditional steps inside the
scripts. There is also a possibility of executing other projects before the execution starts.
The kind of the offered executors is affected by the installed plugins.

The last part is called the Post-build actions. The possibilities offered here are wider
than the ones in the Buid Step. It is possible to execute some clean up procedures and
also wait for other projects until they finish the build. Very often, the job archives some
artefacts and they can also be configured in this step, as well as the trigger of other jobs.
Another wide area of the post build actions is the publication of test results. The Jenkins
offers a support for all major formats, such as JUnit and others. There is also the Editable
Email configuration that enables sending emails with various features.

The job is stored in the xml format in the Jenkins. The extensions just bring the new
marks into the existing jobs.

Using the functionality provided by Jenkins, it is simple to automate the building pro­
cess. However, for large companies, it can be quite difficult to maintain all the jobs by
hand.

Especially in cases when the development of new features that need to be tested, it can
be difficult to create new jobs that are needed for testing manually. So I will have a look at
the possibilities of the job generation.

2.7.3 Current possibilities of the job generation

Let us have a look at the current development in the field of job generation. I can distinguish
between two types of solutions. There are tools in the Jenkins that were designed for this
purpose and then there are several works that try to deal with the problem of job generation
outside of the Jenkins environment.

First I will have a look at the solutions inside the Jenkins. One of them is the Template
plugin [3]. V i a the template project plugin, the user can set up a template project, containing
the settings the user wants to share. Is is possible to set, for example, V C S repositories that
are common for the jobs or a script that should be executed and so on. Then it is possible to
create another project from the created template inside the Jenkins. So the generation has
to be performed manually by using the template several times. Therefore, the possibilities
of the automation are quite limited.

Another possibility provided by the Jenkins server itself is the Job generator plugin [2].
This plugin is based on the template, which is the job itself and the parameters, which can
be global or local. This plugin is very powerful in combination with other plugins, such
as plugin for the conditional resolution. However, it shows limitations in the form of what
types of jobs can be generated and it cannot use time triggers. Moreover, it is very difficult
to generate more complex jobs. The hierarchy and conditions can become very complex
and the whole process is quite error prone. I also did not find a way how to set the desired
nodes in the multi-configuration project.

The most powerful solution from the Jenkins itself is the DSL plugin [1]. The dsl
plugin offers the possibility of definition of the job, which will serve as a template. From

41

this template the Jenkins is able to generate other jobs. This is done via a special build
step called Process Job DSLs. The build step executes the script in the Groovy language.
This solution allows the user to perform basically any customization over the template. The
Groovy language is very powerful. On the other hand, this solution is still within the Jenkins
environment and can be affected by other plugins, which can cause problems. Moreover,
the Groovy language is not very common and may require complicated settings.

Now I will introduce several approaches that try to deal with job generation outside
the Jenkins environment. Interesting ideas were proposed in the article at the Jenkins User
Conference [61]. The article deals with the automation of testing in the area of robotics.
The author uses combination of various Jenkins plugins for packaging and a static analy­
sis. Nevertheless, the process of the building and testing is very complicated and hardly
maintainable. The author of the article proposes the use of the Domain Specific Language
(DSL) for the specification of information and then generation of the Jenkins jobs. It seems
that the author just uses the Jenkins for the building. However, the system seems to be
slow and problematic as far as the synchronisation of the jobs is concerned. Also there are
problems with the graphical side of the solution.

Quite interesting ideas connected to the job generation are described in the Shaw article
[89]. The article also introduces the possibility of job generation from templates and usage of
the Jenkins command line interface. Nevertheless, the article does not provide any examples
of the templates or the scheme how the system works.

Above I have introduced several possibilities in the area of job generation. None of
the approaches that were mentioned suit my needs. In our project, I need to generate all
kinds of jobs, as it is crucial to test various aspects of the newly developed core. These
aspects include the tests of various features that can be tied to very specific kinds of jobs.
The approach mentioned in [61] seems to be interesting. For use in our research project
it appears to be too cumbersome. A lightweight solution with the command line interface
would suit my needs better.

2.8 Disadvantages of the current state

The area of the hardware software codesign is under rapid development and many solutions
used in this field are unique. Currently, there is no suitable solution that would even remotely
meet my requirements for a complex testing system for the automatically generated compiler.

In the case of test-suites, I need to add the test selection mechanism because compilers
have various restrictions. This very often leads to a large number of false negative errors.
The designed compiler very often should not be able to compile certain tests. The test-suites
are very often hard to scale. By scaling in this context, I mean the ability of the test-suite
to execute a set of tests for a given platform that has certain properties. A very common
test case is to execute a set of texts that are suitable only for 16-bit architectures.

Also the different types of reports cause problems during the evaluation of tests. Each
test-suite, except for the gcc one, has its own system of reporting errors and storing tests. In
some cases, there is a possibility of storing temporary files but sometimes it is complicated.

In the case of random generators, the usage is also complicated, as they usually provide
test cases, which are very difficult to debug. I came across several solutions in this area, and I
did not discover any way how to instrument the generators to focus on certain constructions.
Also the development in this area is slowly dying out. Overall I can say that they are not
meant for use in the area of embedded systems.

42

Due to the situation described above, companies in this field have to develop their own
solutions. They usually do not publish the testing methods they have developed and use
them internally. In the thesis, I will try to sketch the practices that help to improve testing
of an automatically generated compiler and also give comparison where possible.

As far as compilers themselves are concerned, we saw that a modern compiler consists of
many interconnected parts, which are very error prone. Thanks to the study of the compiler
internals, I now have a very good insight into compilers and can focus on testing. From
the research it is clear that the testing approach must be very easy to modify because the
release cycle of the L L V M is quite swift and I will very often need to test various versions
of the compiler in the shortest possible time.

To perform the testing, I will use a continuous integration server. I have chosen the
Jenkins environment as it suites my needs the best. It provides the ability for various
builds. There are also other solutions that provide better functionality in certain areas, but
in this case the whole is more than a sum of its parts. No other environment provides all
the desired functionality.

The user must have the support of the C compiler library. Without it, the number
of constructions that can be tested is very limited. So far, there has been no automatic
or semi-automatic process of porting of the library that would be suitable for the area of
hardware software codesign.

Nevertheless, the techniques themselves are not sufficient enough. There also has to be a
correct release cycle that has to be adhered to. Because the technique can be exceptional but
when we do not have enough time for practising the technique, it is useless. In companies
there usually is not enough time for the testing of the software. This thesis will also take
into account the model of the release cycle, sketch what the key milestones in keeping the
quality of the compiler are. I believe that only by combining the proper techniques with
the correct model of the life cycle, we can reach the desired results.

43

Chapter 3

Lissom project

In this section, I will describe the Lissom research project [63], which creates the background
for the testing methods that are described in this thesis. The Lissom project started in 2004
and is located at the Brno University of Technology, Faculty of Information Technology,
Czech Republic.

The Lissom project has two main areas of interest. The first one is the A D L called
CodAL, for the ASIP description. The description of the language can be found in detail
here [70].

The second scope of the project is the generation of the full toolchain from the description
in the A D L CodAL language. The generated toolchain contains the C compiler, assembler,
linker, disassembler, two types of simulators (instruction and cycle accurate), the debugger
and a few other tools. As the language is designed for description of the ASIP, the scale of
processors that can be described without modifications made to the language is vast.

However, there is also another way how to utilise such a language. It is the use for
description of architectures that already exist. Therefore, I can model architectures, such as
MIPS [98], A R M [10], RISC-V [86] and many others, in the CodAL language. The generated
toolchain or just separate tools can be used as a replacement of the existing tools when they
are not in a good shape. This fact offers large possibilities when the core is upgraded and a
new toolchain is needed. Also for certain cores, some of the tools might be missing and by
designing the given architecture in the A D L , the missing tool can be easily generated.

3 . 1 C o d A L Language

The CodAL language falls into the category of mixed A D L s . This means that the language
is able to describe the architectural information needed for the generation of the C compiler
and, at the same time, to provide information about micro-architecture, which is needed for
the generation of the hardware.

The CodAL language is special for the fact that the description of the core is created in
two levels of abstraction.

• instruction accurate,

• cycle accurate.

The first one, the instruction accurate, is on a higher level of abstraction. This descrip­
tion is very simple and it is written in a C-like code. It describes the instructions. The
addition of the instructions is very straightforward and for an experienced user, it takes

44

only several minutes to create the first version of the core with few instructions for which
the basic tools, such as an assembler and simulator, can be created. The designer can fully
focus on the instruction set without considering the complicated micro-architecture. From
this level of description, the user is also able to generate the C compiler and the profiler.

The cycle accurate model is more complicated. On this level, the micro-architecture
is described. Things, such as pipeline, hazards, etc. must be taken into account. This
description is taken as a base for the synthesis. This level of abstraction gives the user a
possibility to generate the description in the hardware description language, the functional
verification environment, the simulator, the assembler and the profiler.

There is a large number of files that are common for both descriptions and these files
are shared between the descriptions. There might be several equivalent descriptions on the
cycle accurate level that correspond with one instruction accurate model. This is logical, as
the instruction set must be the same, but there might be several hardware variants that are
optimized for the speed or power consumption.

The system of two descriptions is also suitable for the automatic equivalence checking.
Nowadays, advanced verification techniques are used for this task. The instruction accurate
description is used as the golden model and compared to the cycle accurate one. The sim­
ulator is generated from the golden model and the hardware description is generated from
the cycle accurate model. After the execution, the content of the memory and registers is
compared. The verification environment is in detail described in the paper on functional
verification [91] and in the thesis [90]. I will not give a detailed description of the cycle and
instruction accurate models in the thesis as it is not needed.

3.2 Toolchain

As I have mentioned before, the automatic generation of the full toolchain is one of the two
main tasks of the Lissom project. The generated toolchain contains all tools known from
other toolchains but it also contains specific tools.

The toolchain that is described below creates an entry point into the testing of the
compiler. The generation itself is very often also a part of the testing. Moreover, the
toolchain stands as a prerequisite for the tests of the compiler.

A l l the tools are generated from the description in the CodAL language. At the be­
ginning, the model in the CodAL language is validated and compiled. The result of the
compilation is the X M L representation of the model. The X M L format was chosen inten­
tionally as there are other tools that use this form and there is also a large number of
generators and parsers working over the X M L .

Once the X M L is created, there are two tools working over it. These tools are the
toolchain generator, called also toolsgen, and the semantics extractor or semextr. This
approach is depicted in Fig. 3.1. Please note that the scheme was simplified and does not
contain all the generated tools.

The toolchain generator produces tools, such as the simulator, the assembler, the de­
bugger and so on. The tools that are generated by the toolchain generator consist of two
types of files. Both types of files are compiled and linked together.

1. The files that are platform independent are the same for all architectures. Into this
category fall user interfaces with parsers of the command line arguments, or in the
case of aprofiler, the generation of the graphical output.

45

2. The files that are automatically generated, such files contain platform dependent infor­
mation. Into this category fall the instruction decoders in the simulators or assembler
printer in the C compiler.

The second tool is the semantics extractor. This tool was thoroughly described in the
dissertation thesis [47]. The semantics extractor is the prerequisite for the compiler gener­
ation and also decompiler that is described in the thesis [54].

The semantics extractor is used for the extraction of the semantics, assembler syntax and
binary encoding of each instruction. It uses sections assembler, binary and semantics
[47]. The information extracted from the section semantics is transformed into an L L V M -
IR like code that describes the behaviour. The information from the sections assembler
and binary is used to get the assembler syntax and binary encoding. Below there is an
example of the extracted semantics for the nop instruction.

i n s t r i_nop_halt__opc8_nop__, ok (0),

{ >,
nop () ;

"nop" ,

ObOOOOOOOOOOOOOOOO ,
II II

)
" e l : i _ n o p _ h a l t (e l : o p c 8 _ n o p) " ,

" c l a s s _ b a s i c "

The extraction of the semantics is possible only from the instruction accurate model.
The extraction from the cycle accurate model is not supported. The information for the
semantics extractor is contained in the suitable form only in the instruction accurate model.
Therefore, if the user wants to get the toolchain together with the hardware it is necessary
to create instruction accurate as well as the cycle accurate model.

Once the file with the extracted semantics is created, it is used by a tool called back-
end generator. This tool creates the only platform dependent part of the C-compiler, the
backend. The rest of the compiler, the frontend in this case the Clang and middleend, the
optimizer are platform independent. The backend part of the compiler uses the information
from the semantics extraction for pattern based matching for the most suitable instruction.

Also other tools can be generated. One of the basic tools is the assembler. In this case,
the assembler is not special in any way. It takes the input in the assembly language of the
given ASIP and produces the output in a form that is suitable for the standard linker Id.
Nevertheless, the output format of the assembler, which is the input of the linker, contains
non-standard enhancements.

Also some of the tools can be generated from the cycle, as well as the instruction accurate,
model and this fact is not reflected in the scheme.

The tool that is inverse to the assembler is called the disassembler. The disassembler is
used for the translation of the binary file back to the assembler representation. It is used
when no description in the higher programming language is available. The code produced
by the disassembler is more difficult to read than any code produced by the programmer,
even in cases when the original code was also produced in assembler. The tool can be useful
for the debugging.

There is also an application which is called the randomgen. This tool works over the
extracted semantics, but over a different kind. There are several types of extracted semantics

46

c CodAL model

> f
Check and compilation

> f

XML representation

Sematic
extractor

z
Tools
generator

Semantics
Assembler

Simulator

Debugger

Decompiler Backend

Figure 3.1: Scheme of the toolchain generation

that are used for various generators. A random generator is able to generate valid random
assembler applications. These applications are typically used for the functional verification.
The programs can be simulated but it is not guaranteed that the exit code of the simulator
will be correct. However, the content of the memory and registers must be identical, despite
the used tool. The user can specify the number of lines of the generated programs. It is
also possible to set how many applications should be generated.

Three types of simulators can be generated, the instruction accurate one, the cycle
accurate one and the Q E M U simulator [85]. Each of the simulators has a different area of use.
They largely differ in speed. The fastest of them is the Q E M U simulator. The instruction
and cycle simulators are generated from corresponding models. The Q E M U simulator is
the fast instruction accurate simulator and needs information from the instruction accurate
model.

The Q E M U is in fact a virtual platform. In our simulator we use just a fraction of the
Q E M U functionality. The Q E M U creates a virtual machine in the computer that emulates
the C P U .

The slowest of the simulators is the cycle accurate one. However, the cycle accurate
simulator is as close to the hardware as a simulator can be and, therefore, it can provide
information that cannot be obtained from any other simulator. The use of the simulators is
given by the characteristics. The QEMU simulator and the instruction accurate simulators

47

are used for benchmarking and larger software programs. In the cycle accurate simulator,
it is possible to get the number of cycles and other characteristics that are needed when the
design is going to be put into real hardware.

The instruction and cycle accurate simulators can be configured to generate profiling
information. The Q E M U simulator does not have this ability. There are two levels of
profiling. The higher level of profiling information can be gathered from the instruction and
cycle accurate simulators. When I want to get low level profiling information, I need to use
the cycle accurate simulator. The information is saved into a file and can be processed by
the profiler.

A l l the tools I have described above can be generated with various optimizations and
the verbosity can be set from 0 to 3. The zero level is the silent mode. When the user
chooses level 3, it prints the maximum amount of information from generation and runs of
the specific tool.

Profiler is a tool that is used for the dynamic program analysis. It gathers information
about the memory, complexity, usage of the particular instructions and the frequency and
duration of function calls. The profiling information is used for the program optimization.
In our case, the profiler is also generated and can be generated either from the cycle or an
instruction accurate model. The information from the profiler is visualised in the special
view of our tool.

The exported libraries can also be part of the toolchain. Currently, it is possible to
export compiler-rt for the 16 and 32-bit processors. The Newlib library can be exported
only for the 32-bit processors because the support for the 16-bit is very limited.

The structure of the exported toolchain is in the example below.

t o o l c h a i n

I -- bin
I |-- urisc-assembler

I | - - u r i s c - 11c

I |-- u r i s c - c l a n g

I |-- u r i s c - i s i m u l a t o r

I +-- . . .
I-- l i b

I | -- clang

I | +--include

I | |-- l i m i t s . h

I | |-- stdarg. h

I I + - - . . .
I |-- libcomp . a

I -- newlib

I |-- l i b

I | |-- crtO.o

I | |-- l i b c . a

I | |-- libnosys . a

I I + - - . . .
I +-- include

I -- contrib

I -- l i b c . s o

I - - l i b d l . s o

I -- l i b z . s o

+-- . . .

The structure above is quite clear. A l l the binaries are in the directory bin. The

48

directory l i b contains the libraries, mainly the compiler-rt, which is called libcomp. a, which
is optional, it does not have to be a part of the toolchain. The directory newlib contains
the exported Newlib library, which also does not have to be included. Both directories, l i b
and newlib, have the subdirectory include, which contains the header files.

The directory contrib is also part of the toolchain. In this folder, I keep the files that
are needed for the proper functionality of the toolchain. Typically the shared libraries are
kept there. The libraries are taken from the system and this step helps to keep the toolchain
partly system-independent.

In our project, we have the IDE based on Eclipse. It is basically the client who is able to
visualise and launch all the tools. It is a thin client that contains the editors, configurations
and many other functionalities. There are editors for all the formats which are supported.
This includes the CodAL language, the assembler, C language and several others. There
are also various configuration tools and browsers for the help, which are embedded in the
IDE.

The environment also contains several perspectives, which help the user in various stages
of the development. A perspective is a special kind of a window, which is customised for
the display of a certain kind of information. There is the basic perspective used for editing
of various files, the debugging perspective and profiling perspective. However, it contains
minimum functionality as far as generation is concerned.

As the generation of all the tools is concerned, it is the task for the command line. This
division allows the user to work completely without the graphical interface. I can say that
the IDE provides the subset of the command line functionality.

49

Chapter 4

The goal of the thesis

This thesis is focused on finding new attitudes to testing of the compiler and the whole
toolchain for the hardware software codesign. The current ways of compiler and toolchain
testing are not in many areas tailored to fit the rapid development of the ASIPs. Moreover,
I need to keep in mind that this system will also be used in a commercial company so I need
to pay special attention to the usability. The attention will be paid mainly to these areas:

1. Raise the number of tests that can be used for testing. The number of constructions
that can be used for the testing purposes is very limited. Without the standard C
library a very limited subset of the C language can be used for testing. The author will
try to increase the number of programs that can be used for the testing by choosing
a suitable C library and by semi automatic porting on various cores.

2. Develop a test selection mechanism. As I test various cores, which are not interchange­
able, I need to have a very good test selection mechanism. I need to have a simple
form of enabling and disabling either tests or whole dictionaries. This approach should
have a high level of automatism. Also the deployment of generator would be welcome.

3. Accelerate the whole process of the testing. The testing, especially when I need to test
for various operation systems, can be very time consuming. I need a way to speed-up
the process of testing. I will examine the process of testing and try to find a way
how to pre-build certain parts of the toolchain and, if possible, I will also inspect and
speed-up the creation of the nightly builds.

4. Develop a way of automatic generation of the jobs based on test parameters. The
execution of tests is nowadays performed by continuous integration servers. Never­
theless, because I need fast and flexible management of the jobs, I need to provide an
automatism for generation and upload of the new jobs to the continuous integration
server.

A l l the mentioned goals and techniques will be tested and evaluated for several cores,
which will vary in size, power consumption and complexity. The experimental results will
be taken from these cores where possible. The solution will be used on various operation
systems at least on the Windows and Unix platform, so the implementation language will
have to be chosen with respect to this condition.

50

4 . 1 Solution phases

For the first point, I will try to find a suitable C compiler library that will enable the use of
tests which are dependent on the calls of the library functions. I will also try to automatize
the porting process as much as possible to keep the porting process for the new core to the
minimal extension.

As far as the second point is concerned, I have demonstrated that, while there are various
sources of the testing programs, the mechanism that would help with the selection of the
tests is missing. I will propose a test selection mechanism that will be lightweight and
will allow simple addition of the new test. It should also support the generation in a way
that, once the new platform needs to be added, the corresponding files which provide the
functionality of selection can be generated.

The third point deals with the speed of testing. From the presentation that was described
at the beginning of the thesis, it is clear that developers are interested in deploying the new
build several times a day. Hand in hand with build process goes the testing process. I
will try to find a way of accelerating the testing process within the continuous integration
environment by pre-generating the files that are needed for testing. V i a the generation, I
should be able to achieve time, space and traffic savings.

The last point is closely related to the continuous integration systems. In the section
of the related work, I have discussed the current possibilities of the job generation. It is
apparent that this area is not very popular as there is not much happening. Articles that
discuss this area are very few. I will introduce the generator of the jobs that will work over
a set of templates and will have the ability to generate a wide range of jobs.

51

Chapter 5

Porting of the C library

The first part, which is needed for automatic compiler testing of processors for embedded
systems, is the support of the Newlib library [26], [32],[30]. The variety of programs that
can be created without the support of the standard C library is very limited. Therefore,
the availability of the library is crucial and its position in the process of testing is unsub-
stitutable. I have worked on the first version of the Newlib port that will be described
here.

5 . 1 Theory of Porting

The main reason for porting the library on the new platform is the fact that I need to add
support for the call of the C functions. To be precise, I want to use the libc functions, such
as p r i n t f , malloc, free, etc. in programs that will be used for testing of the compiler.
And because I do not possess the development kits for all the platforms, I use simulators
instead. Therefore, I must add the new platform into the Newlib library and our simulators
must know how to deal with the Newlib library calls. If one does not grant libc library
support in the simulated environment, the number of constructions which can be used and
tested is very limited. Consider the following simple example written in C:

int main(int argc , char **argv)

{

if(strcmp("alpha","beta")==0)

{ return 1; }

else

{ return 0;}

}

Even this simple program can hardly be executed because it uses the function strcmp
that is part of the standard C language library. This program cannot be compiled, unless
the file of string.h is included and a possibly some other header files are included also.

On the contrary, the main aim of the testing process is to cover as wide area as possible
and also to try as many different combinations of the function calls as we can. However, this
goes against the idea of embedded solutions, which are usually specialised in just one single
area. Furthermore, because I focus especially on the embedded systems, I do not even try
to cover all the functions provided by the standard C language library, which is in my case
the Newlib. In fact I will use and therefore test only those functions that can run under the
simulated environment and are useful for the programs that will be executed on the given
platform. Moreover, the embedded systems are not designed for the use of the vast number

52

of constructions that the programming languages offer these days. Typically there is just
one task, usually quite a complicated task, which is launched repeatedly. However, during
the design of the chip it is often unclear what part of the library will be needed, so I will
have to port the whole library and reduce the size later if it is necessary. There are certain
areas that are more likely to be removed from the library than others, for example:

• threads - I assume that in simple programs for embedded systems one will not use
threads.

• locales - A l l the locales were removed from the library.

• inet module - Even though networking plays an important part in modern embedded
systems, in some cases the module can be disabled.

• files and operations with files - Certain simple application do not need interface for
working with files.

Now I will introduce important parts of the library. Simply said, all that really has to
remain from the library are the sysdeps. The sysdeps are the core of the whole system
(how to allocate more memory, etc.), then important modules, such as stdio, which takes
care of the outputs and inputs, and other modules I wish to preserve. In this case, I wished
to preserve the following parts of the Newlib library:

• stdio - This is one of the main reasons for porting the library, which is to get in human
readable form output from the simulator.

• module for strings and memory - In many applications I would like to use functions,
such as memcpy, strcpy, strcat, etc.

• memory functions - For example malloc, free, realloc,

• abort and exit.

• wchar support - But without the support of different encodings.

Some parts of the library could not be removed because of the dependencies. According
to my estimations, nearly 40 percent of the library was disabled or removed, measured by
the size of the library.

Program Newlib Simulator Program Newlib p Simulator

^=
Operation System Hardware Operation System W Hardware

Figure 5.1: Position of the Newlib

53

There are several ways of building the library and also different methods of using it.
There is a possibility of building the Position Independent Code PIC. Even though this is
an interesting solution, I decided against it. Instead of the PIC, I am going to compile the
library into a single object and then link it to the program. The scheme of the position of
the Newlib in testing is in Fig. 5.1.

Now let us return to the functions that remain in the library. The functions can be
divided into two groups. The first group consists of functions that are completely serviced
within the simulated environment. For example, the function strcmp falls into this category.
This function and its declaration remain unchanged within the simulator if they are written
in the C language that does not require any changes. These functions are not tied to a
kernel header files, so there is no need to change them.

The second group of functions consists of functions that are translated to the call of
system function. The function printf can be used as an example of this group of functions.
The call of printf function can be divided into three phases that are illustrated in the
following picture 5.2.

printf — > Write

> f

Operation System

Figure 5.2: Scheme of the printf function call

At the beginning, the call of the printf function is translated to the call of a system
function, with the highest probability it is going to be the call of the function write. Write is
the function call, that is serviced by the operation system, and hence is system dependent.
But as I want to use the simulator on the U N I X platform, as well as on the Windows
systems, I have to get rid of these dependencies. To do so, I will use the special instruction
principle.

5.1.1 Use of ported library of U N I X and Windows systems

Before I get to the principle of the special instruction method, I should explain why I need
to use this method. The main reason why I should oust the dependencies on the kernel
header files is the fact that I must be able to use the library under U N I X systems and also
under Windows like operation systems.

As long as I use the library under U N I X systems, everything should be all right. Though,
even on U N I X systems there might be differences between the different versions of the header
files. But once I use the Windows based system, I cannot use header file functions anymore.
It would almost certainly result in a crash of the system.

In our project, I currently support several U N I X distributions as well as the Windows.
The use of other operating systems is not considered.

54

5.1.2 Special instruction principle

The special instruction principle means that I will use an instruction with the OPeration
CODE, opcode that is not used within the instruction set for a special purpose. So far all
architectures that were modelled within our research project had several free opcodes. It is
typical that the instruction sets do not use all operation codes which are provided. But in
the case of no free opcode, this method cannot be used. The special instruction principle
will be used for ousting the dependencies on the kernel header files.

Functions provided by the operation system are triggered by the syscall mechanism.
The system calls can be quite easily detected. Each library should have defined the syscall
mechanism in a special source file. This syscall mechanism differs, as they usually are
platform dependent. So i386 architecture will have a different syscall mechanism from the
A R M [10].

I wish to preserve the mechanism. The syscalls will remain in the library, but with
different meaning. The file containing syscall will be changed in the following way: at the
beginning, the parameters of the syscall will be placed at the given addresses in the memory
and I will also define where the syscall return value will be stored. Afterwards, the call
of the chosen instruction will be performed. It is also possible to put the parameters into
registers, but some platforms have a limited number of registers, therefore, this method
could cause problems.

The syscall mechanism is in fact a wrapper of the system call. The call will be passed
to the simulator that will do the call and return the result.

5.1.3 Simulators

As was described above, all simulators are generated automatically. At the beginning, the
source files are generated by specialized tools. When the generation phase is finished, the
simulator is build by the Makefile from the automatically generated files and also from the
static files. It will be necessary to add the following information into this process:

• Information about which instruction calls the system function.

• The simulator will have to know the convention for storing parameters.

• The simulator will have to recognize which system function is going to be called.

• The simulator will have to perform the call of the correct system function.
The first three points will be solved within the model of an instruction set. The in­

struction with the opcode that is not used will be declared. The instruction behaviour will
be defined in the following way: according to the parameters it will call the given system
function. The simulator will have to recognize the system it runs under, and call the cor­
rect function. For example, on the U N I X system it will be the function write and in the
Windows the WriteFile. This problem should be solved by the libc library of the given
platform. The call of a special instruction is demonstrated in Fig. 5.3.

The parameters that were placed at the given position at the simulated memory can
remain unchanged. They will be later passed to the specific system call. One important
issue is connected to the simulated memory. As I would like to correctly simulate the
operations with memory, such as malloc, realloc, etc., I need to tell the simulator how
much memory it can simulate. This will be done most probably by a special file that will be
passed to the linker. This file will contain symbols, which will declare how much memory
can be used.

55

Call of
Special Instruction > System function

identification

> f

Call of System
fuction

> f > t

Windows Linux

Figure 5.3: Scheme of the system call

5.2 Process of porting

In the early stages of the Lissom project, I had to use other than the automatically generated
compiler for the building of the Newlib library. It was mainly because of the fact that the
generated compiler was not stable enough. Nevertheless, in the latest releases it is possible
to use the generated compiler.

Several issues, which I faced during the process of porting, were closely related to the
buildsystem of the library. The library contains a system of makefiles. This system is
hierarchical and usually the makefiles from the upper levels are included. If, for example,
I would like to compile any test examples that are included in the Newlib, I switch to the
given directory and call make. This will call all the makefiles from the above directory. This
is very effective because only the makefile in the root directory contains variables defining
which the compiler, assembler and linker will be used. On the other hand, it is very difficult
to modify this system when I want to build the different parts of the library using different
tools.

Currently, I am using the set of our tools containing the archiver, linker, assembler and
compiler for the development. The currently used compiler is called the prefix-clang. The
prefix stands for the given architecture. It is an automatically generated compiler from
a model description. The linker and archiver are not generated automatically but were
developed within our research project.

I have spent quite a lot of time on tuning our toolchain. Our toolchain is based on
tools from the L L V M framework and uses also the G N U binutils. It is consistent with the
majority of flags that are accepted by the gcc.

The system used for building of the library starts by parsing the configuration file and,
according to the content of the file, different macros and variables are set. When doing
manual changes to the system used for building, I have basically two possibilities:

• to change the configuration file

• or to do the changes later in the Makefiles.

56

The first possibility is cleaner but the Makefiles often check if the option is present in
the configuration file and ends with an error when the option is missing, therefore, it is
more convenient to do the necessary changes in the Makefiles. Thanks to the hierarchical
structure, it is in most cases sufficient to do the change in just one place.

In the beginning of this section, I have mentioned the need to link special file containing
information how much memory can be used. The file will contain symbols defining the
beginning and the end of the memory space that can be used. It will have the following
syntax:

f i l e d e f i n i n g memory boundaries

define s t a r t 256

define stop 768

Given that the numbers are in kB, the simulator can simulate up to 512 kB of memory.
Character # used in the first line denotes comment.

As far as the convention for storing parameters is concerned, I have chosen the following
approach: the first parameter says which system function is going to be called. In the Newlib,
there is a list of system functions for the U N I X systems and I have added also the names
of the functions for Windows systems. The rest of the parameters (2-7) are parameters,
which are passed to the function call. The parameters remain unchanged. They are passed
to the system function in the exactly same state in which they were saved in the memory
before calling the special instruction. The special instruction itself has no parameters.
When the instruction is called, all the parameters have to be stored in the memory at the
given addresses. The simulator takes the address that is passed as a parameter and has
the knowledge of the structure so then it is easy to find the corresponding parameters and
perform the call.

5.2.1 First time porting

As for the first time, all the steps were performed manually. In the future, I would like to
automatize this process as much as possible. Without doubt I could remove the needless
parts of the library automatically. The needless parts would be identified in the configuration
file and also the special instruction principle could be highly automatic. If I have a spare
instruction, I will choose it and compose it into the simulator. Unfortunately, there are
steps that need to be performed manually. For example, I need to provide the runtime for
the simulators and the corresponding sections need to be specified in the CodAL file.

The runtime is also one of the files that are written manually in an assembly language.
There are also other files written in the assembly language and are, therefore, platform
dependent. In the case of the MIPS platform, there were eight files that contained the
assembly language. For example, the syscalls or memcpy functions are all implemented
in the assembly language. In order to minimize the number of files written by hand, I
decided to provide as much files written in the portable C as possible. I managed to replace
many files by the C implementations. A l l that has to be provided is the runtime and the
syscall mechanism together with the supporting files.

5.3 Automation of the porting process

By default, the Newlib uses the system of make as was mentioned above. I have put quite a
lot of effort into the automation of the whole process [27]. The Newlib library was modified,

57

so it now uses the CMake system. It was divided into two parts that are placed in separate
directories. One part is common for all platforms. This part is placed in the directory called
the newlib. The directories that contain platform dependent files are stored in the directory
with the model. This is done in order to have all the platform dependent files in one place
in the strictly given directory structure.

Let us have a look at the platform dependent files. Strictly spoken, the directories
do not contain only platform dependent files. There are also files that are the same for
all the platforms but the division is done on the level of directories and not on the level
of the files themselves. The directories that are kept together with the model are the
directories libgloss and the directory newlib, this is the subdirectory of the directory
newlib mentioned the paragraph above.

While the directory newlib contains mainly header files with various settings and def­
inition of the setjmp.S, the directory libgloss takes care of the syscalls handling. The
syscalls are very important for our project because this mechanism allows us to get the
information in and out of the simulator. I will focus on the way how to automatize the
process of syscalls creation.

There are several ways how to cope with the syscalls porting. After I gathered all the
necessary information about what syscalls are necessary for the simulation and tried several
ways of implementation, I found out that only a very small part of the syscalls must be
written in the assembly language. The rest can be written in the C language and that
makes the code platform independent. The Newlib defines 20 syscalls but I need just 6 of
them.

Nevertheless, the rest of the syscalls could be implemented in the same way as the six
supported ones. The syscalls are defined in the header file and have numbers from 1 to
20. The first six are the supported ones and the rest of the numbers is assigned to the
unsupported ones.

For the syscalls themselves, I have defined the structure called params. This structure
contains the parameters that are needed for each syscall. This structure slightly varies
depending on the actual syscall. But it is written in the C, which makes it also platform
independent. What is only written in the assembly language and is, therefore, platform
dependent is the PERFORM_SYSCALL function. In fact it is not a function but a multiple line
macro defined in the inline assembler. Let us assume that a multiple line macro can have
the following form:

define PERFORM_SYSCALL(ADDR) \
__asm__("REGrl = add REGO.'/.O" : : " r " (ADDR)) ; \
__asm__("syscall");

This macro is not taken from any existing processor. I have defined it just for the
model purpose. Now let us have a closer look at the macro itself. This macro takes only one
parameter. The ADDR parameter is the address of the structure that contains the parameters
of the syscall as mentioned above. This address is assigned to the register that is used for
passing of the parameters. This register can be specially marked as it is often used for passing
of parameters. Then there is the special syscall instruction, in this case it has the name
syscall. These two lines can be determined from the description of the core performed
in the CodAL language. I will propose a way how to create the macro semi-automatically.
Consider that the PERFORM_SYSCALL macro itself is a template. The necessary information
can be filled into this generic template before the compilation time of the library. First let
us have a look at the syscall instruction. I simply scan the model for the instruction that
bears this name. If the instruction is not found, I search the model for the construction in

58

the following form: When this construction is found, I use this instruction in the second
line of the multiple line macro. Please note that in this case, the instruction does not take
any parameters. If this instruction was parameterized, I would determine the parameters
from the syntax. Nevertheless, this instruction does not have to be found. In such a case,
the template would be incomplete and an error should be reported. The process is shown
in Fig. 5.4.

Model description Extracted information Model description Extracted information

> 1

Template Newlib file Template W Newlib file

Figure 5.4: Scheme of Newlib file generation

As far as the first line of the macro is concerned, I need to assure that in the register,
which is used for passing the parameters, I assign the address of the structure with the
parameters. So I search the model for the instruction add or instruction with similar func­
tionality. In the syntax section of the instruction, I find the actual form. Then I find the
register for passing parameters in the model that also bears special description. From these
parts of the information, I should be able to put together the first line of the macro. This
approach works for standard architectures. But there may occur architectures for which
there might arise difficulties. The Newlib library, in the current version, supports only
32-bit architectures.

5.4 Experimental results and contribution

For having a comparison with commercial compilers, I tested the automatically generated
compiler with the commercial Perennial test-suite. The results described here were gained
from the generated MIPS and Codasip uRISC compiler. The testing was performed on
a complete toolchain. The tests were compiled by the generated compiler and afterwards
executed the tests on the simulator which was also automatically generated by the tools
from our project. I have only a part of the Perennial test-suite. I used only tests that
examine the core of the compiler. I excluded some of the tests that cannot be compiled
due to the header files dependencies, which I do not support. The tests in the test-suite
are divided into groups according to the chapter of the standard that is tested. I use tests
for the clauses 5 and 6. I have mainly tests for the standard C90 and several tests for C99
standard. The results are summed up in Table 5.1.

In Table 5.2, I present the testing results with and without the presence of the C
library. It is apparent that not only the number of tests is lower without the library but
also the number of failing tests is very small. The presence of the library provides a better
opportunity for debugging of the code and triggers more errors.

The solution also brings a higher level of automation into the testing of the automatically
generated compiler. I have introduced methods that simplify the porting of the library to

59

Core Tests without C library Tests with C library
MIPS 797
Codasip uRISC 804

1680
1688

Table 5.1. Comparison of number of tests.

Core Failing Tests without C library Failin g Tests with C library
MIPS 2
Codasip uRISC 0

19
8

Table 5.2. Comparison of failing ; tests.

the newly developed cores. The porting of several files is no longer needed. Now I only
need to write a few files in the assembler language, which is far less time consuming. This
is demonstrated in Table 5.3.

Core Number of files that must be ported
MIPS with automation 2
Manual porting without automation support 6

Table 5.3. Comparison of number of ported files

I have chosen the comparison based on a number of files. I could also compare porting
times. But the porting time depends on the experience of the developer, complexity of the
model and many other things. Nevertheless, the time needed for porting has been shortened
from days to hours.

Amongst the biggest contribution I can place the following things:

• enlargement of the number of tests - Without the support of the C library, it is possible
to test only a very limited set of tests, in my case the number of tests was increased
three times.

• speed-up of porting - The library was rewritten in a way that it enables far faster
porting for new cores, the number of codes which have to be written by hand has been
significantly reduced.

• higher level of automation - The code that is common for the majority of the cores
was introduced, as well as additional scripts for build automation and creation of the
library, providing a higher level of automation than before.

• larger number of failing tests - It is often very difficult to trigger bugs without the
support of the library, so it enables better test coverage and triggers a larger amount
of errors that help to keep the compiler in a good shape.

The porting of the Newlib library and topics connected to the porting were published in
the articles [26], [32],[30]. The articles describe the process of porting and its automation
together with the results.

60

Chapter 6

Tests selection

As was mentioned in the section which discussed the test-suites, one of the weakest points,
which does not suit my needs, is the test selection mechanism. I have decided to create a
test selection mechanism that suits the needs of the testing system for the hardware software
codesign [30]. It will form the content of the following chapter.

6 . 1 Test selection scheme

The test selection scheme that would be suitable for use in our project must fulfil several
criteria. First of all, it must be independent of the source of the test, so it will be applicable
for as large a number of tests as possible. It also must be robust enough and lightweight at
the same time, so it should be simple to modify the tests I already have and addition of new
tests must not be difficult. It should not only work for tests from the regression test-suites,
but should also be applicable to tests from random generators.

6.1.1 Test selection phase

As I have a large amount of tests from different sources, I need a universal approach that
will define which tests are suitable for compilation and execution on the given platform.

I have created a system of files, which restricts the number of tests that can be compiled
on the given platform, based on the libraries that are available. The libraries are just one
of the test selection criteria. Other characteristics are also taken into account, for example,
the size of the registers or the size of the stack.

Currently supported features which can be used for the test or directory selection are:

• architecture - Certain tests or directories can be disabled for the given architecture.

• libraries - Tests can be disabled if a certain library is not present.

• bit width - Test selection according to the bit width.

• level of description - Often some tests, containing system calls, cannot be used for a
cycle accurate model.

• purpose of compilation - Some directories are disabled, for example, for functional
verification.

61

The naming convention for the files, which are used for the test selection, is very simple.
The file bears the same name as the test does but it has the suffix .x, instead of .c or
any other. The system is a hierarchical one. It is possible to have a hierarchy because I
support nesting of the directories and I keep the .x files not just for the tests, but also for
the directories. In the case of directory, the selection file has the same name as the directory
with the .x suffix.

These files possess as minimal functionality as possible. I try to keep their size minimal.
The typical functionality of the file is that, based on the value of the flags, the test is
excluded from testing. I should say that implicitly all the directories and all the tests are
selected for testing. So, if I want to exclude the tests, or whole directories from testing, I
have to indicate this.

As the size of the files is kept minimal, the functionality and flag settings must be done
in another place. This functionality is kept in the main testing module. The functions that
check the current state of the flags and control what libraries are accessible for the linking
to the given platform are declared here. The centralization has a purely practical base in
this case. The typical usage of the . x files is that I disable testing of the whole directories
according to the libraries that are accessible. The . x files can also bear other functionality.
It is possible, for example, to set different variables. I can specify flags that should be added
to the compilation or add some files to the linker as in the following example.

i f ["$C_LIB" == "0"] ; then

FILE_DEPS+=crtO.o

f i

On the level of files, I most often use the .x files for filtering the tests that depend
on compiler-rt library for the given platform. The compiler-rt library provides software
implementation of the float and double operations. Usually only a few tests in the given
directory depend on compiler-rt and the dependence does not have to be the same for all
platforms, the best solution is to condition the test execution by the platform and compiler-
rt presence. This is demonstrated in the following example.

i s _ a r c h "mips_basic" $1

i f ["$?" == "0"] ; then

i f ["$RUNTIME_LIB" == "0"] ; then

RUN_TEST=0

f i

f i

The biggest advantage of this approach, and also the main reason for introduction of this
system, is its universality. I deploy the tests from the llvm test-suite [65], gcc test-suite[40],
Mibench [72] set of tests and I also have tests that were created within our project, and
I have also generated tests. The system of the .x files can be used for all these sources,
as long as I use just the tests without the testing infrastructure that is provided in several
cases. The only set of tests, which I tried to use together with the infrastructure that is
provided together with the tests, is the Perennial test-suite [80]. After several iterations, I
have also started to use the Perrenial tests with my infrastructure for the tests execution.

6.1.2 Test compilation and execution

The compilation of tests is performed in the central module. As I have the system of the . x
files, I enter only those directories that I know are suitable for testing on the given platform.

62

So, before I enter a directory with tests, I check the .x file for the given source and consult
the restrictions that are defined by the . x file and set all the variables denoted by the file.

If the directory is feasible for testing, I cycle through the tests in the order denoted
by the test list. The .x file is always checked first, and if nothing blocks the procedure of
testing, the test is compiled. The presence of the .x files is not compulsory. As mentioned
above, the default setting is to cycle through all the directories and execute all the tests.
However, if the file is present, it will be checked. When the restrictions are not met, the file
is skipped. The whole process is sketched in Fig. 6.1

Yes
S ^ Read directory
/ w .x file

Yes
Read test .x

file

Execute
test

Finish T e s t i n g ^

Figure 6 .1. Scheme of the .x files invocation

Should there be any problems during the test compilation, they are logged. I log the
standard output as well as the error output. I keep a list of tests that were not compiled
successfully together with the output of the compiler. The logs are kept for every platform

63

that is tested to avoid overwriting. It is also possible to create a unique log not just for each
platform but for every run of the testing system. These logs could be, in the future, stored
in the database to keep precise testing history.

6.1.3 Logging information and test evaluation

The test evaluation is kept decentralized. Because I deploy tests from different sources, I
need to keep the scripts that provide the test evaluation together with the tests. Some tests
are evaluated on the basis of the exit code, but there are tests that produce, for example,
the text output and I have to compare the output with referential values. In these cases,
the Newlib library is used.

The decentralization in this case means that I keep for every directory a shell script that
takes care of the test execution and evaluation. Nevertheless, I found out that this system
is quite hard to maintain. It seems that the majority of tests is executed and evaluated
in the exactly same way. So it makes sense to have one central point of the execution and
evaluation and has special scripts just for the scenarios that are not common.

As in the case of test compilation, I keep detailed logging information. I keep the output
of the simulator and after the test evaluation I put it into the list of passed tests or failed
tests according to the result of the evaluation. The logs are created for every tested platform
and can bear the time reference. Below there is an example of an error log.

v p r i n t f -1. c

simulation error

o p timization: 2

return value: 1

stdout:

r[3] = 65092 [0xfe44]

r[31] = 13512 [0x34c8]

r[0] = 327832 [0x50098]

warning(O): top_level.mips_basic@498: Unknown i n s t r u c t i o n

s t d e r r :

I n s t r u c t i o n decoding f a i l e d . Use simulator in debug mode with

debugger for more d e t a i l s .

expected output :

h e l l o h e l l o h e l l o

h e l l o

a a h e l l o h e l l o h e l l o

he l l o

aaxxhello

hell o

0

0

exit 0

We can see that the test exited with a non zero exit code. The test was meant to print
text on the standard output, but this did not happen. Instead of printing, the instruction
decoding failed. The log also contains information about values that were in certain registers,
what the return value was, and optimization of the test. In the log files, I keep the complete
output. So very often it is possible to find errors of the register allocator or any other phase
of the code processing within the compiler.

64

The above example of the failed tests is just one of many during the process of the
compiler testing. I log the successful and unsuccessful tests in two independent files. The
files are created for every directory that is tested. Each file with the results has a special
header, which stores data necessary for the test archiving as can be seen in the following
example:

arch:codasip_urisc

opt : 2

ca/ia:-ca

sys:linux64

distro:CentOS 6.7x86_64

d i r : int

version:6.2.0-0.j .1277.n.160728

r e s u l t : f a i l e d

f i l e _ o p e r a t i o n s 2 . c simulation error

f i l e _ o p e r a t i o n s . c simulation error

920113-4.c compiler error

optargs-6.c assembler error

pr41981-l.c l i n k e r error

200897127-8.c compiler error

In the example above there is shown the list of failing tests. For each test it has an
identification of the exact phase where the test failed. It is a simulation error in two cases,
a compiler error in two cases and one assembler and one linker error. For each of the failing
tests a log is kept and also an archive containing all the temporary files and outputs.

From the header it is clear that the testing was performed in the directory int and also
what architecture was tested and the version of the testing tools. Moreover, the header
contains information about the system of the testing and bit width.

6.2 Generator of the test selection files

The mechanism that is explained above has met the needs of our research project. However,
as in our project we very often add new models and branches that need to be tested, we
also need a way how to easily create a new file, that modifies the test usage, or to modify
the files that already exist.

The best way for doing so, is to create a generator of such files. The generator would
need the information about the tested platform as well as about the tests themselves. It
would also very nicely fit into my plans about the high level of automation of the testing
process. In the following subsection I will introduce such a generator.

6.2.1 Design of the generator of test selection files

The main task of the generator will be the creation of new .x files and also update of the
existing ones. The generator will need the information about the platform that includes
mainly:

• bit width - Is the platform 16/32-bit or does it have a different size?

• availability of the libraries - Do we have a compiler-rt library or any other library for
the given model?

65

• availability of instruction and cycle accurate description - What level of description
do I possess?

This is the main piece of information which I need to get about the platform. The
majority of such information can be easily gathered. I will have a look at various possibilities
in the implementation part of the generator.

The knowledge that I need to have from the side of the tests is a little bit less complicated.
I just need to know what header files the test includes. I can say that if the test includes
any header file, such as the test below, I need to generate a corresponding file. The test
below will require the presence of the Newlib, as well as the presence of the compiler-rt.

#include <stdio.h>

#include <math.h>

#include <float.h>

#include <double.h>

double r e s (f l o a t i , double j) {

double res ;

res = M _ P I * i * i * j ;

return res ;

}

int main () {

f l o a t i = 3.14159;

double j = 4.9685;

double res = m u l (i , j) ;

p r i n t f ("7.d" , r e s) ;

exit(0) ;

}

But the situation is not that straightforward. Certain tests might rely on availability of
the library and not include any header files. Moreover, modern compilers in such situations
do not exit with the error code, but just emit a warning and compile the test if the header
file is available.

It seems that the only proper way how to find out if the test needs the support of any
library for the given architecture is to compile the file and to find the necessary information
from the temporary files.

The information I need can be obtained from several sources. I can get it either from
the assembler format or from the object file. It is also possible to link the object files and
in the case of an unsuccessful link, I get a list of missing symbols.

The last possibility is the least convenient one. It requires almost the whole process of
compilation, that in the case of larger files can take several seconds. It also means that I
have to compile the tests without the libraries to find out what symbols are needed and find
the corresponding libraries.

Another possibility is to compile the test into the assembler format by the 11c and to
try to find the symbols in the assembler file. In the following lines, I can see the format of
the assembler file.

$tmp4:

CALL $__addvdi3

66

LOAD RIO, RO + 40 // 4-byte Folded Reload

LOAD R8, RO + 48 // 4-byte Folded Reload

LOAD R9, RO + 44 // 4-byte Folded Reload

We can see that there is a call of addvdiS function. However, this function can be from
another source file or it can be even a call of function in the same file. This information
cannot be obtained at this phase of compilation. Moreover, the processing of the assembler
files is quite difficult as there are no other tools that could provide the necessary information
in our project.

The other possibility is to use the object file format. It is necessary to have the source
file in the assembly language processed by the assembler and get the object file. This
requires just one more compilation step in comparison to the previous case. However, the
additional compilation step will give us a lot of useful information that was not available in
the assembly language format.

The most desired information is if there are undefined symbols in the currently compiled
module. This information can be obtained via tools, such as objdump. Below there is an
example of the object dump output with given parameters.

addvdi3_test.o: f i l e format elf64-mips_basic

SYMBOL TABLE:

g_str 000000000000 i n f o _ s t r i n g l 0 _ a d d v d i 3 _ t e s t . s

OOOOOOOOOOOOOOdO 1 .text 000000000000 tmpl5_addvdi3_test.s

00000000000001ac 1 .text 000000000000 tmp27_addvdi3_test.s

0000000000000208 1 .text 000000000000 tmp33_addvdi3_test.s

0000000000000000 1 .debug_ranges 000000000000

debug_ranges0_addvdi3_test.s

000000000000031c 1 .text 000000000000 tmp53_addvdi3_test.s

000000000000037c 1 .text 000000000000 tmp60_addvdi3_test.s

0000000000000000 1 .debug_info 000000000000

cu_begin0_addvdi3_test.s

0000000000000000 1 .text 000000000000

@debug_text_start_addvdi3_test.s_addvdi3_test.s

0000000000000000 1 .text 000000000000 @csl_.text_addvdi3_test

. s

0000000000000000 1 .debug_frame 000000000000

@debug_text_cie_pointer_addvdi3_test.s_0_addvdi3_test. s

0000000000000000 1 .text 000000000000

@debug_text_fde_start_addvdi3_test.s_l_addvdi3_test.s

0000000000000040 1 .debug_frame 000000000000

@debug_text_cie_pointer_addvdi3_test.s_2_addvdi3_test. s

00000000000000c8 1 .text 000000000000

@debug_text_fde_start_addvdi3_test.s_3_addvdi3_test.s

0000000000000400 1 .text 000000000000

© d w a r f _ r e t v a l _ e n d _ a d d v d i 3 _ t e s t . s _ 7 _ a d d v d i 3 _ t e s t . s

0000000000000000 *UND* 000000000000 __addvdi3

00000000000000c8 g F .text 000000000338 main

0000000000000000 *UND* 000000000000 p r i n t f

0000000000000000 g F .text 0000000000c8 test__addvdi3

We can see from the example that there are many defined symbols. To mention just
some of them I can name, for example main or _addvdi3_test. s. Moreover, we can see
that the file contains . debug_ranges and .debug_info sections that are used by the debug

67

tools, such as debugger.
Nevertheless, most importantly I can easily identify the undefined symbols, which in

this case are addvdi3 and printf . This indicates that I will have to link the compiler-rt
library together with the standard C language library.

I have shortened the example as it was quite long and it would not fit the page. Some
irrelevant symbols and information has been left out.

Once I have the needed information about symbols and what libraries should be linked,
I need to generate a new file or update the existing one. This should not be a difficult task.
For the implementation I have chosen the Python language.

I have called the tool for the generation of the .x file the Constraintgen. The imple­
mentation of the tool was performed in the Python language and the framework pytest
[45].

One of the main advantages of the pytest is that it collects all the files with the prefix
or suffix test and executes them. It also uses the system of fixtures [84], which is a system
of dependencies. These dependencies create a hierarchy that is resolved by the pytest
framework.

For the implementation, I had to create a set of fixtures. The fixtures are responsible
for the generation of the file, creation of the toolchain that is able to compile the source file
and the compilation of the source file to the object format.

Once a single test file is compiled, the object format generator fixture parses the object
file and resolves dependencies. After the resolution is finished, the resulted constraint file
is generated. There are also other fixtures, such as the reporter or the model, but these
fixtures play a subsequent role.

For the scheme of the system see Fig. 6.2.

1 Log

Repor ter

Model — >

Tests >•
G e n e r a t o r Genera ted .x f i les

Comp i le r

Figure 6.2. Scheme of the constraint generator

68

The inputs of the system are the directory with the model in the A D L language CodAL
and the directory which contains the test, for which the .x files should be generated. This
offers a possibility to create yet another layer above the Constraintgen that would offer an
even higher level of automation.

6.3 Experimental results and contribution

With the implementation of the test selection generator Constraintgen, I have performed
several tests. In Table 6.1, I have summarised a number of generated files for the MIPS
and the Codasip uRISC core.

Core Number of tests Number of generated files

MIPS 1644 392
Codasip uRISC 1644 364

Table 6 .1. Number of generated files

From the table, it is apparent that the number of tests is equal for both cores and the
number of generated .x files is also comparable. The difference in the number of generated
files is given by the fact that, in some cases, the compiler generates the call of the compiler-rt
function while for the other core the call in not necessary. In both cases the majority of
the files was generated because of the compiler-rt. The number of tests that required the
Newlib library was lower.

The next Table 6.2 shows the speed of the generation.

Core Number of generated files Number of folders with tests Time of generation
MIPS 392 9 84.11s
Codasip uRISC 364 9 77.64s

Table 6.2. Speed of the generation

From Table 6.2 we can see that the speed of the generation is very good. The speed
of the generator is approximately 5 .x files per second, which I consider very good. Should
the .x file be created by hand, it would take approximately 10 seconds for the creation of a
single file.

The graph depicting the results of the Constraintgen is shown in Fig. 6.3.
The major contributions of the selected solution are as follows:

• flexibility - The tests from various test-suites are supported, there is no dependency on
the test source, so this system can be used for simple tests as well as for benchmarks.

• higher level of automation - The files that are used during the test selection are gen­
erated fully automatically without a user interference.

• scalability - The system can be used for any new core, the generator is able to gather
all the necessary information from the compiler automatically.

• acceleration of the testing - The tool is able to generate the files fast.

69

The system of the .x files, which can be used for the test selection was published in the
journal article [30]. The article sketches the scheme of the files.

70

Chapter 7

Acceleration of testing

In this chapter, I will discuss the speed of the testing. As was mentioned at the beginning
of the thesis, there is a big pressure for deployment of new builds more than once a day. I
will focus mainly on the acceleration of the testing [28], [31] as the build acceleration was
the focus of the thesis by Lukášova [67] that I supervised.

7 . 1 Testing attitudes

The testing of various parts of the project is very time consuming. I perform various types
of tests that have different time demands. I have spent some time by reorganization of the
tests and investigating whether I can utilize the results between the various tests.

7.1.1 Testing oriented on tools

In the tools oriented testing, we need to ensure that the generated tools as well as the
generators themselves work properly. So both these parts need to be tested thoroughly.
There are also interesting interconnections between the generators and the generated tools
that can save a lot of computer time.

Let us have a look at the generators first. The generators are in our case triggered via a
command line interface. I have created a set of classes that enable us to perform full tests
of the command line functionality in the Python language. This test-suite, in combination
with various models, gives us a very strong tool for ensuring that our generators are stable.
The test-suite is highly modifiable. I can also very easily enhance this test-suite with
performance tests and stress tests. The test-suite can be executed in a mode which tests all
combinations of the parameters that are legal. However, this is very time consuming and I
often test only certain combinations of parameters. The results of the generators testing is
one of the inputs into the testing of the generated tools. The scheme is pictured in Fig. 7.1

When I get to testing of the specific generated tool, I first have a look at the tests of
the generators. If I find out any problems during the generation, I either skip the tests as
a whole or I need to pay more attention to the results of the testing.

After testing of the generators is finished, tests of the generated tools are executed.
At this phase, it is possible to use the results of the generators testing. Because I have
the results from various platforms, I can schedule and perform a test of the given tool, for
example, the assembler only on the working platforms.

If there have been issues with generation on all platforms, I skip the whole process of
testing. If the tool has been generated correctly, I put the generated binary under tests.

71

Nightly build

Tests of generators

Tests of assembler
Tests of veri f icat ion

Tests of compi ler

Figure 7.1. Scheme of the tools generation tests

In the case of the assembler, it is thoroughly tested by the randomgen. The randomgen
program generates valid programs automatically from the processor description, which the
assembler binary must be able to process. The randomgen application is also automatically
generated so the paragraph above also applies to it. However, this is only one method
of assembler testing. In this way I ensure that the valid constructions will be assembled
without problems. Nevertheless, the assembler is also tested within the compiler driver.

Now I will have a look at testing of the compiler backend. The input of the backend
are the files that are in a certain kind of internal representation of the compiler driver and
the output is the assembly code. Here it is possible to see the very close interconnection
with the assembler, which is responsible for transformation of the assembly language to the
object files. I have several ways of testing the compiler backend. The first line consists
of simple tests taken from various test-suites, such as the G C C torture test-suite. These
simple tests are meant for fast debugging of the backend.

There I can also utilize the results of the generators testing. Not only that I have to
check that the backend together with the compiler driver were generated, but I can also
check if the necessary libraries, which are needed by the compiler, are available. If not,
I can choose only the subset of tests and shorten the testing time. If I do not have the
Newlib library compiled, I can save up to several hours of testing. The time savings are also
achieved thanks to the test selection mechanism, which allows automatic detection of the
libraries.

The second line consists of benchmarks. The purpose of these tests is to tune the
performance of the compiler. They can also be used for the debugging, but it is not as
comfortable as in the case of the simple programs mentioned above. What is important in
this case is the fact that I very closely observe the number of cycles that are needed for each
benchmark. If I have a rapid growth in the number of cycles, it indicates severe issues in
the compiler and can lead to increased power consumption, which is unwanted in the cores

72

for embedded systems.
The last set of compiler tests are really complex tests, such as the Linux core. This

category serves as the ultimate test that the compiler, as well as the model, contains the
minimum of errors. The results of the generators testing comes to use in this case as well.
In addition to all the tools that are required for the tests of simple programs, I also require
the presence of the Newlib library. For execution of all three categories of the programs a
simulator is used.

I have introduced a scheme of the utilization of the tools generator results on the com­
piler. Nevertheless, I think that it will give us the biggest time savings in the case of
verifications. The reason for this is the fact that there is a large number of verification tests
and they are time consuming.

7.1.2 Testing oriented on models

Another point of view of the testing system is from the angle of the models. The model
developer expects that the tools work without problems. They are interested in their pro­
cessor design and need to get the results of testing all in one place. Therefore, their use case
is completely different.

Errors in the model are very often revealed in the phase of tool generation. The tools
contain various checks that ensure that the tool can be generated. For example, the compiler
backend cannot be generated when the model does not contain certain instructions, for
example jump and so on. Generally I can say that for the models oriented point of view,
the generator testing is very important. The most model oriented tests, which I currently
deploy, cover the area of functional verification.

The role of functional verification is to verify the equivalence of the instruction accurate
(IA) and cycle accurate (CA) model, which were described above. There are also formal
methods [18], but they are not currently used in our project. The IA model describes the
controller on the level of instructions, while the C A model is more precise. It describes a
set of operations that represents the separate actions between the clock cycles. From each
description a tool is generated. In the case of IA, I generate the simulator, and in the case
of C A , I use the generated verification environment. I execute the same program on both
and then I compare the results. Such tests are performed when both model descriptions
are stable as it uses tools from the IA and C A description. These tests help us to discover
differences in model descriptions.

One of the drawbacks of this attitude is the time demand. The test environment, which
is generated from the C A description, is very slow and the number of tests is vast. It is not
uncommon for these tests to take more than 24 hours.

Nevertheless, here I can also utilize the knowledge I have from the testing fo generators.
Moreover, I need the results from the compiler testing as I use the compiled binaries for
execution.

7.2 Case study and experimental results

I will demonstrate the whole process on the tools generator and tests of generated tools for
one of the cores. The whole process is triggered by the nightly build, as demonstrated in
Fig. 7.1.

The job that is responsible for the nightly build is called simply Build-Framework. This
job, once it is finished, triggers the job which is called Toolchain-generator-codasip_-

73

urisc. This job is responsible for performing tests of the generators. It performs all the nec­
essary tests and produces a file with results in the form - test name: result. Should I have
a set of tests with the names fu-systemc, fu-verilog, fve-vhdl, fve-systemverilog,

the file with the results would have the following content:

fu-systemc:pass

f u - v e r i l o g : f a i l

fve-vhdl:pass

fve-systemverilog:pass

Once this job is finished, it triggers a build of other jobs based on the result file of the
Toolchain-generator-codasip_urisc. The job, which is responsible for that, is called
Sorter. The role of this job is to process the result file from the generator job and trigger
the corresponding downstream jobs. This is pictured in Fig. 7.2.

The trigger of the job is connected to the checkout of repositories and the download
of the saved artifacts from the previous jobs. The checkout and download of the artifacts
can mean hundreds of megabytes. The jobs that are triggered as downstream jobs perform
the functional verification. I trigger three jobs that perform the verification for the Verilog,
V H D L and the SystemC language.

Figure 7.2. Build pipeline with tools generator

I will present the results of the testing which was performed within the Jenkins environ­
ment. The results were gained from the Jenkins server in version 1.652.

I have made several experiments with the utilization of the tool generator results and
without it. I have also tried various combinations of the successful and unsuccessful jobs. I
will present them in several tables and graphs below.

The results in the following Table 7.1 compare the time that was needed for tests of the
functional verification with and without the use of the tools generation results.

The times in Table 7.1 do not include the time needed for the Build-Framework job.
It is just the time needed for the testing. From the times we can see that the acceleration
is apparent in all cases. The speed-up is gained by the fact that in the case of unsuccessful

74

Use toolsgen results Number of fails Time
Y E S 0 159m
NO 0 165m
Y E S 1 106m
NO 1 113m
Y E S 2 53m
NO 2 62m
Y E S 3 3m
NO 3 12m

Table 7 .1. Comparison of the testing times.

generation of the environment, I do not have to download files from the git repository and
also I do not have to copy large artefacts. The times, when the results of the generator tests
were used, do include the time needed for performing the generator tests.

In the case of success, I also significantly reduce the size of the artefacts I have to copy
because I use pre-generated artefacts from the tests of generators. If I do not deploy the
tools generator before the main tests, I have to generate a verification environment every
time. A graph demonstrating the time savings is in Fig. 7.3.

Comparison of testing times

I toolsgen

I without

Figure 7.3. Comparison of the testing times

Table 7.2 shows the amount of data that has to be downloaded either from the git
repository or as an artefact in the form of an archive. The sizes are important as they have
a close relation to the time that is needed for testing. The more data has to be downloaded,
the bigger overhead at the beginning of the testing.

From Table 7.2 it is clear that if jobs that do not use the results and the pre-generated
environment, the amount of data is approximately 10 times bigger. What is even worse is

75

Use toolsgen results Number of fails Downloaded data
Y E S 0 141 M B
NO 0 1470 M B
Y E S 1 96 M B
NO 1 1470 M B
Y E S 2 44 M B
NO 2 1470 M B
Y E S 3 0 M B
NO 3 1470 M B

T A B L E 7.2. C O M P A R I S O N OF T H E DATA DOWNLOADS.

the fact that the data has to be downloaded every time, even when the test is going to fail.
On the other hand, when I prepend the generator tests and utilize the results, the amount
of data decrease rapidly. The graphical representation is in Fig. 7.4.

Figure 7.4. Comparison of the data downloads

7.3 M a i n contribution

The main contributions of the chosen approach are the following:

• speed up of testing - In the case of multiple failed jobs, the chosen approach can save
a significant amount of time by not triggering the jobs that would fail, but even when
the tests do not fail, the acceleration of tests is apparent.

• traffic savings - In the case of a failed job, the approach saves traffic as it prevents the
checkout of repositories and the download of artefacts.

76

• early notification - The chosen approach gives the developer early notification regard­
ing the state of the generators and generated tools, it presents in a clear form all
features of the generator.

• faster deployment - In case I use the build automation described by [67], I will be able
to deploy and test the new build more often than once a day.

• possible reduction of the number of the triggered tests - In the case of failed generator
tests, the downstream jobs are not triggered.

The issues connected to the testing process were described in the article [31]. The use
of the results of the generators tests was introduced in the article [28].

77

Chapter 8

Continuous integration job generator

In this chapter, I will address one of the greatest weaknesses of our project. I very often
need to create a new set of tests for a new branch of a certain micro controller or create tests
for a completely new core. In such situations, the user can create a whole new set of jobs
by hand or find a way how to automatise such a task [29]. I have sketched the possibilities,
which are provided by the plugins in the CI server Jenkins and also other solutions in the
section State of art.

8 . 1 Jenkins continuous integration server

Continuous integration servers are a very popular solution for the automation of the tasks.
The tasks usually fall into the categories of the build and the test automation. Nowadays
there exists a wide range of solutions in the category of continuous integration servers. One
of the most complete solutions is called the Jenkins.

The Jenkins is a continuous integration server that is supported by the community. It
has a very swift pace of development and nowadays there exists a large number of plugins.
Thanks to the plugins it is possible to add various functionality into the basic Jenkins server.
Jenkins is not focused on just one single domain. Wi th the correct choice of plugins, the
user can build Java, C, Python and also other projects.

As far as the testing automation is concerned, the Jenkins environment provides support
for execution of scripts for all the major scripting languages. Once the testing is finished,
the server is also able to parse and visualise all major formats of the results.

The task that performs testing and is executed by the continuous integration server
Jenkins is called the job. A l l the jobs are stored at the master server. Its configuration is
stored in the form of the xml. Together with the xml, the server stores information about
the latest builds. It keeps a history. The length of the history can be configured from within
the Jenkins environment. The Jenkins server offers certain possibilities for automation of
the job creation as was mentioned in the part called State of art. However, none of the
possibilities suit my needs.

As the configuration is stored in a simple xml form, I thought of creation of the generator
of the tests. Every time I needed to test a new core, I would run the generator of the tests and
create a new set of testing jobs for the specific core. The generator should be lightweight.
The specification of the job must be very simple and the configuration should be stored
together with the model which we want to test.

Nevertheless, in order to create a generator of Jenkins jobs, I need to have good knowl-

78

edge of the Jenkins job format.

8.2 Jenkins job format

Jenkins supports several types of jobs. The basic ones are the freestyle project and the
multiconftguration project. The main difference between the two is the fact that a multi-
configuration project can be executed on multiple machines. There are also special types of
jobs, which are tied to various plugins. There is the maven job, the external job or various
views.

Below I have listed the basic description of the multi-configuration job, as it is the job
which I am most interested in. Although I need to work with the other job types as well, the
configuration of the job displayed below will be sufficient for the demonstration purposes
now.

1 <?xml version='1.0' encoding='UTF-8'?>

2 <matrix-project plugin="matrix-project@l.4">

3 <actions/>

4 <description></description>

5 <keepDependencies >false </keepDependencies >

6 <properties >

7 <com.sonyericsson.rebuild.RebuildSettings

8 plugin="rebuildOl.22">

9 <autoRebuild >false </autoRebuild >

10 </com.sonyericsson.rebuild.RebuildSettings >

11 <hudson.model.Paramet ersDef i n i t i o n P r o p e r t y / >

12 </properties>

13 <scm class="hudson.scm.NullSCM"/>

14 <canRoam>true</canRoam>

15 <disabled>false</disabled>

16 <blockBuildWhenDownstreamBuilding >false

17 </blockBuildWhenDownstreamBuilding >

18 <blockBuildWhenUpstreamBuilding >false

19 </blockBuildWhenUpstreamBuilding >

20 <triggers/>

21 <concurrentBuild>false</concurrentBuild>

22 <axes>

23 <hudson.matrix.LabelAxis>

24 <name>label</name>

25 <values >

26 < s t r i n g > Cent OS -6 . 5 -32 </ s t r i n g >

27 </values>

28 </hudson.matrix.LabelAxis>

29 </axes>

30 <builders>

31 <hudson.tasks.Shell>

32 <command>echo \$(pwd)</command>

33 </hudson.tasks.Shell>

34 </builders>

35 <publishers/>

36 <buildWrappers/>

37 <executionStrategy class="hudson.matrix.

38 DefaultMatrixExecut ionStrategyImpl">

39 <runSequentially >false </runSequentially >

79

40 </executionStrategy>

41 </matrix-project>

The whole configuration is in the xml format as was stated above. On the second line,
we can see that it is the matrix project, which means that it can deploy multiple axes, and
one of them is the configuration of the nodes. For simplicity, the job does not download any
data from the Version Control Systems VCS. Another important tag is the one called axes,
it is on line 22. This tells us that this job is built only on one node called CentOS-6.5-32
on line 26. It is important to note that this job does not have parameters. If it had, the
parameters would be visible at the top of the configuration.

There are also sections builders, line 30, and publishers on line 35. The section
builders says that there is the shell script executed and the only command it runs is
the echo $(pwd). The job publishes no results, hence the part publishers is empty. The
execution strategy is default. It is important to know what the configuration of the job
looks like as I will work over the representation in the later sections.

8.3 Job generation

The main task that I need to deal with is the generation of the various jobs, which will ensure
complex testing of the core. Mainly, I will generate the jobs which test the automatically
generated tools. As I plan to control the whole system also from the command line, I wanted
to avoid the graphical interface, at least in the first version of the project. I may add the
graphical interface in the later versions, but I definitely need to keep the command line
interface for the solution to be fully scriptable. This is also one of the reasons, why I cannot
use the plugins provided by Jenkins. They have very poor documentation and are primary
focused on usage via the web interface.

The basic scheme of my system is demonstrated in Fig. 8.1. We can see, that the whole
system consists of just a few steps. The first part of the system is the sniffer. In my case
it works over the git repository. Once the generation is triggered, the job generator uses
templates to generate corresponding jobs. I will now give a more detailed description of the
aforementioned parts.

8.3.1 Sniffer

I have decided to call this part of the generation process the Sniffer as it sniffs in the git
repository for new branches. The main role of the Sniffer is to detect the creation of a new
branch in the given git repository and trigger the generation. The whole system is designed
in the way that the sniffer can be replaced by a different component. In the future, I would
like to add support for other VCS. It also does not have to be present at all and can be
completely omitted. The generator can be started by a different tool if it sticks to the
defined interface.

Although currently the role of the Sniffer is to notify that a new branch has been created
and deliver this information to the job generator. The Sniffer has no further intelligence
and the whole system is designed in such a way that all decisions should be made in the
generator itself. In the latest version, the Sniffer has a shape of the Unix script, which is
executed repeatedly by the operation system.

80

GIT repository

Branch Sniffer

T e m p l a t e s

T e s t l T e s t 2 Tes t3

Figure 8.1. Scheme of the system

8.3.2 Templates

The second input into the job generator are the templates. I have various kinds of templates
as I need to test various parts of the newly developed core. The main areas which have to
be covered by test job generation are:

• compiler testing,

• functional verification,

• assembler testing,

• tools generation.

Please note that these are just the areas that need to be covered, not the jobs. Under
each domain there is a variety of jobs which are generated and later on executed. There
is usually just one template per domain, just in the case of functional verification I need
to have several templates, as this area is very vast and I was not able to stick to just one
template.

As far as the templates themselves are concerned, they are very simple. The templates
are in the X M L format, as are the jobs in the Jenkins, and the generated parts are in the
form:

<string>@N0DE_NAME@</string>

8.3.3 Job generator

Now when I have described the inputs of the generator, I will move to the generator itself.
The job generator consists of several parts that are pictured in Fig. 8.2.

I decided to implement the generator in the Python language, because it allows very
fast development, the code is very easy to read and the modifications are simple.

One of the first steps is the template selection. This part of the generator works over
the configuration file that is present at the specific directory in the model branch which

81

Template Choice

CMake generation

Job generation

Job deployment

Job control

Figure 8.2. Scheme of the generator

should be tested. I have proposed a simple format of the configuration file that specifies the
tested features. The other possibility I have is to automatically detect what features should
be tested, but I have chosen the configuration file because some of the features cannot be
automatically detected. From the specification file I am able to determine what templates
should be used. The specification file has two major tasks:

• to define features that should be tested,

• to specify parameters for the generators.

However, the automatic detection of the features that should be tested was not com­
pletely abandoned. The detection is present but plays only a supplementary part.

Once the phase of the templates selection is finished, I need to generate the CMake files
that will fill the desired information into the templates. CMake is a family of tools. These
tools are designed for the build, testing and packaging of software. The generated CMake
files are template specific as each template has different fields. Currently I generate one
CMake file per template and I perform the generation in the separate directories.

From the two above mentioned inputs I can generate the job. The job generation is in
fact just insertion of data into templates. I have decided to do this via the CMake, because
it is one of the cleanest ways for doing so. The most frequent facts that are generated are
the following:

• the branch used for testing,

• the node where the job is executed,

• the bash script and the parameters,

• the job name and the view where the job is placed.

82

The above mentioned information can be determined in the subsequently described way.
The branch is one of the input parameters. It is delivered by the Sniffer, but it can also be
delivered in a different way, it can be, for example, specified by the user.

The script, which is executed, could be a part of the template, however, this would
increase the number of templates significantly. Therefore, I try to determine the name of
the script. The name of the script can be determined from the information, which is given
in the configuration file. Some of the scripts may have a variable number of parameters,
but this I am able to determine from the directory structure of the model. Here I can see
the supplementary part of the automatic detection.

The job name and view where the job should be placed are also determined from the
configuration file and repository name. In the future I also plan to use a directory plugin
in my installation, nevertheless, this should not be a problematic step.

The most complicated task is the selection of the correct node where the job should
be executed. The management of the nodes is quite a complicated task and is described,
for example, here [93]. There are certain jobs that can be executed only on specific sets of
nodes. Typically, this is true for the jobs that perform tests of the functional verification or
tests of the synthesis.

I have special groups of nodes, for example, for the execution of the verification jobs.
The verification jobs require a preconfigured environment, which is present only on certain
nodes, because the environment is very complicated. For such jobs, I have special templates
with the predefined sets of nodes. Nevertheless, for the majority of jobs I do not have to
solve such issues. I keep a simple table of nodes which is divided into sections which define
what nodes are used for the specific jobs. I choose the jobs with the smallest number of
assigned jobs and optionally I modify the assignment manually.

There is also other information that can be filled into the template. But the four above
mentioned are the most common ones. I have the predefined default values for all the
parameters that would suit most cases.

Very often I generate the parameters of the given job into the templates. They are stored
in the parameters section and later these parameters are used in the builders section. How­
ever, there are also parameters that are node dependent. The node dependent parameters
are defined in the Jenkins environment.

Frequently the generated job needs to use the artefacts from the other jobs. Nevertheless,
I try to keep the generator as lightweight as possible and do not want to modify other jobs.
The compatibility in this case is assured by the wild cards, and the name of the new job
must fit into the wild card.

Once I have generated the jobs, which are needed for the testing of the newly developed
branch, I have to upload these jobs to the CI server. For this purpose I use the Jenkins
command line interface that performs the job upload and also registers the job.

When I create a job, which tests certain functionality, I also need to have a corresponding
computer where the job will be executed. Some jobs require specially configured computers.
For example, the jobs that test formal verification require the installation and configuration
of special tools. However, the support for node management is very limited in the Jenkins
environment. So I had to create a tool which helps me with this task.

8.4 Nodes management

One of the major problems I have faced in connection with the job generator was connected
with the node selection and management. This problem became even more frustrating as I

83

found out that the node management support is very limited in Jenkins. There is a plugin
for VirtualBox but it is over three years old and does not support new versions. So there is
no way how to administer nodes from within the Jenkins environment.

This is understandable when I take into account that Jenkins is the orchestrator and
the nodes can be either physical machines or can be virtualized in any way. So it is left to
the users of the environment to provide a solution that suits their needs.

In our project we use the virtualization software VirtualBox. From my point of view
it is safer, and also more user friendly, to use virtualization methods. Moreover, I need to
support quite a lot of operation systems. The goal of supporting multiple operation systems
could not be achieved without the support of virtualization.

Therefore, I needed to design a solution that allows simple management of the virtual
machines that I use for nightly builds and testing of the tools in our research project. I have
cooperated on this part with Milan Skala, whose bachelor thesis [93] I supervised.

8.4.1 Design of the nodes management tool

Once the infrastructure for builds and tests has settled down and has been used for some
time, I have identified the key tasks that the application for management should have. I try
to summarise them in the following list:

• support of the multiple platforms - The program must run at least on the Unix and
the Windows systems.

• support of the multiple servers - Where the virtual machines run.

• grouping of machines - The program must allow grouping of virtual machines and run
of commands on such a group.

• support of interactive mode - Where the user can control the machine.

There were also some minor requirements, such as the support of configuration files and
so on. Nevertheless, one of the very frequent tasks is the restart or upgrade of a certain
group of machines. For example, we would like to update the kernel and restart all machines
which have the operation system Cent OS version 7.

I also need to take into account the support of multiple servers. I have several servers
that I use just for virtualization of the build and the test machines, but I also have a large
number of virtual machines that run on the user computers and during the night are used
for testing purposes. That is the main reason why support of multiple servers is essential.

The main idea is to automatize the process of machines management as much as possible.
Because of this, I do not need to have the graphical user interface in the first version of
the tool. Management of the machines takes quite a lot of user time, so the pressure for
automation is high. The tool must support the batch execution. The application must
allow the definition of the tasks that should be performed on a given machine and leave the
machine, once it is finished, without user interference.

The tool should be easily configurable. The configuration should support the configura­
tion files with a given syntax and the parameters should also be passable via the command
line interface. Thanks to this, the user will not be forced to perform the set up for every
execution.

84

Once I have specified the requirements on the application, I can select the best method
that will be used for implementation. The VirtualBox provides several possibilities. A l ­
though only one of the provided methods suits my needs. I must use the web service A P I
as it is the only solution which supports virtual machines placed at different servers. On
the other hand, it uses the X M L format serialisation that is quite slow and has a negative
impact on the performance of the whole solution.

The application contains three basic objects:

• Group - This class contains one or more virtual machines that can be placed at more
physical servers.

• Environment - A class that contains information about the physical server. It keeps
the information about the IP address and so on.

• Interpreter - The main class of the program, it executes the statements and keeps
information about the environments and groups of computers.

One of the major requirements was batch execution without user interaction. In such a
case the tool must be configured in such a way that it contains all the nodes which will be
used during the batch file execution. The tool cannot ask the user for credentials that are
needed for the connection to a certain node. The node can be stored in a configuration file
where each line contains one node and the line has the following form:

/Deb-8-64 group=debian,64bit user=taylor password=t0ps3cret

The line means that the computer is at the server eva and has the name of Deb-8-64. It
belongs to the groups debian and 64bit and has a given user and password. If the tool has
the information from the configuration file, it does not have to ask the user.

The commands, which will be passed to the interpret, will be saved in a batch file that
can be executed once all the nodes are added. The batch file will contain the statements
that are understood by the interpret. The statements will be executed sequentially.

I can get into a situation when the batch file will contain unknown statements. For
example, it will use virtual machines which are not configured or it will use the machines
with an unknown user name or password.

I need to have a reliable way how to deal with such a situation. There are two basic
scenarios I can either skip the operation and continue with the next statement or stop the
execution immediately.

In this case, the best way is to inform the user about error via notification that is
displayed on screen, create a log file with error detail and cease the execution. It is very
probable that if any of the statements contained errors, it could affect the rest of the
statements.

The diagram for execution of the batch file is in Fig. 8.3.

85

Create error log

Figure 8.3. Scheme of the batch file execution

The implementation of the tools was performed in the Python language. Each class was
implemented in a separate file. There are three main classes according to the basic objects.
The class diagram of the solution is depicted in Fig. 8.4.

86

0..n

G r o u p G r o u p I n t e r p r e t e r

l . . n
E n v i r o n m e n t

Figure 8.4. Class diagram for nodes management system

From the diagram it is clear that the instance of the interpreter does not have to contain
a group of machines. On the other hand, it must contain at least one environment for the
execution to begin.

With the tool for the management of the nodes, I can easily manage the machines which
are used for the execution of the testing jobs. The tool is also used for the update of the
file, which contains the nodes, which are used by the generator of the jobs.

8.5 Experimental results and contribution

With the current implementation of the simple job generator I have performed a number
of tests. I have chosen two typical scenarios. The first case is the generation of a new
testing set for the instruction accurate description of a new core. With the IA description
corresponds the basic set consisting of tests which test the compiler and the assembler. When
the complete description of the new core (instruction accurate, as well as cycle accurate)
is created, the full set of tests is generated. The full set adds also tests for functional
verification.

The templates, which are needed for the generation of such tests, were added into the
template pool. The basic set consists of 3 jobs and the full set consists of 12 jobs. I have
set the polling time to 6 minutes, so every 6 minutes the VCS server is polled for the new
branches.

The times needed for the generation are summarised in Table 8.1. I have performed ten
different runs, five for the basic set of tests and five for the full set of tests. The last row in
the table shows the time which was needed for a run which was triggered manually.

Run Basic set Full set
1 84,1s 344,6s
2 208,5s 352,9s
3 154,9s 40,7s
4 110,5s 142,0s
5 51,3s 240,2s
Manual run 0,99s 4,2s

Table 8.1. Comparison of generation times.

In Table 8.1 we can see that the generation of three jobs takes 0.99 seconds, which gives
exactly 0.33 second per job. When I try to generate the full set of 12 jobs, it takes 4.2
seconds. That is approximately 0.35 second per job.

87

A l l the jobs which I generate are multi-configuration jobs. The configuration of a multi-
configuration job was described at the beginning of this chapter. The generation times vary
for the basic set from 51 to 208 seconds. That is perfectly accurate, as the delay caused
by the frontend is up to 360 seconds. The generation of the full set is also affected by the
frontend delay and should be from 4.2 seconds up to 365 seconds. M y measurements confirm
that. I think that approximately 0.33 second is a very good generation speed. This time
does not include the time needed for the upload of the new job to the Jenkins server via the
command line interface. I have not included this time because it is largely affected by the
position of the generating computer in the network and can also be heavily dependent on
the network traffic.

I and my colleague have also tried to create the jobs manually. The group that created
the jobs consisted of two persons. We tried to create the basic set of testing jobs and then
the full set of jobs. The basic set of tests includes the generation of three jobs and covers the
compiler and the assembler. The full set of jobs contains also jobs for verification. Together
this set contains 12 jobs. Therefore, the sets are the same as in the previous measurement.
I have also tried to compare the generation speed with the other generators provided by the
Jenkins.

Method Basic set Full set
Lissom Generator 0,99s 4,2s
Jenkins job generator plugin 2,1s 8,5s
Jenkins DSL plugin 1,3s 5,2s
Manual creation 354s 1417s

Table 8.2. Comparison of creation times.

In Table 8.2 1 have summarized the results of the generation and the manual creation.
The manual creation of the jobs was the slowest in both cases.

The comparison with the most widely used generators provided by the Jenkins server
was made at the following configuration. I used the Jenkins server in version 1.656. The
Jenkins server was running on a server with 4 cores Intel i5 and has 8 G B of memory.

It is clear that the Lissom generator is faster than the job generator plugin and the DSL
plugin in both tested cases. However, in the case of generation of just three jobs, the times
are comparable. I have used the times from the manual run of my generator as both Jenkins
plugins are also triggered manually.

In the case of generation of the big set, the Lissom generator has a clear advantage. It
is Is faster in comparison to the DSL plugin and 4.3 seconds faster in comparison to the job
generator plugin.

The graphs depicting the generation times for the basic set and full set are in Fig. 8.5
and Fig. 8.6. The times for manual creation are not included.

The other advantage of the job generator is the fact that it is very lightweight and can
be used for any kind of jobs. This largely depends on the templates that will be created.
In theory we could completely abandon the creation of the jobs manually. If I provide the
correct configuration of the jobs together with the set of templates, it is possible to generate
the whole set of the testing jobs for any microcontroler.

Among the main contribution there can be placed:

• significant speed up of the job generation - As is clear from the results, the generation
of the jobs is faster in comparison to any other generator.

88

• higher level of automation - With the correct configuration the job generation can be
provided completely without user interference.

• node management - The tool provides functionality for nodes management, it is pos­
sible to create a new node and configure it for the given job.

• wide range of use - The job generator is dependent only on the xml format of the job,
it can virtually generate any type of testing job.

• no dependency on scripting language - There is no need to deploy any scripting lan­
guage, such as Groovy, the jobs are generated from the configuration file.

Time of generation of the full set

9

Lissom generator Jenkins DSL plugin Jenkins job generator plugin

Figure 8.5. Graph of the full set generation

Time Df generation of the basic set

2.5-,

Lissom generator Jenkins DSL plugin Jenkins job generator plugin

Figure 8.6. Graph of the basic set generation

The topic of the continuous integration environment and the automatic generation of
the jobs for such environment was described in the article [29].

89

Chapter 9

Conclusion

In this thesis, I have addressed the testing of an automatically generated compiler. I have
focused on four areas and introduced solutions that help to optimize and automatize the
process of testing.

The first area is support of the standard C language library and the process of porting.
Due to a good choice of the library, I was able to significantly increase the number of
tests that can be used for porting. The raised number of tests gives the developer of the
micro controller better possibilities for tuning the compiler and the whole system. I have
introduced the universal mechanism that can be used for porting to any platform if the
platform is suitable for the C library.

I have also worked on the process of porting with the aim to make it more automatic. I
have introduced several ways that make the process of porting more automatic. The number
of files that have to be manually changed has been significantly decreased and the whole
process of porting is now faster and requires less knowledge.

The second area I have investigated is focused on the test selection mechanism. As was
demonstrated, there is currently no mechanism that would suit my needs for the efficient
selection of the test cases. I have designed a system of special files that are used for the
selection of tests. The scheme is lightweight and robust at the same time. It can be used
for any kind of tests and is not platform dependent, so it can be used for any core.

Moreover, I have created a generator of test selection files, which can be used for the
generation of new files. The generator can be used once a new core, or just a new version
of the existing core, is under development. The generator uses as an input the information
contained in the model and the tests themselves that are compiled to the object form. The
generation is fast and the accuracy of the results is good.

The area number three is connected with the acceleration of tests which are executed
by the continuous integration server Jenkins. I have looked for a way how to decrease the
time and space requirements of the functional verification testing and other tests. I have
utilised the new kind of tests in our project, the tests of generators. The generator tests
are executed as first, and all other tests use the results of the generator tests and, therefore,
save time via the pre-generation of the binaries if the tests are successful. If the generator
tests fail, the downstream jobs performing the verification tests are not triggered at all and
hence save time and space that would otherwise be spent on the checkout of files.

Last but not least, I have sketched a simple generator of the Jenkins jobs that would
suite our needs in the Lissom project. I need a generator that can be started by various
ways, which is lightweight and can generate all kinds of jobs. This was one of the basic
requirements, which was not met by any plugin that is currently available for the Jenkins.

90

I also wanted the tool to be at least partly independent of the Jenkins as it is not rare that
the plugins do not cooperate well.

The current implementation of the generator is dependent just on the internal repre­
sentation of the job. This is not a problem, as it is very simple to deploy new templates.
At the same time, the internal job representation is not likely to change as it would imply
changes in all plugins currently used by the Jenkins.

I put the generator under tests and the gathered results are very positive. As far as
the speed of the generator is concerned, it cannot be matched by any tool that is currently
available.

The implementation of the generators and other tools was performed in the Python
language, so the solutions are easily extensible.

9 . 1 Future work

In the future, I would like to apply the use of the tool generator results also on other kinds
of testing, such as the compiler or the assembler. I believe that I could gain some time
savings in the case of application. V i a this approach it should be possible to achieve speed
for every group of tests that is more complex.

The implementation of generator of the testing jobs could also be extended. I could
add support for the copy artefacts section and also support for the folders plugin that we
currently use in our project. I would also like to find ways how to improve the speed of the
generation.

It would also make sense to introduce a code generator into the testing process. It could
uncover interesting new bugs in the automatically generated compiler.

91

Bibliography

[1] Job DSL Plugin.
<https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin> (July 2016).
2016.

[2] Job Generator Plugin.
<https://wiki.j enkins-ci.org/display/JENKINS/Job+Generator+Plugin> (July
2016), 2016.

[3] Template Project Plugin.
<https://wiki.j enkins-ci.org/display/JENKINS/Template+Proj ect+Plugin>

(July 2016), 2016.

[4] A C E : SuperTest Rembrandt Release - Update 2. User Documentation, 2014.

[5] A C E : CoSy compiler development system.
<http://www.ace.nl/compiler/cosy.html> (December 2015), 2015.

[6] A C E : SuperTest compiler test and validation suite.
<http://www.ace.nl/compiler/supertest.html> (Fedruary 2016), 2016.

[7] Aggrawal, K . ; Singh, Y . ; Kaur, A . : Code coverage based technique for prioritizing
test cases for regression testing. A CM SIGSOFT Software Engineering Notes.
year 29, nr. 5, 2004: pp. 1-4.

[8] Aho, A . V . ; Ganapathi, M . ; Tjiang, S. W. K . : Code Generation Using Tree
Matching and Dynamic Programming. ACM Trans. Program. Lang. Syst., year 11,
nr. 4, October 1989: pp. 491-516, ISSN 0164-0925, doi:10.1145/69558.75700.
U R L <http://doi.acm.org/10.1145/69558.75700>

[9] ANSI: INCITS/ ISO/ IEC 9899-1999 (R2005). <http://webstore.ansi.org/

RecordDetail. aspx?sku=INCITS/IS0/IEC°/.209899- 1999%20°/„28R2005°/.29/> (April
2016), 2016.

[10] A R M : A R M Architecture Reference Manual A R M v 7 - A and A R M v 7 - R edition, Issue
C. 2014.

[11] Arquilian: Arquilian. <http://arquillian.org/> (March 2016), 2016.

[12] Ashenden, P. J.: The Designer's Guide to VHDL, Volume 3, Third Edition (Systems
on Silicon) (Systems on Silicon). San Francisco, C A , USA: Morgan Kaufmann
Publishers Inc., third volume, 2008, ISBN 0120887851, 9780120887859.

[13] Autotest: Autotest. <http://autotest.github.io/> (March 2016), 2016.

92

https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://wiki.j%20enkins-ci.org/display/JENKINS/Job+Generator+Plugin
https://wiki.j%20enkins-ci.org/display/JENKINS/Template+Proj%20ect+Plugin
http://www.ace.nl/compiler/cosy.html
http://www.ace.nl/compiler/supertest.html
http://doi.acm.org/10.1145/69558.75700
http://webstore.ansi.org/
http://arquillian.org/
http://autotest.github.io/

[14] Balarin, F.; Chiodo, M . ; Giusto, P.; aj. (editors): Hardware-software Co-design of
Embedded Systems: The POLIS Approach. Norwell, M A , USA: Kluwer Academic
Publishers, 1997, ISBN 0-7923-9936-6.

[15] Bennett, J. : Howto: Porting newlib, A Simple Guide. 2010.

[16] Binder, R.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[17] Chandra, R.; Dagum, L. ; Kohr, D.; aj.: Parallel Programming in OpenMP. San
Francisco, C A , USA: Morgan Kaufmann Publishers Inc., 2001, ISBN 1-55860-671-8,
9781558606715.

[18] Charvat, L.; Smrcka, A. ; Vojnar, T.: Automatic Formal Correspondence Checking of
ISA and R T L Microprocessor Description. In Proceedings of the 13th International
Workshop on Microprocessor Test and Verification (MTV 2012), Institute of
Electrical and Electronics Engineers, 2012, ISBN 978-1-4673-4441-8, pp. 6-12.
U R L <http://www.fit.vutbr.cz/research/view_pub.php?id=10135>

[19] Codasip: CodAL Manual. Technical report, Codasip, Brno, CZ, 2014.

[20] Csmith: Csmith bug database.
<https://embed.cs.utah.edu/csmith/gcc-bugs.html> (August 2016), 2016.

[21] Cucumber: Cucumber. <https://cucumber. io//> (March 2016), 2016.

[22] Cytron, R.; Ferrante, J.; Rosen, B . K . ; aj.: Efficiently computing static single
assignment form and the control dependence graph. ACM TRANSACTIONS ON
PROGRAMMING LANGUAGES AND SYSTEMS, year 13, 1991: pp. 451-490.

[23] Davis, F. D.; Bagozzi, R. P.; Warshaw, P. R.: User acceptance of computer
technology: a comparison of two theoretical models. Management science, year 35,
nr. 8, 1989: pp. 982-1003.

[24] De Micheli, G.; Rolf, W., E.and Wolf: Readings in Hardware/Software Co-design.
Morgan Kaufmann, 2001, ISBN: 9781558607026.

[25] Dolihal, L . ; et al.: Use of Architecture Description Language ISAC fo ASIP Design.
In In Proceedings of Eighth International Summer School on Advanced Computer
Architecture and Compilation for High-Performance and Embedded Systems,
European Network on High Performance and Embedded Architecture and
Compilation, 2012, ISBN 978-90-382-1987-5.

[26] Dolihal, L . ; Hruska, T.: Porting of C library, Testing of generated compiler. In In
Proceedings of The Sixth International Multi-Conference on Computing in the Global
Information Technology, International Academy, Research, and Industry Association.
2011, ISBN 978-1-61208-008-6, pp. 125-130.

[27] Dolihal, L . ; Hruska, T.: Semiautomatic Porting of the C Library. In In Proceedings
of International Conference on Computer Science, Computer Engineering, and
Education Technologies, International Academy, Research, and Industry Association,
2014, ISBN 978-1-941968-02-4, pp. 86-89.

93

http://www.fit.vutbr.cz/research/view_pub.php?id=10135
http://embed.cs.utah.edu/csmith/gcc-bugs.html
https://cucumber.%20io//

[28] Dolihal, L . ; Hruska, T.: Overview of the testing environment for the embedded
systems. In In Proceedings of The third International Conference on Green
Computing, Technology and Innovation, International Academy, Research, and
Industry Association, 2015, ISBN 978-1-941968-15-4, pp. 86-89.

[29] Dolihal, L . ; Hruska, T.: Automatic Job Generation for Compiler Testing, Testing of
Generated Compiler. In In Proceedings of The Eighth International Conference on
Advances in System Testing and Validation Lifecycle, International Academy,
Research, and Industry Association, 2016, ISBN 978-1-61208-500-5, pp. 1-6.

[30] Dolihal, L . ; Hruska, T.; Masarik, K . : Testing of an automatically generated
compiler, Review of retargetable testing system. In International Journal on
Advances in Software, 2012, year 2012, International Academy, Research, and
Industry Association, 2012, ISSN 1942-2628, pp. 15-26.

[31] Dolihal, L . ; Hruska, T.; Masarik, K . : Testing System for the H W / S W Codesign
Toolchain. In In Proceedings of Eighth Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science, N O V P R E S S , 2012, ISBN
978-80-87342-15-2.

[32] Dolihal, L . ; Hruska, T.; Masarik, K . : Usage of simulators in testing system. In In
Proceedings of Industrial Simulation Conference 2012, EUROSIS, 2012, ISBN
978-90-77381-71-7.

[33] Donald, T.; Moorby, P.: The Verilog Hardware Description Language. Springer,
2002, ISBN 978-1402070891.

[34] Duggal, G.; Suri, B. : Understanding regression testing techniques. In Proceedings of
2nd National Conference on Challenges and Opportunities in Information
Technology, Citeseer, 2008.

[35] Duvall, P.; Matyas, S. M . ; Glover, A. : Continuous Integration: Improving Software
Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-Wesley
Professional, 2007, ISBN 0321336380.

[36] Eclipse: Eclipse, <https://eclipse.org/> (August 2016), 2016.

[37] Fauth, A. ; Van Praet, J.; Freericks, M . : Describing instruction set processors using
n M L . In In Proceedings of European conference on Design and Test, I E E E Computer
Society Washington, 1995, pp. 587-593.

[38] Fowler, M . ; Foemmel, M . : Continuous integration. Thought-Works) http:/'/www.
thoughtworks. com/Continuous Integration, pdf 2006: p. 122.

[39] Gatliff, B. : Porting and Using Newlib in Embedded Systems.

<http://neptune.billgatliff.com/newlib.html> (March 2016), 2016.

[40] G C C : G C C Compiler website, <https://gcc.gnu.org/> (Fedruary 2016), 2016.

[41] Git: git. <https://git-scm.com/> (February 2016), 2016.
[42] Halambi, A . ; Grun, P.; Ganesh, V . ; aj.: E X P R E S S I O N : A Language for Architecture

Exploration through Compiler/Simulator Retarget ability. In In Proceedings of the
Design, Automation, and Test in Europe, Springer Netherlands, 2008, pp. 485 - 490.

94

http://eclipse.org/
http://neptune.billgatliff.com/newlib.html
http://gcc.gnu.org/
http://git-scm.com/

[43] Hat, R.: Red Hat. <https://www.redhat.com/> (August 2016), 2016.

[44] Hoffmann, A. ; Meyr, H . ; Leupers, R.: Architecture exploration for embedded
processors with LISA. Kluwer, 2002, ISBN 978-1-4020-7338-0, I-VIII, 1-230 pp.

[45] Hubertz, J. : Softwaretests mit Python. Springer, 2016, ISBN 978-3662486023.

[46] Huizinga, D.; Kolawa, A. : Automated Defect Prevention: Best Practices in Software
Management. ISBN 0470042125, 9780470042120.

[47] Husar, A. : Programming of reconfigurable systems using a higher programming
language. Master's Thesis, Faculty of Information Technology, Brno university of
Technology, 2014.

[48] ISO/TEC: Working Draft, Standard for Programming Language C++, N3337. 2011.

[49] Jenkins: CloudBees Folders Plugin.
<https : / /wik i .j enkins-ci.org/display/JENKINS/CloudBees+Folders+Plugin>
(June 2016), 2016.

[50] Jenkins: Git Plugin.
<https://wiki.j enkins-ci.org/display/JENKINS/Git+Plugin> (June 2016),
2016.

[51] Jenkins: Jenkins. <https://wiki.jenkins-ci.org/display/JENKINS/Home>
(March 2016), 2016.

[52] Jenkins: Matrix Authorization Strategy Plugin. <https://wiki.jenkins-ci.org/
display/JENKINS/Matrix+Authorization+Strategy+Plugin> (June 2016), 2016.

[53] Jenkins: Role Strategy Plugin.
<https://wiki.j enkins-ci.org/display/JENKINS/Role+Strategy+Plugin>

(June 2016), 2016.

[54] Kroustek, J.: Retargetable analysis of machine code. Master's Thesis, Faculty of
Information Technology, Brno university of Technology, 2014.

[55] Krzikalla, O.: Performing Source-to-Source Transformations with Clang.
<llvm.org/devmtg/2013-04/krzikalla-slides.pdf> (August 2014), 2013.

[56] Labs, S.: Sauce Labs, <https://saucelabs.com/> (March 2016), 2016.

[57] Leroy, X . : Formal Verification of a Realistic Compiler. Commun. ACM, year 52,
nr. 7, July 2009: pp. 107-115, ISSN 0001-0782, doi:10.1145/1538788.1538814.
U R L <http://doi.acm.org/10.1145/1538788.1538814>

[58] Leung, H . K . ; White, L . : Insights into regression testing [software testing]. In
Software Maintenance, 1989., Proceedings., Conference on, IEEE, 1989, pp. 60-69.

[59] Leupers, R.: Code Optimization Techniques for Embedded Processors: Methods,
Algorithms, and Tools. Norwell, M A , USA: Kluwer Academic Publishers, 2000, ISBN
0792379896.

95

http://www.redhat.com/
https://wiki.j%20enkins-ci.org/display/JENKINS/CloudBees+Folders+Plugin
https://wiki.j%20enkins-ci.org/display/JENKINS/Git+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Home
http://wiki.jenkins-ci.org/display/JENKINS/Matrix+Authorization+Strategy+Plugin
http://wiki.jenkins-ci.org/display/JENKINS/Matrix+Authorization+Strategy+Plugin
https://wiki.j%20enkins-ci.org/display/JENKINS/Role+Strategy+Plugin
http://llvm.org/devmtg/2013-04/krzikalla-slides.pdf
http://saucelabs.com/
http://doi.acm.org/10.1145/1538788.1538814

[60] Leupers, R.; Marwedel, P.: Retargetable compiler technology for embedded systems:
tools and applications. Norwell, M A , USA: Kluwer Academic Publishers, 2001, ISBN
0-7923-7578-5.

[61] Lier, F.; Wienke, J. ; Wrede, S.: Jenkins for F loBI -A Use Case: Jenkins k, Robotics.
In Jenkins User Conference, 2013.

[62] Lindig, C : Random testing of C calling conventions. In Proceedings of the sixth
international symposium on Automated analysis-driven debugging, A C M , 2005, pp.
3-12.

[63] Lissom: Project Lissom Webpages.
<http://www.fit.vutbr.cz/research/groups/lissom/> (August 2014), 2014.

[64] L L V M : L L V M Language Reference Manual.

<http://llvm.org/docs/LangRef.html> (December 2015), 2015.

[65] L L V M : L L V M Compiler website, <http://llvm.org/> (Fedruary 2016), 2016.

[66] L L V M : The L L V M Compiler Driver (llvmc).
<http://llvm.org/releases/2.2/docs/CompilerDriver.html> (March 2016),
2016.

[67] Lukasova, M . : Build Paralelization in Jenkins Environment. Master's Thesis, Faculty
of Information Technology, Brno university of Technology, 201.

[68] Mackinnon, T.; Freeman, S.; Craig, P.: Endo-testing: unit testing with mock
objects. Extreme programming examined, 2001: pp. 287-301.

[69] Marwedel, P.: The Mimola design system: Tools for the design of digital processors.
In Proceedings of the 21st Design Automation Conference, I E E E Press, 1984, pp.
587-593.

[70] Masarik, K . : System for hardware-software codesign. Master's Thesis, Faculty of
Information Technology, Brno university of Technology, 2008.

[71] McKeeman, W. M . : Differential testing for software. Digital Technical Journal,
year 10, nr. 1, 1998: pp. 100-107.

[72] MiBench: MiBench. <https://github.com/embecosm/mibench> (June 2016), 2016.

[73] Microsoft: Microsoft, <https://www.microsoft.com/> (August 2016), 2016.

[74] Mishra, P.; Dutt, N . (editors): Processor Description Languages. Morgan Kaufmann,
2008, ISBN 0-12-374287-0.

[75] Mondal, S.: Compiler Back End Generation from nML Machine Description.
Master's Thesis, Indian Institute of Technology, Kanpur, 1999.

[76] Muller, P.: Automoatizovane metody hledani chyb v prekladacich. Master's Thesis,
Faculty of Information Technology, Brno university of Technology, 2008.

[77] Newlib: Newlib. <https://sourceware.org/newlib/> (March 2016), 2016.

96

http://www.fit.vutbr.cz/research/groups/lissom/
http://llvm.org/docs/LangRef.html
http://llvm.org/
http://llvm.org/releases/2.2/docs/CompilerDriver.html
http://github.com/embecosm/mibench
http://www.microsoft.com/
http://sourceware.org/newlib/

[78] Oquendo, F.: 7T -ADL: an Architecture Description Language based on the
higher-order typed 7r-calculus for specifying dynamic and mobile software
architectures. ACM SIGSOFT Software Engineering Notes, year 29, nr. 3, 2004: pp.
1-14.

[79] Palka, M . H. ; Ciaessen, K . ; Russo, A. ; aj.: Testing an Optimising Compiler by
Generating Random Lambda Terms. In Proceedings of the 6th International
Workshop on Automation of Software Test, A S T '11, New York, N Y , USA: A C M ,
2011, ISBN 978-1-4503-0592-1, pp. 91-97, doi:10.1145/1982595.1982615.
U R L <http://doi.acm.org/10.1145/1982595.1982615>

[80] Perennial: Perennial C Compiler Valication Suite.
<http://www.peren.com/pages/products_set.htm> (August 2014), 2015.

[81] Perennial: Perennial test suite, <http://peren.com/> (Fedruary 2016), 2016.

[82] Prikryl, Z.: Advancem Methods of Microprocessor Simulation. Master's Thesis,
Faculty of Information Technology, Brno university of Technology, 2011.

[83] Prikryl, Z.; Kroustek, J. ; Hruska, T.; aj.: Fast Just-In-Time Translated Simulation
for ASIP Design. In 14th IEEE International Symposium on Design and Diagnostics
of Electronic Circuits and Systems, I E E E Computer Society, 2011, ISBN
978-1-4244-9753-9, pp. 279-282.
U R L <http://www.fit.vutbr.cz/research/view_pub.php?id=9567>

[84] pytest: pytest fixtures: explicit, modular, scalable.
<h t tp : / / py te s t . o rg / l a t e s t / f i x tu re .h tml> (July 2016), 2016.

[85] Q E M U : Q E M U : Open Source Processor Emulator, <http://www.qemu.org/>
(March 2016), 2014.

[86] RISC-V: User-Level ISA Specification v2.1. 2016.

[87] Rowen, Chris and Hennessy, John , and Christensen, Clayton M . and Leibson, Steve:
Engineering the complex SOC : fast, flexible design with configurable processors.
Prentice Hall Modern Semiconductor Design Series, Upper Saddle River: Prentice
Hall, 2004, ISBN 0-13-145537-0.
U R L <ht tp : / /opac . inr ia . f r / record=bl l08184>

[88] Selenium: Selenium, <http://www.seleniumhq.org/> (March 2016), 2016.

[89] Shaw, K . : Generating New Jenkins Jobs From Templates and Parameterised Builds.
<http://www.blackpepper.co.uk/
generating-new-Jenkins-jobs-from-templates-and-parameterised-builds/>
(July 2016), 2012.

[90] Simkova, M . : New methods for increasing efficiency and speed of functional
verification. Master's Thesis, Faculty of Information Technology, Brno university of
Technology, 2015.

[91] Simkova, M . ; Prikryl, Z.; Hruska, T.; aj.: Automated Functional Verification of
Application Specific Instruction-set Processors. IFIP Advances in Information and
Communication Technology, year 4, nr. 403, 2013: pp. 128-138, ISSN 1868-4238.
U R L <http://www.fit.vutbr.cz/research/view_pub.php?id=10268>

97

http://doi.acm.org/10.1145/1982595.1982615
http://www.peren.com/pages/products_set.htm
http://peren.com/
http://www.fit.vutbr.cz/research/view_pub.php?id=9567
http://pytest.org/latest/fixture.html
http://www.qemu.org/
http://opac.inria.fr/record=bll08184
http://www.seleniumhq.org/
http://www.blackpepper.co.uk/
http://www.fit.vutbr.cz/research/view_pub.php?id=10268

[92] Siska, C : A Processor Description Language Supporting Retargetable
Multi-Pipeline DSP Program Development Tools. In In Proceedings of the 11th
International Symposium on System Synthesis, 1998, pp. 31-36.

[93] Skala, M . : Virtual Machine Management System. Master's Thesis, Faculty of
Information Technology, Brno university of Technology, 201.

[94] Smith, M . D.: Machine SUIF Project website.
<http://www.eecs.harvard.edu/hube/software/software.html> (December
2015), 2015.

[95] Sreedhar, V . C ; Ju, R. D . - C ; Gillies, D. M . ; aj.: Translating Out of Static Single
Assignment Form. In Proceedings of the 6th International Symposium on Static
Analysis, SAS '99, London, U K , U K : Springer-Verlag, 1999, ISBN 3-540-66459-9, pp.
194-210.
U R L <http://dl.acm.org/citation.cfm?id=647168.718132>

[96] Synopsys: IP Designer, IP Programmer and M P Designer. <http://www.synopsys.
com/IP/ProcessorlP/asip/ip-mp-designer/Pages/default.aspx> (August 2014),
2014.

[97] Synopsys: Processor Designer. <http:
//www.synopsys.com/systems/blockdesign/processordev/pages/default.aspx>

(August 2014), 2014.

[98] Technologies, M . : MIPS32 Architecture For Programmers, Volume II: The MIPS32
Instruction Set. 2003.

[99] Teich, J.: Hardware/software codesign: The past, the present, and predicting the
future. Proceedings of the IEEE, 2012.

[100] V A S G : V H D L Analysis and Standardization Group.
<http://www.eda.org/vhdl-200x/> (December 2015), 2015.

[101] Views, D.: Software Development Costs: Bugfixing.
<http://blog.pdark.de/2012/07/21/software-development-costs-bugfixing/>
(March 2016), 2016.

[102] Wang, L. -T. ; Chang, Y . - W . ; Cheng, K . - T . T.: Electronic design automation:
synthesis, verification, and test. Morgan Kaufmann, 2009.

[103] Wiki , G.: A Brief History of G C C . [Online]
<https://gcc.gnu.org/wiki/History>, 2008.

[104] Xie, T.; Taneja, K . ; Kale, S.; aj.: Towards a Framework for Differential Unit Testing
of Object-Oriented Programs. In Proceedings of the Second International Workshop
on Automation of Software Test, A S T '07, I E E E Computer Society, 2007, ISBN
0-7695-2971-2.

[105] Yang, X . ; Chen, Y . ; Eide, E. ; aj.: Finding and Understanding Bugs in C Compilers.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, P L D I '11, New York, N Y , USA: A C M , 2011, ISBN
978-1-4503-0663-8, pp. 283-294, doi:10.1145/1993498.1993532.
U R L <http://doi.acm.org/10.1145/1993498.1993532>

98

http://www.eecs.harvard.edu/hube/software/software.html
http://dl.acm.org/citation.cfm?id=647168.718132
http://www.synopsys.?com/IP/ProcessorlP/asip/ip-mp-designer/Pages/default.aspx
http://www.synopsys.?com/IP/ProcessorlP/asip/ip-mp-designer/Pages/default.aspx
http://www.synopsys.com/systems/blockdesign/processordev/pages/default.aspx
http://www.eda.org/vhdl-200x/
http://blog.pdark.de/2012/07/21/software-development-costs-bugfixing/
https://gcc.gnu.org/wiki/History
http://doi.acm.org/10.1145/1993498.1993532

