
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION S Y S T E M S

SSH PUBLIC KEY MANAGEMENT IN FREEIPA AND
SSSD

DIPLOMOVÁ P R A C E
MASTER'S THESIS

AUTOR PRÁCE Bc. JAN CHOLASTA
AUTHOR

BRNO 2012

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION S Y S T E M S

SPRÁVA VEŘEJNÝCH KLÍČŮ SSH V PROGRAMECH
FREEIPA A S S S D
SSH PUBLIC KEY MANAGEMENT IN FREEIPA AND SSSD

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Be. JAN CHOLASTA
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN ZELENÝ
SUPERVISOR

BRNO 2012

Abstrakt
SSH je jeden z nejpoužívanějších protokolů pro vzdálený přístup v Internetu. SSH je flex­
ibilní a rozšiřitelný protokol, který se skládá ze tří hlavních součástí: SSH transportního
protokolu, který obstarává důvěrnost, integritu a autentizaci serveru, SSH autentizačního
protokolu, který obstarává autentizaci uživatelů a SSH spojovacího protokolu, který ob­
starává multiplexování více kanálů různých typů (interaktivní sezení, přesměrování T C P / I P
spojení, atd.) do jednoho spojení. OpenSSH je jedna z nej rozšířenějších implemetací SSH.
OpenSSH obsahuje SSH server, SSH klienty, generátor SSH klíčů a autentizační agent, který
usnadňuje autentizaci pomocí veřejných klíčů. FreelPA a SSSD jsou projekty poskytující
centrální správu identit pro Linuxové a Unixové systémy. Tyto projekty sice v době psaní
této práce přímou podporu SSH neobsahovaly, ale do jisté míry je ve spojení s OpenSSH
používat možné bylo.

Abstract
SSH is one of the most frequently used remote access protocols on the Internet. SSH is
flexible and extensible protocol, which consists of three main components: SSH transport
layer protocol, which provides confidentiality, integrity and server authentication, SSH user
authentication protocol, which provides user authentication and SSH connection proto­
col, which multiplexes multiple channels of different types (interactive sessions, T C P / I P
forwarding, etc.) into one connection. OpenSSH is one of the most widespread imple­
mentation of SSH. OpenSSH contains a SSH server, SSH clients, a SSH key generator
and an authentication agent, which eases public key authentication. FreelPA and SSSD
are projects which provide centralized identity management for Linux and Unix systems.
These projects had no direct support for SSH at the time of writing of this paper, but
nonetheless could be used in combination with OpenSSH to a certain degree.

Klíčová slova
SSH, autentizace veřejným klíčem, OpenSSH, správa identit, FreelPA, SSSD.

Keywords
SSH, public key authentication, OpenSSH, identity management, FreelPA, SSSD.

Citace
Jan Cholasta: SSH Public Key Management in FreelPA and SSSD, diplomová práce, Brno,
FIT V U T v Brně, 2012

SSH Public Key Management in FreelPA and SSSD

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Jana Zeleného. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

Jan Cholasta
May 23, 2012

© Jan Cholasta, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 SSH 4
2.1 The protocol 4

2.1.1 Transport layer protocol 5
2.1.2 User authentication protocol 7
2.1.3 Connection protocol 9

2.2 Protocol extensions 11

3 OpenSSH 12
3.1 Components 12
3.2 Public key authentication 13

3.2.1 Server authentication 13
3.2.2 User authentication 13

4 FreelPA 15
4.1 Architecture 15

4.1.1 Server 15
4.1.2 Client 18

4.2 SSH support 18

5 SSSD 19
5.1 Architecture 19
5.2 SSH support 21

6 Integrating OpenSSH into FreelPA and SSSD 22
6.1 OpenSSH-LPK 22
6.2 SSH public keys on FreelPA server 23

6.2.1 L D A P schema 23
6.2.2 Access control 24

6.3 Management interface 24
6.4 SSH public keys in SSSD 25

6.4.1 Backend 25
6.4.2 Responder 26

6.5 Interface between SSSD and OpenSSH 26
6.5.1 Host public key interface 26
6.5.2 User public key interface 28

6.6 FreelPA client configuration 29

1

7 Implementation of the extension 3 1

7.1 FreelPA 3 1

7.1.1 Backend 3 1

7.1.2 Frontend 3 2

7.1.3 Installer 3 2

7.2 SSSD 3 3

7.2.1 Backend 3 3

7.2.2 Responder 3 4

7.2.3 Clients 3 5

8 Installation and usage 36
8.1 Building from sources 3 6
8.2 Server setup 3 ^
8.3 Client setup 3 8

8.4 Using OpenSSH with FreelPA 3 8

9 Conclusion 41

2

Chapter 1

Introduction

In organizations, it is desirable to maintain security information in a centralized manner,
for ease of management and enforcement of policy. A broad range of software products
is available which makes this possible. A n example of such product is Microsoft Active
Directory. In this paper we will focus on two open-source project, which provide central­
ized identity management in the Linux and Unix world, FreelPA and SSSD. FreelPA is
an integrated solution combining several technologies; SSSD is one of these technologies.
FreelPA manages a domain with clients, servers and services, and SSSD provides access to
the information in the domain.

SSH is a secure, universal remote access protocol, which provides confidentiality, in­
tegrity protection and authentication. Both the server and the user are authenticated, the
server is authenticated using public key cryptography, the user may be authenticated us­
ing multiple authentication methods and public key authentication is one of them. In this
paper we will discuss SSH and one of its implementations, OpenSSH, and how they can be
used in an environment managed by FreelPA.

In the second chapter of this paper we will discuss the base SSH protocol in detail. The
different layers of the SSH protocol will be described, with special consideration given for
the subject of public key authentication in SSH.

In the third chapter, we will discuss one of the most popular SSH implementations,
OpenSSH. Each of the tools available in the OpenSSH suite will be outlined. The routines
used to authenticate servers and users using public key cryptography will be described.

In the fourth chapter, FreelPA, a centralized identity management solution for Linux
and Unix systems, will be discussed. The architecture of this project will be outlined, as
well as the current state of its support for SSH.

The fifth chapter will focus on SSSD, a service which provides access to different remote
identity and authentication resources. We will discuss the architecture of SSSD and what
it currently offers in terms of SSH-related features.

In the sixth chapter, the design of a FreelPA and SSSD extensions allowing SSH public
key management in FreelPA domains and integration of OpenSSH into FreelPA infrastruc­
ture will be described.

The seventh chapter will contain detailed description of implementation of the designed
extension.

Finally, the eight chapter will be a short guide on building FreelPA and SSSD with the
extension and setting up a FreelPA domain with OpenSSH integration enabled.

3

Chapter 2

SSH

SSH (Secure Shell) is a network protocol for secure access to remote services between two
networked computers over an insecure network. SSH is typically used for access to shell
accounts on Unix-like operating systems, but it also supports forwarding T C P ports and
X I 1 connections and file transfer. There are two major versions of the protocol, referred to
as SSH-1 and SSH-2.

SSH provides confidentiality and data integrity by estabilishing a secure channel be­
tween the two communicating computers. Public-key cryptography is used to authenticate
the server and can be used to authenticate the client-side user, which might also be authen­
ticated by other means.

The first version of the protocol (SSH-1) was designed in 1995 by Tatu Ylonen, a
researcher at Helsinki University of Technology, as a secure replacement for contemporary
remote shell protocols, such as telnet, rlogin or rsh, which did not guarantee confidentiality
nor provided strong authentication. In July 1995, Ylonen released his implementation of the
protocol as freeware. In December 1995 he founded a company called SSH Communications
Security to further develop and market SSH.

Over time, serious flaws in the design of SSH-1 were discovered [16] [15] [17] and work on
the next generation of the protocol (SSH-2) had begun. A new Internet Engineering Task
Force working group called secsh was created to design the second version of the protocol.
In 2006, a series of RFCs (RFC 4250 to R F C 4256) were published by the working group,
documenting SSH-2 as a proposed Internet standard.

SSH-2 improves security over SSH-1, as well as adds new features to the protocol. SSH-1
is now generally considered obsolete [3].

Further in this paper we will focus on SSH-2 only, SSH-1 will not be discussed anymore.
When we refer to SSH, it will mean SSH-2 exclusively, unless stated otherwise.

2.1 The protocol

The protocol has been designed to be extensible. Algorithms, methods, formats and exten­
sion protocols are all identified by textual names in the protocol. DNS names are used to
create local namespaces, where experimental or classified extensions may be defined with­
out fear of conflict with other implementations. The base protocol has been designed to be
as simple as possible and to require as few algorithms as possible.

4

There are three main components of the protocol:

• the transport layer protocol provides confidentiality, data protection, server authenti­
cation and optionally compression,

• the user authentication protocol runs on top of the transport layer protocol and pro­
vides user authentication,

• the connection protocol runs on top of the user authentication protocol and multi­
plexes multiple logical channels into a single connection.

New protocols may be defined and coexist with the protocols above [].

2.1.1 Transport layer protocol

The SSH transport protocol is a secure low-level transport protocol. It provides strong
encryption, server authentication and data integrity.

This protocol provides means to authenticate the server and only the server, user au­
thentication is not part of it. A higher-level protocol can be used on top of this protocol
for user authentication.

The protocol has been designed to be simple and flexibile and to keep the number of
round-trips to estabilish a secure connection between two parties minimal. The algorithms
used for key exchange, encryption, compression, hashing and message authentication are
all negotiated when setting up the connection. It is expected that in most environments,
the number of round-trips to do key-exchange, server authentication and a service request
is 2. In the worst case, the number of round-trips is 3.

SSH can be used over any 8-bit clean, binary transparent transport. The transport
should protect against transmission errors. When used over T C P / I P , the server usually
listens on port 22 [].

Connection setup

The client initiates the connection. When the connection has been established, both sides
send an identification string, informing each other about the supported protocol version. If
the protocol versions are compatible, the connection continues, otherwise it is terminated.

Key exchange

Encryption key exchange follows immediately after the identification string exchange. Key
exchange may be started by either party by sending a list of supported algorithms for key
exchange, encryption, compression, hashing and message authentication to the other party.
Both parties have preferred algorithm for key exchange, encryption, compression, hashing
and message authentication. A party may guess which key exchange algorithm the other
party uses before the algorithm negotiation is done and send an initial key exchange packet
according to the guessed algorithm. If the guess was right, the optimistically sent packet
must be handled as the first key exchange packet. If the guess was wrong, the optimistically
sent packet must be ignored and the appropriate side must send the correct initial packet.

Key exchange ends after the algorithms are negotiated by both sides informing the other
side about taking new encryption keys into use. The message is sent using the old set of
algorithms and encryption keys. A l l messages sent after this message must use the new

5

Client S e r v e r

1: Ident i f i ca t ion s t r ing

2: Ident i f i ca t ion s t r ing

T

3: SSH_MSG_KEXINIT

4: SSH_MSG_KEXINIT

rFeT
Key e x c h a n g e a lgo r i t hm-spec i f i c m e s s a g e e x c h a n g e

freT

5: S S H M S G NEWKEYS

6: S S H M S G NEWKEYS

7: S S H _ M S G _ S E R V I C E _ R E Q U E S T

8: S S H M S G SERVICE A C C E P T
* : Se rv i ce

Se rv i ce - spec i f i c m e s s a g e e x c h a n g e

9: S S H M S G DISCONNECT

Figure 2.1: Message exchange in SSH transport layer protocol.

encryption keys and algorithms. When the message is received, all messages received after
this message must use the new encryption keys and algorithms.

If compression has been negotiated, the contents of the packet will be compressed using
the negotiated algorithm. When encryption is in effect, the contents of the packet must
be encrypted with the negotiated encryption algorithm. Data integrity is protected by
including a M A C (Message Authentication Code) with each packet that is computed from
a shared secret, packet sequence number, and the contents of the packet with the negotiated
message authentication algorithm.

Key exchange produces two values: a shared secret and an exchange hash. Encryption
and authentication keys are derived from these values. The exchange hash from the initial
key exchange is additionaly used as a session identifier, which is an unique identifier for the
current connection. The session identifier never changes, even after another key exchange.

Key re-exchange

Either party may request key re-exchange by sending a key exchange initialization packet
at any time except when already doing a key exchange. It is recommended to do key re-
exchange after every gigabyte of transmitted data or after every hour of connection time,
whichever comes sooner.

6

Server authentication

The server is authenticated during the initial key exchange. The client must have a priori
knowledge of the server's public host key in order to authenticate it. A l l server hosts should
have at least one host key. A server host may have multiple host keys, each using a different
public key algorithm.

The authentication is either explicit or implicit. The authentication is explicit, if the
key exchange messages contain a signature or other proof of authenticity of the server. The
authentication is implicit, if in order to authenticate the server, the server has to prove
that it knows the shared secret by sending a message and a corresponding M A C , which the
client can verify.

Service request

After the initial key exchange, the client requests a service. The service is identified by a
name. If the server rejects the service request, it must disconnect. If the server supports
the service and permits the client to use it, it must respond with a message informing the
client about accepting the service request.

There are 2 standard services: user authentication service (which uses the user authen­
tication protocol - see subsection 2.1.2) and a connection service (which uses the connection
protocol - see subsection 2.1.3).

Other messages

Either party may send a disconnection message, an ignored data message or a debug message
at any time. The disconnection message causes immediate termination of the connection.
The ignored data message contains arbitrary data and must be ignored. It can be used as
an additional protection measure against advanced traffic analysis techniques. The debug
message is used to transmit information that may help debugging.

If an unrecognized message is received, the implementation must respond with an unim-
plemented feature message and ignore the original message.

2.1.2 User authentication protocol

The SSH user authentication protocol is an universal user authentication protocol. It runs
on top of the SSH transport layer protocol. This protocol assumes that the underlying
protocol provides confidentiality and data integrity. It provides a secure tunnel for the SSH
connection protocol.

When this protocol is started, it receives a session identifier from the lower-level protocol
(the exchange hash from the initial key exchange). The session identifier uniquely identifies
the session and is suitable for signing in order to prove ownership of a private key.

User authentication is driven by the server. It informs the client about what authenti­
cation methods the client can use at a given time. Authentication methods are identified by
a name. The client may use any of the offered authentication methods in any order. This
gives the server a complete control over the user authentication process, but also provides
enough flexibility for the client to choose an authentication method which is supported or
which is the most suitable for the user, if there are more methods offered by the server [39].

7

: Cl ient

rreT

U s e r A u t h S e r v i c e

1: S S H M S G U S E R A U T H B A N N E R

2: S SH_MS G_US ERAUTH_REQ U E ST

3: S S H M S G U S E R A U T H FAILURE

4: S S H _ M S G _ U S E R A U T H _ R E Q U E ST

"J
A u t h e n t i c a t i o n m e t h o d - s p e c i f i c m e s s a g e e x c h a n g e

Se rv i ce

5: S S H M S G U S E R A U T H S U C C E S S

Figure 2.2: Message exchange in SSH user authentication protocol.

Authentication request

User authentication is started by the client by sending an authentication request. The re­
quest contains the user name of the user being authenticated, the service name of the service
to start after authentication, the name of the authentication method and authentication
method-specific data. If the requested service does not exist, the authentication request
must be rejected. If the requested user does not exist, the server may either disconnect,
or send a bogus list of acceptable authentication method names, but never accept any of
them.

The authentication request may require further messages to be exchanged. Whether
that happens or not and what messages are exchanges depends on the authentication
method used. If a new authentication request is received during this message exchange,
current authentication is aborted and new one is started.

If the server rejects the authentication request, it must respond with an authentication
failure message. The message contains a list of authentication methods, which might be
used for further authentication requests and a boolean flag denoting partial success. Au­
thentication methods used in previous successful authentications should not be included in
the list. The partial success flag must be set if the authentication request was successful,
but further authentication is necessary. The flag must be unset if the authentication request
was rejected.

If the server accepts the authentication request, it must respond with an authentication
success message. This message is not sent after each step in multi-method authentication,
but only when the authentication is complete. This message must be sent only once. After
it has been sent, any subsequent authentication request should be silently ignored.

Banner message

The server may send a banner message at any time after the user authentication protocol
starts and before authentication is successful. This message contains text to be displayed
to the client user before authentication is attempted.

8

Public key authentication

Client U s e r A u t h S e r v i c e

S S H _ M S G _ U S E R A U T H _ R E Q U E S T

2: S S H _ M S G _ U S E R A U T H _ P K _ O K
T

3: S S H _ M S G _ U S E R A U T H _ R E Q U E S T

4:
*:

S S H _ M S G _ U S E R A U T H _ S U C C E S S

Figure 2.3: Message exchange during user authentication with a public key.

The user authentication protocol allows a wide range of authentication methods to be
used for user authentication. Since this paper's focus is on public key authentication, we
will discuss only this single authentication method.

Wi th this authentication method, the ownership of a private key serves as authentica­
tion. This method works by verifying a signature created with the user's private key. The
server must check that the corresponding public key may be used to authenticate the user
and that the signature is valid. If both these conditions are met, an authentication request
must be accepted, otherwise it must be declined.

Private keys are usually stored in an encrypted form and the user must supply a
passphrase to unlock the private key in order to create the signature. Even if the pri­
vate key is not encrypted, the creation of the signature alone is an expensive computation.
To avoid unnecessary processing and user interaction, the client may first query the server
whether public key authentication would be acceptable using a special authentication re­
quest, which contains the public key, but not the signature. The server must respond to
this message with either an authentication failure or with a message informing the client
that it may authenticate using the given public key.

To perform the actual authentication, the client may send an authentication request
which includes the signature created using the private key. The client may send this re­
quest without first checking if authentication with the given public key is acceptable. The
signature is generated using the private key over the session identifier and the contents of
the authentication request packet.

Any public key algorithm may be used for the authentication. The choice is not limited
by what was negotiated during the initial key exchage. If the server does not support an
algorithm, it should reject the authentication request.

2.1.3 Connection protocol

The SSH connection protocol has been designed to run on top of the SSH transport layer
and user authentication protocol. It provides interactive sessions, remote execution of
commands and forwarding of T C P / I P ports and X I 1 connections.

A l l terminal sessions, port forwarding, etc. are channels. Either side may open a
channel. Multiple channels are multiplexed into a single connection.

Channels are identified by a number at each end. The number may be different on each
side. A channel open request contains the sender's channel number. A l l other channel-
related messages contain the recipient's channel number.

9

Channels are flow-controlled. No data may be sent into a channel until a message is
received to indicate that window space is available [].

Cl ient C o n n e c t i o n S e r v i c e

1: S S H M S G C H A N N E L O P E N

2: S S H M S G C H A N N E L O P E N CONFIRMATION

rif

^ : C h a n n e l

C h a n n e l t y p e - s p e c i f i c m e s s a g e e x c h a n g e

3: S S H M S G . C H A N N E L EOF

4: S S H . M S G . . C H A N N E L CLOSE

5: S S H M S G . C H A N N E L CLOSE

Figure 2.4: Message exchange in SSH connection protocol.

Global requests

There are several kinds of requests, which affect the state of the remote end globally,
independent of any channel. Both parties may send a global request at any time. The
request contains request type name, request-specific data and a boolean flag that indicates
whether a response to the request is wanted. If the flag is unset, no response to the request
will be sent. If the flag is set, the recipient responds with either a request success message
or a request failure message. If the recipient does not recognize or support the request, it
simply responds with a request failure message.

Opening a channel

When a party wishes to open a new channel, it allocates a local number for the channel
and sends a channel open request to the other party. The request contains the requested
channel type name, the local channel number, initial window size and maximum packet
size. The other party responds with either a channel open confirmation, if the channel
could be opened, or a channel open failure, if the channel could not be opened. The
channel open confirmation message contains the local channel number, remote channel
number and channel type-specific data. The channel open failure contains the reason code
and description why the channel could not be opened.

The window size specifies how many bytes the other side may send before it must wait
for the window to be adjusted. Both sides may adjust the window size by sending a message.
After receiving this message, the recipient may send the given number of bytes more than
what was previously possible.

10

Data transfer

Data transfer is done with a channel data message, which contains the transferred data.
The maximum amount of data allowed is determined by the maximum packet size for the
channel, and current window size, whichever is smaller. The window size is decreased by
the amount of data sent. Both sides may ignore any data sent after the allowed window is
empty.

Some channels may wish to transfer different kinds of data. Such data may be sent
using an extended channel data message, which includes a channel type-specific integer
that specifies the type of the data. Data sent with this message consume the same window
as ordinary data.

Channel requests

Many channel types have extensions that are specific to that particular channel type. A l l
channel type-specific requests are done using a channel request message. The request con­
tains the request type name, request type-specific data and a boolean flag that indicates
whether a response to the request is wanted. If the flag is unset, no response to the re­
quest will be sent. Otherwise, the recipient responds with either a channel success message,
channel failure message, or a request-specific message. If the request is not recognized or
supported by the channel, channel failure is returned.

Closing a channel

When a party will no longer send more data to a channel, it should send a channel E O F
message. No response is sent to this message. The channel remains open after sending this
message and data may still be sent in the other direction.

When either party wishes to close the channel, it sends a channel close message. When
this message is received, a party must respond with a channel close message, unless it has
already been sent for the channel. The channel is considered closed for a party when it
has both sent and received channel close message. The local channel number is freed after
the channel is closed and may be used again. A party may send a channel close message
without first sending a channel E O F message.

2.2 Protocol extensions

Since the protocol was first introduced, a number of extensions was created and is commonly
used today. Some of the well-known extensions are:

• storage of host public key fingerprints in DNS SSHFP records, defined in R F C 4255 [],

• generic interactive challenge-response user authentication method, defined in
R F C 4256 [5],

• GSSAPI key exchange and user authentication method, for use with Kerberos and
other authentication protocols, defined in R F C 4462 [11],

• usage of elliptic curve cryptography for public keys and key exchange, defined in
R F C 5656 [23],

• SFTP (the SSH file transfer protocol), which provides access to a remote filesystem
using SSH, defined in an I E T F draft [6].

11

Chapter 3

OpenSSH

OpenSSH is a set of computer programs that implement the SSH protocol (both SSH-1
and SSH-2). It is developed as part of the open-source OpenBSD project [30] and has
been ported to various platforms besides OpenBSD, including other Unix and Unix-like
operating systems and Microsoft Windows. It is released under the BSD license, like the
rest of the OpenBSD project.

OpenSSH is a fork of OSSH, which was created in 1999 by Björn Grönvall. OSSH itself
is a fork of the original SSH software by Tatu Ylönen. Because more and more licensing
restrictions were introduced with each new release of the original SSH software, the version
that OSSH was derived from is ssh 1.2.12, which was released in 1995 [38]. It was the last
release that used a license free enough to be used as the base of an open-source derivative.

OpenSSH was created in 1999, two months before OpenBSD 2.6 release. SSH support
was planned for OpenBSD 2.6 and after a rapid development phase, OpenSSH 1.2.2 was
released and included in OpenBSD 2.6. This version featured many feature improvements
and bug fixes over ssh 1.2.12, most notably the replacement of non-free parts with free alter­
natives, support for Kerberos IV authentication and for one-time password authentication
with S / K E Y .

After the release of OpenBSD 2.6, work on implementing support for SSH-2 into
OpenSSH had started. The work was completed in OpenSSH 2.0, which was shipped
with OpenBSD 2.7 in 2000. This version supported both SSH-1 and SSH-2. Support for
server-side of S F T P , the SSH file transfer sub-protocol, was added in OpenSSH 2.3.0. S F T P
client was added in OpenSSH 2.5.0 [32].

A portable version of OpenSSH is maintained along the mainline version of OpenSSH,
which is developed exclusively for OpenBSD.

The current version of OpenSSH is 5.9, released on September 6, 2011 [31].

3.1 Components

OpenSSH implements the SSH protocol, the S F T P sub-protocol and extensions to both
of them. The implemented extensions include a tunelled V P N (Virtual Private Network)
operating on OSI layer 2 or 3, new algorithms for key exchange, data integrity and public
key authentication and support for certificate authentication of users and servers (these are
OpenSSH-specific certificates, not to be confused with X.509 certificates).

12

The main components of OpenSSH are:

• sshd, the SSH server implementation. It is usually run in one system-wide process,
which listens for connections from clients. Each client connection is handled in a
separate process, which is forked from the main process when the client connects.

• ssh, the SSH client implementation. It can be used to access a remote shell (like
rlogin), to run commands on a remote machine (like rsh), to forward a T C P port to
or from a remote host or to set up a V P N between the client and a remote host. Addi­
tional SSH client tools are available in OpenSSH: scp, a tool for copying files between
remote hosts (like rep) and sftp, a command-line based S F T P client implementation.

• ssh-agent, the user authentication agent. It is an utility which eases user authentica­
tion by holding user's private keys ready in memory. This avoids the need to enter the
passphrase to unlock the key every time it is used. A n accompanying utility, ssh-add,
is provided for manually adding keys to the authentication agent.

• ssh-keygen, a tool to generate private and public keypairs for users and hosts. It
supports both plain keys and OpenSSH certificates. It also supports inspecting the
keys and generating DNS SSHFP records for DNS fingerprint storage from the keys.

3.2 Public key authentication

OpenSSH supports public key authentication with either plain public keys or with OpenSSH
certificates. We will discuss authentication with plain public keys only.

OpenSSH supports the D S A and R S A public key algorithms, as defined in R F C 4253 [],
as well as the newer E C D S A algorithm, as defined in R F C 5656 []. These algorithms are
allowed for both user and host keys.

3.2.1 Server authentication

In SSH, a client must have a priori knowledge of server's public host key in order to verify
its identity [41]. OpenSSH client maintains a database of servers and the associated public
host keys. Whether an unknown server is to be trusted or not is in the hands of the user.
When the client first connects to a server, a message containing a fingerprint of the server's
public host key is displayed to the user and the user is asked to verify the identity of
the server. If the user verifies the identity, the server's host name and IP address and the
public host key are added to the database. On subsequent connections, the server's identity
is verified against the database. This includes checking the public host keys as well as the
IP address.

It is possible to configure OpenSSH to automatically trust all unknown servers, or to
automatically trust those servers, whose public host key fingerprint matches the fingerprint
stored in DNS SSHFP record for the server's host name. However, using this configuration
might be a security risk.

3.2.2 User authentication

A server must have a priori knowledge of user's public keys in order to verify the identity
of the user. OpenSSH server reads user's public keys from a database in the user's home
directory. The database is operated manually by the user and/or by an administrator.

13

If the user's public key is not present in the database, the authentication attempt fails.
However, the user might still authenticate using other authentication methods, if the server
allows it.

14

Chapter 4

FreelPA

FreelPA is an integrated solution for centralized management of security information in
organizations. It acts as a domain controller for domains where Linux and Unix servers
and clients share centrally-managed services [].

FreelPA uses existing technologies such as Linux (namely Fedora), 389 Directory server,
M I T Kerberos 5, Dogtag certificate server, Apache H T T P server, BIND DNS server and
a N T P server and combines them in one unified environment. It provides command-line
and web-based tools for administrators to manage the domain. FreelPA is an open-source
project released under the G P L license. Its development is backed up by Red Hat [28].

FreelPA was created in 2007 by Red Hat. The goal of the project was to provide an
easy-to-use centralized management of identities for Linux, combining directory server for
user information storage and Kerberos for authentication and single sign-on.

Version 1 was released in 2008. It featured tools to automate the configuration of the
directory server and the Kerberos server and set up replication. The provided command-line
and web-based tools allowed administrators to manage users and groups.

Version 2 was released in 2011. Many new features were added in this release, most
notably the integration of the certificate server and the DNS server, support for managing
hosts, net groups and automount maps and authentication policy using host-based access
control. A n extensible framework was provided for developers to easily add new function­
ality through plugins [29].

Version 3 is currently in development and is scheduled to be released in 2012.

4.1 Architecture

The two major parts of FreelPA are the FreelPA server and the FreelPA client. FreelPA
domain consists of one or more FreelPA server hosts and a FreelPA client on each managed
host.

4.1.1 Server

At the very core, FreelPA uses its own modular Python framework called ipalib, which allows
it to be easily extensible through plugins. A l l of the backend and frontend functionality is
implemented using such plugins.

FreelPA provides a management A P I , which is available on the server through X M L -
R P C and J S O N - R P C R P C interfaces. The management tools use these interfaces to com­
municate with FreelPA servers.

15

FreelPA client

time auth identity DNS

BIND

IPA Management framework

Apache
HTTP

FreelPA server

FreelPA FreelPA
CLI WebU

Figure 4.1: High-level diagram of FreelPA architecture.

Backend

The backend of FreelPA is based on the following open-source technologies:

• Fedora, a Linux-based operating system [27]. It is used as the software platform for
FreelPA.

• 389 Directory Server (formerly Fedora Directory Server), a L D A P directory server [].
It supports multi-master replication, fine-grained access control, secure authentication
and transport using S S L / T L S or SASL, plugin interface and many other features [18].
It is used as a storage backend for virtually all the information in a FreelPA domain.
Standard L D A P object classes are used in the schema as much as possible, to ensure
interoperability. FreelPA extends the directory server with plugins for host enrollment
and other FreelPA-specific features.

• MIT Kerberos 5, an implementation of the Kerberos network authentication pro­
tocol []. It provides cryptographically strong authentication of users, hosts and
services and single sign-on.

• Dogtag Certificate System, a public key infrastructure management solution [26]. It
provides the certificate authority functionality in FreelPA. Certificates can be issued
for hosts and services in a FreelPA domain and used to authenticate them.

• Apache HTTP Server, a H T T P server []. It is used to provide the X M L - R P C and
J S O N - R P C interfaces as well as serve the web-based management tool.

• BIND, a DNS server and resolver fully compliant with the published DNS stan­
dards [13]. It provides the DNS service in a FreelPA domain.

16

FreelPA supports multi-master replication for fault-tolerance and load balancing be­
tween more servers. A FreelPA server can be cloned into a replica and the domain informa­
tion is automatically synchronized between them. Clients can communicate with replicas
the same way as they would with the original server. It is possible to create complex repli­
cation setups, with replicas of replicas and replication between more FreelPA servers [].

Frontend

The frontend of FreelPA consists of a number of plugins, where manageable objects and the
commands to manage them are defined. Each object plugins defines an object type (such as
user) along with its attributes (such as username), which represent a class of L D A P entries
stored on the directory server. Command plugins define the commands to query, create,
update and delete objects of a particular object type. A l l the commands for all the object
types combined form the management A P I .

Management tools

FREE IPA Logged In As: Administrator

Identity

Users User Groups Hosts Hast Groups Netgrcups Services

USERS
x DelGtG + A d c

U User login

J jcholasl

Account Status Email address Telephone
Number

Administrator

"hclasts

Showing 1 to 2 of 2 entries Prev Next Page: f l i

Figure 4.2: FreelPA web-based management tool.

FreelPA provides command-line and web-based tools for managing the information in
the domain.

The command-line tool is a powerful tool that can be used not only for manual manage­
ment of the domain, but also for automation of repeatedly performed management tasks
without manual intervention. It supports adding custom attributes to entries, if they are
supported in the schema. It uses the X M L - R P C interface to access the A P I , or, when
invoked on the FreelPA server, accesses the A P I directly in Python code.

17

The web-based tool is a graphical user interface tool, which is intuitive to use and easy
to orientate in. It visualises the objects and the relationships between them. It uses the
J S O N - R P C interface to access the A P I . By default, it uses Kerberos for authentication,
but it can be configured to use password authentication, so that it can be accessed from
outside the FreelPA domain [].

4.1.2 Client

FreelPA provides installation tools to configure a host as a FreelPA client. As part of the
installation process, the host is enrolled to the FreelPA domain and becomes a managed
host. It is configured to be able to access the identity information and policy settings in
the domain. SSSD [] is used on the client to provide access to the information in the
domain [14].

4.2 SSH support

Currently there is no direct support for SSH in FreelPA. SSH public keys cannot be stored
for users and/or hosts in FreelPA. OpenSSH (or any other SSH implementation) is not
configured as part of the client installation process.

Users may use SSH client to log into FreelPA-managed hosts using authentication meth­
ods that FreelPA supports and that are not specific to SSH (password authentication, Ker­
beros authentication), but the SSH server must be manually configured on each of these
hosts to enable this.

18

Chapter 5

SSSD

SSSD (System Security Services Daemon) is an extensible service which provides access
to different identity and authentication remote resources and caching of information for
offline access. It is an open-source project developed by Red Hat, released under the G P L
license [37].

SSSD was created in 2008 by Red Hat. The goal was to create a collection of components
for obtaining and caching of the domain information from FreelPA servers and providing
it to the underlying system [20].

The first SSSD release was in 2009. It featured a local database backend, L D A P authen­
tication backend, caching and P A M and NSS interfaces. SSSD quickly reached version 1.0.0,
which was released in December 2009. This version featured a complete L D A P backend,
Kerberos V authentication backend and FreelPA backend with host-based access control.

The current version of SSSD is 1.7.0, released on December 12, 2011.
SSSD is used as the default authentication method for remote authentication in Fedora

since the Fedora 13 release []. Other Linux-based operating systems have started adopting
it as well.

5.1 Architecture

SSSD is designed to handle multiple domains. Each of these domains may use different
backends for identity information, authentication, access control and changing of passwords.
Each of the backends may use different remote resource. SSSD maintains a database for
each domain where user information is cached for offline access. Backend-specific extended
information may be stored for each user.

SSSD interfaces with the underlying operating system via NSS (Name Service Switch)
and P A M (Pluggable Authentication Modules) modules. This gives the operating system
access to the identity information and authentication services provided by the remote re­
sources in each domain.

SSSD maintains a special local domain for local user storage, as a complement or re­
placement of the standard Unix user database. Advanced features available for all domains,
such as nested groups, are available for the local domain as well. SSSD provides a set of
tools similar to standard Unix tools for creating, modifying and deleting users from the
local database.

19

LDAP
server

Kerberos V
server

FreelPA
server

SSSD

Backend

LDAP Kerberos V FreelPA
provider provider provider

1X7

PAM NSS
responder responder

A t t
PAM NSS

module library

Figure 5.1: High-level diagram of SSSD architecture.

SSSD runs a set of processes, each handling a specific task:

• monitor is the supervising process, which watches over the other processes and starts
and restarts them as needed,

• data provider is the process which caches the information from other providers and
automatically queries the providers to obtain up-to-date information and update the
cache with it,

• provider is a backend process which handles identity and authentication information
exchange with a remote resource,

• responder is a process which handles communication with the underlying operating
system services.

A l l of the processes are single-threaded and use an event loop for pseudo-concurrence [10].
Each provider implements routines to access identity information, authentication, access

control and changing of passwords (or a subset thereof) from a remote database. Currently
there are providers for L D A P , Kerberos V and FreelPA and a special provider, which proxies
access to foreign NSS and P A M modules.

The P A M and NSS module communicate with SSSD using P A M and NSS responder,
respectivelly.

20

5.2 SSH support

Currently there is no support for SSH in SSSD. None of the providers manage SSH public
keys for users and/or hosts. Beyond that, it is not possible for a SSH implemetation to
access public keys through SSSD, as P A M is not suitable for SSH public key authentication
(public key authentication is handled by the SSH server itself, not the underlying operating
system) and NSS does not provide means to access user nor host SSH public keys.

The SSH implementation may only use the identity information and authentication
methods provided by the SSSD NSS and P A M modules.

21

Chapter 6

Integrating OpenSSH into FreelPA
and SSSD

As discussed earlier in this paper, neither FreelPA nor SSSD provide tighter integration
with OpenSSH (or any other SSH implementation) than what is available through standard
operating system interfaces. In order to improve the situation, I have designed an extension
to these applications, which will allow SSH public key management for both hosts and users
in FreelPA domains and integrate OpenSSH into FreelPA.

Before I begin describing the design, let me outline the basic goals I aim to accomplish.
The extension will:

• allow storing user and host SSH public keys centrally in a FreelPA domain,

• provide a management interface to allow administrators to add and delete the public
keys,

• automatically distribute the public keys to FreelPA client hosts in the domain,

• provide an interface between FreelPA and OpenSSH on FreelPA client hosts to allow
OpenSSH to use the public keys.

The extension shall be a first-class citizen in FreelPA. To fit in FreelPA ecosystem nicely,
it should satisfy the following requirements:

• store the public keys on L D A P directory server,

• use ipalib to build the management interface,

• use SSSD on the client side for communication with FreelPA servers,

• build the FreelPA-OpenSSH interface on top of SSSD,

• configure OpenSSH as part of FreelPA client installation process.

6.1 OpenSSH-LPK
There is an existing project, OpenSSH-LPK [1], which provides an OpenSSH patch that
makes it possible to use public keys stored on a directory server using a custom L D A P
schema. The schema allows multiple public keys in OpenSSH authorized keys format to be

22

stored in user entries, sshd can then be configured to look for user public keys on one or
more directory servers in a specified directory subtree. The patch also implements simple
access control based on group membership of users [2].

OpenSSH-LPK mets all of the basic goals for the extension except for providing a
management interface. I have considered using OpenSSH-LPK as a base for the extension,
but there is a number of issues that would need to be resolved first:

• OpenSSH-LPK requires patching sshd, as the functionality is not available in
OpenSSH upstream. Most operating systems do not ship OpenSSH with the patch
included. This means that in many cases, users would have to apply the patch on
OpenSSH sources and build OpenSSH themselves.

• There is no support for host public keys, only for user public keys. While extending the
L D A P schema to support host public keys would be rather straightforward, extending
ssh with L D A P support would require a non-trivial amount of changes, comparable
to the amount of changes to sshd in the supplied patch.

• OpenSSH-LPK patched sshd talks directly to the directory server, bypassing SSSD.
No caching of L D A P search results is done, which might have bad impact on overall
performance in larger environments, sshd would need to be further extended to
communicate with the directory server through SSSD.

• Access control is based solely on group membership of users. FreelPA uses HBAC
[Host-Based Access Control), which allows fine-grained access control based on user
identity and group membership, target host identity and host group membership and
type of the requested service, sshd would need to be changed to use SSSD for access
control, as it implements H B A C .

Because none of these issues is easily resolvable and would require rewriting most of
OpenSSH-LPK from the grounds up, I have decided not to use it as a base for my work,
but rather to design and implement the extension from scratch.

6.2 SSH public keys on FreelPA server

FreelPA uses 389 directory server (see subsection 4.1.1) to physically store the information
in the domain and SSH public keys should be no exception to this practice. For the needs of
the extension, an L D A P schema for storing user and host SSH public keys will be defined,
along with access control rules restricting who can add and delete public keys of what users
and/or hosts.

6.2.1 L D A P schema

In short, L D A P schema consists of object class definitions and attribute type definitions.
Object class defines what attributes a directory entry must or may contain. Each directory
entry may have one or more object classes. Attribute type defines what kind of values are
allowed in attributes of this type and whether such attribute may occur multiple times in
a single directory entry [21].

We need to store SSH public keys for users and hosts, so two new object classes will
be defined: one representing SSH hosts and the other representing SSH users. Both object
classes will have a single attribute representing the public key. As neither users nor hosts

23

are required to have a public key, the attribute shall be optional. It is possible for both
hosts and users to have multiple public keys, so the attribute will be multi-valued. There
are 3 formats that can be used to represent a public key in the attribute:

• raw public key blob, as per R F C 4253 [],

• textual representation of public key in OpenSSH format [],

• textual representation of public key in R F C 4716 format [7].

I have decided to use the raw public key format in the attribute, as it is the most
compact format and does not allow any additional data besides the public key itself.

6.2.2 Access control

389 directory server allows fine-grained access control to specific entries and attributes based
on various criteria. Access control rules are defined in ACIs {Access Control Instructions).
ACIs for an entry are stored within the entry in a special attribute and apply to the entry,
its child entries and attributes [21].

FreelPA allows managing access control rules to a certain extent. There are several
object types which allow manipulating ACIs and assigning rights to users []:

• permission grants access to read or write attributes or to add or delete entries in a
specific target - the target can be all entries of a given object type, all entries in a
given subtree, all entries that match a given L D A P filter, all members of a group or
a single specific group,

• privilege combines permissions needed for a specific task into a single logical unit,

• role assigns a set of privileges to specific users,

• selfservice grants users access to read or write their own attributes,

• delegation grants members of one group access to read or write attributes of members
of an other group.

As the term suggests, a public key should be publicly accessible and readable by anyone.
Write access on the other hand should be allowed only under certain conditions to a limited
set of entities.

Members of the administrators group have unlimited access to the whole directory by
default. Administrators should have the ability to delegate the right to manage SSH public
keys to other users. Two new permission objects, granting write access to the SSH public
key attribute of users and hosts respectively, will be created for this purpose. Additionally,
users should have the ability to manage their own public keys, so a new selfservice object
will be needed. Hosts must be able to write their own SSH public keys too, so that they
can be modified in FreelPA client installation. A new A C I will be added to enable this.

6.3 Management interface

The management interface of FreelPA can be extended with new object types and com­
mands using plugins (see subsection 4.1.1). In order to allow management of SSH public

24

keys, the existing plugins for management of users and hosts need to be extended with
support for the new L D A P object classes and attribute type.

Since there is just a single new attribute for both users and hosts, new management
plugin is not needed. The user and host plugins will be enhanced with support for the SSH
public key attribute. This will allow administrators to specify public keys when adding or
modifying users or hosts and users to modify their own public keys.

When FreelPA is updated from a previously installed version, existing user and host
entries on the directory server will not have the SSH object classes set. This means that
SSH public keys can't be added to them by simply setting the public key attribute, as that
would be an object class violation. The SSH user and SSH host object classes must be
added to the user and host entry respectively, when a public key is being added to the
entry for the first time.

The public key is a binary blob and usually quite long. When interacting with a user,
it is common to display a fingerprint of the public key instead of the full public key blob.
The management interface should support this by displaying the fingerprint by default and
the full public key only when requested. A new attribute will be added to the user and host
plugins for this purpose. The attribute will be virtual, its values will be generated from the
values of the public keys attribute and will not be physically stored on the directory server.

Host public key fingerprints can be stored in DNS in SSHFP records for the host. Up­
dating the SSHFP records manually would be a burden for the administrator, so automatic
management of SSHFP records shall be supported in the host plugin. When a host is added
to FreelPA with public keys set, SSHFP record for the host will be automatically created if
possible. Similarly, when a host is modified, the SSHFP records will be updated and when
a host is deleted, the SSHFP records will be deleted as well.

6.4 SSH public keys in SSSD

On the client side of FreelPA, SSSD is used to communicate with FreelPA servers and
to provide authentication, authorization and other services to the underlying operating
system. For SSH public key support, SSSD needs to be extended to allow retrieval of the
public keys from FreelPA servers, caching them for offline use and providing them to other
applications.

6.4.1 Backend

The SSSD backend consists of the data provider and remote service providers (see sec­
tion 5.1). The data provider handles cache update requests and redirects them to the
proper remote service provider. When a remote service provider receives the request, it
attempts to retrieve the requested data from the remote service and if it is successful, it
updates the cache. The data provider will be extended to support requests for user and
host SSH public keys. The FreelPA remote service provider will be extended to support
storing the public keys in the cache.

Adding support for user public keys should be rather straightforward. The data provider
handles request for user and other account data in its account info handler, the L D A P
remote service provider, which the FreelPA provider is based on, allows mapping of L D A P
attributes to cache attributes. The logic for retrieving the attributes and storing them in
the cache is internal to the L D A P provider. This means that the only modification needed

25

to support user SSH public keys in the SSSD backend is adding the public key attribute to
the user attribute map.

Supporting host public key needs more complex changes, though. Neither the data
provider nor the L D A P provider have support for requesting and caching of host data. To
rectify this, a new request handler type for SSH host information requests needs to be added
to the data provider. The FreelPA provider will be extended to support this new handler
type and retrieve host public keys from FreelPA servers and store them in the cache when
requested.

6.4.2 Responder

SSSD clients, which provide the interface between SSSD and the operating system, commu­
nicate with SSSD through responder processes (see section 5.1). Each responder listens on
a socket for commands from associated clients and is responsible for issuing data provider
requests and returning the correct data from cache to the clients.

The clients must be able to acquire SSH public keys for user and hosts from SSSD. Two
new client commands will be added for this purpose and a responder will be created for
dispatching the commands. Both commands must accept a name and return a (possibly
empty) list of public keys to the client. When dispatching a command, the responder will
first request cache update on the data provider and then read the public keys from the
cache and send them back to the client. This order of events ensures that up-to-date public
keys are always returned to the client, unless the remote service (FreelPA) is offline.

It is possible to have multiple domains configured in SSSD. Sometimes it might be
necessary to restrict the search to a specific domain. To allow this, the name argument
should be accepted in two forms: the unqualified form where only the name is specified,
which will result in a search over all domains, and the qualified form where the name and
domain are specified, which will result in a search only in the given domain.

6.5 Interface between SSSD and OpenSSH

One of the most important things to do, if not the most important, is to provide an interface
for OpenSSH, which it will use to get public keys from SSSD. Because there are two kinds of
public keys, host and user public keys, two interfaces are actually needed. The host public
key interface will be used on the SSH client side, by ssh, the user public key interface will
be used on the SSH server side, by sshd. Both shall be implemented as SSSD clients and
communicate with the SSH responder of SSSD.

6.5.1 Host public key interface

OpenSSH loads known host public keys from a file called knownJiosts. A per-user
knownJiosts file is automatically managed by ssh (see subsection 3.2.1), but it can also be
configured to use a system-wide known_hosts file. When the system-wide knownJiosts file
is used, ssh looks for a host's public keys in it before looking in the per-user knownJiosts
file. In order to provide FreelPA host public keys to ssh, SSSD can either manage a
system-wide knownJiosts, or use a functional equivalent of it.

The most primitive way of automatically managing the knownJiosts file is to periodi­
cally update it with public keys of all hosts in the domain. This solution would be very easy
to implement, but there is one major shortcoming to it: it is not scalable at all. Even if

26

only the differences between the client local state and domain global state are transmitted
to clients in each update, it would still be an enormous load on FreelPA servers in domains
with hundreds or more hosts. This kind of solution should not be considered at all. Instead
of doing updates periodically and in bulk, they should be done on demand and for specific
hosts.

The next obvious thing to do would be to modify ssh to support getting known host
public keys not only from the knownJiosts file, but also from SSSD using inter-process
communication. This way the condition of doing updates on-demand and for specific hosts
would be satisfied, as SSSD would be contacted before the connection to a specific SSH
server is attempted. However, this solution has the same disadvantage as OpenSSH-LPK:
it requires patching OpenSSH. This should be avoided and considered only when there is
no other option available, because it might negatively impact adoption of the extension.

OpenSSH supports verification of host public key authenticity using DNS SSHFP
records [33]. If this feature was used, everything that would have to be done would be
to enable it in ssh and to automatically manage SSHFP records on FreelPA DNS servers
for all hosts in the domain. As nice as this solution might sound, there are some shortcom­
ings to it:

• DNS service in FreelPA is optional and doesn't have to be installed at all,

• DNSSEC is not yet supported in FreelPA DNS service, which makes the solution
vulnerable to DNS spoofing attacks,

• when public keys of a host are changed, they may not be synchronized with DNS
SSHFP records on non-authoritative DNS servers for a short period of time,

• only DSS and R S A SSH public key algorithms are supported in DNS SSHFP records.

Despite all the shortcomings, this solution is viable, it just cannot be used in all envi­
ronments. Once DNSSEC support is available in FreelPA, it should be implemented in the
extension, at least for the sake of other software packages (any besides OpenSSH) which
implement the SSH protocol.

: S s h C l i e n t S s h S e r v e r K n o w n H o s t s F i l e

•? : P r o x y C o m r n a n d

1: e x c h a n g e keys

i
3: a u t h e n t i c a t e se r ve r

2: e x c h a n g e keys

Figure 6.1: Connecting to a SSH server behind a proxy.

To be able to access SSH servers behind a proxy, ssh provides a configuration option
which allows specifying a custom command that is used for connecting to such servers.
Instead of communicating with a server directly, ssh executes the command and pipes

27

the connection through the command's standard input and output. The point at which the
command is executed has one nice characteristic: it occurs after the host name of the server
is known, but before attempting to authenticate the server. We could take advantage of
this and create a fake proxy command, that would first get public keys of the server from
SSSD, update the knownJiosts file with the public keys and then estabilish the connection,
without actually doing any proxying. This solution does not need patching OpenSSH,
would allow the updates to be done on demand and for specific hosts and should work in
all environments. This makes it the perfect candidate for the host public key interface, so
it will be implemented in the extension.

Figure 6.2: Connecting to a SSH server using SSSD fake proxy command.

In ssh, the server can be specified by a fully-qualified domain name, relative domain
name or IP address. The server's public key is expected to be identified by this string in the
known_hosts file. In FreelPA and SSSD, hosts are identified by their fully-qualified domain
name. The fake proxy command must perform reverse DNS lookup on IP addresses and
canonicalize relative domain names to get the fully-qualified name of the server before it can
get the public keys from SSSD, but it also must make sure that the original identification
string is used in the generated knownJiosts file.

When a SSH server is behind a proxy, ssh must use a real proxy command to connect to
it. Because ssh cannot use both the fake proxy command and the real proxy command at
the same time, the fake proxy command itself must be able to use the real proxy command
to connect to the server. This way ssh will still can use the fake proxy command to update
the knownJiosts file and estabilish the connection, but the fake proxy command will use
the real proxy command to connect to the server instead of connecting to it directly.

6.5.2 User public key interface

User public keys are loaded from a file called authorizedJkeys []. It is a per-user file
which is managed by the user (see subsection 3.2.2). The user public key interface can be
based either on managing authorizecLkeys files in SSSD, or possibly on transferring the
public keys from SSSD to sshd by other means.

28

SshClient

> : FakeProxyCommand

1: exchange keys

2: update known hosts

3: update host key

4: exchange keys

6: authenticate server

> : Proxy-Command

5: exchange keys

SshServer : KnownHostsFile

Figure 6.3: Connecting to a SSH server behind a proxy using SSSD fake proxy.

Similarly to how the host public key interface for ssh could be done, SSSD could update
authorizecLkeys files for all users in the domain, or sshd could be patched to get the public
keys directly from SSSD. These solutions carry all the disadvantages of their host public
key counterparts. Updating authorized_keys periodically is actually even worse, as there
is one such file to be updated for each user in the domain. Unlike ssh, there is no sshd
configuration option which could be used to update authorized_keys file of a specific user
at the right moment.

Because of the unfavorable situation, the only solution that can be used is patching
sshd. Fortunately, there is already a sshd patch that can be used for getting public keys of
a user from SSSD. The patch adds an option to use a custom command for getting the public
keys. The patch is relatively small and simple and some operating system distributors ship
OpenSSH with it included (e.g. Fedora and R H E L) . Wi th the patch applied, sshd executes
the command on each user public key authentication attempt. The command's output
should contain the user's public keys in the same format that authorized_keys files use.
The user's authorized_keys file is then used only if no public key in the command's output
matches the public key the user is attempting to authenticate with.

A command that gets user public keys from SSSD and outputs them in authorized_keys
format will be implemented in the extension for the user public key interface. It will
obviously work only with patched OpenSSH.

6.6 FreelPA client configuration

FreelPA client configuration is done at install time by the FreelPA client installer. The
installer joins the client machine to a FreelPA domain and configures the client system
to use FreelPA for authorization and authentication [14]. The central component on a
FreelPA client system is SSSD - it provides the authentication and authorization services

29

to the system.
To enable the OpenSSH integration feature, the installer must do additional configu­

ration of SSSD and configure ssh and sshd. In SSSD configuration, the SSH responder
must be enabled, ssh must be configured to use the fake proxy command and read host
public keys from the known_hosts file managed by SSSD. sshd must be configured to use
the authorized keys command, if the necessary patch is included.

Additionally, the installer should read host public keys from the OpenSSH configuration
directory and use the management A P I to set the public keys in the client's host entry.
DNS SSHFP records of the client host should be updated as well. The host management
plugin can do this automatically. However, the installer might use credentials of an user
not authorized to modify DNS records, so the SSHFP records must be updated some other
way. Luckily, this is already solved in the installer: to update A and A A A A records of the
client host, it does dynamic DNS update using nsupdate []. This procedure will be used
to update the SSHFP records as well.

30

Chapter 7

Implementation of the extension

I have implemented the extension according to the design, with some minor additions. The
development took place publicly on FreelPA and SSSD mailing lists. The code was reviewed
by the FreelPA and SSSD development teams and adjusted according to their comments.
The code was accepted upstream in both FreelPA and SSSD and is available in releases
starting with FreelPA 2.1.90.pre2 [4] and SSSD 1.8.0betal [9].

7.1 FreelPA

In FreelPA, both the backend and frontend were extended, as well as the installer.

7.1.1 Backend

The only change necessary on the backend was inclusion of the additions to the schema and
ACIs to the directory server initialization and update data files. No changes were needed
in the backend code, although there was a bug in ordering of updates, which prevented the
schema to be updated, but it was fixed separately.

The schema was extended with the following definitions:

• attribute type ipaSsshPubKey (OID 2.16.840.1.113730.3.8.11.31), which uses the octet
string syntax,

• abstract object class ipaSshGroupOfPubKeys (OID 2.16.840.1.113730.3.8.12.11),
which has one optional attribute ipaSshPubkey,

• auxiliary object class ipaSshUser (OID 2.16.840.1.113730.3.8.12.12) derived from
ipaSshGroupOfPubkeys,

• auxiliary object class ipaSshHost (OID 2.16.840.1.113730.3.8.12.13) derived from
ipaSshGroupOfPubKeys.

The set of default access control objects was extended as follows:

• new permission Manage User SSH Public Keys was added, allowing write access to
ipaSshPubKey attributes in user entries,

• the User Administrators privilege was modified to include Manage User SSH
Public Keys permission by default,

31

• new permission Manage Host SSH Public Keys was added, allowing write access to
ipaSshPubKey attributes in host entries,

• the Host Administrators privilege was modified to include Manage Host SSH
Public Keys permission by default,

• new selfservice Users can manage their own SSH public keys was added, allow­
ing users write access to ipaSshPubKey attributes in their respective entries.

A n appropriate accompanying A C I was defined for each of these objects. Additionaly,
host ACIs were extended with ACIs allowing hosts write access to ipaSshPubKey attributes
in their own entry and in entries of hosts managed by them.

7.1.2 Frontend

The changes on the frontend consist mainly of additions to the management plugins. Two
new attributes were added to the user and host object plugins: sshpubkey is the attribute
representing the ipaSshPubKey L D A P attribute and sshpubkeyfp is the virtual attribute
used for returning fingerprints of the public keys.

The sshpubkey attribute can be set in user-add, user-mod, host-add and host-mod
commands as a base64-encoded public key blob. The blob is validated to be in the public
key format as defined in R F C 4253 [42]. In addition to that, only one public key per public
key algorithm is allowed on hosts. The attribute is not included in the output of user and
host commands by default, it is included only when it is being modified or when the a l l
flag is set. Because the attribute contains binary data, it is not searched in user-find and
host-find commands.

The sshpubkeyfp attribute cannot be set, but is included in the output of user and
host commands. It contains the fingerprint of each public key plus the public key algorithm
name. The fingerprint is returned in the same format OpenSSH uses when displaying public
key fingerprints to user: a M D 5 fingerprint in hexadecimal with octets separated by colons.
The attribute is not searched in user-find and host-find commands, because that would
require generating the fingerprints for each and every user and host.

The host-add, host-mod and host-del commands allow updating DNS SSHFP records.
The update is done only when the updatedns flag is set. When the DNS service is not
installed, the flag is not effective. The flag was missing in the host-mod command, so
it was added. Before updating the SSHFP records, the correct DNS zone for the host is
looked up using the dnszone-f ind command. The SSHFP update itself is done using the
dnsrecord-mod command.

7.1.3 Installer

In the installer code, most of the changes are in the client install script,
i p a - c l i e n t - i n s t a l l , but some modifications were necessary in the server installer code
as well. The main additions to i p a - c l i e n t - i n s t a l l are the update of public keys in the
client's host entry and configuration of OpenSSH.

Before the public key update is done, the public key are obtained from OpenSSH config­
uration files. OpenSSH stores host public keys in the global configuration directory (usually
/etc/ssh) in the files ssh_host_<algorithm>_key.pub []. These files are read and all
valid SSH public keys are extracted from them.

32

The public key update itself is done in two parts: the first part is calling the host-mod
command to update the keys in the client host entry and the second part is executing the
nsupdate utility to update DNS SSHFP records. In order to be able to call the host-mod
command, the FreelPA A P I must be initialized. As i p a - c l i e n t - i n s t a l l was missing
the initialization code, it had to be added. The host-mod command is called with the
updatedns flag unset, so that it does not attempt to update the SSHFP records. To update
the SSHFP records, nsupdate must be fed a zone update file. The file is generated from the
public keys and contains commands to delete all existing SSHFP records under the client's
domain name and add new SSHFP records matching the public keys. The SSHFP update
can be disabled using new i p a - c l i e n t - i n s t a l l command-line option —no-dns-sshfp.

The OpenSSH configuration consists of modifications to configuration files of SSSD,
sshd and ssh. SSSD configuration is already done in i p a - c l i e n t - i n s t a l l , so it was not
necessary to add new code to handle it. However, it was necessary to add code to activate
the SSH service in SSSD configuration. The job of modifiying OpenSSH configuration files
is new to i p a - c l i e n t - i n s t a l l , so a new function had to be added for this purpose.

Changes to the sshd configuration file, sshd_config [35], include setting the
AuthorizedKeysCommand option to the path of the authorized keys command provided by
SSSD and unsetting the AuthorizedKeysCommandRunAs, so that the command is run as the
user running sshd. Because these options are available only in patched sshd, it is checked
whether sshd supports them or not before the change to sshd_config is made. There is
also an alternative implementation of the patch which uses options named PubKeyAgent
and PubKeyAgentRunAs, so they are tried as well. After the changes to sshd_config are
done, sshd is restarted to take the new configuration into account. The configuration of
sshd can be skipped using new i p a - c l i e n t - i n s t a l l command-line option —no-sshd.

In the ssh configuration file, ssh_conf i g [], the ProxyCommand option is set to the path
to the fake proxy command provided by SSSD and the GlobalKnownHostsFile2 options
is set to the path to the known_hosts file managed by SSSD. As an alternative to this, a
new i p a - c l i e n t - i n s t a l l command-line option —ssh-trust-dns was added. It enables
the Verif yHostKeyDNS option in ssh_conf ig, so that host public keys are verified against
DNS instead of using SSSD.

The new i p a - c l i e n t - i n s t a l l command-line options were also added to server install
scripts i p a - s e r v e r - i n s t a l l and i p a - r e p l i c a - i n s t a l l , which execute
i p a - c l i e n t - i n s t a l l internally. A small additional change to the server installer code
was necessary to make the public key update in i p a - c l i e n t - i n s t a l l actually work: the
default dynamic DNS update policy was extended to allow updating SSHFP records.

7.2 SSSD

The modifications in SSSD are more extensive than in FreelPA. There are changes in the
backend and new responder and clients that had to be written from scratch. The build
system was extended to allow building SSH-related features conditionally.

7.2.1 Backend

In the SSSD backend, the data provider as well as the L D A P and FreelPA providers were
extended to support retrieval and caching of user and host SSH public keys.

As far as user public keys are concerned, the user attribute map in the L D A P and
FreelPA providers was extended to support them. The name of the L D A P public key

33

attribute is configurable using the ldap_user_ssh_public_key configuration option and
defaults to ipaSshPubKey in the FreelPA provider. In the L D A P provider, the attribute is
disabled by default.

The cache in SSSD uses ldb, a lightweight embedded LDAP-l ike on-disk database [36].
Attributes in ldb are stored as null-terminated strings. However, SSH public keys are
binary blobs, which may contain null characters anywhere in them, so they cannot be
stored directly in the cache. In order to rectify this, ipaSshPubKey attribute values are
base64-encoded in the L D A P code before they are stored in the cache.

To support requesting information about hosts, new handler type, called hostid, was
created in the data provider. A domain can be configured to use a specific remote service
provider to handle host information requests using the hostid_provider domain config­
uration option. By default, the same provider used to provide identity information (con­
figurable using the id_provider domain option) is used to provide host information as
well.

A hostid handler was implemented in the FreelPA provider. It retrieves host public
keys from FreelPA servers and stores them in the cache. It also allows setting host name
aliases for the cached public keys. The FreelPA provider uses an attribute map to describe
the attributes of hosts. The public key attribute was added to the attribute map. The name
of the L D A P public key attribute can be configured using the ipa_host_ssh_public_key
configuration option and defaults to ipaSshPubKey.

7.2.2 Responder

The SSSD part of the interface for getting SSH public keys from FreelPA is implemented
in the SSH responder, sssd_ssh. The responder dispatches commands for getting public
keys of users or hosts from SSSD clients. It is automatically started by SSSD if the ssh
service is active in SSSD configuration.

The responder listens on U N I X socket /var/lib/sss/pipes/ssh for commands from
clients. A custom protocol is used for communication between the responder and the
clients. Command dispatch begins with parsing of the request received from a client. The
configured domains are then searched for the requested entity (user or host). If a domain
name is explicitly given in the request, only that specific domain is searched. The search in
each domain consists of a data provider request to update the cache entry for the requested
entity and a check to see if the entry exists in the cache. If the entry does not exist, next
domain is searched. This is repeated until there are no domains to search in and the search
returns a failure. If the entry exists, the search is stopped and public keys of the entity are
returned. A reply is built from the result and sent back to the client.

Additionaly, the command for getting host public keys allows an alias to be specified
for the requested host. If the alias was specified, it is sent along with the fully-qualified
domain name of the host in the data provider request.

The managed knownJiosts file is generated by the responder. The file is located in SSSD
public configuration directory, the full path is /var/lib/sss/pubconf/knownJiosts. The
known_hosts file is regenerated each time a host public key command is dispatched, after
the cache is updated. The file is generated by converting the public keys stored in the cache
to the known hosts format [34] and storing the result in the file.

OpenSSH supports hashing of host names in knownJiosts files []. There was a feature
request to hash host names in the managed knownJiosts file as well. This feature was imple­
mented and is enabled by default. It can be disabled by setting the
sshJiashJcnownJiosts ssh configuration option to false.

34

7.2.3 Clients

The interface between SSSD and OpenSSH is formed by the authorized keys command and
the fake proxy command. The commands were implemented and are available in SSSD
under the names sss_ssh_authorizedkeys and sss_ssh_knownhostsproxy.

The sss_ssh_authorizedkeys command can be executed as follows:

sss_ssh_authorizedkeys [-d <domain>] <user>

The command requests public keys for the specified user from the SSH responder. The
search for the public keys can be restricted to a specific domain. If the request is successful,
the command writes the public keys in the authorized keys format [] to standard output.
Errors are reported on the standard error output.

The sss_ssh_knownhostsproxy command can be executed as follows:

sss_ssh_knownhostsproxy [-d <domain>] [-p <port>] <host> [<proxy command>]

The command first attempts to canonicalize the given host name by doing DNS forward
and reverse lookups. Then, it requests public keys for the host from the SSH responder
using the canonicalized name. The original name is used as an alias in the request. The
search for the public keys can be restricted to a specific domain. The result of the request is
discarded, as the requested public keys are stored in the known_hosts file managed by the
SSH responder. Finally, a connection to the host is estabilished and piped to the standard
input and output of the command. The connection is estabilished either by opening a socket
to the specified host and port, or using the subordinate proxy command, if it is specified.
Errors are reported on the standard error output.

35

Chapter 8

Installation and usage

To demonstrate the features implemented in the extension, the process of building SSSD
and FreelPA from sources, setting up a FreelPA server and client and usage of SSH features
will be described. A n example domain example.com will be set up with one server and one
client. The operating system used in the demonstration is Fedora 17 Beta x86_64.

8.1 Building from sources

Building FreelPA and SSSD from sources on Fedora 17 is purely optional, as they are both
packaged in Fedora software repositories.

Before building SSSD, all the build dependencies must be installed:

[jcholast@fedoral7 "]# yum i n s t a l l autoconf automake bind-utils c-ares-deve
1 check-devel dbus-devel dbus-libs docbook-style-xsl doxygen f i n d u t i l s gett
ext-devel keyutils-libs-devel krb5-devel libcollection-devel libdhash-devel
libini_config-devel libldb-devel libnl-devel libselinux-devel libsemanage-

devel l i b t a l l o c - d e v e l libtdb-devel libtevent-devel l i b t o o l libunistring-dev
e l libxml2 l i b x s l t m4 nspr-devel nss-devel openldap-devel pam-devel pcre-de
vel pkgconfig popt-devel python-devel

The SSSD source tarball needs to be downloaded and unpacked:

[jcholast@fedoral7 ~]$ wget https://fedorahosted .0 rg/released/sssd/sssd-l .8
.3.tar.gz
[jcholast@fedoral7 ~]$ tar -xzf sssd-1 .8 .3.tar.gz

Then SSSD R P M packages can be built:

[jcholast@fedoral7 "] $ cd sssd-1 .8 .3
[jcholast@fedoral7 sssd-1 .8 .3]$ autoreconf - f i
[jcholast@fedoral7 sssd-1 .8 .3]$./configure
[jcholast@fedoral7 sssd-1 .8 .3]$ make rpms

36

http://example.com
https://fedorahosted.0rg/released/sssd/sssd-l.8

Before building FreelPA, all the build dependencies must be installed:

[rootOfedoral7 ~]# yum i n s t a l l authconfig autoconf automake 389-ds-base-dev
e l gettext krb5-devel krb5-workstation lib c u r l - d e v e l l i b t o o l libuuid-devel
m4 nspr-devel nss-devel openldap-devel openssl-devel policycoreutils popt-d
evel p y l i n t pyOpenSSL python-devel python-kerberos python-krbV python-ldap
python-lxml python-memcached python-netaddr python-nss python-polib python-
pyasnl python-rhsm python-setuptools selinux-policy-devel svrcore-devel sys
temd-units xmlrpc-c-devel

SSSD must be installed too, we can use the packages built in the previous step:

[root@fedoral7 ~]# yum l o c a l i n s t a l l sssd-1.8.3/rpmbuild/RPMS/x86_64/{libipa
_hbac,libipa_hbac-python,sssd,sssd-client}-1.8.3-0.fcl7.x86_64.rpm

The FreelPA source tarball needs to be downloaded and unpacked:

[jcholast@fedoral7 ~]$ wget http://freeipa.Org/downloads/src/freeipa-2.2.0.
tar.gz
[jcholast@fedoral7 ~]$ tar -xzf freeipa-2.2.0.tar.gz

Then FreelPA R P M packages can be built:

[jcholast@fedoral7 "]$ cd freeipa-2.2.0
[jcholast@fedoral7 ~]$ make rpms

8.2 Server setup

The first step of setting up a FreelPA domain is setting up a FreelPA server. The server
system used in this example is configured to use host name ipaserver.example.com and IP
address 192.168.1.100.

The FreelPA server package must be installed on the system before the setup. The
package is available in Fedora and can be installed using yum:

[rootOipaserver ~]# yum i n s t a l l freeipa-server

As an alternative, the packages built in the previous section can be installed instead
(including the SSSD packages required by FreelPA):

[rootOipaserver ~]# yum l o c a l i n s t a l l freeipa-2.2.0/dist/rpms/freeipa-{admin
tools,client,python,server,server-selinux}-2.2.0-0.fcl7.x86_64.rpm sssd-1.8
.3/rpmbuild/RPMS/x86_64/{libipa_hbac,libipa_hbac-python,sssd,sssd-client}-1
.8.3-0.fcl7.x86_64.rpm

BIND and BIND L D A P plugin must be installed as well for DNS server support:

[rootOipaserver ~]# yum i n s t a l l bind bind-dyndb-ldap

FreelPA server can now be configured on the system. This is done using the
i p a - s e r v e r - i n s t a l l command:

[rootOipaserver ~]# ipa- s e r v e r - i n s t a l l -U -n example.com -r EXAMPLE.COM -p
password -a password —setup-dns —forwarder 192.168.1.1

37

http://freeipa.Org/downloads/src/freeipa-2.2.0
http://ipaserver.example.com
http://example.com
http://EXAMPLE.COM

This command will configure FreelPA server for the example.com domain, using
E X A M P L E . C O M as the Kerberos realm name and „password" as the directory server
and FreelPA administrators' password. The DNS service will be configured, using the DNS
server originally configured on the system (in /etc/resolv.conf) as a forwarder. See the
manual page of i p a - s e r v e r - i n s t a l l for description of all the available options.

Finally, synchronization of DNS A and A A A A records with P T R records must be en­
abled in order for P T R record to be automatically created for FreelPA clients. To do that,
authenticate as admin and enable P T R record synchronization in the example.com DNS
zone:

[jcholast@ipaserver]$ k i n i t admin
[jcholast@ipaserver]$ ipa dnszone-mod example.com —allow-sync-ptr=true

8.3 Client setup

To be able to use client machines in a FreelPA domain, they first must be enrolled. In this
example, we will enroll only one client, which is enough for demonstration of the OpenSSH
integration. The client system is configured to use host name ipaclient.example.com and
IP address 192.168.101.

The FreelPA client package must be installed on the system before the client can be
enrolled. The package can be installed using yum:

[rootOipaclient ~]# yum i n s t a l l freeipa-client

Alternatively, the packages built from source can be installed instead:

[rootOipaclient ~]# yum l o c a l i n s t a l l freeipa-2.2.0/dist/rpms/freeipa-{clien
t.python}-2.2.0-0.fell.x86_64.rpm sssd-1.8.3/rpmbuild/RPMS/x86_64/{libipa_h
bac,libipa_hbac-python,sssd,sssd-client J--1.8.3-0.fcl7.x86_64.rpm

FreelPA clients can be enrolled to a FreelPA domain using the i p a - c l i e n t - i n s t a l l
command. Before the command can be executed, the client system must be configured
to use the FreelPA server (192.168.1.100) as DNS server in /etc/resolv.conf . Without
this, automatic discovery of server setting would not work. After DNS is configured on the
system, i p a - c l i e n t - i n s t a l l can be executed:

[rootOipaclient ~]# i p a - c l i e n t - i n s t a l l -U -p admin -w password

This command will join the client to the FreelPA domain example.com using the admin
user's credentials. See the manual page of i p a - c l i e n t - i n s t a l l for a detailed description
of all the available options.

8.4 Using OpenSSH with FreelPA

First, we should authenticate as admin:

[jcholastOipaserver "]$ k i n i t admin

38

http://example.com
http://EXAMPLE.COM
http://example.com
http://example.com
http://ipaclient.example.com
http://example.com

Verify that the server host entry has the correct SSH public keys set:

[jcholastOipaserver ~]$ ipa host-show ipaserver.example.com — a l l
Host name: ipaserver.example.com
Principal name: host/ipaserver.example.comOEXAMPLE.COM
SSH public key fingerprint: 5A:CE:70:8F:A3:AF:57:CI:D1:CO:C6:28:FC:D4:42:

07 (ssh-dss), 76:2B:1F:98:1C:02:EE:29:43:C1:18:FD:75:57:36:8F (ssh-rsa)
Password: False
Keytab: True
Managed by: ipaserver.example.com

[jcholastOipaserver "]$ ssh-keygen -1 - f /etc/ssh/ssh_host_dsa_key.pub
1024 5a:ce:70:8f:a3:af:57:cl:dl:cO:c6:28:fc:d4:42:07 (DSA)
[jcholastOipaserver "]$ ssh-keygen -1 - f /etc/ssh/ssh_host_rsa_key.pub
2048 76:2b:If :98:1c:02:ee:29:43:cl:18:fd:75:57:36:8f (RSA)

The same procedure can be used to verify host public keys of the client.
Verify that DNS SSHFP records were updated correctly:

[jcholastOipaserver ~]$ dig +short ipaserver.example.com SSHFP
2 1 D017B7B96C1CF0DC9A9CC317AED198EBE61C8369
1 1 EEA71C381935401361301366B2E4E2627CB470CD
[jcholastOipaserver ~]$ ssh-keygen -r ipaserver.example.com -f /etc/ssh/ssh
_host_dsa_key.pub
ipaserver.example.com IN SSHFP 2 1 d017b7b96clcf0dc9a9cc317aedl98ebe61c8369
[jcholastOipaserver ~]$ ssh-keygen -r ipaserver.example.com -f /etc/ssh/ssh
_host_rsa_key.pub
ipaserver.example.com IN SSHFP 1 1 eea71c381935401361301366b2e4e2627cb470cd

Again, the same procedure can be used to verify DNS SSHFP records of the client.
Public keys for an user are not automatically updated. Generate a SSH keypair and

create new FreelPA user with the public key set:

[jcholastOipaserver ~]$ ssh-keygen - t rsa
[jcholastOipaserver ~]$ ipa user-add jcholast —uid=1000 — f i r s t = J a n — l a s t
=Cholasta —sshpubkey='awk '{ print $2 }' .ssh/id_rsa.pub'

Verify that the user entry has the correct SSH public key set:

[jcholastOipaserver "]$ ipa user-show jcholast
User login: jcholast
F i r s t name: Jan
Last name: Cholasta
Home directory: /home/jcholast
Login s h e l l : /bin/sh
UID: 1000
GID: 1000
Account disabled: False
SSH public key fingerprint: 38:FA:5A:79:DF:21:D6:C6:EC:FO:5C:98:8A:4F:AF:

04 (ssh-rsa)
Password: False
Member of groups: ipausers
Kerberos keys available: False

39

http://ipaserver.example.com
http://ipaserver.example.com
http://ipaserver.example.com
http://ipaserver.example.com
http://ipaserver.example.com
http://ipaserver.example.com

[jcholastOipaserver "]$ ssh-keygen -1 - f .ssh/id_rsa.pub
2048 38:fa:5a:79:df:21:d6:c6:ec:f0:5c:98:8a:4f:af:04 j cholastOipaserver.ex
ample.com (RSA)

Now that public keys for both hosts and user are set, we can try using ssh to log in
remotely from the server to the client and vice-versa:

[jcholastOipaserver "]$ ssh jcholastOipaclient
[jcholastOipaclient "]$ ssh jcholastOipaserver

Both these commands should work without any warnings or errors and should not
prompt for verification of host identity.

40

Chapter 9

Conclusion

This paper summarizes the state of SSH-related features in FreelPA and SSSD and describes
the design and implementation of an extension providing tighter integration with SSH
in these applications. The extension, developed by the author of this paper, has been
included in upstream releases of FreelPA and SSSD, starting with FreelPA 2.2.0 alpha 2
and SSSD 1.8.0betal. Packages for these or newer releases of FreelPA and SSSD will be
shipped in Fedora 17, Ubuntu 12.10, future Red Hat Enterprise Linux releases and other
Linux-based operating system distributions.

The extension allows user and host SSH public key management in FreelPA domains
and integrates OpenSSH into the FreelPA ecosystem. However, it implements only the core
functionality necessary for proper SSH support in FreelPA.

One of the areas where the extension is lacking is policy management. Currently users
can be allowed or denied write access to their own SSH public keys, SSH public keys of
other users or SSH public keys of hosts. It should be made possible to require users to
authenticate using their password when modifying their own SSH public keys, similar to
how password change works. Administrators should have the ability to force OpenSSH
authorized keys options on users or groups of users, such as forcing a specific command
to be executed when the user logs in. Impersonation of users should be made possible by
allowing users to authenticate using their SSH public keys as other users in a controlled
manner.

The extension is not compatible with the OpenSSH-LPK L D A P schema, which sev­
eral existing applications use. FreelPA should be extended to provide an OpenSSH-LPK-
compatible user subtree on the directory server. SSSD should be extended to allow retriev­
ing user SSH public keys from a generic L D A P server using the OpenSSH-LPK schema.

41

Bibliography

[1] E . Auge. OpenSSH-LPK Website, h t tp: / /code.google .eom/p/openssh- lpk/ .
[Online].

[2] E . Auge. OpenSSH-LPK Documentation.
h t tp : / /code .google .eom/p/openssh- lpk/wiki /Main , February 2010. [Online;
accessed 2012-05-03].

[3] D. J . Barret and R. E . Silverman. SSH, The Secure Shell: The Definitive Guide.
O'Reilly Media, February 2001. ISBN 0-596-00011-1.

[4] R. Crittenden. FreelPA 2.1.90 alpha 2 release notes.
ht tp: / / freeipa.org/page/IPAv2_2190_alpha2, February 2012. [Online; accessed
2012-05-10].

[5] F. Cusack and M . Forssen. Generic Message Exchange Authentication for the Secure
Shell Protocol (SSH). R F C 4256 (Proposed Standard), January 2006.

[6] J . Galbraith and O. Saarenmaa. The Secure Shell (SSH) File Transfer Protocol
(Internet Draft, version 13), January 2007.

[7] J . Galbraith and R. Thayer. The Secure Shell (SSH) Public Key File Format. R F C
4716 (Informational), November 2006.

[8] S. Gallagher. Fedora Features: SSSD By Default.
h t tp ://fedoraproject .org/wiki /Features /SSSDByDefaul t , February 2010.
[Online; accessed 2011-12-30].

[9] S. Gallagher. SSSD 1.8.0betal release notes.
h t tps ://fedorahos ted .org/sssd/wiki /Releases /Notes-1 .8 .Obeta l , February
2012. [Online; accessed 2012-05-10].

[10] J . Hrozek and M . Nagy. FreelPA and SSSD: Free software identity management,
h t tp : / / rvoka l .fedorapeop le .o rg /devconf /f r ee ipa .pp .pd f , September 2009.
[Online; accessed 2011-12-30].

[11] J . Hutzelman, J . Salowey, J . Galbraith, and V . Welch. Generic Security Service
Application Program Interface (GSS-API) Authentication and Key Exchange for the
Secure Shell (SSH) Protocol. R F C 4462 (Proposed Standard), May 2006.

[12] Internet Systems Consortium. BIND 9 manual pages: nsupdate(8).
h t tp ://f tp . i sc .o rg / i sc /b ind9/cur /9 .9 /doc /a rm/man.nsupda te .h tml . [Online;
accessed 2012-05-12].

42

http://code.google.eom/p/openssh-lpk/
http://code.google.eom/p/openssh-lpk/wiki/Main
http://freeipa.org/page/IPAv2_2190_alpha2
http://fedoraproject.org/wiki/Features/SSSDByDefault
https://fedorahosted.org/sssd/wiki/Releases/Notes-1.8.Obetal
http://rvokal.fedorapeople.org/devconf/freeipa.pp.pdf
http://ftp.isc.org/isc/bind9/cur/9.9/doc/arm/man.nsupdate.html

[13] Internet Systems Consortium. BIND Website,
h t tp : //www. i s c . org/software/bind. [Online].

[14] E . D. Lackey. FreelPA: Identity/Policy Management, http://docs. fedoraproject.
org/en-US/Fedora/15/html-single/FreeIPA_Guide/index .html, 2011. [Online;
accessed 2011-12-30].

[15] J . P. Lanza. Weak C R C allows last block of IDEA-encrypted SSH packet to be
changed without notice, http : / /www.kb.cert .org/vuls / id/315308, January 2001.
[Online; accessed 2011-12-30].

[16] J . P. Lanza. Weak C R C allows packet injection into SSH sessions encrypted with
block ciphers, http : / /www.kb.cert .org/vuls / id/13877, November 2001. [Online;
accessed 2011-12-30].

[17] J . P. Lanza and S. Van Ittersum. SSH-1 allows client authentication to be forwarded
by a malicious server to another server, http:/ /www.kb.cert .org/vuls / id/684820,
January 2001. [Online; accessed 2011-12-30].

[18] R. Megginson. 389 Directory Server Features.
http://directory.fedoraproject.org / w i k i/Features, Apr i l 2011. [Online;
accessed 2011-12-30].

[19] M I T . Kerberos Website, http : / /web .mi t.edu /ke rberos / . [Online].

[20] D . Pal. IPA Client Design Overview.
http : / /www.freeipa.org/page/IPA_Client_Design_Overview, September 2008.
[Online; accessed 2011-12-30].

[21] Red Hat, Inc. Red Hat Directory Server 8.2 Administration Guide, http://docs,
redhat.com/docs/en-US/Red_Hat_Directory_Server/8.2/pdf/Administration_
Guide/Red_Hat_Directory_Server-8.2-Administration_Guide-en-US .pdf,
August 2010. [Online; accessed 2012-05-10].

[22] J . Schlyter and W. Griffin. Using DNS to Securely Publish Secure Shell (SSH) Key
Fingerprints. R F C 4255 (Proposed Standard), January 2006.

[23] D . Stebila and J . Green. Elliptic Curve Algorithm Integration in the Secure Shell
Transport Layer. R F C 5656 (Proposed Standard), December 2009.

[24] The 389 Directory Server Team. 389 Directory Server Website,
http : / / d i r e c t o r y . f e d o r a p r o j e c t . o r g / . [Online].

[25] The Apache Software Foundation. The Apache H T T P Server Project Website,
http : / / h t t p d . apache. org. [Online].

[26] The Dogtag Certificate System Team. Dogtag Certificate System Website,
http: //pki . fedoraproject .org/wiki /PKI_Main_Page. [Online].

[27] The Fedora Project. Fedora Project Website, http : / / f e d o r a p r o j e c t . o r g / .
[Online].

[28] The FreelPA Team. FreelPA Website, http : / / f r e e i p a . o r g . [Online].

43

http://docs
http://www.kb.cert.org/vuls/id/315308
http://www.kb.cert.org/vuls/id/13877
http://www.kb.cert.org/vuls/id/684820
http://directory.fedoraproject.org/wiki/Features
http://web.mit.edu/kerberos/
http://www.freeipa.org/page/IPA_Client_Design_Overview
http://docs
http://fedoraproject.org/
http://freeipa.org

[29] The FreelPA Team. About FreelPA. h t tp : / / f ree ipa .org /page /About , December
2010. [Online; accessed 2011-12-30].

[30] The OpenBSD Project. OpenBSD Website, http://www.openbsd.org. [Online].

[31] The OpenBSD Project. OpenSSH Website, http://www.openssh.com. [Online].

[32] The OpenBSD Project. OpenSSH Project History and Credits.
ht tp: / /www.openssh.com/history.html, December 2004. [Online; accessed
2011-12-30].

[33] The OpenBSD Project. OpenBSD System Manager's Manual: ssh_config(5).
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh_config&sektion=5, Apri l
2012. [Online; accessed 2012-05-10].

[34] The OpenBSD Project. OpenBSD System Manager's Manual: sshd(8).
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd&sektion=8, May 2012.
[Online; accessed 2012-05-10].

[35] The OpenBSD Project. OpenBSD System Manager's Manual: sshd_config(5).
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd_config&sektion=5, May
2012. [Online; accessed 2012-05-10].

[36] The Samba Team, ldb Website, h t tp : / / l db . samba .o rg / . [Online].

[37] The SSSD Team. SSSD Website, h t tps : / / f edorahos ted .o rg / s ssd / . [Online].

[38] T. Ylonen. SSH Change Log.
h t tp : / /www.openbsd .org /cgi -b in /cvsweb/s rc /usr .b in /ssh /At t ic /ChangeLog,
November 1995. [Online; accessed 2011-12-30].

[39] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. R F C
4252 (Proposed Standard), January 2006.

[40] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. R F C 4254
(Proposed Standard), January 2006.

[41] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. R F C 4251
(Proposed Standard), January 2006.

[42] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. R F C
4253 (Proposed Standard), January 2006.

44

http://freeipa.org/page/About
http://www.openbsd.org
http://www.openssh.com
http://www.openssh.com/history.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh_config&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sshd_config&sektion=5
http://ldb.samba.org/
https://fedorahosted.org/sssd/
http://www.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/Attic/ChangeLog

